WorldWideScience

Sample records for geoscience research strategy

  1. Geosciences Student Recruitment Strategies at California State University, Long Beach (CSULB): Earth System Science/Community-Research Based Education Partnerships

    Science.gov (United States)

    Ambos, E. L.; Behl, R.; Whitney, D.; Rodrigue, C.; Wechsler, S.; Holk, G.; Lee, C.; Francis, R. D.; Larson, D.

    2005-12-01

    Collaborations among geoscience-oriented departments at California State University, Long Beach (Geological Sciences, as well as portions of the Geography and Anthropology departments and a new, fast-growing Environmental Sciences and Policy (ES&P) program) are characterized by attention to three important elements: (1) community-based partnerships and research, (2) outreach and continuity within educational pipeline transitions from high school, to community college, to university, and, (3) sharing of resources and expertise. Three specific collaborations, (1) creation of the ES&P, (2) the NSF-funded Geoscience Diversity Enhancement Program (GDEP), and, (3) the Institute for Interdisciplinary Research on Materials, Environment, and Societies (IIRMES), are powerful illustrations of how these collaborations can work to foster geoscience student recruitment and academic development, particularly at urban, highly diverse institutions with limited resources. Through a combination of student surveys, focus groups, and institutional research supported by the GDEP program, we know (e.g., Whitney et al., 2005) that non-Caucasian students often express less affinity for the geosciences as a focus of study than Caucasians. Early exposure to positive field and laboratory experiences, better understanding of geoscience career possibilities, and better advising at high school and college levels are all excellent strategies for heightening student interest and recruitment in the geosciences, yet appear to be lacking for many of the students in the greater Long Beach, California area. GDEP, ES&P, and IIRMES all challenge these lacunae by emphasizing hands-on learning, research on relevant community-based problems, and one-on-one or small group research, advising and mentoring. Our current challenge is to help our high-school and community-college colleagues adopt their own model of these active-learning strategies, thereby priming the pump and patching the pipe(line) for student

  2. Effective Recruiting and Intrusive Retention Strategies for Diversifying the Geosciences through a Research Experiences for Undergraduate Program

    Science.gov (United States)

    Liou-Mark, J.; Blake, R.; Norouzi, H.; Yuen-Lau, L.; Ikramova, M.

    2016-12-01

    Worse than in most Science, Technology, Engineering, and Mathematics (STEM) fields, underrepresented minority (URM) groups in the geosciences are reported to be farthest beneath the national benchmarks. Even more alarming, the geosciences have the lowest diversity of all the STEM disciplines at all three levels of higher education. In order to increase the number of underrepresented groups in the geosciences, a National Science Foundation funded Research Experiences for Undergraduates (REU) program at the New York City College of Technology has implemented effective recruitment strategies to attract and retain diverse student cohorts. Recruitment efforts include: 1) establishing partnership with the local community colleges; 2) forging collaborations with scientists of color; 3) reaching out to the geoscience departments; and 4) forming relationships with STEM organizations. Unlike the other REU programs which primarily provide a summer-only research experience, this REU program engages students in a year-long research experience. Students begin their research in the summer for nine weeks, and they continue their research one day a week in the fall and spring semesters. During the academic year, they present their projects at conferences. They also serve as STEM ambassadors to community and high school outreach events. This one-year triad connection of 1) professional organizations/conferences, 2) continual research experience, and 3) service constituent has resulted in higher retention and graduation rates of URMs in the STEM disciplines. Both formative and summative program assessment have uncovered and shown that strong recruitment efforts accompanied by intrusive retention strategies are essential to: a) sustain and support STEM URMs in developing confidence as scientists; b) create formal and informal STEM communities; and c) provide a clear pathway to advanced degrees and to the geoscience workforce. This project is supported by NSF REU Grant #1560050.

  3. Identifying Curriculum Design Patterns as a Strategy for Focusing Geoscience Education Research: A Proof of Concept Based on Teaching and Learning with Geoscience Data

    Science.gov (United States)

    Kastens, Kim; Krumhansl, Ruth

    2017-01-01

    The geoscience education research (GER) enterprise faces a challenge in moving instructional resources and ideas from the well-populated domain of "practitioners' wisdom" into the research-tested domains of St. John and McNeal's pyramid of evidence (this volume). We suggest that the process could be accelerated by seeking out clusters of…

  4. Preparing Future Geoscience Professionals: Needs, Strategies, Programs, and Online Resources

    Science.gov (United States)

    Macdonald, H.; Manduca, C. A.; Ormand, C. J.; Dunbar, R. W.; Beane, R. J.; Bruckner, M.; Bralower, T. J.; Feiss, P. G.; Tewksbury, B. J.; Wiese, K.

    2011-12-01

    Geoscience faculty, departments, and programs play an important role in preparing future geoscience professionals. One challenge is supporting the diversity of student goals for future employment and the needs of a wide range of potential employers. Students in geoscience degree programs pursue careers in traditional geoscience industries; in geoscience education and research (including K-12 teaching); and opportunities at the intersection of geoscience and other fields (e.g., policy, law, business). The Building Strong Geoscience Departments project has documented a range of approaches that departments use to support the development of geoscience majors as professionals (serc.carleton.edu/departments). On the Cutting Edge, a professional development program, supports graduate students and post-doctoral fellows interested in pursuing an academic career through workshops, webinars, and online resources (serc.carleton.edu/NAGTWorkshops/careerprep). Geoscience departments work at the intersection of student interests and employer needs. Commonly cited program goals that align with employer needs include mastery of geoscience content; field experience; skill in problem solving, quantitative reasoning, communication, and collaboration; and the ability to learn independently and take a project from start to finish. Departments and faculty can address workforce issues by 1) implementing of degree programs that develop the knowledge, skills, and attitudes that students need, while recognizing that students have a diversity of career goals; 2) introducing career options to majors and potential majors and encouraging exploration of options; 3) advising students on how to prepare for specific career paths; 4) helping students develop into professionals, and 5) supporting students in the job search. It is valuable to build connections with geoscience employers, work with alumni and foster connections between students and alumni with similar career interests, collaborate with

