WorldWideScience

Sample records for geosciences union atmospheric

  1. Geoscience Information for Teachers (GIFT) Workshops of the European Geoscience Union General Assembly

    Science.gov (United States)

    Arnold, Eve; Barnikel, Friedrich; Berenguer, Jean-Luc; Cifelli, Francesca; Funiciello, Francesca; King, Chris; Laj, Carlo; Macko, Stephen; Schwarz, Annegret; Smith, Phil; Summesberger, Herbert

    2017-04-01

    GIFT workshops are a two-and-a-half-day teacher enhancement workshops organized by the EGU Committee on Education and held in conjunction with the EGU annual General Assembly in Vienna, and also elsewhere in the world usually associated with large geoscience conferences. The program of each workshop focuses on a different general theme each year. Past themes have included, for example, "The solar system and beyond", "Mineral Resources", "Our changing Planet", "Natural Hazards", "Water" and "Evolution and Biodiversity". These workshops combine scientific presentations on current research in the Earth and Space Sciences, given by prominent scientists, with hands-on, inquiry-based activities that can be used by the teachers in their classrooms to explain related scientific principles or topics. Participating teachers are also invited to present their own classroom activities to their colleagues, even when not directly related to the current program. The main objective of these workshops is to communicate first-hand scientific information to teachers in primary and secondary schools, significantly shortening the time between discovery and textbook. The GIFT workshop provides the teachers with materials that can be directly incorporated into their classroom, as well as those of their colleagues at home institutions. In addition, the full immersion of science teachers in a truly scientific context (EGU General Assemblies) and the direct contact with leading geoscientists stimulates curiosity towards research that the teachers can transmit to their pupils. In addition to their scientific content, the GIFT workshops are of high societal value. The value of bringing teachers from many nations together includes the potential for networking and collaborations, the sharing of experiences and an awareness of science education as it is presented in other countries. Since 2003, the EGU GIFT workshops have brought together more than 800 teachers from more than 25 nations. At all

  2. Archive of Geosample Data and Information from the Rosenstiel School of Marine and Atmospheric Science (RSMAS) Department of Marine Geosciences.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Rosenstiel School of Marine and Atmospheric Science (RSMAS) Department of Marine Geosciences made a one-time contribution of data describing geological samples...

  3. SOIL - A new open access journal of the European Geosciences Union

    Science.gov (United States)

    Brevik, Eric; Mataix-Solera, Jorge; Pereg, Lily; Quinton, John; Six, Johan; Van Oost, Kristof; Cerdà, Artemi

    2014-05-01

    The Soil System Sciences (SSS) division of the EGU has been a strong and growing international research force in the last few years. Since the first EGU meeting with SSS participation in 2004 where 200 abstracts were presented in 7 sessions, the contribution of the SSS division has grown considerably, with 1,427 abstracts presented in 57 SSS sessions at the 2013 EGU General Assembly. After 10 years of active participation, the SSS Division has developed a new open access journal, SOIL, which will serve the whole EGU membership. SOIL intends to publish scientific research that will contribute to understanding the Soil System and its interaction with humans and the entire Earth System. The scope of the journal will include all topics that fall within the study of soil science as a discipline, with an emphasis on studies that integrate soil science with other sciences (Soils and plants, Soils and water, Soils and atmosphere, Soils and biogeochemical cycling, Soils and the natural environment, Soils and the human environment, Soils and food security, Soils and biodiversity, Soils and global change, Soils and health, Soil as a resource, Soil systems, Soil degradation (chemical, physical and biological), Soil protection and remediation (including soil monitoring), Soils and methodologies). Manuscript types considered for publication in SOIL are original research articles, review articles, short communications, forum articles, and letters to the editors. SOIL will also publish up to two special issues on thematic subjects per year and encourages conveners of innovative sessions at the EGU meeting to submit proposals for special issues to the executive editor who oversees special issues. As with other EGU journals, SOIL has a two-stage publication process. In the first stage, papers that pass a rapid access-review by one of the editors will immediately be published in SOIL Discussions (SOIL-D). Papers will then be subject to interactive public discussion, during which the

  4. Combined use of FRN and CSSI techniques: SWMCN Laboratory PICO experience during the European Geosciences Union (EGU) General Assembly 2015, Vienna, Austria

    International Nuclear Information System (INIS)

    Mabit, L.; Toloza, A.; Resch, C.

    2016-01-01

    The European Geosciences Union (EGU) General Assembly 2015 that took place at the Austria Center of Vienna, from 12-17 April 2015, was a big success with 4870 oral, 8489 poster, and 705 PICO (Presenting Interactive COntent™) presentations as well as 11837 scientists attending from 108 different countries. This year again, the activities of the SWMCN Laboratory were well represented with 3 PICO presentations during the SSS12.10 session (i.e. Soil and sediment tracing techniques for understanding environmental processes)

  5. Resources to Transform Undergraduate Geoscience Education: Activities in Support of Earth, Oceans and Atmospheric Sciences Faculty, and Future Plans

    Science.gov (United States)

    Ryan, J. G.; Singer, J.

    2013-12-01

    The NSF offers funding programs that support geoscience education spanning atmospheric, oceans, and Earth sciences, as well as environmental science, climate change and sustainability, and research on learning. The 'Resources to Transform Undergraduate Geoscience Education' (RTUGeoEd) is an NSF Transforming Undergraduate Education in STEM (TUES) Type 2 special project aimed at supporting college-level geoscience faculty at all types of institutions. The project's goals are to carry out activities and create digital resources that encourage the geoscience community to submit proposals that impact their courses and classroom infrastructure through innovative changes in instructional practice, and contribute to making transformative changes that impact student learning outcomes and lead to other educational benefits. In the past year information sessions were held during several national and regional professional meetings, including the GSA Southeastern and South-Central Section meetings. A three-day proposal-writing workshop for faculty planning to apply to the TUES program was held at the University of South Florida - Tampa. During the workshop, faculty learned about the program and key elements of a proposal, including: the need to demonstrate awareness of prior efforts within and outside the geosciences and how the proposed project builds upon this knowledge base; need to fully justify budget and role of members of the project team; project evaluation and what matters in selecting a project evaluator; and effective dissemination practices. Participants also spent time developing their proposal benefitting from advice and feedback from workshop facilitators. Survey data gathered from workshop participants point to a consistent set of challenges in seeking grant support for a desired educational innovation, including poor understanding of the educational literature, of available funding programs, and of learning assessment and project evaluation. Many also noted

  6. Geosciences projects FY 1985 listing

    Energy Technology Data Exchange (ETDEWEB)

    1986-05-01

    This report, which updates the previous working group publication issued in February 1982, contains independent sections: (A) Summary Outline of DOE Geoscience and Related Studies, and (B) Crosscut of DOE Geoscience and Geoscience Related Studies. The FY 1985 funding levels for geoscience and related activities in each of the 11 programs within DOE are presented. The 11 programs fall under six DOE organizations: Energy Research Conservation and Renewable Energy; Fossil Energy; Defense Programs; Environmental, Safety, and Health; and Civilian radioactive Waste. From time to time, there is particular need for special interprogrammatic coordination within certain topical areas. section B of the report is intended to fill this need for a topical categorization of the Department's geoscience and related activities. These topical areas in Solid Earth Geosciences, Atmospheric Geosciences, Ocean Geosciences, Space and Solar/Terrestrial Geosciences, and Hydrological Geosciences are presented in this report.

  7. Piloting a Geoscience Literacy Exam for Assessing Students' Understanding of Earth, Climate, Atmospheric and Ocean Science Concepts

    Science.gov (United States)

    Steer, D. N.; Iverson, E. A.; Manduca, C. A.

    2013-12-01

    This research seeks to develop valid and reliable questions that faculty can use to assess geoscience literacy across the curriculum. We are particularly interested on effects of curricula developed to teach Earth, Climate, Atmospheric, and Ocean Science concepts in the context of societal issues across the disciplines. This effort is part of the InTeGrate project designed to create a population of college graduates who are poised to use geoscience knowledge in developing solutions to current and future environmental and resource challenges. Details concerning the project are found at http://serc.carleton.edu/integrate/index.html. The Geoscience Literacy Exam (GLE) under development presently includes 90 questions. Each big idea from each literacy document can be probed using one or more of three independent questions: 1) a single answer, multiple choice question aimed at basic understanding or application of key concepts, 2) a multiple correct answer, multiple choice question targeting the analyzing to analysis levels and 3) a short essay question that tests analysis or evaluation cognitive levels. We anticipate multiple-choice scores and the detail and sophistication of essay responses will increase as students engage with the curriculum. As part of the field testing of InTeGrate curricula, faculty collected student responses from classes that involved over 700 students. These responses included eight pre- and post-test multiple-choice questions that covered various concepts across the four literacies. Discrimination indices calculated from the data suggest that the eight tested questions provide a valid measure of literacy within the scope of the concepts covered. Student normalized gains across an academic term with limited InTeGrate exposure (typically two or fewer weeks of InTeGrate curriculum out of 14 weeks) were found to average 16% gain. A small set of control data (250 students in classes from one institution where no InTeGrate curricula were used) was

  8. Overview on the ‘Atmospheric Emissions from Volcanoes’ Special Issue

    Directory of Open Access Journals (Sweden)

    Shona Mackie

    2015-02-01

    Full Text Available The session ‘Atmospheric Emissions from Volcanoes’ formed part of the 2014 General Assembly of the Europe-an Geosciences Union (EGU, held in Vienna from 27 April to 2 May. This special issue presents some of the work that was discussed during the session. [...

  9. Summaries of FY 1993 geosciences research

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-01

    The Department of Energy supports research in the geosciences in order to provide a sound foundation of fundamental knowledge in those areas of the geosciences that are germane to the DOE`s many missions. The Geosciences Research Program is supported by the Office of Energy Research. The participants in this program include DOE laboratories, academic institutions, and other governmental agencies. These activities are formalized by a contract or grant between the DOE and the organization performing the work, providing funds for salaries, equipment, research materials, and overhead. The summaries in this document, prepared by the investigators, describe the scope of the individual programs. The Geosciences Research Program includes research in geophysics, geochemistry, resource evaluation, solar-terrestrial interactions, and their subdivisions including earth dynamics, properties of earth materials, rock mechanics, underground imaging, rock-fluid interactions, continental scientific drilling, geochemical transport, solar-atmospheric physics, and modeling, with emphasis on the interdisciplinary areas.

  10. Summaries of physical research in the geosciences

    Energy Technology Data Exchange (ETDEWEB)

    1980-08-01

    The Department of Energy supports research in the geosciences in order to provide a sound underlay of fundamental knowledge in those areas of the earth, atmospheric, and solar/terrestrial sciences that relate to the Department of Energy's many missions. The Division of Engineering, Mathematical and Geosciences, which is a part of the Office of Basic Energy Sciences and comes under the Director of Energy Research, supports under its Geosciences program major Department of Energy laboratories, industry, universities and other governmental agencies. The summaries in this document, prepared by the investigators, describe the overall scope of the individual programs and details of the research performed during 1979-1980. The Geoscience program includes research in geology, petrology, geophysics, geochemistry, hydrology, solar-terrestrial relationships, aeronomy, seismology and natural resource analysis, including the various subdivisions and interdisciplinary areas. All such research is related to the Department's technological needs, either directly or indirectly.

  11. Outer geosciences

    International Nuclear Information System (INIS)

    Blake, R.L.

    1979-06-01

    This report presents an objective discussion of the importance of the atmospheric/solar-terrestrial system to national energy programs. A brief sketch is given of the solar-terrestrial environment, extending from the earth's surface to the sun. Processes in this natural system influence several energy activities directly or indirectly, and some present and potential energy activities can influence the natural system. It is not yet possible to assess the two-way interactions quantitatively or to evaluate the economic impact. An investment by the Department of Energy (DOE) in a long-range basic research program would be an important part of the department's mission. Existing programs by other agencies in this area of research are reviewed, and a compatible DOE program is outlined. 18 figures, 5 tables

  12. Summary outline of DOE geoscience and geoscience - related research

    International Nuclear Information System (INIS)

    1982-02-01

    The Office of Basic Energy Sciences (OBES) supports long-range, basic research in those areas of the geosciences which are relevant to the nation's energy needs. The objective of the Geoscience program is to develop a quantitative and predictive understanding of geological, geophysical and geochemical structures and processes in the solid earth and in solar-terrestrial relationships. This understanding is to assure an effective knowledge base for energy resource recognition, evaluation and utilization in an environmentally acceptable manner. The work is carried out primarily in DOE laboratories and in universities, although some is conducted by other federal agencies and by the National Academy of Sciences. Principal areas of interest include: Geology, Geophysics, and Earth Dynamics; Geochemistry; Energy Resource Recognition, Evaluation and Utilization; Hydrologic and Marine Sciences; and Solar-Terrestrial/Atmospheric Interactions

  13. Summary outline of ERDA geosciences and geoscience-related research

    International Nuclear Information System (INIS)

    1976-08-01

    The Division of Biomedical and Environmental Research (DBER) supports long-range, basic geosciences research in those areas of the life sciences which are relevant to current or planned ERDA programs. A central objective of the DBER geosciences program is to understand the mechanisms by which radionuclides and non-nuclear pollutants move through and interact with ecological systems including the air, land, inland waters, and oceans. Principal areas of interest include, in the field of atmospheric sciences: studies of the troposphere, particle formation, particulate matter, behavior of aerosols and gases, atmospheric transport and diffusion of fossil fuel pollutants, radionuclides, radionuclide global distribution patterns, nuclear emergency response systems, precipitation scavenging and dry deposition, regional relationships between pollutant sources and ambient atmospheric concentrations; and oceanographic studies of radioactivity that may be directly added to the environment from waste disposal activities and reactor operations or indirectly from nuclear explosions and transportation, the source term characterization, transport, fate, and effects of these pollutants in the marine environment; and studies of thermal effects on biological systems, mixing and circulation of water, distribution of radionuclides in ocean waters and sediments, and geochronology.A summary outline of the research programs is presented

  14. Summaries of physical research in the geosciences

    International Nuclear Information System (INIS)

    1981-10-01

    The Department of Energy supports research in the geosciences in order to provide a sound foundation of fundamental knowledge in those areas of earth, atmospheric, and solar-terrestrial sciences that are germane to the Department of Energy's many missions. The summaries describe the scope of the individual programs and detail the research performed during 1980 to 1981. The Geosciences Research Program includes research in geology, petrology, geophysics, geochemistry, hydrology, solar-terrestrial relationships, aeronomy, seismology, and natural resource analysis, including the various subdivisions and interdisciplinary areas

  15. Summaries of physical research in the geosciences

    Energy Technology Data Exchange (ETDEWEB)

    1981-10-01

    The Department of Energy supports research in the geosciences in order to provide a sound foundation of fundamental knowledge in those areas of earth, atmospheric, and solar-terrestrial sciences that are germane to the Department of Energy's many missions. The summaries describe the scope of the individual programs and detail the research performed during 1980 to 1981. The Geosciences Research Program includes research in geology, petrology, geophysics, geochemistry, hydrology, solar-terrestrial relationships, aeronomy, seismology, and natural resource analysis, including the various subdivisions and interdisciplinary areas.

  16. Career Paths for Geosciences Students (Invited)

    Science.gov (United States)

    Bowers, T. S.; Flewelling, S. A.

    2013-12-01

    Current and future drivers of hiring in the geosciences include climate, environment, energy, georisk and litigation areas. Although climate is closely linked to the atmospheric sciences, hiring needs in the geosciences exist as well, in understanding potential impacts of climate change on coastal erosion and water resources. Where and how to consider carbon sequestration as a climate mitigation policy will also require geosciences expertise. The environmental sciences have long been a source of geosciences hiring, and have ongoing needs in the areas of investigation of contamination, and in fluid and chemical transport. The recent expansion of the energy sector in the U.S. is providing opportunities for the geosciences in oil and gas production, hydraulic fracturing, and in geothermal development. In georisk, expertise in earthquake and volcanic hazard prediction are increasingly important, particularly in population centers. Induced seismicity is a relatively new area of georisk that will also require geosciences skills. The skills needed in the future geosciences workforce are increasingly interdisciplinary, and include those that are both observational and quantitative. Field observations and their interpretation must be focused forward as well as backwards and include the ability to recognize change as it occurs. Areas of demand for quantitative skills include hydrological, geophysical, and geochemical modeling, math and statistics, with specialties such as rock mechanics becoming an increasingly important area. Characteristics that students should have to become successful employees in these sectors include strong communication skills, both oral and written, the ability to know when to stop "studying" and identify next steps, and the ability to turn research areas into solutions to problems.

  17. Summaries of FY 92 geosciences research

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-01

    The Department of Energy supports research in the geosciences in order to provide a sound foundation of fundamental knowledge in those areas of the geosciences that are germane to the Department of Energy's many missions. The Division of Engineering and Geosciences, part of the Office of Basic Energy Sciences of the Office of Energy Research, supports the Geosciences Research Program. The participants in this program include Department of Energy laboratories, academic institutions, and other governmental agencies. These activities are formalized by a contract or grant between the Department of Energy and the organization performing the work, providing funds for salaries, equipment, research materials, and overhead. The summaries in this document, prepared by the investigators, describe the scope of the individual programs. The Geosciences Research Program includes research in geophysics, geochemistry, resource evaluation, solar-terrestrial interactions and their subdivisions including Earth dynamics, properties of Earth materials, rock mechanics, underground imaging, rock-fluid interactions, continental scientific drilling, geochemical transport, solar/atmospheric physics, and modeling, with emphasis on the interdisciplinary areas. All such research is related either directly or indirectly to the Department of Energy's long-range technological needs.

  18. Anthropogenic emissions of oxidized sulfur and nitrogen into the atmosphere of the former Soviet Union in 1985 and 1990

    Energy Technology Data Exchange (ETDEWEB)

    Ryaboshapko, A.G.; Brukhanov, P.A.; Gromov, S.A.; Proshina, Yu.V; Afinogenova, O.G. [Institute of Global Climate and Ecology, Moscow (Russian Federation)

    1996-09-01

    Anthropogenic emissions of oxidized sulfur and nitrogen over the former Soviet Union for 1985 and 1990 were calculated on the basis of a combination of `bottom-up` and `top-down` approaches. Sulfur dioxide emissions from combustion of hard coal, brown coal, oil products, natural gas, shale oil, peat, wood as well as from metallurgy, sulfuric acid production, and cement production were estimated. Nitrogen oxides emissions were considered separately for large power plants, small power plants, industrial boilers, residential combustion units, and for transport. The sulfur and nitrogen emissions were spatially distributed over the former Soviet Union with 1 x 1 degree resolution. Data on 721 point sources of sulfur dioxide emissions and on the 242 largest power stations as nitrogen oxides sources were used. The area sources of both sulfur dioxide and nitrogen oxides were distributed according to the population density separately for about 150 administrative units of the former Soviet Union. 63 refs., 19 tabs.

  19. History of Geoscience Research Matters to You

    Science.gov (United States)

    Fleming, J. R.

    2017-12-01

    The geosciences have a long, distinguished, and very useful history Today's science is tomorrow's history of science. If we don't study the past, then every decision we face will seem unprecedented. If we don't study the history of science and apply its lessons, then I don't think we can say we really understand science. Actual research results and ongoing programs will be highlighted, with a focus on public understanding and support for atmospheric science and global change.

  20. Geoscience on television

    NARCIS (Netherlands)

    Hut, Rolf; Land-Zandstra, Anne M.; Smeets, Ionica; Stoof, Cathelijne R.

    2016-01-01

    Geoscience communication is becoming increasingly important as climate change increases the occurrence of natural hazards around the world. Few geoscientists are trained in effective science communication, and awareness of the formal science communication literature is also low. This can be

  1. Building a Community for Art and Geoscience

    Science.gov (United States)

    Eriksson, S. C.; Ellins, K. K.

    2014-12-01

    Several new avenues are in place for building and supporting a community of people interested in the art and geoscience connections. Although sessions advocating for art in teaching geoscience have been scattered through geoscience professional meetings for several decades, there is now a sustained presence of artists and geoscientists with their research and projects at the annual meeting of the American Geophysical Union. In 2011, 13 abstracts were submitted and, in 2013, 20 talks and posters were presented at the annual meeting. Participants have requested more ways to connect with each other as well as advocate for this movement of art and science to others. Several words can describe new initiatives to do this: Social, Collaborative, Connected, Informed, Networked, and Included. Social activities of informal dinners, lunches, and happy hour for interested people in the past year have provided opportunity for presenters at AGU to spend time getting to know one another. This has resulted in at least two new collaborative projects. The nascent Bella Roca and more established Geology in Art websites and their associated blogs at www.bellaroca.org and http://geologyinart.blogspot.com, respectively are dedicated to highlighting the work of artists inspired by the geosciences, connecting people and informing the community of exhibits and opportunities for collaboration. Bella Roca with its social media of Facebook (Bella Roca) and Twitter (@BellRocaGeo), is a direct outgrowth of the recent 2012 and 2013 AGU sessions and, hopefully, can be grown and sustained for this community. Articles in professional journals will also help inform the broader geoscience community of the benefit of engaging with artists and designers for both improved science knowledge and communication. Organizations such as Leonardo, the International Society for the Arts, Sciences and Technology, the Art Science Gallery in Austin, Texas also promote networking among artists and scientists with

  2. Geoscience Digital Data Resource and Repository Service

    Science.gov (United States)

    Mayernik, M. S.; Schuster, D.; Hou, C. Y.

    2017-12-01

    The open availability and wide accessibility of digital data sets is becoming the norm for geoscience research. The National Science Foundation (NSF) instituted a data management planning requirement in 2011, and many scientific publishers, including the American Geophysical Union and the American Meteorological Society, have recently implemented data archiving and citation policies. Many disciplinary data facilities exist around the community to provide a high level of technical support and expertise for archiving data of particular kinds, or for particular projects. However, a significant number of geoscience research projects do not have the same level of data facility support due to a combination of several factors, including the research project's size, funding limitations, or topic scope that does not have a clear facility match. These projects typically manage data on an ad hoc basis without limited long-term management and preservation procedures. The NSF is supporting a workshop to be held in Summer of 2018 to develop requirements and expectations for a Geoscience Digital Data Resource and Repository Service (GeoDaRRS). The vision for the prospective GeoDaRRS is to complement existing NSF-funded data facilities by providing: 1) data management planning support resources for the general community, and 2) repository services for researchers who have data that do not fit in any existing repository. Functionally, the GeoDaRRS would support NSF-funded researchers in meeting data archiving requirements set by the NSF and publishers for geosciences, thereby ensuring the availability of digital data for use and reuse in scientific research going forward. This presentation will engage the AGU community in discussion about the needs for a new digital data repository service, specifically to inform the forthcoming GeoDaRRS workshop.

  3. Developing a Geoscience Literacy Exam: Pushing Geoscience Literacy Assessment to New Levels

    Science.gov (United States)

    Iverson, E. A.; Steer, D. N.; Manduca, C. A.

    2012-12-01

    InTeGrate is a community effort aimed at improving geoscience literacy and building a workforce that can use geoscience to solve societal issues. As part of this work we have developed a geoscience literacy assessment instrument to measure students' higher order thinking. This assessment is an important part of the development of curricula designed to increase geoscience literacy for all undergraduate students. To this end, we developed the Geoscience Literacy Exam (GLE) as one of the tools to quantify the effectiveness of these materials on students' understandings of geoscience literacy. The InTeGrate project is a 5-year, NSF-funded STEP Center grant in its first year of funding. Details concerning the project are found at http://serc.carleton.edu/integrate/index.html. The GLE instrument addresses content and concepts in the Earth, Climate, and Ocean Science literacy documents. The testing schema is organized into three levels of increasing complexity. Level 1 questions are single answer, understanding- or application-level multiple choice questions. For example, selecting which type of energy transfer is most responsible for the movement of tectonic plates. They are designed such that most introductory level students should be able to correctly answer after taking an introductory geoscience course. Level 2 questions are more advanced multiple answer/matching questions, at the understanding- through analysis-level. Students might be asked to determine the types of earth-atmosphere interactions that could result in changes to global temperatures in the event of a major volcanic eruption. Because the answers are more complicated, some introductory students and most advanced students should be able to respond correctly. Level 3 questions are analyzing- to evaluating-level short essays, such as describe the ways in which the atmosphere sustains life on Earth. These questions are designed such that introductory students could probably formulate a rudimentary response

  4. Future Careers in Geoscience

    Science.gov (United States)

    van der Vink, G. E.; van der Vink, G. E.

    2001-05-01

    A new generation of Geoscientists are abandoning the traditional pathways of oil exploration and academic research to pursue careers in public policy, international affairs, business, education and diplomacy. They are using their backgrounds in Geoscience to address challenging, multi-disciplinary problems of societal concern. To prepare for such careers, students are developing a broad understanding of science and a basic literacy in economics, international affairs, and policy-making.

  5. Summaries of FY 1994 geosciences research

    Energy Technology Data Exchange (ETDEWEB)

    1994-12-01

    The Geosciences Research Program is directed by the Department of Energy`s (DOE`s) Office of Energy Research (OER) through its Office of Basic Energy Sciences (OBES). Activities in the Geosciences Research Program are directed toward the long-term fundamental knowledge of the processes that transport, modify, concentrate, and emplace (1) the energy and mineral resources of the earth and (2) the energy byproducts of man. The Program is divided into five broad categories: Geophysics and earth dynamics; Geochemistry; Energy resource recognition, evaluation, and utilization; Hydrogeology and exogeochemistry; and Solar-terrestrial interactions. The summaries in this document, prepared by the investigators, describe the scope of the individual programs in these main areas and their subdivisions including earth dynamics, properties of earth materials, rock mechanics, underground imaging, rock-fluid interactions, continental scientific drilling, geochemical transport, solar/atmospheric physics, and modeling, with emphasis on the interdisciplinary areas.

  6. Comparisons of the error budgets associated with ground-based FTIR measurements of atmospheric CH4 profiles at Île de la Réunion and Jungfraujoch.

    Science.gov (United States)

    Vanhaelewyn, Gauthier; Duchatelet, Pierre; Vigouroux, Corinne; Dils, Bart; Kumps, Nicolas; Hermans, Christian; Demoulin, Philippe; Mahieu, Emmanuel; Sussmann, Ralf; de Mazière, Martine

    2010-05-01

    The Fourier Transform Infra Red (FTIR) remote measurements of atmospheric constituents at the observatories at Saint-Denis (20.90°S, 55.48°E, 50 m a.s.l., Île de la Réunion) and Jungfraujoch (46.55°N, 7.98°E, 3580 m a.s.l., Switzerland) are affiliated to the Network for the Detection of Atmospheric Composition Change (NDACC). The European NDACC FTIR data for CH4 were improved and homogenized among the stations in the EU project HYMN. One important application of these data is their use for the validation of satellite products, like the validation of SCIAMACHY or IASI CH4 columns. Therefore, it is very important that errors and uncertainties associated to the ground-based FTIR CH4 data are well characterized. In this poster we present a comparison of errors on retrieved vertical concentration profiles of CH4 between Saint-Denis and Jungfraujoch. At both stations, we have used the same retrieval algorithm, namely SFIT2 v3.92 developed jointly at the NASA Langley Research Center, the National Center for Atmospheric Research (NCAR) and the National Institute of Water and Atmosphere Research (NIWA) at Lauder, New Zealand, and error evaluation tools developed at the Belgian Institute for Space Aeronomy (BIRA-IASB). The error components investigated in this study are: smoothing, noise, temperature, instrumental line shape (ILS) (in particular the modulation amplitude and phase), spectroscopy (in particular the pressure broadening and intensity), interfering species and solar zenith angle (SZA) error. We will determine if the characteristics of the sites in terms of altitude, geographic locations and atmospheric conditions produce significant differences in the error budgets for the retrieved CH4 vertical profiles

  7. Writing fiction about geoscience

    Science.gov (United States)

    Andrews, S.

    2013-12-01

    Employment in geology provides excellent preparation for writing mystery novels that teach geoscience. While doing pure research at the USGS under the mentorship of Edwin D. McKee, I learned that the rigors of the scientific method could be applied not only to scientific inquiry but to any search for what is true, including the art of storytelling (the oldest and still most potent form of communication), which in turn supports science. Geoscience constructs narratives of what has happened or what might happen; hence, to communicate my findings, I must present a story. Having developed my writing skills while preparing colleague-reviewed papers (which required that I learn to set my ego aside and survive brutal critiques), the many rounds of edits required to push a novel through a publishing house were a snap. My geoscience training for becoming a novelist continued through private industry, consultancy, and academia. Employment as a petroleum geologist added the pragmatism of bottom-line economics and working to deadlines to my skill set, and nothing could have prepared me for surviving publishers' rejections and mixed reviews better than having to pitch drilling projects to jaded oil patch managers, especially just before lunchtime, when I was all that stood between them and their first martinis of the day. Environmental consulting was an education in ignorant human tricks and the politics of resource consumption gone astray. When teaching at the college level and guest lecturing at primary and secondary schools, my students taught me that nothing was going to stick unless I related the story of geoscience to their lives. When choosing a story form for my novels, I found the mystery apropos because geoscientists are detectives. Like police detectives, we work with fragmentary and often hidden evidence using deductive logic, though our corpses tend to be much, much older or not dead yet. Throughout my career, I learned that negative stereotypes about scientists

  8. Enhancing Diversity in the Geosciences

    Science.gov (United States)

    Wechsler, Suzanne P.; Whitney, David J.; Ambos, Elizabeth L.; Rodrigue, Christine M.; Lee, Christopher T.; Behl, Richard J.; Larson, Daniel O.; Francis, Robert D.; Hold, Gregory

    2005-01-01

    An innovative interdisciplinary project at California State University, Long Beach, was designed to increase the attractiveness of the geosciences (physical geography, geology, and archaeology) to underrepresented groups. The goal was to raise awareness of the geosciences by providing summer research opportunities for underrepresented high school…

  9. Summaries of physical research in the geosciences

    International Nuclear Information System (INIS)

    1978-09-01

    The Department of Energy supports research in the geosciences in order to provide a sound underlay of fundamental knowledge in those areas of the earth, atmospheric, and solar/terrestrial sciences which relate to DOE's many missions. This research may be conducted in the major DOE laboratories, industry, universities and other government agencies. Such support provides for payment of salaries, purchase of equipment and other materials, an allowance for overhead costs, and is formalized by a contract between the Department and the organization performing the work. The summaries in this document, prepared by the investigators, describe the work performed during 1977, include the scope of the work to be performed in 1978 and provide information regarding some of the research planned for 1979. The Division of Engineering, Mathematics, and Geosciences, which is a part of the Office of Energy Research, supports, under its Geoscience Program, research in geology, petrology, geophysics, geochemistry, hydrology, solar-terrestrial relationships, aeronomy, seismology and natural resource analysis, including the various subdivisions and interdisciplinary relationships, as well as their relationship to the Department's technological needs

  10. Broadening Participation in the Geosciences through Participatory Research

    Science.gov (United States)

    Pandya, R. E.; Hodgson, A.; Wagner, R.; Bennett, B.

    2009-12-01

    In spite of many efforts, the geosciences remain less diverse than the overall population of the United States and even other sciences. This lack of diversity threatens the quality of the science, the long-term viability of our workforce, and the ability to leverage scientific insight in service of societal needs. Drawing on new research into diversity specific to geosciences, this talk will explore underlying causes for the lack of diversity in the atmospheric and related sciences. Causes include the few geoscience majors available at institutions with large minority enrollment; a historic association of the geosciences with extractive industries which are negatively perceived by many minority communities, and the perception that science offers less opportunity for service than other fields. This presentation suggests a new approach - community-based participatory research (CBPR). In CBPR, which was first applied in the field of rural development and has been used for many years in biomedical fields, scientists and community leaders work together to design a research agenda that simultaneously advances basic understanding and addresses community priorities. Good CBPR integrates research, education and capacity-building. A CBRP approach to geoscience can address the perceived lack of relevance and may start to ameliorate a history of negative experiences of geosciences. Since CBPR works best when it is community-initiated, it can provide an ideal place for Minority-Serving Institutions to launch their own locally-relevant programs in the geosciences. The presentation will conclude by describing three new examples of CBPR. The first is NCAR’s partnerships to explore climate change and its impact on Tribal lands. The second approach a Denver-area listening conference that will identify and articulate climate-change related priorities in the rapidly-growing Denver-area Latino community. Finally, we will describe a Google-funded project that brings together

  11. Linking Undergraduate Geoscience and Education Departments

    Science.gov (United States)

    Ireton, F. W.; McManus, D. A.

    2001-05-01

    In many colleges and universities students who have declared a major in one of the geosciences are often ineligible to take the education courses necessary for state certification. In order to enroll in education courses to meet the state's Department of Education course requirements for a teaching credential, these students must drop their geoscience major and declare an education major. Students in education programs in these universities may be limited in the science classes they take as part of their degree requirements. These students face the same problem as students who have declared a science major in that course work is not open to them. As a result, universities too often produce science majors with a weak pedagogy background or education majors with a weak Earth and space sciences background. The American Geophysical Union (AGU) formed a collaboration of four universities with strong, yet separate science and education departments, to provide the venue for a one week NSF sponsored retreat to allow the communication necessary for solutions to these problems to be worked out by faculty members. Each university was represented by a geoscience department faculty member, an education department faculty member, and a K-12 master teacher selected by the two faculty members. This retreat was followed by a second retreat that focused on community colleges in the Southwest United States. Change is never easy and Linkages has shown that success for a project of this nature requires the dedication of not only the faculty involved in the project, but colleagues in their respective schools as well as the administration when departmental cultural obstacles must be overcome. This paper will discuss some of the preliminary work accomplished by the schools involved in the project.

  12. Summaries of FY 1995 geosciences research

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-01

    The summaries in this document, prepared by the investigators, describe the scope of the individual programs. The Geosciences Research Program includes research in geophysics, geochemistry, resource evaluation, solar-terrestrial interactions, and their subdivisions including earth dynamics, properties of earth materials, rock mechanics, underground imaging, rock-fluid interactions, continental scientific drilling, geochemical transport, solar/atmospheric physics, and modeling, with emphasis on the interdisciplinary areas. All such research is related either direct or indirect to the Department of Energy`s long-range technological needs.

  13. Multilingual thesaurus of geosciences

    CERN Document Server

    Rassam, G N

    2013-01-01

    This thesaurus is presented in six languages, English, French, German, Italian, Russian and Spanish, and sponsored by the International Council for Scientific and Technical Information (ICSTI) and the International Union of Geological Sciences (IUGS). There is a main list of approximately 5000 key terms together with indexes and translations which include a specific linguistic index and a field index in which key terms have been classified by field.

  14. Open Geoscience Database

    Science.gov (United States)

    Bashev, A.

    2012-04-01

    Currently there is an enormous amount of various geoscience databases. Unfortunately the only users of the majority of the databases are their elaborators. There are several reasons for that: incompaitability, specificity of tasks and objects and so on. However the main obstacles for wide usage of geoscience databases are complexity for elaborators and complication for users. The complexity of architecture leads to high costs that block the public access. The complication prevents users from understanding when and how to use the database. Only databases, associated with GoogleMaps don't have these drawbacks, but they could be hardly named "geoscience" Nevertheless, open and simple geoscience database is necessary at least for educational purposes (see our abstract for ESSI20/EOS12). We developed a database and web interface to work with them and now it is accessible at maps.sch192.ru. In this database a result is a value of a parameter (no matter which) in a station with a certain position, associated with metadata: the date when the result was obtained; the type of a station (lake, soil etc); the contributor that sent the result. Each contributor has its own profile, that allows to estimate the reliability of the data. The results can be represented on GoogleMaps space image as a point in a certain position, coloured according to the value of the parameter. There are default colour scales and each registered user can create the own scale. The results can be also extracted in *.csv file. For both types of representation one could select the data by date, object type, parameter type, area and contributor. The data are uploaded in *.csv format: Name of the station; Lattitude(dd.dddddd); Longitude(ddd.dddddd); Station type; Parameter type; Parameter value; Date(yyyy-mm-dd). The contributor is recognised while entering. This is the minimal set of features that is required to connect a value of a parameter with a position and see the results. All the complicated data

  15. Accessible Geoscience - Digital Fieldwork

    Science.gov (United States)

    Meara, Rhian

    2017-04-01

    Accessible Geoscience is a developing field of pedagogic research aimed at widening participation in Geography, Earth and Environmental Science (GEES) subjects. These subjects are often less commonly associated with disabilities, ethnic minorities, low income socio-economic groups and females. While advancements and improvements have been made in the inclusivity of these subject areas in recent years, access and participation of disabled students remains low. While universities are legally obligated to provide reasonable adjustments to ensure accessibility, the assumed incompatibility of GEES subjects and disability often deters students from applying to study these courses at a university level. Instead of making reasonable adjustments if and when they are needed, universities should be aiming to develop teaching materials, spaces and opportunities which are accessible to all, which in turn will allow all groups to participate in the GEES subjects. With this in mind, the Swansea Geography Department wish to enhance the accessibility of our undergraduate degree by developing digital field work opportunities. In the first instance, we intend to digitise three afternoon excursions which are run as part of a 1st year undergraduate module. Each of the field trips will be digitized into English- and Welsh-medium formats. In addition, each field trip will be digitized into British Sign Language (BSL) to allow for accessibility for D/deaf and hard of hearing students. Subtitles will also be made available in each version. While the main focus of this work is to provide accessible fieldwork opportunities for students with disabilities, this work also has additional benefits. Students within the Geography Department will be able to revisit the field trips, to revise and complete associated coursework. The use of digitized field work should not replace opportunities for real field work, but its use by the full cohort of students will begin to "normalize" accessible field

  16. Geosciences Information for Teachers (GIFT) in Catalonia

    Science.gov (United States)

    Camerlenghi, Angelo; Cacho, Isabel; Calvo, Eva; Demol, Ben; Sureda, Catalina; Artigas, Carme; Vilaplana, Miquel; Porbellini, Danilo; Rubio, Eduard

    2010-05-01

    CATAGIFT is the acronym of the project supported by the Catalan Government (trough the AGAUR agency) to support the activities of the EGU Committee on Education in Catalonia. The objective of this project is two-fold: 1) To establish a coordinated action to support the participation of three Catalan science teachers of primary and secondary schools in the GIFT Symposium, held each year during the General Assembly of the European Geosciences Union (EGU). 2) To produce a video documentary each year on hot topics in geosciences. The documentary is produced in Catalan, Spanish and English and is distributed to the Catalan science teachers attending the annual meeting organized by the Institute of Education Sciences and the Faculty of Geology of the University together with the CosmoCaixa Museum of Barcelona, to the international teachers attending the EGU GIFT Workshop, and to other schools in the Spanish territory. In the present-day context of science dissemination through documentaries and television programs there is a dominance of products of high technical quality and very high costs sold and broadcasted world wide. The wide spread of such products tends to standardize scientific information, not only in its content, but also in the format used for communicating science to the general public. In the field of geosciences in particular, there is a scarcity of products that combine high scientific quality and accessible costs to illustrate aspects of the natural life of our planet Earth through the results of the work of individual researchers and / or research groups. The scientific documentaries produced by CATAGIFT pursue the objective to support primary and secondary school teachers to critically interpret scientific information coming from the different media (television, newspapers, magazines, audiovisual products), in a way that they can transmit to their students. CataGIFT has created a series of documentaries called MARENOSTRUM TERRANOSTRA designed and

  17. Geoscience Information for Teachers (GIFT) Workshops at the European Geoscience Union General Assembly

    Science.gov (United States)

    Macko, S. A.; Arnold, E. M.; Laj, C. E.; Barnikel, F.; Berenguer, J. L.; Schwarz, A.; Cifelli, F.; Smith, P.; Funiciello, F.; Summesberger, H.

    2017-12-01

    GIFT workshops are teacher enhancement workshops organized by the EGU Committee on Education and held in conjunction with the EGU annual General Assembly. The program focuses on a different general theme each year. Past themes have included, for example, "Energy and Sustainable Development", "The Carbon Cycle", "Mineral Resources", "The Solar System And Beyond" and "The Mediterranean". These workshops combine scientific presentations on current research in Earth and Space Sciences, given by prominent scientists attending EGU General Assemblies, with hands-on, inquiry-based activities that can be used by the teachers in their classrooms to explain related scientific principles or topics. Participating teachers are also invited to present their own classroom activities to their colleagues, regardless of the scientific topic. The main objective of these workshops is to communicate first-hand scientific information to teachers in primary and secondary schools, significantly shortening the time between discovery and textbook. The GIFT workshop provides the teachers with materials that can be directly incorporated into their classroom, as well as those of their colleagues at home institutions. In addition, the full immersion of science teachers in a truly scientific context (EGU General Assemblies) and the direct contact with leading geoscientists stimulates curiosity towards research that the teachers can transmit to their pupils. In addition to their scientific content, the GIFT workshops are of high societal value. The value of bringing teachers from many nations together includes the potential for networking and collaborations, the sharing of experiences and an awareness of science education as it is presented in other countries. Since 2003, the EGU GIFT workshops have brought together more than 700 teachers from more than 25 nations. At all previous EGU GIFT workshops teachers mingled with others from outside their own country and informally interacted with the scientists, providing a venue for rich dialogue for all participants. The dialogues often included ideas about learning, presentation of science content and curriculum. Programs and presentations of past GIFT workshops, with some available with Web streaming, are available at: http://gift.egu.eu/gift-symposia.html

  18. Geoscience Information for Teachers (GIFT) Workshops at the European Geoscience Union General Assembly

    Science.gov (United States)

    Arnold, Eve; Barnikel, Friedrich; Berenguer, Jean-Luc; Cifelli, Francesca; Funiciello, Francesca; Laj, Carlo; Macko, Stephen; Schwarz, Annegret; Smith, Phil; Summesberger, Herbert

    2016-04-01

    GIFT workshops are a two-and-a-half-day teacher enhancement workshops organized by the EGU Committee on Education and held in conjunction with the EGU annual General Assembly. The program of each workshop focuses on a different general theme each year. Past themes have included, for example, "Mineral Resources", "Our changing Planet", "Natural Hazards", "Water", "Evolution and Biodiversity" and "Energy and Sustainable Development". These workshops combine scientific presentations on current research in the Earth and Space Sciences, given by prominent scientists attending EGU General Assemblies, with hands-on, inquiry-based activities that can be used by the teachers in their classrooms to explain related scientific principles or topics. Participating teachers are also invited to present their own classroom activities to their colleagues, even when not directly related to the current program. The main objective of these workshops is to communicate first-hand scientific information to teachers in primary and secondary schools, significantly shortening the time between discovery and textbook. The GIFT workshop provides the teachers with materials that can be directly incorporated into their classroom, as well as those of their colleagues at home institutions. In addition, the full immersion of science teachers in a truly scientific context (EGU General Assemblies) and the direct contact with leading geoscientists stimulates curiosity towards research that the teachers can transmit to their pupils. In addition to their scientific content, the GIFT workshops are of high societal value. The value of bringing teachers from many nations together includes the potential for networking and collaborations, the sharing of experiences and an awareness of science education as it is presented in other countries. Since 2003, the EGU GIFT workshops have brought together more than 700 teachers from more than 25 nations. At all previous EGU GIFT workshops teachers mingled with others from outside their own country and informally interacted with the scientists, providing a venue for rich dialogue for all participants. The dialogues often included ideas about learning, presentation of science content and curriculum. Programs and presentations of past GIFT workshops, with some available with Web streaming, are available at: http://www.egu.eu/education/gift/workshops/

  19. GIS in geoscience education- geomorphometric study

    Digital Repository Service at National Institute of Oceanography (India)

    Mahender, K.; Yogita, K.; Kunte, P.D.

    The educational institutions around the world have realised the possibility of using GIS in geosciences teaching along with in many other subjects. GIS is been used in a large number of geoscience applications viz. mapping, mineral and petroleum...

  20. Examining sexism in the geosciences

    Science.gov (United States)

    Simarski, Lynn Teo

    Do women geoscientists face worse obstacles because of their gender than women in other sciences? A recent survey by the Committee on Professionals in Science and Technology showed that women with geoscience bachelor's degrees start off at only 68% of their male colleagues' salaries, much lower than women in biology (92%), engineering (102%), chemistry (103%), and physics (111%).Women still lag behind men in geoscience degrees as well. In 1990, women received about one-third of geoscience bachelor's degrees, one-quarter of masters, and about one-fifth of Ph.D.'s, reports the American Geological Institute. In the sciences overall, women received about half of bachelor's degrees, 42% of masters, and about a third of Ph.D.'s in 1989, according to the National Research Council.

  1. The ENGAGE Workshop: Encouraging Networks between Geoscientists and Geoscience Education Researchers

    Science.gov (United States)

    Hubenthal, M.; LaDue, N.; Taber, J.

    2015-12-01

    The geoscience education community has made great strides in the study of teaching and learning at the undergraduate level, particularly with respect to solid earth geology. Nevertheless, the 2012 National Research Council report, Discipline-based Education Research: Understanding and Improving Learning in Undergraduate Science and Engineering suggests that the geosciences lag behind other science disciplines in the integration of education research within the discipline and the establishment of a broad research base. In January 2015, early career researchers from earth, atmospheric, ocean, and polar sciences and geoscience education research (GER) gathered for the ENGAGE workshop. The primary goal of ENGAGE was to broaden awareness of discipline-based research in the geosciences and catalyze relationships and understanding between these groups of scientists. An organizing committee of geoscientists and GERs designed a two-day workshop with a variety of activities to engage participants in the establishment of a shared understanding of education research and the development of project ideas through collaborative teams. Thirty-three participants were selected from over 100 applicants, based on disciplinary diversity and demonstrated interest in geoscience education research. Invited speakers and panelists also provided examples of successful cross-disciplinary collaborations. As a result of this workshop, participants indicated that they gained new perspectives on geoscience education and research, networked outside of their discipline, and are likely to increase their involvement in geoscience education research. In fact, 26 of 28 participants indicated they are now better prepared to enter into cross-disciplinary collaborations within the next year. The workshop evaluation revealed that the physical scientists particularly valued opportunities for informal networking and collaborative work developing geoscience education research projects. Meanwhile, GERs valued

  2. Tracking the Health of the Geoscience Workforce

    Science.gov (United States)

    Gonzales, L. M.; Keane, C. M.; Martinez, C. M.

    2008-12-01

    Increased demands for resources and environmental activities, relative declines in college students entering technical fields, and expectations of growth commensurate with society as a whole challenge the competitiveness of the U.S. geoscience workforce. Because of prior business cycles, more than 50% of the workforce needed in natural resource industries in 10 years is currently not in the workforce. This issue is even more acute in government at all levels and in academic institutions. Here, we present a snapshot of the current status of the geoscience profession that spans geoscientists in training to geoscience professionals in government, industry, and academia to understand the disparity between the supply of and demand for geoscientists. Since 1996, only 1% of high school SAT test takers plan to major in geosciences at college. Although the total number of geoscience degrees granted at community colleges have increased by 9% since 1996 , the number of geoscience undergraduate degrees has decreased by 7%. The number of geoscience master's and doctoral degrees have increased 4% and 14% respectively in the same time period. However, by 2005, 68 geoscience departments were consolidated or closed in U.S. universities. Students who graduate with geoscience degrees command competitive salaries. Recent bachelors geoscience graduates earned an average salary of 31,366, whereas recent master's recipients earned an average of 81,300. New geosciences doctorates commanded an average salary of 72,600. Also, fFederal funding for geoscience research has increase steadily from 485 million in 1970 to $3.5 billion in 2005. Economic indicators suggest continued growth in geoscience commodity output and in market capitalization of geoscience industries. Additionally, the Bureau of Labor Statistics projects a 19% increase in the number of geoscience jobs from 2006 to 2016. Despite the increased demand for geoscientists and increase in federal funding of geoscience research

  3. European Union

    International Nuclear Information System (INIS)

    Schaller, K.

    1995-01-01

    Different instruments used by European Commission of the European Union for financial support radioactive waste management activities in the Russian Federation are outlined. Three particular programmes in the area are described

  4. Archive of Geosample Information from the Geological Survey of Canada Atlantic (GSC A) Marine Geoscience Curation Facility

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Geological Survey of Canada Atlantic (GSC A) Marine Geoscience Curation Facility contributed information on 40,428 cores, grabs, and dredges in their holdings to...

  5. Unidata: A cyberinfrastrucuture for the geosciences

    Science.gov (United States)

    Ramamurthy, Mohan

    2016-04-01

    Data are the lifeblood of the geosciences. Rapid advances in computing, communications, and observational technologies - along with concomitant advances in high-resolution modeling, ensemble and coupled-systems predictions of the Earth system - are revolutionizing nearly every aspect of our field. The result is a dramatic proliferation of data from diverse sources; data that are consumed by an evolving and ever-broadening community of users and that are becoming the principal engine for driving scientific advances. Data-enabled research has emerged as a Fourth Paradigm of science, alongside experiments, theoretical studies, and computer simulations Unidata is a data facility, sponsored by the NSF, and our mission is to provide the data services, tools, and cyberinfrastructure leadership that advance Earth system science, enhance educational opportunities, and broaden participation in the geosciences. For more nearly thirty years, Unidata has worked in concert with the atmospheric science education and research community to develop and provide innovative data systems, tools, techniques, and resources to support data-enabled science to understand the Earth system. In doing so, Unidata has maintained a close, synergistic relationship with the universities, engaging them in collaborative efforts to exploit data and technologies, and removing roadblocks to data discovery, access, analysis, and effective use. As a community-governed program, Unidata depends on guidance and feedback from educators, researchers, and students in the atmospheric and related sciences. The Unidata Program helps researchers and educators acquire and use earth-related data. Most of the data are provided in "real time" or "near-real time" - that is, the data are sent to participants almost as soon as the observations are made. Unidata also develops, maintains, and supports a variety of software packages. Most of these packages are developed at the Unidata Program Center (UPC), while a few others

  6. Broadening Awareness and Participation in the Geosciences Among Underrepresented Minorities in STEM

    Science.gov (United States)

    Blake, R.; Liou-Mark, J.

    2012-12-01

    An acute STEM crisis exists nationally, and the problem is even more dire among the geosciences. Since about the middle of the last century, fewer undergraduate and graduate degrees have been granted in the geosciences than in any other STEM fields. To help in ameliorating this geoscience plight, particularly from among members of racial and ethnic groups that are underrepresented in STEM fields, the New York City College of Technology (City Tech) launched a vibrant geoscience program and convened a community of STEM students who are interested in learning about the geosciences. This program creates and introduces geoscience knowledge and opportunities to a diverse undergraduate student population that was never before exposed to geoscience courses at City Tech. This geoscience project is funded by the NSF OEDG program, and it brings awareness, knowledge, and geoscience opportunities to City Tech's students in a variety of ways. Firstly, two new geoscience courses have been created and introduced. One course is on Environmental Remote Sensing, and the other course is an Introduction to the Physics of Natural Disasters. The Remote Sensing course highlights the physical and mathematical principles underlying remote sensing techniques. It covers the radiative transfer equation, atmospheric sounding techniques, interferometric and lidar systems, and an introduction to image processing. Guest lecturers are invited to present their expertise on various geoscience topics. These sessions are open to all City Tech students, not just to those students who enroll in the course. The Introduction to the Physics of Natural Disasters course is expected to be offered in Spring 2013. This highly relevant, fundamental course will be open to all students, especially to non-science majors. The course focuses on natural disasters, the processes that control them, and their devastating impacts to human life and structures. Students will be introduced to the nature, causes, risks

  7. The Quantitative Preparation of Future Geoscience Graduate Students

    Science.gov (United States)

    Manduca, C. A.; Hancock, G. S.

    2006-12-01

    Modern geoscience is a highly quantitative science. In February, a small group of faculty and graduate students from across the country met to discuss the quantitative preparation of geoscience majors for graduate school. The group included ten faculty supervising graduate students in quantitative areas spanning the earth, atmosphere, and ocean sciences; five current graduate students in these areas; and five faculty teaching undergraduate students in the spectrum of institutions preparing students for graduate work. Discussion focused in four key ares: Are incoming graduate students adequately prepared for the quantitative aspects of graduate geoscience programs? What are the essential quantitative skills are that are required for success in graduate school? What are perceived as the important courses to prepare students for the quantitative aspects of graduate school? What programs/resources would be valuable in helping faculty/departments improve the quantitative preparation of students? The participants concluded that strengthening the quantitative preparation of undergraduate geoscience majors would increase their opportunities in graduate school. While specifics differed amongst disciplines, a special importance was placed on developing the ability to use quantitative skills to solve geoscience problems. This requires the ability to pose problems so they can be addressed quantitatively, understand the relationship between quantitative concepts and physical representations, visualize mathematics, test the reasonableness of quantitative results, creatively move forward from existing models/techniques/approaches, and move between quantitative and verbal descriptions. A list of important quantitative competencies desirable in incoming graduate students includes mechanical skills in basic mathematics, functions, multi-variate analysis, statistics and calculus, as well as skills in logical analysis and the ability to learn independently in quantitative ways

  8. Application of QA geoscience investigations

    International Nuclear Information System (INIS)

    Henderson, J.T.

    1980-01-01

    This paper discusses the evolution of a classical hardware QA program (as currently embodied in DOE/ALO Manual Chapter 08XA; NRC 10CFR Part 50, Appendix B; and other similar documents) into the present geoscience quality assurance programs that address eventual NRC licensing, if required. In the context of this paper, QA will be restricted to the tasks associated with nuclear repositories, i.e. site identification, selection, characterization, verification, and utilization

  9. Spatiotemporal Thinking in the Geosciences

    Science.gov (United States)

    Shipley, T. F.; Manduca, C. A.; Ormand, C. J.; Tikoff, B.

    2011-12-01

    Reasoning about spatial relations is a critical skill for geoscientists. Within the geosciences different disciplines may reason about different sorts of relationships. These relationships may span vastly different spatial and temporal scales (from the spatial alignment in atoms in crystals to the changes in the shape of plates). As part of work in a research center on spatial thinking in STEM education, we have been working to classify the spatial skills required in geology, develop tests for each spatial skill, and develop the cognitive science tools to promote the critical spatial reasoning skills. Research in psychology, neurology and linguistics supports a broad classification of spatial skills along two dimensions: one versus many objects (which roughly translates to object- focused and navigation focused skills) and static versus dynamic spatial relations. The talk will focus on the interaction of space and time in spatial cognition in the geosciences. We are working to develop measures of skill in visualizing spatiotemporal changes. A new test developed to measure visualization of brittle deformations will be presented. This is a skill that has not been clearly recognized in the cognitive science research domain and thus illustrates the value of interdisciplinary work that combines geosciences with cognitive sciences. Teaching spatiotemporal concepts can be challenging. Recent theoretical work suggests analogical reasoning can be a powerful tool to aid student learning to reason about temporal relations using spatial skills. Recent work in our lab has found that progressive alignment of spatial and temporal scales promotes accurate reasoning about temporal relations at geological time scales.

  10. Opportunities at Geoscience in Veracruz

    Science.gov (United States)

    Welsh-Rodríguez, C.

    2006-12-01

    The State of Veracruz is located in the central part of the Gulf of Mexico. It has enormous natural, economic and cultural wealth, is the third most populous state in Mexico, with nearly 33 % of the nation's water resources. It has an enormous quantity of natural resources, including oil, and is strategically located in Mexico. On one hand, mountains to the east are a natural border on the other lies the Gulf of Mexico. Between these two barriers are located tropical forests, mountain forests, jungles, wetlands, reefs, etc., and the land is one of the richest in biodiversity within the Americas. Veracruz, because of its geographical characteristics, presents an opportunity for research and collaboration in the geosciences. The region has experienced frequent episodes of torrential rainfalls, which have caused floods resulting in large amounts of property damage to agriculture, housing, infrastructure and, in extreme situations, loss of human life. In 2004 Veracruz University initiated a bachelor degree in Geography, which will prepare professionals to use their knowledge of geosciences to understand and promote integrated assessment of the prevailing problems in the State. Along with the geography program, the Earth Science Center offers other research programs in seismology, vulcanology, climatology, sustainable development and global change. Because of these characteristics, Veracruz is an optimal environment for active research in the geosciences, as well as for sharing the results of this research with educators, students, and all learners. We look forward to facilitating these efforts in the coming years.

  11. Geoscience is Important? Show Me Why

    Science.gov (United States)

    Boland, M. A.

    2017-12-01

    "The public" is not homogenous and no single message or form of messaging will connect the entire public with the geosciences. One approach to promoting trust in, and engagement with, the geosciences is to identify specific sectors of the public and then develop interactions and communication products that are immediately relevant to that sector's interests. If the content and delivery are appropriate, this approach empowers people to connect with the geosciences on their own terms and to understand the relevance of the geosciences to their own situation. Federal policy makers are a distinct and influential subgroup of the general public. In preparation for the 2016 presidential election, the American Geosciences Institute (AGI) in collaboration with its 51 member societies prepared Geoscience for America's Critical Needs: Invitation to a National Dialogue, a document that identified major geoscience policy issues that should be addressed in a national policy platform. Following the election, AGI worked with eight other geoscience societies to develop Geoscience Policy Recommendations for the New Administration and the 115th Congress, which outlines specific policy actions to address national issues. State and local decision makers are another important subgroup of the public. AGI has developed online content, factsheets, and case studies with different levels of technical complexity so people can explore societally-relevant geoscience topics at their level of technical proficiency. A related webinar series is attracting a growing worldwide audience from many employment sectors. Partnering with government agencies and other scientific and professional societies has increased the visibility and credibility of these information products with our target audience. Surveys and other feedback show that these products are raising awareness of the geosciences and helping to build reciprocal relationships between geoscientists and decision makers. The core message of all

  12. Former Soviet Union Hydrological Snow Surveys, 1966-1996

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Former Soviet Union Hydrological Snow Surveys are based on observations made by personnel at 1,345 sites throughout the Former Soviet Union between 1966 and...

  13. Creating and maintaining a successful geoscience pathway from 2YC to 4YC for Native Hawaiian Students: First Steps

    Science.gov (United States)

    Guidry, M.; Eschenberg, A.; McCoy, F. W.; McManus, M. A.; Lee, K.; DeLay, J. K.; Taylor, S. V.; Dire, J.; Krupp, D.

    2017-12-01

    In the Fall of 2015, the two four year (4YC) institutions within the University of Hawaii (UH) system offering baccalaureate degrees in geosciences enrolled only six Native Hawaiian (NH) students out of a total of 194 students in geoscience degree programs. This percentage (3%) of NH students enrolled in geosciences is far lower than the percentage of NH students enrolled at any single institution in the UH system, which ranges from 14 to 42%. At the same time, only six (3%) of the 194 students enrolled in geoscience baccalaureate programs were transfer students from the UH community colleges. Of these six transfer students, three were NH. This reflects the need for increased transfer of NH in the geosciences from two year (2YC) to 4YC. In the Fall of 2015, UH Manoa's (UHM) School of Ocean and Earth Science and Technology (SOEST) accounted for only 0.14% of transfer students from UH community colleges. This compares to 5% in the UHM School of Engineering and 27% in the UHM College of Arts and Sciences. As part of the first year of a multi-institutional five-year NSF TCUP-PAGE (Tribal Colleges and Universities Program - PArtnerships for Geoscience Education) award, we review our first steps and strategies for building a successful and sustainable geoscience transfer pathway for Native Hawaiian and community college students into the three undergraduate geoscience programs (Atmospheric Sciences, Environmental Sciences, and Geology & Geophysics) within SOEST.

  14. Translational Geoscience: Converting Geoscience Innovation into Societal Impacts

    Science.gov (United States)

    Schiffries, C. M.

    2015-12-01

    Translational geoscience — which involves the conversion of geoscience discovery into societal, economic, and environmental impacts — has significant potential to generate large benefits but has received little systematic attention or resources. In contrast, translational medicine — which focuses on the conversion of scientific discovery into health improvement — has grown enormously in the past decade and provides useful models for other fields. Elias Zerhouni [1] developed a "new vision" for translational science to "ensure that extraordinary scientific advances of the past decade will be rapidly captured, translated, and disseminated for the benefit of all Americans." According to Francis Collins, "Opportunities to advance the discipline of translational science have never been better. We must move forward now. Science and society cannot afford to do otherwise." On 9 July 2015, the White House issued a memorandum directing U.S. federal agencies to focus on translating research into broader impacts, including commercial products and decision-making frameworks [3]. Natural hazards mitigation is one of many geoscience topics that would benefit from advances in translational science. This paper demonstrates that natural hazards mitigation can benefit from advances in translational science that address such topics as improving emergency preparedness, communicating life-saving information to government officials and citizens, explaining false positives and false negatives, working with multiple stakeholders and organizations across all sectors of the economy and all levels of government, and collaborating across a broad range of disciplines. [1] Zerhouni, EA (2005) New England Journal of Medicine 353(15):1621-1623. [2] Collins, FS (2011) Science Translational Medicine 3(90):1-6. [3] Donovan, S and Holdren, JP (2015) Multi-agency science and technology priorities for the FY 2017 budget. Executive Office of the President of the United States, 5 pp.

  15. A Geoscience Workforce Model for Non-Geoscience and Non-Traditional STEM Students

    Science.gov (United States)

    Liou-Mark, J.; Blake, R.; Norouzi, H.; Vladutescu, D. V.; Yuen-Lau, L.

    2016-12-01

    The Summit on the Future of Geoscience Undergraduate Education has recently identified key professional skills, competencies, and conceptual understanding necessary in the development of undergraduate geoscience students (American Geosciences Institute, 2015). Through a comprehensive study involving a diverse range of the geoscience academic and employer community, the following professional scientist skills were rated highly important: 1) critical thinking/problem solving skills; 2) effective communication; 3) ability to access and integrate information; 4) strong quantitative skills; and 5) ability to work in interdisciplinary/cross cultural teams. Based on the findings of the study above, the New York City College of Technology (City Tech) has created a one-year intensive training program that focusses on the development of technical and non-technical geoscience skills for non-geoscience, non-traditional STEM students. Although City Tech does not offer geoscience degrees, the primary goal of the program is to create an unconventional pathway for under-represented minority STEM students to enter, participate, and compete in the geoscience workforce. The selected cohort of STEM students engage in year-round activities that include a geoscience course, enrichment training workshops, networking sessions, leadership development, research experiences, and summer internships at federal, local, and private geoscience facilities. These carefully designed programmatic elements provide both the geoscience knowledge and the non-technical professional skills that are essential for the geoscience workforce. Moreover, by executing this alternate, robust geoscience workforce model that attracts and prepares underrepresented minorities for geoscience careers, this unique pathway opens another corridor that helps to ameliorate the dire plight of the geoscience workforce shortage. This project is supported by NSF IUSE GEOPATH Grant # 1540721.

  16. AWG, Enhancing Professional Skills, Providing Resources and Assistance for Women in the Geosciences

    Science.gov (United States)

    Sundermann, C.; Cruse, A. M.; AssociationWomen Geoscientists

    2011-12-01

    The Association for Women Geoscientists (AWG) was founded in 1977. AWG is an international organization, with ten chapters, devoted to enhancing the quality and level of participation of women in geosciences, and introducing women and girls to geoscience careers. Our diverse interests and expertise cover the entire spectrum of geoscience disciplines and career paths, providing unexcelled networking and mentoring opportunities to develop leadership skills. Our membership is brought together by a common love of earth, atmospheric and ocean sciences, and the desire to ensure rewarding opportunities for women in the geosciences. AWG offers a variety of scholarships, including the Chrysalis scholarship for women who are returning to school after a life-changing interruption, and the Sands and Takken awards for students to make presentations at professional meetings. AWG promotes professional development through workshops, an online bi-monthly newsletter, more timely e-mailed newsletters, field trips, and opportunities to serve in an established professional organization. AWG recognizes the work of outstanding women geoscientists and of outstanding men supporters of women in the geosciences. The AWG Foundation funds ten scholarships, a Distinguished Lecture Program, the Geologist-in-the-Parks program, Science Fair awards, and numerous Girl Scout programs. Each year, AWG sends a contingent to Congressional Visits Day, to help educate lawmakers about the unique challenges that women scientists face in the geoscience workforce.

  17. International Convergence on Geoscience Cyberinfrastructure

    Science.gov (United States)

    Allison, M. L.; Atkinson, R.; Arctur, D. K.; Cox, S.; Jackson, I.; Nativi, S.; Wyborn, L. A.

    2012-04-01

    There is growing international consensus on addressing the challenges to cyber(e)-infrastructure for the geosciences. These challenges include: Creating common standards and protocols; Engaging the vast number of distributed data resources; Establishing practices for recognition of and respect for intellectual property; Developing simple data and resource discovery and access systems; Building mechanisms to encourage development of web service tools and workflows for data analysis; Brokering the diverse disciplinary service buses; Creating sustainable business models for maintenance and evolution of information resources; Integrating the data management life-cycle into the practice of science. Efforts around the world are converging towards de facto creation of an integrated global digital data network for the geosciences based on common standards and protocols for data discovery and access, and a shared vision of distributed, web-based, open source interoperable data access and integration. Commonalities include use of Open Geospatial Consortium (OGC) and ISO specifications and standardized data interchange mechanisms. For multidisciplinarity, mediation, adaptation, and profiling services have been successfully introduced to leverage the geosciences standards which are commonly used by the different geoscience communities -introducing a brokering approach which extends the basic SOA archetype. Principal challenges are less technical than cultural, social, and organizational. Before we can make data interoperable, we must make people interoperable. These challenges are being met by increased coordination of development activities (technical, organizational, social) among leaders and practitioners in national and international efforts across the geosciences to foster commonalities across disparate networks. In doing so, we will 1) leverage and share resources, and developments, 2) facilitate and enhance emerging technical and structural advances, 3) promote

  18. Geoscience Diversity Enhancement Project: Student Responses.

    Science.gov (United States)

    Rodrigue, Christine M.; Wechsler, Suzanne P.; Whitney, David J.; Ambos, Elizabeth L.; Ramirez-Herrera, Maria Teresa; Behl, Richard; Francis, Robert D.; Larson, Daniel O.; Hazen, Crisanne

    This paper describes an interdisciplinary project at California State University (Long Beach) designed to increase the attractiveness of the geosciences to underrepresented groups. The project is called the Geoscience Diversity Enhancement Project (GDEP). It is a 3-year program which began in the fall of 2001 with funding from the National Science…

  19. Inquiring with Geoscience Datasets: Instruction and Assessment

    Science.gov (United States)

    Zalles, D.; Quellmalz, E.; Gobert, J.

    2005-12-01

    This session will describe a new NSF-funded project in Geoscience education, Inquiring with Geoscience Data Sets. The goals of the project are to (1) Study the impacts on student learning of Web-based supplementary curriculum modules that engage secondary-level students in inquiry projects addressing important geoscience problems using an Earth System Science approach. Students will use technologies to access real data sets in the geosciences and to interpret, analyze, and communicate findings based on the data sets. The standards addressed will include geoscience concepts, inquiry abilities in NSES and Benchmarks for Science Literacy, data literacy, NCTM standards, and 21st-century skills and technology proficiencies (NETTS/ISTE). (2) Develop design principles, specification templates, and prototype exemplars for technology-based performance assessments that provide evidence of students' geoscientific knowledge and inquiry skills (including data literacy skills) and students' ability to access, use, analyze, and interpret technology-based geoscience data sets. (3) Develop scenarios based on the specification templates that describe curriculum modules and performance assessments that could be developed for other Earth Science standards and curriculum programs. Also to be described in the session are the project's efforts to differentiate among the dimensions of data literacy and scientific inquiry that are relevant for the geoscience discplines, and how recognition and awareness of the differences can be effectively channelled for the betterment of geoscience education.

  20. Summaries of physical research in the geosciences

    Energy Technology Data Exchange (ETDEWEB)

    1990-10-01

    The Department of Energy supports research in the geosciences in order to provide a sound foundation of fundamental knowledge in those areas of the geosciences which are germane to the Department of Energy's many missions. The Division of Engineering and Geosciences, part of the Office of Basic Energy Sciences of the Office of Energy Research, supports the Geosciences Research Program. The participants in this program include Department of Energy laboratories, industry, universities, and other governmental agencies. The summaries in this document, prepared by the investigators, briefly describe the scope of the individual programs. The Geosciences Research Program includes research in geology, petrology, geophysics, geochemistry, solar physics, solar-terrestrial relationships, aeronomy, seismology, and natural resource modeling and analysis, including their various subdivisions and interdisciplinary areas. All such research is related either directly or indirectly to the Department of Energy's long-range technological needs.