  5. Summaries of physical research in the geosciences

    Energy Technology Data Exchange (ETDEWEB)

    1990-10-01

    The Department of Energy supports research in the geosciences in order to provide a sound foundation of fundamental knowledge in those areas of the geosciences which are germane to the Department of Energy's many missions. The Division of Engineering and Geosciences, part of the Office of Basic Energy Sciences of the Office of Energy Research, supports the Geosciences Research Program. The participants in this program include Department of Energy laboratories, industry, universities, and other governmental agencies. The summaries in this document, prepared by the investigators, briefly describe the scope of the individual programs. The Geosciences Research Program includes research in geology, petrology, geophysics, geochemistry, solar physics, solar-terrestrial relationships, aeronomy, seismology, and natural resource modeling and analysis, including their various subdivisions and interdisciplinary areas. All such research is related either directly or indirectly to the Department of Energy's long-range technological needs.

  6. Summary outline of DOE geoscience and geoscience - related research

    Energy Technology Data Exchange (ETDEWEB)

    1982-02-01

    The Office of Basic Energy Sciences (OBES) supports long-range, basic research in those areas of the geosciences which are relevant to the nation's energy needs. The objective of the Geoscience program is to develop a quantitative and predictive understanding of geological, geophysical and geochemical structures and processes in the solid earth and in solar-terrestrial relationships. This understanding is to assure an effective knowledge base for energy resource recognition, evaluation and utilization in an environmentally acceptable manner. The work is carried out primarily in DOE laboratories and in universities, although some is conducted by other federal agencies and by the National Academy of Sciences. Principal areas of interest include: Geology, Geophysics, and Earth Dynamics; Geochemistry; Energy Resource Recognition, Evaluation and Utilization; Hydrologic and Marine Sciences; and Solar-Terrestrial/Atmospheric Interactions.

  7. Summaries of FY 1993 geosciences research

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-01

    The Department of Energy supports research in the geosciences in order to provide a sound foundation of fundamental knowledge in those areas of the geosciences that are germane to the DOE`s many missions. The Geosciences Research Program is supported by the Office of Energy Research. The participants in this program include DOE laboratories, academic institutions, and other governmental agencies. These activities are formalized by a contract or grant between the DOE and the organization performing the work, providing funds for salaries, equipment, research materials, and overhead. The summaries in this document, prepared by the investigators, describe the scope of the individual programs. The Geosciences Research Program includes research in geophysics, geochemistry, resource evaluation, solar-terrestrial interactions, and their subdivisions including earth dynamics, properties of earth materials, rock mechanics, underground imaging, rock-fluid interactions, continental scientific drilling, geochemical transport, solar-atmospheric physics, and modeling, with emphasis on the interdisciplinary areas.

  8. Summaries of physical research in the geosciences

    Energy Technology Data Exchange (ETDEWEB)

    1980-08-01

    The Department of Energy supports research in the geosciences in order to provide a sound underlay of fundamental knowledge in those areas of the earth, atmospheric, and solar/terrestrial sciences that relate to the Department of Energy's many missions. The Division of Engineering, Mathematical and Geosciences, which is a part of the Office of Basic Energy Sciences and comes under the Director of Energy Research, supports under its Geosciences program major Department of Energy laboratories, industry, universities and other governmental agencies. The summaries in this document, prepared by the investigators, describe the overall scope of the individual programs and details of the research performed during 1979-1980. The Geoscience program includes research in geology, petrology, geophysics, geochemistry, hydrology, solar-terrestrial relationships, aeronomy, seismology and natural resource analysis, including the various subdivisions and interdisciplinary areas. All such research is related to the Department's technological needs, either directly or indirectly.

  9. Summaries of FY 91 geosciences research

    Energy Technology Data Exchange (ETDEWEB)

    1991-11-01

    The Department of Energy supports research in the geosciences in order to provide a sound foundation of fundamental knowledge in those areas of the geosciences which are germane to the Department of Energy's many missions. The Division of Engineering and Geosciences, part of the Office of Basic Energy Sciences of the Office of Energy Research supports the Geosciences Research Program. The participants in this program include Department of Energy laboratories, academic institutions, and other governmental agencies. Theses activities are formalized by a contract or grant between the Department of Energy and the organization performing the work, providing funds for salaries, equipment, research materials, and overhead. The summaries in this document, prepared by the investigators, describe the scope of the individual programs. The Geosciences Research Program includes research in geology, petrology, geophysics, geochemistry, solar physics, solar-terrestrial relationships, aeronomy, seismology, and natural resource modeling and analysis, including their various subdivisions and interdisciplinary areas. All such research is related either directly or indirectly to the Department of Energy's long-range technological needs. 2 tabs.

  10. Summaries of FY 92 geosciences research

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-01

    The Department of Energy supports research in the geosciences in order to provide a sound foundation of fundamental knowledge in those areas of the geosciences that are germane to the Department of Energy's many missions. The Division of Engineering and Geosciences, part of the Office of Basic Energy Sciences of the Office of Energy Research, supports the Geosciences Research Program. The participants in this program include Department of Energy laboratories, academic institutions, and other governmental agencies. These activities are formalized by a contract or grant between the Department of Energy and the organization performing the work, providing funds for salaries, equipment, research materials, and overhead. The summaries in this document, prepared by the investigators, describe the scope of the individual programs. The Geosciences Research Program includes research in geophysics, geochemistry, resource evaluation, solar-terrestrial interactions and their subdivisions including Earth dynamics, properties of Earth materials, rock mechanics, underground imaging, rock-fluid interactions, continental scientific drilling, geochemical transport, solar/atmospheric physics, and modeling, with emphasis on the interdisciplinary areas. All such research is related either directly or indirectly to the Department of Energy's long-range technological needs.