  1. Meeting the Challenges for Gender Diversity in the Geosciences

    Science.gov (United States)

    Bell, R. E.; Cane, M. A.; Kastens, K. A.; Miller, R. B.; Mutter, J. C.; Pfirman, S. L.

    2003-12-01

    Women are now routinely chief scientists on major cruises, lead field parties to all continents, and have risen to leadership positions in professional organizations, academic departments and government agencies including major funding agencies. They teach at all levels, advise research students, make research discoveries and receive honors in recognition of their achievements. Despite these advances, women continue to be under-represented in the earth, ocean, and atmospheric sciences. As of 1997 women received only 29% of the doctorates in the earth, atmospheric, and oceanographic sciences and accounted for only 13% of employed Ph.D.s in these fields. Women's salaries also lag: the median annual salary for all Ph.D. geoscientists was \\60,000; for women the figure is \\47,000. Solving the problem of gender imbalance in the geosciences requires understanding of the particular obstacles women face in our field. The problem of under-representation of women requires that earth science departments, universities and research centers, funding agencies, and professional organizations like AGU take constructive action to recognize the root causes of the evident imbalance, and enact corrective policies. We have identified opportunities and challenges for each of these groups. A systematic study of the flux of women at Columbia University enabled a targeted strategy towards improving gender diversity based on the observed trends. The challenge for academic institutions is to document the flux of scientists and develop an appropriate strategy to balance the geoscience demographics. Based on the MIT study, an additional challenge faces universities and research centers. To enhance gender diversity these institutions need to develop transparency in promotion processes and open distribution of institutional resources. The challenge for granting agencies is to implement policies that ease the burden of extensive fieldwork on parents. Many fields of science require long work hours

  2. Former Soviet Union (FSU) Gravity Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded gravity anomaly data for the Former Soviet Union (FSU) and Eastern Europe has been received by the National Geophysical Data Center(NGDC). The data file...

  3. Preface to the special issue of PSS on "Surfaces, atmospheres and magnetospheres of the outer planets, their satellites and ring systems: Part XII″

    Science.gov (United States)

    Coustenis, A.; Atreya, S.; Castillo-Rogez, J.; Mueller-Wodarg, I.; Spilker, L.; Strazzulla, G.

    2018-06-01

    This issue contains six articles on original research and review papers presented in the past year in sessions organized during several international meetings and congresses including the European Geosciences Union (EGU), European Planetary Science Congress (EPSC) and others. The manuscripts cover recent observations and models of the atmospheres, magnetospheres and surfaces of the giant planets and their satellites based on ongoing and recent planetary missions. Concepts of architecture and payload for future space missions are also presented. The six articles in this special issue cover a variety of objects in the outer solar system ranging from Jupiter to Neptune and the possibilities for their exploration. A brief introductory summary of their findings follows.

  4. How Global Science has yet to Bridge Global Differences - A Status Report of the IUGS Taskforce on Global Geoscience Workforce

    Science.gov (United States)

    Keane, C. M.; Gonzales, L. M.

    2010-12-01

    The International Union of Geological Sciences, with endorsement by UNESCO, has established a taskforce on global geosciences workforce and has tasked the American Geological Institute to take a lead. Springing from a session on global geosciences at the IGC33 in Oslo, Norway, the taskforce is to address three issues on a global scale: define the geosciences, determine the producers and consumers of geoscientists, and frame the understandings to propose pathways towards improved global capacity building in the geosciences. With the combination of rapid retirements in the developed world, and rapid economic expansion and impact of resource and hazard issues in the developing world, the next 25 years will be a dynamic time for the geosciences. However, to date there has been little more than a cursory sense of who and what the geosciences are globally and whether we will be able to address the varied needs and issues in the developed and the developing worlds. Based on prior IUGS estimates, about 50% of all working geoscientists reside in the Unites States, and the US was also producing about 50% of all new geosciences graduate degrees globally. Work from the first year of the taskforce has elucidated the immense complexity of the issue of defining the geosciences, as it bring is enormous cultural and political frameworks, but also shed light on the status of the geosciences in each country. Likewise, this leads to issues of who is actually producing and consuming geoscience talent, and whether countries are meeting domestic demand, and if not, is external talent available to import. Many US-based assumptions about the role of various countries in the geosciences’ global community of people, namely China and India, appear to have been misplaced. In addition, the migration of geoscientists between countries raised enormous questions about what is nationality and if there is an ideal ‘global geoscientist.’ But more than anything, the taskforce is revealing clear

  5. The Geoscience Internet of Things

    Science.gov (United States)

    Lehnert, K.; Klump, J.

    2012-04-01

    Internet of Things is a term that refers to "uniquely identifiable objects (things) and their virtual representations in an Internet-like structure" (Wikipedia). We here use the term to describe new and innovative ways to integrate physical samples in the Earth Sciences into the emerging digital infrastructures that are developed to support research and education in the Geosciences. Many Earth Science data are acquired on solid earth samples through observations and experiments conducted in the field or in the lab. The application and long-term utility of sample-based data for science is critically dependent on (a) the availability of information (metadata) about the samples such as geographical location where the sample was collected, time of sampling, sampling method, etc. (b) links between the different data types available for individual samples that are dispersed in the literature and in digital data repositories, and (c) access to the samples themselves. Neither of these requirements could be achieved in the past due to incomplete documentation of samples in publications, use of ambiguous sample names, and the lack of a central catalog that allows researchers to find a sample's archiving location. New internet-based capabilities have been developed over the past few years for the registration and unique identification of samples that make it possible to overcome these problems. Services for the registration and unique identification of samples are provided by the System for Earth Sample Registration SESAR (www.geosamples.org). SESAR developed the International Geo Sample Number, or IGSN, as a unique identifier for samples and specimens collected from our natural environment. Since December 2011, the IGSN is governed by an international organization, the IGSN eV (www.igsn.org), which endorses and promotes an internationally unified approach for registration and discovery of physical specimens in the Geoscience community and is establishing a new modular and

  6. Nurturing a growing field: Computers & Geosciences

    Science.gov (United States)

    Mariethoz, Gregoire; Pebesma, Edzer

    2017-10-01

    Computational issues are becoming increasingly critical for virtually all fields of geoscience. This includes the development of improved algorithms and models, strategies for implementing high-performance computing, or the management and visualization of the large datasets provided by an ever-growing number of environmental sensors. Such issues are central to scientific fields as diverse as geological modeling, Earth observation, geophysics or climatology, to name just a few. Related computational advances, across a range of geoscience disciplines, are the core focus of Computers & Geosciences, which is thus a truly multidisciplinary journal.

  7. Geoscience at Community Colleges: Availability of Programs and Geoscience Student Pathways

    Science.gov (United States)

    Gonzales, L. M.; Keane, C. M.; Houlton, H. R.

    2011-12-01

    Community colleges served over 7.5 million students in 2009, and have a more diverse student population than four-year institutions. In 2008, 58% of community college students were women and 33% of students were underrepresented minorities. Community colleges provide a large diverse pool of untapped talent for the geosciences and for all science and engineering disciplines. The most recent data from NSF's 2006 NSCRG database indicate that within the physical sciences, 43% of Bachelor's, 31% of Master's and 28% of Doctoral recipients had attended community college. Until recently, fine-grained datasets for examining the prevalence of community college education in geoscience students' academic pathways has not been available. Additionally, there has been limited information regarding the availability of geoscience programs and courses at community colleges. In 2011, the American Geological Institute (AGI) expanded its Directory of Geoscience Departments (DGD) to cover 434 community colleges that offer either geoscience programs and/or geoscience curriculum, and launched the first pilot of a standardized National Geoscience Exit Survey. The survey collects information not only about students' pathways in the university system and future academic and career plans, but also about community college attendance including geoscience course enrollments and Associate's degrees. The National Geoscience Exit Survey will be available to all U.S. geoscience programs at two- and four-year colleges and universities by the end of the 2011-2012 academic year, and will also establish a longitudinal survey effort to track students through their careers. Whereas the updated DGD now provides wider coverage of geoscience faculty members and programs at community colleges, the Exit Survey provides a rich dataset for mapping the flow of students from community colleges to university geoscience programs. We will discuss the availability of geoscience courses and programs at community

  8. Starting Point: Linking Methods and Materials for Introductory Geoscience Courses

    Science.gov (United States)

    Manduca, C. A.; MacDonald, R. H.; Merritts, D.; Savina, M.

    2004-12-01

    Introductory courses are one of the most challenging teaching environments for geoscience faculty. Courses are often large, students have a wide variety of background and skills, and student motivation can include completing a geoscience major, preparing for a career as teacher, fulfilling a distribution requirement, and general interest. The Starting Point site (http://serc.carleton.edu/introgeo/index.html) provides help for faculty teaching introductory courses by linking together examples of different teaching methods that have been used in entry-level courses with information about how to use the methods and relevant references from the geoscience and education literature. Examples span the content of geoscience courses including the atmosphere, biosphere, climate, Earth surface, energy/material cycles, human dimensions/resources, hydrosphere/cryosphere, ocean, solar system, solid earth and geologic time/earth history. Methods include interactive lecture (e.g think-pair-share, concepTests, and in-class activities and problems), investigative cases, peer review, role playing, Socratic questioning, games, and field labs. A special section of the site devoted to using an Earth System approach provides resources with content information about the various aspects of the Earth system linked to examples of teaching this content. Examples of courses incorporating Earth systems content, and strategies for designing an Earth system course are also included. A similar section on Teaching with an Earth History approach explores geologic history as a vehicle for teaching geoscience concepts and as a framework for course design. The Starting Point site has been authored and reviewed by faculty around the country. Evaluation indicates that faculty find the examples particularly helpful both for direct implementation in their classes and for sparking ideas. The help provided for using different teaching methods makes the examples particularly useful. Examples are chosen from

  9. Illuminate Knowledge Elements in Geoscience Literature

    Science.gov (United States)

    Ma, X.; Zheng, J. G.; Wang, H.; Fox, P. A.

    2015-12-01

    There are numerous dark data hidden in geoscience literature. Efficient retrieval and reuse of those data will greatly benefit geoscience researches of nowadays. Among the works of data rescue, a topic of interest is illuminating the knowledge framework, i.e. entities and relationships, embedded in documents. Entity recognition and linking have received extensive attention in news and social media analysis, as well as in bioinformatics. In the domain of geoscience, however, such works are limited. We will present our work on how to use knowledge bases on the Web, such as ontologies and vocabularies, to facilitate entity recognition and linking in geoscience literature. The work deploys an un-supervised collective inference approach [1] to link entity mentions in unstructured texts to a knowledge base, which leverages the meaningful information and structures in ontologies and vocabularies for similarity computation and entity ranking. Our work is still in the initial stage towards the detection of knowledge frameworks in literature, and we have been collecting geoscience ontologies and vocabularies in order to build a comprehensive geoscience knowledge base [2]. We hope the work will initiate new ideas and collaborations on dark data rescue, as well as on the synthesis of data and knowledge from geoscience literature. References: 1. Zheng, J., Howsmon, D., Zhang, B., Hahn, J., McGuinness, D.L., Hendler, J., and Ji, H. 2014. Entity linking for biomedical literature. In Proceedings of ACM 8th International Workshop on Data and Text Mining in Bioinformatics, Shanghai, China. 2. Ma, X. Zheng, J., 2015. Linking geoscience entity mentions to the Web of Data. ESIP 2015 Summer Meeting, Pacific Grove, CA.

  10. Righting the balance: Gender diversity in the geosciences

    Science.gov (United States)

    Bell, Robin E.; Kastens, Kim A.; Cane, Mark; Muller, Roberta B.; Mutter, John C.; Pfirman, Stephanie

    The blatant barriers are down. Women are now routinely chief scientists on major cruises, lead field parties to all continents, and have risen to leadership positions in professional organizations, academic departments, and funding agencies. Nonetheless, barriers remain. Women continue to be under-represented in the Earth, ocean, and atmospheric sciences. Let's do the numbers: As of 1997, women received 41% of all Ph.D.s in science and engineering, but only 29% of the doctorates in the Earth, atmospheric, and oceanographic sciences [NSF, 1999a]. Women were 23% of employed Ph.D.s across all fields of science, but only accounted for 13% in the geosciences. Women's salaries also lag: the median salary for all Ph.D. geoscientists was $60,000; for women, the figure is $47,000 [NSF, 1999b]. The growing number of women students is a step in the right direction, but only a step.

  11. Defining the Geoscience Community through a Quantitative Perspective

    Science.gov (United States)

    Wilson, C. E.; Keane, C. M.

    2015-12-01

    The American Geosciences Institute's (AGI) Geoscience Workforce Program collects and analyzes data pertaining to the changes in the supply, demand, and training of the geoscience workforce. These data cover the areas of change in the education of future geoscientists from K-12 through graduate school, the transition of geoscience graduates into early-career geoscientists, the dynamics of the current geoscience workforce, and the future predictions of the changes in the availability of geoscience jobs. The Workforce Program also considers economic changes in the United States and globally that can affect the supply and demand of the geoscience workforce. In order to have an informed discussion defining the modern geoscience community, it is essential to understand the current dynamics within the geoscience community and workforce. This presentation will provide a data-driven outlook of the current status of the geosciences in the workforce and within higher education using data collected by AGI, federal agencies and other stakeholder organizations. The data presented will highlight the various industries, including those industries with non-traditional geoscience jobs, the skills development of geoscience majors, and the application of these skills within the various industries in the workforce. This quantitative overview lays the foundation for further discussions related to tracking and understanding the current geoscience community in the United States, as well as establishes a baseline for global geoscience workforce comparisons in the future.

  12. Geoscience on television: a review of science communication literature in the context of geosciences

    Science.gov (United States)

    Hut, Rolf; Land-Zandstra, Anne M.; Smeets, Ionica; Stoof, Cathelijne R.

    2016-06-01

    Geoscience communication is becoming increasingly important as climate change increases the occurrence of natural hazards around the world. Few geoscientists are trained in effective science communication, and awareness of the formal science communication literature is also low. This can be challenging when interacting with journalists on a powerful medium like TV. To provide geoscience communicators with background knowledge on effective science communication on television, we reviewed relevant theory in the context of geosciences and discuss six major themes: scientist motivation, target audience, narratives and storytelling, jargon and information transfer, relationship between scientists and journalists, and stereotypes of scientists on TV. We illustrate each theme with a case study of geosciences on TV and discuss relevant science communication literature. We then highlight how this literature applies to the geosciences and identify knowledge gaps related to science communication in the geosciences. As TV offers a unique opportunity to reach many viewers, we hope this review can not only positively contribute to effective geoscience communication but also to the wider geoscience debate in society.

  13. Geoscience Academic Provenance: A Theoretical Framework for Understanding Geoscience Students' Pathways

    Science.gov (United States)

    Houlton, H.; Keane, C.

    2012-04-01

    The demand and employment opportunities for geoscientists in the United States are projected to increase 23% from 2008 to 2018 (Gonzales, 2011). Despite this trend, there is a disconnect between undergraduate geoscience students and their desire to pursue geoscience careers. A theoretical framework was developed to understand the reasons why students decide to major in the geosciences and map those decisions to their career aspirations (Houlton, 2010). A modified critical incident study was conducted to develop the pathway model from 17, one-hour long semi-structured interviews of undergraduate geoscience majors from two Midwest Research Institutions (Houlton, 2010). Geoscience Academic Provenance maps geoscience students' initial interests, entry points into the major, critical incidents and future career goals as a pathway, which elucidates the relationships between each of these components. Analyses identified three geoscience student population groups that followed distinct pathways: Natives, Immigrants and Refugees. A follow up study was conducted in 2011 to ascertain whether these students continued on their predicted pathways, and if not, reasons for attrition. Geoscientists can use this framework as a guide to inform future recruitment and retention initiatives and target these geoscience population groups for specific employment sectors.

  14. Proceedings of the geosciences workshop

    Energy Technology Data Exchange (ETDEWEB)

    None

    1991-01-01

    The manuscripts in these proceedings represent current understanding of geologic issues associated with the Weldon Spring Site Remedial Action Project (WSSRAP). The Weldon Spring site is in St. Charles County, Missouri. The proceedings are the record of the information presented during the WSSRAP Geosciences Workshop conducted on February 21, 1991. The objective of the workshop and proceedings is to provide the public and scientific community with technical information that will facilitate a common understanding of the geology of the Weldon Spring site, of the studies that have been and will be conducted, and of the issues associated with current and planned activities at the site. This coverage of geologic topics is part of the US Department of Energy overall program to keep the public fully informed of the status of the project and to address public concerns as we clean up the site and work toward the eventual release of the property for use by this and future generations. Papers in these proceedings detail the geology and hydrology of the site. The mission of the WSSRAP derives from the US Department of Energy's Surplus Facilities Management Program. The WSSRAP will eliminate potential hazards to the public and the environment and make surplus real property available for other uses to the extent possible. This will be accomplished by conducting remedial actions which will place the quarry, the raffinate pits, the chemical plant, and the vicinity properties in a radiologically and chemically safe condition. The individual papers have been catalogued separately.

  15. Geophysical Research Letters: New policies improve top-cited geosciences journal

    Science.gov (United States)

    Calais, Eric; Diffenbaugh, Noah; D'Odorico, Paolo; Harris, Ruth; Knorr, Wolfgang; Lavraud, Benoit; Mueller, Anne; Peterson, William; Rignot, Eric; Srokosz, Meric; Strutton, Peter; Tyndall, Geoff; Wysession, Michael; Williams, Paul

    2010-01-01

    Geophysical Research Letters (GRL) is the American Geophysical Union's premier journal of fast, groundbreaking communication. It rapidly publishes high- impact,letter-length articles, and it is the top-cited multidisciplinary geosciences journal over the past 10 years, with an impact factor that increased again in 2009, to 3.204. For manuscripts submitted to GRL, the median time to first and final decision is 23 and 27 days, respectively—a 35% improvement since 2007—and the median time from submission to publication is 13 weeks for 90% of GRL papers—a 25% improvement since 2007. Among high-impact publications in the geosciences, GRL has the fastest turnaround.

  16. Making a Difference: a Global Geoscience Initiative

    Science.gov (United States)

    Nickless, E.

    2013-05-01

    Since 2009, an informal group, comprising four former board members of the International Year of Planet Earth, has been promoting the concept of a so-called Global Geoscientific Initiative. The GGI should: i.Be inclusive, involve a geoscience community, which is broad both in terms of discipline and nationality, and involve the social sciences; ii.Have a clear socio-economic context and global societal relevance; iii.Focus on a globally significant science theme and preferably involve global processes; iv.Attract the support of geoscientific communities, funding agencies, governments and other institutions in many countries, under the umbrella of UNESCO, ICSU and its geoscientific unions. A series of five town hall meetings have been held at which usually three invited, well-respected figures from the geoscientific community gave presentations. Those presentations were followed by discussion about the importance or otherwise of particular areas of science, and the need to engage better with legislators, policy makers, the media and the lay public. No one challenged the desirability of a large-scale programme that would attract researchers from many geoscientific disciplines and potentially involve the geo-unions. The discussions can be summarised under three broad themes: i.Mineral and hydrocarbon resources and their waste products; ii.Living with natural hazards; iii.Strategic Earth science in Africa through the Africa Alive corridors. During the course of development of the GGI, ICSU has issued a number of papers, most recently a strategic plan, covering the period 2012-2017, working parties have been undertaking foresight analysis and there have also been discussions concerning regional environmental change: human action and adaptation with the question "what does it take to meet the Belmont challenge?". The Belmont Forum brings together a number of funding agencies and could provide the resource to enable some initiative to go forward. More recently a programme

  17. Geoscience and the 21st Century Workforce

    Science.gov (United States)

    Manduca, C. A.; Bralower, T. J.; Blockstein, D.; Keane, C. M.; Kirk, K. B.; Schejbal, D.; Wilson, C. E.

    2013-12-01

    Geoscience knowledge and skills play new roles in the workforce as our society addresses the challenges of living safely and sustainably on Earth. As a result, we expect a wider range of future career opportunities for students with education in the geosciences and related fields. A workshop offered by the InTeGrate STEP Center on 'Geoscience and the 21st Century Workforce' brought together representatives from 24 programs with a substantial geoscience component, representatives from different employment sectors, and workforce scholars to explore the intersections between geoscience education and employment. As has been reported elsewhere, employment in energy, environmental and extractive sectors for geoscientists with core geology, quantitative and communication skills is expected to be robust over the next decade as demand for resources grow and a significant part of the current workforce retires. Relatively little is known about employment opportunities in emerging areas such as green energy or sustainability consulting. Employers at the workshop from all sectors are seeking the combination of strong technical, quantitative, communication, time management, and critical thinking skills. The specific technical skills are highly specific to the employer and employment needs. Thus there is not a single answer to the question 'What skills make a student employable?'. Employers at this workshop emphasized the value of data analysis, quantitative, and problem solving skills over broad awareness of policy issues. Employers value the ability to articulate an appropriate, effective, creative solution to problems. Employers are also very interested in enthusiasm and drive. Participants felt that the learning outcomes that their programs have in place were in line with the needs expressed by employers. Preparing students for the workforce requires attention to professional skills, as well as to the skills needed to identify career pathways and land a job. This critical

  18. Summaries of FY 91 geosciences research

    Energy Technology Data Exchange (ETDEWEB)

    1991-11-01

    The Department of Energy supports research in the geosciences in order to provide a sound foundation of fundamental knowledge in those areas of the geosciences which are germane to the Department of Energy's many missions. The Division of Engineering and Geosciences, part of the Office of Basic Energy Sciences of the Office of Energy Research supports the Geosciences Research Program. The participants in this program include Department of Energy laboratories, academic institutions, and other governmental agencies. Theses activities are formalized by a contract or grant between the Department of Energy and the organization performing the work, providing funds for salaries, equipment, research materials, and overhead. The summaries in this document, prepared by the investigators, describe the scope of the individual programs. The Geosciences Research Program includes research in geology, petrology, geophysics, geochemistry, solar physics, solar-terrestrial relationships, aeronomy, seismology, and natural resource modeling and analysis, including their various subdivisions and interdisciplinary areas. All such research is related either directly or indirectly to the Department of Energy's long-range technological needs. 2 tabs.

  19. Computer axial tomography in geosciences

    International Nuclear Information System (INIS)

    Duliu, Octavian G.

    2002-01-01

    Computer Axial Tomography (CAT) is one of the most adequate non-invasive techniques for the investigation of the internal structure of a large category of objects. Initially designed for medical investigations, this technique, based on the attenuation of X- or gamma-ray (and in some cases neutrons), generates digital images which map the numerical values of the linear attenuation coefficient of a section or of the entire volume of the investigated sample. Shortly after its application in medicine, CAT has been successfully used in archaeology, life sciences, and geosciences as well as for the industrial materials non-destructive testing. Depending on the energy of the utilized radiation as well as on the effective atomic number of the sample, CAT can provide with a spatial resolution of 0.01 - 0.5 mm, quantitative as well as qualitative information concerning local density, porosity or chemical composition of the sample. At present two types of axial Computer Tomographs (CT) are in use. One category, consisting of medical as well as industrial CT is equipped with X-ray tubes while the other uses isotopic gamma-ray sources. CT provided with intense X-ray sources (equivalent to 12-15 kCi or 450-550 TBq) has the advantage of an extremely short running time (a few seconds and even less) but presents some disadvantages known as beam hardening and absorption edge effects. These effects, intrinsically related to the polychromatic nature of the X-rays generated by classical tubes, need special mathematical or physical corrections. A polychromatic X-ray beam can be made almost monochromatic by means of crystal diffraction or by using adequate multicomponent filters, but these devices are costly and considerably diminish the output of X-ray generators. In the case of CT of the second type, monochromatic gamma-rays generated by radioisotopic sources, such as 169 Yb (50.4 keV), 241 Am (59 keV), 192 Ir (310.5 and 469.1 keV ) or 137 Cs (662.7 keV), are used in combination with

  20. Social Technologies to Jump Start Geoscience Careers

    Science.gov (United States)

    Keane, Christopher; Martinez, Cynthia; Gonzales, Leila

    2010-05-01

    Collaborative and social technologies have been increasingly used to facilitate distributed data collection and observation in science. However, "Web 2.0" and basic social media are seeing limited coordinated use in building student and early-career geoscientists knowledge and understanding of the profession and career for which they have undertaken. The current generation of geology students and early career professionals are used to ready access to myriad of information and interaction opportunities, but they remain largely unaware about the geoscience profession, what the full scope of their opportunities are, and how to reach across institutional and subdisciplinary boundaries to build their own professional network. The American Geological Institute Workforce Program has tracked and supported the human resources of the geosciences since 1952. With the looming retirement of Baby Boomers, increasing demand for quality geoscientists, and a continued modest supply of students entering the geosciences, AGI is working to strengthen the human resource pipeline in the geosciences globally. One aspect of this effort is the GeoConnection Network, which is an integrated set of social networking, media sharing and communication Web 2.0 applications designed to engage students in thinking about careers in the geosciences and enabling them to build their own personal professional network. Developed by the American Geological Institute (AGI), GeoConnection links practicing and prospective geoscientists in an informal setting to share information about the geoscience profession, including student and career opportunities, current events, and future trends in the geosciences. The network includes a Facebook fan page, YouTube Channel, Twitter account and GeoSpectrum blog, with the goal of helping science organizations and departments recruit future talent to the geoscience workforce. On the social-networking platform, Facebook, the GeoConnection page is a forum for students and

  1. Growing Community Roots for the Geosciences in Miami, Florida, A Program Aimed at High School and Middle School Students to Increase Awareness of Career and Educational Opportunities in the Geosciences

    Science.gov (United States)

    Whitman, D.; Hickey-Vargas, R.; Gebelein, J.; Draper, G.; Rego, R.

    2013-12-01

    Growing Community Roots for the Geosciences is a 2-year pilot recruitment project run by the Department of Earth and Environment at Florida International University (FIU) and funded by the NSF OEDG (Opportunities for Enhancing Diversity in the Geosciences) program. FIU, the State University of Florida in Miami is a federally recognized Minority Serving Institution with over 70% of the undergraduate population coming from groups underrepresented in the geoscience workforce. The goal of this project is to inform students enrolled in the local middle and high schools to career opportunities in the geosciences and to promote pathways for underrepresented groups to university geoscience degree programs. The first year's program included a 1-week workshop for middle school teachers and a 2-week summer camp aimed at high school students in the public school system. The teacher workshop was attended by 20 teachers who taught comprehensive and physical science in grades 6-8. It included lectures on geoscience careers, fundamental concepts of solid earth and atmospheric science, hands on exercises with earth materials, fossils and microscopy, interpretation of landform with Google Earth imagery, and a field trip to a local working limestone quarry. On the first day of the workshop, participants were surveyed on their general educational background in science and their familiarity and comfort with teaching basic geoscience concepts. On the final day, the teachers participated in a group discussion where we discussed how to make geoscience topics and careers more visible in the school curriculum. The 2-week summer camp was attended by 21 students entering grades 9-12. The program included hands on exercises on geoscience and GIS concepts, field trips to local barrier islands, the Everglades, a limestone quarry and a waste to energy facility, and tours of the NOAA National Hurricane Center and the FIU SEM lab. Participants were surveyed on their general educational background

  2. Visual Analytics for Heterogeneous Geoscience Data

    Science.gov (United States)

    Pan, Y.; Yu, L.; Zhu, F.; Rilee, M. L.; Kuo, K. S.; Jiang, H.; Yu, H.

    2017-12-01

    Geoscience data obtained from diverse sources have been routinely leveraged by scientists to study various phenomena. The principal data sources include observations and model simulation outputs. These data are characterized by spatiotemporal heterogeneity originated from different instrument design specifications and/or computational model requirements used in data generation processes. Such inherent heterogeneity poses several challenges in exploring and analyzing geoscience data. First, scientists often wish to identify features or patterns co-located among multiple data sources to derive and validate certain hypotheses. Heterogeneous data make it a tedious task to search such features in dissimilar datasets. Second, features of geoscience data are typically multivariate. It is challenging to tackle the high dimensionality of geoscience data and explore the relations among multiple variables in a scalable fashion. Third, there is a lack of transparency in traditional automated approaches, such as feature detection or clustering, in that scientists cannot intuitively interact with their analysis processes and interpret results. To address these issues, we present a new scalable approach that can assist scientists in analyzing voluminous and diverse geoscience data. We expose a high-level query interface that allows users to easily express their customized queries to search features of interest across multiple heterogeneous datasets. For identified features, we develop a visualization interface that enables interactive exploration and analytics in a linked-view manner. Specific visualization techniques such as scatter plots to parallel coordinates are employed in each view to allow users to explore various aspects of features. Different views are linked and refreshed according to user interactions in any individual view. In such a manner, a user can interactively and iteratively gain understanding into the data through a variety of visual analytics operations. We

  3. Summaries of physical research in the geosciences

    Energy Technology Data Exchange (ETDEWEB)

    1987-09-01

    The Department of Energy supports research in the geosciences in order to provide a sound foundation of fundamental knowledge in those areas that are germane to the Department of Energy's many missions. The summaries in this document, prepared by the investigators, describe the scope of the individual programs. The Geoscience Research Program includes research in geology, petrology, geophysics, geochemistry, solar-terrestrial relationships, aeronomy, seismology, and natural resource analysis, including their various subdivisions and interdisciplinary areas. All such research is related either directly or indirectly to the Department of Energy's technological needs.

  4. Unions, Vitamins, Exercise: Unionized Graduate Students

    Science.gov (United States)

    Dewberry, David R.

    2005-01-01

    After the turbulent labor history of America in the early to mid twentieth century, there has been a general decline of unions. Nevertheless, many graduate school teaching assistants are unionizing in attempts to gain better pay and benefits and remove themselves from an "Ivory Sweatshop." This article discusses a history of unions…

  5. Credit Union Headquarters

    Data.gov (United States)

    Department of Homeland Security — The National Credit Union Administration (NCUA) is the independent federal agency that charters and supervises federal credit unions. NCUA, backed of the full faith...

  6. Number of women faculty in the geosciences increasing, but slowly

    Science.gov (United States)

    Wolfe, Cecily J.

    Why are there so few women faculty in the geosciences, while there are large numbers of women undergraduate and graduate students? According to National Science Foundation (NSF) estimates [e.g.,NSF, 1996] for 1995 in the Earth, atmospheric, and oceanic sciences, women made up 34% of the bachelor's degrees awarded, 35% of the graduate students enrolled, and 22% of the doctorates granted. Yet progress has been slower in achieving adequate representation of women geoscientists in academia, where women represent only 12% of the faculty. The barriers confronting the advancement of women scientists are complex and difficult to unravel. Proposed factors include cultural stereotypes, childhood socialization, lack of women mentors and role models, lack of critical mass, family responsibilities, dual-career-couple status, isolation from collegial networks, different research and publishing strategy, and less adequate access to institutional resources [c.f., Widnall, 1988; Zuckerman et al., 1991].

  7. Users and Union Catalogues

    Science.gov (United States)

    Hartley, R. J.; Booth, Helen

    2006-01-01

    Union catalogues have had an important place in libraries for many years. Their use has been little investigated. Recent interest in the relative merits of physical and virtual union catalogues and a recent collaborative project between a physical and several virtual union catalogues in the United Kingdom led to the opportunity to study how users…

  8. Status and Future of Lunar Geoscience.

    Science.gov (United States)

    1986

    A review of the status, progress, and future direction of lunar research is presented in this report from the lunar geoscience working group of the National Aeronautics and Space Administration. Information is synthesized and presented in four major sections. These include: (1) an introduction (stating the reasons for lunar study and identifying…

  9. Summaries of physical research in the geosciences

    Energy Technology Data Exchange (ETDEWEB)

    1986-09-01

    The summaries in this document describe the scope of the individual programs and detail the research performed during 1984-1985. The Geosciences Research Program includes research in geology, petrology, geophysics, geochemistry, hydrology, solar-terrestrial relationships, aeronomy, seismology, and natural resource analysis, including their various subdivisions and interdisciplinary areas.

  10. Developing Curriculum to Help Students Explore the Geosciences' Cultural Relevance

    Science.gov (United States)

    Miller, G.; Schoof, J. T.; Therrell, M. D.

    2011-12-01

    Even though climate change and an unhealthy environment have a disproportionate affect on persons of color, there is a poor record of diversity in geoscience-related fields where researchers are investigating ways to improve the quality of the environment and human health. This low percentage of representation in the geosciences is equally troubling at the university where we are beginning the third and final year of a project funded through the National Science Foundation's (NSF) Opportunities to Enhance Diversity in the Geosciences (OEDG). The purpose of this project is to explore a novel approach to using the social sciences to help students, specifically underrepresented minorities, discover the geosciences' cultural relevance and consider a career in the earth, atmospheric, and ocean sciences. To date, over 800 college freshmen have participated in a design study to evaluate the curriculum efficacy of a geoscience reader. Over half of these participants are students of color. The reader we designed allows students to analyze multiple, and sometimes conflicting, sources such as peer-reviewed journal articles, political cartoons, and newspaper articles. The topic for investigation in the reader is the 1995 Chicago Heat Wave, a tragic event that killed over 700 residents. Students use this reader in a core university course required for entering freshmen with low reading comprehension scores on standardized tests. To support students' comprehension, evaluation, and corroboration of these sources, we incorporated instructional supports aligned with the principles of Universal Design for Learning (UDL), reciprocal teaching, historical reasoning, media literacy, and quantitative reasoning. Using a digital format allows students to access multiple versions of the sources they are analyzing and definitions of challenging vocabulary and scientific concepts. Qualitative and quantitative data collected from participating students and their instructors included focus

  11. GeoX: A New Pre-college Program to Attract Underrepresented Minorities and First Generation Students to the Geosciences

    Science.gov (United States)

    Miller, K. C.; Garcia, S. J.; Houser, C.; GeoX Team

    2011-12-01

    students will apply to a geosciences program, the level of interest and the number of students identifying the geosciences as a likely college and career choice greatly increased. Students identified the wide range of field and laboratory activities (including atmospheric soundings, GPR, coring, etc.) and the excitement of the faculty involved as key aspects of the program and for introducing and enhancing their view of the geosciences.

  12. Teaching Geoethics Across the Geoscience Curriculum

    Science.gov (United States)

    Mogk, David; Bruckner, Monica; Kieffer, Susan; Geissman, John; Reidy, Michael; Taylor, Shaun; Vallero, Daniel

    2015-04-01

    Training in geoethics is an important part of pre-professional development of geoscientists. Professional societies, governmental agencies, and employers of the geoscience workforce increasingly expect that students have had some training in ethics to guide their professional lives, and the public demands that scientists abide by the highest standards of ethical conduct. The nature of the geosciences exposes the profession to ethical issues that derive from our work in a complex, dynamic Earth system with an incomplete geologic record and a high degree of uncertainty and ambiguity in our findings. The geosciences also address topics such as geohazards and resource development that have ethical dimensions that impact on the health, security, public policies, and economic well-being of society. However, there is currently no formal course of study to integrate geoethics into the geoscience curriculum and few faculty have the requisite training to effectively teach about ethics in their classes, or even informally in mentoring their research students. To address this need, an NSF-funded workshop was convened to explore how ethics education can be incorporated into the geoscience curriculum. The workshop addressed topics such as where and how should geoethics be taught in a range of courses including introductory courses for non-majors, as embedded modules in existing geoscience courses, or as a dedicated course for majors on geoethics; what are the best pedagogic practices in teaching ethics, including lessons learned from cognate disciplines (philosophy, biology, engineering); what are the goals for teaching geoethics, and what assessments can be used to demonstrate mastery of ethical principles; what resources currently exist to support teaching geoethics, and what new resources are needed? The workshop also explored four distinct but related aspects of geoethics: 1) Geoethics and self: what are the internal attributes of a geoscientist that establish the ethical

  13. Engaging secondary students in geoscience investigations through the use of low-cost instrumentation

    Science.gov (United States)

    Dunn, A. L.; Hansen, W.; Healy, S.

    2010-12-01

    Many of the future challenges facing the United States, such as climate change, securing energy resources, soil degradation, water resources, and atmospheric pollution, are part of the domain of geosciences. Currently, our colleges and universities are not graduating enough geoscience majors to meet this demand, with only 0.27% of all bachelor's degrees granted in geoscience fields in 2006, the fewest in any scientific field (NSF 2008). Moreover, undergraduate recruitment in geosciences from traditionally underrepresented groups is significantly poorer than other STEM fields, with underrepresented groups comprising just 5% of total geoscience bachelor’s degrees awarded (Czujko 2004). Undergraduate geoscience programs therefore have a critical need to not just grow in size, but to expand the spectrum of students within their programs to better reflect the country’s diversity. In 2009, Worcester State College (WSC) initiated an effort as part of NSF's Opportunities for Enhancing Diversity in the Geosciences Program to address this problem on a local scale. Through this program, we are creating a pipeline for diversity in the geosciences through a multi-faceted approach involving teacher training, high school internships, and a co-enrollment and scholarship program between Worcester Public Schools and WSC. Worcester, Massachusetts has a median household income of 43,779, 13,902 below the median household income for Massachusetts, and 24% of the city’s children live below the poverty line. Worcester is a diverse city: 19% of the population is Latino, 9% African-American, and 7% Asian-American, with over 18% foreign-born residents. This diversity is reflected in the city’s school system, where over 80 languages are spoken. In July 2010, the program was initiated with a week-long teacher training workshop. The participants were middle and high school science teachers from Worcester and the surrounding area. The workshop focused on issues of sustainability related

  14. Linking research, education and public engagement in geoscience: Leadership and strategic partnerships

    Science.gov (United States)

    Laj, C. E.

    2017-12-01

    As a research scientist I have always been interested in sharing whatever I knew with the general public and with teachers, who have the responsibility of forming young people, our ambassadors to the future. The turning point in my educational activities was in 2002, when the European Geosciences Union (EGU) welcomed my proposition to develop a Committee on Education. One of the committee's main activities is the organisation of GIFT (Geosciences Information for Teachers) workshops, held annually during the EGU General Assembly. Typically, these workshops bring together about 80 teachers from 20-25 different countries around a general theme that changes every year. Teachers are offered a mixture of keynote presentations by renowned scientists, and participate to classroom hands-on activities led by high-class educators. They also participate to a poster session, open to every participant to the GA, in which they can show to everyone the activities they have developed in their classroom. Therefore, EGU GIFT workshops spread first-hand scientific information to science teachers, and also offer teachers an exceptional way to networking with fellow teachers worldwide. Speakers are chosen from the academic world, national geosciences organisations such as BGS (UK), BRGM (France), INGV (Italy), the European Space Agency (ESA), CEA (France), from private companies (Total), or from International Organizations for policy makers such as the International Energy Agency (IEA), and IPCC. Since 2010, EGU GIFT workshops have been organized beyond Europe, in connection with EGU Alexander von Humboldt Conferences and other major International Conferences, or in collaboration with local or international organisations. A `Teachers at Sea' program has also been developed for teachers to be able to take part in an Oceanographic cruise. Also, in collaboration with the media manager of EGU the Committee has participated in "Planet Press", a program of geoscience press releases for

  15. Developing a Diverse Professoriate - Preliminary Outcomes from a Professional Development Workshop for Underrepresented Minorities in the Geosciences

    Science.gov (United States)

    Houlton, H. R.; Keane, C. M.; Seadler, A. R.; Wilson, C. E.

    2012-12-01

    A professional development workshop for underrepresented minority, future and early-career faculty in the geosciences was held in April of 2012. Twenty seven participants traveled to the Washington DC metro area and attended this 2.5 day workshop. Participants' career levels ranged from early PhD students to Assistant Professors, and they had research interests spanning atmospheric sciences, hydrology, solid earth geoscience and geoscience education. Race and ethnicity of the participants included primarily African American or Black individuals, as well as Hispanic, Native American, Native Pacific Islanders and Caucasians who work with underrepresented groups. The workshop consisted of three themed sessions led by prestigious faculty members within the geoscience community, who are also underrepresented minorities. These sessions included "Guidance from Professional Societies," "Instructional Guidance" and "Campus Leadership Advice." Each session lasted about 3 hours and included a mixture of presentational materials to provide context, hands-on activities and robust group discussions. Two additional sessions were devoted to learning about federal agencies. For the morning session, representatives from USGS and NOAA came to discuss opportunities within each agency and the importance of promoting geoscience literacy with our participants. The afternoon session gave the workshop attendees the fortunate opportunity to visit NSF headquarters. Participants were welcomed by NSF's Assistant Director for Geosciences and took part in small group meetings with program officers within the Geosciences Directorate. Participants indicated having positive experiences during this workshop. In our post-workshop evaluation, the majority of participants revealed that they thought the sessions were valuable, with many finding the sessions extremely valuable. The effectiveness of each session had similar responses. Preliminary results from 17 paired sample t-tests show increased

  16. Visualizing Geoscience Concepts Through Textbook Art (Invited)

    Science.gov (United States)

    Marshak, S.

    2013-12-01

    Many, if not most, college students taking an introductory geoscience course purchase, borrow, download, or rent one of several commercial textbooks currently available. Art used in such books has evolved significantly over the past three decades. Concepts once conveyed only by black-and-white line drawings, drawn by hand in ink, have gradually been replaced by full-color images produced digitally. Multiple high-end graphics programs, when used in combination, can yield images with super-realistic textures and palettes so that, in effect, anything that a book author wants to be drawn can be drawn. Because of the time and skill level involved in producing the art, the process commonly involves professional artists. In order to produce high-quality geoscience art that can help students (who are, by definition, non-experts) understand concepts, develop geoscience intuition, and hone their spatial-visualization skills, an author must address two problems. First, design a figure which can convey complex concepts through visual elements that resonate with students. Second, communicate the concepts to a professional artist who does not necessarily have personal expertise in geoscience, so that the figure rendered is both technically correct and visually engaging. The ultimate goal of geoscience art in textbooks is to produce an image that avoids unnecessary complexity that could distract from the art's theme, includes sufficient realism for a non-expert to relate the image to the real world, provides a personal context in which to interpret the figure, and has a layout that conveys relationships among multiple components of the art so that the art tells a coherent story. To accomplish this goal, a chain of choices--about perspective, sizes, colors, texture, labeling, captioning, line widths, and fonts--must be made in collaboration between the author and artist. In the new world of computer-aided learning, figures must also be able to work both on the computer screen and

  17. Numbers of women faculty in the geosciences increasing, but slowly

    Science.gov (United States)

    Wolfe, C. J.

    2001-12-01

    Why are there so few women faculty in the geosciences, while there are large numbers of women undergraduate and graduate students? According to National Science Foundation (NSF) estimates for 1995 in the Earth, atmospheric, and oceanic sciences, women made up 34% of the bachelor's degrees awarded, 35% of the graduate students enrolled, and 22% of the doctorates granted. Yet progress has been slower in achieving adequate representation of women geoscientists in academia, where women represent only 12% of the overall faculty. This talk will present the results of a survey I conducted on the status of women faculty at the 20 top-ranked geology programs, which was originally published as a feature article in Eos [Wolfe, 1999]. Data from the 1997 AGI Directory of Geoscience Departments were used to compare the numbers of women faculty at different departments, as well as to consider the distribution of men and women faculty by year of Ph.D. Strong inequities were found to exist between the individual departments. The percentages of women in the departments ranged from 0% to as high as 23%, and 37% of the departments had either one woman faculty member or none. Histograms of the faculty sorted by year of Ph.D. showed that clear generational differences existed between the sets of men and women faculty. Thirty-nine percent of the men obtained their Ph.D. prior to 1970, whereas only 3% of the women obtained their Ph.D. before this date. The majority of women faculty members (64%) received their Ph.D. after 1980, but a minority of men (31%) received their degrees after 1980. In the 1960s and 1970s, the geosciences expanded and departments employed a high percentage of recent Ph.D.s, but hiring of young faculty decreased in the 1980s and 1990s. In contrast, the numbers of women graduate students only began to rise after 1970, and thus the quantity of women Ph.D.s increased as the number of young hires decreased. Two problems appeared evident from this study using 1997 data

  18. Trade union revitalisation

    DEFF Research Database (Denmark)

    Ibsen, Christian Lyhne; Tapia, Maite

    2017-01-01

    In this article, we review and assess research on the role of trade unions in labour markets and society, the current decline of unions and union revitalisation. The review shows three main trends. First, trade unions are converging into similar strategies of revitalisation. The ‘organising model...... their traditional strongholds of collective bargaining and corporatist policy-making. Second, research has shown that used strategies are not a panacea for success for unions in countries that pearheaded revitalisation. This finding points to the importance of supportive institutional frameworks if unions...... in adverse institutional contexts, can be effective when they reinvent their repertoires of contention, through political action or campaigning along global value chains....

  19. Smartphones: Powerful Tools for Geoscience Education

    Science.gov (United States)

    Johnson, Zackary I.; Johnston, David W.

    2013-11-01

    Observation, formation of explanatory hypotheses, and testing of ideas together form the basic pillars of much science. Consequently, science education has often focused on the presentation of facts and theories to teach concepts. To a great degree, libraries and universities have been the historical repositories of scientific information, often restricting access to a small segment of society and severely limiting broad-scale geoscience education.

  20. Georgia Teachers in Academic Laboratories: Research Experiences in the Geosciences

    Science.gov (United States)

    Barrett, D.

    2005-12-01

    The Georgia Intern-Fellowships for Teachers (GIFT) is a collaborative effort designed to enhance mathematics and science experiences of Georgia teachers and their students through summer research internships for teachers. By offering business, industry, public science institute and research summer fellowships to teachers, GIFT provides educators with first-hand exposure to the skills and knowledge necessary for the preparation of our future workforce. Since 1991, GIFT has placed middle and high school mathematics, science and technology teachers in over 1000 positions throughout the state. In these fellowships, teachers are involved in cutting edge scientific and engineering research, data analysis, curriculum development and real-world inquiry and problem solving, and create Action Plans to assist them in translating the experience into changed classroom practice. Since 2004, an increasing number of high school students have worked with their teachers in research laboratories. The GIFT program places an average of 75 teachers per summer into internship positions. In the summer of 2005, 83 teachers worked in corporate and research environments throughout the state of Georgia and six of these positions involved authentic research in geoscience related departments at the Georgia Institute of Technology, including aerospace engineering and the earth and atmospheric sciences laboratories. This presentation will review the history and the structure of the program including the support system for teachers and mentors as well as the emphasis on inquiry based learning strategies. The focus of the presentation will be a comparison of two placement models of the teachers placed in geoscience research laboratories: middle school earth science teachers placed in a 6 week research experience and high school teachers placed in 7 week internships with teams of 3 high school students. The presentation will include interviews with faculty to determine the value of these experiences

  1. Programming and Technology for Accessibility in Geoscience

    Science.gov (United States)

    Sevre, E.; Lee, S.

    2013-12-01

    Many people, students and professors alike, shy away from learning to program because it is often believed to be something scary or unattainable. However, integration of programming into geoscience education can be a valuable tool for increasing the accessibility of content for all who are interested. It is my goal to dispel these myths and convince people that: 1) Students with disabilities can use programming to increase their role in the classroom, 2) Everyone can learn to write programs to simplify daily tasks, 3) With a deep understanding of the task, anyone can write a program to do a complex task, 4) Technology can be combined with programming to create an inclusive environment for all students of geoscience, and 5) More advanced knowledge of programming and technology can lead geoscientists to create software to serve as assistive technology in the classroom. It is my goal to share my experiences using technology to enhance the classroom experience as a way of addressing the aforementioned issues. Through my experience, I have found that programming skills can be included and learned by all to enhance the content of courses without detracting from curriculum. I hope that, through this knowledge, geoscience courses can become more accessible for people with disabilities by including programming and technology to the benefit of all involved.

  2. Summaries of FY 1996 geosciences research

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-01

    The Geosciences Research Program is directed by the Department of Energy`s (DOE`s) Office of Energy Research (OER) through its Office of Basic Energy Sciences (OBES). Activities in the Geosciences Research Program are directed toward building the long-term fundamental knowledge base necessary to provide for energy technologies of the future. Future energy technologies and their individual roles in satisfying the nations energy needs cannot be easily predicted. It is clear, however, that these future energy technologies will involve consumption of energy and mineral resources and generation of technological wastes. The earth is a source for energy and mineral resources and is also the host for wastes generated by technological enterprise. Viable energy technologies for the future must contribute to a national energy enterprise that is efficient, economical, and environmentally sound. The Geosciences Research Program emphasizes research leading to fundamental knowledge of the processes that transport, modify, concentrate, and emplace (1) the energy and mineral resources of the earth and (2) the energy by-products of man.

  3. Fourth SIAM conference on mathematical and computational issues in the geosciences: Final program and abstracts

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    The conference focused on computational and modeling issues in the geosciences. Of the geosciences, problems associated with phenomena occurring in the earth`s subsurface were best represented. Topics in this area included petroleum recovery, ground water contamination and remediation, seismic imaging, parameter estimation, upscaling, geostatistical heterogeneity, reservoir and aquifer characterization, optimal well placement and pumping strategies, and geochemistry. Additional sessions were devoted to the atmosphere, surface water and oceans. The central mathematical themes included computational algorithms and numerical analysis, parallel computing, mathematical analysis of partial differential equations, statistical and stochastic methods, optimization, inversion, homogenization and renormalization. The problem areas discussed at this conference are of considerable national importance, with the increasing importance of environmental issues, global change, remediation of waste sites, declining domestic energy sources and an increasing reliance on producing the most out of established oil reservoirs.

  4. Geoscience Workforce Development at UNAVCO: Leveraging the NSF GAGE Facility

    Science.gov (United States)

    Morris, A. R.; Charlevoix, D. J.; Miller, M.

    2013-12-01

    Global economic development demands that the United States remain competitive in the STEM fields, and developing a forward-looking and well-trained geoscience workforce is imperative. According to the Bureau of Labor Statistics, the geosciences will experience a growth of 19% by 2016. Fifty percent of the current geoscience workforce is within 10-15 years of retirement, and as a result, the U.S. is facing a gap between the supply of prepared geoscientists and the demand for well-trained labor. Barring aggressive intervention, the imbalance in the geoscience workforce will continue to grow, leaving the increased demand unmet. UNAVCO, Inc. is well situated to prepare undergraduate students for placement in geoscience technical positions and advanced graduate study. UNAVCO is a university-governed consortium facilitating research and education in the geosciences and in addition UNAVCO manages the NSF Geodesy Advancing Geosciences and EarthScope (GAGE) facility. The GAGE facility supports many facets of geoscience research including instrumentation and infrastructure, data analysis, cyberinfrastructure, and broader impacts. UNAVCO supports the Research Experiences in the Solid Earth Sciences for Students (RESESS), an NSF-funded multiyear geoscience research internship, community support, and professional development program. The primary goal of the RESESS program is to increase the number of historically underrepresented students entering graduate school in the geosciences. RESESS has met with high success in the first 9 years of the program, as more than 75% of RESESS alumni are currently in Master's and PhD programs across the U.S. Building upon the successes of RESESS, UNAVCO is launching a comprehensive workforce development program that will network underrepresented groups in the geosciences to research and opportunities throughout the geosciences. This presentation will focus on the successes of the RESESS program and plans to expand on this success with broader

  5. Highlighting Successful Strategies for Engaging Minority Students in the Geosciences

    Science.gov (United States)

    Liou-Mark, J.; Blake, R.; Norouzi, H.; Vladutescu, D. V.; Yuen-Lau, L.

    2017-12-01

    Igniting interest and creativity in students for the geosciences oftentimes require innovation, bold `outside-the-box' thinking, and perseverance, particularly for minority students for whom the preparation for the discipline and its lucrative pathways to the geoscience workforce are regrettably unfamiliar and woefully inadequate. The enrollment, retention, participation, and graduation rates of minority students in STEM generally and in the geosciences particularly remain dismally low. However, a coupled, strategic geoscience model initiative at the New York City College of Technology (City Tech) of the City University of New York has been making steady in-roads of progress, and it offers practical solutions to improve minority student engagement in the geosciences. Aided by funding from the National Science Foundation (NSF), two geoscience-centric programs were created from NSF REU and NSF IUSE grants, and these programs have been successfully implemented and administered at City Tech. This presentation shares the hybrid geoscience research initiatives, the multi-tiered mentoring structures, the transformative geoscience workforce preparation, and a plethora of other vital bastions of support that made the overall program successful. Minority undergraduate scholars of the program have either moved on to graduate school, to the geoscience workforce, or they persist with greater levels of success in their STEM disciplines.

  6. BANKING UNION - ROMANIAN PERSPECTIVE

    Directory of Open Access Journals (Sweden)

    Coroiu Sorina Ioana

    2015-07-01

    Full Text Available The financial crisis showed that banks were not able to face the loss, because there is no framework for a resolution, so that it intervened with money from taxpayers. So, it has been highlighted the need to update the regulations applicable to the banking sector. Creating a single supervisory mechanism in the fall of 2014 was a time reference point to achieve a banking union in Europe. Banking Union is one of the four foundations for a genuine Economic and Monetary Union. The paper’s purpose is to analyze the Banking Union structure, based on three pillars: (i The Single Supervisory Mechanism - the transfer of the main responsibility regarding banking supervision from national to European level, (ii The Single Resolution Mechanism - introduction of common provisions to ensure legal support required to manage bank failures problem, (iii The Deposit Guarantee Schemes - harmonization of deposit guarantee rules. These measures were adopted at European Union level to ensure the stability of the European banking system and to prevent future crises. Because countries that are not part of the euro area are not required to join the Banking Union, the dilemma of these countries lies in the decision to join the Banking Union quickly or to wait. It is the case of Romania, also, so, this paper analyze the opportunity of Romania's accession to the Banking Union before adopting the euro. There are analyzed the advantages and disadvantages of Romania's participation in the Banking Union, showing that, in the context of single currency introduction, Romania's participation is required. So far, there are reduced debates regarding the need, advantages and disadvantages of Romania's participation in the European Banking Union, the top representatives of the National Bank of Romania being among the few who expressed their views in public and published papers on the subject.

  7. FID GEO: Digital transformation and Open Access in Germany's geoscience research community

    Science.gov (United States)

    Hübner, Andreas; Martinson, Guntars; Bertelmann, Roland; Elger, Kirsten; Pfurr, Norbert; Schüler, Mechthild

    2017-04-01

    The 'Specialized Information Service for Solid Earth Sciences' (FID GEO) supports Germany's geoscience research community in 1) electronic publishing of i) institutional and "grey" literature not released in publishing houses and ii) pre- and postprints of research articles 2) digitising geoscience literature and maps and 3) addressing the publication of research data associated with peer-reviewed research articles (data supplements). Established in 2016, FID GEO is funded by the German Research Foundation (DFG) and is run by the Göttingen State and University Library (SUB Göttingen) and the GFZ German Research Centre for Geosciences. Here we present recent success stories and lessons learned. With regard to digitisation, FID GEO received a request from one of the most prestigious geoscience societies in Germany to digitise back-issues of its journals that are so far only available in print. Aims are to ensure long-term availability in Open Access and high visibility by DOI-referenced electronic publication via the FID GEO repository. While digitisation will be financed by FID GEO funds, major challenges are to identify the copyright holders (journals date back to 1924) and negotiate digitisation and publication rights. With respect to research data publishing, we present how we target scientists to integrate the publication of research data into their workflows and institutions to promote the topic. For the latter, we successfully take advantage of existing networks as entry points to the community, like the research network Geo.X in the Berlin-Brandenburg area, individual learned societies as well as their overarching structures DV Geo and GeoUnion. FID GEO promotes the Statement of Commitment of the Coalition for Publishing Data in the Earth and Space Sciences (COPDESS) as well as the FAIR Data Principles in presentations to the above-mentioned groups and institutions. Our aim is to eventually transfer the positive feedback from the geoscience community into

  8. The Case for Infusing Quantitative Literacy into Introductory Geoscience Courses

    Directory of Open Access Journals (Sweden)

    Jennifer M. Wenner

    2009-01-01

    Full Text Available We present the case for introductory geoscience courses as model venues for increasing the quantitative literacy (QL of large numbers of the college-educated population. The geosciences provide meaningful context for a number of fundamental mathematical concepts that are revisited several times in a single course. Using some best practices from the mathematics education community surrounding problem solving, calculus reform, pre-college mathematics and five geoscience/math workshops, geoscience and mathematics faculty have identified five pedagogical ideas to increase the QL of the students who populate introductory geoscience courses. These five ideas include techniques such as: place mathematical concepts in context, use multiple representations, use technology appropriately, work in groups, and do multiple-day, in-depth problems that place quantitative skills in multiple contexts. We discuss the pedagogical underpinnings of these five ideas and illustrate some ways that the geosciences represent ideal places to use these techniques. However, the inclusion of QL in introductory courses is often met with resistance at all levels. Faculty who wish to include quantitative content must use creative means to break down barriers of public perception of geoscience as qualitative, administrative worry that enrollments will drop and faculty resistance to change. Novel ways to infuse QL into geoscience classrooms include use of web-based resources, shadow courses, setting clear expectations, and promoting quantitative geoscience to the general public. In order to help faculty increase the QL of geoscience students, a community-built faculty-centered web resource (Teaching Quantitative Skills in the Geosciences houses multiple examples that implement the five best practices of QL throughout the geoscience curriculum. We direct faculty to three portions of the web resource: Teaching Quantitative Literacy, QL activities, and the 2006 workshop website

  9. Transforming Indigenous Geoscience Education and Research (TIGER)

    Science.gov (United States)

    Berthelote, A. R.

    2014-12-01

    American Indian tribes and tribal confed­erations exert sovereignty over about 20% of all the freshwater resources in the United States. Yet only about 30 Native American (NA) students receive bachelor's degrees in the geosci­ences each year, and few of those degrees are in the field of hydrology. To help increase the ranks of NA geoscientists,TIGER builds upon the momentum of Salish Kootenai College's newly accredited Hydrology Degree Program. It allows for the development and implementation of the first Bachelor's degree in geosciences (hydrology) at a Tribal College and University (TCU). TIGER integrates a solid educational research-based framework for retention and educational preparation of underrepresented minorities with culturally relevant curriculum and socio-cultural supports, offering a new model for STEM education of NA students. Innovative hydrology curriculum is both academically rigorous and culturally relevant with concurrent theoretical, conceptual, and applied coursework in chemical, biological, physical and managerial aspects of water resources. Educational outcomes for the program include a unique combination of competencies based on industry recognized standards (e.g., National Institute of Hydrologists), input from an experienced External Advisory Board (EAB), and competencies required for geoscientists working in critical NA watersheds, which include unique competencies, such as American Indian Water Law and sovereignty issues. TIGER represents a unique opportunity to capitalize on the investments the geoscience community has already made into broadening the participation of underrepresented minorities and developing a diverse workforce, by allowing SKC to develop a sustainable and exportable program capable of significantly increasing (by 25 to 75%) the National rate of Native American geoscience graduates.

  10. A Model Collaborative Platform for Geoscience Education

    Science.gov (United States)

    Fox, S.; Manduca, C. A.; Iverson, E. A.

    2012-12-01

    Over the last decade SERC at Carleton College has developed a collaborative platform for geoscience education that has served dozens of projects, thousands of community authors and millions of visitors. The platform combines a custom technical infrastructure: the SERC Content Management system (CMS), and a set of strategies for building web-resources that can be disseminated through a project site, reused by other projects (with attribution) or accessed via an integrated geoscience education resource drawing from all projects using the platform. The core tools of the CMS support geoscience education projects in building project-specific websites. Each project uses the CMS to engage their specific community in collecting, authoring and disseminating the materials of interest to them. At the same time the use of a shared central infrastructure allows cross-fertilization among these project websites. Projects are encouraged to use common templates and common controlled vocabularies for organizing and displaying their resources. This standardization is then leveraged through cross-project search indexing which allow projects to easily incorporate materials from other projects within their own collection in ways that are relevant and automated. A number of tools are also in place to help visitors move among project websites based on their personal interests. Related links help visitors discover content related topically to their current location that is in a 'separate' project. A 'best bets' feature in search helps guide visitors to pages that are good starting places to explore resources on a given topic across the entire range of hosted projects. In many cases these are 'site guide' pages created specifically to promote a cross-project view of the available resources. In addition to supporting the cross-project exploration of specific themes the CMS also allows visitors to view the combined suite of resources authored by any particular community member. Automatically

  11. Agent Based Modeling Applications for Geosciences

    Science.gov (United States)

    Stein, J. S.

    2004-12-01

    Agent-based modeling techniques have successfully been applied to systems in which complex behaviors or outcomes arise from varied interactions between individuals in the system. Each individual interacts with its environment, as well as with other individuals, by following a set of relatively simple rules. Traditionally this "bottom-up" modeling approach has been applied to problems in the fields of economics and sociology, but more recently has been introduced to various disciplines in the geosciences. This technique can help explain the origin of complex processes from a relatively simple set of rules, incorporate large and detailed datasets when they exist, and simulate the effects of extreme events on system-wide behavior. Some of the challenges associated with this modeling method include: significant computational requirements in order to keep track of thousands to millions of agents, methods and strategies of model validation are lacking, as is a formal methodology for evaluating model uncertainty. Challenges specific to the geosciences, include how to define agents that control water, contaminant fluxes, climate forcing and other physical processes and how to link these "geo-agents" into larger agent-based simulations that include social systems such as demographics economics and regulations. Effective management of limited natural resources (such as water, hydrocarbons, or land) requires an understanding of what factors influence the demand for these resources on a regional and temporal scale. Agent-based models can be used to simulate this demand across a variety of sectors under a range of conditions and determine effective and robust management policies and monitoring strategies. The recent focus on the role of biological processes in the geosciences is another example of an area that could benefit from agent-based applications. A typical approach to modeling the effect of biological processes in geologic media has been to represent these processes in

  12. Muons tomography applied to geosciences and volcanology

    Energy Technology Data Exchange (ETDEWEB)

    Marteau, J., E-mail: marteau@ipnl.in2p3.fr [Institut de Physique Nucleaire de Lyon (UMR CNRS-IN2P3 5822), Universite Lyon 1, Lyon (France); Gibert, D.; Lesparre, N. [Institut de Physique du Globe de Paris (UMR CNRS 7154), Sorbonne Paris Cite, Paris (France); Nicollin, F. [Geosciences Rennes (CNRS UMR 6118), Universite Rennes 1, Bat. 15 Campus de Beaulieu, 35042 Rennes cedex (France); Noli, P. [Universita degli studi di Napoli Federico II and INFN sez. Napoli (Italy); Giacoppo, F. [Laboratory for High Energy Physics, University of Bern, SidlerStrasse 5, CH-3012 Bern (Switzerland)

    2012-12-11

    Imaging the inner part of large geological targets is an important issue in geosciences with various applications. Different approaches already exist (e.g. gravimetry, electrical tomography) that give access to a wide range of information but with identified limitations or drawbacks (e.g. intrinsic ambiguity of the inverse problem, time consuming deployment of sensors over large distances). Here we present an alternative and complementary tomography method based on the measurement of the cosmic muons flux attenuation through the geological structures. We detail the basics of this muon tomography with a special emphasis on the photo-active detectors.

  13. Geoscience Training for NASA Astronaut Candidates

    Science.gov (United States)

    Young, K. E.; Evans, C. A.; Bleacher, J. E.; Graff, T. G.; Zeigler, R.

    2017-01-01

    After being selected to the astronaut office, crewmembers go through an initial two year training flow, astronaut candidacy, where they learn the basic skills necessary for spaceflight. While the bulk of astronaut candidate training currently centers on the multiple subjects required for ISS operations (EVA skills, Russian language, ISS systems, etc.), training also includes geoscience training designed to train crewmembers in Earth observations, teach astronauts about other planetary systems, and provide field training designed to investigate field operations and boost team skills. This training goes back to Apollo training and has evolved to support ISS operations and future exploration missions.

  14. OERL: A Tool For Geoscience Education Evaluators

    Science.gov (United States)

    Zalles, D. R.

    2002-12-01

    The Online Evaluation Resource Library (OERL) is a Web-based set of resources for improving the evaluation of projects funded by the Directorate for Education and Human Resources (EHR) of the National Science Foundation (NSF). OERL provides prospective project developers and evaluators with material that they can use to design, conduct, document, and review evaluations. OERL helps evaluators tackle the challenges of seeing if a project is meeting its implementation and outcome-related goals. Within OERL is a collection of exemplary plans, instruments, and reports from evaluations of EHR-funded projects in the geosciences and in other areas of science and mathematics. In addition, OERL contains criteria about good evaluation practices, professional development modules about evaluation design and questionnaire development, a dictionary of key evaluation terms, and links to evaluation standards. Scenarios illustrate how the resources can be used or adapted. Currently housed in OERL are 137 instruments, and full or excerpted versions of 38 plans and 60 reports. 143 science and math projects have contributed to the collection so far. OERL's search tool permits the launching of precise searches based on key attributes of resources such as their subject area and the name of the sponsoring university or research institute. OERL's goals are to 1) meet the needs for continuous professional development of evaluators and principal investigators, 2) complement traditional vehicles of learning about evaluation, 3) utilize the affordances of current technologies (e.g., Web-based digital libraries, relational databases, and electronic performance support systems) for improving evaluation practice, 4) provide anytime/anyplace access to update-able resources that support evaluators' needs, and 5) provide a forum by which professionals can interact on evaluation issues and practices. Geoscientists can search the collection of resources from geoscience education projects that have

  15. An Analysis of NSF Geosciences Research Experience for Undergraduate Site Programs from 2009 through 2011

    Science.gov (United States)

    Rom, E. L.; Patino, L. C.; Weiler, S.; Sanchez, S. C.; Colon, Y.; Antell, L.

    2011-12-01

    The Research Experience for Undergraduate (REU) Program at the U.S. National Science Foundation (NSF) provides U.S. undergraduate students from any college or university the opportunity to conduct research at a different institution and gain a better understanding of research career pathways. The Geosciences REU Sites foster research opportunities in areas closely aligned with geoscience programs, particularly those related to earth, atmospheric and ocean sciences. The aim of this paper is to provide an overview of the Geosciences REU Site programs run in 2009 through 2011. A survey requesting information on recruitment methods, student demographics, enrichment activities, and fields of research was sent to the Principal Investigators of each of the active REU Sites. Over 70% of the surveys were returned with the requested information from about 50 to 60 sites each year. The internet is the most widely used mechanism to recruit participants, with personal communication as the second most important recruiting tool. The admissions rate for REU Sites in Geosciences varies from less than 10% to 50%, with the majority of participants being rising seniors and juniors. Many of the participants come from non-PhD granting institutions. Among the participants, gender distribution varies by discipline, with ocean sciences having a large majority of women and earth sciences having a majority of men. Regarding ethnic diversity, the REU Sites reflect the difficulty of attracting diverse students into Geosciences as a discipline; a large majority of participants are Caucasian and Asian students. Furthermore, participants from minority-serving institutions and community colleges constitute a small percentage of those taking part in these research experiences. The enrichment activities are very similar across the REU Sites, and mimic activities common to the scientific community, including intellectual exchange of ideas (lab meetings, seminars, and professional meetings

  16. Strategic Planning for Interdisciplinary Science: a Geoscience Success Story

    Science.gov (United States)

    Harshvardhan, D.; Harbor, J. M.

    2003-12-01

    The Department of Earth and Atmospheric Sciences at Purdue University has engaged in a continuous strategic planning exercise for several years, including annual retreats since 1997 as an integral part of the process. The daylong Saturday retreat at the beginning of the fall semester has been used to flesh out the faculty hiring plan for the coming year based on the prior years' plans. The finalized strategic plan is built around the choice of three signature areas, two in disciplinary fields, (i) geodynamics and active tectonics, (ii) multi-scale atmospheric interactions and one interdisciplinary area, (iii) atmosphere/surface interactions. Our experience with strategic planning and the inherently interdisciplinary nature of geoscience helped us recently when our School of Science, which consists of seven departments, announced a competition for 60 new faculty positions that would be assigned based on the following criteria, listed in order of priority - (i) scientific merit and potential for societal impact, (ii) multidisciplinary nature of topic - level of participation and leveraging potential, (iii) alignment with Purdue's strategic plan - discovery, learning, engagement, (iv) existence of critical mass at Purdue and availability of faculty and student candidate pools, (v) corporate and federal sponsor interest. Some fifty white papers promoting diverse fields were submitted to the school and seven were chosen after a school-wide retreat. The department fared exceedingly well and we now have significant representation on three of the seven school areas of coalescence - (i) climate change, (ii) computational science and (iii) science education research. We are now in the process of drawing up hiring plans and developing strategies for allocation and reallocation of resources such as laboratory space and faculty startup to accommodate the 20% growth in faculty strength that is expected over the next five years.