  11. Summaries of physical research in the geosciences

    Energy Technology Data Exchange (ETDEWEB)

    1983-09-01

    The Department of Energy supports research in the geosciences in order to provide a sound foundation of fundamental knowledge in those areas of earth, atmospheric, and solar-terrestrial sciences that are germane to the Department of Energy's many missions. The summaries in the document describe the scope of the individual programs and detail the research performed during 1982 to 1983. The Geoscience Research Program includes research in geology, petrology, geophysics, geochemistry, hydrology, solar-terrestrial relationships, aeronomy, seismology, and natural resource analysis, including the various subdivisions and interdisciplinary areas. All such research is related either directly or indirectly to the Department of Energy's technological needs.

  12. Summaries of physical research in the geosciences

    International Nuclear Information System (INIS)

    1981-10-01

    The Department of Energy supports research in the geosciences in order to provide a sound foundation of fundamental knowledge in those areas of earth, atmospheric, and solar-terrestrial sciences that are germane to the Department of Energy's many missions. The summaries describe the scope of the individual programs and detail the research performed during 1980 to 1981. The Geosciences Research Program includes research in geology, petrology, geophysics, geochemistry, hydrology, solar-terrestrial relationships, aeronomy, seismology, and natural resource analysis, including the various subdivisions and interdisciplinary areas

  13. Summaries of physical research in the geosciences

    Energy Technology Data Exchange (ETDEWEB)

    1981-10-01

    The Department of Energy supports research in the geosciences in order to provide a sound foundation of fundamental knowledge in those areas of earth, atmospheric, and solar-terrestrial sciences that are germane to the Department of Energy's many missions. The summaries describe the scope of the individual programs and detail the research performed during 1980 to 1981. The Geosciences Research Program includes research in geology, petrology, geophysics, geochemistry, hydrology, solar-terrestrial relationships, aeronomy, seismology, and natural resource analysis, including the various subdivisions and interdisciplinary areas.

  14. Summaries of physical research in the geosciences

    Energy Technology Data Exchange (ETDEWEB)

    1987-09-01

    The Department of Energy supports research in the geosciences in order to provide a sound foundation of fundamental knowledge in those areas that are germane to the Department of Energy's many missions. The summaries in this document, prepared by the investigators, describe the scope of the individual programs. The Geoscience Research Program includes research in geology, petrology, geophysics, geochemistry, solar-terrestrial relationships, aeronomy, seismology, and natural resource analysis, including their various subdivisions and interdisciplinary areas. All such research is related either directly or indirectly to the Department of Energy's technological needs.

  15. Summaries of physical research in the geosciences

    Energy Technology Data Exchange (ETDEWEB)

    1986-09-01

    The summaries in this document describe the scope of the individual programs and detail the research performed during 1984-1985. The Geosciences Research Program includes research in geology, petrology, geophysics, geochemistry, hydrology, solar-terrestrial relationships, aeronomy, seismology, and natural resource analysis, including their various subdivisions and interdisciplinary areas.

  16. Geoscience Education Research: The Role of Collaborations with Education Researchers and Cognitive Scientists

    Science.gov (United States)

    Manduca, C. A.; Mogk, D. W.; Kastens, K. A.; Tikoff, B.; Shipley, T. F.; Ormand, C. J.; Mcconnell, D. A.

    2011-12-01

    problem, to make collaborative decisions, and to collectively problem solve. The development of this shared understanding is a primary result of the past decade of work. It has been developed through geoscience hosted events like the On the Cutting Edge emerging theme workshops and the Synthesis of Research on Thinking and Learning in the Geosciences project, complementary events in cognitive science and education that include geoscientists like the Gordon Conferences on Visualization in Science & Education or the Spatial Cognition conference series, and the interactions within and among geoscience education research projects like the Spatial Intelligence and Learning Center, the GARNET project, and many others. With this common ground in place, effective collaborations that bring together deep knowledge of psychology and brain function, of educational design and testing, and of time tested learning goals, teaching methods, and measures of success can flourish. A strong and accelerating research field has emerged that spans from work on basic cognitive skills important in geoscience, to studies of specific teaching strategies.

  17. Summaries of FY 1994 geosciences research

    Energy Technology Data Exchange (ETDEWEB)

    1994-12-01

    The Geosciences Research Program is directed by the Department of Energy`s (DOE`s) Office of Energy Research (OER) through its Office of Basic Energy Sciences (OBES). Activities in the Geosciences Research Program are directed toward the long-term fundamental knowledge of the processes that transport, modify, concentrate, and emplace (1) the energy and mineral resources of the earth and (2) the energy byproducts of man. The Program is divided into five broad categories: Geophysics and earth dynamics; Geochemistry; Energy resource recognition, evaluation, and utilization; Hydrogeology and exogeochemistry; and Solar-terrestrial interactions. The summaries in this document, prepared by the investigators, describe the scope of the individual programs in these main areas and their subdivisions including earth dynamics, properties of earth materials, rock mechanics, underground imaging, rock-fluid interactions, continental scientific drilling, geochemical transport, solar/atmospheric physics, and modeling, with emphasis on the interdisciplinary areas.

  18. Summaries of FY 1996 geosciences research

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-01

    The Geosciences Research Program is directed by the Department of Energy`s (DOE`s) Office of Energy Research (OER) through its Office of Basic Energy Sciences (OBES). Activities in the Geosciences Research Program are directed toward building the long-term fundamental knowledge base necessary to provide for energy technologies of the future. Future energy technologies and their individual roles in satisfying the nations energy needs cannot be easily predicted. It is clear, however, that these future energy technologies will involve consumption of energy and mineral resources and generation of technological wastes. The earth is a source for energy and mineral resources and is also the host for wastes generated by technological enterprise. Viable energy technologies for the future must contribute to a national energy enterprise that is efficient, economical, and environmentally sound. The Geosciences Research Program emphasizes research leading to fundamental knowledge of the processes that transport, modify, concentrate, and emplace (1) the energy and mineral resources of the earth and (2) the energy by-products of man.