  17. Some Strategies From SOARS for Broadening Participation in the Geosciences

    Science.gov (United States)

    Haacker-Santos, R.; Pandya, R.; Calhoun, A.

    2006-12-01

    The mission of SOARS® is to broaden participation in the geosciences by increasing the number of Black or African-American, American Indian or Alaska Native, Hispanic or Latino, female, and first-generation college students who enroll and succeed in graduate school in the atmospheric and related sciences. This mission contributes to national goals of developing a diverse, internationally competitive, and globally engaged workforce of scientists and engineers. SOARS is a multiyear undergraduate-to-graduate bridge program that uses three strategies: a strong learning community, a multidimensional mentoring program, and experience in research. Our presentation will describe SOARS' strategies in more detail, with an eye toward how such strategies might be adapted for other programs. To do this, we will draw upon recent research that documents how these strategies can be successfully implemented, including: - A survey of over 124 higher-education based STEM programs - A workshop report from the American Chemical Society emphasizing cooperation between industry and academia - An independent ethnographic study of the Significant Opportunities in Atmospheric and Related Science (SOARS®) program, administered by the University Corporation for Atmospheric Research (UCAR) In the 11 years since SOARS' founding, 104 students have participated in the program. Of those participants, 16 are still enrolled as undergraduates, and 60 have gone on to purse graduate school in STEM. Overall, this represents a success rate 91%. Of the 35 SOARS participants who have entered the workforce, 26 are in STEM related disciplines. Four SOARS participants have already earned their PhD, and additional 17 are in PhD programs. Seventeen protégés have earned Master's and entered the workforce, and 17 more protégés are enrolled in Master's programs.

  18. Effectiveness of Geosciences Exploration Summer Program (GeoX) for increasing awareness and Broadening Participation in the Geosciences

    Science.gov (United States)

    Garcia, S. J.; Houser, C.

    2013-12-01

    Summer research experiences are an increasingly popular means to increase awareness of and develop interest in the Geosciences and other STEM (Science, Technology, Engineering and Math) programs. Here we describe and report the preliminary results of a new one-week program at Texas A&M University to introduce first generation, women, and underrepresented high school students to opportunities and careers in the Geosciences. Short-term indicators in the form of pre- and post-program surveys of participants and their parents suggest that there is an increase in participant understanding of geosciences and interest in pursuing a degree in the geosciences. At the start of the program, the participants and their parents had relatively limited knowledge of the geosciences and very few had a friend or acquaintance employed in the geosciences. Post-survey results suggest that the students had an improved and nuanced understanding of the geosciences and the career opportunities within the field. A survey of the parents several months after the program had ended suggests that the participants had effectively communicated their newfound understanding and that the parents now recognized the geosciences as a potentially rewarding career. With the support of their parents 42% of the participants are planning to pursue an undergraduate degree in the geosciences compared to 62% of participants who were planning to pursue a geosciences degree before the program. It is concluded that future offerings of this and similar programs should also engage the parents to ensure that the geosciences are recognized as a potential academic and career path.

  19. Building an Outdoor Classroom for Field Geology: The Geoscience Garden

    Science.gov (United States)

    Waldron, John W. F.; Locock, Andrew J.; Pujadas-Botey, Anna

    2016-01-01

    Many geoscience educators have noted the difficulty that students experience in transferring their classroom knowledge to the field environment. The Geoscience Garden, on the University of Alberta North Campus, provides a simulated field environment in which Earth Science students can develop field observation skills, interpret features of Earth's…

  20. An Integrated Strategy for Promoting Geoscience Education and Research in Developing Countries through International Cooperation

    Science.gov (United States)

    Aswathanarayana, U.

    2007-12-01

    Geoscience education and research in Developing countries should aim at achieving food, water and environmental security, and disaster preparedness, based on the synergetic application of earth (including atmospheric and oceanic realms), space and information sciences through economically-viable, ecologically- sustainable and people-participatory management of natural resources. The proposed strategy involves the integration of the following three principal elements: (i) What needs to be taught: Geoscience needs to be taught as earth system science incorporating geophysical, geochemical and geobiological approaches, with focus (say, 80 % of time) on surficial processes (e.g. dynamics of water, wind and waves, surface and groundwater, soil moisture, geomorphology, landuse, crops), and surficial materials (e.g. soils, water, industrial minerals, sediments, biota). Subjects such as the origin, structure and evolution of the earth, and deep-seated processes (e.g. dynamics of the crust-mantle interaction, plate tectonics) could be taught by way of background knowledge (say, 20 % of the time), (ii) How jobs are to be created: Jobs are to be created by merging geoscience knowledge with economic instruments (say, micro enterprises), and management structures at different levels (Policy level, Technology Transfer level and Implementation level), customized to the local biophysical and socioeconomic situations, and (iii) International cooperation: Web-based instruction (e.g. education portals, virtual laboratories) through South - South and North - South cooperation, customized to the local biophysical and socioeconomic situations, with the help of (say) UNDP, UNESCO, World Bank, etc.

  1. Geoscience Education Research: A Brief History, Context and Opportunities

    Science.gov (United States)

    Mogk, D. W.; Manduca, C. A.; Kastens, K. A.

    2011-12-01

    DBER combines knowledge of teaching and learning with deep knowledge of discipline-specific science content. It describes the discipline-specific difficulties learners face and the specialized intellectual and instructional resources that can facilitate student understanding (NRC, 2011). In the geosciences, content knowledge derives from all the "spheres, the complex interactions of components of the Earth system, applications of first principles from allied sciences, an understanding of "deep time", and approaches that emphasize the interpretive and historical nature of geoscience. Insights gained from the theory and practice of the cognitive and learning sciences that demonstrate how people learn, as well as research on learning from other STEM disciplines, have helped inform the development of geoscience curricular initiatives. The Earth Science Curriculum Project (1963) was strongly influenced by Piaget and emphasized hands-on, experiential learning. Recognizing that education research was thriving in related STEM disciplines a NSF report (NSF 97-171) recommended "... that GEO and EHR both support research in geoscience education, helping geoscientists to work with colleagues in fields such as educational and cognitive psychology, in order to facilitate development of a new generation of geoscience educators." An NSF sponsored workshop, Bringing Research on Learning to the Geosciences (2002) brought together geoscience educators and cognitive scientists to explore areas of mutual interest, and identified a research agenda that included study of spatial learning, temporal learning, learning about complex systems, use of visualizations in geoscience learning, characterization of expert learning, and learning environments. Subsequent events have focused on building new communities of scholars, such as the On the Cutting Edge faculty professional development workshops, extensive collections of online resources, and networks of scholars that have addressed teaching

  2. Trade Union Organisers in Trade Union Organising Strategies: building workplace unionism or reinforcing bureaucracy

    OpenAIRE

    Looker, Gerard

    2015-01-01

    This thesis considers the role of union full time officers in union organising strategies. Two decades of promoting union organising influenced by models developed by the AFL-CIO, has failed to arrest the decline of UK trade unions let alone produce evidence of renewal. Focusing mainly on one region in the UKs largest public sector trade union, Unison, the research provides for a detailed account of how organising strategies affect union work, presenting thick and deep data from full time off...

  3. Diversifying the Geosciences: Examples from the Arctic

    Science.gov (United States)

    Holmes, R. M.

    2017-12-01

    Like other realms of the geosciences, the scientists who comprise the Arctic research community tends to be white and male. For example, a survey of grants awarded over a 5-year period beginning in 2010 by NSF's Arctic System Science and Arctic Natural Sciences programs showed that over 90% of PIs were white whereas African Americans, Hispanics, and Native Americans together accounted for only about 1% of PIs. Over 70% of the PIs were male. I will suggest that involving diverse upper-level undergraduate students in authentic field research experiences may be one of the shortest and surest routes to diversifying the Arctic research community, and by extension, the geoscientific research community overall. Upper-level undergraduate students are still open to multiple possibilities, but an immersive field research experience often helps solidify graduate school and career trajectories. Though an all-of-the-above strategy is needed, focusing on engaging a diverse cohort of upper-level undergraduate students may provide one of the most efficient means of diversifying the geosciences over the coming years and decades.

  4. Progress toward Modular UAS for Geoscience Applications

    Science.gov (United States)

    Dahlgren, R. P.; Clark, M. A.; Comstock, R. J.; Fladeland, M.; Gascot, H., III; Haig, T. H.; Lam, S. J.; Mazhari, A. A.; Palomares, R. R.; Pinsker, E. A.; Prathipati, R. T.; Sagaga, J.; Thurling, J. S.; Travers, S. V.

    2017-12-01

    Small Unmanned Aerial Systems (UAS) have become accepted tools for geoscience, ecology, agriculture, disaster response, land management, and industry. A variety of consumer UAS options exist as science and engineering payload platforms, but their incompatibilities with one another contribute to high operational costs compared with those of piloted aircraft. This research explores the concept of modular UAS, demonstrating airframes that can be reconfigured in the field for experimental optimization, to enable multi-mission support, facilitate rapid repair, or respond to changing field conditions. Modular UAS is revolutionary in allowing aircraft to be optimized around the payload, reversing the conventional wisdom of designing the payload to accommodate an unmodifiable aircraft. UAS that are reconfigurable like Legos™ are ideal for airborne science service providers, system integrators, instrument designers and end users to fulfill a wide range of geoscience experiments. Modular UAS facilitate the adoption of open-source software and rapid prototyping technology where design reuse is important in the context of a highly regulated industry like aerospace. The industry is now at a stage where consolidation, acquisition, and attrition will reduce the number of small manufacturers, with a reduction of innovation and motivation to reduce costs. Modularity leads to interface specifications, which can evolve into de facto or formal standards which contain minimum (but sufficient) details such that multiple vendors can then design to those standards and demonstrate interoperability. At that stage, vendor coopetition leads to robust interface standards, interoperability standards and multi-source agreements which in turn drive costs down significantly.

  5. Fundamental geosciences program. Annual report, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Witherspoon, P.A.; Apps, J.A.

    1977-01-01

    The geoscience program relating to geothermal energy consists of four projects. In the project on reservoir dynamics, sophisticated codes have been written to simulate the dynamics of heat flow in geothermal reservoir systems. These codes have also been applied to the investigations of natural aquifers as a storage system for thermal energy. In the second project, core samples are studied to determine the high temperature and high pressure behavior of aquifers in the presence of saturating fluids. The third project covers the systematic evaluation of the thermodynamic properties of electrolytes in order to interpret the behavior of geothermal fluids. The fourth project involves hydrothermal solubility measurements of various minerals to elucidate the chemistry and mass transfer in geothermal systems. The second major program includes four projects which involve precise measurements and analysis of physical and chemical properties of geologic materials. These include measurements of the thermodynamic properties (viscosity, density and heat capacity) of silicate materials to help understand magma genesis and evolution, high-precision neutron activation analysis of rare and trace elements in magmatic materials, and the precise measurement of seismic wave velocities near geological faults, in order to determine the buildup of stress in the earth's crust. Third, the development program in fundamental geosciences includes six innovative projects. These projects include research in the in situ leaching of uranium ore, properties of magmas, removal of pyrite from coal, properties of soils and soft rocks, stress flow behavior of fractured rock systems, and high-precision mass spectrometry.

  6. Machine learning in geosciences and remote sensing

    Directory of Open Access Journals (Sweden)

    David J. Lary

    2016-01-01

    Full Text Available Learning incorporates a broad range of complex procedures. Machine learning (ML is a subdivision of artificial intelligence based on the biological learning process. The ML approach deals with the design of algorithms to learn from machine readable data. ML covers main domains such as data mining, difficult-to-program applications, and software applications. It is a collection of a variety of algorithms (e.g. neural networks, support vector machines, self-organizing map, decision trees, random forests, case-based reasoning, genetic programming, etc. that can provide multivariate, nonlinear, nonparametric regression or classification. The modeling capabilities of the ML-based methods have resulted in their extensive applications in science and engineering. Herein, the role of ML as an effective approach for solving problems in geosciences and remote sensing will be highlighted. The unique features of some of the ML techniques will be outlined with a specific attention to genetic programming paradigm. Furthermore, nonparametric regression and classification illustrative examples are presented to demonstrate the efficiency of ML for tackling the geosciences and remote sensing problems.

  7. Diversifying Geoscience by Preparing Faculty as Workshop Leaders to Promote Inclusive Teaching and Inclusive Geoscience Departments

    Science.gov (United States)

    Macdonald, H.; Manduca, C. A.; Beane, R. J.; Doser, D. I.; Ebanks, S. C.; Hodder, J.; McDaris, J. R.; Ormand, C. J.

    2017-12-01

    Efforts to broaden participation in the geosciences require that faculty implement inclusive practices in their teaching and their departments. Two national projects are building the capacity for faculty and departments to implement inclusive practices. The NAGT/InTeGrate Traveling Workshops Program (TWP) and the Supporting and Advancing Geoscience Education in Two-Year Colleges (SAGE 2YC) project each prepares a cadre of geoscience educators to lead workshops that provide opportunities for faculty and departments across the country to enhance their abilities to implement inclusive teaching practices and develop inclusive environments with the goal of increasing diversity in the geosciences. Both projects prepare faculty to design and lead interactive workshops that build on the research base, emphasize practical applications and strategies, enable participants to share their knowledge and experience, and include time for reflection and action planning. The curriculum common to both projects includes a framework of support for the whole student, supporting all students, data on diversity in the geosciences, and evidence-based strategies for inclusive teaching and developing inclusive environments that faculty and departments can implement. Other workshop topics include classroom strategies for engaging all students, addressing implicit bias and stereotype threat, and attracting diverse students to departments or programs and helping them thrive. Online resources for each project provide support beyond the workshops. The TWP brings together educators from different institutional types and experiences to develop materials and design a workshop offered to departments and organizations nationwide that request the workshop; the workshop leaders then customize the workshop for that audience. In SAGE 2YC, a team of leaders used relevant literature to develop workshop materials intended for re-use, and designed a workshop session for SAGE 2YC Faculty Change Agents, who

  8. Sustaining a Global Geoscience Workforce-The Case for International Collaboration

    Science.gov (United States)

    Leahy, P. P.; Keane, C. M.

    2013-05-01

    Maintaining an adequate global supply of qualified geoscientists is a major challenge facing the profession. With global population expected to exceed 9 billion by midcentury, the demand for geoscience expertise is expected to dramatically increase if we are to provide to society the resource base, environmental quality, and resiliency to natural hazards that is required to meet future global demands. The American Geoscience Institute (AGI) has for the past 50 years tracked the supply of geoscientists and their various areas of specialty for the US. However, this is only part of the necessary workforce analysis, the demand side must also be determined. For the past several years, AGI has worked to acquire estimates for workforce demand in the United States. The analysis suggests that by 2021 there will be between 145,000 to 202,000 unfilled jobs in the US. This demand can be partially filled with an increase in graduates (which is occurring at an insufficient pace in the US to meet full demand), increased migration of geoscientists internationally to the US (a challenge since demands are increasing globally), and more career placement of bachelor degree recipients. To understand the global workforce dynamic, it is critical that accurate estimates of global geoscience supply, demand and retirement be available. Although, AGI has focused on the US situation, it has developed international collaborations to acquire workforce data. Among the organizations that have contributed are UNESCO, the International Union of Geological Sciences (IUGS), the Young Earth-Scientists Network, and the Geological Society of Africa. Among the areas of international collaboration, the IUGS Task Group on Global Geoscience Workforce enables the IUGS to take a leadership role in raising the quality of understanding of workforce across the world. During the course of the taskforce's efforts, several key understandings have emerged. First, the general supply of geoscientists is quantifiable

  9. Navigating Declining Budgets, Political Hurdles: A New Vision for the Future of Geoscience

    Science.gov (United States)

    Gagosian, Robert B.

    2013-06-01

    The Oklahoma tornadoes, Superstorm Sandy, the Tohoku tsunami, and the Deepwater Horizon oil spill are just a few examples of oceanic, atmospheric, and other Earth system disasters in the past 3 years that together claimed thousands of lives and caused hundreds of billions of dollars of damage. Basic and applied research in the geosciences were essential in supporting early warnings and forecasts that were used not only to protect lives when these natural disasters struck but also to assess risks and help society to be better able to adapt and recover after disaster struck.

  10. From the Classroom to the Field: Intervention Training to Address Sexual Harassment in the Geosciences

    Science.gov (United States)

    Marin-Spiotta, E.; Barnes, R.; Berhe, A. A.; Hastings, M. G.; Mattheis, A.; Schneider, B.; Williams, B. M.

    2017-12-01

    Here I report on collaborative efforts by the Earth Science Women's Network, the Association for Women Geoscientists and the American Geophysical Union to empower the earth and space science community to stop and prevent sexual harassment (SH) as part of a new NSF ADVANCE Partnership award. We aim to develop strategies of bystander intervention and to enhance ethics training of current and future geoscientists. We focus on geoscientists because it is one of the least diverse of the STEM fields. Little data on how sexual harassment affects women with intersectional identities in the geosciences leads to a lack of awareness of the unique challenges faced by minority women and a lack of appropriate institutional response. The geosciences have an additional challenge: research and training at off-campus field sites where access to support networks and clear guidelines for conduct are weakened or absent. The outcomes of our project are: (1) Broader recognition of how SH affects different populations; (2) Development and dissemination of mechanisms for heads, chairs, faculty and future geoscientists to identify, prevent and stop harassment; and (3) Adoption of codes of conduct by geoscientists.

  11. GeoMod 2014 - Modelling in geoscience

    Science.gov (United States)

    Leever, Karen; Oncken, Onno

    2016-08-01

    GeoMod is a biennial conference to review and discuss latest developments in analogue and numerical modelling of lithospheric and mantle deformation. GeoMod2014 took place at the GFZ German Research Centre for Geosciences in Potsdam, Germany. Its focus was on rheology and deformation at a wide range of temporal and spatial scales: from earthquakes to long-term deformation, from micro-structures to orogens and subduction systems. It also addressed volcanotectonics and the interaction between tectonics and surface processes (Elger et al., 2014). The conference was followed by a 2-day short course on "Constitutive Laws: from Observation to Implementation in Models" and a 1-day hands-on tutorial on the ASPECT numerical modelling software.

  12. Radon applications in geosciences - Progress & perspectives

    Science.gov (United States)

    Barbosa, S. M.; Donner, R. V.; Steinitz, G.

    2015-05-01

    During the last decades, the radioactive noble gas radon has found a variety of geoscientific applications, ranging from its utilization as a potential earthquake precursor and proxy of tectonic stress over its specific role in volcanic environments to a wide range of applications as a tracer in marine and hydrological settings. This topical issue summarizes the current state of research as exemplified by some original research articles covering the aforementioned as well as other closely related aspects and points to some important future directions of radon application in geosciences. This editorial provides a more detailed overview of the contents of this volume, a brief summary of the rationale underlying the diverse applications, and outlines some important perspectives.

  13. Mentored undergraduate research in the geosciences

    Science.gov (United States)

    Judge, Shelley; Pollock, Meagen; Wiles, Greg; Wilson, Mark

    2012-09-01

    There is little argument about the merits of undergraduate research, but it can seem like a complex, resource-intensive endeavor [e.g., Laursen et al., 2010; Lopatto, 2009; Hunter et al., 2006]. Although mentored undergraduate research can be challenging, the authors of this feature have found that research programs are strengthened when students and faculty collaborate to build new knowledge. Faculty members in the geology department at The College of Wooster have conducted mentored undergraduate research with their students for more than 60 years and have developed a highly effective program that enhances the teaching, scholarship, and research of our faculty and provides life-changing experiences for our students. Other colleges and universities have also implemented successful mentored undergraduate research programs in the geosciences. For instance, the 18 Keck Geology Consortium schools (http://keckgeology.org/), Princeton University, and other institutions have been recognized for their senior capstone experiences by U.S. News & World Report.

  14. Union banking a step towards achieving fiscal Union in the European Union

    Directory of Open Access Journals (Sweden)

    Ionuţ Marius Croitoru

    2015-05-01

    Full Text Available Introduction: Union policy needs in addition to the official language of four major components: a monetary union, a fiscal union, a union diplomatic and military union A stage in the Union is the Union banking tax. Materials and Methods: Union Bank has three pillars: a single banking supervisor (single supervisory mechanism, the only mechanism of bank resolution and a single scheme of bank guarantees. Results and conclusions: Union Bank, strengthen supervision is an inevitable process, and Romania will have to enroll in it. Option Romania is to be part of Romania deaorece bank Union can not remain outside the structures of decision as long as banks operating in Romania are predominantly Eurozone.

  15. Immersive Virtual Reality Field Trips in the Geosciences: Integrating Geodetic Data in Undergraduate Geoscience Courses

    Science.gov (United States)

    La Femina, P. C.; Klippel, A.; Zhao, J.; Walgruen, J. O.; Stubbs, C.; Jackson, K. L.; Wetzel, R.

    2017-12-01

    High-quality geodetic data and data products, including GPS-GNSS, InSAR, LiDAR, and Structure from Motion (SfM) are opening the doors to visualizing, quantifying, and modeling geologic, tectonic, geomorphic, and geodynamic processes. The integration of these data sets with other geophysical, geochemical and geologic data is providing opportunities for the development of immersive Virtual Reality (iVR) field trips in the geosciences. iVR fieldtrips increase accessibility in the geosciences, by providing experiences that allow for: 1) exploration of field locations that might not be tenable for introductory or majors courses; 2) accessibility to outcrops for students with physical disabilities; and 3) the development of online geosciences courses. We have developed a workflow for producing iVR fieldtrips and tools to make quantitative observations (e.g., distance, area, and volume) within the iVR environment. We use a combination of terrestrial LiDAR and SfM data, 360° photos and videos, and other geophysical, geochemical and geologic data to develop realistic experiences for students to be exposed to the geosciences from sedimentary geology to physical volcanology. We present two of our iVR field trips: 1) Inside the Volcano: Exploring monogenetic volcanism at Thrihnukagigar Iceland; and 2) Changes in Depositional Environment in a Sedimentary Sequence: The Reedsville and Bald Eagle Formations, Pennsylvania. The Thrihnukagigar experience provides the opportunity to investigate monogenetic volcanism through the exploration of the upper 125 m of a fissure-cinder cone eruptive system. Students start at the plate boundary scale, then zoom into a single volcano where they can view the 3D geometry from either terrestrial LiDAR or SfM point clouds, view geochemical data and petrologic thins sections of rock samples, and a presentation of data collection and analysis, results and interpretation. Our sedimentary geology experience is based on a field lab from our

  16. Are unions an anachronism?

    Science.gov (United States)

    Schrank, R

    1979-01-01

    The labor movement in the United States has its roots deep in the soil of worker discontent over grueling working conditions, low pay, and indifference of bosses, who profited from others' sweaty labor. As more and more grubby jobs are replaced by technological innovations, as work becomes more abstract and everyone wears a white shirt, and as managers schooled in motivation theory and humane ideals of participation replace the owner-bosses of yesterday, what role will the unions have left to play? The author of this article, who has been in both the labor force and management, explores what the changes in the labor market will be in the future and what these changes will mean for labor-management relations. He does not conclude that there is no role for unions-only that it will be very different and that to survive unions will have to tackle new issues in the workplace. That adaptation will affect management's stance as well.

  17. Engaging diverse community college students in the geosciences through a year-round career mentoring and research workforce program

    Science.gov (United States)

    Sloan, V.; Barge, L. M.; Smith, M.

    2017-12-01

    Student attrition from STEM majors most often occurs in the first or second year of college. To retain underrepresented minority students who are largely enrolled in community colleges in STEM pathways, it is critical to provide hands-on experiences and exposure to STEM occupations in a supportive community, before the students transfer to four-year colleges. The goal of the Bridge to the Geosciences is to provide community college students with year-round career mentoring, exposure to different fields and organizations in the geosciences through small field or research experiences, and community-building within the cohort and in connection with a broader community of scientists. Each year, 20 students from Citrus College in Glendora, California participate in research "geomodules" organized around the planetary, atmospheric, ocean, and environmental science subfields of the geosciences at: (1) the Oak Crest Institute of Science, a chemistry research and diversity-oriented education organization in Monrovia, CA; (2) the NASA Jet Propulsion Laboratory (JPL), a NASA center in Pasadena, CA; (3) the University of Southern California's (USC) Wrigley Institute for Environmental Studies, a research center on Catalina Island; and (4) the University Corporation for Atmospheric Research (UCAR) in Boulder, CO. A peak experience of the program is a ten-day mini-internship at UCAR in Colorado where the students are immersed in atmospheric research, training, fieldwork, and presenting at a premier facility. Professional development, mentoring, science communication and cohort-development are woven across all four geomodules and throughout the year. This program is funded by the National Science Foundation's Improving Undergraduate STEM Education or IUSE program. Preliminary results indicate that the students' interest in the geosciences, confidence in their skills and identify as a scientist, and their sense of belonging to a cohort are increased by participation in this program.

  18. European [Security] Union

    DEFF Research Database (Denmark)

    Manners, Ian James

    2013-01-01

    The past 20 years, since the 1992 Treaty on European Union, have seen the gradual creation of both an “Area of Freedom, Security and Justice” and a “Common Foreign and Security Policy”. More recent is the development of a “European Neighbourhood Policy” over the past 10 years. All three...... of these policies involved the navigation and negotiation of security, borders and governance in and by the European Union (EU). This article analyses these practices of bordering and governance through a five-fold security framework. The article argues that a richer understanding of EU security discourses can...

  19. Building Bridges Between Geoscience and Data Science through Benchmark Data Sets

    Science.gov (United States)

    Thompson, D. R.; Ebert-Uphoff, I.; Demir, I.; Gel, Y.; Hill, M. C.; Karpatne, A.; Güereque, M.; Kumar, V.; Cabral, E.; Smyth, P.

    2017-12-01

    The changing nature of observational field data demands richer and more meaningful collaboration between data scientists and geoscientists. Thus, among other efforts, the Working Group on Case Studies of the NSF-funded RCN on Intelligent Systems Research To Support Geosciences (IS-GEO) is developing a framework to strengthen such collaborations through the creation of benchmark datasets. Benchmark datasets provide an interface between disciplines without requiring extensive background knowledge. The goals are to create (1) a means for two-way communication between geoscience and data science researchers; (2) new collaborations, which may lead to new approaches for data analysis in the geosciences; and (3) a public, permanent repository of complex data sets, representative of geoscience problems, useful to coordinate efforts in research and education. The group identified 10 key elements and characteristics for ideal benchmarks. High impact: A problem with high potential impact. Active research area: A group of geoscientists should be eager to continue working on the topic. Challenge: The problem should be challenging for data scientists. Data science generality and versatility: It should stimulate development of new general and versatile data science methods. Rich information content: Ideally the data set provides stimulus for analysis at many different levels. Hierarchical problem statement: A hierarchy of suggested analysis tasks, from relatively straightforward to open-ended tasks. Means for evaluating success: Data scientists and geoscientists need means to evaluate whether the algorithms are successful and achieve intended purpose. Quick start guide: Introduction for data scientists on how to easily read the data to enable rapid initial data exploration. Geoscience context: Summary for data scientists of the specific data collection process, instruments used, any pre-processing and the science questions to be answered. Citability: A suitable identifier to

  20. Using the Geoscience Literacy Frameworks and Educational Technologies to Promote Science Literacy in Non-science Major Undergraduates

    Science.gov (United States)

    Carley, S.; Tuddenham, P.; Bishop, K. O.

    2008-12-01

    In recent years several geoscience communities have been developing ocean, climate, atmosphere and earth science literacy frameworks as enhancements to the National Science Education Standards content standards. Like the older content standards these new geoscience literacy frameworks have focused on K-12 education although they are also intended for informal education and general public audiences. These geoscience literacy frameworks potentially provide a more integrated and less abstract approach to science literacy that may be more suitable for non-science major students that are not pursuing careers in science research or education. They provide a natural link to contemporary environmental issues - e.g., climate change, resource depletion, species and habitat loss, natural hazards, pollution, development of renewable energy, material recycling. The College of Exploration is an education research non-profit that has provided process and technical support for the development of most of these geoscience literacy frameworks. It has a unique perspective on their development. In the last ten years it has also gained considerable national and international expertise in facilitating web-based workshops that support in-depth conversations among educators and working scientists/researchers on important science topics. These workshops have been of enormous value to educators working in K-12, 4-year institutions and community colleges. How can these geoscience literacy frameworks promote more collaborative inquiry-based learning that enhances the appreciation of scientific thinking by non-majors? How can web- and mobile-based education technologies transform the undergraduate non-major survey course into a place where learners begin their passion for science literacy rather than end it? How do we assess science literacy in students and citizens?

  1. Preparing Future Geoscience Professionals: Needs, Strategies, Programs, and Online Resources

    Science.gov (United States)

    Macdonald, H.; Manduca, C. A.; Ormand, C. J.; Dunbar, R. W.; Beane, R. J.; Bruckner, M.; Bralower, T. J.; Feiss, P. G.; Tewksbury, B. J.; Wiese, K.

    2011-12-01

    Geoscience faculty, departments, and programs play an important role in preparing future geoscience professionals. One challenge is supporting the diversity of student goals for future employment and the needs of a wide range of potential employers. Students in geoscience degree programs pursue careers in traditional geoscience industries; in geoscience education and research (including K-12 teaching); and opportunities at the intersection of geoscience and other fields (e.g., policy, law, business). The Building Strong Geoscience Departments project has documented a range of approaches that departments use to support the development of geoscience majors as professionals (serc.carleton.edu/departments). On the Cutting Edge, a professional development program, supports graduate students and post-doctoral fellows interested in pursuing an academic career through workshops, webinars, and online resources (serc.carleton.edu/NAGTWorkshops/careerprep). Geoscience departments work at the intersection of student interests and employer needs. Commonly cited program goals that align with employer needs include mastery of geoscience content; field experience; skill in problem solving, quantitative reasoning, communication, and collaboration; and the ability to learn independently and take a project from start to finish. Departments and faculty can address workforce issues by 1) implementing of degree programs that develop the knowledge, skills, and attitudes that students need, while recognizing that students have a diversity of career goals; 2) introducing career options to majors and potential majors and encouraging exploration of options; 3) advising students on how to prepare for specific career paths; 4) helping students develop into professionals, and 5) supporting students in the job search. It is valuable to build connections with geoscience employers, work with alumni and foster connections between students and alumni with similar career interests, collaborate with

  2. Geoscience Education Research, Development, and Practice at Arizona State University

    Science.gov (United States)

    Semken, S. C.; Reynolds, S. J.; Johnson, J.; Baker, D. R.; Luft, J.; Middleton, J.

    2009-12-01

    Geoscience education research and professional development thrive in an authentically trans-disciplinary environment at Arizona State University (ASU), benefiting from a long history of mutual professional respect and collaboration among STEM disciplinary researchers and STEM education researchers--many of whom hold national and international stature. Earth science education majors (pre-service teachers), geoscience-education graduate students, and practicing STEM teachers richly benefit from this interaction, which includes team teaching of methods and research courses, joint mentoring of graduate students, and collaboration on professional development projects and externally funded research. The geologically, culturally, and historically rich Southwest offers a superb setting for studies of formal and informal teaching and learning, and ASU graduates the most STEM teachers of any university in the region. Research on geoscience teaching and learning at ASU is primarily conducted by three geoscience faculty in the School of Earth and Space Exploration and three science-education faculty in the Mary Lou Fulton Institute and Graduate School of Education. Additional collaborators are based in the College of Teacher Education and Leadership, other STEM schools and departments, and the Center for Research on Education in Science, Mathematics, Engineering, and Technology (CRESMET). Funding sources include NSF, NASA, US Dept Ed, Arizona Board of Regents, and corporations such as Resolution Copper. Current areas of active research at ASU include: Visualization in geoscience learning; Place attachment and sense of place in geoscience learning; Affective domain in geoscience learning; Culturally based differences in geoscience concepts; Use of annotated concept sketches in learning, teaching, and assessment; Student interactions with textbooks in introductory courses; Strategic recruitment and retention of secondary-school Earth science teachers; Research-based professional

  3. Trade Union Channels for Influencing European Union Policies

    Directory of Open Access Journals (Sweden)

    Bengt Larsson

    2015-10-01

    Full Text Available This paper analyzes what channels trade unions in Europe use when trying to influence European Union (EU policies. It compares and contrasts trade unions in different industrial relations regimes with regard to the degree to which they cooperate with different actors to influence EU policies, while also touching on the importance of sector differences and organizational resources. The study is based on survey data collected in 2010–2011 from unions affiliated with the European Trade Union Confederation and from below peak unions in 14 European countries. Results of the survey show that the ‘national route’ is generally the most important for trade unions in influencing EU policies in the sense that this channel is, on average, used to the highest degree. In addition, the survey delineates some important differences between trade unions in different industrial relations regimes with regard to the balance between the national route and different access points in the ‘Brussels route’.

  4. Teaming Up with Unions.

    Science.gov (United States)

    Geber, Beverly

    1987-01-01

    The author discusses the concept, first encouraged by Irving Bluestone of the United Auto Workers, that union and management personnel should work together to achieve company goals. The history of this cooperative effort movement within the United Auto Workers is described. (CH)

  5. Perspectives and expectations of union member and non- union member teachers on teacher unions

    Directory of Open Access Journals (Sweden)

    Tuncer FİDAN

    2015-12-01

    Full Text Available Unions, which can be regarded as one of the constitutive elements of democracy, are the pressure groups in political and social fields. Unions were born out of industrial confrontations and expanded into the field of public services over time, and thus teachers – who are also public employees-, also obtained the right to establish and affiliate to unions. In this research the views of union member and non-union member teachers on the most important functions and operational effectiveness of unions, teachers’ expectations from unions and teachers’ evaluation of the solidarity, competition and cooperation between unions were determined and the perspectives of teachers on unionization were revealed. qualitative research design was used. The data needed were collected through semi-structured interviews from volunteering union member and non-union member teachers who were working in the primary and secondary schools in Ankara province and who were selected through “maximum variation sampling approach”. The data were then analyzed by using the content analysis technique. In conclusion, it was found that political ideology was the most important reason for membership of teachers’ unions. Protection and development of personal rights was found to be the most important function of teacher unions and unions were thought to be insufficient in performing those functions.

  6. The Development of Trade Unionism.

    Science.gov (United States)

    Parker, Ronald W.

    1979-01-01

    Traces the growth and evolution of the British labor union movement, troubles between the national officials and the local shop stewards, class differences and conflict between the artisans and laborers, violence between unions, and eventual transition to peaceful constitutionalism. (MF)

  7. Data assimilation techniques and modelling uncertainty in geosciences

    Directory of Open Access Journals (Sweden)

    M. Darvishi

    2014-10-01

    Full Text Available "You cannot step into the same river twice". Perhaps this ancient quote is the best phrase to describe the dynamic nature of the earth system. If we regard the earth as a several mixed systems, we want to know the state of the system at any time. The state could be time-evolving, complex (such as atmosphere or simple and finding the current state requires complete knowledge of all aspects of the system. On one hand, the Measurements (in situ and satellite data are often with errors and incomplete. On the other hand, the modelling cannot be exact; therefore, the optimal combination of the measurements with the model information is the best choice to estimate the true state of the system. Data assimilation (DA methods are powerful tools to combine observations and a numerical model. Actually, DA is an interaction between uncertainty analysis, physical modelling and mathematical algorithms. DA improves knowledge of the past, present or future system states. DA provides a forecast the state of complex systems and better scientific understanding of calibration, validation, data errors and their probability distributions. Nowadays, the high performance and capabilities of DA have led to extensive use of it in different sciences such as meteorology, oceanography, hydrology and nuclear cores. In this paper, after a brief overview of the DA history and a comparison with conventional statistical methods, investigated the accuracy and computational efficiency of two main classical algorithms of DA involving stochastic DA (BLUE and Kalman filter and variational DA (3D and 4D-Var, then evaluated quantification and modelling of the errors. Finally, some of DA applications in geosciences and the challenges facing the DA are discussed.

  8. Native Geosciences: Strengthening the Future Through Tribal Traditions

    Science.gov (United States)

    Bolman, J. R.; Quigley, I.; Douville, V.; Hollow Horn Bear, D.

    2008-12-01

    Native people have lived for millennia in distinct and unique ways in our natural sacred homelands and environments. Tribal cultures are the expression of deep understandings of geosciences shared through oral histories, language and ceremonies. Today, Native people as all people are living in a definite time of change. The developing awareness of "change" brings forth an immense opportunity to expand and elevate Native geosciences knowledge, specifically in the areas of earth, wind, fire and water. At the center of "change" is the need to balance the needs of the people with the needs of the environment. Native tradition and our inherent understanding of what is "sacred above is sacred below" is the foundation for an emerging multi-faceted approach to increasing the representation of Natives in geosciences. The approach is also a pathway to assist in Tribal language revitalization, connection of oral histories and ceremonies as well as building an intergenerational teaching/learning community. Humboldt State University, Sinte Gleska University and South Dakota School of Mines and Technology in partnership with Northern California (Hoopa, Yurok, & Karuk) and Great Plains (Lakota) Tribes have nurtured Native geosciences learning communities connected to Tribal Sacred Sites and natural resources. These sites include the Black Hills (Mato Paha, Mato Tiplia, Hinhan Kaga Paha, Mako Sica etc.), Klamath River (Ishkêesh), and Hoopa Valley (Natinixwe). Native geosciences learning is centered on the themes of earth, wind, fire and water and Native application of remote sensing technologies. Tribal Elders and Native geoscientists work collaboratively providing Native families in-field experiential intergenerational learning opportunities which invite participants to immerse themselves spiritually, intellectually, physically and emotionally in the experiences. Through this immersion and experience Native students and families strengthen the circle of our future Tribal

  9. Geoscience as an Agent for Change in Higher Education

    Science.gov (United States)

    Manduca, C. A.; Orr, C. H.; Kastens, K.

    2016-12-01

    As our society becomes more aware of the realities of the resource and environmental challenges that face us, we have the opportunity to educate more broadly about the role of geoscience in addressing these challenges. The InTeGrate STEP Center is using three strategies to bring learning about the Earth to a wider population of undergraduate students: 1) infusing geoscience into disciplinary courses throughout the curriculum; 2) creating interdisciplinary or transdisciplinary courses with a strong geoscience component that draw a wide audience; and 3) embedding more opportunities to learn about the methods of geoscience and their application to societal challenges in courses for future teachers. InTeGrate is also bringing more emphasis on geoscience in service to societal challenges to geoscience students in introductory geoscience courses and courses for geoscience majors. Teaching science in a societal context is known to make science concepts more accessible for many learners, while learning to use geoscience to solve real world, interdisciplinary problems better prepares students for the 21stcentury workforce and for the decisions they will make as individuals and citizens. InTeGrate has developed materials and models that demonstrate a wide variety of strategies for increasing opportunities to learn about the Earth in a societal context that are freely available on the project website (http://serc.carleton.edu/integrate) and that form the foundation of ongoing professional development opportunities nationwide. The strategies employed by InTeGrate reflect a systems approach to educational transformation, the importance of networks and communities in supporting change, and the need for resources designed for adaptability and use. The project is demonstrating how geoscience can play a larger role in higher education addressing topics of wide interest including 1) preparing a competitive workforce by increasing the STEM skills of students regardless of their major

  10. Portrayal of the Geosciences in the New York Times

    Science.gov (United States)

    Wysession, M. E.; Lindstrom, A.

    2017-12-01

    An analysis of the portrayal of science, including the geosciences, in the New York Times shows that geoscience topics dominate front-page science coverage, appearing significantly more often than articles concerning biology, chemistry, or physics. This is significant because the geosciences are sometimes portrayed (in most high schools, for example) as being of less significance or importance than the other sciences, yet their portrayal in what is arguably the leading U.S. newspaper shows just the opposite - that the geosciences are the most relevant and newsworthy of the sciences. We analyzed NY Times front pages and Tuesday "Science Times" sections for 2012 - 2015, and looked at many parameters including science discipline, the kind of article (research, policy, human-interest, etc.), correlations to the "big ideas" of the Next Generation Science Standards, and for the geosciences, a break-down of sub-disciplines. For the front pages, we looked at both full articles and call-outs to articles on later pages. For front-page full articles, geoscience-related articles were more frequent (almost 60%) than biology, chemistry, and physics combined. Including call-outs to later articles, the geosciences still made the most front-page appearances (almost 40%), and this included the fact that 1/3 of front-page science articles were medicine-related, which accounted for nearly all of the biology and chemistry articles. Interestingly, what the NY Times perceived as "science" differed significantly: 60% of all Tuesday "Science Times" articles were medicine-related, and even removing these, biology (40%) edged the geosciences (35%) as the most frequent Science Times articles. Of the front-page geoscience articles, the topics were dominated each year by natural hazards, natural resources, and human impacts, with the percentage of human-impact-related articles almost doubling over the 4 years. The most significant 4-year trend was in the attention paid to climate change. For

  11. A spectroscopic transfer standard for accurate atmospheric CO measurements

    Science.gov (United States)

    Nwaboh, Javis A.; Li, Gang; Serdyukov, Anton; Werhahn, Olav; Ebert, Volker

    2016-04-01

    carried out within the European Metrology Research Programme (EMRP) ENV52 project-HIGHGAS (Metrology for high-impact greenhouse gases). The EMRP is jointly funded by the EMRP participating countries within EURAMET and the European Union. References [1] EMRP project ENV52-HIGHGAS (Metrology for high-impact greenhouse gases), available at: http://www.euramet.org/. [2] J. Nwaboh, A. Manninen, J. Mohn, J. C. Petersen, O. Werhahn, and V.Ebert, European Geosciences Union General Assembly 2015, EGU2015-13542, 2015, Vienna Austria

  12. Promoting research integrity in the geosciences

    Science.gov (United States)

    Mayer, Tony

    2015-04-01

    Conducting research in a responsible manner in compliance with codes of research integrity is essential. The geosciences, as with all other areas of research endeavour, has its fair share of misconduct cases and causes celebres. As research becomes more global, more collaborative and more cross-disciplinary, the need for all concerned to work to the same high standards becomes imperative. Modern technology makes it far easier to 'cut and paste', to use Photoshop to manipulate imagery to falsify results at the same time as making research easier and more meaningful. So we need to promote the highest standards of research integrity and the responsible conduct of research. While ultimately, responsibility for misconduct rests with the individual, institutions and the academic research system have to take steps to alleviate the pressure on researchers and promote good practice through training programmes and mentoring. The role of the World Conferences on Research Integrity in promoting the importance of research integrity and statements about good practice will be presented and the need for training and mentoring programmes will be discussed

  13. BCube: Building a Geoscience Brokering Framework

    Science.gov (United States)

    Jodha Khalsa, Siri; Nativi, Stefano; Duerr, Ruth; Pearlman, Jay

    2014-05-01

    BCube is addressing the need for effective and efficient multi-disciplinary collaboration and interoperability through the advancement of brokering technologies. As a prototype "building block" for NSF's EarthCube cyberinfrastructure initiative, BCube is demonstrating how a broker can serve as an intermediary between information systems that implement well-defined interfaces, thereby providing a bridge between communities that employ different specifications. Building on the GEOSS Discover and Access Broker (DAB), BCube will develop new modules and services including: • Expanded semantic brokering capabilities • Business Model support for work flows • Automated metadata generation • Automated linking to services discovered via web crawling • Credential passing for seamless access to data • Ranking of search results from brokered catalogs Because facilitating cross-discipline research involves cultural and well as technical challenges, BCube is also addressing the sociological and educational components of infrastructure development. We are working, initially, with four geoscience disciplines: hydrology, oceans, polar and weather, with an emphasis on connecting existing domain infrastructure elements to facilitate cross-domain communications.

  14. Raft river geoscience case study, volume 1

    Science.gov (United States)

    Dolenc, M. R.; Hull, L. C.; Mizell, S. A.; Russell, B. F.; Skiba, P. A.; Strawn, J. A.; Tullis, J. A.; Garber, R.

    1981-11-01

    The Raft River Geothermal Site has been evaluated over the past eight years by the United States Geological Survey and the Idaho National Engineering Laboratory as a moderate-temperature geothermal resource. The geoscience data gathered in the drilling and testing of seven geothermal wells suggest that the Raft River thermal reservoir is: (1) produced from fractures found at the contact metamorphic zone apparently the base of detached normal faulting from the Bridge and Horse Well Fault zones of the Jim Sage Mountains; (2) anisotropic, with the major axis of hydraulic conductivity coincident to the Bridge Fault Zone; (3) hydraulically connected to the shallow thermal fluid of the Crook and BLM wells based upon both geochemistry and pressure response; (4) controlled by a mixture of diluted meteoric water recharging from the northwest and a saline sodium chloride water entering from the southwest. Although the hydrogeologic environment of the Raft River geothermal area is very complex and unique, it is typical of many Basin and Range systems.

  15. Why research into the history of geosciences?

    Science.gov (United States)

    Schröder, Wilfried

    Study of the history of various sciences is rather heterogeneous. Some disciplines, such as medicine, mathematics, and astronomy, have numerous noteworthy compendia and even specialized journals where papers on the history of these sciences can be published.The situation in geophysics, meteorology, and other subdivisions of the geosciences is far less favorable. This neglect is an outcome of a dogma of autonomy that is essentially oriented toward progress in understanding, without much reference to historical developments. But even the geoscientists cannot ignore that the phenomenon ‘science’ must be viewed in the context of sociological processes. In the initial stages, sociologists and some philosophers, in the context of the general theory of perception, began research into the development of scientific thought, but the geoscientists and other natural scientists contributed very little. It has since become clear that research on these topics requires historical assessment and more insight. The development of the ‘science of science’ is directed toward understanding and explanation of the complex human involvement in science, not only in the sense of theorizing about the scientific processes but also in sociological, political, and historical context [Kuhn, 1973; Burrichter, 1979; Sandkühler and Plath, 1979.

  16. Developing Short Films of Geoscience Research

    Science.gov (United States)

    Shipman, J. S.; Webley, P. W.; Dehn, J.; Harrild, M.; Kienenberger, D.; Salganek, M.

    2015-12-01

    In today's prevalence of social media and networking, video products are becoming increasingly more useful to communicate research quickly and effectively to a diverse audience, including outreach activities as well as within the research community and to funding agencies. Due to the observational nature of geoscience, researchers often take photos and video footage to document fieldwork or to record laboratory experiments. Here we present how researchers can become more effective storytellers by collaborating with filmmakers to produce short documentary films of their research. We will focus on the use of traditional high-definition (HD) camcorders and HD DSLR cameras to record the scientific story while our research topic focuses on the use of remote sensing techniques, specifically thermal infrared imaging that is often used to analyze time varying natural processes such as volcanic hazards. By capturing the story in the thermal infrared wavelength range, in addition to traditional red-green-blue (RGB) color space, the audience is able to experience the world differently. We will develop a short film specifically designed using thermal infrared cameras that illustrates how visual storytellers can use these new tools to capture unique and important aspects of their research, convey their passion for earth systems science, as well as engage and captive the viewer.

  17. GIRAF 2009 - Taking action on geoscience information across Africa

    Science.gov (United States)

    Asch, Kristine

    2010-05-01

    A workshop in Windhoek Between 16 and 20 March 2009 97 participants from 26 African nations, plus four European countries, and representatives from UNESCO, ICSU and IUGS-CGI, held a workshop at the Namibian Geological Survey in Windhoek. The workshop - GIRAF 2009 - Geoscience InfoRmation In Africa - was organised by the Federal Institute for Geosciences and Natural Resources (BGR) and the Geological Survey of Namibia (GSN) at the Namibian Ministry for Mines and Energy and was mainly financed by the German Federal Ministry for Economic Cooperation and Development (BMZ), supported by the IUGS Commission for the Management and Application of Geoscience Information (CGI). The participants came to Namibia to discuss one of the most topical issues in the geological domain - geoscience information and informatics. A prime objective was to set up a pan-African network for exchanging knowledge about geoscience information. GIRAF 2009 builds on the results of a preparatory workshop organised by the CGI and funded by the IUGS, which was held in June 2006 in Maputo at the 21st Colloquium on African Geology - CAG21. This preparatory workshop concentrated on identifying general problems and needs of African geological institutions in discussion with representatives of African geological surveys, universities, private companies and non-governmental organisations. The GIRAF 2009 workshop used the results of this discussion to plan and design its programme Aims In detail the five aims of the GIRAF2009 workshop were: to bring together relevant African authorities, national experts and stakeholders in geoscience information; to initiate the building of a pan-African geoscience information knowledge network to exchange and share geoscience information knowledge and best practice; to integrate the authorities, national experts and experts across Africa into global geoinformation initiatives; to develop a strategic plan for Africa's future in geoscience information; to make Africa a

  18. Ozone in the atmosphere. Basic principles, natural and human impacts

    Energy Technology Data Exchange (ETDEWEB)

    Fabian, Peter [Technical Univ. Munich (Germany). Immission Research; Dameris, Martin [German Aerospace Center (DLR), Oberpfaffenhofen-Wessling (Germany). Inst. of Atmospheric Physics

    2014-09-01

    Comprehensive coverage of ozone both in the upper and the lower atmosphere. Essential overview of atmospheric ozone research written by two experienced and acknowledged experts. Numerous qualified references to the scientific literature. Peter Fabian and Martin Dameris provide a concise yet comprehensive overview of established scientific knowledge about ozone in the atmosphere. They present both ozone changes and trends in the stratosphere, as well as the effects of overabundance in the troposphere including the phenomenon of photosmog. Aspects such as photochemistry, atmospheric dynamics and global ozone distribution as well as various techniques for ozone measurement are treated. The authors outline the various causes for ozone depletion, the effects of ozone pollution and the relation to climate change. The book provides a handy reference guide for researchers active in atmospheric ozone research and a useful introduction for advanced students specializing in this field. Non-specialists interested in this field will also profit from reading the book. Peter Fabian can look back on a life-long active career in ozone research, having first gained international recognition for his measurements of the global distribution of halogenated hydrocarbons. He also pioneered photosmog investigations in the metropolitan areas of Munich, Berlin, Athens and Santiago de Chile, and his KROFEX facility provided controlled ozone fumigation of adult tree canopies for biologists to investigate the effects of ozone increases on forests. Besides having published a broad range of scientific articles, he has also been the author or editor of numerous books. From 2002 to 2005 he served the European Geosciences Union (EGU) as their first and Founding President. Martin Dameris is a prominent atmospheric modeler whose interests include the impacts of all kinds of natural and man-made disturbances on the atmospheric system. His scientific work focuses on the connections between ozone and

  19. Ozone in the atmosphere. Basic principles, natural and human impacts

    International Nuclear Information System (INIS)

    Fabian, Peter; Dameris, Martin

    2014-01-01

    Comprehensive coverage of ozone both in the upper and the lower atmosphere. Essential overview of atmospheric ozone research written by two experienced and acknowledged experts. Numerous qualified references to the scientific literature. Peter Fabian and Martin Dameris provide a concise yet comprehensive overview of established scientific knowledge about ozone in the atmosphere. They present both ozone changes and trends in the stratosphere, as well as the effects of overabundance in the troposphere including the phenomenon of photosmog. Aspects such as photochemistry, atmospheric dynamics and global ozone distribution as well as various techniques for ozone measurement are treated. The authors outline the various causes for ozone depletion, the effects of ozone pollution and the relation to climate change. The book provides a handy reference guide for researchers active in atmospheric ozone research and a useful introduction for advanced students specializing in this field. Non-specialists interested in this field will also profit from reading the book. Peter Fabian can look back on a life-long active career in ozone research, having first gained international recognition for his measurements of the global distribution of halogenated hydrocarbons. He also pioneered photosmog investigations in the metropolitan areas of Munich, Berlin, Athens and Santiago de Chile, and his KROFEX facility provided controlled ozone fumigation of adult tree canopies for biologists to investigate the effects of ozone increases on forests. Besides having published a broad range of scientific articles, he has also been the author or editor of numerous books. From 2002 to 2005 he served the European Geosciences Union (EGU) as their first and Founding President. Martin Dameris is a prominent atmospheric modeler whose interests include the impacts of all kinds of natural and man-made disturbances on the atmospheric system. His scientific work focuses on the connections between ozone and

  20. Implementing the Next Generation Science Standards: Impacts on Geoscience Education

    Science.gov (United States)

    Wysession, M. E.

    2014-12-01

    This is a critical time for the geoscience community. The Next Generation Science Standards (NGSS) have been released and are now being adopted by states (a dozen states and Washington, DC, at the time of writing this), with dramatic implications for national K-12 science education. Curriculum developers and textbook companies are working hard to construct educational materials that match the new standards, which emphasize a hands-on practice-based approach that focuses on working directly with primary data and other forms of evidence. While the set of 8 science and engineering practices of the NGSS lend themselves well to the observation-oriented approach of much of the geosciences, there is currently not a sufficient number of geoscience educational modules and activities geared toward the K-12 levels, and geoscience research organizations need to be mobilizing their education & outreach programs to meet this need. It is a rare opportunity that will not come again in this generation. There are other significant issues surrounding the implementation of the NGSS. The NGSS involves a year of Earth and space science at the high school level, but there does not exist a sufficient workforce is geoscience teachers to meet this need. The form and content of the geoscience standards are also very different from past standards, moving away from a memorization and categorization approach and toward a complex Earth Systems Science approach. Combined with the shift toward practice-based teaching, this means that significant professional development will therefore be required for the existing K-12 geoscience education workforce. How the NGSS are to be assessed is another significant question, with an NRC report providing some guidance but leaving many questions unanswered. There is also an uneasy relationship between the NGSS and the Common Core of math and English, and the recent push-back against the Common Core in many states may impact the implementation of the NGSS.

  1. Teaching Geosciences With Visualizations: Challenges for Spatial Thinking and Abilities

    Science.gov (United States)

    Montello, D. R.

    2004-12-01

    It is widely recognized that the geosciences are very spatial disciplines. Their subject matter includes phenomena on, under, and above the Earth surface whose spatial properties are critical to understanding them. Important spatial properties of geoscience structures and processes include location (both absolute and relative), size, shape, and pattern; temporal changes in spatial properties are also of interest. Information visualizations that depict spatiality are thus critically important to teaching in the geosciences, at all levels from K-12 to Ph.D. work; verbal and mathematical descriptions are quite insufficient by themselves. Such visualizations range from traditional maps and diagrams to digital animations and virtual environments. These visualizations are typically rich and complex because they are attempts to communicate rich and complex realities. Thus, understanding geoscience visualizations accurately and efficiently involves complex spatial thinking. Over a century of psychometric and experimental research reveals some of the cognitive components of spatial thinking, and provides insight into differences among individuals and groups of people in their abilities to think spatially. Some research has specifically examined these issues within the context of geoscience education, and recent research is expanding these investigations into the realm of new digital visualizations that offer the hope of using visualizations to teach complex geoscience concepts with unprecedented effectiveness. In this talk, I will briefly highlight some of the spatial cognitive challenges to understanding geoscience visualizations, including the pervasive and profound individual and group differences in spatial abilities. I will also consider some visualization design issues that arise because of the cognitive and ability challenges. I illustrate some of these research issues with examples from research being conducted by my colleagues and me, research informed by

  2. Outdoor Experiential Learning to Increase Student Interest in Geoscience Careers

    Science.gov (United States)

    Lazar, K.; Moysey, S. M.

    2017-12-01

    Outdoor-focused experiential learning opportunities are uncommon for students in large introductory geology courses, despite evidence that field experiences are a significant pathway for students to enter the geoscience pipeline. We address this deficiency by creating an extracurricular program for geology service courses that allows students to engage with classmates to foster a positive affective environment in which they are able to explore their geoscience interests, encouraged to visualize themselves as potential geoscientists, and emboldened to continue on a geoscience/geoscience-adjacent career path. Students in introductory-level geology courses were given pre- and post-semester surveys to assess the impact of these experiential learning experiences on student attitudes towards geoscience careers and willingness to pursue a major/minor in geology. Initial results indicate that high achieving students overall increase their interest in pursuing geology as a major regardless of their participation in extracurricular activities, while low achieving students only demonstrate increased interest in a geology major if they did not participate in extra credit activities. Conversely, high achieving, non-participant students showed no change in interest of pursuing a geology minor, while high achieving participants were much more likely to demonstrate interest in a minor at the end of the course. Similar to the trends of interest in a geology major, low achieving students only show increased interest in a minor if they were non-participants. These initial results indicate that these activities may be more effective in channeling students towards geology minors rather than majors, and could increase the number of students pursuing geoscience-related career paths. There also seem to be several competing factors at play affecting the different student populations, from an increased interest due to experience or a displeasure that geology is not simply `rocks for jocks

  3. Union Directions - Army Response.

    Science.gov (United States)

    1985-12-06

    reflects the long-held belief in the Army that employee participation in decisions that affect their worklife is healthy and desirable. Although some...pluralistic society, checks and balances are as important for the economy as for the government. Business executives who salivate at the thought of vanishing...Unions. Reading, MA: Addison-Wesley, 1976. 37. National Federation of Federal Employees. NFFE’s Guide to Quality of Worklife Programs. No. G-21

  4. European Union Budget Politics

    DEFF Research Database (Denmark)

    Citi, Manuele

    2015-01-01

    The marginal involvement of the European Union (EU) in redistributive policies and its limited fiscal resources have led to a notable lack of attention by EU scholars towards the EU budget and its dynamics. Yet the nature of the budgetary data and their high usability for statistical analysis make...... to form winning coalitions in the Council, the ideological positioning of the co-legislators and the inclusion of the cohesion countries have played a significant role in driving budget change....

  5. The Two-Year Colleges' Role in Building the Future Geoscience Technical Workforce

    Science.gov (United States)

    Wolfe, B.

    2014-12-01

    Careers in energy science related fields represent significant job growth in the U.S. Yet post-secondary career and technical programs have not kept pace with demand and energy science curriculum, including fundamental concepts of energy generation and environmental impact, lacks a firm position among general or career and technical education courses. Many of these emerging energy related jobs are skilled labor and entry level technical positions requiring less than a bachelor's degree. These include jobs such as solar/photovoltaic design and installation, solar water and space heating installation, energy management, efficiency and conservation auditor, environmental technician, etc. These energy related career pathways fit naturally within the geosciences discipline. Many of these jobs can be filled by individuals from HVAC, Industrial technology, welding, and electrical degree programs needing some additional specialized training and curriculum focused on fundamental concepts of energy, fossil fuel exploration and use, atmospheric pollution, energy generation, alternative energy sources, and energy conservation. Two-year colleges (2ycs) are uniquely positioned to train and fill these workforce needs as they already have existing career and technical programs and attract both recent high school graduates, as well as non-traditional students including displaced workers and returning veterans. We have established geoscience related workforce certificate programs that individuals completing the traditional industrial career and technical degrees can obtain to meet these emerging workforce needs. This presentation will discuss the role of geosciences programs at 2ycs in training these new workers, developing curriculum, and building a career/technical program that is on the forefront of this evolving industry.

  6. Sustaining Public Communication of Geoscience in the Mass Media Market

    Science.gov (United States)

    Keane, Christopher

    2017-04-01

    Most public communication about geoscience is either performed as a derivative of a research program or as part of one-off funded outreach activities. Few efforts are structured to both educate the public about geoscience while also attempting to establish a sustainable funding model. EARTH Magazine, a non-profit publications produced by the American Geosciences Institute, is a monthly geoscience news and information magazine geared towards the public. Originally a profession-oriented publication, titled Geotimes, the publication shifted towards public engagement in the 1990s, completing that focus in 1998. Though part of a non-profit institute, EARTH is not a recipient of grants or contributions to offset its costs and thus must strive to "break even" to sustain its operations and further its mission. How "break even" is measured in a mission-based enterprise incorporates a number of factors, including financial, but also community impact and offsets to other investments. A number of strategies and their successes and failures, both editorially in its focus on audience in scope, tone, and design, and from an operational perspective in the rapidly changing world of magazines, will be outlined. EARTH is now focused on exploring alternative distribution channels, new business models, and disaggregation as means towards broader exposure of geoscience to the widest audience possible.

  7. Engaging teachers & students in geosciences by exploring local geoheritage sites

    Science.gov (United States)

    Gochis, E. E.; Gierke, J. S.

    2014-12-01

    Understanding geoscience concepts and the interactions of Earth system processes in one's own community has the potential to foster sound decision making for environmental, economic and social wellbeing. School-age children are an appropriate target audience for improving Earth Science literacy and attitudes towards scientific practices. However, many teachers charged with geoscience instruction lack awareness of local geological significant examples or the pedagogical ability to integrate place-based examples into their classroom practice. This situation is further complicated because many teachers of Earth science lack a firm background in geoscience course work. Strategies for effective K-12 teacher professional development programs that promote Earth Science literacy by integrating inquiry-based investigations of local and regional geoheritage sites into standards based curriculum were developed and tested with teachers at a rural school on the Hannahville Indian Reservation located in Michigan's Upper Peninsula. The workshops initiated long-term partnerships between classroom teachers and geoscience experts. We hypothesize that this model of professional development, where teachers of school-age children are prepared to teach local examples of earth system science, will lead to increased engagement in Earth Science content and increased awareness of local geoscience examples by K-12 students and the public.

  8. Geoscience for society. 125th Anniversary volume

    Energy Technology Data Exchange (ETDEWEB)

    Nenonen, K.; Nurmi, P.A. (eds.)

    2011-07-01

    Our knowledge of Finnish geology and natural resources has considerably increased during the last few decades. Geological Survey of Finland - GTK has mapped the bedrock and Quaternary deposits, as well as mineral resources in great detail using modern geological, geochemical and geophysical techniques, so that Finland today has one of the best geological databases in the world. We have recently compiled countrywide datasets of seamless bedrock information at the scale of 1:200,000, and completed low-altitude airborne geophysical (200 m line spacing and 40 m terrain clearance), regional geochemical (80 000 samples), and reflection seismic surveys at the crustal scale and at high resolution on the main orepotential formations. Isotopic age determinations have been performed at GTK since the 1960s, and we now have accurate ages for about thousand samples, which is a key to studying the complex evolution of the Finnish Precambrian. GTK currently plays a vital role in providing geological expertise to the government, the business sector and the wider community. Specific responsibilities include the promotion and implementation of sustainable approaches to the supply and management of minerals, energy and construction materials, and to ensure environmental compliance through monitoring, assessment and remediation programmes. GTK also contributes to a wide range of international geoscience, mapping, mineral resources and environmental monitoring projects, and is active in developing multidisciplinary research programmes with universities, government agencies and stakeholders across related sectors. This 125th Anniversary Publication aims at elucidating, through a number of short articles, the current focus of research and development at GTK. In reaching the milestone of 125 years, we can state that our anniversary slogan, 'forever young', is justified by the vitality and increasing societal impact of the organization and our research focusing on sustainable

  9. Geoscience for society. 125th Anniversary volume

    Energy Technology Data Exchange (ETDEWEB)

    Nenonen, K.; Nurmi, P A [eds.

    2011-07-01

    Our knowledge of Finnish geology and natural resources has considerably increased during the last few decades. Geological Survey of Finland - GTK has mapped the bedrock and Quaternary deposits, as well as mineral resources in great detail using modern geological, geochemical and geophysical techniques, so that Finland today has one of the best geological databases in the world. We have recently compiled countrywide datasets of seamless bedrock information at the scale of 1:200,000, and completed low-altitude airborne geophysical (200 m line spacing and 40 m terrain clearance), regional geochemical (80 000 samples), and reflection seismic surveys at the crustal scale and at high resolution on the main orepotential formations. Isotopic age determinations have been performed at GTK since the 1960s, and we now have accurate ages for about thousand samples, which is a key to studying the complex evolution of the Finnish Precambrian. GTK currently plays a vital role in providing geological expertise to the government, the business sector and the wider community. Specific responsibilities include the promotion and implementation of sustainable approaches to the supply and management of minerals, energy and construction materials, and to ensure environmental compliance through monitoring, assessment and remediation programmes. GTK also contributes to a wide range of international geoscience, mapping, mineral resources and environmental monitoring projects, and is active in developing multidisciplinary research programmes with universities, government agencies and stakeholders across related sectors. This 125th Anniversary Publication aims at elucidating, through a number of short articles, the current focus of research and development at GTK. In reaching the milestone of 125 years, we can state that our anniversary slogan, 'forever young', is justified by the vitality and increasing societal impact of the organization and our research focusing on sustainable development of

  10. Roadmap for Scaling and Multifractals in Geosciences: still a long way to go ?

    Science.gov (United States)

    Schertzer, Daniel; Lovejoy, Shaun

    2010-05-01

    The interest in scale symmetries (scaling) in Geosciences has never lessened since the first pioneering EGS session on chaos and fractals 22 years ago. The corresponding NP activities have been steadily increasing, covering a wider and wider diversity of geophysical phenomena and range of space-time scales. Whereas interest was initially largely focused on atmospheric turbulence, rain and clouds at small scales, it has quickly broadened to much larger scales and to much wider scale ranges, to include ocean sciences, solid earth and space physics. Indeed, the scale problem being ubiquitous in Geosciences, it is indispensable to share the efforts and the resulting knowledge as much as possible. There have been numerous achievements which have followed from the exploration of larger and larger datasets with finer and finer resolutions, from both modelling and theoretical discussions, particularly on formalisms for intermittency, anisotropy and scale symmetry, multiple scaling (multifractals) vs. simple scaling,. We are now way beyond the early pioneering but tentative attempts using crude estimates of unique scaling exponents to bring some credence to the fact that scale symmetries are key to most nonlinear geoscience problems. Nowadays, we need to better demonstrate that scaling brings effective solutions to geosciences and therefore to society. A large part of the answer corresponds to our capacity to create much more universal and flexible tools to multifractally analyse in straightforward and reliable manners complex and complicated systems such as the climate. Preliminary steps in this direction are already quite encouraging: they show that such approaches explain both the difficulty of classical techniques to find trends in climate scenarios (particularly for extremes) and resolve them with the help of scaling estimators. The question of the reliability and accuracy of these methods is not trivial. After discussing these important, but rather short term issues

  11. Leveraging biology interest to broaden participation in the geosciences

    Science.gov (United States)

    Perin, S.; Conner, L.; Oxtoby, L.

    2017-12-01

    It has been well documented that female participation in the geoscience workforce is low. By contrast, the biology workforce has largely reached gender parity. These trends are rooted in patterns of interest among youth. Specifically, girls tend to like biology and value social and societal connections to science (Brotman & Moore 2008). Our NSF-funded project, "BRIGHT Girls," offers two-week summer academies to high school-aged girls, in which the connections between the geosciences and biology are made explicit. We are conducting qualitative research to trace the girls' identity work during this intervention. Using team-based video interaction analysis, we are finding that the fabric of the academy allows girls to "try on" new possible selves in science. Our results imply that real-world, interdisciplinary programs that include opportunities for agency and authentic science practice may be a fruitful approach for broadening participation in the geosciences.

  12. Interdisciplinary cooperation and studies in geoscience in the Carpathian Basin

    Directory of Open Access Journals (Sweden)

    Marcel MINDRESCU

    2012-06-01

    Full Text Available An interdisciplinary approach to geoscience is particularly important in this vast research field, as the more innovative studies are increasingly crossing discipline boundaries and thus benefitting from multiple research methods and viewpoints. Grasping this concept has led us to encourage interdisciplinary cooperation by supporting and promoting the creation of “meeting places” able to provide a framework for researchers and scholars involved in geoscience research to find common grounds for discussion and collaboration. Most recently, this was achieved by organizing the 1st Workshop on “Interdisciplinarity in Geosciences in the Carpathian Basin” (IGCB held in the Department of Geography at the University of Suceava (Romania, between the 18th and 22nd October 2012. This event brought together both an international group of scientists and local researchers which created opportunities for collaboration in research topics such as geography, environment, geology and botany, biology and ecology in the Carpathian Basin.

  13. European Union, 2017

    OpenAIRE

    Malone Margaret Mary

    2018-01-01

    The year 2017 was eventful for the EU and its member states. Given the widespread Euroscepticism and populism which appeared to be on the rise last year, election results in the Netherlands, France and Germany were greeted with relief and hope for the future. The EU was in an optimistic mood. European Commission President Jean- Claude Juncker used his State of the European Union speech in September to note that the EU had the ‘wind in its sails’ (Juncker, 2017). At the same time, he cautioned...

  14. DAGIK: A data-showcase system of geoscience in KML

    Science.gov (United States)

    Yoshida, D.; Saito, A.

    2009-12-01

    We are developing a system to display geoscience data of various databases on virtual globe. This system is designed to be a showcase of databases. Users can browse various types of data of databases on this system. When they find data of interest, they can follow the network link to the WWW-based database and study it in detail. This system is served as a portal to geoscience databases. We call this system DAGIK (DAta-showcase system of Geoscience In Kml). It uses Google Earth as a browser. The reason to use Google Earth is that it has 1) four-dimensional data presentation capability, 2) scalability in time and space, 3) network capability. Virtual globe can show the data in intuitive way. It is a very powerful tool to show the characteristics of data for those who are not familiar with the data. DAGIK started in 2007 for geospace data, and was expanded to cover the geoscience in 2009. The sequence of usage of DAGIK is as follows: 1) user downloads the start up file, dagik.kml, from the DAGIK server (http://www-step.kugi.kyoto-u.ac.jp/dagik/) with a WWW browser, 2) it can be opened with Google Earth, 3) user select year, month and day, 4) for the selected date, the data list file will be downloaded from the DAGIK server, 5) user can select the data type from the data list, 6) and the KML/KMZ plot files will be downloaded from the DAGIK server or the other KML/KMZ server to display on Google Earth. There are several databases that provide their data plots in KML/KMZ format for DAGIK. DAGIK, a data-showcase system of geoscience, can bridge the gap between databases and novice users of the geoscience data.

  15. Geoscience Diversity Experiential Simulations (GeoDES) Workshop Report

    Science.gov (United States)

    Houlton, H. R.; Chen, J.; Brown, B.; Samuels, D.; Brinkworth, C.

    2017-12-01

    The geosciences have to solve increasingly complex problems relating to earth and society, as resources become limited, natural hazards and changes in climate impact larger communities, and as people interacting with Earth become more interconnected. However, the profession has dismally low representation from geoscientists who are from diverse racial, ethnic, or socioeconomic backgrounds, as well as women in leadership roles. This underrepresentation also includes individuals whose gender identity/expression is non-binary or gender-conforming, or those who have physical, cognitive, or emotional disabilities. This lack of diversity ultimately impacts our profession's ability to produce our best science and work with the communities that we strive to protect and serve as stewards of the earth. As part of the NSF GOLD solicitation, we developed a project (Geoscience Diversity Experiential Simulations) to train 30 faculty and administrators to be "champions for diversity" and combat the hostile climates in geoscience departments. We hosted a 3-day workshop in November that used virtual simulations to give participants experience in building the skills to react to situations regarding bias, discrimination, microaggressions, or bullying often cited in geoscience culture. Participants interacted with avatars on screen, who responded to participants' actions and choices, given certain scenarios. The scenarios are framed within a geoscience perspective; we integrated qualitative interview data from informants who experienced inequitable judgement, bias, discrimination, or harassment during their geoscience careers. The simulations gave learners a safe environment to practice and build self-efficacy in how to professionally and productively engage peers in difficult conversations. In addition, we obtained pre-workshop survey data about participants' understanding regarding Diversity, Equity, and Inclusion practices, as well as observation data of participants' responses

  16. A framework for high-school teacher support in Geosciences

    Science.gov (United States)

    Bookhagen, B.; Mair, A.; Schaller, G.; Koeberl, C.

    2012-04-01

    To attract future geoscientists in the classroom and share the passion for science, successful geoscience education needs to combine modern educational tools with applied science. Previous outreach efforts suggest that classroom-geoscience teaching tremendously benefits from structured, prepared lesson plans in combination with hands-on material. Building on our past experience, we have developed a classroom-teaching kit that implements interdisciplinary exercises and modern geoscientific application to attract high-school students. This "Mobile Phone Teaching Kit" analyzes the components of mobile phones, emphasizing the mineral compositions and geologic background of raw materials. Also, as geoscience is not an obligatory classroom topic in Austria, and university training for upcoming science teachers barely covers geoscience, teacher training is necessary to enhance understanding of the interdisciplinary geosciences in the classroom. During the past year, we have held teacher workshops to help implementing the topic in the classroom, and to provide professional training for non-geoscientists and demonstrate proper usage of the teaching kit. The material kit is designed for classroom teaching and comes with a lesson plan that covers background knowledge and provides worksheets and can easily be adapted to school curricula. The project was funded by kulturkontakt Austria; expenses covered 540 material kits, and we reached out to approximately 90 schools throughout Austria and held a workshop in each of the nine federal states in Austria. Teachers received the training, a set of the material kit, and the lesson plan free of charge. Feedback from teachers was highly appreciative. The request for further material kits is high and we plan to expand the project. Ultimately, we hope to enlighten teachers and students for the highly interdisciplinary variety of geosciences and a link to everyday life.

  17. National Geoscience Data Repository System: Phase 2 final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    The American Geological Institute (AGI) has completed Phase 2 of a project to establish a National Geoscience Data Repository System (NGDRS). The project`s primary objectives are to preserve geoscience data in jeopardy of being destroyed and to make that data available to those who have a need to use it in future investigations. These data are available for donation to the public as a result of the downsizing that has occurred in the major petroleum and mining companies in the US for the past decade. In recent years, these companies have consolidated domestic operations, sold many of their domestic properties and relinquished many of their leases. The scientific data associated with those properties are no longer considered to be useful assets and are consequently in danger of being lost forever. The national repository project will make many of these data available to the geoscience community for the first time. Phase 2 encompasses the establishment of standards for indexing and cataloging of geoscience data and determination of the costs of transferring data from the private sector to public-sector data repositories. Pilot projects evaluated the feasibility of the project for transfer of different data types and creation of a Web-based metadata supercatalog and browser. Also as part of the project, a national directory of geoscience data repositories was compiled to assess what data are currently available in existing facilities. The next step, Phase 3, will focus on the initiation of transfer of geoscience data from the private sector to the public domain and development of the web-based Geotrek metadata supercatalog.

  18. Promoting the Geosciences for Minority Students in the Urban Coastal Environment of New York City

    Science.gov (United States)

    Liou-Mark, J.; Blake, R.

    2013-12-01

    The 'Creating and Sustaining Diversity in the Geo-Sciences among Students and Teachers in the Urban Coastal Environment of New York City' project was awarded to New York City College of Technology (City Tech) by the National Science Foundation to promote the geosciences for students in middle and high schools and for undergraduates, especially for those who are underrepresented minorities in STEM. For the undergraduate students at City Tech, this project: 1) created and introduced geoscience knowledge and opportunities to its diverse undergraduate student population where geoscience is not currently taught at City Tech; and 2) created geoscience articulation agreements. For the middle and high schools, this project: 1) provided inquiry-oriented geoscience experiences (pedagogical and research) for students; 2) provided standards-based professional development (pedagogical and research) in Earth Science for teachers; 3) developed teachers' inquiry-oriented instructional techniques through the GLOBE program; 4) increased teacher content knowledge and confidence in the geosciences; 5) engaged and intrigued students in the application of geoscience activities in a virtual environment; 6) provided students and teachers exposure in the geosciences through trip visitations and seminars; and 7) created community-based geoscience outreach activities. Results from this program have shown significant increases in the students (grades 6-16) understanding, participation, appreciation, and awareness of the geosciences. Geoscience modules have been created and new geosciences courses have been offered. Additionally, students and teachers were engaged in state-of-the-art geoscience research projects, and they were involved in many geoscience events and initiatives. In summary, the activities combined geoscience research experiences with a robust learning community that have produced holistic and engaging stimuli for the scientific and academic growth and development of grades 6

  19. On the merits of conversion electron Mossbauer spectroscopy in geosciences

    DEFF Research Database (Denmark)

    Gunnlaugsson, H.P.; Bertelsen, P.; Budtz-Jørgensen, Carl

    2006-01-01

    Described are some applications of conversion electron Mossbauer spectroscopy (CEMS) in geosciences. It is shown how easily this technique can be applied in existing Mossbauer laboratories to investigate natural samples. Some examples demonstrate the kind of information CEMS can give on the weath......Described are some applications of conversion electron Mossbauer spectroscopy (CEMS) in geosciences. It is shown how easily this technique can be applied in existing Mossbauer laboratories to investigate natural samples. Some examples demonstrate the kind of information CEMS can give...

  20. Currency union entries and trade

    OpenAIRE

    Nitsch, Volker

    2005-01-01

    Recent research suggests that adopting a common currency increases bilateral trade. In this paper, I explore experiences of currency union entry in the post-war period and find no effect on trade. Previous results derived from a large panel data set (covering more than 200 countries from 1948 through 1997) appear to depend crucially on the assumption of symmetry between currency union exits and entries: While countries leaving a currency union experience significant declines in trade, currenc...

  1. Official Union Time Tracking System

    Data.gov (United States)

    Social Security Administration — Official Union Time Tracking System captures the reporting and accounting of the representational activity for all American Federation of Government Employees (AFGE)...

  2. Developing A Large-Scale, Collaborative, Productive Geoscience Education Network

    Science.gov (United States)

    Manduca, C. A.; Bralower, T. J.; Egger, A. E.; Fox, S.; Ledley, T. S.; Macdonald, H.; Mcconnell, D. A.; Mogk, D. W.; Tewksbury, B. J.

    2012-12-01

    Over the past 15 years, the geoscience education community has grown substantially and developed broad and deep capacity for collaboration and dissemination of ideas. While this community is best viewed as emergent from complex interactions among changing educational needs and opportunities, we highlight the role of several large projects in the development of a network within this community. In the 1990s, three NSF projects came together to build a robust web infrastructure to support the production and dissemination of on-line resources: On The Cutting Edge (OTCE), Earth Exploration Toolbook, and Starting Point: Teaching Introductory Geoscience. Along with the contemporaneous Digital Library for Earth System Education, these projects engaged geoscience educators nationwide in exploring professional development experiences that produced lasting on-line resources, collaborative authoring of resources, and models for web-based support for geoscience teaching. As a result, a culture developed in the 2000s in which geoscience educators anticipated that resources for geoscience teaching would be shared broadly and that collaborative authoring would be productive and engaging. By this time, a diverse set of examples demonstrated the power of the web infrastructure in supporting collaboration, dissemination and professional development . Building on this foundation, more recent work has expanded both the size of the network and the scope of its work. Many large research projects initiated collaborations to disseminate resources supporting educational use of their data. Research results from the rapidly expanding geoscience education research community were integrated into the Pedagogies in Action website and OTCE. Projects engaged faculty across the nation in large-scale data collection and educational research. The Climate Literacy and Energy Awareness Network and OTCE engaged community members in reviewing the expanding body of on-line resources. Building Strong

  3. Technology-Supported Performance Assessments for Middle School Geoscience

    Science.gov (United States)

    Zalles, D. R.; Quellmalz, E.; Rosenquist, A.; Kreikemeier, P.

    2002-12-01

    Under funding from the World Bank, the U.S. Department of Education, the National Science Foundation, and the Federal Government's Global Learning and Observations to Benefit the Environment Program (GLOBE), SRI International has developed and piloted web-accessible performance assessments that measure K-12 students' abilities to use learning technologies to reason with scientific information and communicate evidence-based conclusions to scientific problems. This presentation will describe the assessments that pertain to geoscience at the middle school level. They are the GLOBE Assessments and EPA Phoenix, an instantiation of SRI's model of assessment design known as Integrative Performance Assessments in Technology (IPAT). All are publicly-available on the web. GLOBE engages students in scientific data collection and observation about the environment. SRI's classroom assessments for GLOBE provide sample student assessment tools and frameworks that allow teachers and students to assess how well students can use the data in scientific inquiry projects. Teachers can use classroom assessment tools on the site to develop integrated investigations for assessing GLOBE within their particular science curricula. Rubrics are provided for measuring students' GLOBE-related skills, and alignments are made to state, national, and international science standards. Sample investigations are provided about atmosphere, hydrology, landcover, soils, earth systems, and visualizations. The IPAT assessments present students with engaging problems rooted in science or social science content, plus sets of tasks and questions that require them to gather relevant information on the web, use reasoning strategies to analyze and interpret the information, use spreadsheets, word processors, and other productivity tools, and communicate evidence-based findings and recommendations. In the process of gathering information and drawing conclusions, students are assessed on how well they can operate

  4. Young and full-grown spruce tree soil-plant-atmosphere systems studied by sap flow measurement methods

    Czech Academy of Sciences Publication Activity Database

    Dohnal, M.; Vogel, T.; Tesař, Miroslav; Votrubová, J.; Šanda, M.

    2011-01-01

    Roč. 13, - (2011), s. 5342 ISSN 1607-7962. [European Geosciences Union General Assembly 2011. 03.04.2011-08.04.2011, Vienna] R&D Projects: GA ČR GA205/08/1174 Institutional research plan: CEZ:AV0Z20600510 Keywords : forest * transpiration * sap flow measurement * numerical modeling * Sumava Mts. * Jizera Mts. Subject RIV: DA - Hydrology ; Limnology

  5. Geoscience meets the four horsemen?: Tracking the rise of neocatastrophism

    Science.gov (United States)

    Marriner, Nick; Morhange, Christophe; Skrimshire, Stefan

    2010-10-01

    Although it is acknowledged that there has been an exponential growth in neocatastrophist geoscience inquiry, the extent, chronology and origin of this mode have not been precisely scrutinized. In this study, we use the bibliographic research tool Scopus to explore 'catastrophic' words replete in the earth and planetary science literature between 1950 and 2009, assessing when, where and why catastrophism has gained new currency amongst the geoscience community. First, we elucidate an exponential rise in neocatastrophist research from the 1980s onwards. We then argue that the neocatastrophist mode came to prominence in North America during the 1960s and 1970s before being more widely espoused in Europe, essentially after 1980. We compare these trends with the EM-DAT disaster database, a worldwide catalogue that compiles more than 11,000 natural disasters stretching back to 1900. The findings imply a clear link between anthropogenically forced global change and an increase in disaster research (r 2 = 0.73). Finally, we attempt to explain the rise of neocatastrophism by highlighting seven non-exhaustive factors: (1) the rise of applied geoscience; (2) inherited geological epistemology; (3) disciplinary interaction and the diffusion of ideas from the planetary to earth sciences; (4) the advent of radiometric dating techniques; (5) the communications revolution; (6) webometry and the quest for high-impact geoscience; and (7) popular cultural frameworks.

  6. Geoscience Videos and Their Role in Supporting Student Learning

    Science.gov (United States)

    Wiggen, Jennifer; McDonnell, David

    2017-01-01

    A series of short (5 to 7 minutes long) geoscience videos were created to support student learning in a flipped class setting for an introductory geology class at North Carolina State University. Videos were made using a stylus, tablet, microphone, and video editing software. Essentially, we narrate a slide, sketch a diagram, or explain a figure…

  7. Information extraction and knowledge graph construction from geoscience literature

    Science.gov (United States)

    Wang, Chengbin; Ma, Xiaogang; Chen, Jianguo; Chen, Jingwen

    2018-03-01

    Geoscience literature published online is an important part of open data, and brings both challenges and opportunities for data analysis. Compared with studies of numerical geoscience data, there are limited works on information extraction and knowledge discovery from textual geoscience data. This paper presents a workflow and a few empirical case studies for that topic, with a focus on documents written in Chinese. First, we set up a hybrid corpus combining the generic and geology terms from geology dictionaries to train Chinese word segmentation rules of the Conditional Random Fields model. Second, we used the word segmentation rules to parse documents into individual words, and removed the stop-words from the segmentation results to get a corpus constituted of content-words. Third, we used a statistical method to analyze the semantic links between content-words, and we selected the chord and bigram graphs to visualize the content-words and their links as nodes and edges in a knowledge graph, respectively. The resulting graph presents a clear overview of key information in an unstructured document. This study proves the usefulness of the designed workflow, and shows the potential of leveraging natural language processing and knowledge graph technologies for geoscience.

  8. Undergraduate research projects help promote diversity in the geosciences

    Science.gov (United States)

    Young, De'Etra; Trimboli, Shannon; Toomey, Rick S.; Byl, Thomas D.

    2016-01-01

    A workforce that draws from all segments of society and mirrors the ethnic, racial, and gender diversity of the United States population is important. The geosciences (geology, hydrology, geospatial sciences, environmental sciences) continue to lag far behind other science, technology, engineering and mathematical (STEM) disciplines in recruiting and retaining minorities (Valsco and Valsco, 2010). A report published by the National Science Foundation in 2015, “Women, Minorities, and Persons with Disabilities in Science and Engineering” states that from 2002 to 2012, less than 2% of the geoscience degrees were awarded to African-American students. Data also show that as of 2012, approximately 30% of African-American Ph.D. graduates obtained a bachelor’s degree from a Historic Black College or University (HBCU), indicating that HBCUs are a great source of diverse students for the geosciences. This paper reviews how an informal partnership between Tennessee State University (a HBCU), the U.S. Geological Survey, and Mammoth Cave National Park engaged students in scientific research and increased the number of students pursuing employment or graduate degrees in the geosciences.

  9. A Compilation and Review of over 500 Geoscience Misconceptions

    Science.gov (United States)

    Francek, Mark

    2013-01-01

    This paper organizes and analyses over 500 geoscience misconceptions relating to earthquakes, earth structure, geologic resources, glaciers, historical geology, karst (limestone terrains), plate tectonics, rivers, rocks and minerals, soils, volcanoes, and weathering and erosion. Journal and reliable web resources were reviewed to discover (1) the…

  10. European Union, 2017

    Directory of Open Access Journals (Sweden)

    Malone Margaret Mary

    2018-02-01

    Full Text Available The year 2017 was eventful for the EU and its member states. Given the widespread Euroscepticism and populism which appeared to be on the rise last year, election results in the Netherlands, France and Germany were greeted with relief and hope for the future. The EU was in an optimistic mood. European Commission President Jean- Claude Juncker used his State of the European Union speech in September to note that the EU had the ‘wind in its sails’ (Juncker, 2017. At the same time, he cautioned that the fair weather conditions would not last long - there was no room for complacency. The EU had to act to protect, empower and defend its citizens. The EU moved forward on a number of policy fronts in the wake of the Brexit vote and also concluded high-profile international trade deals in an effort to fill the vacuum left by the protectionist policies of the Trump administration.

  11. Embedding Data Stewardship in Geoscience Australia

    Science.gov (United States)

    Bastrakova, I.; Fyfe, S.

    2013-12-01

    Ten years of technological innovation now enable vast amounts of data to be collected, managed, processed and shared. At the same time, organisations have witnessed government legislative and policy requirements for open access to public sector data, and a demand for flexibility in access to data by both machine-to-machine and human consumption. Geoscience Australia (GA) has adopted Data Stewardship as an organisation-wide initiative to improve the way we manage and share our data. The benefits to GA including: - Consolidated understanding of GA's data assets and their value to the Agency; - Recognition of the significant role of data custodianship and data management; - Well-defined governance, policies, standards, practices and accountabilities that promote the accessibility, quality and interoperability of GA's data; - Integration of disparate data sets into cohesive information products available online in real time and equally accessible to researchers, government, industry and the public. Although the theory behind data stewardship is well-defined and accepted and the benefits are generally well-understood, practical implementation requires an organisation to prepare for a long-term commitment of resources, both financial and human. Fundamentally this involves: 1. Raising awareness in the organisation of the need for data stewardship and the challenges this entails; 2. Establishing a data stewardship framework including a data governance office to set policy and drive organisational change; and 3. Embedding the functions and a culture of data stewardship into business as usual operations. GA holds a vast amount of data ranging from petabytes of Big Data to significant quantities of relatively small ';long tail' geoscientific observations and measurements. Over the past four years, GA has undertaken strategic activities that prepare us for Data Stewardship: - Organisation-wide audits of GA's data holdings and identification of custodians for each dataset

  12. Building Strong Geoscience Departments Through the Visiting Workshop Program

    Science.gov (United States)

    Ormand, C. J.; Manduca, C. A.; Macdonald, H.; Bralower, T. J.; Clemens-Knott, D.; Doser, D. I.; Feiss, P. G.; Rhodes, D. D.; Richardson, R. M.; Savina, M. E.

    2011-12-01

    The Building Strong Geoscience Departments project focuses on helping geoscience departments adapt and prosper in a changing and challenging environment. From 2005-2009, the project offered workshop programs on topics such as student recruitment, program assessment, preparing students for the workforce, and strengthening geoscience programs. Participants shared their departments' challenges and successes. Building on best practices and most promising strategies from these workshops and on workshop leaders' experiences, from 2009-2011 the project ran a visiting workshop program, bringing workshops to 18 individual departments. Two major strengths of the visiting workshop format are that it engages the entire department in the program, fostering a sense of shared ownership and vision, and that it focuses on each department's unique situation. Departments applied to have a visiting workshop, and the process was highly competitive. Selected departments chose from a list of topics developed through the prior workshops: curriculum and program design, program elements beyond the curriculum, recruiting students, preparing students for the workforce, and program assessment. Two of our workshop leaders worked with each department to customize and deliver the 1-2 day programs on campus. Each workshop incorporated exercises to facilitate active departmental discussions, presentations incorporating concrete examples drawn from the leaders' experience and from the collective experiences of the geoscience community, and action planning to scaffold implementation. All workshops also incorporated information on building departmental consensus and assessing departmental efforts. The Building Strong Geoscience Departments website complements the workshops with extensive examples from the geoscience community. Of the 201 participants in the visiting workshop program, 140 completed an end of workshop evaluation survey with an overall satisfaction rating of 8.8 out of a possible 10

  13. AMIDST: Attracting Minorities to Geosciences Through Involved Digital Story Telling

    Science.gov (United States)

    Prakash, A.; Ohler, J.; Cooper, C.; McDermott, M.; Heinrich, J.; Johnson, R.; Leeper, L.; Polk, N.; Wimer, T.

    2009-12-01

    Attracting Minorities to Geosciences Through Involved Digital Story Telling (AMIDST) is a project funded by the Geoscience Directorate of the National Science Foundation through their program entitled Opportunities for Enhancing Diversity in Geosciences. This project centers around the idea of integrating place-based geoscience education with culturally sensitive digital story telling, to engage and attract Alaska’s native and rural children from grades 3 through 5 to geosciences. In Spring 2008 we brought together a team 2 native elders, a group of scientists and technicians, an evaluator, 2 teachers and their 24 third grade students from Fairbanks (interior Alaska) to create computer-based digital stories around the geoscience themes of permafrost, and forest fires. These two to four minutes digital narratives consisted of a series of images accompanied by music and a voice-over narration by the children. In Fall 2008 we worked with a similar group from Nome (coastal town in western Alaska). The geoscience themes were climate change, and gold in Alaska. This time the students used the same kind of “green screen” editing so prevalent in science fiction movies. Students enacted and recorded their stories in front of a green screen and in post-production replaced the green background with photos, drawings and scientific illustrations related to their stories. Evaluation involved pre and post project tests for all participants, mid-term individual interviews and exit-interviews of selected participants. Project final assessment results from an independent education evaluator showed that both students and teachers improved their geo science content knowledge about permafrost, forest fires, gold mining, and sea ice changes. Teachers and students went through a very steep learning curve and gained experience and new understanding in digital storytelling in the context of geologic phenomena of local interest. Children took pride in being creators, directors and

  14. Professional Employees Turn to Unions

    Science.gov (United States)

    Chamot, Dennis

    1976-01-01

    White-collar and professional employees are increasingly turning to unions to combat their loss of independence as employees of large organizations. Managers should realize that they and professional employees have different viewpoints about job situations and that the current trend toward white-collar unionism is apt to continue. (JG)

  15. Is Union Job Dissatisfaction Real?

    Science.gov (United States)

    Hersch, Joni; Stone, Joe A.

    1990-01-01

    A comparison of data from a Eugene, Oregon, worker survey with data from the Quality of Employment Survey found that union job dissatisfaction arises from factors independent of wages and working conditions. Union perspectives of working conditions do not accurately reflect objective measures of conditions. The dissatisfaction expressed has real…

  16. Grassmann codes and Schubert unions

    DEFF Research Database (Denmark)

    Hansen, Johan Peder; Johnsen, Trygve; Ranestad, Kristian

    2009-01-01

    We study subsets of Grassmann varieties over a field , such that these subsets are unions of Schubert cycles, with respect to a fixed flag. We study such sets in detail, and give applications to coding theory, in particular for Grassmann codes. For much is known about such Schubert unions with a ...

  17. Toward a More Perfect Union

    Science.gov (United States)

    Schachter, Ron

    2010-01-01

    This article explores school districts such as New Haven (Connecticut) Public Schools, whose local union is an American Federation of Teachers (AFT) affiliate and where a shared concern for students has trumped the often adversarial union-management relationship. The author discusses what makes the successful contract negotiations headed by David…

  18. Teaching Introductory Geoscience: A Cutting Edge Workshop Report

    Science.gov (United States)

    Manduca, C.; Tewksbury, B.; Egger, A.; MacDonald, H.; Kirk, K.

    2008-12-01

    Introductory undergraduate courses play a pivotal role in the geosciences. They serve as recruiting grounds for majors and future professionals, provide relevant experiences in geoscience for pre-service teachers, and offer opportunities to influence future policy makers, business people, professionals, and citizens. An introductory course is also typically the only course in geoscience that most of our students will ever take. Because the role of introductory courses is pivotal in geoscience education, a workshop on Teaching Introductory Courses in the 21st Century was held in July 2008 as part of the On the Cutting Edge faculty development program. A website was also developed in conjunction with the workshop. One of the central themes of the workshop was the importance of considering the long-term impact a course should have on students. Ideally, courses can be designed with this impact in mind. Approaches include using the local geology to focus the course and illustrate concepts; designing a course for particular audience (such as Geology for Engineers); creating course features that help students understand and interpret geoscience in the news; and developing capstone projects to teach critical thinking and problem solving skills in a geologic context. Workshop participants also explored strategies for designing engaging activities including exploring with Google Earth, using real-world scenarios, connecting with popular media, or making use of campus features on local field trips. In addition, introductory courses can emphasize broad skills such as teaching the process of science, using quantitative reasoning and developing communication skills. Materials from the workshop as well as descriptions of more than 150 introductory courses and 350 introductory-level activities are available on the website: http://serc.carleton.edu/NAGTWorkshops/intro/index.html.

  19. GOLD: Building capacity for broadening participation in the Geosciences

    Science.gov (United States)

    Adams, Amanda; Patino, Lina; Jones, Michael B.; Rom, Elizabeth

    2017-04-01

    The geosciences continue to lag other science, technology, engineering, and mathematics (STEM) disciplines in the engagement, recruitment and retention of traditionally underrepresented and underserved minorities, requiring more focused and strategic efforts to address this problem. Prior investments made by the National Science Foundation (NSF) related to broadening participation in STEM have identified many effective strategies and model programs for engaging, recruiting, and retaining underrepresented students in the geosciences. These investments also have documented clearly the importance of committed, knowledgeable, and persistent leadership for making local progress in broadening participation in STEM and the geosciences. Achieving diversity at larger and systemic scales requires a network of diversity "champions" who can catalyze widespread adoption of these evidence-based best practices and resources. Although many members of the geoscience community are committed to the ideals of broadening participation, the skills and competencies that empower people who wish to have an impact, and make them effective as leaders in that capacity for sustained periods of time, must be cultivated through professional development. The NSF GEO Opportunities for Leadership in Diversity (GOLD) program was implemented in 2016, as a funding opportunity utilizing the Ideas Lab mechanism. Ideas Labs are intensive workshops focused on finding innovative solutions to grand challenge problems. The ultimate aim of this Ideas Lab, organized by the NSF Directorate for Geosciences (GEO), was to facilitate the design, pilot implementation, and evaluation of innovative professional development curricula that can unleash the potential of geoscientists with interests in broadening participation to become impactful leaders within the community. The expectation is that mixing geoscientists with experts in broadening participation research, behavioral change, social psychology, institutional

  20. Challenges of the NGSS for Future Geoscience Education

    Science.gov (United States)

    Wysession, M. E.; Colson, M.; Duschl, R. A.; Lopez, R. E.; Messina, P.; Speranza, P.

    2013-12-01

    The new Next Generation Science Standards (NGSS), which spell out a set of K-12 performance expectations for life science, physical science, and Earth and space science (ESS), pose a variety of opportunities and challenges for geoscience education. Among the changes recommended by the NGSS include establishing ESS on an equal footing with both life science and physical sciences, at the full K-12 level. This represents a departure from the traditional high school curriculum in most states. In addition, ESS is presented as a complex, integrated, interdisciplinary, quantitative Earth Systems-oriented set of sciences that includes complex and politically controversial topics such as climate change and human impacts. The geoscience communities will need to mobilize in order to assist and aid in the full implementation of ESS aspects of the NGSS in as many states as possible. In this context, the NGSS highlight Earth and space science to an unprecedented degree. If the NGSS are implemented in an optimal manner, a year of ESS will be taught in both middle and high school. In addition, because of the complexity and interconnectedness of the ESS content (with material such as climate change and human sustainability), it is recommended (Appendix K of the NGSS release) that much of it be taught following physics, chemistry, and biology. However, there are considerable challenges to a full adoption of the NGSS. A sufficient work force of high school geoscientists qualified in modern Earth Systems Science does not exist and will need to be trained. Many colleges do not credit high school geoscience as a lab science with respect to college admission. The NGSS demand curricular practices that include analyzing and interpreting real geoscience data, and these curricular modules do not yet exist. However, a concerted effort on the part of geoscience research and education organizations can help resolve these challenges.

  1. Automatic User Interface Generation for Visualizing Big Geoscience Data

    Science.gov (United States)

    Yu, H.; Wu, J.; Zhou, Y.; Tang, Z.; Kuo, K. S.

    2016-12-01

    Along with advanced computing and observation technologies, geoscience and its related fields have been generating a large amount of data at an unprecedented growth rate. Visualization becomes an increasingly attractive and feasible means for researchers to effectively and efficiently access and explore data to gain new understandings and discoveries. However, visualization has been challenging due to a lack of effective data models and visual representations to tackle the heterogeneity of geoscience data. We propose a new geoscience data visualization framework by leveraging the interface automata theory to automatically generate user interface (UI). Our study has the following three main contributions. First, geoscience data has its unique hierarchy data structure and complex formats, and therefore it is relatively easy for users to get lost or confused during their exploration of the data. By applying interface automata model to the UI design, users can be clearly guided to find the exact visualization and analysis that they want. In addition, from a development perspective, interface automaton is also easier to understand than conditional statements, which can simplify the development process. Second, it is common that geoscience data has discontinuity in its hierarchy structure. The application of interface automata can prevent users from suffering automation surprises, and enhance user experience. Third, for supporting a variety of different data visualization and analysis, our design with interface automata could also make applications become extendable in that a new visualization function or a new data group could be easily added to an existing application, which reduces the overhead of maintenance significantly. We demonstrate the effectiveness of our framework using real-world applications.

  2. Geosciences Information Network (GIN): A modular, distributed, interoperable data network for the geosciences

    Science.gov (United States)

    Allison, M.; Gundersen, L. C.; Richard, S. M.; Dickinson, T. L.

    2008-12-01

    A coalition of the state geological surveys (AASG), the U.S. Geological Survey (USGS), and partners will receive NSF funding over 3 years under the INTEROP solicitation to start building the Geoscience Information Network (www.geoinformatics.info/gin) a distributed, interoperable data network. The GIN project will develop standardized services to link existing and in-progress components using a few standards and protocols, and work with data providers to implement these services. The key components of this network are 1) catalog system(s) for data discovery; 2) service definitions for interfaces for searching catalogs and accessing resources; 3) shared interchange formats to encode information for transmission (e.g. various XML markup languages); 4) data providers that publish information using standardized services defined by the network; and 5) client applications adapted to use information resources provided by the network. The GIN will integrate and use catalog resources that currently exist or are in development. We are working with the USGS National Geologic Map Database's existing map catalog, with the USGS National Geological and Geophysical Data Preservation Program, which is developing a metadata catalog (National Digital Catalog) for geoscience information resource discovery, and with the GEON catalog. Existing interchange formats will be used, such as GeoSciML, ChemML, and Open Geospatial Consortium sensor, observation and measurement MLs. Client application development will be fostered by collaboration with industry and academic partners. The GIN project will focus on the remaining aspects of the system -- service definitions and assistance to data providers to implement the services and bring content online - and on system integration of the modules. Initial formal collaborators include the OneGeology-Europe consortium of 27 nations that is building a comparable network under the EU INSPIRE initiative, GEON, Earthchem, and GIS software company ESRI

  3. Advancing Earth System Science Literacy and Preparing the Future Geoscience Workforce Through Strategic Investments at the National Science Foundation (Invited)

    Science.gov (United States)

    Karsten, J. L.; Patino, L. C.; Rom, E. L.; Weiler, C. S.

    2010-12-01

    The National Science Foundation (NSF) is an independent federal agency created 60 years ago by the U.S. Congress "to promote the progress of science; to advance the national health, prosperity, and welfare; to secure the national defense…" NSF is the primary funding agency in the U.S. to support basic, frontier research across all fields in science, engineering, and education, except for medical sciences. With a FY 2011 budget request of more than $955 million, the NSF Directorate for Geosciences (GEO) is the principle source of federal funding for university-based fundamental research in the geosciences and preparation of the next generation of geoscientists. Since its inception, GEO has supported the education and training of a diverse and talented pool of future scientists, engineers, and technicians in the Earth, Ocean, Atmospheric and Geospatial Sciences sub-fields, through support of graduate research assistants, post-doctoral fellows, and undergraduate research experiences. In the late 1990’s and early 2000’s, GEO initiated several programs that expanded these investments to also support improvements in pre-college and undergraduate geoscience education through a variety of mechanisms (e.g., professional development support for K-12 teachers, development of innovative undergraduate curricula, and scientist-mentored research experiences for elementary and secondary students). In addition to GEO’s Geoscience Education (GeoEd), Opportunities for Enhancing Diversity in the Geosciences (OEDG), Global Learning and Observations to Benefit the Environment (GLOBE), and Geoscience Teacher Training (GEO-Teach) programs, GEO participates in a number of cross-Foundation programs, including the Research Experiences for Undergraduates (REU), Integrative Graduate Education and Research Traineeship (IGERT), Ethics Education in Science and Engineering (EESE), NSF Graduate STEM Fellows in K-12 Education (GK-12), and Partnerships for International Research and Education

  4. Overview of gas flux measurements from volcanoes of the global Network for Observation of Volcanic and Atmospheric Change (NOVAC)

    Science.gov (United States)

    Galle, Bo; Arellano, Santiago; Conde, Vladimir

    2015-04-01

    NOVAC, the Network for Observation of Volcanic and Atmospheric Change, was initiated in 2005 as a 5-years-long project financed by the European Union. Its main purpose is to create a global network for the study of volcanic atmospheric plumes and related geophysical phenomena by using state-of-the-art spectroscopic remote sensing technology. Up to 2014, 67 instruments have been installed at 25 volcanoes in 13 countries of Latin America, Italy, Democratic Republic of Congo, Reunion, Iceland, and Philippines, and efforts are being done to expand the network to other active volcanic zones. NOVAC has been a pioneer initiative in the community of volcanologists and embraces the objectives of the Word Organization of Volcano Observatories (WOVO) and the Global Earth Observation System of Systems (GEOSS). In this contribution, we present the results of the measurements of SO2 gas fluxes carried out within NOVAC, which for some volcanoes represent a record of more than 8 years of semi-continuous monitoring. The network comprises some of the most strongly degassing volcanoes in the world, covering a broad range of tectonic settings, levels of unrest, and potential risk. Examples of correlations with seismicity and other geophysical phenomena, environmental impact studies and comparisons with previous global estimates will be discussed as well as the significance of the database for further studies in volcanology and other geosciences.

  5. Inventory of gas flux measurements from volcanoes of the global Network for Observation of Volcanic and Atmospheric Change (NOVAC)

    Science.gov (United States)

    Galle, B.; Arellano, S.; Norman, P.; Conde, V.

    2012-04-01

    NOVAC, the Network for Observation of Volcanic and Atmospheric Change, was initiated in 2005 as a 5-year-long project financed by the European Union. Its main purpose is to create a global network for the monitoring and research of volcanic atmospheric plumes and related geophysical phenomena by using state-of-the-art spectroscopic remote sensing technology. Up to 2012, 64 instruments have been installed at 24 volcanoes in 13 countries of Latin America, Italy, Democratic Republic of Congo, Reunion, Iceland, and Philippines, and efforts are being done to expand the network to other active volcanic zones. NOVAC has been a pioneer initiative in the community of volcanologists and embraces the objectives of the Word Organization of Volcano Observatories (WOVO) and the Global Earth Observation System of Systems (GEOSS). In this contribution, we present the results of the measurements of SO2 gas fluxes carried out within NOVAC, which for some volcanoes represent a record of more than 7 years of continuous monitoring. The network comprises some of the most strongly degassing volcanoes in the world, covering a broad range of tectonic settings, levels of unrest, and potential risk. We show a global perspective of the output of volcanic gas from the covered regions, specific trends of degassing for a few selected volcanoes, and the significance of the database for further studies in volcanology and other geosciences.

  6. Integrating geoscience and Native American experiences through a multi-state geoscience field trip for high school students

    Science.gov (United States)

    Kelso, P. R.; Brown, L. M.; Spencer, M.; Sabatine, S.; Goetz, E. R.

    2012-12-01

    Lake Superior State University (LSSU) developed the GRANITE (Geological Reasoning And Natives Investigating The Earth) to engage high school students in the geosciences. The GRANITE program's target audience is Native American high school students and other populations underrepresented in the geosciences. Through the GRANITE program students undertake a variety of field and laboratory geosciences activities that culminates in a two week summer geoscience field experience during which they travel from Michigan to Wyoming. The sites students visit were selected because of their interesting and diverse geologic features and because in many cases they have special significance to Native American communities. Examples of the processes and localities studied by GRANITE students include igneous processes at Bear Butte, SD (Mato Paha) and Devil's Tower, WY (Mato Tipila); sedimentary processes in the Badlands, SD (Mako Sica) and Black Hills, SD (Paha Sapa); karst processes at Wind Cave, SD (Wasun Niye) and Vore Buffalo Jump; structural processes at Van Hise rock, WI and Dillon normal fault Badlands, SD; hydrologic and laucustrine processes along the Great Lakes and at the Fond du Lac Reservation, MN; fluvial processes along the Mississippi and Missouri rivers; geologic resources at the Homestake Mine, SD and Champion Mine, MI; and metamorphic processes at Pipestone, MN and Baraboo, WI. Through the GRANITE experience students develop an understanding of how geoscience is an important part of their lives, their communities and the world around them. The GRANITE program also promotes each student's growth and confidence to attend college and stresses the importance of taking challenging math and science courses in high school. Geoscience career opportunities are discussed at specific geologic localities and through general discussions. GRANITE students learn geosciences concepts and their application to Native communities and society in general through activities and

  7. AMS Online Weather Studies: The National Dissemination of a Distance Learning Course for Enhancing Diversity in the Geosciences

    Science.gov (United States)

    Weinbeck, R. S.; Geer, I. W.; Mills, E. W.; Porter, W. A.; Moran, J. M.

    2004-12-01

    Our nation faces a serious challenge in attracting young people to science and science-related careers (including teaching). This is particularly true for members of groups underrepresented in science, mathematics, engineering, and technology and is especially acute in the number of minority college students majoring in the geosciences. A formidable obstacle in attracting undergraduates to the geosciences is lack of access, that is, no opportunity to enroll in geoscience courses simply because none is offered at their college or university. Often college-level introductory courses are a student's first exposure to the geosciences. To help alleviate this problem of access, the American Meteorological Society (AMS) has developed and implemented nationally an introductory weather and climate course, Online Weather Studies, which can be added to an institution's menu of general education course offerings. This highly successful course has been licensed by over 230 colleges and universities nationwide, among them 72 minority-serving institutions which have joined via the AMS Online Weather Studies Geosciences Diversity Program since 2002. This program designed to reach institutions serving large numbers of minority students has been made possible through support from the National Science Foundation (NSF) Opportunities for Enhancing Diversity in the Geosciences (OEDG) and Course, Curriculum and Laboratory Improvement-National Dissemination (CCLI-ND) programs. Online Weather Studies is an innovative, 12- to 15-week introductory college-level, online distance-learning course on the fundamentals of atmospheric science. Learner-formatted current weather data are delivered via the Internet and coordinated with investigations keyed to the day's weather. The principal innovation of Online Weather Studies is that students learn about weather as it happens in near real-time - a highly motivational learning experience. The AMS Education Program designed and services this course

  8. US Geoscience Information Network, Web Services for Geoscience Information Discovery and Access

    Science.gov (United States)

    Richard, S.; Allison, L.; Clark, R.; Coleman, C.; Chen, G.

    2012-04-01

    The US Geoscience information network has developed metadata profiles for interoperable catalog services based on ISO19139 and the OGC CSW 2.0.2. Currently data services are being deployed for the US Dept. of Energy-funded National Geothermal Data System. These services utilize OGC Web Map Services, Web Feature Services, and THREDDS-served NetCDF for gridded datasets. Services and underlying datasets (along with a wide variety of other information and non information resources are registered in the catalog system. Metadata for registration is produced by various workflows, including harvest from OGC capabilities documents, Drupal-based web applications, transformation from tabular compilations. Catalog search is implemented using the ESRI Geoportal open-source server. We are pursuing various client applications to demonstrated discovery and utilization of the data services. Currently operational applications allow catalog search and data acquisition from map services in an ESRI ArcMap extension, a catalog browse and search application built on openlayers and Django. We are developing use cases and requirements for other applications to utilize geothermal data services for resource exploration and evaluation.

  9. PROGRESS (PROmoting Geoscience Research Education and SuccesS): a novel mentoring program for retaining undergraduate women in the geosciences

    Science.gov (United States)

    Clinton, Sandra; Adams, Amanda; Barnes, Rebecca; Bloodhart, Brittany; Bowker, Cheryl; Burt, Melissa; Godfrey, Elaine; Henderson, Heather; Hernandez, Paul; Pollack, Ilana; Sample McMeeking, Laura Beth; Sayers, Jennifer; Fischer, Emily

    2017-04-01

    Women still remain underrepresented in many areas of the geosciences, and this underrepresentation often begins early in their university career. In 2015, an interdisciplinary team including expertise in the geosciences (multiple sub-disciplines), psychology, education and STEM persistence began a project focused on understanding whether mentoring can increase the interest, persistence, and achievement of undergraduate women in geoscience fields. The developed program (PROGRESS) focuses on mentoring undergraduate female students, starting in their 1st and 2nd year, from two geographically disparate areas of the United States: the Carolinas in the southeastern part of the United States and the Front Range of the Rocky Mountains in the western part of the United States. The two regions were chosen due to their different student demographics, as well as the differences in the number of working female geoscientists in the region. The mentoring program includes a weekend workshop, access to professional women across geoscience fields, and both in-person and virtual peer networks. Four cohorts of students were recruited and participated in our professional development workshops (88 participants in Fall 2015 and 94 participants in Fall 2016). Components of the workshops included perceptions of the geosciences, women in STEM misconceptions, identifying personal strengths, coping strategies, and skills on building their own personal network. The web-platform (http://geosciencewomen.org/), designed to enable peer-mentoring and provide resources, was launched in the fall of 2015 and is used by both cohorts in conjunction with social media platforms. We will present an overview of the major components of the program, discuss lessons learned during 2015 that were applied to 2016, and share preliminary analyses of surveys and interviews with study participants from the first two years of a five-year longitudinal study that follows PROGRESS participants and a control group.

  10. Abiding by codes of ethics and codes of conduct imposed on members of learned and professional geoscience institutions and - a tiresome formality or a win-win for scientific and professional integrity and protection of the public?

    Science.gov (United States)

    Allington, Ruth; Fernandez, Isabel

    2015-04-01

    In 2012, the International Union of Geological Sciences (IUGS) formed the Task Group on Global Geoscience Professionalism ("TG-GGP") to bring together the expanding network of organizations around the world whose primary purpose is self-regulation of geoscience practice. An important part of TG-GGP's mission is to foster a shared understanding of aspects of professionalism relevant to individual scientists and applied practitioners working in one or more sectors of the wider geoscience profession (e.g. research, teaching, industry, geoscience communication and government service). These may be summarised as competence, ethical practice, and professional, technical and scientific accountability. Legal regimes for the oversight of registered or licensed professionals differ around the world and in many jurisdictions there is no registration or licensure with the force of law. However, principles of peer-based self-regulation universally apply. This makes professional geoscience organisations ideal settings within which geoscientists can debate and agree what society should expect of us in the range of roles we fulfil. They can provide the structures needed to best determine what expectations, in the public interest, are appropriate for us collectively to impose on each other. They can also provide the structures for the development of associated procedures necessary to identify and discipline those who do not live up to the expected standards of behaviour established by consensus between peers. Codes of Ethics (sometimes referred to as Codes of Conduct), to which all members of all major professional and/or scientific geoscience organizations are bound (whether or not they are registered or hold professional qualifications awarded by those organisations), incorporate such traditional tenets as: safeguarding the health and safety of the public, scientific integrity, and fairness. Codes also increasingly include obligations concerning welfare of the environment and

  11. How Accessible Are the Geosciences? a Study of Professionally Held Perceptions and What They Mean for the Future of Geoscience Workforce Development

    Science.gov (United States)

    Atchison, C.; Libarkin, J. C.

    2014-12-01

    Individuals with disabilities are not entering pathways leading to the geoscience workforce; the reasons for which continue to elude access-focused geoscience educators. While research has focused on barriers individuals face entering into STEM disciplines, very little research has considered the role that practitioner perceptions play in limiting access and accommodation to scientific disciplines. The authors argue that changing the perceptions within the geoscience community is an important step to removing barriers to entry into the myriad fields that make up the geosciences. This paper reports on an investigation of the perceptions that geoscientist practitioners hold about opportunities for engagement in geoscience careers for people with disabilities. These perspectives were collected through three separate iterations of surveys at three professional geoscience meetings in the US and Australia between 2011 and 2012. Respondents were asked to indicate the extent to which individuals with specific types of disabilities would be able to perform various geoscientific tasks. The information obtained from these surveys provides an initial step in engaging the larger geoscience community in a necessary discussion of minimizing the barriers of access to include students and professionals with disabilities. The results imply that a majority of the geoscience community believes that accessible opportunities exist for inclusion regardless of disability. This and other findings suggest that people with disabilities are viewed as viable professionals once in the geosciences, but the pathways into the discipline are prohibitive. Perceptions of how individuals gain entry into the field are at odds with perceptions of accessibility. This presentation will discuss the common geoscientist perspectives of access and inclusion in the geoscience discipline and how these results might impact the future of the geoscience workforce pathway for individuals with disabilities.

  12. The Energy Union

    International Nuclear Information System (INIS)

    Auverlot, Dominique; Beeeker, Etienne; Hossie, Gaelle; Bettzuege, Marc Oliver; Helm, Dieter; Roques, Fabien

    2015-08-01

    A synthesis of contributions is firstly proposed in this collective publication. In this synthesis, the authors describes the crisis faced by European energy (economic crisis, closure of some thermal power plants due to a lack of profitability, increase of electricity prices, low CO 2 quota prices resulting in a greater use of coal, an ageing refinery system, dependence on the Russian gas for some countries), identify four principles which could be used as guidelines for the European policy (responsibility, solidarity, economic rationality, resilience), define seven recommendations as objectives of a European energy policy. Then, the contributions address the following topics: security of electricity supply, security of European Union's gas supply called into question again, reforming the ETS market to strengthen the credibility of the European climate policy, a necessary evolution of the European energy and climate policy, the issue of a definition of a European energy policy as a dogma or a strategy, the challenge for building up a sustainable and consistent European energy and climate policy

  13. The State of the Union

    DEFF Research Database (Denmark)

    This special issue of Angles marks the three hundredth anniversary of the Union of the two kingdoms of Scotland and England. The nature and development of the relations between the constituent parts of the United Kingdom is a fascinating topic also to outside observers, and some of the contributi...... of the contributions to this volume deal with the Union in a comparative European context. Both Scottish nationalism and Scottish unionism are analysed, and Anglo-Scottish relations are looked at from historical, sociological, linguistic and literary angles...

  14. Science Diplomacy in the Geosciences (Invited)

    Science.gov (United States)

    Sztein, E.; Casadevall, T.

    2013-12-01

    Science can provide advice to inform and support foreign policy objectives (science in diplomacy), diplomacy can facilitate international scientific cooperation (diplomacy for science), and scientific cooperation can improve international relations (science for diplomacy) (The Royal Society, 2010). Historically, science policy and science diplomacy have served to both build relationships with other countries, to raise the status of science across borders, and to produce concrete scientific/societal results. International scientific cooperation is necessary for the advancement of science in the U.S. and abroad, among other societal benefits. Among the wide spectrum of scientific challenges, natural hazards and global environmental change are of great international importance, not only for the development of the intellectual pursuit of science, but because of their very concrete effects on populations and natural systems. In general, science diplomacy policy is determined at the political level through bilateral and multilateral science and technology agreements and partnerships, while the practice of science diplomacy is usually in the hands of individual scientists. Among the U.S. government efforts are the Department of State's Science Envoy program (mostly active in Muslim-majority nations) and the United States Geological Survey-Office of Foreign Disaster Assistance's Volcano Disaster Assistance Program. Individual scientists and their institutions establish collaborations one-on-one, in small principal investigator or research group collaborations, in bilateral agreements between universities, or in activities organized under the auspices of larger programs, such as those of scientific unions or international organizations (National Research Council, 2012). Among many programs, the U.S. has strong participation in the Intergovernmental Panel on Climate Change (IPCC), and in Future Earth (a global environmental change initiative) and the Integrated Research on

  15. Recently Identified Changes to the Demographics of the Current and Future Geoscience Workforce

    Science.gov (United States)

    Wilson, C. E.; Keane, C. M.; Houlton, H. R.

    2014-12-01

    The American Geosciences Institute's (AGI) Geoscience Workforce Program collects and analyzes data pertaining to the changes in the supply, demand, and training of the geoscience workforce. Much of these trends are displayed in detail in AGI's Status of the Geoscience Workforce reports. In May, AGI released the Status of the Geoscience Workforce 2014, which updates these trends since the 2011 edition of this report. These updates highlight areas of change in the education of future geoscientists from K-12 through graduate school, the transition of geoscience graduates into early-career geoscientists, the dynamics of the current geoscience workforce, and the future predictions of the changes in the availability of geoscience jobs. Some examples of these changes include the increase in the number of states that will allow a high school course of earth sciences as a credit for graduation and the increasing importance of two-year college students as a talent pool for the geosciences, with over 25% of geoscience bachelor's graduates attending a two-year college for at least a semester. The continued increase in field camp hinted that these programs are at or reaching capacity. The overall number of faculty and research staff at four-year institutions increased slightly, but the percentages of academics in tenure-track positions continued to slowly decrease since 2009. However, the percentage of female faculty rose in 2013 for all tenure-track positions. Major geoscience industries, such as petroleum and mining, have seen an influx of early-career geoscientists. Demographic trends in the various industries in the geoscience workforce forecasted a shortage of approximately 135,000 geoscientists in the next decade—a decrease from the previously predicted shortage of 150,000 geoscientists. These changes and other changes identified in the Status of the Geoscience Workforce will be addressed in this talk.

  16. The silent buzz of geosciences: the challenge of geosciences communication in the Italian framework

    Science.gov (United States)

    Rapisardi, Elena; Di Franco, Sabina; Giardino, Marco

    2015-04-01

    environmental dynamics and their interaction with human activity (preparedness). We suspect, that in the Italian framework, this raises from a sort of original sin: a "resistance" to science, that, for people with little or poor scientific knowledge, swings between pseudoscientific simplifications (which, unfortunately, web is variously "dotted" [Quattrociocchi et al. 2014]) and, as the sociologist Franco Ferrarotti would say, pre-scientific traditions [Peppoloni, 2011]. The "logos" of geology and the geological "narrative" are of fundamental importance in the Anthropocene, allowing to shift the focus back on the human/environment interaction. Geologists are often ignored, as bearers of uncomfortable messages, especially in a country where there is no longer a National Geological Survey, but it is unquestionable the importance of Earth Sciences and the social role of the geologist (geoethics) for Disaster Resilience. This is the next challenge of Geosciences, and of the whole community of geoscientists. Develop a coordinated communication approach for geosciences as an ethical imperative, and also as a pre-requisite to risk and emergency communication: geologists and geology are the authoritative interpreters of natural processes and risk, holders of scientific knowledge that if explained and shared allow people and decision makers to better cope with risks, and to enable Disaster Resilience.

  17. Carleton College: Geoscience Education for the Liberal Arts and the Geoscience Profession

    Science.gov (United States)

    Savina, M. E.

    2008-12-01

    Carleton College is a small (current enrollment ~1950), four-year, residential liberal arts college that has graduated more than 900 geology majors since the inception of the geology department inception in 1933. Since 1974, an average of more than 20 geology students have graduated each year. The department curriculum aims to educate at least six overlapping groups of students, who, however, may not place themselves into one of these groups until well after graduating. These groups include students in non- science majors who take geology for breadth or because of interest; science majors; geology majors who end up in other professions; and geology majors who pursue careers related to geology, most of whom ultimately earn a higher, professional degree. Goals for these groups of students differ and the department focuses its curriculum on developing skills and providing student experiences that will serve all groups well. The department has a strong focus on field geology and communication skills, solving complex problems in many project-based courses (culminating in a senior independent project for each student), and much group work. These characteristics correlate well with Carleton institutional goals. The senior independent projects (all reported in written, visual and oral forms) form the basis for outcomes assessment. We also regularly survey alumni who are in graduate programs of all kinds (not just geoscience), asking them about how well their undergraduate education has prepared them. Finally, the staff meet at least annually to discuss the curriculum, its goals, values, skills and content, and do a formal self-study with external and internal reviewers at least once a decade. The success of Carleton geology alumni in government, research, industry, education, consulting and other professions is the ultimate assessment tool.

  18. The Soviet Union

    International Nuclear Information System (INIS)

    Lynch, A.

    1991-01-01

    William T. R. Fox's pre-nuclear age analysis provides an excellent starting point for the authors' discussion of the role of nuclear weapons in Soviet security policy. By pointing to some of the non-nuclear, more properly geopolitical sources of peace in East-West relations, Fox's forceful analysis serves as a reminder to approach the authors' study with caution. Too often, there has been a tendency to reduce the etiology of war and peace in East-West relations to its nuclear aspect without proper regard for other, primarily geopolitical, components which provide the all-important context in which nuclear weapons work their indisputable deterrent effect. Two geopolitical sources for the relative peace in post-war East-West relations have been the inability of either the Soviet Union or the United states to employ direct military force in politically significant terms against the vital interests of the other; and an abiding preference, on the part of both, for a divided Germany within a divided Europe. Any other plausible alternative, of course, would almost certainly have involved a united Germany and the related likelihood that it would either gravitate to one or the other alliance or, itself, would constitute the third leg of an intrinsically unstable tri-polar relationship. This paper reports that the prevailing inclination to analyze East-West security as a direct function of nuclear deterrence (witness the Western consternation about INF and denuclearization, and the proliferation of think-tank study groups on post-nuclear security) begs the probability that there are in fact a variety of deeply rooted structures of stability in East-West relations and so exaggerates the delicacy of the existing security order in Europe. to an extent, this follows form the general acceptance of deterrence theory in the West, especially in the United States, and the undoubtedly singular character and role of nuclear weapons in that order

  19. European Union Energy Research

    International Nuclear Information System (INIS)

    Valdalbero, D.R.; Schmitz, B.; Raldow, W.; Poireau, M.

    2007-01-01

    This article presents an extensive state of the art of the energy research conducted at European Union level between 1984 and 2006, i.e. from the first to the sixth European Community Framework Programmes (FP1-FP6) for Research, Technological Development and Demonstration (RTD and D). The FP is the main legal tool and financial instrument of EU RTD and D policy. It sets the objectives, priorities and budgets for a period of several years. It has been complemented over time with a number of policy oriented initiatives and notably with the launch of the European Research Area. FP7 will cover the period 2007-2013 and will have a total budget of more than euros 50 billion. Energy has been a main research area in Europe since the founding Treaties (European Coal and Steel Community, European Atomic Energy Community-Euratom and European Economic Community), and energy RTD and D has always been a substantial part of common EU research. Nevertheless, when inflation and successive European enlargements are taken into account, over time the RTD and D effort in the field of energy has decreased significantly in relative terms. In nominal terms it has remained relatively stable at about euros 500 million per year. For the next years (FP7), it is expected that energy will still represent about 10 % of total EU research effort but with an annual budget of more than euros 800 million per year. This article presents a detailed review of the thematic areas and budget in both European nuclear energy research (fusion and fission) and non-nuclear energy research (energy efficiency/rational use of energy, fossil fuels, CO 2 capture and storage, fuel cells and hydrogen, renewable energy sources, strategic energy research/socio-economy). (authors)

  20. European Union: US Hegemonic Competitor

    National Research Council Canada - National Science Library

    Kellar, Ronald

    2001-01-01

    .... Intergovernmentalism in the European Community has evolved into an economic form of supranationalism with the persona change form Community to Union after ratification of the Treaty of Maastricht in 1993...

  1. Public Sector Unions and Privatization

    DEFF Research Database (Denmark)

    Foged, Søren Kjær; Aaskoven, Lasse

    2016-01-01

    Privatization varies considerably among local governments. One of the oft-listed explanations is the ability of public employees to block privatization. However, many studies on the influence of public employees on privatization do not use very precise measures of the influence of public employees...... Danish municipalities in 2012, we are able to measure the strength of the public eldercare union as well as the number of the public eldercare workers relative to the number of local voters. We find that the increased union strength measured in terms of union density at the municipal level leads...... to substantially and significantly less privatization through the voucher market. By comparison, the estimated relationship between the relative number of public workers and privatization does not reach statistical significance. Features of the voucher market and qualitative evidence suggest that the union...

  2. International Geoscience Workforce Trends: More Challenges for Federal Agencies

    Science.gov (United States)

    Groat, C. G.

    2005-12-01

    Concern about the decreasing number of students entering undergraduate geoscience programs has been chronic and, at times, acute over the past three decades. Despite dwindling populations of undergraduate majors, graduate programs have remained relatively robust, bolstered by international students. With Increasing competition for graduate students by universities in Europe, Japan, Australia, and some developing countries, and with procedural challenges faced by international students seeking entry into the United States and its universities, this supply source is threatened. For corporations operating on a global scale, the opportunity to employ students from and trained in the regions in which they operate is generally a plus. For U.S. universities that have traditionally supplied this workforce, the changing situation poses challenges, but also opportunities for creative international partnerships. Federal government science agencies face more challenges than opportunities in meeting workforce needs under both present and changing education conditions. Restrictions on hiring non-U.S. citizens into the permanent workforce have been a long-standing issue for federal agencies. Exceptions are granted only where they can document the absence of eligible U.S.-citizen candidates. The U.S. Geological Survey has been successful in doing this in its Mendenhall Postdoctoral Research Fellowship Program, but there has been no solution to the broader limitation. Under current and forecast workforce recruitment conditions, creativity, such as that evidenced by the Mendenhall program,will be necessary if federal agencies are to draw from the increasingly international geoscience talent pool. With fewer U.S. citizens in U.S. geoscience graduate programs and a growing number of advanced-degreed scientists coming from universities outside the U.S., the need for changes in federal hiring policies is heightened. The near-term liklihood of this is low and combined with the decline in

  3. Preparing for a Professional Career in the Geosciences with AEG

    Science.gov (United States)

    Barry, T.; Troost, K. G.

    2012-12-01

    The Association of Environmental and Engineering Geologists offers multiple resources to students and faculty about careers in the geosciences, such as description of what employers are looking for, career options, mentoring, and building your professional network. Our website provides easy access to these and other resources. Most of AEG's 3000 members found their first job through association with another AEG member and more than 75% of our membership is working in applied geoscience jobs. We know that employers are looking for the following qualities: passion for your career and the geosciences, an enthusiastic personality, flexibility, responsibility, ability to communicate well in oral and written modes, and the ability to work well in teams or independently. Employers want candidates with a strong well-rounded geoscience education and the following skills/experience: attendance at field camp, working knowledge of field methodologies, strong oral and written communication skills, basic to advanced computer skills, and the ability to conduct research. In addition, skill with GIS applications, computer modeling, and 40-hour OSHA training are desired. The most successful technique for finding a job is to have and use a network. Students can start building their network by attending regular AEG or other professional society monthly meetings, volunteering with the society, attending annual meetings, going on fieldtrips and participating in other events. Students should research what kind of job they want and build a list of potential preferred employers, then market themselves to people within those companies using networking opportunities. Word-of-mouth sharing of job openings is the most powerful tool for getting hired, and if students have name recognition established within their group of preferred employers, job interviews will occur at a faster rate than otherwise.

  4. Geosciences program annual report 1978. [LBL Earth Sciences Division

    Energy Technology Data Exchange (ETDEWEB)

    Witherspoon, P.A.

    1978-01-01

    This report is a reprint of the Geosciences section of the LBL Earth Sciences Division Annual Report 1978 (LBL-8648). It contains summary papers that describe fundamental studies addressing a variety of earth science problems of interest to the DOE. They have applications in such diverse areas as geothermal energy, oil recovery, in situ coal gasification, uranium resource evaluation and recovery, and earthquake prediction. Completed work has been reported or likely will be in the usual channels. (RWR)

  5. The role of karst in engineering and environmental geosciences

    Directory of Open Access Journals (Sweden)

    H. C. Ho

    2011-08-01

    Full Text Available Karst is a unique landform developed by soluble rock. It usually relates to the groundwater drainage system, and provides important water resources. Current researches indicate that karst is closely related to the Earth system and environmental protection, and it can also create potential natural hazards such as sinkhole flooding and land subsidence in urban area. Its relationship with hydrogeology has also been an important factor for studying water pollution and nutrient cycles in engineering geosciences and agricultural geology.

  6. Tube Maps for Effective Geoscience Career Planning and Development

    Science.gov (United States)

    Keane, C. M.; Wilson, C. E.; Houlton, H. R.

    2013-12-01

    One of the greatest challenges faced by students and new graduates is the advice that they must take charge of their own career planning. This is ironic as new graduates are least prepared to understand the full spectrum of options and the potential pathways to meeting their personal goals. We will examine the rationale, tools, and utility of an approach aimed at assisting individuals in career planning nicknamed a "tube map." In particular, this approach has been used in support of geoscientist recruitment and career planning in major European energy companies. By utilizing information on the occupational sequences of geoscience professionals within an organization or a community, a student or new hire can quickly understand the proven pathways towards their eventual career goals. The tube map visualizes the career pathways of individuals in the form of a subway map, with specific occupations represented as "stations" and pathway interconnections represented as "transfers." The major application of this approach in the energy sector was to demonstrate both the logical career pathways to either senior management or senior technical positions, as well as present the reality that time must be invested in "lower level" jobs, thereby nullifying a persistent overinflated sense of the speed of upward mobility. To this end, we have run a similar occupational analysis on several geoscience employers, including one with somewhat non-traditional geoscience positions and another that would be considered a very traditional employer. We will examine the similarities and differences between the resulting 'tube maps,' critique the tools used to create the maps, and assess the utility of the product in career development planning for geoscience students and new hires.

  7. History and development of ABCDEFG: a data standard for geosciences

    OpenAIRE

    Petersen, Mareike; Glöckler, Falko; Kiessling, Wolfgang; Döring, Markus; Fichtmüller, David; Laphakorn, Lertsutham; Baltruschat, Brian; Hoffmann, Jana

    2018-01-01

    Museums and their collections have specially customized databases in order to optimally gather and record their contents and associated metadata associated with their specimens. To share, exchange, and publish data, an appropriate data standard is essential. ABCD (Access to Biological Collection Data) is a standard for biological collection units, including living and preserved specimen, together with field observation data. Its extension, EFG (Extension for Geoscience), ena...

  8. Virtual Reality as a Story Telling Platform for Geoscience Communication

    Science.gov (United States)

    Lazar, K.; Moysey, S. M.

    2017-12-01

    Capturing the attention of students and the public is a critical step for increasing societal interest and literacy in earth science issues. Virtual reality (VR) provides a means for geoscience engagement that is well suited to place-based learning through exciting and immersive experiences. One approach is to create fully-immersive virtual gaming environments where players interact with physical objects, such as rock samples and outcrops, to pursue geoscience learning goals. Developing an experience like this, however, can require substantial programming expertise and resources. At the other end of the development spectrum, it is possible for anyone to create immersive virtual experiences with 360-degree imagery, which can be made interactive using easy to use VR editing software to embed videos, audio, images, and other content within the 360-degree image. Accessible editing tools like these make the creation of VR experiences something that anyone can tackle. Using the VR editor ThingLink and imagery from Google Maps, for example, we were able to create an interactive tour of the Grand Canyon, complete with embedded assessments, in a matter of hours. The true power of such platforms, however, comes from the potential to engage students as content authors to create and share stories of place that explore geoscience issues from their personal perspective. For example, we have used combinations of 360-degree images with interactive mapping and web platforms to enable students with no programming experience to create complex web apps as highly engaging story telling platforms. We highlight here examples of how we have implemented such story telling approaches with students to assess learning in courses, to share geoscience research outcomes, and to communicate issues of societal importance.

  9. OneGeology- A Global Geoscience Data Platform

    Science.gov (United States)

    Harrison, M.; Komac, M.; Duffy, T.; Robida, F.; Allison, M. L.

    2014-12-01

    OneGeology (1G) is an initiative of Geological Survey Organisations (GSOs) around the globe that dates back to 2007. Since then, OneGeology has been a leader in developing geological online map data using GeoSciML- an international interoperability standard for the exchange of geological data. Increased use of this new standard allows geological data to be shared and integrated across the planet among organisations. One of the goals of OneGeology is an exchange of know-how with the developing world, shortening the digital learning curve. In autumn 2013 OneGeology was transformed into a Consortium with a clearly defined governance structure, making it more transparent, its operation more sustainable and its membership more open where in addition to GSOs, other types of organisations that create and use geoscience data can join and contribute. The next stage of the OneGeology initiative is focused on increasing the openness and richness of that data from individual countries to create a multi-thematic global geological data resource about the rocks beneath our feet. Authoritative geoscience information will help to mitigate natural disasters, explore for resources (water, minerals and energy) and identify risks to human health on a planetary scale with the aim of 1G to increase awareness of the geosciences and their relevance among professionals and general public- to be part of the solution. We live in a digital world that enables prompt access to vast amounts of open access data. Understanding our world, the geology beneath our feet and environmental challenges related to geology calls for accessibility of geoscience data and the OneGeology Portal (portal.onegeology.org) is the place to find them.

  10. Brexit and the European Union

    DEFF Research Database (Denmark)

    Jensen, Mads Dagnis; Snaith, Holly

    2018-01-01

    When on 23 June 2016 a majority voted in favour of the United Kingdom (UK) leaving the European Union (EU), it generated a host of unknowns. Prior to the referendum, scholars had already started to anticipate the implications of a potential Brexit from different perspectives, including considering...... lie and suggesting where Britain’s exit will leave the greatest strategic vacuums. The subsequent analysis centres on the actors that will likely win and lose from the UK’s exit from the Union....

  11. Coordination in the European Union

    OpenAIRE

    Martin Feldstein

    2013-01-01

    This paper examines the sources of current conflict within the EU and the EMU. The topics discussed include the recent ECB policy of bond buying (the OMT policy), the attempts to advance the "European Project" of stronger political union (the fiscal compact, the banking union, and the proposals for budget supervision). Contrary to the claims of the European leadership, the progress that has been made has been by individual countries and not by coordinated action. The special problems of Franc...