  19. Highlighting Successful Strategies for Engaging Minority Students in the Geosciences

    Science.gov (United States)

    Liou-Mark, J.; Blake, R.; Norouzi, H.; Vladutescu, D. V.; Yuen-Lau, L.

    2017-12-01

    Igniting interest and creativity in students for the geosciences oftentimes require innovation, bold `outside-the-box' thinking, and perseverance, particularly for minority students for whom the preparation for the discipline and its lucrative pathways to the geoscience workforce are regrettably unfamiliar and woefully inadequate. The enrollment, retention, participation, and graduation rates of minority students in STEM generally and in the geosciences particularly remain dismally low. However, a coupled, strategic geoscience model initiative at the New York City College of Technology (City Tech) of the City University of New York has been making steady in-roads of progress, and it offers practical solutions to improve minority student engagement in the geosciences. Aided by funding from the National Science Foundation (NSF), two geoscience-centric programs were created from NSF REU and NSF IUSE grants, and these programs have been successfully implemented and administered at City Tech. This presentation shares the hybrid geoscience research initiatives, the multi-tiered mentoring structures, the transformative geoscience workforce preparation, and a plethora of other vital bastions of support that made the overall program successful. Minority undergraduate scholars of the program have either moved on to graduate school, to the geoscience workforce, or they persist with greater levels of success in their STEM disciplines.

  20. Recruitment Strategies for Geoscience Majors: Conceptual Framework and Practical Suggestions

    Science.gov (United States)

    Richardson, R. M.; Eyles, C.; Ormand, C. J.

    2009-12-01

    One characteristic of strong geoscience departments is that they recruit and retain quality students. In a survey to over 900 geoscience departments in the US and Canada several years ago nearly 90% of respondents indicated that recruiting and retaining students was important. Two years ago we offered a pre-GSA workshop on recruiting and retaining students that attracted over 30 participants from over 20 different institutions, from liberal arts colleges to state universities to research intensive universities. Since then we have sought additional feedback from a presentation to the AGU Heads & Chairs at a Fall AGU meeting, and most recently from a workshop on strengthening geoscience programs in June 2009. In all of these settings, a number of themes and concrete strategies have emerged. Key themes included strategies internal to the department/institution; strategies that reach beyond the department/institution; determining how scalable/transferable strategies that work in one setting are to your own setting; identifying measures of success; and developing or improving on an existing action plan specific to your departmental/institutional setting. The full results of all of these efforts to distill best practices in recruiting students will be shared at the Fall AGU meeting, but some of the best practices for strategies local to the department/institution include: 1) focusing on introductory classes (having the faculty who are most successful in that setting teach them, having one faculty member make a common presentation to all classes about what one can do with a geoscience major, offering topical seminars, etc.); 2) informing students of career opportunities (inviting alumni back to talk to students, using AGI resources, etc.,); 3) creating common space for students to work, study, and be a community; 4) inviting all students earning an ‘A’ (or ‘B’) in introductory classes to a departmental event just for them; and 5) creating a field trip for incoming

  1. Summaries of FY 1995 geosciences research

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-01

    The summaries in this document, prepared by the investigators, describe the scope of the individual programs. The Geosciences Research Program includes research in geophysics, geochemistry, resource evaluation, solar-terrestrial interactions, and their subdivisions including earth dynamics, properties of earth materials, rock mechanics, underground imaging, rock-fluid interactions, continental scientific drilling, geochemical transport, solar/atmospheric physics, and modeling, with emphasis on the interdisciplinary areas. All such research is related either direct or indirect to the Department of Energy`s long-range technological needs.

  2. Transforming Indigenous Geoscience Education and Research (TIGER)

    Science.gov (United States)

    Berthelote, A. R.

    2014-12-01

    American Indian tribes and tribal confed­erations exert sovereignty over about 20% of all the freshwater resources in the United States. Yet only about 30 Native American (NA) students receive bachelor's degrees in the geosci­ences each year, and few of those degrees are in the field of hydrology. To help increase the ranks of NA geoscientists,TIGER builds upon the momentum of Salish Kootenai College's newly accredited Hydrology Degree Program. It allows for the development and implementation of the first Bachelor's degree in geosciences (hydrology) at a Tribal College and University (TCU). TIGER integrates a solid educational research-based framework for retention and educational preparation of underrepresented minorities with culturally relevant curriculum and socio-cultural supports, offering a new model for STEM education of NA students. Innovative hydrology curriculum is both academically rigorous and culturally relevant with concurrent theoretical, conceptual, and applied coursework in chemical, biological, physical and managerial aspects of water resources. Educational outcomes for the program include a unique combination of competencies based on industry recognized standards (e.g., National Institute of Hydrologists), input from an experienced External Advisory Board (EAB), and competencies required for geoscientists working in critical NA watersheds, which include unique competencies, such as American Indian Water Law and sovereignty issues. TIGER represents a unique opportunity to capitalize on the investments the geoscience community has already made into broadening the participation of underrepresented minorities and developing a diverse workforce, by allowing SKC to develop a sustainable and exportable program capable of significantly increasing (by 25 to 75%) the National rate of Native American geoscience graduates.

  3. Proposed Grand Challenges in Geoscience Education Research: Articulating a Community Research Agenda

    Science.gov (United States)

    Semken, S. C.; St John, K. K.; Teasdale, R.; Ryker, K.; Riggs, E. M.; Pyle, E. J.; Petcovic, H. L.; McNeal, K.; McDaris, J. R.; Macdonald, H.; Kastens, K.; Cervato, C.