  12. A hybrid personalized data recommendation approach for geoscience data sharing

    Science.gov (United States)

    WANG, M.; Wang, J.

    2016-12-01

    Recommender systems are effective tools helping Internet users overcome information overloading. The two most widely used recommendation algorithms are collaborating filtering (CF) and content-based filtering (CBF). A number of recommender systems based on those two algorithms were developed for multimedia, online sells, and other domains. Each of the two algorithms has its advantages and shortcomings. Hybrid approaches that combine these two algorithms are better choices in many cases. In geoscience data sharing domain, where the items (datasets) are more informative (in space and time) and domain-specific, no recommender system is specialized for data users. This paper reports a dynamic weighted hybrid recommendation algorithm that combines CF and CBF for geoscience data sharing portal. We first derive users' ratings on items with their historical visiting time by Jenks Natural Break. In the CBF part, we incorporate the space, time, and subject information of geoscience datasets to compute item similarity. Predicted ratings were computed with k-NN method separately using CBF and CF, and then combined with weights. With training dataset we attempted to find the best model describing ideal weights and users' co-rating numbers. A logarithmic function was confirmed to be the best model. The model was then used to tune the weights of CF and CBF on user-item basis with test dataset. Evaluation results show that the dynamic weighted approach outperforms either solo CF or CBF approach in terms of Precision and Recall.

  13. Strategies for Broadening Participation in the Geosciences: Lessons Learned From the UCAR-SOARSr Program

    Science.gov (United States)

    Pandya, R. E.

    2004-12-01

    Broadening participation in the geosciences will advance our research, enhance our education and training, and improve our ability to meet societal needs. By attracting more diverse students, we will be better postioned to provide all our students the increasingly necessary and relevant experience of working in diverse teams. Because some traditionally underrepresented groups, particularly Latinos & Hispanics, are growing much faster than the population as a whole, broader participation will enlarge the pool of talented individuals contributing to the next generation of research. Finally the geosciences will be more effective and credible when the diversity of our nation is reflected in our workforce, especially as civic discourse includes more and more complex decisions about society's interactions with the Earth and its resources. The Significant Opportunities in Atmospheric Research and Science (SOARS) seeks to broaden participation in geosciences by helping undergraduate students successfully transition to graduate programs in the atmospheric and related sciences. SOARS combines multiple research experiences, multifaceted mentoring, an encouraging community, and financial support to help students enter and succeed in graduate school. A central feature of the SOARS program is a ten-week summer immersion program in which protégés (SOARS participants) conduct scientific research at the National Center for Atmospheric Research (NCAR) or at laboratories of SOARS sponsors. During this summer research experience, SOARS protégés are supported by up to four mentors: a science research mentor, a writing mentor, a community mentor, and a peer mentor. SOARS protégés collaborate with their mentors to perform original research, prepare scientific papers, and present their research at a colloquium. SOARS also provides extensive leadership and communication training; support for conference presentations and for graduate school; and a strong scholarly community that

  14. Opportunities for Geoscience Research Onboard Virgin Galactic's SpaceShipTwo

    Science.gov (United States)

    Pomerantz, W.; Beerer, I.; Stephens, K.; Griffith, J.; Persall, W.; Tizard, J.

    2012-12-01

    Virgin Galactic has developed a reusable spaceplane, called SpaceShipTwo (SS2), designed to make routine voyages into suborbital space. SS2 is air-launched from a jet aircraft at an altitude of 50,000 ft. before igniting its rocket motor engine. The vehicle reaches a maximum apogee as high as 110 km before gliding to a conventional runway landing. With the ability to fly multiple times per week, SS2 will be capable of providing routine access to a rarely sampled and poorly understood region of the atmosphere and ionosphere, making it a valuable platform for geoscience research. With a payload capacity up to 1300 lbs., SS2 provides access to space and the upper atmosphere for substantially larger payloads than sounding rockets and at a dramatically lower cost than orbital satellites. The main cabin provides as much as 500 cubic ft. of useable volume in a shirt-sleeve environment and payload mounting interfaces that are compatible with standard architectures, such as Middeck Lockers, Cargo Transfer Bags, and server racks. A flight test engineer will be available on board to operate payloads during flight. In the future, SS2 will also offer a variety of external payload mounting locations, enabling researchers to make frequent in situ measurements in the mesosphere (50-90 km), lower thermosphere (above 80 km), and lower ionosphere (above 60 km). SS2 may also offer optical quality windows, allowing optical investigations from main cabin payloads. Researchers will have access to their payloads until just hours before flight and within three hours post-flight. While commercial operations will begin out of Spaceport America in New Mexico, SS2 may eventually be able to launch from a variety of geographic locations. Funding to develop and fly payloads for SS2 is currently available through many NASA programs including the Flight Opportunities Program and the Game Changing Development Program. Virgin Galactic expects the SS2 research platform to enable significant progress

  15. Staging atmospheres

    DEFF Research Database (Denmark)

    Bille, Mikkel; Bjerregaard, Peter; Sørensen, Tim Flohr

    2015-01-01

    The article introduces the special issue on staging atmospheres by surveying the philosophical, political and anthropological literature on atmosphere, and explores the relationship between atmosphere, material culture, subjectivity and affect. Atmosphere seems to occupy one of the classic...

  16. Why do people join trade unions?

    DEFF Research Database (Denmark)

    Toubøl, Jonas; Jensen, Carsten Strøby

    level on union recruitment, which is not done before. Workplace union density is taken to measure the strength of the workplace’s custom of being union member creating an instrumental incentive to join the union. Self-placement on a political left-right scale measures political attitude taken...

  17. Web-based Academic Roadmaps for Careers in the Geosciences

    Science.gov (United States)

    Murray, D. P.; Veeger, A. I.; Grossman-Garber, D.

    2007-12-01

    To a greater extent than most science programs, geology is underrepresented in K-12 curricula and the media. Thus potential majors have scant knowledge of academic requirements and career trajectories, and their idea of what geologists do--if they have one at all--is outdated. We have addressed these concerns by developing a dynamic, web-based academic roadmap for current and prospective students, their families, and others who are contemplating careers in the geosciences. The goals of this visually attractive "educational pathway" are to not only improve student recruitment and retention, but to empower student learning by creating better communication and advising tools that can render our undergraduate program transparent for learners and their families. Although we have developed academic roadmaps for four environmental and life science programs at the University of Rhode Island, we focus here on the roadmap for the geosciences, which illustrates educational pathways along the academic and early-career continuum for current and potential (i.e., high school) students who are considering the earth sciences. In essence, the Geosciences Academic Roadmap is a "one-stop'" portal to the discipline. It includes user- friendly information about our curriculum, outcomes (which at URI are tightly linked to performance in courses and the major), extracurricular activities (e.g., field camp, internships), careers, graduate programs, and training. In the presentation of this material extensive use is made of streaming video, interviews with students and earth scientists, and links to other relevant sites. Moreover, through the use of "Hot Topics", particular attention is made to insure that examples of geoscience activities are not only of relevance to today's students, but show geologists using the modern methods of the discipline in exciting ways. Although this is a "work-in-progress", evaluation of the sites, by high school through graduate students, has been strongly

  18. "YouTube Geology" - Increasing Geoscience Visibility Through Short Films

    Science.gov (United States)

    Piispa, E. J.; Lerner, G. A.

    2016-12-01

    Researchers have the responsibility to communicate their science to a broad audience: scientists, non-scientist, young and old. Effective ways of reaching these groups include using pathways that genuinely spark interest in the target audience. Communication techniques should evolve as the means of communication evolve. Here we talk about our experiences using short films to increase geoscience visibility and appreciation. At a time when brevity and quick engagement are vital to capturing people's attention, creating videos that fit popular formats is an effective way to draw and hold people's interest, and spreading these videos on popular sites is a good way to reach a non-academic audience. Creating videos that are fun, exciting, and catchy in order to initially increase awareness and interest is equally important as the educational content. The visual medium can also be powerful way to make complex scientific concepts seem less intimidating. We have experimented with this medium of geoscience communication by creating a number of short films that target a variety of audiences: short summaries of research topics, mock movie trailers, course advertisements, fieldwork highlight reels and geology lessons for elementary school children. Our two rules of thumb are to put the audience first and use style as a vital element. This allows for the creation of films that are more engaging and often less serious than standard informational (and longer-format) videos. Science does not need to be dry and dull - it can be humorous and entertaining while remaining highly accurate. Doing these short films has changed our own mindset as well - thinking about what to film while doing research helps keep the practical applications of our research in focus. We see a great deal of potential for collaboration between geoscientists and amateur or professional filmmakers creating hip and edgy videos that further raise awareness and interest. People like movies. We like movies. We like

  19. The contribution of AMS to geosciences

    International Nuclear Information System (INIS)

    Chivas, A.R.

    1998-01-01

    Full text: This presentation outlines some of the advances in AMS methods with emphasis on Australian examples and measurements using the accelerators at ANSTO and the Australian National University. Perhaps the best known of these techniques is the application of AMS 14 C dating which has the advantage of needing much smaller amounts of sample (typically 14 C determinations by β counting. AMS 14 C has been applied to dating an enormous array of materials including archaeological samples and sites, tree rings, ice cores, banding in coals and circulation and ventilation changes in the world's oceans. An exciting application of the measurement of the rare long-lived isotopes 10 Be, 26 Al and 36 Cl is in the relatively new field of cosmogenic exposure dating. Accumulation of these cosmogenically produced nuclides formed in-situ in exposed rock surfaces is used to estimate both the time of exposure of the rock surface and mean erosion rates. A large variety of landscape-related processes have been successfully addressed including weathering and sediment-transport rates and the ages of glacial retreat, tectonic uplift and lava eruptions. In the field of hydrology, 36 Cl studies of dissolved chloride have been used to successfully estimate the ages of ground waters and trace their origins. The tracing of atmospheric air masses that deliver rain and the origin of Australian salt lakes and continental salinisation using 36 Cl lead to important conclusions on the origin and residence time of chloride in the Australian landscape. The ultimate origin of the bulk of the surficial chloride in Australia is shown to be meteoric, and for the western part of the continent, a mean residence time of about 0.75 Ma pertains. The realisation of the long-term and continuing delivery of salts to the landscape needs recognition in planning strategies to combat salinisations of agricultural areas

  20. Connecting geoscience systems and data using Linked Open Data in the Web of Data

    Science.gov (United States)

    Ritschel, Bernd; Neher, Günther; Iyemori, Toshihiko; Koyama, Yukinobu; Yatagai, Akiyo; Murayama, Yasuhiro; Galkin, Ivan; King, Todd; Fung, Shing F.; Hughes, Steve; Habermann, Ted; Hapgood, Mike; Belehaki, Anna

    2014-05-01

    specific and cross-domain vocabularies in the sense of terminological ontologies are the foundation for a virtually unified data retrieval and access in IUGONET, ESPAS and GFZ ISDC data management systems. SPARQL endpoints realized either by originally RDF databases, e.g. Virtuoso or by virtual SPARQL endpoints, e.g. D2R services enable an only upon Web standard-based mash-up of domain-specific systems and data, such as in this case the space weather and geomagnetic domain but also cross-domain connection to data and vocabularies, e.g. related to NASA's VxOs, particularly VWO or NASA's PDS data system within LOD. LOD - Linked Open Data RDF - Resource Description Framework RDFS - RDF Schema OWL - Ontology Web Language SPARQL - SPARQL Protocol and RDF Query Language FOAF - Friends of a Friend ontology ESPAS - Near Earth Space Data Infrastructure for e-Science (Project) IUGONET - Inter-university Upper Atmosphere Global Observation Network (Project) GFZ ISDC - German Research Centre for Geosciences Information System and Data Center XML - Extensible Mark-up Language D2R - (Relational) Database to RDF (Transformation) XSLT - Extensible Stylesheet Language Transformation Virtuoso - OpenLink Virtuoso Universal Server (including RDF data management) NASA - National Aeronautics and Space Administration VOx - Virtual Observatories VWO - Virtual Wave Observatory PDS - Planetary Data System

  1. Identifying Important Career Indicators of Undergraduate Geoscience Students Upon Completion of Their Degree

    Science.gov (United States)

    Wilson, C. E.; Keane, C. M.; Houlton, H. R.

    2012-12-01

    The American Geosciences Institute (AGI) decided to create the National Geoscience Student Exit Survey in order to identify the initial pathways into the workforce for these graduating students, as well as assess their preparedness for entering the workforce upon graduation. The creation of this survey stemmed from a combination of experiences with the AGI/AGU Survey of Doctorates and discussions at the following Science Education Research Center (SERC) workshops: "Developing Pathways to Strong Programs for the Future", "Strengthening Your Geoscience Program", and "Assessing Geoscience Programs". These events identified distinct gaps in understanding the experiences and perspectives of geoscience students during one of their most profound professional transitions. Therefore, the idea for the survey arose as a way to evaluate how the discipline is preparing and educating students, as well as identifying the students' desired career paths. The discussions at the workshops solidified the need for this survey and created the initial framework for the first pilot of the survey. The purpose of this assessment tool is to evaluate student preparedness for entering the geosciences workforce; identify student decision points for entering geosciences fields and remaining in the geosciences workforce; identify geosciences fields that students pursue in undergraduate and graduate school; collect information on students' expected career trajectories and geosciences professions; identify geosciences career sectors that are hiring new graduates; collect information about salary projections; overall effectiveness of geosciences departments regionally and nationally; demonstrate the value of geosciences degrees to future students, the institutions, and employers; and establish a benchmark to perform longitudinal studies of geosciences graduates to understand their career pathways and impacts of their educational experiences on these decisions. AGI's Student Exit Survey went through

  2. Improving Undergraduate STEM Education: Pathways into Geoscience (IUSE: GEOPATHS) - A National Science Foundation Initiative

    Science.gov (United States)

    Jones, B.; Patino, L. C.

    2016-12-01

    Preparation of the future professional geoscience workforce includes increasing numbers as well as providing adequate education, exposure and training for undergraduates once they enter geoscience pathways. It is important to consider potential career trajectories for geoscience students, as these inform the types of education and skill-learning required. Recent reports have highlighted that critical thinking and problem-solving skills, spatial and temporal abilities, strong quantitative skills, and the ability to work in teams are among the priorities for many geoscience work environments. The increasing focus of geoscience work on societal issues (e.g., climate change impacts) opens the door to engaging a diverse population of students. In light of this, one challenge is to find effective strategies for "opening the world of possibilities" in the geosciences for these students and supporting them at the critical junctures where they might choose an alternative pathway to geosciences or otherwise leave altogether. To address these and related matters, The National Science Foundation's (NSF) Directorate for Geosciences (GEO) has supported two rounds of the IUSE: GEOPATHS Program, to create and support innovative and inclusive projects to build the future geoscience workforce. This program is one component in NSF's Improving Undergraduate STEM Education (IUSE) initiative, which is a comprehensive, Foundation-wide effort to accelerate the quality and effectiveness of the education of undergraduates in all of the STEM fields. The two tracks of IUSE: GEOPATHS (EXTRA and IMPACT) seek to broaden and strengthen connections and activities that will engage and retain undergraduate students in geoscience education and career pathways, and help prepare them for a variety of careers. The long-term goal of this program is to dramatically increase the number and diversity of students earning undergraduate degrees or enrolling in graduate programs in geoscience fields, as well as

  3. Osteoporosis in the European Union

    DEFF Research Database (Denmark)

    Svedbom, A; Hernlund, E; Ivergård, M

    2013-01-01

    the burden of osteoporosis in each of the EU27 countries in 2010 and beyond. METHODS: The data on fracture incidence and costs of fractures in the EU27 were taken from a concurrent publication in this journal (Osteoporosis in the European Union: Medical Management, Epidemiology and Economic Burden......UNLABELLED: This report describes epidemiology, burden, and treatment of osteoporosis in each of the 27 countries of the European Union (EU27). INTRODUCTION: In 2010, 22 million women and 5.5 million men were estimated to have osteoporosis in the EU; and 3.5 million new fragility fractures were...

  4. Field Studies—Essential Cognitive Foundations for Geoscience Expertise

    Science.gov (United States)

    Goodwin, C.; Mogk, D. W.

    2010-12-01

    Learning in the field has traditionally been one of the fundamental components of the geoscience curriculum. Field experiences have been attributed to having positive impacts on cognitive, affective, metacognitive, mastery of skills and social components of learning geoscience. The development of geoscience thinking, and of geoscience expertise, encompasses a number of learned behaviors that contribute to the progress of Science and the development of scientists. By getting out into Nature, students necessarily engage active and experiential learning. The open, dynamic, heterogeneous and complex Earth system provides ample opportunities to learn by inquiry and discovery. Learning in this environment requires that students make informed decisions and to think critically about what is important to observe, and what should be excluded in the complex overload of information provided by Nature. Students must learn to employ the full range of cognitive skills that include observation, description, interpretation, analysis and synthesis that lead to “deep learning”. They must be able to integrate and rationalize observations of Nature with modern experimental, analytical, theoretical, and modeling approaches to studying the Earth system, and they must be able to iterate between what is known and what is yet to be discovered. Immersion in the field setting provides students with a sense of spatial and temporal scales of natural phenomena that can not be derived in other learning environments. The field setting provides strong sensory inputs that stimulate cognition and memories that will be available for future application. The field environment also stimulates strong affective responses related to motivation, curiosity, a sense of “ownership” of field projects, and inclusion in shared experiences that carry on throughout professional careers. The nature of field work also contains a strong metacognitive component, as students learn to be aware of what and how they

  5. Recruitment Strategies for Geoscience Majors: Conceptual Framework and Practical Suggestions

    Science.gov (United States)

    Richardson, R. M.; Eyles, C.; Ormand, C. J.

    2009-12-01

    One characteristic of strong geoscience departments is that they recruit and retain quality students. In a survey to over 900 geoscience departments in the US and Canada several years ago nearly 90% of respondents indicated that recruiting and retaining students was important. Two years ago we offered a pre-GSA workshop on recruiting and retaining students that attracted over 30 participants from over 20 different institutions, from liberal arts colleges to state universities to research intensive universities. Since then we have sought additional feedback from a presentation to the AGU Heads & Chairs at a Fall AGU meeting, and most recently from a workshop on strengthening geoscience programs in June 2009. In all of these settings, a number of themes and concrete strategies have emerged. Key themes included strategies internal to the department/institution; strategies that reach beyond the department/institution; determining how scalable/transferable strategies that work in one setting are to your own setting; identifying measures of success; and developing or improving on an existing action plan specific to your departmental/institutional setting. The full results of all of these efforts to distill best practices in recruiting students will be shared at the Fall AGU meeting, but some of the best practices for strategies local to the department/institution include: 1) focusing on introductory classes (having the faculty who are most successful in that setting teach them, having one faculty member make a common presentation to all classes about what one can do with a geoscience major, offering topical seminars, etc.); 2) informing students of career opportunities (inviting alumni back to talk to students, using AGI resources, etc.,); 3) creating common space for students to work, study, and be a community; 4) inviting all students earning an ‘A’ (or ‘B’) in introductory classes to a departmental event just for them; and 5) creating a field trip for incoming

  6. Integrated Design for Geoscience Education with Upward Bound Students

    Science.gov (United States)

    Cartwright, T. J.; Hogsett, M.; Ensign, T. I.; Hemler, D.

    2009-05-01

    Capturing the interest of our students is imperative to expand the conduit of future Earth scientists in the United States. According to the Rising Above the Gathering Storm report (2005), we must increase America's talent pool by improving K-12 mathematics and science education. Geoscience education is uniquely suited to accomplish this goal, as we have become acutely aware of our sensitivity to the destructive forces of nature. The educational community must take advantage of this heightened awareness to educate our students and ensure the next generation rebuilds the scientific and technological base on which our society rests. In response to these concerns, the National Science Foundation advocates initiatives in Geoscience Education such as IDGE (Integrated Design for Geoscience Education), which is an inquiry-based geoscience program for Upward Bound (UB) students at Marshall University in Huntington, West Virginia. The UB program targets low-income under-represented students for a summer academic-enrichment program. IDGE builds on the mission of UB by encouraging underprivileged students to investigate science and scientific careers. During the two year project, high school students participated in an Environmental Inquiry course utilizing GLOBE program materials and on-line learning modules developed by geoscience specialists in land cover, soils, hydrology, phenology, and meteorology. Students continued to an advanced course which required IDGE students to collaborate with GLOBE students from Costa Rica. The culmination of this project was an educational expedition in Costa Rica to complete ecological field studies, providing first-hand knowledge of the international responsibility we have as scientists and citizens of our planet. IDGE was designed to continuously serve educators and students. By coordinating initiatives with GLOBE headquarters and the GLOBE country community, IDGE's efforts have yielded multiple ways in which to optimize positive

  7. Union members at the polls in diverse trade union landscapes

    DEFF Research Database (Denmark)

    Arndt, Christoph; Rennwald, Line

    2016-01-01

    still enjoy important support from trade union members, but at the same time are under fierce competition from bourgeois and green parties among members of white-collar confederations. This reinforces the challenges for social democracy to build new voters’ coalitions in post-industrial societies....

  8. GeoSciML v3.0 - a significant upgrade of the CGI-IUGS geoscience data model

    Science.gov (United States)

    Raymond, O.; Duclaux, G.; Boisvert, E.; Cipolloni, C.; Cox, S.; Laxton, J.; Letourneau, F.; Richard, S.; Ritchie, A.; Sen, M.; Serrano, J.-J.; Simons, B.; Vuollo, J.

    2012-04-01

    analytical data using the Observations and Measurements (ISO19156) and SWE Common v2 models. The GeoSciML v3 data model does not include vocabularies to support the data model. However, it does provide a standard pattern to reference controlled vocabulary concepts using HTTP-URIs. The international GeoSciML community has developed distributed RDF-based geoscience vocabularies that can be accessed by GeoSciML web services using the standard pattern recommended in GeoSciML v3. GeoSciML v3 is the first version of GeoSciML that will be accompanied by web service validation tools using Schematron rules. For example, these validation tools may check for compliance of a web service to a particular profile of GeoSciML, or for logical consistency of data content that cannot be enforced by the application schemas. This validation process will support accreditation of GeoSciML services and a higher degree of semantic interoperability. * International Union of Geological Sciences Commission for Management and Application of Geoscience Information (CGI-IUGS)

  9. LIME: 3D visualisation and interpretation of virtual geoscience models

    Science.gov (United States)

    Buckley, Simon; Ringdal, Kari; Dolva, Benjamin; Naumann, Nicole; Kurz, Tobias

    2017-04-01

    Three-dimensional and photorealistic acquisition of surface topography, using methods such as laser scanning and photogrammetry, has become widespread across the geosciences over the last decade. With recent innovations in photogrammetric processing software, robust and automated data capture hardware, and novel sensor platforms, including unmanned aerial vehicles, obtaining 3D representations of exposed topography has never been easier. In addition to 3D datasets, fusion of surface geometry with imaging sensors, such as multi/hyperspectral, thermal and ground-based InSAR, and geophysical methods, create novel and highly visual datasets that provide a fundamental spatial framework to address open geoscience research questions. Although data capture and processing routines are becoming well-established and widely reported in the scientific literature, challenges remain related to the analysis, co-visualisation and presentation of 3D photorealistic models, especially for new users (e.g. students and scientists new to geomatics methods). Interpretation and measurement is essential for quantitative analysis of 3D datasets, and qualitative methods are valuable for presentation purposes, for planning and in education. Motivated by this background, the current contribution presents LIME, a lightweight and high performance 3D software for interpreting and co-visualising 3D models and related image data in geoscience applications. The software focuses on novel data integration and visualisation of 3D topography with image sources such as hyperspectral imagery, logs and interpretation panels, geophysical datasets and georeferenced maps and images. High quality visual output can be generated for dissemination purposes, to aid researchers with communication of their research results. The background of the software is described and case studies from outcrop geology, in hyperspectral mineral mapping and geophysical-geospatial data integration are used to showcase the novel

  10. Spinning Your Own Story - Marketing the Geosciences to the Public

    Science.gov (United States)

    Sturm, D.; Jones, T. S.

    2006-12-01

    Studies of high achieving African-American and Hispanic students have shown the students do not go into STEM (Science, Technology, Engineering and Math) disciplines due to the poor teaching by some STEM teachers, lack of encouragement from teachers or parents and a self perception the students will not be successful. One underlying component to this problem is the issue of perception of the STEM disciplines by the general public. This study focuses on changing the often negative or neutral perception into one more positive and diverse. This study utilizes clear, and hopefully effective, media communication through the use of traditional marketing strategies to promote the geosciences and the geology program at the University of Tennessee at Chattanooga to the general public in the Chattanooga metropolitan area. Average citizens are generally unaware of the various geoscience divisions and career opportunities available. Pioneer marketing, used in this study, introduces new ideas and concepts to the general public, but does not ask for direct action to be taken. The primary goal is to increase awareness of the geosciences. The use of printed and online media delivers the message to the public. In the media, personal interviews with geoscientists from all races and backgrounds were included to demonstrate diversity. An invitation was made to all high school students to participate in an associated after-school program. Elements developed for this program include: 1) clearly defining goals for the marketing effort; 2) delineating the target market by age, education, race and gender; 3) developing a story to tell in the marketing effort; and 4) producing products to achieve the marketing goals. For this effort, the product results included: an annual newspaper tabloid, an associated website and a departmental brochure. The marketing results show increased public awareness, increased awareness of the geology program within the University of Tennessee at Chattanooga

  11. An Integrated Model for Improving Undergraduate Geoscience Workforce Readiness

    Science.gov (United States)

    Keane, C. M.; Houlton, H. R.

    2017-12-01

    Within STEM fields, employers are reporting a widening gap in the workforce readiness of new graduates. As departments continue to be squeezed with new requirements, chasing the latest technologies and scientific developments and constrained budgets, formal undergraduate programs struggle to fully prepare students for the workforce. One major mechanisms to address gaps within formal education is in life-long learning. Most technical and professional fields have life-long learning requirements, but it is not common in the geosciences, as licensing requirements remain limited. By introducing the concept of career self-management and life-long learning into the formal education experience of students, we can build voluntary engagement and shift some of the preparation burden from existing degree programs. The Geoscience Online Learning Initiative (GOLI) seeks to extend professional life-long learning into the formal education realm. By utilizing proven, effective means to capture expert knowledge, the GOLI program constructs courses in the OpenEdX platform, where the content authors and society staff continuously refine the material into effective one- to two-hour long asynchronous modules. The topical focus of these courses are outside of the usual scope of the academic curriculum, but are aligned with applied technical or professional issues. These courses are provided as open education resources, but also qualify for CEUs as the ongoing professional microcredential in the profession. This way, interested faculty can utilize these resources as focused modules in their own course offerings or students can engage in the courses independently and upon passing the assessments and paying of a nominal fee, be awarded CEUs which count towards their professional qualifications. Establishing a continuum of learning over one's career is a critical cultural change needed for students to succeed and be resilient through the duration of a career. We will examine how this

  12. Geosciences Information for Teachers (GIFT) Workshops held in Conjunction with Alexander von Humboldt (AvH) EGU Conferences

    Science.gov (United States)

    Laj, Carlo; Cifelli, Francesca

    2015-04-01

    The Alexander von Humboldt Conference Series of the European Geosciences Union are a series of meetings held outside of Europe, in particular in South America, Africa or Asia, on selected topics of geosciences with a socio-economic impact for regions on these continents, jointly organised with the scientists and their institutes and the institutions of these regions. Given the increasing success of the GIFT workshops held in conjunction with the General Assemblies, since 2010 EGU has also developed a series of GIFT workshops held in conjunction with AvH conferences. Associated GIFT workshops were held in Merida, Yucatan, on the theme of Climate Change, Natural Hazards and Societies (March 2010), then in Penang, Malaysia (June 2011) on the theme of Ocean Acidification, in November 2012 in Cusco (Peru) on the theme of Natural Disasters, Global Change and the Preservation of World Heritage Sites, finally in Istanbul (March 2014) on "High Impact Natural Hazards Related to the Euro-Mediterranean Region. The next GIFT workshop is already planned for October 2015 in Adis Ababa (Ethiopia) on the theme "Water". In each case, the GIFT workshop was held on the last two days of the AvH conference and reunited 40-45 teachers from the nation where the AvH was held. Keynote speakers from AvH were speakers to the GIFT workshops which also included hands-on activities animated by sciences educators. These GIFT workshops represented the first workshops specifically aimed at teachers held in the country, and therefore represents a significant Earth Sciences contribution to secondary education in non European countries.

  13. LaURGE: Louisiana Undergraduate Recruitment and Geoscience Education

    Science.gov (United States)

    Nunn, J. A.; Agnew, J.

    2009-12-01

    NSF and the Shell Foundation sponsor a program called Louisiana Undergraduate Recruitment and Geoscience Education (LaURGE). Goals of LaURGE are: 1) Interweave geoscience education into the existing curriculum; 2) Provide teachers with lesson plans that promote interest in geoscience, critical thinking by students, and are consistent with current knowledge in geoscience; and 3) Provide teachers with supplies that make these lessons the highlights of the course. Biology workshops were held at LSU in Baton Rouge and Centenary College in Shreveport in July 2009. 25 teachers including 5 African-Americans attended the workshops. Teachers were from public and private schools in seven different parishes. Teacher experience ranged from 3 years to 40 years. Courses impacted are Biology, Honors Biology, AP Biology, and Environmental Science. The workshops began with a field trip to Mississippi to collect fossil shark teeth and create a virtual field trip. After the field trip, teachers do a series of activities on fossil shark teeth to illustrate evolution and introduce basic concepts such as geologic time, superposition, and faunal succession. Teachers were also given a $200 budget from which to select fossils for use in their classrooms. One of our exercises explores the evolution of the megatoothed shark lineage leading to Carcharocles megalodon, the largest predatory shark in history with teeth up to 17 cm long. Megatoothed shark teeth have an excellent fossil record and show continuous transitions in morphology from the Eocene to Pliocene. We take advantage of the curiosity of sharks shared by most people, and allow teachers to explore the variations among different shark teeth and to explain the causes of those variations. Objectives are to have teachers (and their students): 1) sort fossil shark teeth into biologically reasonable species; 2) form hypotheses about evolutionary relationships; and 3) describe and interpret evolutionary trends in the fossil Megatoothed

  14. Association for Women Geoscientists: enhancing gender diversity in the geosciences.

    Science.gov (United States)

    Holmes, M.; O'Connell, S.; Foos, A.

    2001-12-01

    The Association for Women Geoscientists (AWG) has been working to increase the representation and advancement of women in geoscience careers since its founding in 1977. We promote the professional development of our members and encourage women to become geoscientists by gathering and providing data on the status of women in the field, providing publications to train women in professional skills, encouraging networking, publicizing mentoring opportunities, organizing and hosting workshops, funding programs to encourage women to enter the field of geosciences, and providing scholarships, particularly to non-traditional students. We promote women geoscientists' visibility through our Phillips Petroleum Speaker's List, by recognizing an Outstanding Educator at our annual breakfast at the Geological Society of America meetings, and by putting qualified women's names forward for awards given by other geo-societies. Our paper and electronic newsletters inform our members of job and funding opportunities. These newsletters provide the geoscience community with a means of reaching a large pool of women (nearly 1000 members). Our outreach is funded by the AWG Foundation and carried out by individual members and association chapters. We provide a variety of programs, from half-day "Fossil Safaris" to two-week field excursions such as the Lincoln Chapter/Homestead Girl Scouts Council Wider Opportunity, "Nebraska Rocks!!". Our programs emphasize the field experience as the most effective "hook" for young people. We have found that women continue to be under-represented in academia in the geosciences. Data from 1995 indicate we hold only 11 percent of academic positions and 9 percent of tenure-track positions, while our enrollment at the undergraduate level has risen from 25 to 34 percent over the last ten years. The proportion of women in Master's degree programs is nearly identical with our proportions in undergraduate programs, but falls off in doctoral programs. Between 1986

  15. Building Strong Geoscience Programs: Perspectives From Three New Programs

    Science.gov (United States)

    Flood, T. P.; Munk, L.; Anderson, S. W.

    2005-12-01

    During the past decade, at least sixteen geoscience departments in the U.S. that offer a B.S. degree or higher have been eliminated or dispersed. During that same time, three new geoscience departments with degree-granting programs have been developed. Each program has unique student demographics, affiliation (i.e. public institution versus private liberal arts college), geoscience curricula and reasons for initiation. Some of the common themes for each program include; 1) strong devotion to providing field experiences, 2) commitment to student-faculty collaborative research, 3) maintaining traditional geology program elements in the core curriculum and 4) placing students into high quality graduate programs and geoscience careers. Although the metrics for each school vary, each program can claim success in the area of maintaining solid enrollments. This metric is critical because programs are successful only if they have enough students, either in the major and/or general education courses, to convince administrators that continued support of faculty, including space and funding is warranted. Some perspectives gained through the establishment of these new programs may also be applicable to established programs. The success and personality of a program can be greatly affected by the personality of a single faculty member. Therefore, it may not be in the best interest of a program to distribute programmatic work equally among all faculty. For example, critical responsibilities such as teaching core and introductory courses should be the responsibility of faculty who are fully committed to these pursuits. However, if these responsibilities reduce scholarly output, well-articulated arguments should be developed in order to promote program quality and sustainability rather than individual productivity. Field and undergraduate research experiences should be valued as much as high-quality classroom and laboratory instruction. To gain the support of the administration

  16. Jovian atmospheres

    International Nuclear Information System (INIS)

    Allison, M.; Travis, L.D.

    1986-10-01

    A conference on the atmosphere of Jupiter produced papers in the areas of thermal and ortho-para hydrogen structure, clouds and chemistry, atmospheric structure, global dynamics, synoptic features and processes, atmospheric dynamics, and future spaceflight opportunities. A session on the atmospheres of Uranus and Neptune was included, and the atmosphere of Saturn was discussed in several papers

  17. Sharing our research progress and connecting with international researchers through the European Geosciences Union (EGU) General Assembly 2016, Vienna, Austria

    International Nuclear Information System (INIS)

    Mabit, Lionel; Slaets, Johanna; Chen, Janet; Heiling, Maria; Toloza, Arsenio; Yan Tiezhu; Resch, Christian; Weltin, Georg; Gruber, Roman; Dercon, Gerd; Zaman, Mohammad

    2016-01-01

    This year at the EGU, the SWMCN Subprogramme activities were reported in 16 presentations (oral, poster and/or PICO) covering carbon and nitrogen cycling, soil erosion, soil conservation and climate change.

  18. Enhancing Geoscience Education within a Minority-Serving Preservice Teacher Population

    Science.gov (United States)

    Ellins, Katherine K.; Olson, Hilary Clement

    2012-01-01

    The University of Texas Institute for Geophysics and Huston-Tillotson University collaborated on a proof of concept project to offer a geoscience course to undergraduate students and preservice teachers in order to expand the scope of geoscience education within the local minority student and teacher population. Students were exposed to rigorous…

  19. The Oil Game: Generating Enthusiasm for Geosciences in Urban Youth in Newark, NJ

    Science.gov (United States)

    Gates, Alexander E.; Kalczynski, Michael J.

    2016-01-01

    A hands-on game based upon principles of oil accumulation and drilling was highly effective at generating enthusiasm toward the geosciences in urban youth from underrepresented minority groups in Newark, NJ. Participating 9th-grade high school students showed little interest in the geosciences prior to participating in the oil game, even if they…

  20. How FOSTER supports training Open Science in the GeoSciences

    Science.gov (United States)

    Orth, Astrid

    2016-04-01

    FOSTER (1) is about promoting and facilitating the adoption of Open Science by the European research community, and fostering compliance with the open access policies set out in Horizon 2020 (H2020). FOSTER aims to reach out and provide training to the wide range of disciplines and countries involved in the European Research Area (ERA) by offering and supporting face-to-face as well as distance training. Different stakeholders, mainly young researchers, are trained to integrate Open Science in their daily workflow, supporting researchers to optimise their research visibility and impact. Strengthening the institutional training capacity is achieved through a train-the-trainers approach. The two-and-half-year project started in February 2014 with identifying, enriching and providing training content on all relevant topics in the area of Open Science. One of the main elements was to support two rounds of trainings, which were conducted during 2014 and 2015, organizing more than 100 training events with around 3000 participants. The presentation will explain the project objectives and results and will look into best practice training examples, among them successful training series in the GeoSciences. The FOSTER portal that now holds a collection of training resources (e.g. slides and PDFs, schedules and design of training events dedicated to different audiences, video captures of complete events) is presented. It provides easy ways to identify learning materials and to create own e-learning courses based on the materials and examples. (1) FOSTER is funded through the European Union's Seventh Framework Programme for research, technological development and demonstration under grant agreement no 612425. http://fosteropenscience.eu

  1. A synergistic effort among geoscience, physics, computer science and mathematics at Hunter College of CUNY as a Catalyst for educating Earth scientists.

    Science.gov (United States)

    Salmun, H.; Buonaiuto, F. S.

    2016-12-01

    The Catalyst Scholarship Program at Hunter College of The City University of New York (CUNY) was established with a four-year award from the National Science Foundation (NSF) to fund scholarships for academically talented but financially disadvantaged students majoring in four disciplines of science, technology, engineering and mathematics (STEM). Led by Earth scientists the Program awarded scholarships to students in their junior or senior years majoring in computer science, geosciences, mathematics and physics to create two cohorts of students that spent a total of four semesters in an interdisciplinary community. The program included mentoring of undergraduate students by faculty and graduate students (peer-mentoring), a sequence of three semesters of a one-credit seminar course and opportunities to engage in research activities, research seminars and other enriching academic experiences. Faculty and peer-mentoring were integrated into all parts of the scholarship activities. The one-credit seminar course, although designed to expose scholars to the diversity STEM disciplines and to highlight research options and careers in these disciplines, was thematically focused on geoscience, specifically on ocean and atmospheric science. The program resulted in increased retention rates relative to institutional averages. In this presentation we will discuss the process of establishing the program, from the original plans to its implementation, as well as the impact of this multidisciplinary approach to geoscience education at our institution and beyond. An overview of accomplishments, lessons learned and potential for best practices will be presented.

  2. TOWARDS THE CAPITAL MARKET UNION

    Directory of Open Access Journals (Sweden)

    Iulian PANAIT

    2015-06-01

    Full Text Available This paper discusses the main characteristics of the proposed Capital Markets Union in Europe, as they are introduced by the European Commission and various authors, and emphasises some important advantages and disadvantages of this project for the developing and frontier markets in UE, especially for Romania.

  3. Rationalities in trade union work

    DEFF Research Database (Denmark)

    Buch, Anders; Andersen, Vibeke

    2011-01-01

    The ambition of this paper is to analyze the discursive practices of three Danish trade unions for professional and managerial staff (The Danish Society of Engineers, The Association of Lawyers and Economists, and The Danish Association of Masters and PhD’s) as found in their strategy and positio...

  4. Intersectionality in European Union policymaking

    DEFF Research Database (Denmark)

    Lombardo, Emanuela; Agustin, Lise Rolandsen

    2016-01-01

    is particularly apt to deal with equality and diversity in policymaking. By analysing a selection of European Union policy documents on gender-based violence in the period 2000–2014, we attend to the question of what intersectionality can bring to policymaking in terms of strengthening inclusiveness and address...

  5. On Union-Based Classes.

    Science.gov (United States)

    Forsythe, Linda

    1982-01-01

    A course combining English in the workplace, information seeking and job application skills, occupational safety, and other workplace skills conducted by a community college and a major industrial union is described. The very successful program will be continued and developed based on the initial experience. (MSE)

  6. Rawls and the European Union

    NARCIS (Netherlands)

    Kamminga, Menno R.

    2014-01-01

    Renowned political philosopher John Rawls once expressed skepticism about the moral status of the European Union (EU). Yet generally EU scholars have either ignored Rawls or rather uncritically established positive links between his theory of domestic and international justice and the EU. This

  7. Geoscience Education Research: The Role of Collaborations with Education Researchers and Cognitive Scientists

    Science.gov (United States)

    Manduca, C. A.; Mogk, D. W.; Kastens, K. A.; Tikoff, B.; Shipley, T. F.; Ormand, C. J.; Mcconnell, D. A.

    2011-12-01

    Geoscience Education Research aims to improve geoscience teaching and learning by understanding clearly the characteristics of geoscience expertise, the path from novice to expert, and the educational practices that can speed students along this path. In addition to expertise in geoscience and education, this research requires an understanding of learning -the domain of cognitive scientists. Beginning in 2002, a series of workshops and events focused on bringing together geoscientists, education researchers, and cognitive scientists to facilitate productive geoscience education research collaborations. These activities produced reports, papers, books, websites and a blog developing a research agenda for geoscience education research at a variety of scales: articulating the nature of geoscience expertise, and the overall importance of observation and a systems approach; focusing attention on geologic time, spatial skills, field work, and complex systems; and identifying key research questions in areas where new technology is changing methods in geoscience research and education. Cognitive scientists and education researchers played critical roles in developing this agenda. Where geoscientists ask questions that spring from their rich understanding of the discipline, cognitive scientists and education researchers ask questions from their experience with teaching and learning in a wide variety of disciplines and settings. These interactions tend to crystallize the questions of highest importance in addressing challenges of geoscience learning and to identify productive targets for collaborative research. Further, they serve as effective mechanisms for bringing research techniques and results from other fields into geoscience education. Working productively at the intersection of these fields requires teams of cognitive scientists, geoscientists, and education reserachers who share enough knowledge of all three domains to have a common articulation of the research

  8. Supporting Geoscience Students at Two-Year Colleges: Career Preparation and Academic Success

    Science.gov (United States)

    McDaris, J. R.; Kirk, K. B.; Layou, K.; Macdonald, H.; Baer, E. M.; Blodgett, R. H.; Hodder, J.

    2013-12-01

    Two-year colleges play an important role in developing a competent and creative geoscience workforce, teaching science to pre-service K-12 teachers, producing earth-science literate citizens, and providing a foundation for broadening participation in the geosciences. The Supporting and Advancing Geoscience Education in Two-Year Colleges (SAGE 2YC) project has developed web resources for geoscience faculty on the preparation and support of students in two-year colleges (2YCs). Online resources developed from two topical workshops and several national, regional, and local workshops around the country focus on two main categories: Career Preparation and Workforce Development, and Supporting Student Success in Geoscience at Two-year Colleges. The Career Preparation and Workforce Development resources were developed to help faculty make the case that careers in the geosciences provide a range of possibilities for students and to support preparation for the geoscience workforce and for transfer to four-year programs as geoscience majors. Many two-year college students are unaware of geoscience career opportunities and these materials help illuminate possible futures for them. Resources include an overview of what geoscientists do; profiles of possible careers along with the preparation necessary to qualify for them; geoscience employer perspectives about jobs and the knowledge, skills, abilities and attitudes they are looking for in their employees; employment trends in sectors of the economy that employ geoscience professionals; examples of geotechnician workforce programs (e.g. Advanced Technological Education Centers, environmental technology programs, marine technician programs); and career resources available from professional societies. The website also provides information to support student recruitment into the geosciences and facilitate student transfer to geoscience programs at four- year colleges and universities, including sections on advising support before

  9. Mobile devices, Virtual Reality, Augmented Reality, and Digital Geoscience Education.

    Science.gov (United States)

    Crompton, H.; De Paor, D. G.; Whitmeyer, S. J.; Bentley, C.

    2016-12-01

    Mobile devices are playing an increasing role in geoscience education. Affordances include instructor-student communication and class management in large classrooms, virtual and augmented reality applications, digital mapping, and crowd-sourcing. Mobile technologies have spawned the sub field of mobile learning or m-learning, which is defined as learning across multiple contexts, through social and content interactions. Geoscientists have traditionally engaged in non-digital mobile learning via fieldwork, but digital devices are greatly extending the possibilities, especially for non-traditional students. Smartphones and tablets are the most common devices but smart glasses such as Pivothead enable live streaming of a first-person view (see for example, https://youtu.be/gWrDaYP5w58). Virtual reality headsets such as Google Cardboard create an immersive virtual field experience and digital imagery such as GigaPan and Structure from Motion enables instructors and/or students to create virtual specimens and outcrops that are sharable across the globe. Whereas virtual reality (VR) replaces the real world with a virtual representation, augmented reality (AR) overlays digital data on the live scene visible to the user in real time. We have previously reported on our use of the AR application called FreshAiR for geoscientific "egg hunts." The popularity of Pokémon Go demonstrates the potential of AR for mobile learning in the geosciences.

  10. XML — an opportunity for data standards in the geosciences

    Science.gov (United States)

    Houlding, Simon W.

    2001-08-01

    Extensible markup language (XML) is a recently introduced meta-language standard on the Web. It provides the rules for development of metadata (markup) standards for information transfer in specific fields. XML allows development of markup languages that describe what information is rather than how it should be presented. This allows computer applications to process the information in intelligent ways. In contrast hypertext markup language (HTML), which fuelled the initial growth of the Web, is a metadata standard concerned exclusively with presentation of information. Besides its potential for revolutionizing Web activities, XML provides an opportunity for development of meaningful data standards in specific application fields. The rapid endorsement of XML by science, industry and e-commerce has already spawned new metadata standards in such fields as mathematics, chemistry, astronomy, multi-media and Web micro-payments. Development of XML-based data standards in the geosciences would significantly reduce the effort currently wasted on manipulating and reformatting data between different computer platforms and applications and would ensure compatibility with the new generation of Web browsers. This paper explores the evolution, benefits and status of XML and related standards in the more general context of Web activities and uses this as a platform for discussion of its potential for development of data standards in the geosciences. Some of the advantages of XML are illustrated by a simple, browser-compatible demonstration of XML functionality applied to a borehole log dataset. The XML dataset and the associated stylesheet and schema declarations are available for FTP download.

  11. OntoSoft: A Software Commons for Geosciences

    Science.gov (United States)

    Gil, Y.

    2015-12-01

    The goal of the EarthCube OntoSoft project is to enable the creation of a germinal ecosystem for software stewardship in geosciences that will empower scientists to manage their software as valuable scientific assets in an open transparent mode that enables broader access to that software by other scientists, software professionals, students, and decision makers. Our work to date includes: 1) an ontology for describing scientific software metadata, 2) a scientific software repository that contains more than 600 entries that can be searched and compared across metadata fields, 3) an intelligent user interface that guides scientists to publish software. We have also developed a training program where scientists learn to describe and cite software in their papers in addition to data and provenance. This training program is part of a Geoscience Papers of the Future Initiative, where scientists learn as they are writing a journal paper that can be submitted to a Special Section of the AGU Earth and Space Science Journal.

  12. OntoSoft: A Software Registry for Geosciences

    Science.gov (United States)

    Garijo, D.; Gil, Y.

    2017-12-01

    The goal of the EarthCube OntoSoft project is to enable the creation of an ecosystem for software stewardship in geosciences that will empower scientists to manage their software as valuable scientific assets. By sharing software metadata in OntoSoft, scientists enable broader access to that software by other scientists, software professionals, students, and decision makers. Our work to date includes: 1) an ontology for describing scientific software metadata, 2) a distributed scientific software repository that contains more than 750 entries that can be searched and compared across metadata fields, 3) an intelligent user interface that guides scientists to publish software and allows them to crowdsource its corresponding metadata. We have also developed a training program where scientists learn to describe and cite software in their papers in addition to data and provenance, and we are using OntoSoft to show them the benefits of publishing their software metadata. This training program is part of a Geoscience Papers of the Future Initiative, where scientists are reflecting on their current practices, benefits and effort for sharing software and data. This journal paper can be submitted to a Special Section of the AGU Earth and Space Science Journal.

  13. Academic provenance: Investigation of pathways that lead students into the geosciences

    Science.gov (United States)

    Houlton, Heather R.

    Pathways that lead students into the geosciences as a college major have not been fully explored in the current literature, despite the recent studies on the "geoscience pipeline model." Anecdotal evidence suggests low quality geoscience curriculum in K-12 education, lack of visibility of the discipline and lack of knowledge about geoscience careers contribute to low geoscience enrollments at universities. This study investigated the reasons why college students decided to major in the geosciences. Students' interests, experiences, motivations and desired future careers were examined to develop a pathway model. In addition, self-efficacy was used to inform pathway analyses, as it is an influential factor in academic major and career choice. These results and interpretations have strong implications for recruitment and retention in academia and industry. A semi-structured interview protocol was developed, which was informed by John Flanagan's critical incident theory. The responses to this interview were used to identify common experiences that diverse students shared for reasons they became geoscience majors. Researchers used self-efficacy theory by Alfred Bandura to assess students' pathways. Seventeen undergraduate geoscience majors from two U.S. Midwest research universities were sampled for cross-comparison and analysis. Qualitative analyses led to the development of six categorical steps for the geoscience pathway. The six pathway steps are: innate attributes/interest sources, pre-college critical incidents, college critical incidents, current/near future goals, expected career attributes and desired future careers. Although, how students traversed through each step was unique for individuals, similar patterns were identified between different populations in our participants: Natives, Immigrants and Refugees. In addition, critical incidents were found to act on behavior in two different ways: to support and confirm decision-making behavior (supportive critical

  14. High Demand, Core Geosciences, and Meeting the Challenges through Online Approaches

    Science.gov (United States)

    Keane, Christopher; Leahy, P. Patrick; Houlton, Heather; Wilson, Carolyn

    2014-05-01

    As the geosciences has evolved over the last several decades, so too has undergraduate geoscience education, both from a standpoint of curriculum and educational experience. In the United States, we have been experiencing very strong growth in enrollments in geoscience, as well as employment demand for the last 7 years. That growth has been largely fueled by all aspects of the energy boom in the US, both from the energy production side and the environmental management side. Interestingly the portfolio of experiences and knowledge required are strongly congruent as evidenced from results of the American Geosciences Institute's National Geoscience Exit Survey. Likewise, the demand for new geoscientists in the US is outstripping even the nearly unprecedented growth in enrollments and degrees, which is calling into question the geosciences' inability to effectively reach into the largest growing segments of the U.S. College population - underrepresented minorities. We will also examine the results of the AGI Survey on Geoscience Online Learning and examine how the results of that survey are rectified with Peter Smith's "Middle Third" theory on "wasted talent" because of spatial, economic, and social dislocation. In particular, the geosciences are late to the online learning game in the United States and most faculty engaged in such activities are "lone wolves" in their department operating with little knowledge of the support structures that exist in such development. Yet the most cited barriers for faculty not engaging actively in online learning is the assertion that laboratory and field experiences will be lost and thus fight engaging in this medium. However, the survey shows that faculty are discovering novel approaches to address these issues, many of which have great application to enabling geoscience programs in the United States to meet the expanding demand for geoscience degrees.

  15. Portfolio Optimization for Multiple Group Credit Unions

    National Research Council Canada - National Science Library

    Willis, John

    1999-01-01

    ...) to diversify, credit unions now have the opportunity to market their services to specific employee groups or industries which can reduce the overall risk to the credit unions' health or solvency...

  16. Gender Differences in Attitudes toward Unions.

    Science.gov (United States)

    Schur, Lisa A.; Kruse, Douglas L.

    1992-01-01

    A 1984 survey of 250 union members (86 women and 164 men) showed that most women, especially those in private sector white collar jobs, were interested in joining unions but face barriers such as family responsibilities. (SK)

  17. Partnership Creates Centre for Union Studies

    Science.gov (United States)

    Smart, Carol; Roman, Stephen

    1978-01-01

    A unique cooperative venture between the city of Coventry and local trade unions is establishing a library collection of books, periodicals, historical documents, tapes, and films dealing with unions, labor studies, and industrial problems. (JAB)

  18. Students Union, University Administration and Political Development ...

    African Journals Online (AJOL)

    Students Union, University Administration and Political Development of Nations. ... African Research Review ... resting on the reciprocal determinism of the social learning theory, that students union makes university administration smooth.

  19. Unions and the Economic Basis of Attitudes

    OpenAIRE

    White, Michael; Bryson, Alex

    2016-01-01

    Unions make differences to employee satisfaction that correspond to their effects on individual economic advantage. Panel data reveal how changes in economic circumstance and changes in job satisfaction are linked to changes in union coverage. When individuals move into a union covered job they receive a wage mark-up and express enhanced pay satisfaction. Conversely, those moving from a union covered job on average lose any mark-up and have significantly reduced satisfaction. Similar findings...

  20. Using the Virtual Vee Map for Inquiry with Geoscience Research Data

    Science.gov (United States)

    Rutherford, S.

    2009-04-01

    The Vee Map is a method by which any teacher can implement guided inquiry in their classroom. It was originally designed to work with classic laboratories. However, Coffman and Riggs (2006) used the idea so that students could gather online scientific data to answer a research question. This is known as the "Virtual Vee Map" because the scientific data collected is online or virtual. Students have great difficulty with designing and conducting a research project. They also are not able to work with scientific data. Many organizations are now making their scientific data available for use by the educational community. However, many educators and students have found geoscience data difficult to find and use. Ledley et al. (2008) suggests that organizations use educationally relevant review criteria for their data sites. As part of a National Oceanic and Atmosphere Administration (NOAA) research project, a website was developed using the Great Lakes Environmental Research Laboratory's (GLERL) scientific data about the Great Lakes. This data was made available such that pre-service Earth Science elementary teachers could design a research question for use with the Virtual Vee Map's guided inquiry approach.

  1. ETUDE - European Trade Union Distance Education.

    Science.gov (United States)

    Creanor, Linda; Walker, Steve

    2000-01-01

    Describes transnational distance learning activities among European trade union educators carried out as part of the European Trade Union Distance Education (ETUDE) project, supported by the European Commission. Highlights include the context of international trade union distance education; tutor training course; tutors' experiences; and…

  2. The African Union and Conflict Management

    Science.gov (United States)

    2006-03-02

    USAWC STRATEGY RESEARCH PROJECT THE AFRICAN UNION AND CONFLICT MANAGEMENT by Lieutenant Colonel Flemming Mathiasen Royal Danish Army Colonel Patrick...AUTHOR: Lieutenant Colonel Flemming Mathiasen TITLE: The African Union and Conflict Management FORMAT: Strategy Research Project DATE: 2 March 2006...WORD COUNT: 5850 PAGES: 28 KEY TERMS: African Union, Africa, Conflict Management , Capabilities CLASSIFICATION: Unclassified Africa is a continent with a

  3. Atmospheric contamination

    International Nuclear Information System (INIS)

    Gruetter, Juerg

    1997-01-01

    It is about the levels of contamination in center America, the population's perception on the problem, effects of the atmospheric contamination, effects in the environment, causes of the atmospheric contamination, possibilities to reduce the atmospheric contamination and list of Roeco Swisscontac in atmospheric contamination

  4. Nuclear Energy and European Union

    International Nuclear Information System (INIS)

    Picamal, B.

    2010-01-01

    The interest shown by the European Institutions in the energy debates, in which the nuclear energy is included as a key component within the energy mix, is obvious. Climate change and energy supply have pushed some countries to publicly express their interest for developing the nuclear energy. These positions are however in contradiction with some others within the European Union which are a lot more critical towards this type of energy and where face-out policies still prevail. Despite the fact that the use of the nuclear energy will remain within the competence of each Member State, the European Union will continue to play a prominent role in the development of an energy strategy based on a low carbon economy. (Author)

  5. The European Union's Africa Policy

    DEFF Research Database (Denmark)

    Olsen, Gorm Rye

    2013-01-01

    For a number of years, there has been an international debate on whether and to what extent small member states can influence the common external policies of the European Union. Recent research on the role of small EU states concludes that these states are neither per se political dwarfs nor power...... including North–South and specifically Africa policies. Five separate analyses are carried out addressing the question of Nordicization and Europeanization. Based on the empirical analyses, it is not possible to confirm the hypothesis that a Nordicization of the European Union's Africa policy has taken...... place. Rather, it appears adequate to talk about convergence of policies between the Nordics and the EU and therefore, the Africa policies of both actors are basically the result of Europeanization....

  6. Labor Unions and Asset Prices

    DEFF Research Database (Denmark)

    Busato, Francesco; Addessi, William

    The paper investigates the nexus between labor and financial markets, focusing on the interaction between labor union behavior in setting wages, firms' investment strategy and asset prices. The way unions set wage claims after observing firm's financial performance increases the volatility of firms......' returns and the riskiness of corporate ownership. To remunerate this higher volatility and stronger risk, firms' equities have to grant high return. This mechanism is able to offer an explanation of for the "equity puzzle", that is it can explain the difference between equity returns and the risk free...... rate. It is a welcome result that the simulated excess return is about the empirical estimate and this result is obtained with a logarithmic specification of the shareholders preferences....

  7. European Union: fears and hopes

    Directory of Open Access Journals (Sweden)

    Gilles ROUET

    2016-06-01

    Full Text Available This contribution analyses some data from Eurobarometer 83, spring 2015, especially to draw a map of Fears. The European Union is a divided space and one of the main consequences of the budget (financial crisis of Greece, followed by the crisis caused by the arrival of thousands of immigrants is an enhanced communication difficulty between the Western and Eastern parts of the EU But all citizens have some new rights with the European Citizenship, which are additional. One of the main issues for the future could be to change the fundamental basis of the Union, thus trying to organize a new articulation between local and supranational, with another role for States, for example to change the organisation of European elections, and to pursue the connection of public spaces with mobility.

  8. Making Geoscience Data Relevant for Students, Teachers, and the Public

    Science.gov (United States)

    Taber, M.; Ledley, T. S.; Prakash, A.; Domenico, B.

    2009-12-01

    The scientific data collected by government funded research belongs to the public. As such, the scientific and technical communities are responsible to make scientific data accessible and usable by the educational community. However, much geoscience data are difficult for educators and students to find and use. Such data are generally described by metadata that are narrowly focused and contain scientific language. Thus, data access presents a challenge to educators in determining if a particular dataset is relevant to their needs, and to effectively access and use the data. The AccessData project (EAR-0623136, EAR-0305058) has developed a model for bridging the scientific and educational communities to develop robust inquiry-based activities using scientific datasets in the form of Earth Exploration Toolbook (EET, http://serc.carleton.edu/eet) chapters. EET chapters provide step-by-step instructions for accessing specific data and analyzing it with a software analysis tool to explore issues or concepts in science, technology, and mathematics. The AccessData model involves working directly with small teams made up of data providers from scientific data archives or research teams, data analysis tool specialists, scientists, curriculum developers, and educators (AccessData, http://serc.carleton.edu/usingdata/accessdata). The process involves a number of steps including 1) building of the team; 2) pre-workshop facilitation; 3) face-to-face 2.5 day workshop; 4) post-workshop follow-up; 5) completion and review of the EET chapter. The AccessData model has been evolved over a series of six annual workshops hosting ~10 teams each. This model has been expanded to other venues to explore expanding its scope and sustainable mechanisms. These venues include 1) workshops focused on the data collected by a large research program (RIDGE, EarthScope); 2) a workshop focused on developing a citizen scientist guide to conducting research; and 3) facilitating a team on an annual basis

  9. Alliances With the Potential to Transform Geoscience Education

    Science.gov (United States)

    Barron, E. J.

    2005-12-01

    Geoscience problems and disciplines are inherently global, and today's opportunities for students to join the workforce also increasingly involve every country and every place on the planet. We have reached the point where the need to create global educational experiences and to make global connections are more important than ever. First, there is enormous benefit to all students if they can contribute within the context of an increasingly globalized world. Second, our primary objective as educators is to build human capacity. The reach and impact of any university is severely limited if our efforts to build this capacity is limited to students within our own classroom. The Alliances that have the potential to transform Geoscience education then have two pathways. The first is to internationalize the curriculum and to provide international educational and research opportunities. This includes: (1) establishing formal undergraduate exchange opportunities specially for the Geosciences, (2) providing opportunities within our course frameworks to enable students to gain international competences, (3) promoting international field experiences and research projects, (4) developing collaborative educational projects with international partners, and (5) creating institutional structures that are charged with promoting, proposing, reviewing, monitoring and assessing international opportunities. The second is to recognize that developing strong educational programs across the world will have a greater impact on education and research, and hence the global workforce, then for select countries to educate small populations of international students. The Alliance for Earth Science, Engineering and Development in Africa (AESEDA), created at Penn State in 2003, is establishing the partnerships with universities in Africa and with HCBUs within the U.S. that both internationalize the education of Penn State students and enable capacity building within the participating universities

  10. EarthCube: A Community Organization for Geoscience Cyberinfrastructure

    Science.gov (United States)

    Patten, K.; Allison, M. L.

    2014-12-01

    The National Science Foundation's (NSF) EarthCube initiative is a community-driven approach to building cyberinfrastructure for managing, sharing, and exploring geoscience data and information to better address today's grand-challenge science questions. The EarthCube Test Enterprise Governance project is a two-year effort seeking to engage diverse geo- and cyber-science communities in applying a responsive approach to the development of a governing system for EarthCube. During Year 1, an Assembly of seven stakeholder groups representing the broad EarthCube community developed a draft Governance Framework. Finalized at the June 2014 EarthCube All Hands Meeting, this framework will be tested during the demonstration phase in Year 2, beginning October 2014. A brief overview of the framework: Community-elected members of the EarthCube Leadership Council will be responsible for managing strategic direction and identifying the scope of EarthCube. Three Standing Committees will also be established to oversee the development of technology and architecture, to coordinate among new and existing data facilities, and to represent the academic geosciences community in driving development of EarthCube cyberinfrastructure. An Engagement Team and a Liaison Team will support communication and partnerships with internal and external stakeholders, and a central Office will serve a logistical support function to the governance as a whole. Finally, ad hoc Working Groups and Special Interest Groups will take on other issues related to EarthCube's goals. The Year 2 demonstration phase will test the effectiveness of the proposed framework and allow for elements to be changed to better meet community needs. It will begin by populating committees and teams, and finalizing leadership and decision-making processes to move forward on community-selected priorities including identifying science drivers, coordinating emerging technical elements, and coming to convergence on system architecture. A

  11. Infusing Geoethics One Geoscience Course at a Time

    Science.gov (United States)

    Cronin, V. S.

    2016-12-01

    Positive change is sometimes difficult to accomplish within a university. While it might be easy to get faculty members and administrators to agree that facilitating the development of students as ethical geoscientists is a desirable goal in the abstract, formally proposing concrete plans to achieve that goal might generate negative responses and even roadblocks. For example, it might be a challenge to pass a course in geoethics through a college curriculum committee, because ethics is a topic usually taught by the philosophy faculty. Although there are recognized subfields in engineering, medical, business, and legal ethics that are commonly taught by faculty members in those respective departments, geoethics is not yet recognized in this way. A more productive approach might be to begin with change that can be accomplished simply, within existing courses. Faculty members are usually granted broad discretionary authority to decide how material is to be presented in geoscience courses, including required core courses. My suggestion is to structure a course that presents all of the material normally expected under that course title, but in such a way that the ethical dimensions are intentionally and consistently highlighted. As with any change in the way we present course material, there is a startup cost to be borne by the teacher. One cost is the time needed to deepen our understanding of applied professional and scientific ethics; however, this is more of a personal and professional benefit than a cost in the long run. Infusing a course with an awareness of ethical issues also takes prior thought and planning to be successful. But, of course, that is no different from any other improvement in science education. Impressions from a semester's effort to include geoethics in a required core course in structural geology to about 25 students will be shared. The main course topic is not particularly relevant, because there are a number of ethical questions that students

  12. A Categorical Framework for Model Classification in the Geosciences

    Science.gov (United States)

    Hauhs, Michael; Trancón y Widemann, Baltasar; Lange, Holger

    2016-04-01

    Models have a mixed record of success in the geosciences. In meteorology, model development and implementation has been among the first and most successful examples of triggering computer technology in science. On the other hand, notorious problems such as the 'equifinality issue' in hydrology lead to a rather mixed reputation of models in other areas. The most successful models in geosciences are applications of dynamic systems theory to non-living systems or phenomena. Thus, we start from the hypothesis that the success of model applications relates to the influence of life on the phenomenon under study. We thus focus on the (formal) representation of life in models. The aim is to investigate whether disappointment in model performance is due to system properties such as heterogeneity and historicity of ecosystems, or rather reflects an abstraction and formalisation problem at a fundamental level. As a formal framework for this investigation, we use category theory as applied in computer science to specify behaviour at an interface. Its methods have been developed for translating and comparing formal structures among different application areas and seems highly suited for a classification of the current "model zoo" in the geosciences. The approach is rather abstract, with a high degree of generality but a low level of expressibility. Here, category theory will be employed to check the consistency of assumptions about life in different models. It will be shown that it is sufficient to distinguish just four logical cases to check for consistency of model content. All four cases can be formalised as variants of coalgebra-algebra homomorphisms. It can be demonstrated that transitions between the four variants affect the relevant observations (time series or spatial maps), the formalisms used (equations, decision trees) and the test criteria of success (prediction, classification) of the resulting model types. We will present examples from hydrology and ecology in

  13. Workshop Results: Teaching Geoscience to K-12 Teachers

    Science.gov (United States)

    Nahm, A.; Villalobos, J. I.; White, J.; Smith-Konter, B. R.

    2012-12-01

    A workshop for high school and middle school Earth and Space Science (ESS) teachers was held this summer (2012) as part of an ongoing collaboration between the University of Texas at El Paso (UTEP) and El Paso Community College (EPCC) Departments of Geological Sciences. This collaborative effort aims to build local Earth science literacy and educational support for the geosciences. Sixteen teachers from three school districts from El Paso and southern New Mexico area participated in the workshop, consisting of middle school, high school, early college high school, and dual credit faculty. The majority of the teachers had little to no experience teaching geoscience, thus this workshop provided an introduction to basic geologic concepts to teachers with broad backgrounds, which will result in the introduction of geoscience to many new students each year. The workshop's goal was to provide hands-on activities illustrating basic geologic and scientific concepts currently used in introductory geology labs/lectures at both EPCC and UTEP to help engage pre-college students. Activities chosen for the workshop were an introduction to Google Earth for use in the classroom, relative age dating and stratigraphy using volcanoes, plate tectonics utilizing the jigsaw pedagogy, and the scientific method as a think-pair-share activity. All activities where designed to be low cost and materials were provided for instructors to take back to their institutions. A list of online resources for teaching materials was also distributed. Before each activity, a short pre-test was given to the participants to gauge their level of knowledge on the subjects. At the end of the workshop, participants were given a post-test, which tested the knowledge gain made by participating in the workshop. In all cases, more correct answers were chosen in the post-test than the individual activity pre-tests, indicating that knowledge of the subjects was gained. The participants enjoyed participating in these

  14. union publique HR

    CERN Multimedia

    CERN. Geneva

    2010-01-01

    Chers Collègues,Je me permets de vous rappeler qu'une réunion publique organisée par le Département HR se tiendra aujourd'hui:Vendredi 30 avril 2010 à 9h30 dans l'Amphithéâtre principal (café offert dès 9h00).Durant cette réunion, des informations générales seront données sur:le CERN Admin e-guide, qui est un nouveau guide des procédures administratives du CERN ayant pour but de faciliter la recherche d'informations pratiques et d'offrir un format de lecture convivial;le régime d'Assurance Maladie de l'Organisation (présentation effectuée par Philippe Charpentier, Président du CHIS Board) et;la Caisse de Pensions (présentation effectuée par Théodore Economou, Administrateur de la Caisse de Pensions du CERN).Une transmission simultanée de cette réunion sera assur...

  15. Be Explicit: Geoscience Program Design to Prepare the Next Generation of Geoscientists

    Science.gov (United States)

    Mogk, D. W.