    2017-12-01

    Fourteen ago the Wingspread Project helped establish geoscience education research (GER) as an important research field and highlighted major research questions for GER at the time. More recently, the growth and interest in GER is evident from the increase in geoscience education research articles, the establishment of the NAGT GER Division, the creation of the GER Toolbox, an increase in GER graduate programs, and the growth of tenure-eligible GER faculty positions. As an emerging STEM education research field, the GER community is examining the current state of their research and considering the best course forward so that it can have the greatest collective impact on advancing teaching and learning in the geosciences. As part of an NSF-funded effort to meet this need, 45 researchers drafted priority research questions, or "Grand Challenges", that span 10 geoscience education research themes. These include research on: students' conceptual understanding of the solid and the fluid Earth, K-12 teacher preparation, teaching about Earth in the context of societal problems, access and success of underrepresented groups in the geosciences, spatial and temporal reasoning, quantitative reasoning and use of models, instructional strategies to improve geoscience learning, students' self-regulated learning, and faculty professional development and institutional change. For each theme, several Grand Challenges have been proposed; these have undergone one round of peer-review and are now ready for the AGU community to critically examine the proposed Grand Challenges and make suggestions on strategies for addressing them: http://nagt.org/nagt/geoedresearch/grand_challenges/feedback.html. We seek perspectives from geoscience education researchers, scholars, and reflective educators. It is our vision that the final outcomes of this community-grounded process will be a published guiding framework to (1) focus future GER on questions of high interest to the geoscience education

  4. Promoting research integrity in the geosciences

    Science.gov (United States)

    Mayer, Tony

    2015-04-01

    Conducting research in a responsible manner in compliance with codes of research integrity is essential. The geosciences, as with all other areas of research endeavour, has its fair share of misconduct cases and causes celebres. As research becomes more global, more collaborative and more cross-disciplinary, the need for all concerned to work to the same high standards becomes imperative. Modern technology makes it far easier to 'cut and paste', to use Photoshop to manipulate imagery to falsify results at the same time as making research easier and more meaningful. So we need to promote the highest standards of research integrity and the responsible conduct of research. While ultimately, responsibility for misconduct rests with the individual, institutions and the academic research system have to take steps to alleviate the pressure on researchers and promote good practice through training programmes and mentoring. The role of the World Conferences on Research Integrity in promoting the importance of research integrity and statements about good practice will be presented and the need for training and mentoring programmes will be discussed

  5. Exploring Monte Carlo Simulation Strategies for Geoscience Applications

    Science.gov (United States)

    Blais, J.; Grebenitcharsky, R.; Zhang, Z.

    2008-12-01

    Computer simulations are an increasingly important area of geoscience research and development. At the core of stochastic or Monte Carlo simulations are the random number sequences that are assumed to be distributed with specific characteristics. Computer generated random numbers, uniformly distributed on [0, 1], can be very different depending on the selection of pseudo-random number (PRN), quasi-random number (QRN) or chaotic random number (CRN) generators. In the evaluation of some definite integrals, the expected error variances are generally of different orders for the same number of random numbers. A comparative analysis of these three strategies has been carried out for geodetic and related applications in planar and spherical contexts. Based on these computational experiments, conclusions and recommendations concerning their performance and error variances are included.

  6. Geoscience Education Research: A Brief History, Context and Opportunities

    Science.gov (United States)

    Mogk, D. W.; Manduca, C. A.; Kastens, K. A.

    2011-12-01

    DBER combines knowledge of teaching and learning with deep knowledge of discipline-specific science content. It describes the discipline-specific difficulties learners face and the specialized intellectual and instructional resources that can facilitate student understanding (NRC, 2011). In the geosciences, content knowledge derives from all the "spheres, the complex interactions of components of the Earth system, applications of first principles from allied sciences, an understanding of "deep time", and approaches that emphasize the interpretive and historical nature of geoscience. Insights gained from the theory and practice of the cognitive and learning sciences that demonstrate how people learn, as well as research on learning from other STEM disciplines, have helped inform the development of geoscience curricular initiatives. The Earth Science Curriculum Project (1963) was strongly influenced by Piaget and emphasized hands-on, experiential learning. Recognizing that education research was thriving in related STEM disciplines a NSF report (NSF 97-171) recommended "... that GEO and EHR both support research in geoscience education, helping geoscientists to work with colleagues in fields such as educational and cognitive psychology, in order to facilitate development of a new generation of geoscience educators." An NSF sponsored workshop, Bringing Research on Learning to the Geosciences (2002) brought together geoscience educators and cognitive scientists to explore areas of mutual interest, and identified a research agenda that included study of spatial learning, temporal learning, learning about complex systems, use of visualizations in geoscience learning, characterization of expert learning, and learning environments. Subsequent events have focused on building new communities of scholars, such as the On the Cutting Edge faculty professional development workshops, extensive collections of online resources, and networks of scholars that have addressed teaching

  7. Developing Short Films of Geoscience Research

    Science.gov (United States)

    Shipman, J. S.; Webley, P. W.; Dehn, J.; Harrild, M.; Kienenberger, D.; Salganek, M.

    2015-12-01

    In today's prevalence of social media and networking, video products are becoming increasingly more useful to communicate research quickly and effectively to a diverse audience, including outreach activities as well as within the research community and to funding agencies. Due to the observational nature of geoscience, researchers often take photos and video footage to document fieldwork or to record laboratory experiments. Here we present how researchers can become more effective storytellers by collaborating with filmmakers to produce short documentary films of their research. We will focus on the use of traditional high-definition (HD) camcorders and HD DSLR cameras to record the scientific story while our research topic focuses on the use of remote sensing techniques, specifically thermal infrared imaging that is often used to analyze time varying natural processes such as volcanic hazards. By capturing the story in the thermal infrared wavelength range, in addition to traditional red-green-blue (RGB) color space, the audience is able to experience the world differently. We will develop a short film specifically designed using thermal infrared cameras that illustrates how visual storytellers can use these new tools to capture unique and important aspects of their research, convey their passion for earth systems science, as well as engage and captive the viewer.