    2015-12-01

    The work of geoscientists is to engage inquiry, discovery and exploration of Earth history and processes, and increasingly, to apply this knowledge to the "grand challenges" that face humanity. Geoscience as a discipline is confronted with an incomplete geologic record, observations or data that are often ambiguous or uncertain, and a need to grasp abstract concepts such as temporal reasoning ('deep time'), spatial reasoning over many orders of magnitude, and complex system behavior. These factors provide challenges, and also opportunities, for training future geoscientists. Beyond disciplinary knowledge, it is also important to provide opportunities for students to engage the community of practice and demonstrate how to "be" a geoscientist. Inculcation of geoscience "ways of knowing" is a collective responsibility for geoscientists (teaching faculty and other professionals), at all instructional levels, in all geoscience disciplines, and for all students. A whole-student approach is recommended. Geoscience programs can be designed to focus on student success by explictly: 1) defining programmatic student learning outcomes , 2) embedding assessments throughout the program to demonstrate mastery, 3) aligning course sequences to reinforce and anticipate essential concepts/skills, 4) preparing students to be life-long learners; 5) assigning responsibilities to courses/faculty to ensure these goals have been met; 6) providing opportunities for students to "do" geoscience (research experiences), and 7) modeling professional behaviors in class, field, labs, and informal settings. Extracurricular departmental activities also contribute to student development such as journal clubs, colloquia, field trips, and internships. Successful design of geoscience department programs is informed by: the AGI Workforce program and Summit on the Future of Geoscience Education that define pathways for becoming a successful geoscientist; training in Geoethics; Geoscience Education

  16. Revitalizing the Malaysian Trade Union Movement

    DEFF Research Database (Denmark)

    Wad, Peter

    2012-01-01

    The article takes an historic perspective on contemporary issues of trade union revival in Malaysia, focusing on the challenge of raising union density and analysing the process of organizing employees in the strategically important electronics industry. It concludes that the political support...... for transnational corporations in the electronics industry is declining. This strategic shift enables union activists to bypass enterprise and state-based unions and to establish larger, regionally based unions. However, newly organized unions have not yet overcome resistance from global corporations, nor have...... organizations prefer non-partisan engagement. In order to revitalize themselves, the unions must demonstrate to the Malaysian public that they are both relevant and important for increased productivity and that they can play a significant role in enabling Malaysia to move beyond the middle-income ‘trap’ towards...

  17. Social Customs and Trade Union Membership

    DEFF Research Database (Denmark)

    Ibsen, Christian Lyhne; Toubøl, Jonas; Jensen, Daniel Sparwath

    2017-01-01

    In this article, we investigate the effect of social customs on one of the most important instances of collective action, namely, workers uniting in trade unions. Although many studies have used social custom theory to explain unionization, existing studies have not adequately analysed social...... customs at the workplace. Using workplace union density as a proxy for social custom, this analysis improves existing studies in a number of ways. First, multi-level analyses of a large panel data set from Denmark reveal that there is a significant positive effect of workplace union density...... in unionization are required to create self-sustaining social customs for union membership. Thirdly, we test the acceleration using segmented regression analysis and find a significant acceleration around 45–65 per cent workplace union density. In the conclusion, we discuss the implications of our study...

  18. Strategic Roadmap for the U.S. Geoscience Information Network

    Science.gov (United States)

    Allison, M. L.; Gallagher, K. T.; Richard, S. M.; Hutchison, V. B.

    2012-04-01

    An external advisory working group has prepared a 5-year strategic roadmap for the U.S. Geoscience Information Network (USGIN). USGIN is a partnership of the Association of American State Geologists (AASG) and the U.S. Geological Survey (USGS), who formally agreed in 2007 to develop a national geoscience information framework that is distributed, interoperable, uses open source standards and common protocols, respects and acknowledges data ownership, fosters communities of practice to grow, and develops new Web services and clients. The intention of the USGIN is to benefit the geological surveys by reducing the cost of online data publication and access provision, and to benefit society through easier (lower cost) access to public domain geoscience data. This information supports environmental planning, resource-development, hazard mitigation design, and decision-making. USGIN supposes that sharing resources for system development and maintenance, standardizing data discovery and creating better access mechanisms, causes cost of data access and maintenance to be reduced. Standardization in a wide variety of business domains provides economic benefits that range between 0.2 and 0.9% of the gross national product. We suggest that the economic benefits of standardization also apply in the informatics domain. Standardized access to rich data resources will create collaborative opportunities in science and business. Development and use of shared protocols and interchange formats for data publication will create a market for user applications, facilitating geoscience data discovery and utility for the benefit of society. The USGIN Working Group envisions further development of tools and capabilities, in addition to extending the community of practice that currently involves geoinformatics practitioners from the USGS and AASG. Promoting engagement and participation of the state geological surveys, and increasing communication between the states, USGS, and other

  19. Supporting REU Leaders and Effective Workforce Development in the Geosciences

    Science.gov (United States)

    Sloan, V.; Haacker, R.

    2014-12-01

    Research shows that research science experiences for undergraduates are key to the engagement of students in science, and teach critical thinking and communication, as well as the professional development skills. Nonetheless, undergraduate research programs are time and resource intensive, and program managers work in relative isolation from each other. The benefits of developing an REU community include sharing strategies and policies, developing collaborative efforts, and providing support to each other. This paper will provide an update on efforts to further develop the Geoscience REU network, including running a national workshop, an email listserv, workshops, and the creation of online resources for REU leaders. The goal is to strengthen the connections between REU community members, support the sharing of best practices in a changing REU landscape, and to make progress in formalizing tools for REU site managers.

  20. Exploring Various Monte Carlo Simulations for Geoscience Applications

    Science.gov (United States)

    Blais, R.

    2010-12-01

    Computer simulations are increasingly important in geoscience research and development. At the core of stochastic or Monte Carlo simulations are the random number sequences that are assumed to be distributed with specific characteristics. Computer generated random numbers, uniformly distributed on (0, 1), can be very different depending on the selection of pseudo-random number (PRN), or chaotic random number (CRN) generators. Equidistributed quasi-random numbers (QRNs) can also be used in Monte Carlo simulations. In the evaluation of some definite integrals, the resulting error variances can even be of different orders of magnitude. Furthermore, practical techniques for variance reduction such as Importance Sampling and Stratified Sampling can be implemented to significantly improve the results. A comparative analysis of these strategies has been carried out for computational applications in planar and spatial contexts. Based on these experiments, and on examples of geodetic applications of gravimetric terrain corrections and gravity inversion, conclusions and recommendations concerning their performance and general applicability are included.

  1. Exploring Monte Carlo Simulation Strategies for Geoscience Applications

    Science.gov (United States)

    Blais, J.; Grebenitcharsky, R.; Zhang, Z.

    2008-12-01

    Computer simulations are an increasingly important area of geoscience research and development. At the core of stochastic or Monte Carlo simulations are the random number sequences that are assumed to be distributed with specific characteristics. Computer generated random numbers, uniformly distributed on [0, 1], can be very different depending on the selection of pseudo-random number (PRN), quasi-random number (QRN) or chaotic random number (CRN) generators. In the evaluation of some definite integrals, the expected error variances are generally of different orders for the same number of random numbers. A comparative analysis of these three strategies has been carried out for geodetic and related applications in planar and spherical contexts. Based on these computational experiments, conclusions and recommendations concerning their performance and error variances are included.

  2. Geoscience in Developing Countries of South Asia and International Cooperation

    Science.gov (United States)

    Gupta, K.

    2007-12-01

    Earth Science community in developing countries of South Asia is actively engaged in interdisciplinary investigations of the Earth and its envelopes through geological, geophysical and geochemical processes, for these processes are interconnected. Interdisciplinary interaction will continue to grow since problems pertaining to the solid earth, with its core-mantle-crust, and fluid envelops can be solved only with contributions from different Science disciplines. The expanding population and revolution in data handling-and-computing have now become a necessity to tackle the geoscientific problems with modern techniques and methodologies to meet these new challenges. As a future strategy, geo-data generation and handling need to be speedier and easier and hence demands a well- knit coordiantion and understanding amongst Governments, Industries and Academic organizations. Such coordination will prove valuable for better understanding of the Earth's processes, especially mitigating natural hazards with more accurate and speedy prdictions, besides sustaining Earth's resources. South Asian geoscience must, therefore, seek new directions by way of strategies, policies, and actions to move forward in this century. Environmental and resource problems affecting the world population have become international issues, since global environmental changes demand international cooperation and planning. The Earth is continually modified by the interplay of internal and external processes. Hence we need to apply modern geophysical techniques and interpret the results with the help of available geological, geochronological and gechemical informations It is through such integrated approach that we could greatly refine our understanding of the deep structure and evolution of the Indian shield. However, the inputs into multi-disciplinary studies necessary to know the crustal structure and tectonics in the adjoining regions (Nepal, Bangladesh, Myanmar, Sri Lanka etc.) still remain

  3. History and development of ABCDEFG: a data standard for geosciences

    Directory of Open Access Journals (Sweden)

    M. Petersen

    2018-01-01

    Full Text Available Museums and their collections have specially customized databases in order to optimally gather and record their contents and associated metadata associated with their specimens. To share, exchange, and publish data, an appropriate data standard is essential. ABCD (Access to Biological Collection Data is a standard for biological collection units, including living and preserved specimen, together with field observation data. Its extension, EFG (Extension for Geoscience, enables sharing and publishing data related to paleontological, mineralogical, and petrological objects. The standard is very granular and allows detailed descriptions, including information about the collection event itself, the holding institution, stratigraphy, chemical analysis, and host rock. The standard extension was developed in 2006 and has been used since then by different initiatives and applied for the publication of collection-related data in domain-specific and interdisciplinary portals.

  4. Geoscience research for the Canadian nuclear fuel waste management program

    International Nuclear Information System (INIS)

    Whitaker, S.H.

    1987-01-01

    The Canadian Nuclear Fuel Waste Management Program is assessing the concept of deep disposal of nuclear fuel waste in plutonic rock. As part of that assessment, a broad program of geoscience and geotechnical work has been undertaken to develop methods for characterizing sites, incorporating geotechnical data into disposal facility design, and incorporating geotechnical data into environmental and safety assessment of the disposal system. General field investigations are conducted throughout the Precambrian Shield, subsurface investigations are conducted at designated field research areas, and in situ rock mass experiments are being conducted in an Underground Research Laboratory. Samples from the field research areas and elsewhere are subjected to a wide range of tests and experiments in the laboratory to develop an understanding of the physical and chemical processes involved in ground-water-rock-waste interactions. Mathematical models to simulate these processes are developed, verified and validated. 114 refs.; 13 figs

  5. Geosciences: An Open Access Journal on Earth and Planetary Sciences and Their Interdisciplinary Approaches

    Directory of Open Access Journals (Sweden)

    Jesus Martinez-Frias

    2011-05-01

    Full Text Available On behalf of the Editorial Board and the editorial management staff of MDPI, it is my great pleasure to introduce this new journal Geosciences. Geosciences is an international, peer-reviewed open access journal, which publishes original papers, rapid communications, technical notes and review articles, and discussions about all interdisciplinary aspects of the earth and planetary sciences. Geosciences may also include papers presented at scientific conferences (proceedings or articles on a well defined topic assembled by individual editors or organizations/institutions (special publications.

  6. 3D Immersive Visualization: An Educational Tool in Geosciences

    Science.gov (United States)

    Pérez-Campos, N.; Cárdenas-Soto, M.; Juárez-Casas, M.; Castrejón-Pineda, R.

    2007-05-01

    3D immersive visualization is an innovative tool currently used in various disciplines, such as medicine, architecture, engineering, video games, etc. Recently, the Universidad Nacional Autónoma de México (UNAM) mounted a visualization theater (Ixtli) with leading edge technology, for academic and research purposes that require immersive 3D tools for a better understanding of the concepts involved. The Division of Engineering in Earth Sciences of the School of Engineering, UNAM, is running a project focused on visualization of geoscience data. Its objective is to incoporate educational material in geoscience courses in order to support and to improve the teaching-learning process, especially in well-known difficult topics for students. As part of the project, proffessors and students are trained in visualization techniques, then their data are adapted and visualized in Ixtli as part of a class or a seminar, where all the attendants can interact, not only among each other but also with the object under study. As part of our results, we present specific examples used in basic geophysics courses, such as interpreted seismic cubes, seismic-wave propagation models, and structural models from bathymetric, gravimetric and seismological data; as well as examples from ongoing applied projects, such as a modeled SH upward wave, the occurrence of an earthquake cluster in 1999 in the Popocatepetl volcano, and a risk atlas from Delegación Alvaro Obregón in Mexico City. All these examples, plus those to come, constitute a library for students and professors willing to explore another dimension of the teaching-learning process. Furthermore, this experience can be enhaced by rich discussions and interactions by videoconferences with other universities and researchers.

  7. Helping geoscience students improve their numeracy using online quizzes

    Science.gov (United States)

    Nuttall, Anne-Marie; Stott, Tim; Sparke, Shaun

    2010-05-01

    This project aims to help geoscience undergraduates improve their competence and confidence in numeracy using online quizzes delivered via the Blackboard virtual learning environment. Numeracy materials are being developed based on actual examples used in a range of modules in the geoscience degree programmes taught at Liverpool John Moores University. This is to ensure the subject relevance which is considered vital to maintaining student interest & motivation. These materials are delivered as a collection of Blackboard quizzes on specific numeracy topics which students can access at any point in their studies, either on or off campus. Feedback and guidance is provided immediately so that a student gains a confidence boost if they get it right or else they can learn where they have gone wrong. It is intended that positive feedback and repetition/reinforcement will help build the confidence in numeracy which so many students seem to lack. The anonymous nature of the delivery means that students avoid the common fear of ‘asking a stupid question' in class, which can hamper their progress. The fact that students can access the quizzes anytime and from anywhere means that they can use the materials flexibly to suit their individual learning needs. In preliminary research, 70% of the students asked felt that they were expected to have greater numeracy skills than they possessed and 65% said that they would use numeracy support materials on Blackboard. Once fully developed and evaluated, the Blackboard quizzes can be opened up to other departments who may wish to use them with their own students.

  8. Enhancing learning in geosciences and water engineering via lab activities

    Science.gov (United States)

    Valyrakis, Manousos; Cheng, Ming

    2016-04-01

    This study focuses on the utilisation of lab based activities to enhance the learning experience of engineering students studying Water Engineering and Geosciences. In particular, the use of modern highly visual and tangible presentation techniques within an appropriate laboratory based space are used to introduce undergraduate students to advanced engineering concepts. A specific lab activity, namely "Flood-City", is presented as a case study to enhance the active engagement rate, improve the learning experience of the students and better achieve the intended learning objectives of the course within a broad context of the engineering and geosciences curriculum. Such activities, have been used over the last few years from the Water Engineering group @ Glasgow, with success for outreach purposes (e.g. Glasgow Science Festival and demos at the Glasgow Science Centre and Kelvingrove museum). The activity involves a specific setup of the demonstration flume in a sand-box configuration, with elements and activities designed so as to gamely the overall learning activity. Social media platforms can also be used effectively to the same goals, particularly in cases were the students already engage in these online media. To assess the effectiveness of this activity a purpose designed questionnaire is offered to the students. Specifically, the questionnaire covers several aspects that may affect student learning, performance and satisfaction, such as students' motivation, factors to effective learning (also assessed by follow-up quizzes), and methods of communication and assessment. The results, analysed to assess the effectiveness of the learning activity as the students perceive it, offer a promising potential for the use of such activities in outreach and learning.

  9. Finding faults: analogical comparison supports spatial concept learning in geoscience.

    Science.gov (United States)

    Jee, Benjamin D; Uttal, David H; Gentner, Dedre; Manduca, Cathy; Shipley, Thomas F; Sageman, Bradley

    2013-05-01

    A central issue in education is how to support the spatial thinking involved in learning science, technology, engineering, and mathematics (STEM). We investigated whether and how the cognitive process of analogical comparison supports learning of a basic spatial concept in geoscience, fault. Because of the high variability in the appearance of faults, it may be difficult for students to learn the category-relevant spatial structure. There is abundant evidence that comparing analogous examples can help students gain insight into important category-defining features (Gentner in Cogn Sci 34(5):752-775, 2010). Further, comparing high-similarity pairs can be especially effective at revealing key differences (Sagi et al. 2012). Across three experiments, we tested whether comparison of visually similar contrasting examples would help students learn the fault concept. Our main findings were that participants performed better at identifying faults when they (1) compared contrasting (fault/no fault) cases versus viewing each case separately (Experiment 1), (2) compared similar as opposed to dissimilar contrasting cases early in learning (Experiment 2), and (3) viewed a contrasting pair of schematic block diagrams as opposed to a single block diagram of a fault as part of an instructional text (Experiment 3). These results suggest that comparison of visually similar contrasting cases helped distinguish category-relevant from category-irrelevant features for participants. When such comparisons occurred early in learning, participants were more likely to form an accurate conceptual representation. Thus, analogical comparison of images may provide one powerful way to enhance spatial learning in geoscience and other STEM disciplines.

  10. Building a Network of Internships for a Diverse Geoscience Community

    Science.gov (United States)

    Sloan, V.; Haacker-Santos, R.; Pandya, R.

    2011-12-01

    Individual undergraduate internship programs, however effective, are not sufficient to address the lack of diversity in the geoscience workforce. Rather than competing with each other for a small pool of students from historically under-represented groups, REU and internship programs might share recruiting efforts and application processes. For example, in 2011, the RESESS program at UNAVCO and the SOARS program at UCAR shared recruiting websites and advertising. This contributed to a substantial increase in the number of applicants to the RESESS program, the majority of which were from historically under-represented groups. RESESS and SOARS shared qualified applications with other REU/internship programs and helped several additional minority students secure summer internships. RESESS and SOARS also leveraged their geographic proximity to pool resources for community building activities, a two-day science field trip, a weekly writing workshop, and our final poster session. This provided our interns with an expanded network of peers and gave our staff opportunities to work together on planning. Recently we have reached out to include other programs and agencies in activities for our interns, such as mentoring high-school students, leading outreach to elementary school students, and exposing our interns to geoscience careers options and graduate schools. Informal feedback from students suggests that they value these interactions and appreciate learning with interns from partner programs. Through this work, we are building a network of program managers who support one another professionally and share effective strategies. We would like to expand that network, and future plans include a workshop with university partners and an expanded list of REU programs to explore further collaborations.

  11. 3D Printing and Digital Rock Physics for the Geosciences

    Science.gov (United States)

    Martinez, M. J.; Yoon, H.; Dewers, T. A.

    2014-12-01

    Imaging techniques for the analysis of porous structures have revolutionized our ability to quantitatively characterize geomaterials. For example, digital representations of rock from CT images and physics modeling based on these pore structures provide the opportunity to further advance our quantitative understanding of fluid flow, geomechanics, and geochemistry, and the emergence of coupled behaviors. Additive manufacturing, commonly known as 3D printing, has revolutionized production of custom parts, to the point where parts might be cheaper to print than to make by traditional means in a plant and ship. Some key benefits of additive manufacturing include short lead times, complex shapes, parts on demand, zero required inventory and less material waste. Even subtractive processing, such as milling and etching, may be economized by additive manufacturing. For the geosciences, recent advances in 3D printing technology may be co-opted to print reproducible porous structures derived from CT-imaging of actual rocks for experimental testing. The use of 3D printed microstructure allows us to surmount typical problems associated with sample-to-sample heterogeneity that plague rock physics testing and to test material response independent from pore-structure variability. Together, imaging, digital rocks and 3D printing potentially enables a new workflow for understanding coupled geophysical processes in a real, but well-defined setting circumventing typical issues associated with reproducibility, enabling full characterization and thus connection of physical phenomena to structure. In this talk we will discuss the possibilities that the marriage of these technologies can bring to geosciences, including examples from our current research initiatives in developing constitutive laws for transport and geomechanics via digital rock physics. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of

  12. The AR Sandbox: Augmented Reality in Geoscience Education

    Science.gov (United States)

    Kreylos, O.; Kellogg, L. H.; Reed, S.; Hsi, S.; Yikilmaz, M. B.; Schladow, G.; Segale, H.; Chan, L.

    2016-12-01

    The AR Sandbox is a combination of a physical box full of sand, a 3D (depth) camera such as a Microsoft Kinect, a data projector, and a computer running open-source software, creating a responsive and interactive system to teach geoscience concepts in formal or informal contexts. As one or more users shape the sand surface to create planes, hills, or valleys, the 3D camera scans the surface in real-time, the software creates a dynamic topographic map including elevation color maps and contour lines, and the projector projects that map back onto the sand surface such that real and projected features match exactly. In addition, users can add virtual water to the sandbox, which realistically flows over the real surface driven by a real-time fluid flow simulation. The AR Sandbox can teach basic geographic and hydrologic skills and concepts such as reading topographic maps, interpreting contour lines, formation of watersheds, flooding, or surface wave propagation in a hands-on and explorative manner. AR Sandbox installations in more than 150 institutions have shown high audience engagement and long dwell times of often 20 minutes and more. In a more formal context, the AR Sandbox can be used in field trip preparation, and can teach advanced geoscience skills such as extrapolating 3D sub-surface shapes from surface expression, via advanced software features such as the ability to load digital models of real landscapes and guiding users towards recreating them in the sandbox. Blueprints, installation instructions, and the open-source AR Sandbox software package are available at http://arsandbox.org .

  13. OneGeology - Access to geoscience for all

    Science.gov (United States)

    Komac, Marko; Lee, Kathryn; Robida, Francois

    2014-05-01

    OneGeology is an initiative of Geological Survey Organisations (GSO) around the globe that dates back to Brighton, UK in 2007. Since then OneGeology has been a leader in developing geological online map data using a new international standard - a geological exchange language known as 'GeoSciML'. Increased use of this new language allows geological data to be shared and integrated across the planet with other organisations. One of very important goals of OneGeology was a transfer of valuable know-how to the developing world, hence shortening the digital learning curve. In autumn 2013 OneGeology was transformed into a Consortium with a clearly defined governance structure, making its structure more official, its operability more flexible and its membership more open where in addition to GSO also to other type of organisations that manage geoscientific data can join and contribute. The next stage of the OneGeology initiative will hence be focused into increasing the openness and richness of that data from individual countries to create a multi-thematic global geological data resource on the rocks beneath our feet. Authoritative information on hazards and minerals will help to prevent natural disasters, explore for resources (water, minerals and energy) and identify risks to human health on a planetary scale. With this new stage also renewed OneGeology objectives were defined and these are 1) to be the provider of geoscience data globally, 2) to ensure exchange of know-how and skills so all can participate, and 3) to use the global profile of 1G to increase awareness of the geosciences and their relevance among professional and general public. We live in a digital world that enables prompt access to vast amounts of open access data. Understanding our world, the geology beneath our feet and environmental challenges related to geology calls for accessibility of geoscientific data and OneGeology Portal (portal.onegeology.org) is the place to find them.

  14. Unions and the Sword of Justice: Unions and Pay Systems, Pay Inequality, Pay Discrimination and Low Pay

    OpenAIRE

    A Charlwood; K Hansen; David Metcalf

    2000-01-01

    Dispersion in pay is lower among union members than among non-unionists. This reflects two factors. First, union members and jobs are more homogeneous than their non-union counterparts. Second, union wage policies within and across firms lower pay dispersion. Unions'' minimum wage targets also truncate the lower tail of the union distribution. There are two major consequences of these egalitarian union wage policies. First, the return to human capital is lower in firms which recognise unions ...

  15. K-12 Students, Teachers, Parents, Administrators and Higher Education Faculty: Partners Helping Rural Disadvantaged Students Stay on the Pathway to a Geoscience Career

    Science.gov (United States)

    Slattery, W.; Antonucci, C.; Myers, R. J.

    2013-12-01

    The National Science Foundation funded project K-12 Students, Teachers, Parents, Administrators and Higher Education Faculty: Partners Helping Rural Disadvantaged Students Stay on the Pathway to a Geoscience Career is a research-based proof of concept track 1 pilot project that tests the effectiveness of an innovative model for simultaneous K-12 teacher professional development, student learning and workforce development. The project builds a network of science experiences designed to keep eighth and ninth grade students from the Ripley, Union, Lewis, Huntington (RULH) Ohio school district on the path to a geoscience career. During each summer of the ongoing two-year project teams of RULH students, parents, teachers, administrators and college faculty traveled to the facilities of the New Jersey Sea Grant Consortium at Sandy Hook, New Jersey to study science from an Earth system perspective. Teachers had the opportunity to engage in professional development alongside their students. Parents participated in the science activities alongside their children. Administrators interacted with students, parents and their teachers and saw them all learning science in an engaging, collaborative setting. During the first academic year of the project professional development was provided to RULH teachers by a team of university scientists and geoscience educators from the Earth System Science Education Alliance (ESSEA), a National Science Foundation funded project. Teachers selected for professional development were from science disciplines, mathematics, language arts and civics. The teachers selected, taught and assessed ESSEA Earth system science modules to all eighth and ninth grade students, not just those that were selected to go on the summer trips to New Jersey. In addition, all ninth grade RULH students had the opportunity to take a course that includes Earth system science concepts that will earn them both high school and college science credits. Professional

  16. Enhancing Diversity in the Geosciences through National Dissemination of the AMS Online Weather Studies Distance Learning Course

    Science.gov (United States)

    Weinbeck, R. S.; Geer, I. W.; Mills, E. W.; Porter, W. A.; Moran, J. M.

    2002-12-01

    Our nation faces a serious challenge in attracting young people to science and science-related careers (including teaching). This is particularly true for members of groups underrepresented in science, mathematics, engineering, and technology and is especially acute in the number of minority college students majoring in the geosciences. A formidable obstacle in attracting undergraduates to the geosciences is lack of access, that is, no opportunity to enroll in an introductory geoscience course simply because none is offered at their college or university. Often introductory or survey courses are a student's first exposure to the geosciences. To help alleviate this problem, the American Meteorological Society (AMS) through its Education Program developed and implemented nationally an introductory weather and climate course, Online Weather Studies, which can be added to an institution's menu of general education course offerings. This highly successful course will be offered at 130 colleges and universities nationwide, including 30 minority-serving institutions, 20 of which have joined the AMS Online Weather Studies Diversity Program during 2002. The AMS encourages course adoption by more institutions serving large numbers of minority students through support from the National Science Foundation (NSF) Opportunities for Enhancing Diversity in the Geosciences (OEDG) and Course, Curriculum and Laboratory Improvement-National Dissemination (CCLI-ND) programs. Online Weather Studies is an innovative, 12- to 15-week introductory college-level, online distance-learning course on the fundamentals of atmospheric science. Learner-formatted current weather data are delivered via the Internet and coordinated with investigations keyed to the day's weather. The principal innovation of Online Weather Studies is that students learn about weather as it happens in near real-time-a highly motivational learning experience. The AMS Education Program designed and services this course and

  17. Strategies for exposing students to potential careers in the geosciences and preparing them with skillsets valued by today's workforce: a case study

    Science.gov (United States)

    Sloan, V.; Haacker, R.

    2016-12-01

    Students, graduate students, and postdocs facing the job market cite a lack of familiarity with non-academic careers in the geosciences, uncertainty about the skills needed, and fear of the future. We work with these groups in several education programs at the National Center for Atmospheric Research (NCAR), and have interviewed and polled them about these issues. Surveys of and focus groups with alumni from two of these programs, an undergraduate career development program and a postdoctoral study program, provided insight into their employment and the skills that they see as valuable in their careers. Using this data, we redesigned the one-week undergraduate program, called the NCAR Undergraduate Leadership Workshop, with the goals of: (1) exposing students to the diversity of careers in the geosciences; (2) providing students with practice developing their non-technical skills, and; (3) creating content about careers in the atmospheric sciences for sharing with other students in the community. Students self-organized into consulting groups and had to propose and design their projects. During the course of the week, students interacted with approximately twenty professionals from fields in or related to the geosciences through lectures, lunch conversations, and student-led interviews. The professionals were asked to described their own work and the meanders of their career paths, to illustrate the range of professions in our field. The teams then developed creative materials intended for sharing these profiles, such as websites, powerpoint presentations and videos, and presented them formally at the week's end. In this presentation, we will share about this case study, the survey results on competencies valued in today's STEM workforce, and techniques for giving students practice developing those skills.

  18. Successful recruiting strategies for geoscience degrees and careers at the two-year college: An example from Metropolitan Community College - Kansas City

    Science.gov (United States)

    Wolfe, B.

    2012-12-01

    The overwhelming majority of students at 2-year colleges take geoscience courses (e.g. physical geology or physical geography) to fulfill part of the general education requirements of the Associates in Arts degree or General Education certificates for transfer to a 4-year school. It is common in community college earth science programs to have a relatively small number of students continuing on to major in geoscience programs at their transfer 4-year institution. To increase interest and retention in geosciences courses, we have developed a two prong approach - one aimed at students looking to transfer to a 4-year institution and the other aimed at students in the often overlooked career and technical education (CTE) programs. In the case of transfer students, we employ a "high touch" approach in introductory Physical Geology courses. This includes raising awareness of geoscience related careers combined with faculty mentor and advisor activities for students who express interest in science on their admission forms or in discussions of potential careers in science in first-year experience courses. Faculty mentorships have been very effective, not only in recruiting students to consider careers in geology, but also in advising a curriculum for students necessary to be successful upon transfer to a 4-year institution (such as completing college level chemistry, physics, and calculus courses prior to transfer). The second approach focuses on students pursuing certificates and degrees in CTE energy-related programs (such as HVAC, industrial engineering technology, electrician, and utility linemen). To increase awareness of vocational related geoscience careers, many of which require a good foundation in the vocational training students are currently pursing, we developed a foundation energy course - Energy and the Environment - which fulfills both the science general education component of the AA degree for students looking to transfer as well as CTE students. The

  19. Why did you decide to become a Geoscience Major: A Critical Incident Study for the Development of Recruiting Programs for Inspiring Interests in the Geosciences Amongst Pre-College Students

    Science.gov (United States)

    Carrick, T. L.; Miller, K. C.; Levine, R.; Martinez-Sussmann, C.; Velasco, A. A.

    2011-12-01

    Anecdotally, it is often stated that the majority of students that enter the geosciences usually do so sometime after their initial entrance into college. With the objective of providing concrete and useful information for individuals developing programs for inspiring interest in the Geosciences amongst pre-college students and trying to increase the number of freshman Geoscience majors, we conducted a critical incident study. Twenty-two students, who were undergraduate or graduate Geoscience majors, were asked, "Why did you decide to major in the Geosciences?" in a series of interviews. Their responses were then used to identify over 100 critical incidents, each of which described a specific behavior that was causally responsible for a student's choice to major in Geoscience. Using these critical incidents, we developed a preliminary taxonomy that is comprised of three major categories: Informal Exposure to the Geosciences (e.g., outdoor experiences, family involvement), Formal Exposure to the Geosciences (e.g., academic experiences, program participation) and a Combined Informal and Formal Exposure (e.g., media exposure). Within these three main categories we identified thirteen subcategories. These categories and subcategories, describe, classify, and provide concrete examples of strategies that were responsible for geosciences career choices. As a whole, the taxonomy is valuable as a new, data-based guide for designing geosciences recruitment programs for the pre-college student population.

  20. Women, Working Families, and Unions

    OpenAIRE

    Janelle Jones; John Schmitt; Nicole Woo

    2014-01-01

    One of every nine women in the United States (11.8 percent in 2013) is represented by a union at her place of work. The annual number of hours of paid work performed by women has increased dramatically over the last four decades. In 1979, the typical woman was on the job 925 hours per year; by 2012, the typical woman did 1,664 hours of paid work per year. Meanwhile, women's share of unpaid care work and housework has remained high. Various time-use studies conclude that women continue to do a...

  1. Trade unions and energy policy

    International Nuclear Information System (INIS)

    Evans, M.

    1984-01-01

    The subject is discussed under the headings: introduction (the review of energy policy by the Trades Union Congress); energy objectives and the energy crisis; energy planning (a planning framework for supply and demand; energy demand management; public planning inquiries; a plan for Britain; beyond Britain); a low energy growth strategy (UK primary energy demand); choice of supplies (coal; oil and gas; nuclear energy); new sources of energy (e.g.solar, geothermal, biofuels, wave, wind, tidal); conservation; health and safety - employers in the energy industries; conclusions. (U.K.)

  2. Soviet Union's Nuclear Power Program

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    Glasnost has dramatically increased the availability of information about the Soviet Union's nuclear industry. In the future, even more information is likely to become known as Soviet participation in international forums increases. Not only is much more general information now available, but up-to-date details are regularly provided, including information such as the Soviet nuclear industry's strategic direction and goals, recent reactor design changes, safety inspection results, and reports of public opposition and protest. This article summarizes the current status of the Soviet nuclear power program, reconciling the often conflicting reports from various public sources

  3. Volcanic eruption crisis and the challenges of geoscience education in Indonesia

    Science.gov (United States)

    Hariyono, E.; Liliasari, Tjasyono, B.; Madlazim

    2016-02-01

    The study aims was to describe of the profile of geoscience education conducted at the institution of teacher education for answer challenges of volcanic eruption crisis in Indonesia. The method used is descriptive analysis based on result of test and interview to 31 students of physics pre-service teachers about volcanoes through field study. The results showed that the students have a low understanding of volcanic material and there are several problems associated with the volcanoes concept. Other facts are geoscience learning does not support to the formation of geoscience knowledge and skills, dominated by theoretical studies and less focused on effort to preparing students towards disasters particularly to the volcanic eruption. As a recommendation, this require to restructuring geoscience education so as relevant with the social needs. Through courses accordingly, we can greatly help student's physics prospective teacher to improve their participations to solve problems of volcanic eruption crisis in the society.

  4. Geoscience information integration and visualization research of Shandong Province, China based on ArcGIS engine

    Science.gov (United States)

    Xu, Mingzhu; Gao, Zhiqiang; Ning, Jicai

    2014-10-01

    To improve the access efficiency of geoscience data, efficient data model and storage solutions should be used. Geoscience data is usually classified by format or coordinate system in existing storage solutions. When data is large, it is not conducive to search the geographic features. In this study, a geographical information integration system of Shandong province, China was developed based on the technology of ArcGIS Engine, .NET, and SQL Server. It uses Geodatabase spatial data model and ArcSDE to organize and store spatial and attribute data and establishes geoscience database of Shangdong. Seven function modules were designed: map browse, database and subject management, layer control, map query, spatial analysis and map symbolization. The system's characteristics of can be browsed and managed by geoscience subjects make the system convenient for geographic researchers and decision-making departments to use the data.

  5. The Best and the Brightest in Geosciences: Broadening Representation in the Field

    Science.gov (United States)

    Myles, L.

    2017-12-01

    Geoscience research in government agencies and universities across the US is anchored by data collection from field and lab experiments. In these settings, the composition and the culture of the environment can be less welcoming for individuals from groups that are traditionally underrepresented in the geosciences. Ongoing efforts to address diversity and inclusion in the field and lab include top-down approaches that provide support and training for established geoscience leaders and bottom-up approaches that offer research internships and fellowships for students. To achieve success, effective strategies for broadening representation in the field must be developed and shared across the geosciences community to advance scientific innovation and create opportunities for success.

  6. The IUGS Task Group on Global Geoscience Professionalism - promoting professional skills professionalism in the teaching, research and application of geoscience for the protection and education of the public

    Science.gov (United States)

    Allington, Ruth; Fernandez-Fuentes, Isabel

    2013-04-01

    A new IUGS Task Group entitled the Task Group on Global Geoscience Professionalism was formed in 2012 and launched at a symposium at the 341GC in Brisbane on strengthening communication between fundamental and applied geosciences and between geoscientists and public. The Task Group aims to ensure that the international geoscience community is engaged in a transformation of its profession so as to embed the need for a professional skills base alongside technical and scientific skills and expertise, within a sound ethical framework in all arenas of geoscience practice. This needs to be established during training and education and reinforced as CPD throughout a career in geoscience as part of ensuring public safety and effective communication of geoscience concepts to the public. The specific objective of the Task Group on Global Geoscience Professionalism that is relevant to this poster session is: • To facilitate a more 'joined up' geoscience community fostering better appreciation by academics and teachers of the professional skills that geoscientists need in the workplace, and facilitate better communication between academic and applied communities leading to more effective application of research findings and technology to applied practitioners and development of research programmes that truly address urgent issues. Other Task Group objectives are: • To provide a specific international forum for discussion of matters of common concern and interest among geoscientists and geoscientific organizations involved in professional affairs, at the local, national and international level; • To act as a resource to IUGS on professional affairs in the geosciences as they may influence and impact "Earth Science for the Global Community" in general - both now and in the future; • To offer and provide leadership and knowledge transfer services to countries and geoscientist communities around the world seeking to introduce systems of professional governance and self

  7. Job satisfaction and employee’s unionization decision: the mediating effect of perceived union instrumentality

    Energy Technology Data Exchange (ETDEWEB)

    Shan, H.; Hu, E.; Zhi, L.; Zhang, L.; Zhang, M.

    2016-07-01

    Purpose: Given the current lack of literature in the background of China labor force, this study aims to investigate the relationships among job satisfaction, perceived union instrumentality, and unionization from a reference-frame-based perspective and explore the referred relationships in the context of Chinese labor market. Design/methodology/approach: The study introduces perceived union instrumentality as a mediator to the relationship between job satisfaction and unionization. The applicability of western theories was tested in the Chinese context by a questionnaire survey on 390 employees who were working in private sectors of Jiangsu Province in China. Four hypothesis were proposed and tested by data analysis to verify the model. Findings: The study found that most aspects of job satisfaction were negatively correlated with unionization and perceived union instrumentality, while perceived union instrumentality had a positive relationship with unionization. Perceived union instrumentality was also found to have a mediating effect on the relationship between job satisfaction and unionization. Originality/value: The paper adapted and tested a number of western industrial relation theories in the backdrop of China, contributing to the gap in Chinese-context research by examining the relationships between job satisfaction, unionization and union instrumentality of Chinese employees. It pays a regular contribution to labor union studies both inside and outside China. (Author)

  8. GeoSegmenter: A statistically learned Chinese word segmenter for the geoscience domain

    Science.gov (United States)

    Huang, Lan; Du, Youfu; Chen, Gongyang

    2015-03-01

    Unlike English, the Chinese language has no space between words. Segmenting texts into words, known as the Chinese word segmentation (CWS) problem, thus becomes a fundamental issue for processing Chinese documents and the first step in many text mining applications, including information retrieval, machine translation and knowledge acquisition. However, for the geoscience subject domain, the CWS problem remains unsolved. Although a generic segmenter can be applied to process geoscience documents, they lack the domain specific knowledge and consequently their segmentation accuracy drops dramatically. This motivated us to develop a segmenter specifically for the geoscience subject domain: the GeoSegmenter. We first proposed a generic two-step framework for domain specific CWS. Following this framework, we built GeoSegmenter using conditional random fields, a principled statistical framework for sequence learning. Specifically, GeoSegmenter first identifies general terms by using a generic baseline segmenter. Then it recognises geoscience terms by learning and applying a model that can transform the initial segmentation into the goal segmentation. Empirical experimental results on geoscience documents and benchmark datasets showed that GeoSegmenter could effectively recognise both geoscience terms and general terms.

  9. EarthConnections: Integrating Community Science and Geoscience Education Pathways for More Resilient Communities.

    Science.gov (United States)

    Manduca, C. A.

    2017-12-01

    To develop a diverse geoscience workforce, the EarthConnections collective impact alliance is developing regionally focused, Earth education pathways. These pathways support and guide students from engagement in relevant, Earth-related science at an early age through the many steps and transitions to geoscience-related careers. Rooted in existing regional activities, pathways are developed using a process that engages regional stakeholders and community members with EarthConnections partners. Together they connect, sequence, and create multiple learning opportunities that link geoscience education and community service to address one or more local geoscience issues. Three initial pilots are demonstrating different starting points and strategies for creating pathways that serve community needs while supporting geoscience education. The San Bernardino pilot is leveraging existing academic relationships and programs; the Atlanta pilot is building into existing community activities; and the Oklahoma Tribal Nations pilot is co-constructing a pathway focus and approach. The project is using pathway mapping and a collective impact framework to support and monitor progress. The goal is to develop processes and activities that can help other communities develop similar community-based geoscience pathways. By intertwining Earth education with local community service we aspire to increase the resilience of communities in the face of environmental hazards and limited Earth resources.

  10. The European Union: Challenges and Perspectives

    Directory of Open Access Journals (Sweden)

    Botescu Ion

    2017-01-01

    If to all these we add the protectionist measures that the new president of the United States wishes to implement, as well as some deterioration in the European Union credibility generated by Brexit, the bureaucratic aspects that characterize the European institutions, etc., we can outline the context of the European Union, which requires a series of measures to ensure the progress of the European Union as a whole and, in particular, the effective integration of each Community country.

  11. Trade union policy and nuclear power

    International Nuclear Information System (INIS)

    Elliot, D.

    1981-01-01

    The subject is discussed under the headings: introduction; energy policy; the beginning of doubt; SERA's role [SERA = Socialist Environment and Resources Association]; the 1980 nuclear debate [within the trade union movement]; the 1981 nuclear debate [within the trade union movement]; the issues reviewed (supply and demand; safety and employment; security); review of policy trends; conclusions. Appendix: a review of union policy statements. (U.K.)

  12. Currency Unions, Trade Flows, and Capital Flows

    OpenAIRE

    James Yetman

    2003-01-01

    Trade within currency unions has been shown to be much larger than outside of currency unions, even after factoring in many relevant variables. The existing empirical evidence is based on reduced form models of trade, and therefore indicates that there exists a high correlation between currency union membership and trade, but does not indicate the causality, or the mechanism at work. This paper argues that the balance of evidence points to a large and statistically significant causal relation...

  13. Wage Setting in Democratic Labour Unions

    DEFF Research Database (Denmark)

    Filges, Trine

    1999-01-01

    In this paper, we analyse the wage setting of a democratic labour union. The union members differ with respect to their employment probabilities. The union wage only changes if the parameters of the median member change. An exogenous shock to revenue may increase the wage, even if labour demand...... is iso-elastic and unemployment benefits may have only a small effect on wages if the median member differs from the average. These findings are in accordance with empirical results....

  14. Morphometric Characteristics of Ice and Snow in the Arctic Basin: Aircraft Landing Observations from the Former Soviet Union, 1928-1989

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sea ice and snow measurements collected during aircraft landings associated with the Soviet Union's historical Sever airborne and North Pole...

  15. On the applicability of Benford's Law in the Geosciences

    Science.gov (United States)

    Sambridge, M.; Tkalcic, H.; Jackson, A.

    2009-12-01

    Benford's Law is a curious property of numerous datasets whereby the frequency distribution of the first digit (i.e. first non zero number from the left) follows a well defined logarithmic function, namely P_D = log_b(1+1/D), where D is the first digit and b is the base of the data. This was initially observed by Newcomb (1881) and later quantified and expanded by Benford (1938). The latter author first put forward a set of 20 distinct data sets with differing physical dimension and character which collectively obeyed this 1st digit law. The nature of each data is the most startling feature of all in that they range from physical properties of matter such as molecular weight and specific heat capacity through river areas and drainage rates to population numbers in the USA as well as American baseball league averages of 1936. A universal law of digits was proposed by Benford and in recent times has been widely accepted. Investigations into the nature and use of Benford's Law have continued in multiple fields. Mathematicians have more recently proven the correctness of this universal law of digits under general conditions and Nigrini (1992) has made use of it for uncovering anomalous data errors and fraud in accountancy practices. To date Benford's Law appears to have received no attention within the Geosciences. Here we demonstrate its widespread applicability for geophysical data sets as well as models derived from data of varying type and physical dimension. Specifically we verify Benford's Law holds for a geomagnetic Field model of the Earth (gufm1), Seismic models obtained from tomography (including mantle shear wave and regional body wave P and S models for various parts of the globe), and the GRACE gravity model up to degree 160. It would appear that Benford's Law has widespread applicability to geoscience data. Departures from Benford's Law are of interest as they seem to indicate changes in the local character of data, possibly due to fraud, error, or

  16. D Geological Framework Models as a Teaching Aid for Geoscience

    Science.gov (United States)

    Kessler, H.; Ward, E.; Geological ModelsTeaching Project Team

    2010-12-01

    3D geological models have great potential as a resource for universities when teaching foundation geological concepts as it allows the student to visualise and interrogate UK geology. They are especially useful when dealing with the conversion of 2D field, map and GIS outputs into three dimensional geological units, which is a common problem for all students of geology. Today’s earth science students use a variety of skills and processes during their learning experience including the application of schema’s, spatial thinking, image construction, detecting patterns, memorising figures, mental manipulation and interpretation, making predictions and deducing the orientation of themselves and the rocks. 3D geological models can reinforce spatial thinking strategies and encourage students to think about processes and properties, in turn helping the student to recognise pre-learnt geological principles in the field and to convert what they see at the surface into a picture of what is going on at depth. Learning issues faced by students may also be encountered by experts, policy managers, and stakeholders when dealing with environmental problems. Therefore educational research of student learning in earth science may also improve environmental decision making. 3D geological framework models enhance the learning of Geosciences because they: ● enable a student to observe, manipulate and interpret geology; in particular the models instantly convert two-dimensional geology (maps, boreholes and cross-sections) into three dimensions which is a notoriously difficult geospatial skill to acquire. ● can be orientated to whatever the user finds comfortable and most aids recognition and interpretation. ● can be used either to teach geosciences to complete beginners or add to experienced students body of knowledge (whatever point that may be at). Models could therefore be packaged as a complete educational journey or students and tutor can select certain areas of the model

  17. Adolescent Violent Victimization and Precocious Union Formation*

    Science.gov (United States)

    C. Kuhl, Danielle; Warner, David F.; Wilczak, Andrew

    2013-01-01

    This article bridges scholarship in criminology and family sociology by extending arguments about “precocious exits” from adolescence to consider early union formation as a salient outcome of violent victimization for youths. Research indicates that early union formation is associated with several negative outcomes; yet the absence of attention to union formation as a consequence of violent victimization is noteworthy. We address this gap by drawing on life course theory and data from the National Longitudinal Study of Adolescent Health (Add Health) to examine the effect of violent victimization (“street” violence) on the timing of first co-residential union formation—differentiating between marriage and cohabitation—in young adulthood. Estimates from Cox proportional hazard models show that adolescent victims of street violence experience higher rates of first union formation, especially marriage, early in the transition to adulthood; however, this effect declines with age, as such unions become more normative. Importantly, the effect of violent victimization on first union timing is robust to controls for nonviolent delinquency, substance abuse, and violent perpetration. We conclude by discussing directions for future research on the association between violent victimization and coresidential unions with an eye toward the implications of such early union formation for desistance. PMID:24431471

  18. Adolescent Violent Victimization and Precocious Union Formation.

    Science.gov (United States)

    C Kuhl, Danielle; Warner, David F; Wilczak, Andrew

    2012-11-01

    This article bridges scholarship in criminology and family sociology by extending arguments about "precocious exits" from adolescence to consider early union formation as a salient outcome of violent victimization for youths. Research indicates that early union formation is associated with several negative outcomes; yet the absence of attention to union formation as a consequence of violent victimization is noteworthy. We address this gap by drawing on life course theory and data from the National Longitudinal Study of Adolescent Health (Add Health) to examine the effect of violent victimization ("street" violence) on the timing of first co-residential union formation-differentiating between marriage and cohabitation-in young adulthood. Estimates from Cox proportional hazard models show that adolescent victims of street violence experience higher rates of first union formation, especially marriage, early in the transition to adulthood; however, this effect declines with age, as such unions become more normative. Importantly, the effect of violent victimization on first union timing is robust to controls for nonviolent delinquency, substance abuse, and violent perpetration. We conclude by discussing directions for future research on the association between violent victimization and coresidential unions with an eye toward the implications of such early union formation for desistance.

  19. Unionism Comes to the Public Sector

    OpenAIRE

    Richard B. Freeman

    1984-01-01

    This paper argues that public sector labor relations is best understood in a framework that focuses on unions' ability to shift demand curves rather than to raise wages, as is the case in the private sector. It reviews the public sector labor relations literature and finds that: (i) public sector unionism has flourished as a result of changes in laws; (2) the effects of public sector unions on wages are likely to have been underestimated; (3) public sector unions have a somewhat different eff...

  20. "Supporting Early Career Women in the Geosciences through Online Peer-Mentoring: Lessons from the Earth Science Women's Network (ESWN)"

    Science.gov (United States)

    Holloway, T.; Hastings, M. G.; Barnes, R. T.; Fischer, E. V.; Wiedinmyer, C.; Rodriguez, C.; Adams, M. S.; Marin-Spiotta, E.

    2014-12-01

    The Earth Science Women's Network (ESWN) is an international peer-mentoring organization with over 2000 members, dedicated to career development and community for women across the geosciences. Since its formation in 2002, ESWN has supported the growth of a more diverse scientific community through a combination of online and in-person networking activities. Lessons learned related to online networking and community-building will be presented. ESWN serves upper-level undergraduates, graduate students, professionals in a range of environmental fields, scientists working in federal and state governments, post-doctoral researchers, and academic faculty and scientists. Membership includes women working in over 50 countries, although the majority of ESWN members work in the U.S. ESWN increases retention of women in the geosciences by enabling and supporting professional person-to-person connections. This approach has been shown to reduce feelings of isolation among our members and help build professional support systems critical to career success. In early 2013 ESWN transitioned online activities to an advanced social networking platform that supports discussion threads, group formation, and individual messaging. Prior to that, on-line activities operated through a traditional list-serve, hosted by the National Center for Atmospheric Research (NCAR). The new web center, http://eswnonline.org, serves as the primary forum for members to build connections, seek advice, and share resources. For example, members share job announcements, discuss issues of work-life balance, and organize events at professional conferences. ESWN provides a platform for problem-based mentoring, drawing from the wisdom of colleagues across a range of career stages.

  1. Improving Scientific Writing in Undergraduate Geosciences Degrees Through Peer Review

    Science.gov (United States)

    Day, E. A.; Collins, G. S.; Craig, L.

    2016-12-01

    In the British educational system, students specialise early. Often geoscience undergraduates have not taken a class that requires extended writing since they were sixteen years old. This can make it difficult for students to develop the written skills necessary for a geoscience degree, which often has assessments in the form of essays and reports. To improve both the writing and editing skills of our undergraduates we have introduced a peer review system, in which seniors review the work of first year students. At Imperial College London we set written coursework in every year of the degree. Communication is taught and assessed in many courses. There are two major modules with substantial written components that bookend the undergraduate degree at Imperial; the freshmen all write an assessed essay, while all seniors take 'Science Communication', a course that aims to prepare them for a range of possible careers. In the 2015-16 academic year we linked these courses by introducing a modified form of peer marking and instruction. Seniors had to complete reviews of draft first year essays for credit in Science Communication. These reviews are completed for the department 'journal' and introduce the first and fourth years to the nature of peer review. Seniors learn how to critically, but kindly, evaluate the work of other students, and are also prepared for potentially submitting their senior theses to journals. Reviews were managed by volunteer seniors, who acted as associate editors. They allocated anonymous reviewers and wrote decision letters, which were sent to the freshmen before their final assessed essay submission. Ultimately the fourth year reviews were formally assessed and graded by members of staff, as were the revised and resubmitted first year essays. Feedback for both courses has improved since the introduction of student reviews of essays. The markers of the freshman essay have also commented on the improvement in the standard of the writing and a

  2. Using Google Streetview Panoramic Imagery for Geoscience Education

    Science.gov (United States)

    De Paor, D. G.; Dordevic, M. M.

    2014-12-01

    Google Streetview is a feature of Google Maps and Google Earth that allows viewers to switch from map or satellite view to 360° panoramic imagery recorded close to the ground. Most panoramas are recorded by Google engineers using special cameras mounted on the roofs of cars. Bicycles, snowmobiles, and boats have also been used and sometimes the camera has been mounted on a backpack for off-road use by hikers and skiers or attached to scuba-diving gear for "Underwater Streetview (sic)." Streetview panoramas are linked together so that the viewer can change viewpoint by clicking forward and reverse buttons. They therefore create a 4-D touring effect. As part of the GEODE project ("Google Earth for Onsite and Distance Education"), we are experimenting with the use of Streetview imagery for geoscience education. Our web-based test application allows instructors to select locations for students to study. Students are presented with a set of questions or tasks that they must address by studying the panoramic imagery. Questions include identification of rock types, structures such as faults, and general geological setting. The student view is locked into Streetview mode until they submit their answers, whereupon the map and satellite views become available, allowing students to zoom out and verify their location on Earth. Student learning is scaffolded by automatic computerized feedback. There are lots of existing Streetview panoramas with rich geological content. Additionally, instructors and members of the general public can create panoramas, including 360° Photo Spheres, by stitching images taken with their mobiles devices and submitting them to Google for evaluation and hosting. A multi-thousand-dollar, multi-directional camera and mount can be purchased from DIY-streetview.com. This allows power users to generate their own high-resolution panoramas. A cheaper, 360° video camera is soon to be released according to geonaute.com. Thus there are opportunities for

  3. Teaching Geoscience in Place for Local Diversity and Sustainability

    Science.gov (United States)

    Semken, S.

    2008-12-01

    Globalization, careerism, media, thoughtless consumption, standardized education and assessment, and even well-meaning advocacy for far-flung environments and people all divert our attention from meaningful interaction with our own surroundings. Meanwhile, many young Americans prefer virtual realities over personal intimacy with nature. Many have lost sight of the pedagogical power of places: localities imbued with meaning by human experience. To lack a sense of local places is to be oblivious to their environmental, cultural, and aesthetic importance, and to risk acceding to their degradation. The geosciences, born and rooted in exploration of environments, have much to lose from this trend but can be pivotal in helping to reverse it. Place-based teaching is situated in local physical and cultural environments and blends experiential learning, transdisciplinary and multicultural content, and service to the community. It is advocated for its relevance and potential to engage diverse students. Authentically place-based education is informed not only by scientific knowledge of places but also by the humanistic meanings and attachments affixed to them. Leveraging and enriching the senses of place of students, teachers, and the community is a defining and desirable learning outcome. We have researched and piloted several place-based approaches to geoscience teaching at various places in the Southwest USA: at a rural Tribal College, a large urban university, and a teacher in-service program at an underserved, minority-majority rural school district. Curricula are situated in complexly evolved, ruggedly beautiful desert-mountain physical landscapes coincident with multicultural, deeply historic, but rapidly changing cultural landscapes. The organizing theme is a cyclical path of inquiry through Earth and Sky, derived from Indigenous ethnogeology; syllabi integrate geology, hydrology, climate, environmental quality, and cultural geography and are situated in real places

  4. Geoscience data visualization and analysis using GeoMapApp

    Science.gov (United States)

    Ferrini, Vicki; Carbotte, Suzanne; Ryan, William; Chan, Samantha

    2013-04-01

    Increased availability of geoscience data resources has resulted in new opportunities for developing visualization and analysis tools that not only promote data integration and synthesis, but also facilitate quantitative cross-disciplinary access to data. Interdisciplinary investigations, in particular, frequently require visualizations and quantitative access to specialized data resources across disciplines, which has historically required specialist knowledge of data formats and software tools. GeoMapApp (www.geomapapp.org) is a free online data visualization and analysis tool that provides direct quantitative access to a wide variety of geoscience data for a broad international interdisciplinary user community. While GeoMapApp provides access to online data resources, it can also be packaged to work offline through the deployment of a small portable hard drive. This mode of operation can be particularly useful during field programs to provide functionality and direct access to data when a network connection is not possible. Hundreds of data sets from a variety of repositories are directly accessible in GeoMapApp, without the need for the user to understand the specifics of file formats or data reduction procedures. Available data include global and regional gridded data, images, as well as tabular and vector datasets. In addition to basic visualization and data discovery functionality, users are provided with simple tools for creating customized maps and visualizations and to quantitatively interrogate data. Specialized data portals with advanced functionality are also provided for power users to further analyze data resources and access underlying component datasets. Users may import and analyze their own geospatial datasets by loading local versions of geospatial data and can access content made available through Web Feature Services (WFS) and Web Map Services (WMS). Once data are loaded in GeoMapApp, a variety options are provided to export data and/or 2D/3D

  5. Impacting earthquake science and geoscience education: Educational programming to earthquake relocation

    Science.gov (United States)

    Carrick, Tina Louise

    This dissertation is comprised of four studies: three related to research on geoscience education and another seismological study of the South Island of New Zealand. The geoscience education research is grounded in 10 years of data collection and its implications for best practices for recruitment and retention of underrepresented minority students into higher education in the geosciences. The seismological component contains results from the relocation of earthquakes from the 2009 Dusky Sound Mw 7.8 event, South Island, New Zealand. In recent years, many have cited a major concern that U.S. is not producing enough STEM graduates to fit the forecasted economic need. This situation is exacerbated by the fact that underrepresented minorities are becoming a growing portion of the population, and people in these groups enter STEM careers at rates much smaller than their proportion of the populations. Among the STEM disciplines the Geosciences are the worst at attracting young people from underrepresented minorities. This dissertation reports on results the Pathways program at the University of Texas at El Paso Pathways which sought to create a geoscience recruitment and training network in El Paso, Texas to increase the number of Hispanic Americans students to attain higher degrees and increase the awareness of the geosciences from 2002-2012. Two elements of the program were a summer program for high school students and an undergraduate research program conducted during the academic year, called PREP. Data collected from pre- and post-surveys from the summer program showed statistically significant positive changes in attitudes towards the geosciences. Longitudinal data shows a strong positive correlation of the program with retention of participants in the geoscience pipeline. Results from the undergraduate research program show that it produced far more women and minority geoscience professionals than national norms. Combination of the institutional data, focus

  6. DC Rocks! Using Place-Based Learning to Introduce Washington DC's K-12 Students to the Geosciences

    Science.gov (United States)

    Mayberry, G. C.; Mattietti, G. K.

    2017-12-01

    The Washington DC area has interesting geology and a multitude of agencies that deal with the geosciences, yet K-12 public school students in DC, most of whom are minorities, have limited exposure to the geosciences. Geoscience agencies in the DC area have a unique opportunity to address this by introducing the geosciences to local students who otherwise may not have such an opportunity, by highlighting the geology in the students' "backyard," and by leveraging partnerships among DC-based geoscience-related agencies. The USGS and George Mason University are developing a project called DC Rocks, which will give DC's students an exciting introduction into the world of geoscience with place-based learning opportunities that will make geoscience relevant to their lives and their futures. Both the need in DC and the potential for lasting impact are great; the geosciences have the lowest racial diversity of all the science, technology, engineering, and math (STEM) fields, 89% of students in DC public schools are minorities, and there is no dedicated geoscience curriculum in DC. DC Rocks aims to give these students early exposure to the earth sciences, and encourage them to consider careers in the profession. DC Rocks will work with partner agencies to apply several methods that are recommended by researchers to increase the participation of minority students in the geosciences, including providing profoundly positive experiences that spark interest in the geosciences (Levine et al., 2007); increasing students' sense of belonging in the geosciences (Huntoon, et al, 2016); and place-based teaching practices that emphasize the study of local sites (Semken, 2005), such as DC's Rock Creek Park. DC Rocks will apply these methods by coordinating local geoscientists and resources to provide real-world examples of the geosciences' impact on students' lives. Through the DC Rocks website, educators will be able to request geoscience-related resources such as class presentations by

  7. Creating Authentic Geoscience Research Experiences for Underrepresented Students in Two-Year Undergraduate Programs

    Science.gov (United States)

    Liou-Mark, J.; Blake, R.

    2014-12-01

    With community college and two-year program students playing pivotal roles in advancing the nation's STEM agenda now and throughout the remainder of this young millennia, it is incumbent on educators to devise innovative and sustainable STEM initiatives to attract, retain, graduate, and elevate these students to four-year programs and beyond. Involving these students in comprehensive, holistic research experiences is one approach that has paid tremendous dividends. The New York City College of Technology (City Tech) was recently awarded a National Science Foundation Research Experiences for Undergraduates (REU) supplemental grant to integrate a community college/two-year program component into its existing REU program. The program created an inviting and supportive community of scholars for these students, nurtured them through strong, dynamic mentoring, provided them with the support structures needed for successful scholarship, and challenged them to attain the same research prominence as their Bachelor degree program companions. Along with their colleagues, the community college/two-year program students were given an opportunity to conduct intensive satellite and ground-based remote sensing research at the National Oceanic and Atmospheric Administration Cooperative Remote Sensing Science and Technology Center (NOAA-CREST) at City College and its CREST Institute Center for Remote Sensing and Earth System Science (ReSESS) at City Tech. This presentation highlights the challenges, the rewards, and the lessons learned from this necessary and timely experiment. Preliminary results indicate that this paradigm for geoscience inclusion and high expectation has been remarkably successful. (The program is supported by NSF REU grant #1062934.)

  8. Role Models and Mentors in Mid-Pipeline Retention of Geoscience Students, Newark, NJ

    Science.gov (United States)

    Gates, A. E.; Kalczynski, M. J.

    2012-12-01

    Undergraduate minority students retained enthusiasm for majoring in the geosciences by a combination of working with advanced minority mentors and role models as well as serving as role models for middle and high school students in Geoscience Education programs in Newark, NJ. An academic year program to interest 8-10th grade students from the Newark Public schools in the Geosciences employs minority undergraduate students from Rutgers University and Essex Community College as assistants. There is an academic year program (Geoexplorers) and a science festival (Dinosaur Day) at the Newark Museum that employs Rutgers University students and a summer program that employs Rutgers and Essex Community College students. All students are members of the Garden State LSAMP and receive any needed academic support from that program. The students receive mentoring from minority graduate students, project personnel and participating Newark Public School teachers, many of whom are from minority groups. The main factor in success and retention, however, is their role as authorities and role models for the K-12 students. The assistants are respected and consulted by the K-12 students for their knowledge and authority in the geosciences. This positive feedback shows them that they can be regarded as geoscientists and reinforces their self-image and enthusiasm. It further reinforces their knowledge of Geoscience concepts. It also binds the assistants together into a self-supporting community that even extends to the non-participating minority students in the Rutgers program. Although the drop-out rate among minority Geoscience majors was high (up to 100%) prior to the initiation of the program, it has dropped to 0% over the past 3 years with 2 participants now in PhD programs and 2 others completing MS degrees this year. Current students are seriously considering graduate education. Prior to this program, only one minority graduate from the program continued to graduate school in the

  9. Lessons Learned for Recruiting and Retaining Native Hawaiians in the Geosciences

    Science.gov (United States)

    Gibson, B. A.; Brock, L.; Levine, R.; Spencer, L.; Wai, B.; Puniwai, N.

    2008-12-01

    Many Native Hawaiian and Pacific Island (NHPI) college students are unaware of the majors or career possibilities within geoscience disciplines. This notably can be seen by the low number of NHPI students who graduate with a bachelor's degree in an ocean or Earth science-related field within the University of Hawaii (UH) System. To help address this disparity, the Ka'Imi'Ike Program, which is funded through the Opportunities for Enhancing Diversity in the Geosciences (OEDG) Program at NSF, was started at the University of Hawaii at Manoa to attract and support NHPI students in the geosciences. A key component of the program is the recruiting of NHPI students to disciplines in the geosciences through linking geoscience concepts with their culture and community. This includes a 3-week Explorations in the Geosciences summer institute that introduces incoming freshmen and current UH sophomores to the earth, weather, and ocean sciences via hands-on field and lab experiences. Ka'Imi'Ike also provides limited support for current geoscience majors through scholarships and internship opportunities. Results from student journals and pre- and post- questionnaires given to students during the summer institute have shown the program to be successful in increasing student interest and knowledge of the geoscience disciplines. Demonstrating the links between scientific thought and NHPI culture has been crucial to peaking the students' interest in the geosciences. The results also show that there is a need to include more specifics related to local career options, especially information that can be shared with the students' family and community as our data show that parents play a formidable role in the career path a student chooses. Moreover, in order to provide a more contiguous pipeline of support for NHPI students, Ka'Imi'Ike is beginning to network its students from the summer institute to other programs, such as the C-MORE Scholars Program, which offer undergraduate research

  10. Professional Development Opportunities for Two-Year College Geoscience Faculty: Issues, Opportunities, and Successes

    Science.gov (United States)

    Baer, E. M.; Macdonald, H.; McDaris, J. R.; Granshaw, F. D.; Wenner, J. M.; Hodder, J.; van der Hoeven Kraft, K.; Filson, R. H.; Guertin, L. A.; Wiese, K.

    2011-12-01

    Two-year colleges (2YCs) play a critical role in geoscience education in the United States. Nearly half of the undergraduate students who take introductory geoscience do so at a 2YC. With awide reach and diverse student populations, 2YCs may be key to producing a well-trained, diverse and sufficiently large geoscience workforce. However, faculty at 2YCs often face many barriers to professional development including lack of financial resources, heavy and inflexible teaching loads, lack of awareness of opportunities, and few professional development resources/events targeted at their needs. As an example, at the 2009 GSA meeting in Portland, fewer than 80 of the 6500 attendees were from community colleges, although this was more than twice the 2YC faculty attendance the previous year. Other issues include the isolation described by many 2YC geoscience faculty who may be the only full time geoscientist on a campus and challenges faced by adjunct faculty who may have even fewer opportunities for professional development and networking with other geoscience faculty. Over the past three years we have convened several workshops and events for 2YC geoscience faculty including technical sessions and a workshop on funding opportunities for 2YC faculty at GSA annual meetings, a field trip and networking event at the fall AGU meeting, a planning workshop that examined the role of 2YCs in geoscience education and in broadening participation in the geosciences, two workshops supporting use of the 'Math You Need, When You Need It' educational materials that included a majority of 2YC faculty, and marine science summer institutes offered by COSEE-Pacific Partnerships for 2YC faculty. Our experience indicates that 2YC faculty desire professional development opportunities when the experience is tailored to the needs and character of their students, programs, and institutions. The content of the professional development opportunity must be useful to 2YC faculty -workshops and

  11. Brazilian union actions for workers' health protection

    Directory of Open Access Journals (Sweden)

    Rodolpho Repullo Junior

    Full Text Available CONTEXT: Many authors have emphasized the importance of worker strength through unionized organizations, in relation to the improvement of working procedures, and have reported on the decisiveness of labor movement actions in achieving modifications within the field of work and health. OBJECTIVE: To describe the ways in which Brazilian unions have tried to intervene in health-illness and work processes, identifying the existence of commonality in union actions in this field. TYPE OF STUDY: Qualitative study. SETTING: Postgraduate Program, Environmental Health Department, Faculdade de Saúde Pública, Universidade de São Paulo, São Paulo, Brazil. METHODS: Union health advisers and directors were interviewed. Documents relating to union action towards protecting workers' health were collected and analyzed. RESULTS: Unions articulate actions regarding workers' health of a technical and political nature that involve many aspects and high complexity. These have been divided into thematic categories for better analysis. DISCUSSION: Union actions regarding workers' health in Brazil are restricted to some unions, located mainly in the southern, southeastern and northeastern regions of the country. Nonetheless, the unions undertaking such actions represent many professions of great economic and political importance. CONCLUSIONS: The recent changes in health and safety at work regulations, recognition of professional diseases, creation of workers' health services and programs within the unified health system, and operational improvements in companies' specialized safety and occupational medicine services, all basically result from union action. There is commonality of union action in this field in its seeking of technical and political strengthening for all workers and their general and local representation. This has the objective of benefiting collective bargaining between employers and workers. Inter-institutional action on behalf of workers' rights

  12. Strengthening International Collaboration: Geosciences Research and Education in Developing Countries

    Science.gov (United States)

    Fucugauchi, J. U.

    2009-05-01

    Geophysical research increasingly requires global multidisciplinary approaches and global integration. Global warming, increasing CO2 levels and increased needs of mineral and energy resources emphasize impact of human activities. The planetary view of our Earth as a deeply complex interconnected system also emphasizes the need of international scientific cooperation. International collaboration presents an immense potential and is urgently needed for further development of geosciences research and education. In analyzing international collaboration a relevant aspect is the role of scientific societies. Societies organize meetings, publish journals and books and promote cooperation through academic exchange activities and can further assist communities in developing countries providing and facilitating access to scientific literature, attendance to international meetings, short and long-term stays and student and young researcher mobility. Developing countries present additional challenges resulting from limited economic resources and social and political problems. Most countries urgently require improved educational and research programs. Needed are in-depth analyses of infrastructure and human resources and identification of major problems and needs. Questions may include what are the major limitations and needs in research and postgraduate education in developing countries? what and how should international collaboration do? and what are the roles of individuals, academic institutions, funding agencies, scientific societies? Here we attempt to examine some of these questions with reference to case examples and AGU role. We focus on current situation, size and characteristics of research community, education programs, facilities, economic support, and then move to perspectives for potential development in an international context.

  13. Does Question Structure Affect Exam Performance in the Geosciences?

    Science.gov (United States)

    Day, E. A.; D'Arcy, M. K.; Craig, L.; Streule, M. J.; Passmore, E.; Irving, J. C. E.

    2015-12-01

    The jump to university level exams can be challenging for some students, often resulting in poor marks, which may be detrimental to their confidence and ultimately affect their overall degree class. Previous studies have found that question structure can have a strong impact on the performance of students in college level exams (see Gibson et al., 2015, for a discussion of its impact on physics undergraduates). Here, we investigate the effect of question structure on the exam results of geology and geophysics undergraduate students. Specifically, we analyse the performance of students in questions that have a 'scaffolded' framework and compare them to their performance in open-ended questions and coursework. We also investigate if observed differences in exam performance are correlated with the educational background and gender of students, amongst other factors. It is important for all students to be able to access their degree courses, no matter what their backgrounds may be. Broadening participation in the geosciences relies on removing systematic barriers to achievement. Therefore we recommend that exams are either structured with scaffolding in questions at lower levels, or students are explicitly prepared for this transition. We also recommend that longitudinal studies of exam performance are conducted within individual departments, and this work outlines one approach to analysing performance data.

  14. Denmark and the European Union

    DEFF Research Database (Denmark)

    Manners, Ian

    2011-01-01

    Over the past two decades Morten Kelstrup’s work has been at the centre of three important intellectual innovations in political science – the study of the EU as a regional political system; European security studies; and small states in European integration. Kelstrup’s best known books (Buzan, K...... of this book, two of Kelstrup’s most important intellectual contributions come from his work on Denmark’s relations with the European Union, and his use of systems theory to understand the EU.......Over the past two decades Morten Kelstrup’s work has been at the centre of three important intellectual innovations in political science – the study of the EU as a regional political system; European security studies; and small states in European integration. Kelstrup’s best known books (Buzan...

  15. IDENTITY AND THE EUROPEAN UNION

    Directory of Open Access Journals (Sweden)

    Abrudan Cristina

    2008-05-01

    Full Text Available The purpose of this article is to throw some light on the question of identity in the European Union. The challenge is to understand how identity formation takes place in the contemporary world. The European integration has to be understood both as a process of socio-economic convergence among European states but also as a process of co-operation on different other levels, too. It seems that cultures, traditions and interests are more and more interconnected as societies become increasingly multicultural. This is the reason why people are concerned with the concept of identity and the recognition of their uniqueness in terms of traditions, values and ways of lives.

  16. INNOVATION IN THE EUROPEAN UNION

    Directory of Open Access Journals (Sweden)

    VLADIMIR-CODRIN IONESCU

    2014-11-01

    Full Text Available In the contemporary knowledge-based society, innovation, as a vector used for the application and promotion of inventions and innovations, is one of the main sources used for obtaining a sustainable competitive advantage. The present paper points out the main directions which the European Commission aims to develop in the sphere of innovation, within the context of the Initiative: “A Union of Innovation”, which is part of the Europe 2020 Strategy. The paper analyses the performances accomplished by the EU states in the area of innovation while developing an international perspective that may represent the starting point in identifying solutions whereby the EU could reduce the gaps that exist in relation to the main international competitors, i.e. South Korea, USA and Japan.

  17. INNOVATION IN THE EUROPEAN UNION

    Directory of Open Access Journals (Sweden)

    Vladimir-Codrin IONESCU

    2014-05-01

    Full Text Available In the contemporary knowledge-based society, innovation, as a vector used for the application and promotion of inventions and innovations, is one of the main sources used for obtaining a sustainable competitive advantage. The present paper points out the main directions which the European Commission aims to develop in the sphere of innovation, within the context of the Initiative: “A Union of Innovation”, which is part of the Europe 2020 Strategy. The paper analyses the performances accomplished by the EU states in the area of innovation while developing an international perspective that may represent the starting point in identifying solutions whereby the EU could reduce the gaps that exist in relation to the main international competitors, i.e. South Korea, USA and Japan.

  18. International Union of Radioecologists' activities

    International Nuclear Information System (INIS)

    Auerbach, S.I.

    1983-01-01

    The International Union of Radioecologists (I.U.R.) has maintained a vigorous program of activities in accordance with the goals of its charter. To meet these goals, the I.U.R. has sponsored a number of workshops, meetings, and other related activities aimed at improving our ability to understand and predict the consequences of release of radionuclides to the environment. These include: intercomparison and harmonization of methodologies and a continuous feedback between scientists engaged in mathematical modeling and those carrying out field studies. Specialized workshops dealing with problems in understanding transfer coefficients in the terrestrial environment are being held. In the marine environment, long-distance transport in sediments plays an important role for the spread of radioisotopes released from reprocessing plants (e.g., in the Eastern Atlantic, the Northland Baltic Sea). Representatives of the countries concerned (including from Northern Countries) will define conditions of information exchange, sampling (time, character of sediments), and modelisation

  19. Teacher Union Legitimacy: Shifting the Moral Center for Member Engagement

    Science.gov (United States)

    Popiel, Kara

    2013-01-01

    This mixed-method case study explored teacher union members' beliefs about the teacher union and their reasons for being active or inactive in the union. Findings suggest that teacher unions have gained pragmatic and cognitive legitimacy (Chaison and Bigelow in Unions and legitimacy. Cornell University Press, Ithaca, NY, 2002), but that…

  20. Pluto's atmosphere

    International Nuclear Information System (INIS)

    Elliot, J.L.; Dunham, E.W.; Bosh, A.S.; Slivan, S.M.; Young, L.A.

    1989-01-01

    Airborne CCD photometer observations of Pluto's June 9, 1988 stellar occultation have yielded an occultation lightcurve, probing two regions on the sunrise limb 2000 km apart, which reveals an upper atmosphere overlying an extinction layer with an abrupt upper boundary. The extinction layer may surround the entire planet. Attention is given to a model atmosphere whose occultation lightcurve closely duplicates observations; fits of the model to the immersion and emersion lightcurves exhibit no significant derived atmosphere-structure differences. Assuming a pure methane atmosphere, surface pressures of the order of 3 microbars are consistent with the occultation data. 43 references

  1. Atmospheric electricity

    CERN Document Server

    Chalmers, J Alan

    1957-01-01

    Atmospheric Electricity brings together numerous studies on various aspects of atmospheric electricity. This book is composed of 13 chapters that cover the main problems in the field, including the maintenance of the negative charge on the earth and the origin of the charges in thunderstorms. After a brief overview of the historical developments of atmospheric electricity, this book goes on dealing with the general principles, results, methods, and the MKS system of the field. The succeeding chapters are devoted to some aspects of electricity in the atmosphere, such as the occurrence and d

  2. New Roles for the Trade Unions

    DEFF Research Database (Denmark)

    Hull Kristensen, Peer; Sø Rocha, Robson

    2012-01-01

    This article builds on lessons from Denmark and the Nordic area to offer a novel and comprehensive logic of action within the emerging political economy that may be used to assess the possible new roles that unions can take on. The authors argue that unions are capable of “civilizing” globalizati...

  3. Bovine cysticercosis in the European Union

    DEFF Research Database (Denmark)

    Blagojevic, Bojan; Robertson, Lucy J.; Vieira-Pinto, Madalena

    2017-01-01

    -only inspection of slaughtered cattle in order to reduce the potential for cross-contamination with bacteria that are of greatest public health risk, is expected in the European Union in the near future. With this system, the detection sensitivity for bovine cysticercosis that is already low with the current meat...... of bovine cysticercosis in the European Union....

  4. Environment in the European Union 1995

    DEFF Research Database (Denmark)

    The update to the 1992 report on the state of the environment in the European Union requested by the European Commission......The update to the 1992 report on the state of the environment in the European Union requested by the European Commission...

  5. Union innovation in Ontario's nuclear industry

    International Nuclear Information System (INIS)

    MacKinnon, D.

    2003-01-01

    Over the last decade the Power Worker's Union (PWU) has embarked on a number of innovative approaches that have provided significant benefit to the nuclear industry. These include advanced labour relations approaches, equity participation and groundbreaking skills training initiatives. This presentation outlines these and other initiatives in the context of the union's view of the nuclear generation industry's future. (author)

  6. LIMITING ORGANISATIONAL RIGHTS OF MINORITY UNIONS ...

    African Journals Online (AJOL)

    Administrator

    1996-02-19

    Feb 19, 1996 ... market in recent times can be attributed, in part, to inter-union rivalry.1 Minority unions ... March 2013 – resulting in a negative impact on South Africa's GDP and currency depreciation. In. 2013, the .... Organisational rights are regulated by Part A and B of Chapter 111 of the LRA, and the right to strike is ...

  7. Banking Union- Present Stage and its Perspectives

    Directory of Open Access Journals (Sweden)

    Petre Prisecaru

    2014-05-01

    Full Text Available Banking Union is very important for financial stability of EU, for preventing any future crisis, for improving corporate governance in the banking sector, for completing the single market for financial services and for the strengthening of monetary union, for opening the way to fiscal union and to political union. There is not enough theoretical research in the field of banking union, but there are many recent contributions on behalf of foreign and Romanian experts and analysts, which refer mainly to the three components/pillars of EU banking union: a Single Supervision Mechanism (SSM, a Single Resolution Mechanism (SRM and an harmonized system of deposit guarantee schemes. Some micro studies and surveys carried out by prestigious institutions, like Deutsche Bank, Brookings Institution, CEPS have been run over and analyzed together with the positions and opinions of different European officials, and also with the content of EU secondary legislation. An empirical research was made with the aim to identify all essential aspects relating to EU banking union, which may concern the academics, researchers and business community. The paper is based on a previous research study coordinated by author and contains his own conclusions focused on the main arguments in favour of banking union.

  8. Should the 'Outs' Join the Banking Union?

    NARCIS (Netherlands)

    P. Hüttl (Pia); D. Schoenmaker (Dirk)

    2016-01-01

    textabstractThe Single Market stimulates cross-border banking throughout the European Union. This paper documents the banking linkages between the 9 ‘outs’ and 19 ‘ins’ of the Banking Union. We find that some of the major banks, based in Sweden and Denmark, have substantial banking claims across the

  9. 76 FR 79531 - Corporate Credit Unions

    Science.gov (United States)

    2011-12-22

    ... exclude CLF stock subscriptions, based on the asset's negligible credit risk and to facilitate corporate... removing paragraphs (c)(3) and (f)(4) and adding paragraph (h) to read as follows: Sec. 704.6 Credit risk... NATIONAL CREDIT UNION ADMINISTRATION 12 CFR Part 704 RIN 3133-AD95 Corporate Credit Unions AGENCY...

  10. The Defense of Teachers' Trade Union Rights.

    Science.gov (United States)

    Pepin, Luce

    1990-01-01

    The author sees cause for concern in the number of complaints to the International Labour Organisation alleging violations of teachers' union rights. She examines the right of public employees to organize and strike and government interference, concluding that greater protection for teachers' unions may be needed. (SK)

  11. Immigration and the transformation of American unionism

    NARCIS (Netherlands)

    Burgoon, B.; Fine, J.; Jacoby, W.; Tichenor, D.

    2010-01-01

    Does immigration hamper union organizing in the United States? The prevailing literature strongly suggests that it does and for two reasons: first, immigrants increase the labor pool and diminish union influence over the labor market. And second, immigrants may be harder to organize than native

  12. The Person Behind the Picture: Influence of Social and Cultural Capital on Geoscience Career Pathways

    Science.gov (United States)

    Rappolee, E.; Libarkin, J. C.; McCallum, C.; Kurz, S.

    2017-12-01

    The amalgamation of fields in the geosciences share one desire: a better understanding of the natural world and the relationship humans have with that world. As issues such as climate change and clean water become globally recognized the geoscience job market grows. To insure these issues are resolved in ways that are fully representative of the entire human population, attention has been turned to increasing diversity of scientists in the geosciences. This study is based in the theory of social and cultural capital, types of non-financial wealth obtained by individuals and groups through connections and experiences. In particular, we investigated how individuals accessed specific resources and opportunities which eventually led to their entering the geosciences. Surveys were distributed to volunteers at a multinational geoscience conference held in fall of 2016. These surveys asked participants to "draw a picture of the people and experiences that have influenced your career up to this point." Nearly 150 completed drawings were coded through a thematic content analysis, wherein salient characteristics of drawings were documented and later grouped into common themes. We found that specific people (family, professors, peers) provided access to resources (education, museums, parks) as well as experiences (camping, traveling, research) that were instrumental in career building. Correlation analysis revealed two representative models of the drawings. These models aligned with the constructs of social and cultural capital. Cultural capital was more prevalent in majority white than nonwhite participants, suggesting different pathways into geoscience careers. We hope this research will inspire future work as well as highlight ways in which social and cultural capital can become accessible to future generations to produce a system with equal opportunities and increase diversity in the geosciences, resulting in better decision-making on global issues.

  13. Internships and UNAVCO: Training the Future Geoscience Workforce Through the NSF GAGE Facility

    Science.gov (United States)

    Morris, A. R.; MacPherson-Krutsky, C. C.; Charlevoix, D. J.; Bartel, B. A.

    2015-12-01

    Facilities are uniquely positioned to both serve a broad, national audience and provide unique workforce experience to students and recent graduates. Intentional efforts dedicated to broadening participation in the future geoscience workforce at the NSF GAGE (Geodesy Advancing Geosciences and EarthScope) Facility operated by UNAVCO, are designed to meet the needs of the next generation of students and professionals. As a university-governed consortium facilitating research and education in the geosciences, UNAVCO is well-situated to both prepare students for geoscience technical careers and advanced research positions. Since 1998, UNAVCO has offered over 165 student assistant or intern positions including engineering, data services, education and outreach, and business support. UNAVCO offers three formal programs: the UNAVCO Student Internship Program (USIP), Research Experiences in Solid Earth Science for Students (RESESS), and the Geo-Launchpad (GLP) internship program. Interns range from community college students up through graduate students and recent Masters graduates. USIP interns gain real-world work experience in a professional setting, collaborate with teams toward a common mission, and contribute their knowledge, skills, and abilities to the UNAVCO community. RESESS interns conduct authentic research with a scientist in the Front Range area as well as participate in a structured professional development series. GLP students are in their first 2 years of higher education and work alongside UNAVCO technical staff gaining valuable work experience and insight into the logistics of supporting scientific research. UNAVCO's efforts in preparing the next generation of scientists largely focuses on increasing diversity in the geosciences, whether continuing academic studies or moving into the workforce. To date, well over half of our interns and student assistants come from backgrounds historically underrepresented in the geosciences. Over 80% of former interns

  14. An Integrative and Collaborative Approach to Creating a Diverse and Computationally Competent Geoscience Workforce

    Science.gov (United States)

    Moore, S. L.; Kar, A.; Gomez, R.

    2015-12-01

    A partnership between Fort Valley State University (FVSU), the Jackson School of Geosciences at The University of Texas (UT) at Austin, and the Texas Advanced Computing Center (TACC) is engaging computational geoscience faculty and researchers with academically talented underrepresented minority (URM) students, training them to solve grand challenges . These next generation computational geoscientists are being trained to solve some of the world's most challenging geoscience grand challenges requiring data intensive large scale modeling and simulation on high performance computers . UT Austin's geoscience outreach program GeoFORCE, recently awarded the Presidential Award in Excellence in Science, Mathematics and Engineering Mentoring, contributes to the collaborative best practices in engaging researchers with URM students. Collaborative efforts over the past decade are providing data demonstrating that integrative pipeline programs with mentoring and paid internship opportunities, multi-year scholarships, computational training, and communication skills development are having an impact on URMs developing middle skills for geoscience careers. Since 1997, the Cooperative Developmental Energy Program at FVSU and its collaborating universities have graduated 87 engineers, 33 geoscientists, and eight health physicists. Recruited as early as high school, students enroll for three years at FVSU majoring in mathematics, chemistry or biology, and then transfer to UT Austin or other partner institutions to complete a second STEM degree, including geosciences. A partnership with the Integrative Computational Education and Research Traineeship (ICERT), a National Science Foundation (NSF) Research Experience for Undergraduates (REU) Site at TACC provides students with a 10-week summer research experience at UT Austin. Mentored by TACC researchers, students with no previous background in computational science learn to use some of the world's most powerful high performance

  15. NSF-Sponsored Summit on the Future of Undergraduate Geoscience Education: outcomes

    Science.gov (United States)

    Mosher, S.

    2014-12-01

    The NSF-sponsored Summit on the Future of Undergraduate Geoscience Education made major progress toward developing a collective community vision for the geosciences. A broad spectrum of the geoscience education community, ~200 educators from research universities/four and two year colleges, focused on preparation of undergraduates for graduate school and future geoscience careers, pedagogy, use of technology, broadening participation/retention of underrepresented groups, and preparation of K-12 science teachers. Participants agreed that key concepts, competencies and skills learned throughout the curriculum were more important than specific courses. Concepts included understanding Earth as complex, dynamic system, deep time, evolution of life, natural resources, energy, hazards, hydrogeology, surface processes, Earth materials and structure, and climate change. Skills/competencies included ability to think spatially and temporally, reason inductively and deductively, make and use indirect observations, engage in complex open, coupled systems thinking, and work with uncertainty, non-uniqueness, and incompleteness, as well as critical thinking, problem solving, communication, and ability to think like a scientist and continue to learn. Successful ways of developing these include collaborative, integrative projects involving teams, interdisciplinary projects, fieldwork and research experiences, as well as flipped classrooms and integration and interactive use of technology, including visualization, simulation, modeling and analysis of real data. Wider adoption of proven, effective best practices is our communities' main pedagogical challenge, and we focused on identifying implementation barriers. Preparation of future teachers in introductory and general geoscience courses by incorporating Next Generation Science Standards and using other sciences/math to solve real world geoscience problems should help increase diversity and number of future geoscientists and

  16. The two union catalogues of Myanmar

    Energy Technology Data Exchange (ETDEWEB)

    Hla, Win [Myanmar Scientific and Technological Research Dept., Yangon (Myanmar)

    1995-04-01

    The article mentions about the two union catalogues of Myanmar. The first one is the ``Consolidated Catalogue of journals and the periodicals contained in the libraries of Kasuali, Calcutta, Bombay, Madras, Coonoor, Rangoon and Shillong``. This was published by Indian Research Fund Association of Calcutta in 1933. This is the first union catalogue of medical periodicals for both Myanmar and India as well. The second one is ``the Regional Union Catalogue of Scientific Serials: Yangon``. This was published in 1977, its second printing in 1989. This union catalogue excludes medical serials. Twenty libraries took part in the compilation and publishing of the union catalogue with Technical Information Centre of Myanmar Scientific and Technological Research Department, (formerly Central Research Organization), No. 6, Kaba Aye Pagoda Road, Yankin P.O. Yangon, Myanmar, taking the leading role.

  17. Greece and the Missing Banking Union

    DEFF Research Database (Denmark)

    N. Gordon, Jeffery; Ringe, Georg

    2015-01-01

    The Greek Crisis is a crisis rather than a problem due to the vulnerability of Greek banks. While the banks have deep problems, this column argues that these would have been mitigated if a fully operational banking union were in place. A full banking union requires joint banking supervision, join...... bank resolution, and joint deposit insurance. The EZ only has the first so far. Completing the banking union must be part of any long-term solution.......The Greek Crisis is a crisis rather than a problem due to the vulnerability of Greek banks. While the banks have deep problems, this column argues that these would have been mitigated if a fully operational banking union were in place. A full banking union requires joint banking supervision, joint...

  18. The two union catalogues of Myanmar

    International Nuclear Information System (INIS)

    Hla, Win

    1995-01-01

    The article mentions about the two union catalogues of Myanmar. The first one is the ''Consolidated Catalogue of journals and the periodicals contained in the libraries of Kasuali, Calcutta, Bombay, Madras, Coonoor, Rangoon and Shillong''. This was published by Indian Research Fund Association of Calcutta in 1933. This is the first union catalogue of medical periodicals for both Myanmar and India as well. The second one is ''the Regional Union Catalogue of Scientific Serials: Yangon''. This was published in 1977, its second printing in 1989. This union catalogue excludes medical serials. Twenty libraries took part in the compilation and publishing of the union catalogue with Technical Information Centre of Myanmar Scientific and Technological Research Department, (formerly Central Research Organization), No. 6, Kaba Aye Pagoda Road, Yankin P.O. Yangon, Myanmar, taking the leading role

  19. The european union as subjects of law

    Directory of Open Access Journals (Sweden)

    Fila R.

    2012-10-01

    Full Text Available At the international level it is recognized that development and progress of the new and unique international organization – European Union – is one of the appropriate form of the international organization’s integration. Although European Union was establish as international economic organization, it has gradually integrated the various “best practices” ideas from different governmental systems. Encouragement and motives for cooperation of Member states indicate that member states give more competences of government to the international organization’s institutes. Wherewith, it is observed that the economic and political internationalization has led to disappearance of integrity of territory of member states. The above mentioned opinion is not based on research of the European Union as international organization from standpoint of international law, but from standpoint of theory law – could give juridical estimate regarding executive power in European Union and who could define particular source and entity of administrative law of European Union.

  20. CFC legislation in the European Union

    Directory of Open Access Journals (Sweden)

    Cvjetković Cvjetana M.

    2015-01-01

    Full Text Available In this paper the author considers CFC legislation in the Member States of the European Union, and points to the official attitude of the institutions of the European Union toward CFC legislation. Special attention in this paper is focused on Judgment of the Court of Justice of the European Union in the case Cadbury Schweppes. The aim of the paper is to analyze CFC legislation in the Member States in order to determine its basic characteristics, as well as to determine its compatibility with freedoms guaranteed by the primary law of the European Union, i.e. with Judgment of the Court of Justice of the European Union in the Cadbury Schweppes case.

  1. The IAPG: International Association for Promoting Geoethics: a scientific platform for widening the debate on problems of ethics applied to the geosciences

    Science.gov (United States)

    Bobrowsky, Peter; Brocx, Margaret; Di Capua, Giuseppe; Errami, Ezzoura; Greco, Roberto; Kieffer, Susan W.; Daji Limaye, Shrikant; Peppoloni, Silvia; Silva, Elizabeth; Tinti, Stefano; Wang, Meng

    2013-04-01

    Geoethics consists of the research and reflection on those values upon which to base appropriate behaviours and practices regarding the Geosphere. Geoethics also deals with problems related to risk management and mitigation of geohazards. One of the most important goals of the Geoethics is to foster the proper and correct dissemination of results of scientific studies and other information on risks. Moreover, Geoethics aims to improve the relationships between the scientific community, mass media and public and aims to organize effective teaching tools to develop awareness, values and responsibility within the population. Geoethics should become part of the social knowledge and an essential point of reference for every action affecting land, water and atmosphere usage that is taken by stake-holders and decision-makers. Although Geoethics is a young discipline, it provides a forum for open discussion inside the Geosciences on the social and cultural role that Geoscientists can play in society. First, Geoethics represents an opportunity for Geoscientists to become more conscious of their responsibilities in conducting their activity, highlighting the ethical, cultural and economic repercussions that their behavioral choices may have on society. From this point of view Geoethics, at this stage of its development, is primarily an attitude of thinking: through consideration of geoethical questions, Geoscientists have the opportunity to ask questions about themselves, their skills, the quality of their work and the contribution they can provide to the healthy progress of humanity. The International Association for Promoting Geoethics (IAPG: http://www.iapg.geoethics.org) is a new multidisciplinary, scientific platform for widening the debate on problems of Ethics applied to the Geosciences, through international cooperation and for encouraging the involvement of geoscientists on Geoethics themes. The IAPG was founded to increase the awareness inside the scientific

  2. Uniones de nitruro de silicio. Superaleaciones

    Directory of Open Access Journals (Sweden)

    Barea, R.

    2000-10-01

    Full Text Available Industrial applications of silicon nitride materials are limited by the difficulty and cost of making complex shapes. In the present work, the use of some superalloys as bonding interlayer between two silicon nitride pieces has been investigated. Three types of Ni based superalloys have been chosen because their technological interest. Joining experiments have been performed by thermocompression at different temperatures and pressures, in a medium vacuum atmosphere. Reactions taking place at the superalloy / Si3N4 interface have been studied using energy dispersive X-ray spectroscopy and scanning electron microscopy. A comparative study among the three superalloys /Si3N4 interfaces has been done.

    El posible uso del nitruro de silicio en el ámbito industrial se ve limitado por la dificultad y el coste que supone mecanizar geometrías complicadas. En el presente trabajo se estudia la posibilidad del uso de superaleaciones como interlámina de unión entre piezas de este material. Se han seleccionado tres superaleaciones con base niquel-cromo debido a su interés tecnológico. Las uniones se han llevado a cabo por termocompresión en vacío, utilizando varias presiones y temperaturas. Se ha realizado un estudio comparativo de las intercaras de unión en las tres aleaciones, analizando mediante microanálisis por energías dispersadas de Rayos X y microscopía electrónica de barrido las reacciones que tienen lugar.

  3. Vocational Training in the European Union

    Directory of Open Access Journals (Sweden)

    Mehmet BALCI

    2013-01-01

    Full Text Available European Union requires some standards in all areas. Today, the importance of training qualified individuals which holds an important place in the development of countries increases and certain standards are adopted creating common European Union tools in the field of vocational and technical education. In this study, vocational education and training policies system and the standards adopted by the European Union are discussed. Furthermore, this study was accepted as a European Union project in 2010 and the results obtained from the Leonardo Da Vinci Life Learning European Union project called “Web Based Basic Vocational Training” between the years 2010-2012 were presented. Since the partners of these projects are Turkey, Spain and Germany, the structure of vocational education, institutions of public and private vocational education and the diplomas and certificates entitled after these educations are included. As Turkey is on its way to become a European Union member, a number of advices are presented for Turkey to reach its destination about vocational education standards that European Union has aimed. The purpose of the study is not only to be a guide for the young who want to get professional training in the countries that are European Union members or candidates about how and where to have education opportunities but also to give a chance for trainers and training managers, participating in vocational training, so as to glimpse different practices from different countries and compare these practices between the countries of European Union and their countries. The study is also very important as it has the opportunities for training managers to see if their countries' vocational education is close enough to vocational education in European Union.

  4. Articulating Atmospheres

    DEFF Research Database (Denmark)

    Kinch, Sofie

    2011-01-01

    This paper presents an architectural approach to designing computational interfaces by articulating the notion of atmosphere in the field of interaction design. It draws upon the concept of kinesthetic interaction and a philosophical notion on atmosphere emphasizing the importance of bodily...

  5. Atmospheric electrodynamics

    International Nuclear Information System (INIS)

    Volland, H.

    1984-01-01

    The book Atmospheric Electrodynamics, by Hans Voland is reviewed. The book describes a wide variety of electrical phenomena occurring in the upper and lower atmosphere and develops the mathematical models which simulate these processes. The reviewer finds that the book is of interest to researchers with a background in electromagnetic theory but is of only limited use as a reference work

  6. Critical Components of a Successful Undergraduate Research Experience in the Geosciences for Minority Students

    Science.gov (United States)

    Liou-Mark, J.; Blake, R.; Chukuigwe, C.

    2013-12-01

    For the past five years, the New York City College of Technology has administered a successful National Science Foundation (NSF) Research Experience for Undergraduates (REU) program. The program provides rich, substantive, academic and life-transformative STEM educational experiences for students who would otherwise not pursue STEM education altogether or would not pursue STEM education through to the graduate school level. The REU Scholars are provided with an opportunity to conduct intensive satellite and ground-based remote sensing research at the National Oceanic and Atmospheric Administration Cooperative Remote Sensing Science and Technology Center (NOAA-CREST). Candidates for the program are recruited from the City University of New York's twenty-three separate campuses. These students engage in a research experience that spans the summer and the fall and spring semesters. Eighty-four percent (84%) of the program participants are underrepresented minorities in STEM, and they are involved in a plethora of undergraduate research best practice activities that include: training courses in MATLAB programming, Geographic Information Systems, and Remote Sensing; workshops in Research Ethics, Scientific Writing, and Oral and Poster Research Presentations; national, regional, and local conference presentations; graduate school support; and geoscience exposure events at national laboratories, agencies, and research facilities. To enhance their success in the program, the REU Scholars are also provided with a comprehensive series of safety nets that include a multi-tiered mentoring design specifically to address critical issues faced by this diverse population. Since the inception of the REU program in 2008, a total of 61 undergraduate students have finished or are continuing with their research or are pursuing their STEM endeavors. All the REU Scholars conducted individual satellite and ground-based remote sensing research projects that ranged from the study of

  7. Urban atmospheres.

    Science.gov (United States)

    Gandy, Matthew

    2017-07-01

    What is an urban atmosphere? How can we differentiate an 'atmosphere' from other facets of urban consciousness and experience? This essay explores some of the wider cultural, political, and philosophical connotations of atmospheres as a focal point for critical reflections on space and subjectivity. The idea of an 'affective atmosphere' as a distinctive kind of mood or shared corporeal phenomenon is considered in relation to recent developments in phenomenology, extended conceptions of agency, and new understandings of materialism. The essay draws in particular on the changing characteristics of air and light to reflect on different forms of sensory experience and their wider cultural and political connotations. The argument highlights some of the tensions and anomalies that permeate contemporary understandings of urban atmospheres.

  8. InTeGrate: Transforming the Teaching of Geoscience and Sustainability

    Science.gov (United States)

    Blockstein, D.; Manduca, C. A.; Bralower, T. J.; Castendyk, D.; Egger, A. E.; Gosselin, D. C.; Iverson, E. A.; Matson, P. A.; MacGregor, J.; Mcconnell, D. A.; Mogk, D. W.; Nevle, R. J.; Oches, E. A.; Steer, D. N.; Wiese, K.

    2012-12-01

    InTeGrate is an NSF-funded community project to improve geoscience literacy and build a workforce that can apply geoscience principles to address societal issues. Three workshops offered this year by InTeGrate and its partner, On the Cutting Edge, addressed strategies for bringing together geoscience and sustainability within geoscience courses and programs, in interdisciplinary courses and programs, and in courses and programs in other disciplines or schools including arts and humanities, health science, and business. Participants in all workshops described the power of teaching geoscience in the context of sustainability and the utility of this approach in engaging students with geoscience, including student populations not traditionally represented in the sciences. Faculty involved in both courses and programs seek to teach important skills including the ability to think about systems and to make connections between local observations and challenges and global phenomena and issues. Better articulation of these skills, including learning outcomes and assessments, as well as documenting the relationship between these skills and employment opportunities were identified as important areas for further work. To support widespread integration of geoscience and sustainability concepts, these workshops initiated collections describing current teaching activities, courses, and programs. InTeGrate will continue to build these collections in collaboration with On the Cutting Edge and Building Strong Geoscience Departments, and through open contributions by individual faculty and programs. In addition, InTeGrate began developing new teaching modules and courses. Materials for use in introductory geoscience and environmental science/studies courses, distance learning courses, and courses for education majors are being developed and tested by teams of faculty drawn from at least three institutions, including several members from two-year colleges. An assessment team is

  9. Information needs and behaviors of geoscience educators: A grounded theory study

    Science.gov (United States)

    Aber, Susan Ward

    2005-12-01

    Geoscience educators use a variety of resources and resource formats in their classroom teaching to facilitate student understanding of concepts and processes that define subject areas considered in the realm of geoscience. In this study of information needs and behaviors of geoscience educators, the researcher found that participants preferred visual media such as personal photographic and digital images, as well as published figures, animations, and cartoons, and that participants bypassed their academic libraries to meet these information needs. In order to investigate the role of information in developing introductory geoscience course and instruction, a grounded theory study was conducted through a qualitative paradigm with an interpretive approach and naturalistic inquiry. The theoretical and methodological framework was constructivism and sense-making. Research questions were posited on the nature of geoscience subject areas and the resources and resource formats used in conveying geoscience topics to science and non-science majors, as well as educators' preferences and concerns with curriculum and instruction. The underlying framework was to investigate the place of the academic library and librarian in the sense-making, constructivist approach of geoscience educators. A purposive sample of seven geoscience educators from four universities located in mid-western United States was identified as exemplary teachers by department chairpersons. A triangulation of data collection methods included semi-structured interviews, document reviews, and classroom observations. Data were analyzed using the constant comparative method, which included coding, categorizing, and interpreting for patterns and relationships. Contextual factors were identified and a simple model resulted showing the role of information in teaching for these participants. While participants developed lectures and demonstrations using intrapersonal knowledge and personal collections, one barrier

  10. Proposed Grand Challenges in Geoscience Education Research: Articulating a Community Research Agenda

    Science.gov (United States)

    Semken, S. C.; St John, K. K.; Teasdale, R.; Ryker, K.; Riggs, E. M.; Pyle, E. J.; Petcovic, H. L.; McNeal, K.; McDaris, J. R.; Macdonald, H.; Kastens, K.; Cervato, C.

    2017-12-01

    Fourteen ago the Wingspread Project helped establish geoscience education research (GER) as an important research field and highlighted major research questions for GER at the time. More recently, the growth and interest in GER is evident from the increase in geoscience education research articles, the establishment of the NAGT GER Division, the creation of the GER Toolbox, an increase in GER graduate programs, and the growth of tenure-eligible GER faculty positions. As an emerging STEM education research field, the GER community is examining the current state of their research and considering the best course forward so that it can have the greatest collective impact on advancing teaching and learning in the geosciences. As part of an NSF-funded effort to meet this need, 45 researchers drafted priority research questions, or "Grand Challenges", that span 10 geoscience education research themes. These include research on: students' conceptual understanding of the solid and the fluid Earth, K-12 teacher preparation, teaching about Earth in the context of societal problems, access and success of underrepresented groups in the geosciences, spatial and temporal reasoning, quantitative reasoning and use of models, instructional strategies to improve geoscience learning, students' self-regulated learning, and faculty professional development and institutional change. For each theme, several Grand Challenges have been proposed; these have undergone one round of peer-review and are now ready for the AGU community to critically examine the proposed Grand Challenges and make suggestions on strategies for addressing them: http://nagt.org/nagt/geoedresearch/grand_challenges/feedback.html. We seek perspectives from geoscience education researchers, scholars, and reflective educators. It is our vision that the final outcomes of this community-grounded process will be a published guiding framework to (1) focus future GER on questions of high interest to the geoscience education

  11. Discerning The Motivational Basis For Trade Unionism In Public And ...

    African Journals Online (AJOL)

    Discerning The Motivational Basis For Trade Unionism In Public And Private ... private businesses are very clear to the actors of industrial relations; those of their ... selfish interests; unions in the public sector ought to function as uplift unions, ...

  12. Geoscience Education and Cognition Research at George Mason University

    Science.gov (United States)

    Mattietti, G. K.; Peters, E. E.; Verardo, S.

    2009-12-01

    Cognition research in Geoscience is the focus of a small group of faculty from the College of Science and the College of Education and Human Development at George Mason University. We approached this research when we were involved in an Institution-wide effort to assess critical thinking, one of the competencies mandated for evaluation by the State Council of Higher Education of Virginia. Our group started spontaneously and informally from personal interests and enthusiasm for what and how our students are learning about Geology and in general about science. We want to understand what our students bring to the course, their attitude towards science, their knowledge of the scientific enterprise and preconceived ideas—and what our students take away from the course, beyond the course content. We believe that, with the support of cognitive science, we can improve the learning experience and therefore enhance the learning outcomes for science and non-science majors alike. Our Institution offers introductory Physical and Historical Geology classes populated primarily by non-science-major undergraduates. Geology lectures range in size from 90 to over 220 students per session per semester, with laboratory sessions averaging 27 students per session. With this large student population, it is necessary to use research tools that give us valuable information about student cognition, while being efficient in terms of time use and logistics. Some examples of our work include critical readings on Geoscience topics, surveys on students’ understanding of science as a way of knowing, exercises with built-in self-efficacy assessments, and concept mapping. The common denominator among these tools is that they are calibrated to address one or more of the higher levels in the revised Bloom’s Taxonomy of the Cognitive Domain, which form a complex assessment of student learning processes. These tools, once refined, can provide us with a better view of how our students learn in

  13. Global Geoscience Initiatives From Windows to the Universe

    Science.gov (United States)

    Russell, R. M.; Johnson, R.; Gardiner, L.; Lagrave, M.; Genyuk, J.; Bergman, J.; Foster, S. Q.

    2006-12-01

    The Windows to the Universe (www.windows.ucar.edu) Earth and space science educational program and web site has an extensive international presence. The web site reaches a vast user audience, having served more than 124 million page views across approximately 14 million user sessions in the past year. About 44% of these user sessions originated from domains outside of the United States. The site, which contains roughly 7,000 pages originally offered in English, is being translated into Spanish. This effort, begun in 2003, is now approximately 80% complete. Availability in a second major language has dramatically increased use of the site both in the U.S.A. and abroad; about 29% (4.1 million) of the annual user sessions visit Spanish-language portions of the site. In September 2005 we began distributing a monthly electronic newsletter for teachers that highlights features on the web site as well as other geoscience programs and events of relevance to educators. We currently have more than 4,400 subscribers, 33.6% of whom are outside of the United States. We are actively seeking news and information about other programs of relevance to this audience to distribute via our newsletter. We have also begun to solicit information (tips, anecdotes, lesson plans, etc.) from geoscience teachers around the world to share via this newsletter. Finally, Windows to the Universe participated in the Education and Outreach efforts of the MILAGRO scientific field campaign in Mexico in March of 2006. MILAGRO was a collaborative, multi-agency, international campaign to conduct a coordinated study of the extent and effects of pollutants emitted by a "mega-city" (in this case Mexico City) in order to understand the impacts of vast urban environments on global climate modeling. We enlisted several scientists involved with MILAGRO to write "Postcards from the Field" about their ongoing research during the project; these electronic "postcards" were distributed, in English and Spanish, via

  14. Emerging Geoscience Education Research at the University of British Columbia

    Science.gov (United States)

    Jones, F. M.; Harris, S.; Wieman, C.; Gilley, B.; Lane, E.; Caulkins, J.

    2009-12-01

    Geoscience education research (GER) in UBC’s Department of Earth and Ocean Sciences (EOS) began due to a well funded 5-yr Faculty of Science project called the Carl Wieman Science Education Initiative (CWSEI). This initiative takes an evidence-based, scientific approach to improving education by 1) establishing what students should learn; 2) scientifically measuring what students are learning; 3) adapting instruction and curricula using effective technologies and pedagogical research; and 4) disseminating and adopting what works. The presentation will discuss how this initiative has fostered a growing GER presence within our Department. CWSEI funding has enabled the EOS Department to hire 4 full-time Science Teaching and Learning Fellows (STLFs) who work directly with faculty to optimize courses and curricula. Much of the effort goes into developing active learning opportunities and rigorous ways to measure student learning and attitudes. Results serve as feedback for both students and instructors. Over 10 research projects have so far been initiated as a result of course and curriculum transformation. Examples include studies about: student attitudes towards Earth and Ocean Sciences; the effects of multiple instructors in courses; links between student in-class engagement and pedagogy; how certain instructional interventions promote metacognition; and others. Also, many modified courses use pre- and post-testing to measure learning gains. One undergraduate honors thesis, about assessing conceptual understanding of geological time, has been completed. Keys to fostering GER in our setting include: (1) faculty commitment to change, based on funding from CWSEI, (2) full-time Earth scientists (STLFs) who catalyze and support change, and (3) support from CWSEI science education experts. Specifically: - STLFs are trained Earth scientists but were not initially science education experts. Continuous support from CWSEI has been crucial for building expertise about how

  15. Role Models for boosting mobility of women scientists in geosciences

    Science.gov (United States)

    Avellis, Giovanna; Theodoridou, Magdalini

    2017-04-01

    More and more women today are choosing to study science and undertake scientific careers. Likewise mobility during one's career is increasingly important as research tends to be undertaken via international collaboration, often within networks based on the researchers mobility, especially in geosciences. We have developed an ebook on Role Models for boosting mobility of women scientists to showcase the careers of women scientists who have undertaken mobility during their careers. It is hoped that their stories will provide young women who are just starting out in their science careers with inspirational role models, and that these stories give them realistic information about career opportunities: many of them are women scientists in geosciences. These are not famous scientists, but rather real examples of people who express all the passion of the world of science. It is hoped that reading about successful scientists who have achieved a healthy work-life balance while moving to new locations will be particularly helpful for those individuals considering mobility in their own career. The ebook is available to be used by programs that support the development of systematic approaches to increasing the representation and advancement of women in science, engineering and technology, since mobility plays a key role in these programs. The stories contained herein will be useful to mentoring or advising program focusing on career, networking opportunities, discussion and grants opportunities in conjunction with mobility. There is still a gap between female graduates and the pool of female job applicants - even though the proportion of female graduate students and postdocs in most scientific fields is higher today than it is ever been. Therefore we suggest that focus should be placed on examining the real challenges which women need to overcome, particularly when "mobility" comes into play. Role models who have overcome these challenges will continue to play an important

  16. Examining the Professional Development Experiences and Non-Technical Skills Desired for Geoscience Employment

    Science.gov (United States)

    Houlton, H. R.; Ricci, J.; Wilson, C. E.; Keane, C.

    2014-12-01

    Professional development experiences, such as internships, research presentations and professional network building, are becoming increasingly important to enhance students' employability post-graduation. The practical, non-technical skills that are important for succeeding during these professional development experiences, such as public speaking, project management, ethical practices and writing, transition well and are imperative to the workplace. Thereby, graduates who have honed these skills are more competitive candidates for geoscience employment. Fortunately, the geoscience community recognizes the importance of these professional development opportunities and the skills required to successfully complete them, and are giving students the chance to practice non-technical skills while they are still enrolled in academic programs. The American Geosciences Institute has collected data regarding students' professional development experiences, including the preparation they receive in the corresponding non-technical skills. This talk will discuss the findings of two of AGI's survey efforts - the Geoscience Student Exit Survey and the Geoscience Careers Master's Preparation Survey (NSF: 1202707). Specifically, data highlighting the role played by internships, career opportunities and the complimentary non-technical skills will be discussed. As a practical guide, events informed by this research, such as AGI's professional development opportunities, networking luncheons and internships, will also be included.

  17. Accessible Earth: Enhancing diversity in the Geosciences through accessible course design

    Science.gov (United States)

    Bennett, R. A.; Lamb, D. A.

    2017-12-01

    The tradition of field-based instruction in the geoscience curriculum, which culminates in a capstone geological field camp, presents an insurmountable barrier to many disabled students who might otherwise choose to pursue geoscience careers. There is a widespread perception that success as a practicing geoscientist requires direct access to outcrops and vantage points available only to those able to traverse inaccessible terrain. Yet many modern geoscience activities are based on remotely sensed geophysical data, data analysis, and computation that take place entirely from within the laboratory. To challenge the perception of geoscience as a career option only for the non-disabled, we have created the capstone Accessible Earth Study Abroad Program, an alternative to geologic field camp for all students, with a focus on modern geophysical observation systems, computational thinking, data science, and professional development.In this presentation, we will review common pedagogical approaches in geosciences and current efforts to make the field more inclusive. We will review curricular access and inclusivity relative to a wide range of learners and provide examples of accessible course design based on our experiences in teaching a study abroad course in central Italy, and our plans for ongoing assessment, refinement, and dissemination of the effectiveness of our efforts.

  18. 3D for Geosciences: Interactive Tangibles and Virtual Models

    Science.gov (United States)

    Pippin, J. E.; Matheney, M.; Kitsch, N.; Rosado, G.; Thompson, Z.; Pierce, S. A.

    2016-12-01

    Point cloud processing provides a method of studying and modelling geologic features relevant to geoscience systems and processes. Here, software including Skanect, MeshLab, Blender, PDAL, and PCL are used in conjunction with 3D scanning hardware, including a Structure scanner and a Kinect camera, to create and analyze point cloud images of small scale topography, karst features, tunnels, and structures at high resolution. This project successfully scanned internal karst features ranging from small stalactites to large rooms, as well as an external waterfall feature. For comparison purposes, multiple scans of the same object were merged into single object files both automatically, using commercial software, and manually using open source libraries and code. Files with format .ply were manually converted into numeric data sets to be analyzed for similar regions between files in order to match them together. We can assume a numeric process would be more powerful and efficient than the manual method, however it could lack other useful features that GUI's may have. The digital models have applications in mining as efficient means of replacing topography functions such as measuring distances and areas. Additionally, it is possible to make simulation models such as drilling templates and calculations related to 3D spaces. Advantages of using methods described here for these procedures include the relatively quick time to obtain data and the easy transport of the equipment. With regard to openpit mining, obtaining 3D images of large surfaces and with precision would be a high value tool by georeferencing scan data to interactive maps. The digital 3D images obtained from scans may be saved as printable files to create physical 3D-printable models to create tangible objects based on scientific information, as well as digital "worlds" able to be navigated virtually. The data, models, and algorithms explored here can be used to convey complex scientific ideas to a range of

  19. Unidata: A geoscience e-infrastructure for International Data Sharing

    Science.gov (United States)

    Ramamurthy, Mohan

    2017-04-01

    The Internet and its myriad manifestations, including the World Wide Web, have amply demonstrated the compounding benefits of a global cyberinfrastructure and the power of networked communities as institutions and people exchange knowledge, ideas, and resources. The Unidata Program recognizes those benefits, and over the past several years it has developed a growing portfolio of international data distribution activities, conducted in close collaboration with academic, research and operational institutions on several continents, to advance earth system science education and research. The portfolio includes provision of data, tools, support and training as well as outreach activities that bring various stakeholders together to address important issues, all toward the goals of building a community with a shared vision. The overarching goals of Unidata's international data sharing activities include: • democratization of access-to and use-of data that describe the dynamic earth system by facilitating data access to a broad spectrum of observations and forecasts • building capacity and empowering geoscientists and educators worldwide by building encouraging local communities where data, tools, and best practices in education and research are shared • strengthening international science partnerships for exchanging knowledge and expertise • Supporting faculty and students at research and educational institutions in the use of Unidata systems building regional and global communities around specific geoscientific themes. In this presentation, I will present Unidata's ongoing data sharing activities in Latin America, Europe, Africa and Antarctica that are enabling linkages to existing and emergent e-infrastructures and operational networks, including recent advances to develop interoperable data systems, tools, and services that benefit the geosciences. Particular emphasis in the presentation will be made to describe the examples of the use of Unidata

  20. SAS- Semantic Annotation Service for Geoscience resources on the web

    Science.gov (United States)

    Elag, M.; Kumar, P.; Marini, L.; Li, R.; Jiang, P.

    2015-12-01

    There is a growing need for increased integration across the data and model resources that are disseminated on the web to advance their reuse across different earth science applications. Meaningful reuse of resources requires semantic metadata to realize the semantic web vision for allowing pragmatic linkage and integration among resources. Semantic metadata associates standard metadata with resources to turn them into semantically-enabled resources on the web. However, the lack of a common standardized metadata framework as well as the uncoordinated use of metadata fields across different geo-information systems, has led to a situation in which standards and related Standard Names abound. To address this need, we have designed SAS to provide a bridge between the core ontologies required to annotate resources and information systems in order to enable queries and analysis over annotation from a single environment (web). SAS is one of the services that are provided by the Geosematnic framework, which is a decentralized semantic framework to support the integration between models and data and allow semantically heterogeneous to interact with minimum human intervention. Here we present the design of SAS and demonstrate its application for annotating data and models. First we describe how predicates and their attributes are extracted from standards and ingested in the knowledge-base of the Geosemantic framework. Then we illustrate the application of SAS in annotating data managed by SEAD and annotating simulation models that have web interface. SAS is a step in a broader approach to raise the quality of geoscience data and models that are published on the web and allow users to better search, access, and use of the existing resources based on standard vocabularies that are encoded and published using semantic technologies.

  1. Online Experiential Learning: Effective Applications for Geoscience Education

    Science.gov (United States)

    Matias, A.; Eriksson, S. C.

    2015-12-01

    Students today are rarely satisfied with a one-size-fits-all educational experience. The rapid changing landscape of the web and other technologies are breaking down communicationand geographic barries. More students are increasingly turning to the web for quality education that fits into their lives. As a result, higher education institutions are expanding their offerings through online courses. Nonetheless, online learning brings challenges as well as a fresh opportunityfor exploring practices not present in traditional higher education programs, particularly in the sciences. We are in a unique position to empower students to make strategic academic and professional decisions in global terms. Online learning, supportedwith hands-on and minds-on activities, actively engages student with critical thinking skills and higher level learning. This presentation will showcase examples from a series of geoscience and environmental science courses currently offered fully online at SUNY Empire State College (ESC). Taking advantage of the proliferation of tools currently available for online learning management systems, we will explore how we approach course developent to create an interactive learning environment. Students learn through case studies, group projects and understanding real-world issues while learning concepts. Particular focus will be given to an international collaboration with the Tecnologico de Monterrey, Chihuahua Campus. This collaboration took place during the Spring of 2015 with students from the fully-online, lower-level Geology and the Environment course at ESC and the upper-level, face-to-face Mobile Programming course in Mexico. Ultimately, the goal of this presentation is to show faculty members and afministrators the pedagogical principles and approach used with the expectation that it could help support development of online learning opportunities at their institutions.

  2. Geoethics and the Role of Professional Geoscience Societies

    Science.gov (United States)

    Kieffer, S. W.; Palka, J. M.; Geissman, J. W.; Mogk, D. W.

    2014-12-01

    Codes of Ethics (Conduct) for geoscientists are formulated primarily by professional societies and the codes must be viewed in the context of the Goals (Missions, Values) of the societies. Our survey of the codes of approximately twenty-five societies reveals that most codes enumerate principles centered on practical issues regarding professional conduct of individuals such as plagiarism, fabrication, and falsification, and the obligation of individuals to the profession and society at large. With the exception of statements regarding the ethics of peer review, there is relatively little regarding the ethical obligations of the societies themselves. In essence, the codes call for traditionally honorable behavior of individual members. It is striking, given that the geosciences are largely relevant to the future of Earth, most current codes of societies fail to address our immediate obligations to the environment and Earth itself. We challenge professional organizations to consider the ethical obligations to Earth in both their statements of goals and in their codes of ethics. Actions by societies could enhance the efforts of individual geoscientists to serve society, especially in matters related to hazards, resources and planetary stewardship. Actions we suggest to be considered include: (1) Issue timely position statements on topics in which there is expertise and consensus (some professional societies such as AGU, GSA, AAAS, and the AMS, do this regularly, yet others not at all.); (2) Build databases of case studies regarding geoethics that can be used in university classes; (3) Hold interdisciplinary panel discussions with ethicists, scientists, and policy makers at annual meetings; (4) Foster publication in society journals of contributions relating to ethical questions; and (5) Aggressively pursue the incorporation of geoethical issues in undergraduate and graduate curricula and in continuing professional development.

  3. Geoscience Australia Publishes Sample Descriptions using W3C standards

    Science.gov (United States)

    Car, N. J.; Cox, S. J. D.; Bastrakova, I.; Wyborn, L. A.

    2017-12-01

    The recent revision of the W3C Semantic Sensor Network Ontology (SSN) has focused on three key concerns: Extending the scope of the ontology to include sampling and actuation as well as observation and sensing Modularizing the ontology into a simple core with few classes and properties and little formal axiomatization, supplemented by additional modules that formalize the semantics and extend the scope Alignments with several existing applications and upper ontologies These enhancements mean that SSN can now be used as the basis for publishing descriptions of geologic samples as Linked Data. Geoscience Australia maintains a database of about three million samples, collected over 50 years through projects from ocean core, terrestrial rock and hydrochemistry borehole projects, almost all of which are held in in the special-purpose GA samples repository. Access to descriptions of these samples as Linked Data has recently been enabled. The sample descriptions can be viewed in various machine-readable formalizations, including IGSN (XML & RDF), Dublin Core (XML & RDF) and SSN (RDF), as well as web landing-pages for people. Of particular importance is the support for encoding relationships between samples, and between samples and surveys, boreholes, and traverses which they are related to, as well as between samples processed for analytical purposes and their parents, siblings, and back to the original field samples. The SSN extension for Sample Relationships provides an extensible, semantically rich mechanism to capture any relationship necessary to explain the provenance of observation results obtained from samples. Sample citation is facilitated through the use of URI-based persistent identifiers which resolve to samples' landing pages. The sample system also allows PROV pingbacks to be received for samples when users of them record provenance for their actions.

  4. Using Low Cost Environmental Sensors in Geoscience Education

    Science.gov (United States)

    Leeman, J.; Ammon, C. J.; Anandakrishnan, S.

    2014-12-01

    Advances in process technology have drastically reduced the cost of manufacturing almost every type of sensor and micro-controller, putting low-to-mid grade sensor technology in the reach of educators and hobbyists. We demonstrate how a low cost magnetometer and an Arduino micro-controller can be used in education. Students can easily connect the sensor to the Arduino and collect three-component magnetic field data. Experiments can easily be turned into long-term monitoring projects by connecting sensors to the internet and providing an Internet-of-Things interface to store and to display the data in near-real time. Low-cost sensors are generally much noisier than their research grade counterparts, but can still provide an opportunity for students to learn about fundamental concepts such as signal quality, sampling, averaging, and filtering and to gain hands-on, concrete experience with observations. Sensors can be placed at different locations and compared both qualitatively and quantitatively. For example, with an inexpensive magnetometer, students can examine diurnal magnetic field variations and look for magnetic storms. Magnetic field orientation can be calculated and compared to the predicted geomagnetic field orientation at a given location. Data can be stored in simple text files to facilitate analysis with any convenient package. We illustrate the idea using Python notebooks, allowing students to explore the data interactively and to learn the basic principles of programming and reproducible research. Using an Arduino encourages students to interact with open-source data collection hardware and to experiment with ways to quickly, cheaply, and effectively measure the environment. Analysis of these data can lead to a deeper understanding of both geoscience and data processing.

  5. Make it fun for everyone: visualization techniques in geoscience

    Science.gov (United States)

    Portnov, A.; Sojtaric, M.

    2017-12-01

    We live on a planet that mostly consists of oceans, but most people cannot picture what the surface and the subsurface of the ocean floor looks like. Marine geophysics has traditionally been difficult to explain to general public as most of what we do happens beyond the visual realm of an average audience. However, recent advances in 3D visualization of scientific data is one of the tools we can employ to better explain complex systems through gripping visual content. Coupled with a narrative approach, this type of visualization can open up a whole new and relatively little known world of science to general public. Up-to-date remote-sensing methods provide unique data of surface of seabed and subsurface all over the planet. Modern software can present this data in a spectacular way and with great scientific accuracy, making it attractive both for specialists and non-specialists in geoscience. As an example, we present several visualizations, which in simple way tell stories of various research in the remote parts of the World, such as Arctic regions and deep ocean in the Gulf of Mexico. Diverse datasets: multibeam echosounding; hydrographic survey; seismic and borehole data are put together to build up perfectly geo-referenced environment, showing the complexity of geological processes on our planet. Some of the data was collected 10-15 years ago, but acquired its new life with the help of new data visualization techniques. Every digital object with assigned coordinates, including 2D pictures and 3D models may become a part of this virtual geologic environment, limiting the potential of geo-visualization only by the imagination of a scientist. Presented videos have an apparent scientific focus on marine geology and geophysics, since the data was collected by several research and petroleum organizations, specialized in this field. The stories which we tell in this way may, for example, provide the public with further insight in complexities surrounding natural

  6. A project-based geoscience curriculum: select examples

    Science.gov (United States)

    Brown, L. M.; Kelso, P. R.; White, R. J.; Rexroad, C. B.

    2007-12-01

    Principles of constructivist educational philosophy serve as a foundation for the recently completed National Science Foundation sponsored undergraduate curricular revision undertaken by the Geology Department of Lake Superior State University. We integrate lecture and laboratory sessions utilizing active learning strategies that focus on real-world geoscience experiences and problems. In this presentation, we discuss details of three research-like projects that require students to access original data, process and model the data using appropriate geological software, interpret and defend results, and disseminate results in reports, posters, and class presentations. The projects are from three upper division courses, Carbonate Systems, Sequence Stratigraphy, and Geophysical Systems, where teams of two to four students are presented with defined problems of durations ranging from a few weeks to an entire semester. Project goals and location, some background information, and specified dates and expectations for interim and final written and oral reports are provided to students. Some projects require the entire class to work on one data set, some require each team to be initially responsible for a portion of the project with teams ultimately merging data for interpretation and to arrive at final conclusions. Some projects require students to utilize data from appropriate geological web sites such as state geological surveys. Others require students to design surveys and utilize appropriate instruments of their choice for field data collection. Students learn usage and applications of appropriate geological software in compiling, processing, modeling, and interpreting data and preparing formal reports and presentations. Students uniformly report heightened interest and motivation when engaged in these projects. Our new curriculum has resulted in an increase in students" quantitative and interpretive skills along with dramatic improvement in communication and

  7. BCube: A Broker Framework for Next Generation Geoscience

    Science.gov (United States)

    Khalsa, S. S.; Pearlman, J.; Nativi, S.

    2013-12-01

    EarthCube is an NSF initiative that aims to transform the conduct of research through the creation of community-guided cyberinfrastructure enabling the integration information and data across the geosciences. Following an initial phase of concept and community development activities, NSF has made awards for the development of cyberinfrastructure 'building blocks.' In this talk we describe the goals and methods for one of these projects - BCube, for Brokering Building Blocks. BCube addresses the need for effective and efficient multi-disciplinary collaboration and interoperability through the introduction of brokering technologies. Brokers, as information systems middleware, have existed for many years and are found in diverse domains and industries such as financial systems, business-to-business interfaces, medicine and the automotive industry, to name a few. However, the emergence of brokers in science is relatively new and is now being piloted with great promise in cyberinfrastructure and science communities in the U.S., Europe, and elsewhere. Brokers act as intermediaries between information systems that implement well-defined interfaces, providing a bridge between communities using different specifications. The BCube project is helping to build a truly cross-disciplinary, global platform for data providers, cyberinfrastructure developers, and data users to make data more available and interoperable through a brokering framework. Building on the GEOSS Discover and Access Broker (DAB), BCube will develop new modules and services including * Expanded semantic brokering * Business Model support for work flows * Automated metadata generation * Automated linking to services discovered via web crawling * Plug and play for most community service buses * Credential passing for seamless access to data * Ranking of search results from brokered catalogs Because facilitating cross-discipline research involves cultural and well as technical challenges, BCube is also

  8. Ecoacoustic Music for Geoscience: Sonic Physiographies and Sound Casting

    Science.gov (United States)

    Burtner, M.

    2017-12-01

    The author describes specific ecoacoustic applications in his original compositions, Sonic Physiography of a Time-Stretched Glacier (2015), Catalog of Roughness (2017), Sound Cast of Matanuska Glacier (2016) and Ecoacoustic Concerto (Eagle Rock) (2014). Ecoacoustic music uses technology to map systems from nature into music through techniques such as sonification, material amplification, and field recording. The author aspires for this music to be descriptive of the data (as one would expect from a visualization) and also to function as engaging and expressive music/sound art on its own. In this way, ecoacoustic music might provide a fitting accompaniment to a scientific presentation (such as music for a science video) while also offering an exemplary concert hall presentation for a dedicated listening public. The music can at once support the communication of scientific research, and help science make inroads into culture. The author discusses how music created using the data, sounds and methods derived from earth science can recast this research into a sonic art modality. Such music can amplify the communication and dissemination of scientific knowledge by broadening the diversity of methods and formats we use to bring excellent scientific research to the public. Music can also open the public's imagination to science, inspiring curiosity and emotional resonance. Hearing geoscience as music may help a non-scientist access scientific knowledge in new ways, and it can greatly expand the types of venues in which this work can appear. Anywhere music is played - concert halls, festivals, galleries, radio, etc - become a venue for scientific discovery.

  9. IMPORTANCE OF THE EUROPEAN BANKING UNION NEW DIRECTIVES

    OpenAIRE

    MEDAR LUCIAN-ION; Irina-Elena Chirtoc

    2014-01-01

    European Banking Union has set new rules on monetary market especially for credit institutions and for financial banking groups in general. Economic and monetary union requires accomplishment of political and monetary union and democratic control of the European institutions on a single financial market. In this respect through its management organisms, EU has designed a series of unique mechanisms of financial union and called for a fiscal union. Union of European financial marke...

  10. Acquired Credit Unions: Drivers of Takeover

    Directory of Open Access Journals (Sweden)

    R. Raymond Sant

    2015-08-01

    Full Text Available In this paper we study acquired credit unions and analyze their financial performance up to six years prior to merger, on a quarterly basis. The primary focus is on balance sheet (asset liability management and profitability variables (return on assets. We find that acquired credit unions during the period 2008 (third quarter to 2014 (first quarter experienced negative return on assets for several quarters prior to their takeover. This was the result of a declining loan portfolio and increasing charge offs. In spite of decreasing lending activity, such credit unions continued to increase their deposits, i.e., adding to their cost base. Due to declining loans, their net interest margin as a proportion of deposits was also in decline. We argue that this is an indicator of poor management ability. Furthermore, our analysis finds that operating expenses were increasing over time, something that has been documented in previous literature also for smaller credit unions and is attributable to lack of economies of scale. The average asset size of the acquired credit unions in our sample is about $22 million just before acquisition. We attribute our findings to poor business strategy followed by such credit unions. We also conclude that signs of trouble are evident up to two years before merger on average and regulatory policy may have to become more proactive to manage the consolidation challenge faced by the credit union industry in general.

  11. Church unions and their consequences in Poland

    Directory of Open Access Journals (Sweden)

    Antoni Mironowicz

    2014-11-01

    Full Text Available Orthodox Christians in Poland have faced numerous attempts to be forced into union with the Roman Catholic Church, ranging from the thirteenth to the twentieth century. The first attempt at a union between the Roman Catholic Church and the Orthodox Church took place as early as the mid-thirteenth century. Another attempt at forcing the Orthodox Church into union with Rome took place during the reign of Ladislaŭ II Yagiello. The problem of church union returned in the reign of Alexander the Yagiellonian. When Ivan III rejected all projects for bringing the Florence such a union into practice, discussion on church union disappeared until the end of the sixteenth century. The mission of the papal legate, Father Antonio Possevino, to Ivan IV, had been intended to draw Moscow into the union, and its failure caused the papacy to concentrate its efforts on the Orthodox Church in Poland. The Ruthenian bishops’ obedience to the Pope was officially announced on the 8 October 1596. The decisions of the Uniate-Catholic synod were met with numerous protests from the Orthodox clergy and nobility. The larger part of the clergy and the faithful, together with bishops remained in the Orthodox camp. Despite the failure of the Brest Synod in fully uniting Orthodox and Roman churches, new union projects concerning the Orthodox Church in Poland continued to arise prior to the end of 18th century. The Vatican’s interest in the Orthodox Church in Central Europe was renewed at the end of the First World War. On April 1st, 1917, the Pope created the Congregation for the Oriental Churches which was responsibile for all issues relating to the activities of all the Eastern denominations. Despite aims at unification, attempts at church union have had a negative influence on the relations between the Roman Catholic and Polish Orthodox Church in contemporary Poland. The result of centuries of attempts at unification under the Pope has been fragmentation and division.

  12. Atmospheric Electricity

    Science.gov (United States)

    Aplin, Karen; Fischer, Georg

    2018-02-01

    Electricity occurs in atmospheres across the Solar System planets and beyond, spanning spectacular lightning displays in clouds of water or dust, to more subtle effects of charge and electric fields. On Earth, lightning is likely to have existed for a long time, based on evidence from fossilized lightning strikes in ancient rocks, but observations of planetary lightning are necessarily much more recent. The generation and observations of lightning and other atmospheric electrical processes, both from within-atmosphere measurements, and spacecraft remote sensing, can be readily studied using a comparative planetology approach, with Earth as a model. All atmospheres contain charged molecules, electrons, and/or molecular clusters created by ionization from cosmic rays and other processes, which may affect an atmosphere's energy balance both through aerosol and cloud formation, and direct absorption of radiation. Several planets are anticipated to host a "global electric circuit" by analogy with the circuit occurring on Earth, where thunderstorms drive current of ions or electrons through weakly conductive parts of the atmosphere. This current flow may further modulate an atmosphere's radiative properties through cloud and aerosol effects. Lightning could potentially have implications for life through its effects on atmospheric chemistry and particle transport. It has been observed on many of the Solar System planets (Earth, Jupiter, Saturn, Uranus, and Neptune) and it may also be present on Venus and Mars. On Earth, Jupiter, and Saturn, lightning is thought to be generated in deep water and ice clouds, but discharges can be generated in dust, as for terrestrial volcanic lightning, and on Mars. Other, less well-understood mechanisms causing discharges in non-water clouds also seem likely. The discovery of thousands of exoplanets has recently led to a range of further exotic possibilities for atmospheric electricity, though lightning detection beyond our Solar System

  13. The European Union in International Financial Governance

    Directory of Open Access Journals (Sweden)

    Niamh Moloney

    2017-01-01

    Full Text Available This article considers the role of the European Union in international financial governance after the institutional reforms it undertook in connection with the global financial crisis. It suggests that the new administrative actors that support the governance of the European Union's single financial market, notably the European Supervisory Authorities, have the potential to reshape how the European Union engages with international financial governance. It finds that the European Union’s effectiveness in influencing international financial governance—and the effectiveness of international financial governance more generally—is likely to strengthen as a result.

  14. Build It, But Will They Come? A Geoscience Cyberinfrastructure Baseline Analysis

    Directory of Open Access Journals (Sweden)

    Joel Cutcher-Gershenfeld

    2016-07-01

    Full Text Available Understanding the earth as a system requires integrating many forms of data from multiple fields. Builders and funders of the cyberinfrastructure designed to enable open data sharing in the geosciences risk a key failure mode: What if geoscientists do not use the cyberinfrastructure to share, discover and reuse data? In this study, we report a baseline assessment of engagement with the NSF EarthCube initiative, an open cyberinfrastructure effort for the geosciences. We find scientists perceive the need for cross-disciplinary engagement and engage where there is organizational or institutional support. However, we also find a possibly imbalanced involvement between cyber and geoscience communities at the outset, with the former showing more interest than the latter. This analysis highlights the importance of examining fields and disciplines as stakeholders to investments in the cyberinfrastructure supporting science.

  15. DOE/OBES/Geosciences initiative on radioactive-waste isolation in mined repositories

    International Nuclear Information System (INIS)

    1983-05-01

    The Geosciences Program within the Office of Basic Energy Sciences supports fundamental research of scientific importance and of technological relevance in the energy field. The present document describes an ongoing scientific effort on the geoscience aspects of the emplacement of radioactive waste in a mined repository. Basic research in geochemical transport, rock mechanics, geodynamics and hydrologic modelings is needed to improve understanding of geoscience processes influenced by the introduction of mechanical and thermal stresses and by the introduction of new chemical and radioactive species to the subsurface. Laboratory and in-situ data are required for scaling, modeling, and predicting parameters most relevant to locating, developing, constructing, and operating geologic radioactive waste repositories. Testing and development of high resolution surface and borehole geophysical methods are needed for subsurface characterization. Special emphasis is given to the role of fractures because they control flow and are sites for geochemical interactions

  16. A Synthesis of Instructional Strategies in Geoscience Education Literature That Address Barriers to Inclusion for Students with Disabilities

    Science.gov (United States)

    Carabajal, Ivan G.; Marshall, Anita M.; Atchison, Christopher L.

    2017-01-01

    People with disabilities make up the largest minority population in the U.S. yet remain sorely underrepresented in scientific disciplines that require components of field-based training such as the geosciences. This paper provides a critical analysis of broadening participation within geoscience education literature through the use of accessible…

  17. Video diaries on social media: Creating online communities for geoscience research and education

    Science.gov (United States)

    Tong, V.