  8. Executable research compendia in geoscience research infrastructures

    Science.gov (United States)

    Nüst, Daniel

    2017-04-01

    From generation through analysis and collaboration to communication, scientific research requires the right tools. Scientists create their own software using third party libraries and platforms. Cloud computing, Open Science, public data infrastructures, and Open Source enable scientists with unprecedented opportunites, nowadays often in a field "Computational X" (e.g. computational seismology) or X-informatics (e.g. geoinformatics) [0]. This increases complexity and generates more innovation, e.g. Environmental Research Infrastructures (environmental RIs [1]). Researchers in Computational X write their software relying on both source code (e.g. from https://github.com) and binary libraries (e.g. from package managers such as APT, https://wiki.debian.org/Apt, or CRAN, https://cran.r-project.org/). They download data from domain specific (cf. https://re3data.org) or generic (e.g. https://zenodo.org) data repositories, and deploy computations remotely (e.g. European Open Science Cloud). The results themselves are archived, given persistent identifiers, connected to other works (e.g. using https://orcid.org/), and listed in metadata catalogues. A single researcher, intentionally or not, interacts with all sub-systems of RIs: data acquisition, data access, data processing, data curation, and community support [3]. To preserve computational research [3] proposes the Executable Research Compendium (ERC), a container format closing the gap of dependency preservation by encapsulating the runtime environment. ERCs and RIs can be integrated for different uses: (i) Coherence: ERC services validate completeness, integrity and results (ii) Metadata: ERCs connect the different parts of a piece of research and faciliate discovery (iii) Exchange and Preservation: ERC as usable building blocks are the shared and archived entity (iv) Self-consistency: ERCs remove dependence on ephemeral sources (v) Execution: ERC services create and execute a packaged analysis but integrate with

  9. Some Strategies From SOARS for Broadening Participation in the Geosciences

    Science.gov (United States)

    Haacker-Santos, R.; Pandya, R.; Calhoun, A.

    2006-12-01

    The mission of SOARS® is to broaden participation in the geosciences by increasing the number of Black or African-American, American Indian or Alaska Native, Hispanic or Latino, female, and first-generation college students who enroll and succeed in graduate school in the atmospheric and related sciences. This mission contributes to national goals of developing a diverse, internationally competitive, and globally engaged workforce of scientists and engineers. SOARS is a multiyear undergraduate-to-graduate bridge program that uses three strategies: a strong learning community, a multidimensional mentoring program, and experience in research. Our presentation will describe SOARS' strategies in more detail, with an eye toward how such strategies might be adapted for other programs. To do this, we will draw upon recent research that documents how these strategies can be successfully implemented, including: - A survey of over 124 higher-education based STEM programs - A workshop report from the American Chemical Society emphasizing cooperation between industry and academia - An independent ethnographic study of the Significant Opportunities in Atmospheric and Related Science (SOARS®) program, administered by the University Corporation for Atmospheric Research (UCAR) In the 11 years since SOARS' founding, 104 students have participated in the program. Of those participants, 16 are still enrolled as undergraduates, and 60 have gone on to purse graduate school in STEM. Overall, this represents a success rate 91%. Of the 35 SOARS participants who have entered the workforce, 26 are in STEM related disciplines. Four SOARS participants have already earned their PhD, and additional 17 are in PhD programs. Seventeen protégés have earned Master's and entered the workforce, and 17 more protégés are enrolled in Master's programs.

  10. Geoscience Education Research, Development, and Practice at Arizona State University

    Science.gov (United States)

    Semken, S. C.; Reynolds, S. J.; Johnson, J.; Baker, D. R.; Luft, J.; Middleton, J.

    2009-12-01

    Geoscience education research and professional development thrive in an authentically trans-disciplinary environment at Arizona State University (ASU), benefiting from a long history of mutual professional respect and collaboration among STEM disciplinary researchers and STEM education researchers--many of whom hold national and international stature. Earth science education majors (pre-service teachers), geoscience-education graduate students, and practicing STEM teachers richly benefit from this interaction, which includes team teaching of methods and research courses, joint mentoring of graduate students, and collaboration on professional development projects and externally funded research. The geologically, culturally, and historically rich Southwest offers a superb setting for studies of formal and informal teaching and learning, and ASU graduates the most STEM teachers of any university in the region. Research on geoscience teaching and learning at ASU is primarily conducted by three geoscience faculty in the School of Earth and Space Exploration and three science-education faculty in the Mary Lou Fulton Institute and Graduate School of Education. Additional collaborators are based in the College of Teacher Education and Leadership, other STEM schools and departments, and the Center for Research on Education in Science, Mathematics, Engineering, and Technology (CRESMET). Funding sources include NSF, NASA, US Dept Ed, Arizona Board of Regents, and corporations such as Resolution Copper. Current areas of active research at ASU include: Visualization in geoscience learning; Place attachment and sense of place in geoscience learning; Affective domain in geoscience learning; Culturally based differences in geoscience concepts; Use of annotated concept sketches in learning, teaching, and assessment; Student interactions with textbooks in introductory courses; Strategic recruitment and retention of secondary-school Earth science teachers; Research-based professional

  11. An Undergraduate Student's Perspective on Geoscience Research

    Science.gov (United States)

    Wilder, A.; Feeley, T.; Michelfelder, G.