    2013-12-01

    Making video clips is an engaging way to learn and teach geoscience. As smartphones become increasingly common, it is relatively straightforward for students to produce ';video diaries' by recording their research and learning experience over the course of a science module. Instead of keeping the video diaries for themselves, students may use the social media such as Facebook for sharing their experience and thoughts. There are some potential benefits to link video diaries and social media in pedagogical contexts. For example, online comments on video clips offer useful feedback and learning materials to the students. Students also have the opportunity to engage in geoscience outreach by producing authentic scientific contents at the same time. A video diary project was conducted to test the pedagogical potential of using video diaries on social media in the context of geoscience outreach, undergraduate research and teaching. This project formed part of a problem-based learning module in field geophysics at an archaeological site in the UK. The project involved i) the students posting video clips about their research and problem-based learning in the field on a daily basis; and ii) the lecturer building an online outreach community with partner institutions. In this contribution, I will discuss the implementation of the project and critically evaluate the pedagogical potential of video diaries on social media. My discussion will focus on the following: 1) Effectiveness of video diaries on social media; 2) Student-centered approach of producing geoscience video diaries as part of their research and problem-based learning; 3) Learning, teaching and assessment based on video clips and related commentaries posted on Facebook; and 4) Challenges in creating and promoting online communities for geoscience outreach through the use of video diaries. I will compare the outcomes from this study with those from other pedagogical projects with video clips on geoscience, and

  18. The Evolution of Building a Diverse Geosciences in the United States

    Science.gov (United States)

    Keane, Christopher; Houlton, Heather; Leahy, P. Patrick

    2016-04-01

    Since the 1960s, the United States has had numerous systematic efforts to support diversity in all parts of society. The American Geosciences Institute has had active ongoing research and diversity promotion programs in the geosciences since 1972. Over this time, the drivers and goals of promoting a diverse discipline have evolved, including in the scope and definition of diversity. The success of these efforts have been mixed, largely driven by wildly different responses by specific gender and racial subsets of the population. Some critical cultural barriers have been solidly identified and mitigation approaches promoted. For example, the use of field work in promotion of geoscience careers and education programs is viewed as a distinct negative by many African American and Hispanic communities as it equates geoscience as non-professional work. Similarly, efforts at improving gender diversity have had great success, especially in the private sector, as life-balance policies and mitigations of implicit biases have been addressed. Yet success in addressing some of these cultural and behavioral issues has also started to unveil other overarching factors, such as the role of socio-economic and geographic location. Recent critical changes in the definition of diversity that have been implemented will be discussed. These include dropping Asian races as underrepresented, the introduction of the multiracial definition, evolution of the nature of gender, and the increased awareness of persons with disabilities as a critical diverse population. This has been coupled with dramatic changes in the drivers for promoting diversity in the geosciences in the U.S. from a moral and ethical good to one of economic imperative and recognizing the way to access the best talent in the population as the U.S. rapidly approaches being a majority minority society. These changes are leading to new approaches and strategies, for which we will highlight specific programmatic efforts both by AGI

  19. Field research internships: Why they impact students' decisions to major in the geosciences

    Science.gov (United States)

    Kortz, K. M.; Cardace, D.; Savage, B.; Rieger, D.

    2017-12-01

    Although internships have been shown to retain geoscience students, little research has been done on what components of research or field experiences during an internship impact students' decisions to major in the geosciences. We created and led a short, two-week field-based internship for 5 introductory-level students to conduct research and create a poster to present their results. In addition to the two professors leading the internship and the 5 interns, there were 2 masters students and 1 community college student who were returning to the field area to collect data for their own projects. These students also helped to guide and mentor the interns. The interns were diverse in many aspects: 3 were female, 2 were non-white, 3 were community college students (1 4YC student was a transfer), 2 were first-generation college students, and their ages ranged from 18 to 33. Based on our evaluation, we found that the research experience increased students' self-efficacy in the geosciences through various means, increased their connection with mentors and other individuals who could serve as resources, gave them a sense of belonging to the geoscience culture, increased their knowledge of geoscience career paths and expectations, helped them make connections with Earth, and maintained their interest. These factors have been described in the literature as leading to retention, and we propose that field-based internships are successful for recruitment or retention in the geosciences because they influence so many of these affective and cognitive components at once. In particular, the social aspect of internships plays a fundamental role in their success because many of these factors require close and sustained interactions with other people. An implication of this research is that these affective components, including social ones, should be explicitly considered in the design and implementation of internships to best serve as a recruitment and retention strategy.

  20. Broadening Pathways to Geosciences with an Integrated Program at The University of Michigan

    Science.gov (United States)

    Dick, G.; Munson, J.

    2017-12-01

    Low participation of under-represented minorities (URM) in the geosciences is an acute issue at the University of Michigan (U-M), where the number of undergraduate URM students majoring in the Department of Earth and Environmental Sciences (EES) is typically 5% of total majors. The goal of our project is to substantially increase the number and success rate of underrepresented minorities majoring in EES at U-M. We are pursuing this goal with five primary objectives: (i) inspire and recruit high schools seniors to pursue geoscience at U-M, especially through hands-on experiences including field trips; (ii) establish infrastructure to support students interested in geosciences through the critical juncture between high school and college; (iii) increase the number of URM students transferring from community college; (iv) develop student interest in geosciences through research and field experiences; (v) expose students to career opportunities in the geosciences. To accomplish these objectives we are leveraging existing programs, including Earth Camp, Foundations for Undergraduate Teaching: Uniting Research and Education (FUTURE), M-Sci, and college academic advisors. Throughout our interactions with students from high-school through college, we expose them to career opportunities in the geosciences, including private industry, academia, and government agencies. Evaluation of the program revealed three main conclusions: (i) the program increased student interest in pursuing an earth science degree; (ii) participating students showed a marked increase in awareness about the various opportunities that are available with an earth science degree including pathways to graduate school and earth science careers; (iii) field trips were the most effective route for achieving outcomes (i) and (ii).

  1. Mars: Atmosphere

    Science.gov (United States)

    Moroz, V.; Murdin, P.

    2001-07-01

    The atmosphere of MARS is much thinner than the terrestrial one. However, even the simplest visual telescopic observations show a set of atmospheric events such as seasonal exchange of material between polar caps, temporal appearance of clouds and changes of visibility of dark regions on the disk of the planet. In 1947 the prominent CO2 bands in the near-infrared part of the Martian spectrum were...

  2. Trade Union Cooperation in the EU: Views Among Swedish Trade Unions and Their Members

    Directory of Open Access Journals (Sweden)

    Bengt Furåker

    2013-09-01

    Full Text Available This article compares views among Swedish trade unions with those of their members regarding cross-national union cooperation in Europe or the EU. Data are derived from two different surveys, one among trade unions in 2010–2011 and the other among employees in 2006. It turns out that trade unions are generally more affirmative than their members to transnational union cooperation. In the employee survey, differences appear between members of the three peak-level organizations—the LO (manual workers, the TCO (white-collar workers, and Saco (professionals. However, controlling for education, these differences cannot be verified statistically. Higher education—which above all Saco members have—is linked to more positive attitudes toward transnational union cooperation. The gap between the organizations and their affiliates concerning engagement in European issues appears to be larger in the LO than in Saco, with the TCO somewhere in the middle.

  3. Children's Literature in the Soviet Union

    Science.gov (United States)

    Miller, D. D.; And Others

    1976-01-01

    Children's literature in the Soviet Union is of four types: 17 stories based on old tales, adaptations from great Russian literature, original writings for children, and translations from foreign works. (JH)

  4. Growing Up Gifted in the Soviet Union.

    Science.gov (United States)

    Stevens, Robert E.

    1987-01-01

    A review of the educational program for gifted students in the Soviet Union discusses student responsibilities, program admission, and specialized schools featuring foreign languages, mathematics and physics, music, ballet and arts, sports, and "little academics" (advanced studies). (CB)

  5. The public control of credit unions

    Directory of Open Access Journals (Sweden)

    Alberto García Müller

    2006-12-01

    Full Text Available Public control is the activity of investigation or review by the government takes over a company, to verify the conformity of its actions to law. This paper analyzes the control over credit unions.

  6. Mathematics Prerequisites for Introductory Geoscience Courses: Using Technology to Help Solve the Problem

    Science.gov (United States)

    Burn, H. E.; Wenner, J. M.; Baer, E. M.

    2011-12-01

    The quantitative components of introductory geoscience courses can pose significant barriers to students. Many academic departments respond by stripping courses of their quantitative components or by attaching prerequisite mathematics courses [PMC]. PMCs cause students to incur additional costs and credits and may deter enrollment in introductory courses; yet, stripping quantitative content from geoscience courses masks the data-rich, quantitative nature of geoscience. Furthermore, the diversity of math skills required in geoscience and students' difficulty with transferring mathematical knowledge across domains suggest that PMCs may be ineffective. Instead, this study explores an alternative strategy -- to remediate students' mathematical skills using online modules that provide students with opportunities to build contextual quantitative reasoning skills. The Math You Need, When You Need It [TMYN] is a set of modular online student resources that address mathematical concepts in the context of the geosciences. TMYN modules are online resources that employ a "just-in-time" approach - giving students access to skills and then immediately providing opportunities to apply them. Each module places the mathematical concept in multiple geoscience contexts. Such an approach illustrates the immediate application of a principle and provides repeated exposure to a mathematical skill, enhancing long-term retention. At the same time, placing mathematics directly in several geoscience contexts better promotes transfer of learning by using similar discourse (words, tools, representations) and context that students will encounter when applying mathematics in the future. This study uses quantitative and qualitative data to explore the effectiveness of TMYN modules in remediating students' mathematical skills. Quantitative data derive from ten geoscience courses that used TMYN modules during the fall 2010 and spring 2011 semesters; none of the courses had a PMC. In all courses

  7. Addressing Issues of Broadening Participation Highlighted in the Report on the Future of Undergraduate Geoscience Education

    Science.gov (United States)

    McDaris, J. R.; Manduca, C. A.; Macdonald, H.; Iverson, E. A. R.

    2015-12-01

    The final report for the Summit on the Future of Geoscience Education lays out a consensus on issues that must be tackled by the geoscience community collectively if there are to be enough qualified people to fill the large number of expected geoscience job vacancies over the coming decade. Focus areas cited in the report include: Strengthening the connections between two-year colleges and four-year institutions Sharing and making use of successful recruitment and retention practices for students from underrepresented groups Making students aware of high-quality job prospects in the geosciences as well as its societal relevance The InTeGrate STEP Center for the Geosciences, the Supporting and Advancing Geoscience Education at Two-Year Colleges (SAGE 2YC) program, and the Building Strong Geoscience Departments (BSGD) project together have developed a suite of web resources to help faculty and program leaders begin to address these and other issues. These resources address practices that support the whole student, both in the classroom and as a part of the co-curriculum as well as information on geoscience careers, guidance for developing coherent degree programs, practical advice for mentoring and advising, and many others. In addition to developing web resources, InTeGrate has also undertaken an effort to profile successful program practices at a variety of institutions. An analysis of these data shows several common themes (e.g. proactive marketing, community building, research experiences) that align well with the existing literature on what works to support student success. But there are also indications of different approaches and emphases between Minority Serving Institutions (MSIs) and Primarily White Institutions (PWIs) as well as between different kinds of MSIs. Highlighting the different strategies in use can point both MSIs and PWIs to possible alternate solutions to the challenges their students face. InTeGrate - http

  8. Strategies for Positive Engagement with the Public in the Geosciences

    Science.gov (United States)

    Johnson, R.

    2017-12-01

    Strategies for engaging with the public about the geosciences are abundant. Whether engaging in these endeavors through professional opportunties associated with their research activities, or in their personal lives, scientists have numerous ways in which they can share the science they care so much about with the public. While participating in tried and true well-designed "outreach" activities associated with research projects has become a classic approach over the past 20 years, this is not the only way to reach "the public". Indeed, as we have recently learned, such approaches depend on the availability of funding for research projects and outreach components. With potentially large research funding cuts looming at federal agencies, and the future of "education and outreach" associated with funded projects in question, we need to think hard about approaches that are not so closely tied to the federal government. Engaging with the public through involvement in the K-12 educational arena provides another avenue to reach people - not only students and teachers, but also the parents of the students. Furthermore, engagement in local communities - on school boards as a member or regular attendee, in civic groups, in museums on their boards or as volunteers, in congregations, and in more informal local associations are additional opportunities. Indeed, one of the most important resources we have, as geoscientists, is ourselves. While many of us may be involved with groups in our communities, our willingness to openly talk about our science in ways that are accessible to members of the public is less clear. Indeed, some of us may intentionally avoid discussing our research with neighbors and friends for any number of reasons. But by doing so, we have effectively allowed scientists to be framed as "the other" - rather than the neighbor with a kid on the soccer team who occasionally hosts a sleepover for the team, or who really knows how to grill a nice steak, or who

  9. Enabling interoperability in Geoscience with GI-suite

    Science.gov (United States)

    Boldrini, Enrico; Papeschi, Fabrizio; Santoro, Mattia; Nativi, Stefano

    2015-04-01

    GI-suite is a brokering framework targeting interoperability of heterogeneous systems in the Geoscience domain. The framework is composed by different brokers each one focusing on a specific functionality: discovery, access and semantics (i.e. GI-cat, GI-axe, GI-sem). The brokering takes place between a set of heterogeneous publishing services and a set of heterogeneous consumer applications: the brokering target is represented by resources (e.g. coverages, features, or metadata information) required to seamlessly flow from the providers to the consumers. Different international and community standards are now supported by GI-suite, making possible the successful deployment of GI-suite in many international projects and initiatives (such as GEOSS, NSF BCube and several EU funded projects). As for the publisher side more than 40 standards and implementations are supported (e.g. Dublin Core, OAI-PMH, OGC W*S, Geonetwork, THREDDS Data Server, Hyrax Server, etc.). The support for each individual standard is provided by means of specific GI-suite components, called accessors. As for the consumer applications side more than 15 standards and implementations are supported (e.g. ESRI ArcGIS, Openlayers, OGC W*S, OAI-PMH clients, etc.). The support for each individual standard is provided by means of specific profiler components. The GI-suite can be used in different scenarios by different actors: - A data provider having a pre-existent data repository can deploy and configure GI-suite to broker it and making thus available its data resources through different protocols to many different users (e.g. for data discovery and/or data access) - A data consumer can use GI-suite to discover and/or access resources from a variety of publishing services that are already publishing data according to well-known standards. - A community can deploy and configure GI-suite to build a community (or project-specific) broker: GI-suite can broker a set of community related repositories and

  10. An Accessible User Interface for Geoscience and Programming

    Science.gov (United States)

    Sevre, E. O.; Lee, S.

    2012-12-01

    . Currently, the software works in a prototype mode, and it is our goal to further development to create software that can benefit a wide range of people working in geosciences, which will make code development practical and accessible for a wider audience of scientists. By using an interface like this, it reduces potential for errors by reusing known working code.

  11. Examples to Keep the Passion for the Geosciences

    Science.gov (United States)

    Fernández Raga, María; Palencia Coto, Covadonga; Cerdà, Artemi

    2014-05-01

    welfare and health of the person. Applying this idea to the field of training, promote development within the classroom social networking encourages participation and aid in student learning.The criterion to consider dissolving or enhance these natural groups is given by the adequacy or not the educational proposed approaches (objectives, content, interests , etc.). And last but not least… 10. Never stop learning!!!!!!!!! Teaching geosciences needs passion for the Earth, the processes, the forms…And to show this in the field to the students.

  12. The ethical implications of geosciences in the art

    Science.gov (United States)

    Solarino, Stefano

    2015-04-01

    One major goal of Geoscientists is to educate people to natural hazards. This requires a constant action to disseminate scientific topics based on a simplified language able to foster and promote the participation of the Society to the educative activities. The issue has been debated many times since the establishment of the unprecedented interest of citizens and media towards major catastrophes that took place at the beginning of the 90'. In the last 25 years many efforts have been made by the scientific community to shift the increased demand of the public in search for information about the next big earthquake or volcanic eruption to a wider communication landscape that also includes the scientific aspects of the phenomenon and the risk preparedness. In this attempts scientists developed a language alternative to pure scientific communication, based on short, simple and figurative statements. However the enhanced interest of the society towards scientific topics also attracted non experts, as the number of web blogs dealing with Geosciences matters currently show. Moreover, it spanned to non scientific fields including arts, in particular the visual ones. Their impact on the society was and is way too high compared to the traditional ways of communicating science, but seldom the scientific content of this powerful communication form is rigorous and correct. In movies, for example, due to the need of a more astonishing show and thanks to the numerous facilities offered by the studios, the reaction of the characters to natural dangers is often exaggerated, oversimplified or not safe (like walking inside the Earth's core or riding a big car on magma) and leads the spectator to inexact information or, even worse, to imitate the actor in an emergency. A well educated society would understand the fictive nature of the show, but in most cases the effects of wrong messages or inaccurate information reflect on the preparedness towards natural hazards. In this poster I

  13. CTserver: A Computational Thermodynamics Server for the Geoscience Community

    Science.gov (United States)

    Kress, V. C.; Ghiorso, M. S.

    2006-12-01

    The CTserver platform is an Internet-based computational resource that provides on-demand services in Computational Thermodynamics (CT) to a diverse geoscience user base. This NSF-supported resource can be accessed at ctserver.ofm-research.org. The CTserver infrastructure leverages a high-quality and rigorously tested software library of routines for computing equilibrium phase assemblages and for evaluating internally consistent thermodynamic properties of materials, e.g. mineral solid solutions and a variety of geological fluids, including magmas. Thermodynamic models are currently available for 167 phases. Recent additions include Duan, Møller and Weare's model for supercritical C-O-H-S, extended to include SO2 and S2 species, and an entirely new associated solution model for O-S-Fe-Ni sulfide liquids. This software library is accessed via the CORBA Internet protocol for client-server communication. CORBA provides a standardized, object-oriented, language and platform independent, fast, low-bandwidth interface to phase property modules running on the server cluster. Network transport, language translation and resource allocation are handled by the CORBA interface. Users access server functionality in two principal ways. Clients written as browser- based Java applets may be downloaded which provide specific functionality such as retrieval of thermodynamic properties of phases, computation of phase equilibria for systems of specified composition, or modeling the evolution of these systems along some particular reaction path. This level of user interaction requires minimal programming effort and is ideal for classroom use. A more universal and flexible mode of CTserver access involves making remote procedure calls from user programs directly to the server public interface. The CTserver infrastructure relieves the user of the burden of implementing and testing the often complex thermodynamic models of real liquids and solids. A pilot application of this distributed

  14. Working Towards New Transformative Geoscience Analytics Enabled by Petascale Computing

    Science.gov (United States)

    Woodcock, R.; Wyborn, L.

    2012-04-01

    resolutions with integration and validation across data type boundaries. Increased capacity of storage and compute will mean that uncertainty and reliability of individual observations will consistently be taken into account and propagated throughout the processing chain. If these data access difficulties can be overcome, the increased compute capacity will also mean that larger scale, more complex models can be run at higher resolution and instead of single pass modelling runs. Ensembles of models will be able to be run to simultaneously test multiple hypotheses. Petascale computing and high performance data offer more than "bigger, faster": it is an opportunity for a transformative change in the way in which geoscience research is routinely conducted.

  15. Radioactive waste management in European Union countries

    International Nuclear Information System (INIS)

    Vico, E.

    2002-01-01

    Although the Euratom Treaty does not assign direct authorities to the European Union in the Field of radioactive waste, the Commission has developed a series of activities related to this type of waste. The article deals with these Community initiatives, and the problems of radioactive waste management in the different Member States, and future plans in the field in the light of forthcoming European Union enlargement in 2004. (Author)

  16. Does union membership really reduce job satisfaction?

    OpenAIRE

    Alex Bryson; Lorenzo Cappellari; Claudio Lucifora

    2003-01-01

    We investigate the effect of union membership on job satisfaction. Whilst it is common to study the effects of union status on satisfaction treating individual membership as given, in this paper, we account for the endogenous selection induced by the sorting of workers into unionised jobs. Using linked employer-employee data from the 1998 British Workplace Employee Relations Survey, we address the question of how the membership decision is related to overall job satisfaction and to satisfacti...

  17. Taxation of credit unions in Ukraine

    Directory of Open Access Journals (Sweden)

    Оксана Георгіївна Волкова

    2015-10-01

    Full Text Available The article deals with the issues of income taxation of credit unions in Ukraine by the tax on profits of enterprises and tax of revenues of their members accrued on the interest of contributions (deposits on deposit accounts and mutual funds the tax to incomes of physical persons. The consequences of the influence of tax rules on capitalization of unions and the level of their financial support is defined

  18. European Union security policy through strategic culture

    Directory of Open Access Journals (Sweden)

    Beriša Hatidža

    2014-01-01

    Full Text Available In this paper, we shall pay attention to the security policy of the European Union, through the strategic culture, starting from the existing various options for cooperation in the field of security and defense. Our goal is to look at the implementation of the Strategic Culture of the European Union (EU SK, research ways to improve the international position of the Union and its impact on policy cooperation and trust with other collectives. Analysis of flexible cooperation between the European Union, as well as access to special procedures in the field of security and defense policy, we will follow the ambition and capacity in implementing the same. Paper aims to introduce the idea of the European Union, which allows its members to rationally consider and check the box of options available to decision makers. In this regard, the EU seeks to build its own armed forces to protect the association of interests-investment terms. Reviewing and understanding the strategic culture of the EU by countries that are not its members can be seen as reasons for strengthening the capacity of the Union for the realization of the impact of the global security as well as predicting its future steps.

  19. Labor unions and safety climate: perceived union safety values and retail employee safety outcomes.

    Science.gov (United States)

    Sinclair, Robert R; Martin, James E; Sears, Lindsay E

    2010-09-01

    Although trade unions have long been recognized as a critical advocate for employee safety and health, safety climate research has not paid much attention to the role unions play in workplace safety. We proposed a multiple constituency model of workplace safety which focused on three central safety stakeholders: top management, ones' immediate supervisor, and the labor union. Safety climate research focuses on management and supervisors as key stakeholders, but has not considered whether employee perceptions about the priority their union places on safety contributes contribute to safety outcomes. We addressed this gap in the literature by investigating unionized retail employee (N=535) perceptions about the extent to which their top management, immediate supervisors, and union valued safety. Confirmatory factor analyses demonstrated that perceived union safety values could be distinguished from measures of safety training, workplace hazards, top management safety values, and supervisor values. Structural equation analyses indicated that union safety values influenced safety outcomes through its association with higher safety motivation, showing a similar effect as that of supervisor safety values. These findings highlight the need for further attention to union-focused measures related to workplace safety as well as further study of retail employees in general. We discuss the practical implications of our findings and identify several directions for future safety research. 2009 Elsevier Ltd. All rights reserved.

  20. Climate research in the former Soviet Union. FASAC: Foreign Applied Sciences Assessment Center technical assessment report

    Energy Technology Data Exchange (ETDEWEB)

    Ellingson, R.G.; Baer, F.; Ellsaesser, H.W.; Harshvardhan; Hoffert, M.I.; Randall, D.A.

    1993-09-01

    This report assesses the state of the art in several areas of climate research in the former Soviet Union. This assessment was performed by a group of six internationally recognized US experts in related fields. The areas chosen for review are: large-scale circulation processes in the atmosphere and oceans; atmospheric radiative processes; cloud formation processes; climate effects of natural atmospheric disturbances; and the carbon cycle, paleoclimates, and general circulation model validation. The study found an active research community in each of the above areas. Overall, the quality of climate research in the former Soviet Union is mixed, although the best Soviet work is as good as the best corresponding work in the West. The best Soviet efforts have principally been in theoretical studies or data analysis. However, an apparent lack of access to modern computing facilities has severely hampered the Soviet research. Most of the issues considered in the Soviet literature are known, and have been discussed in the Western literature, although some extraordinary research in paleoclimatology was noted. Little unusual and exceptionally creative material was found in the other areas during the study period (1985 through 1992). Scientists in the former Soviet Union have closely followed the Western literature and technology. Given their strengths in theoretical and analytical methods, as well as their possession of simplified versions of detailed computer models being used in the West, researchers in the former Soviet Union have the potential to make significant contributions if supercomputers, workstations, and software become available. However, given the current state of the economy in the former Soviet Union, it is not clear that the computer gap will be bridged in the foreseeable future.

  1. Atmospheric Photochemistry

    Science.gov (United States)

    Massey, Harrie; Potter, A. E.

    1961-01-01

    The upper atmosphere offers a vast photochemical laboratory free from solid surfaces, so all reactions take place in the gaseous phase. At 30 km altitude the pressure has fallen to about one-hundredth of that at ground level, and we shall, rather arbitrarily, regard the upper atmosphere as beginning at that height. By a little less than 100 km the pressure has fallen to 10(exp -3) mm Hg and is decreasing by a power of ten for every 15 km increase in altitude. Essentially we are concerned then with the photochemistry of a nitrogen-oxygen mixture under low-pressure conditions in which photo-ionization, as well as photodissociation, plays an important part. Account must also be taken of the presence of rare constituents, such as water vapour and its decomposition products, including particularly hydroxyl, oxides of carbon, methane and, strangely enough, sodium, lithium and calcium. Many curious and unfamiliar reactions occur in the upper atmosphere. Some of them are luminescent, causing the atmosphere to emit a dim light called the airglow. Others, between gaseous ions and neutral molecules, are almost a complete mystery at this time. Similar interesting phenomena must occur in other planetary atmospheres, and they might be predicted if sufficient chemical information were available.

  2. [Female nuptiality: the importance of consensual unions].

    Science.gov (United States)

    Ojeda, N

    1988-01-01

    Mexico's National Demographic Survey of 1982 indicated that 58.4% of ever married women had been in marriages celebrated both civilly and religiously, 24.4% had been in civil marriages only, 3.0% had been in religious marriages only, and 14.2% had been in consensual unions. Transitions from 1 type of union to another by the same couple are very common, however. 53.6% of women began their conjugal lives in civil and religious marriages, 19.3% in civil marriages only, 2.3% in religious marriages only, and 24.6% in consensual unions. About 1/2 of consensual unions are eventually legalized, but the rate is lower in the less advantaged socioeconomic sectors which have a higher proportion of consensual unions. Corrected data show that only 7.5% of Mexican women remain single at the age of 45. The average age at 1st union is 21.4 years. Marriage patterns differ significantly in different social sectors. The proportion of women consensual unions varied from 16.1% for the new bourgeoisie, defined as administrators, technicians, high-level workers, and professional public officials, to over 30% for nonsalaried workers, peasants, and agricultural wage workers. Peasants, agricultural wage workers and nonagricultural nonsalaried workers had the lowest marriage ages and the highest proportion married by age 20. In the various proletarian groups, only 2.8-3.7% remained single at age 45, and 42.5%-51.3% were married or in union by age 20. Proletarian women had intermediate ages at 1st marriage. Women of the new bourgeoisie had the highest age at 1st union, 23 years, but the lowest proportion single at age 45, 1.8%. The traditional bourgeoisie and new bourgeoisie had the 2nd lowest age at 1st union, 21.9, and a proportion never married at age 45 that was similar to the national average. The proportion single at age 45 was highest among peasants and agricultural wage workers, reaching 11.3%.

  3. Trade Union Mergers: A Survey of the Literature.

    Science.gov (United States)

    Michelson, Grant

    2000-01-01

    Examines trade union mergers highlighting merger forms, merger motivation, role played by union officers, and merger waves. Discusses the consequences of mergers on members and union performance and concludes that union merger activity has had little impact. (Contains 74 references.) (JOW)

  4. A Department of Atmospheric and Planetary Sciences at Hampton University

    Science.gov (United States)

    Paterson, W. R.; McCormick, M. P.; Russell, J. M.; Anderson, J.; Kireev, S.; Loughman, R. P.; Smith, W. L.

    2006-12-01

    With this presentation we discuss the status of plans for a Department of Atmospheric and Planetary Sciences at Hampton University. Hampton University is a privately endowed, non-profit, non-sectarian, co-educational, and historically black university with 38 baccalaureate, 14 masters, and 4 doctoral degree programs. The graduate program in physics currently offers advanced degrees with concentration in Atmospheric Science. The 10 students now enrolled benefit substantially from the research experience and infrastructure resident in the university's Center for Atmospheric Sciences (CAS), which is celebrating its tenth anniversary. Promoting a greater diversity of participants in geosciences is an important objective for CAS. To accomplish this, we require reliable pipelines of students into the program. One such pipeline is our undergraduate minor in Space, Earth, and Atmospheric Sciences (SEAS minor). This minor concentraton of study is contributing to awareness of geosciences on the Hampton University campus, and beyond, as our students matriculate and join the workforce, or pursue higher degrees. However, the current graduate program, with its emphasis on physics, is not necessarily optimal for atmospheric scientists, and it limits our ability to recruit students who do not have a physics degree. To increase the base of candidate students, we have proposed creation of a Department of Atmospheric and Planetary Sciences, which could attract students from a broader range of academic disciplines. The revised curriculum would provide for greater concentration in atmospheric and planetary sciences, yet maintain a degree of flexibility to allow for coursework in physics or other areas to meet the needs of individual students. The department would offer the M.S. and Ph.D. degrees, and maintain the SEAS minor. The university's administration and faculty have approved our plan for this new department pending authorization by the university's board of trustees, which will

  5. Atmospheric thermodynamics

    CERN Document Server

    Iribarne, J V

    1973-01-01

    The thermodynamics of the atmosphere is the subject of several chapters in most textbooks on dynamic meteorology, but there is no work in English to give the subject a specific and more extensive treatment. In writing the present textbook, we have tried to fill this rather remarkable gap in the literature related to atmospheric sciences. Our aim has been to provide students of meteorology with a book that can playa role similar to the textbooks on chemical thermodynamics for the chemists. This implies a previous knowledge of general thermodynamics, such as students acquire in general physics courses; therefore, although the basic principles are reviewed (in the first four chapters), they are only briefly discussed, and emphasis is laid on those topics that will be useful in later chapters, through their application to atmospheric problems. No attempt has been made to introduce the thermodynamics of irreversible processes; on the other hand, consideration of heterogeneous and open homogeneous systems permits a...

  6. Atmospheric pollution

    International Nuclear Information System (INIS)

    Lambrozo, J.; Guillossou, G.

    2008-01-01

    The atmosphere is the reservoir of numerous pollutants (nitrogen oxides, sulfur oxides, carbon oxides, particulates, volatile organic compounds, polycyclic aromatic hydrocarbons) from natural origin or anthropogenic origin ( industry, transport, agriculture, district heating). With epidemiologic studies the atmospheric pollution is associated with an increase of respiratory and cardiovascular diseases. At the european level, the technological progress, the legislation have allowed a reduction of pollutant emissions, however these efforts have to be continued because the sanitary impact of atmospheric pollution must not be underestimated, even if the risks appear less important that these ones in relation with tobacco, inside pollution or others factors of cardiovascular risks. Indeed, on these last factors an individual action is possible for the exposure to air pollution people have no control. (N.C.)

  7. Hilbert problems for the geosciences in the 21st century

    Directory of Open Access Journals (Sweden)

    M. Ghil

    2001-01-01

    Full Text Available The scientific problems posed by the Earth's fluid envelope, and its atmosphere, oceans, and the land surface that interacts with them are central to major socio-economic and political concerns as we move into the 21st century. It is natural, therefore, that a certain impatience should prevail in attempting to solve these problems. The point of this review paper is that one should proceed with all diligence, but not excessive haste: "festina lente," as the Romans said two thousand years ago, i.e. "hurry in a measured way." The paper traces the necessary progress through the solutions to the ten problems: 1. What is the coarse-grained structure of low-frequency atmospheric variability, and what is the connection between its episodic and oscillatory description? 2. What can we predict beyond one week, for how long, and by what methods? 3. What are the respective roles of intrinsic ocean variability, coupled ocean-atmosphere modes, and atmospheric forcing in seasonal-to-interannual variability? 4. What are the implications of the answer to the previous problem for climate prediction on this time scale? 5. How does the oceans' thermohaline circulation change on interdecadal and longer time scales, and what is the role of the atmosphere and sea ice in such changes? 6. What is the role of chemical cycles and biological changes in affecting climate on slow time scales, and how are they affected, in turn, by climate variations? 7. Does the answer to the question above give us some trigger points for climate control? 8. What can we learn about these problems from the atmospheres and oceans of other planets and their satellites? 9. Given the answer to the questions so far, what is the role of humans in modifying the climate? 10. Can we achieve enlightened climate control of our planet by the end of the century? A unified framework is proposed to deal with these problems in succession, from the shortest to the longest timescale, i.e. from weeks to

  8. The effects of union mergers and internal restructuring:

    DEFF Research Database (Denmark)

    Navrbjerg, Steen Erik; Larsen, Trine Pernille

    2016-01-01

    Trade union mergers and restructuring are often seen as strategy for union revitalisation and renewal and have been ongoing in the majority of European trade unions. This paper explores how recent union mergers and internal restructuring has affected unions service provision, union democracy...... and interest representation. This is analysed drawing on longitudinal data from two Danish shop steward surveys conducted in 1998 and 2010, comparing shop stewards in merged and non-merged unions respectively. The main results are that although it could be expected that union mergers and internal restructuring......, where union size and less so the union’s recent merger and restructuring history appears to affect shop stewards’ relations with their unions....

  9. Systems, Society, Sustainability and the Geosciences: A Workshop to Create New Curricular Materials to Integrate Geosciences into the Teaching of Sustainability

    Science.gov (United States)

    Gosselin, D. C.; Manduca, C. A.; Oches, E. A.; MacGregor, J.; Kirk, K. B.

    2012-12-01

    Sustainability is emerging as a central theme for teaching about the environment, whether it be from the perspective of science, economics, or society. The Systems, Society, Sustainability and the Geosciences workshop provided 48 undergraduate faculty from 46 institutions a forum to discuss the challenges and possibilities for integrating geoscience concepts with a range of other disciplines to teach about the fundamentals of sustainability. Participants from community college to doctorate-granting universities had expertise that included geosciences, agriculture, biological sciences, business, chemistry, economics, ethnic studies, engineering, environmental studies, environmental education, geography, history, industrial technology, landscape design, philosophy, physics, and political science. The workshop modeled a range of teaching strategies that encouraged participants to network and collaborate, share successful strategies and materials for teaching sustainability, and identify opportunities for the development of new curricular materials that will have a major impact on the integration of geosciences into the teaching of sustainability. The workshop design provided participants an opportunity to reflect upon their teaching, learning, and curriculum. Throughout the workshop, participants recorded their individual and collective ideas in a common online workspace to which all had access. A preliminary synthesis of this information indicates that the concept of sustainability is a strong organizing principle for modern, liberal education requiring systems thinking, synthesis and contributions from all disciplines. Sustainability is inherently interdisciplinary and provides a framework for educational collaboration between and among geoscientists, natural/physical scientists, social scientists, humanists, engineers, etc.. This interdisciplinary framework is intellectually exciting and productive for educating students at all levels of higher education

  10. Using Q Methodology to Investigate Undergraduate Students' Attitudes toward the Geosciences

    Science.gov (United States)

    Young, Julia M.; Shepardson, Daniel P.

    2018-01-01

    Undergraduate students have different attitudes toward the geosciences, but few studies have investigated these attitudes using Q methodology. Q methodology allows the researcher to identify more detailed reasons for students' attitudes toward geology than Likert methodology. Thus this study used Q methodology to investigate the attitudes that 15…

  11. Revised method for forest canopy height estimation from Geoscience Laser Altimeter System waveforms.

    Science.gov (United States)

    Michael A. Lefskya; Michael Keller; Yong Panga; Plinio B. de Camargod; Maria O. Hunter

    2007-01-01

    The vertical extent of waveforms collected by the Geoscience Laser Altimeter System (onboard ICESat - the Ice, Cloud, and land Elevation Satellite) increases as a function of terrain slope and footprint size (the area on the ground that is illuminated by the laser). Over sloped terrain, returns from both canopy and ground surfaces can occur at the same elevation. As a...

  12. Assessing the Readability of Geoscience Textbooks, Laboratory Manuals, and Supplemental Materials

    Science.gov (United States)

    Hippensteel, Scott P.

    2015-01-01

    Reading materials used in undergraduate science classes have not received the same attention in the literature as those used in secondary schools. Additionally, reports critical of college textbooks and their prose are common. To assess both problems and determine the readability of assignments and texts used by geoscience faculty at the…

  13. The Roles of Working Memory and Cognitive Load in Geoscience Learning

    Science.gov (United States)

    Jaeger, Allison J.; Shipley, Thomas F.; Reynolds, Stephen J.

    2017-01-01

    Working memory is a cognitive system that allows for the simultaneous storage and processing of active information. While working memory has been implicated as an important element for success in many science, technology, engineering, and mathematics (STEM) fields, its specific role in geoscience learning is not fully understood. The major goal of…

  14. Social Learning Theories--An Important Design Consideration for Geoscience Fieldwork

    Science.gov (United States)

    Streule, M. J.; Craig, L. E.

    2016-01-01

    The nature of field trips in geoscience lends them to the application of social learning theories for three key reasons. First, they provide opportunity for meaningful practical experience and promote effective learning afforded by no other educational vehicle in the subject. Second, they are integral for students creating a strong but changing…

  15. Using Scientific Visualizations to Enhance Scientific Thinking In K-12 Geoscience Education

    Science.gov (United States)

    Robeck, E.

    2016-12-01

    The same scientific visualizations, animations, and images that are powerful tools for geoscientists can serve an important role in K-12 geoscience education by encouraging students to communicate in ways that help them develop habits of thought that are similar to those used by scientists. Resources such as those created by NASA's Scientific Visualization Studio (SVS), which are intended to inform researchers and the public about NASA missions, can be used in classrooms to promote thoughtful, engaged learning. Instructional materials that make use of those visualizations have been developed and are being used in K-12 classrooms in ways that demonstrate the vitality of the geosciences. For example, the Center for Geoscience and Society at the American Geosciences Institute (AGI) helped to develop a publication that outlines an inquiry-based approach to introducing students to the interpretation of scientific visualizations, even when they have had little to no prior experience with such media. To facilitate these uses, the SVS team worked with Center staff and others to adapt the visualizations, primarily by removing most of the labels and annotations. Engaging with these visually compelling resources serves as an invitation for students to ask questions, interpret data, draw conclusions, and make use of other processes that are key components of scientific thought. This presentation will share specific resources for K-12 teaching (all of which are available online, from NASA, and/or from AGI), as well as the instructional principles that they incorporate.

  16. Engaging Students to Learn through the Affective Domain: A New Framework for Teaching in the Geosciences

    Science.gov (United States)

    van der Hoeven Kraft, Katrien J.; Srogi, LeeAnn; Husman, Jenefer; Semken, Steven; Fuhrman, Miriam

    2011-01-01

    To motivate student learning, the affective domain--emotion, attitude, and motivation--must be engaged. We propose a model that is specific to the geosciences with theoretical components of motivation and emotion from the field of educational psychology, and a term we are proposing, "connections with Earth" based on research in the…

  17. A Potential Synergy Connecting Educational Leadership, The Geoscience Community, and Spatial Data

    Science.gov (United States)

    Branch, B. D.

    2008-12-01

    The effort to promote more geosciences numbers and greater diversity should reference considerations of federal policy. In congruence, institutions need to include geosciences education in the K-12 curriculum in order to increase the numbers of geoscientists and to increase diversity among geoscientists. For example, No Child Left Behind stated public entities should, ""(1) to carry out programs that prepare prospective teachers to use advanced technology to prepare all students to meet challenging", section 1051 sub section 221. Moreover, Executive Order 12906, the Spatial Data Infrastructure Act, requires all federal agencies to manage their spatial data. Such compliance may influence the job market, education and policy makers to see that spatial thinking transcends the standard course of study. Namely, educational leadership and policy have to be a vital aid to augment the geosciences experience through the K-12 experience and as an inclusion activity in the standard course of study agenda. A simple endorsement by the National Academy of Sciences (2006), in their work titled Learning to think spatially: GIS as a support system in the K-12 curriculum, who stated, "Spatial thinking can be learned, and it can and should be taught at all levels in the education system" (p.3). Such may not be enough to gain the attention and time consideration of educational leadership. Therefore, the challenge for progressive advocates of geosciences is that some may have to consider educational leadership as new frontier to push such policy and research issues.

  18. Basic Research Needs for Geosciences: Facilitating 21st Century Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    DePaolo, D. J.; Orr, F. M.; Benson, S. M.; Celia, M.; Felmy, A.; Nagy, K. L.; Fogg, G. E.; Snieder, R.; Davis, J.; Pruess, K.; Friedmann, J.; Peters, M.; Woodward, N. B.; Dobson, P.; Talamini, K.; Saarni, M.

    2007-06-01

    To identify research areas in geosciences, such as behavior of multiphase fluid-solid systems on a variety of scales, chemical migration processes in geologic media, characterization of geologic systems, and modeling and simulation of geologic systems, needed for improved energy systems.

  19. The Other Kind of Rock: Diversifying Geosciences Outreach with some Tools from Rock n' Roll

    Science.gov (United States)

    Konecky, B. L.

    2015-12-01

    Music can communicate science at times when words and graphs fail. For this reason, earth scientists are increasingly using sounds and rhythms to capture the public's imagination while demonstrating technical concepts and sharing the societal impacts of their research. Musical approaches reach across the boundaries of perceptual learning style, age, gender, and life history. Music therefore makes science (and scientists) more approachable to a wide range of people. But in addition to its unique power for engaging diverse audiences, music-based outreach also sets an example for the geosciences' untapped potential as a public empowerment tool. Like many STEM fields, the music industry has long been criticized for poor inclusion of women and minorities. Rock n' roll camps for girls are answering this challenge by teaching music as a vessel for empowerment, with principles that can easily be adapted to geoscience outreach and education. The process of observing the planet is innately empowering; outreach programs that emphasize this in their design will take their impacts to the next level. Just as diversity in the scientific community benefits geoscience, geoscience also benefits diverse communities. This presentation will outline some principles and applications from the music world to achieving both of these aims.

  20. Improving Geoscience Students' Spatial Thinking Skills: Applying Cognitive Science Research in the Classroom

    Science.gov (United States)

    Ormand, C. J.; Shipley, T. F.; Manduca, C. A.; Tikoff, B.

    2011-12-01

    Spatial thinking skills are critical to success in many subdisciplines of the geosciences (and beyond). There are many components of spatial thinking, such as mental rotation, penetrative visualization, disembedding, perspective taking, and navigation. Undergraduate students in introductory and upper-level geoscience courses bring a wide variety of spatial skill levels to the classroom, as measured by psychometric tests of many of these components of spatial thinking. Furthermore, it is not unusual for individual students to excel in some of these areas while struggling in others. Although pre- and post-test comparisons show that student skill levels typically improve over the course of an academic term, average gains are quite modest. This suggests that it may be valuable to develop interventions to help undergraduate students develop a range of spatial skills that can be used to solve geoscience problems. Cognitive science research suggests a number of strong strategies for building students' spatial skills. Practice is essential, and time on task is correlated to improvement. Progressive alignment may be used to scaffold students' successes on simpler problems, allowing them to see how more complex problems are related to those they can solve. Gesturing has proven effective in moving younger students from incorrect problem-solving strategies to correct strategies in other disciplines. These principles can be used to design instructional materials to improve undergraduate geoscience students' spatial skills; we will present some examples of such materials.

  1. Place-Based Education in Geoscience: Theory, Research, Practice, and Assessment

    Science.gov (United States)

    Semken, Steven; Ward, Emily Geraghty; Moosavi, Sadredin; Chinn, Pauline W. U.

    2017-01-01

    Place-based education (PBE) is a situated, context-rich, transdisciplinary teaching and learning modality distinguished by its unequivocal relationship to place, which is any locality that people have imbued with meanings and personal attachments through actual or vicarious experiences. As an observational and historical science, geoscience is…

  2. How would you decide? Helping geoscience students consider ethical dimensions in a gescience context

    Science.gov (United States)

    Bank, C. G.; Ryan, A. M.

    2017-12-01

    This presentation shows an example of infusing ethics into geoscience teaching, and a preliminary analysis of student answers to an exam question to establish whether this example can be used in an effective way. We presented a case study on floods in two distribution geoscience courses, and provided students with criteria to come to an ethical decision. One course was taught in winter 2016 and the other in summer 2016 with a total of 358 students. Pre- and post-questionnaires allow only limited conclusions because just 33 students answered both. In the exam we asked students if they would evacuate a small aboriginal settlement to prevent flooding in a large city. We coded their answers according to the criteria (stakeholders, contributions by geoscientists, alternative options, and assumptions) they were provided in class. While students did well listing stakeholders and recalling contributions by geoscientists they struggled to provide alternative options. Still, many of them verbalized assumptions inherent in their thoughts and nearly half of students recognized that this is a complex problem. We posit that a case study is a valid way to encourage students to link ethics to a geoscience issue, and propose that our framework may empower geoscience educators who do not necessarily feel comfortable teaching ethics to add this element to their teaching toolkit.

  3. Forensic geoscience: applications of geology, geomorphology and geophysics to criminal investigations

    Science.gov (United States)

    Ruffell, Alastair; McKinley, Jennifer

    2005-03-01

    One hundred years ago Georg Popp became the first scientist to present in court a case where the geological makeup of soils was used to secure a criminal conviction. Subsequently there have been significant advances in the theory and practice of forensic geoscience: many of them subsequent to the seminal publication of "Forensic Geology" by Murray and Tedrow [Murray, R., Tedrow, J.C.F. 1975 (republished 1986). Forensic Geology: Earth Sciences and Criminal Investigation. Rutgers University Press, New York, 240 pp.]. Our review places historical development in the modern context of how the allied disciplines of geology (mineralogy, sedimentology, microscopy), geophysics, soil science, microbiology, anthropology and geomorphology have been used as tool to aid forensic (domestic, serious, terrorist and international) crime investigations. The latter half of this paper uses the concept of scales of investigation, from large-scale landforms through to microscopic particles as a method of categorising the large number of geoscience applications to criminal investigation. Forensic geoscience has traditionally used established non-forensic techniques: 100 years after Popp's seminal work, research into forensic geoscience is beginning to lead, as opposed to follow other scientific disciplines.

  4. Accessible Earth: Enhancing diversity in the Geosciences through accessible course design and Experiential Learning Theory

    Science.gov (United States)

    Bennett, Rick; Lamb, Diedre

    2017-04-01

    The tradition of field-based instruction in the geoscience curriculum, which culminates in a capstone geological field camp, presents an insurmountable barrier to many disabled students who might otherwise choose to pursue geoscience careers. There is a widespread perception that success as a practicing geoscientist requires direct access to outcrops and vantage points available only to those able to traverse inaccessible terrain. Yet many modern geoscience activities are based on remotely sensed geophysical data, data analysis, and computation that take place entirely from within the laboratory. To challenge the perception of geoscience as a career option only for the able bodied, we have created the capstone Accessible Earth Study Abroad Program, an alternative to geologic field camp with a focus on modern geophysical observation systems, computational thinking, and data science. In this presentation, we will report on the theoretical bases for developing the course, our experiences in teaching the course to date, and our plan for ongoing assessment, refinement, and dissemination of the effectiveness of our efforts.

  5. A practical guide to ethical and effective delivery of geoscience for the service of society

    Science.gov (United States)

    Allington, Ruth

    2017-04-01

    Competence, integrity, accountability and high ethical standards - judged peer-to-peer - are the hallmarks of what it means to be a professional and part of a professional community. The geoscience profession is no different and professionalism is relevant in all of its constituent communities - academia, industry, government etc There are three propositions that illustrate the importance of professionalism in the delivery of geoscience across the board. The first: Without understanding the skills and expertise needed by 'industry', how can educators prepare students for the workplace? Most of those graduating in geoscience will not stay in universities - do we not owe it to them to develop a realistic idea of what a non-academic career might look like? This is done very well in some institutions and not at all in others and the author's impression is that the latter is the norm. The second: Without understanding societal needs, how can researchers design research which is truly relevant to those needs? A more connected geoscience community that is, in turn, more connected to the needs and wants of Society will develop research agendas that are truly relevant. And finally…… Without access to high quality graduates and excellent underpinning fundamental and applied research, how can geoscientists in 'industry' or public service deliver their expertise effectively? This contribution, which draws on ideas set out in the author's plenary speech at 35IGC, will consider the practical skills, experience, ethical and behavioural regulatory frameworks, codes and norms that underpin success in meeting these challenges.

  6. Collaboration and Perspectives on Identity Management and Access from two Geoscience Cyberinfrastructure Programs

    Science.gov (United States)

    Ramamurthy, M. K.

    2016-12-01

    Increasingly, the conduct of science requires close international collaborations to share data, information, knowledge, expertise, and other resources. This is particularly true in the geosciences where the highly connected nature of the Earth system and the need to understand global environmental processes have heightened the importance of scientific partnerships. As geoscience studies become a team effort involving networked scientists and data providers, it is crucial that there is open and reliable access to earth system data of all types, software, tools, models, and other assets. That environment demands close attention to security-related matters, including the creation of trustworthy cyberinfrastructure to facilitate the efficient use of available resources and support the conduct of science. Unidata and EarthCube, both of which are NSF-funded and community-driven programs, recognize the importance of collaborations and the value of networked communities. Unidata, a cornerstone cyberinfrastructure facility for the geosciences, includes users in nearly 180 countries. The EarthCube initiative is aimed at transforming the conduct of geosciences research by creating a well-connected and facile environment for sharing data and in an open, transparent, and inclusive manner and to accelerate our ability to understand and predict the Earth system. We will present the Unidata and EarthCube community perspectives on the approaches to balancing an environment that promotes open and collaborative eScience with the needs for security and communication, including what works, what is needed, the challenges, and opportunities to advance science.

  7. Development of the Virginia Tech Department of Geosciences MEDL-CMC

    Science.gov (United States)

    Glesener, G. B.

    2016-12-01

    In 2015 the Virginia Tech Department of Geosciences took a leading role in increasing the level of support for Geoscience instructors by investing in the development of the Geosciences Modeling and Educational Demonstrations Laboratory Curriculum Materials Center (MEDL-CMC). The MEDL-CMC is an innovative curriculum materials center designed to foster new collaborative teaching and learning environments by providing hands-on physical models combined with education technology for instructors and outreach coordinators. The mission of the MEDL-CMC is to provide advanced curriculum material resources for the purpose of increasing and sustaining high impact instructional capacity in STEM education for both formal and informal learning environments. This presentation describes the development methods being used to implement the MEDL-CMC. Major development methods include: (1) adopting a project management system to support collaborations with stakeholders, (2) using a diversified funding approach to achieve financial sustainability and the ability to evolve with the educational needs of the community, and (3) establishing a broad collection of systems-based physical analog models and data collection tools to support integrated sciences such as the geosciences. Discussion will focus on how these methods are used for achieving organizational capacity in the MEDL-CMC and on their intended role in reducing instructor workload in planning both classroom activities and research grant broader impacts.

  8. Citizenship of the European Union under the Treaty of Lisbon

    Directory of Open Access Journals (Sweden)

    Ioana Nely MILITARU

    2011-06-01

    Full Text Available The paper is structured in two parts. The first part covers history, "Union citizenship, according to previous Treaties Lisbon Treaty, and the second refers to the privileges which they have as citizens of the Union Treaty as a result of reforming the European Union, referring to documents on which this Treaty adhere it recognizes as having the same legal force, treaties, (Treaty on European Union and the Treaty on the Functioning of the European Union.

  9. Unions in small and medium-sized enterprises

    DEFF Research Database (Denmark)

    Holten, Ann-Louise; Crouch, Colin

    2014-01-01

    Trade unions are commonly weak in small- and medium-sized enterprises, which constitute a majority of European firms and are often family-owned. We investigate the influence of family ownership on employee membership, perceptions and experience with unions in Danish and Italian firms in the textile...... and clothing sector. Family ownership reduces union membership; and within family firms, the number of family members employed is negatively associated with unionization rates and employee perceptions of unions....

  10. Animal Effects from Soviet Atmospheric Nuclear Tests

    Science.gov (United States)

    2008-03-01

    describes the effect on animal models of atmospheric nuclear weapons tests performed by the Soviet Union at the Semipalatinsk Test Site . Part I describes...understand the pathogenic mechanisms of injury and the likelihood of efficacy of proposed treatment measures. 15. SUBJECT TERMS Semipalatinsk Test Site ...the Semipalatinsk Test Site . Part 1 describes the air blast and thermal radiation effects. Part 2 covers the effects of primary (prompt) radiation and

  11. Resourcing Future Generations - Challenges for geoscience: a new IUGS initiative

    Science.gov (United States)

    Oberhänsli, Roland; Lambert, Ian

    2014-05-01

    In a world with rapidly increasing population and technological development new space based remote sensing tools allowed for new discoveries and production of water, energy- and mineral-resources, including minerals, soils and construction materials. This has impact on politics, socio-economic development and thus calls for a strong involvement of geosciences because one of humanities biggest challenges will be, to rise living standards particularly in less developed countries. Any growth will lead to an increase of demand for natural resources. But especially for readily available mineral resources supply appears to be limited. Particularly demand for so called high-tech commodities - platinum group or rare earth elements - increased. This happened often faster than new discoveries were made. All this, while areas available for exploration decreased as the need for urban and agricultural use increased. Despite strong efforts in increasing efficiency of recycling, shortage in some commodities has to be expected. A major concern is that resources are not distributed evenly on our planet. Thus supplies depend on political stability, socio-economic standards and pricing. In the light of these statements IUGS is scoping a new initiative, Resourcing Future Generations (RFG), which is predicated on the fact that mining will continue to be an essential activity to meet the needs of future generations. RFG is aimed at identifying and addressing key challenges involved in securing natural resources to meet global needs post-2030. We consider that mineral resources should be the initial focus, but energy, soils, water resources and land use should also be covered. Addressing the multi-generational needs for mineral and other natural resources requires data, research and actions under four general themes: 1. Comprehensive evaluation and quantification of 21st century supply and demand. 2. Enhanced understanding of subsurface as it relates to mineral (energy and groundwater

  12. Geosamples.org: Shared Cyberinfrastructure for Geoscience Samples

    Science.gov (United States)

    Lehnert, Kerstin; Allison, Lee; Arctur, David; Klump, Jens; Lenhardt, Christopher

    2014-05-01

    Many scientific domains, specifically in the geosciences, rely on physical samples as basic elements for study and experimentation. Samples are collected to analyze properties of natural materials and features that are key to our knowledge of Earth's dynamical systems and evolution, and to preserve a record of our environment over time. Huge volumes of samples have been acquired over decades or even centuries and stored in a large number and variety of institutions including museums, universities and colleges, state geological surveys, federal agencies, and industry. All of these collections represent highly valuable, often irreplaceable records of nature that need to be accessible so that they can be re-used in future research and for educational purposes. Many sample repositories are keen to use cyberinfrastructure capabilities to enhance access to their collections on the internet and to support and streamline collection management (accessioning of new samples, labeling, handling sample requests, etc.), but encounter substantial challenges and barriers to integrate digital sample management into their daily routine. They lack the resources (staff, funding) and infrastructure (hardware, software, IT support) to develop and operate web-enabled databases, to migrate analog sample records into digital data management systems, and to transfer paper- or spreadsheet-based workflows to electronic systems. Use of commercial software is often not an option as it incurs high costs for licenses, requires IT expertise for installation and maintenance, and often does not match the needs of the smaller repositories, being designed for large museums or different types of collections (art, archeological, biological). Geosamples.org is an alliance of sample repositories (academic, US federal and state surveys, industry) and data facilities that aims to develop a cyberinfrastructure that will dramatically advance access to physical samples for the research community, government

  13. Modelling and approaching pragmatic interoperability of distributed geoscience data

    Science.gov (United States)

    Ma, Xiaogang

    2010-05-01

    Interoperability of geodata, which is essential for sharing information and discovering insights within a cyberinfrastructure, is receiving increasing attention. A key requirement of interoperability in the context of geodata sharing is that data provided by local sources can be accessed, decoded, understood and appropriately used by external users. Various researchers have discussed that there are four levels in data interoperability issues: system, syntax, schematics and semantics, which respectively relate to the platform, encoding, structure and meaning of geodata. Ontology-driven approaches have been significantly studied addressing schematic and semantic interoperability issues of geodata in the last decade. There are different types, e.g. top-level ontologies, domain ontologies and application ontologies and display forms, e.g. glossaries, thesauri, conceptual schemas and logical theories. Many geodata providers are maintaining their identified local application ontologies in order to drive standardization in local databases. However, semantic heterogeneities often exist between these local ontologies, even though they are derived from equivalent disciplines. In contrast, common ontologies are being studied in different geoscience disciplines (e.g., NAMD, SWEET, etc.) as a standardization procedure to coordinate diverse local ontologies. Semantic mediation, e.g. mapping between local ontologies, or mapping local ontologies to common ontologies, has been studied as an effective way of achieving semantic interoperability between local ontologies thus reconciling semantic heterogeneities in multi-source geodata. Nevertheless, confusion still exists in the research field of semantic interoperability. One problem is caused by eliminating elements of local pragmatic contexts in semantic mediation. Comparing to the context-independent feature of a common domain ontology, local application ontologies are closely related to elements (e.g., people, time, location

  14. Multiple Strategies for Multiple Audiences: SJSU's Contributions to the Geoscience Education Community

    Science.gov (United States)

    Messina, P.; Metzger, E. P.

    2007-12-01

    Pre- and in-service teachers nationwide face increasing qualification and credentialing demands. This may be particularly true for secondary (9-12) science teachers and multiple subject (K-8) faculty. Traditional B.S. programs in Physics, Chemistry, Biology rarely require geoscience courses, yet those candidates wishing to pursue high school teaching may need to demonstrate Earth science content competency to qualify for a credential. If successful, they will likely be asked to teach a geoscience course at some point during their careers. Even more daunting is the plight of those in the K-8 arena: many current and prospective teachers have been forced to minimize science electives in lieu of increasing education requirements. National, state, and local teaching standards call for escalating emphases on the four geoscience sub- disciplines: geology, meteorology, oceanography, and space science. How can current and future teachers establish geoscience content and pedagogy competency when undergraduate curricula often substitute other (albeit valuable) requirements? How can current and future K-12 educators supplement their academic knowledge to substantiate "highly qualified" status, and (perhaps more importantly) to feel comfortable enough to share geoscience concepts with their students? How can we in higher education assist this population of already overcommitted, less experienced teachers? San Jose State University has developed a multi-pronged approach to meet several concurrent demands. Faculty from SJSU's Geology Department and Program in Science Education developed a course, Earth Systems and the Environment, that satisfies all four geoscience sub-disciplines' required content for teachers. While it is intended for future K-8 educators, it also carries general education certification, and has been adapted and delivered online since 2005. SJSU's in-service community can enroll in the 3 graduate credit, ESSEA (Earth Systems Science Education Alliance) courses

  15. The AAG's ALIGNED Toolkit: A Place-based Approach to Fostering Diversity in the Geosciences

    Science.gov (United States)

    Rodrigue, C. M.

    2012-12-01

    Where do we look to attract a more diverse group of students to academic programs in geography and the geosciences? What do we do once we find them? This presentation introduces the ALIGNED Toolkit developed by the Association of American Geographers, with funding from the NSF's Opportunities to Enhance Diversity in the Geosciences (OEDG) Program. ALIGNED (Addressing Locally-tailored Information Infrastructure and Geoscience Needs for Enhancing Diversity) seeks to align the needs of university departments and underrepresented students by drawing upon the intellectual wealth of geography and spatial science to provide better informed, knowledge-based action to enhance diversity in higher education and the geoscience workforce. The project seeks to inform and transform the ways in which departments and programs envision and realize their own goals to enhance diversity, promote inclusion, and broaden participation. We also seek to provide the data, information, knowledge, and best practices needed in order to enhance the recruitment and retention of underrepresented students. The ALIGNED Toolkit is currently in a beta release, available to 13 pilot departments and 50 testing departments of geography/geosciences. It consolidates a variety of data from departments, the U.S. Census Bureau, and the U.S. Department of Education's National Center for Education Statistics to provide interactive, GIS-based visualizations across multiple scales. It also incorporates a place-based, geographic perspective to support departments in their efforts to enhance diversity. A member of ALIGNED's senior personnel, who is also a representative of one of the pilot departments, will provide an overview and preview of the tool while sharing her department's experiences in progressing toward its diversity goals. A brief discussion on how geoscience departments might benefit from the ALIGNED approach and resources will follow. Undergraduate advisors, graduate program directors, department

  16. Future Employment Opportunities for US Geoscience Graduates - a View From Historical Trends

    Science.gov (United States)

    Keane, C. M.; Milling, M. E.

    2005-12-01

    The geosciences in the United States has experienced a number of major booms and busts, but today has become, as a discipline, less dependent on the immediate fortunes of the natural resources industries. However, the actual employment distribution has not changed substantially in the last fifteen years, with the petroleum industry remaining by and far the single largest employer of geoscientists in the United States, and even more as a level of contributing to GNP. However, most of the geoscience professional ranks in industry were filled prior to and during the last major boom which ended in 1986. Most of this workforce is now heading into retirement and though total geoscience workforce demand is not likely to grow; substantial employment opportunities do and will exist as these individuals retire. However, this picture is more complicated than in the past. Most industries, both the traditional geoscience employers, such as petroleum, mining, and environment, and non-traditional, such as telecommunications, are increasingly global in their operations and perspectives. This increasing globalization means that US graduates now compete not only against graduates from other schools in the US, but throughout the world. When coupled with preferences for not hiring people in as expatriates for overseas assignment, US graduates face an increasingly competitive, but rewarding job market. The proverbial leveling of the playing field is also seen in the rapid rise in international membership of traditionally American professional and scientific societies. This internationalization is hardly discouraged within the culture of science, and is one that US students will need to embrace to compete effectively in the future for employment in the geosciences. One major change that will be necessitated is the adjustment of parts of academia to the new realities of preparing students for future employment within the discipline. Currently most US geoscience graduate programs are

  17. Early College STEM-focused High Schools: A Natural and Overlooked Recruitment Pool for the Geosciences

    Science.gov (United States)

    Freeman, R.; Bathon, J.; Fryar, A. E.; Lyon, E.; McGlue, M. M.

    2017-12-01

    As national awareness of the importance of STEM education has grown, so too has the number of high schools that specifically emphasize STEM education. Students at these schools outperform their peers and these institutions send students into the college STEM pipeline at twice the rate of the average high school or more. Another trend in secondary education is the "early college high school" (ECHS) model, which encourages students to prepare for and attend college while in high school. These high schools, particularly ECHS's that focus on STEM, represent a natural pool for recruitment into the geosciences, yet most efforts at linking high school STEM education to future careers focus on health sciences or engineering. Through the NSF GEOPATHS-IMPACT program, the University of Kentucky (UK) Department of Earth and Environmental Science and the STEAM Academy, a STEM-focused ECHS located in Lexington, KY, have partnered to expose students to geoscience content. This public ECHS admits students using a lottery system to ensure that the demographics of the high school match those of the surrounding community. The perennial problem for recruiting students into geosciences is the lack of awareness of it as a potential career, due to lack of exposure to the subject in high school. Although the STEAM Academy does not offer an explicitly-named geoscience course, students begin their first semester in 9th grade Integrated Science. This course aligns to the Next Generation Science Standards (NGSS), which include a variety of geoscience content. We are working with the teachers to build a project-based learning curriculum to include explicit mention and awareness of careers in geosciences. The second phase of our project involves taking advantage of the school's existing internship program, in which students develop professional skills and career awareness by spending either one day/week or one hour/day off campus. We hosted our second round of interns this year. Eventually we

  18. Geoscience communication in Namibia: YES Network Namibia spreading the message to young scientists

    Science.gov (United States)

    Mhopjeni, Kombada

    2015-04-01

    The Young Earth Scientists (YES) Network is an international association for early-career geoscientists under the age of 35 years that was formed as a result of the International Year of Planet Earth (IYPE) in 2007. YES Network aims to establish an interdisciplinary global network of early-career geoscientists to solve societal issues/challenges using geosciences, promote scientific research and interdisciplinary networking, and support professional development of early-career geoscientists. The Network has several National Chapters including one in Namibia. YES Network Namibia (YNN) was formed in 2009, at the closing ceremony of IYPE in Portugal and YNN was consolidated in 2013 with the current set-up. YNN supports the activities and goals of the main YES Network at national level providing a platform for young Namibian scientists with a passion to network, information on geoscience opportunities and promoting earth sciences. Currently most of the members are geoscientists from the Geological Survey of Namibia (GSN) and University of Namibia. In 2015, YNN plans to carry out two workshops on career guidance, establish a mentorship program involving alumni and experienced industry experts, and increase involvement in outreach activities, mainly targeting high school pupils. Network members will participate in a range of educational activities such as school career and science fairs communicating geoscience to the general public, learners and students. The community outreach programmes are carried out to increase awareness of the role geosciences play in society. In addition, YNN will continue to promote interactive collaboration between the University of Namibia, Geological Survey of Namibia (GSN) and Geological Society of Namibia. Despite the numerous potential opportunities YNN offers young scientists in Namibia and its presence on all major social media platforms, the Network faces several challenges. One notable challenge the Network faces is indifference among

  19. The 1997 Protocol and the European Union (European Union and '2nd generation' responsibility conventions)

    International Nuclear Information System (INIS)

    Handrlica, Jakub; Novotna, Marianna

    2014-01-01

    The issue of accession of the Eastern European Member States to the 1997 Protocol is discussed with focus on the European Union's authority and enforcement powers. Following up the article published in the preceding issue of this journal, the present contribution analyses the relations of the '2nd generation' responsibility conventions to the law of the European Union. (orig.)

  20. Virtual OPACs versus Union Database: Two Models of Union Catalogue Provision.

    Science.gov (United States)

    Cousins, Shirley

    1999-01-01

    Considers some of the major technical and organizational issues involved in virtual-catalog production, contrasting them with the traditional union catalog approach exemplified by COPAC, an online public-access catalog composed of academic libraries in the United Kingdom. Suggest a method of integrating these two models of the union catalog.…

  1. a decade of african union and european union trans-regional

    African Journals Online (AJOL)

    Abel

    designed to link the African Union and the European Union in a process of trans- ... terrorism, drug and human trafficking and migration.5 The common value ..... have involved policing, rule of law, border assistance and monitoring and security .... Europe as exemplified by Russia and Ukraine (who provided helicopters and ...

  2. 75 FR 81378 - Fiduciary Duties at Federal Credit Unions; Mergers and Conversions of Insured Credit Unions

    Science.gov (United States)

    2010-12-28

    ... NCUA's neutrality in the final rule and has made this change. A commenter also suggested including this..., where the net worth ratio of the merging credit union exceeds the net worth ratio of the continuing... are entitled to the net worth of a merging credit union. The NCUA Board disagrees. As discussed in the...

  3. Alarming atmospheres

    DEFF Research Database (Denmark)

    Højlund, Marie; Kinch, Sofie

    2014-01-01

    Nurses working in the Neuro-Intensive Care Unit at Aarhus University Hospital lack the tools to prepare children for the alarming atmosphere they will enter when visiting a hospitalised relative. The complex soundscape dominated by alarms and sounds from equipment is mentioned as the main stressor...

  4. European Union: Gender and politics

    Directory of Open Access Journals (Sweden)

    Žunić Natalija

    2014-01-01

    Full Text Available Political representation is the central issue in contemporary debates on the level of democracy in political institutions and processes in the European Union. Underrepresentation of particular groups in political institutions, decision-making and policy-making processes is perceived as the problem of justice, legitimacy and effectiveness in democratic societies. In this paper, the author analyzes the gender aspects of democratic decision-making processes and political representation of women in the EU member states. The social, historical and political dimension of women's efforts to obtain and promote their civil status and political rights have been the framework for developing the principle of gender equality as one of the founding EU principles. In the past hundred years, one of the most significant trends in politics has been the expansion of formal political representation of women. Yet, even though it has been more than a hundered years since women won their political rights in the 19th and the 20th century (the right to vote and the right to be voted, gender differences in political rights are still a substantial part of debate. Today, women's political representation is still inadequate and their political capacity and power have not been exercised to a sufficient extent (or proportionally through their actual representation in parliament. In March 2012, the European Commisision published a report on gender equality in different areas of social life; the Eurobarometer survey shows that women are generally underrepresented in politics. In national parliaments, only one out of four MPs is a woman. In the European Parliament, three out of ten parliamentarians are women. The statistics shows a huge discrepancy among the EU Member States in terms of women's representation in parliament (44.7% in Sweden as contrasted to 13.3% in Romania. The prevailing view in many studies is that post-industrial democracies are deficient as they have failed

  5. The new architecture of the European Union

    Directory of Open Access Journals (Sweden)

    Radivojević Zoran

    2011-01-01

    Full Text Available The Lisbon Treaty has brought significant changes into the architecture of the European Union. The most important novelty, however, is the establishment of a full unity of the Union structure achieved by creating new and strengthening the existing elements. The new elements of this unity are the disappearance of the European Community, the 'independence' of the European Atomic Energy Community, constituting the European Union as a single ent