    2011-12-01

    Traditionally, the roles of field experiences in geoscience teaching have come from experienced instructors and researchers with a dedicated interest in how students learn. In this presentation we provide the opposite perspective; that of an undergraduate student at the beginning of her research career. We discuss the benefits and challenges associated with the initial field work and extend our discussion to include subsequent analytical-based laboratory studies. At Montana State University we are addressing key questions related to magma generation and differentiation at three volcanoes in the Central Andes. These are Volcan Uturuncu in southwest Bolivia and the Lazufre system consisting of Lastarria volcano and Cordon del Azufre in Chile and Argentina. To address these issues students collected rock samples and mapped lava flows in the field during the past two Spring Semesters. Upon return to campus the students prepared the samples for whole rock and mineral analyses, followed by travel to and work in external laboratories analyzing and collecting high precision geochemical data. The benefits these experiences provide include the following. First, due to the localities of the field sites, students become familiar with the difficult logistics associated with planning and performing field work in remote localities. Second, in performing the field work, students gain an appreciation of scale and exposure; topics not typically addressed in standard course work. Third, through close interaction with internal and external faculty, graduate students, and professional geologists, undergraduate students build strong relationships with scientists in the area of their interests. Fourth, by acquiring and interpreting high quality field and analytical data, they learn in-depth about modern philosophies, technologies, and data in the geosciences, providing them with skills and experiences that will be of value in their future careers or graduate work. They also learn how to

  12. Broadening Participation in the Geosciences through Participatory Research

    Science.gov (United States)

    Pandya, R. E.; Hodgson, A.; Wagner, R.; Bennett, B.

    2009-12-01

    In spite of many efforts, the geosciences remain less diverse than the overall population of the United States and even other sciences. This lack of diversity threatens the quality of the science, the long-term viability of our workforce, and the ability to leverage scientific insight in service of societal needs. Drawing on new research into diversity specific to geosciences, this talk will explore underlying causes for the lack of diversity in the atmospheric and related sciences. Causes include the few geoscience majors available at institutions with large minority enrollment; a historic association of the geosciences with extractive industries which are negatively perceived by many minority communities, and the perception that science offers less opportunity for service than other fields. This presentation suggests a new approach - community-based participatory research (CBPR). In CBPR, which was first applied in the field of rural development and has been used for many years in biomedical fields, scientists and community leaders work together to design a research agenda that simultaneously advances basic understanding and addresses community priorities. Good CBPR integrates research, education and capacity-building. A CBRP approach to geoscience can address the perceived lack of relevance and may start to ameliorate a history of negative experiences of geosciences. Since CBPR works best when it is community-initiated, it can provide an ideal place for Minority-Serving Institutions to launch their own locally-relevant programs in the geosciences. The presentation will conclude by describing three new examples of CBPR. The first is NCAR’s partnerships to explore climate change and its impact on Tribal lands. The second approach a Denver-area listening conference that will identify and articulate climate-change related priorities in the rapidly-growing Denver-area Latino community. Finally, we will describe a Google-funded project that brings together

  13. Reaching Beyond the Geoscience Stigma: Strategies for Success

    Science.gov (United States)

    Messina, P.; Metzger, E. P.

    2004-12-01

    The geosciences have traditionally been viewed with less "academic prestige" than other science curricula. Among the effects of this perception are depressed K-16 enrollments; state standards' relegation of Earth and space science concepts to earlier grades; Earth Science assignments to lower-performing students, and sometimes even to under-qualified teachers: all of which simply confirm the misconceptions. Restructuring pre-college science curricula so that Earth Science is placed as a capstone course is one way to enhance student understanding of the geosciences. Research demonstrates that reversing the traditional science course sequence (by offering Physics in the ninth grade) improves student success in subsequent science courses. The "Physics First" movement continues to gain momentum offering a possible niche for the Earth and space sciences beyond middle school. It is also critical to bridge the information gap for those with little or no prior exposure to the Earth sciences, particularly K-12 educators. An Earth systems course developed at San José State University is aligned to our state's standards; it is approved to satisfy geoscience subject matter competency by the California Commission on Teacher Credentialing, making it a popular offering for pre- and in-service teachers. Expanding our audience beyond the Bay Area, the Earth Systems Science Education Alliance courses infuse real-world and hands-on learning in a cohesive online curriculum. Through these courses teachers gain knowledge, share effective pedagogies, and build geography-independent communities.

  14. Strategies for Positive Engagement with the Public in the Geosciences

    Science.gov (United States)

    Johnson, R.

    2017-12-01

    Strategies for engaging with the public about the geosciences are abundant. Whether engaging in these endeavors through professional opportunties associated with their research activities, or in their personal lives, scientists have numerous ways in which they can share the science they care so much about with the public. While participating in tried and true well-designed "outreach" activities associated with research projects has become a classic approach over the past 20 years, this is not the only way to reach "the public". Indeed, as we have recently learned, such approaches depend on the availability of funding for research projects and outreach components. With potentially large research funding cuts looming at federal agencies, and the future of "education and outreach" associated with funded projects in question, we need to think hard about approaches that are not so closely tied to the federal government. Engaging with the public through involvement in the K-12 educational arena provides another avenue to reach people - not only students and teachers, but also the parents of the students. Furthermore, engagement in local communities - on school boards as a member or regular attendee, in civic groups, in museums on their boards or as volunteers, in congregations, and in more informal local associations are additional opportunities. Indeed, one of the most important resources we have, as geoscientists, is ourselves. While many of us may be involved with groups in our communities, our willingness to openly talk about our science in ways that are accessible to members of the public is less clear. Indeed, some of us may intentionally avoid discussing our research with neighbors and friends for any number of reasons. But by doing so, we have effectively allowed scientists to be framed as "the other" - rather than the neighbor with a kid on the soccer team who occasionally hosts a sleepover for the team, or who really knows how to grill a nice steak, or who

  15. Field research internships: Why they impact students' decisions to major in the geosciences

    Science.gov (United States)

    Kortz, K. M.; Cardace, D.; Savage, B.; Rieger, D.

    2017-12-01

    Although internships have been shown to retain geoscience students, little research has been done on what components of research or field experiences during an internship impact students' decisions to major in the geosciences. We created and led a short, two-week field-based internship for 5 introductory-level students to conduct research and create a poster to present their results. In addition to the two professors leading the internship and the 5 interns, there were 2 masters students and 1 community college student who were returning to the field area to collect data for their own projects. These students also helped to guide and mentor the interns. The interns were diverse in many aspects: 3 were female, 2 were non-white, 3 were community college students (1 4YC student was a transfer), 2 were first-generation college students, and their ages ranged from 18 to 33. Based on our evaluation, we found that the research experience increased students' self-efficacy in the geosciences through various means, increased their connection with mentors and other individuals who could serve as resources, gave them a sense of belonging to the geoscience culture, increased their knowledge of geoscience career paths and expectations, helped them make connections with Earth, and maintained their interest. These factors have been described in the literature as leading to retention, and we propose that field-based internships are successful for recruitment or retention in the geosciences because they influence so many of these affective and cognitive components at once. In particular, the social aspect of internships plays a fundamental role in their success because many of these factors require close and sustained interactions with other people. An implication of this research is that these affective components, including social ones, should be explicitly considered in the design and implementation of internships to best serve as a recruitment and retention strategy.

  16. Undergraduate research projects help promote diversity in the geosciences

    Science.gov (United States)

    Young, De'Etra; Trimboli, Shannon; Toomey, Rick S.; Byl, Thomas D.

    2016-01-01

    A workforce that draws from all segments of society and mirrors the ethnic, racial, and gender diversity of the United States population is important. The geosciences (geology, hydrology, geospatial sciences, environmental sciences) continue to lag far behind other science, technology, engineering and mathematical (STEM) disciplines in recruiting and retaining minorities (Valsco and Valsco, 2010). A report published by the National Science Foundation in 2015, “Women, Minorities, and Persons with Disabilities in Science and Engineering” states that from 2002 to 2012, less than 2% of the geoscience degrees were awarded to African-American students. Data also show that as of 2012, approximately 30% of African-American Ph.D. graduates obtained a bachelor’s degree from a Historic Black College or University (HBCU), indicating that HBCUs are a great source of diverse students for the geosciences. This paper reviews how an informal partnership between Tennessee State University (a HBCU), the U.S. Geological Survey, and Mammoth Cave National Park engaged students in scientific research and increased the number of students pursuing employment or graduate degrees in the geosciences.

  17. Research Computing and Data for Geoscience

    OpenAIRE

    Smith, Preston

    2015-01-01

    This presentation will discuss the data storage and computational resources available for GIS researchers at Purdue. This presentation will discuss the data storage and computational resources available for GIS researchers at Purdue.

  18. The Arecibo Geoscience Diversity Program: A Research Experience for Hispanics

    Science.gov (United States)

    Alonso, J.; Ramos, M.; Gonzalez, S.

    2004-12-01

    In an effort to increase the number of Hispanics that pursue a career in the geosciences, the National Astronomy and Ionosphere Center and the University of Puerto Rico at Arecibo (UPRA), have established a collaboration that provides a research experience to group of high school students, teachers, and undergraduates in the region. The program exploits the natural setting of the Arecibo Observatory and the UPRA campus by providing participants with research opportunities to study the atmosphere, and the Caño Tiburones wetland. The atmospheric research is conducted at the Arecibo Observatory. Here, altitude, density and temperature variations in the ionosphere are monitored using data collected with the 305 m radio telescope. The study of the Caño Tiburones tropical wetland, is conducted at UPRA. Participants are engaged in the design and the execution of an environmental monitoring program that assess the physical and biological profile of the wetland. This three-year effort will provide a hands-on research experience in the geosciences to 60 high school students, 12 teachers, and 24 undergraduate students. The participation of teachers will broaden the impact beyond the group trained, by incorporating the geoscience field experience in their curriculum. All participants undergo pre and post-test summative evaluation, and are surveyed in order to measure the impact of the program in respect of their academic or professional careers.

  19. (Geosciences research and development). [Annotated bibliography

    Energy Technology Data Exchange (ETDEWEB)

    1991-03-01

    This report represents the final report of the University of Utah Research Institute under US Department of Energy Contract No. DE-AC07-85ID12489. It consists of the abstracts and references of all technical reports generated by UURI under this contract. This report lists the abstracts in DOE report number sequence. The author index of this report will be useful in locating specific references. These reports are all related to earth science and geothermal energy.

  20. Examining the Motivation and Learning Strategies Use of Different Populations in Introductory Geosciences

    Science.gov (United States)

    van der Hoeven Kraft, K.; Stempien, J. A.; Bykerk-Kauffman, A.; Jones, M. H.; Matheney, R. K.; McConnell, D.; Perkins, D.; Wilson, M. J.; Wirth, K. R.

    2010-12-01

    The GARNET (Geoscience Affective Research Network) project examines the connection between student affect (attitudes, motivation, values, and regulation of learning) and geoscience learning outcomes. We investigated demographic groups participating in similar introductory geoscience courses. The Motivated Strategies for Learning Questionnaire (MSLQ; Pintrich et al., 1993) was used to measure student affect early and late in the semester with students from 7 institutions representing a range from community college to PhD granting universities. We analyzed differences in students on the basis of gender (539 males vs. 607 females) in 14 classes. We also examined contrasts on the basis of ethnicity for students enrolled in 4 classes where underrepresented ethnic groups made up 20% or more of the class. All of the data are from the 2009/2010 academic year. A MANOVA analysis of gender data indicate that female students enter the introductory geoscience classroom with significantly lower self-efficacy (confidence in their ability to succeed) than their male counterparts. Female students also reported employing a greater range of learning strategies. Both female and male students received similar final grades (no statistical difference between the populations), however, female students report that they are less likely to take another geology class relative to males. Wilcoxen analyses indicate that many of the factors that affect Caucasian students also affect students from underrepresented ethnic groups. However, both populations begin the course as distinctly different statistical groups. A decline in self-efficacy over the semester is noted for different demographic groups. Minority students begin the semester with a lower average self-efficacy (4.9/7) than the Caucasian students (5.2/7). The amount of effort that students anticipate putting into a class displays a similar trend; minority students enter with lower scores 4.8/7 vs. 5.1/7. Both populations have a similar

  1. The Geosciences Institute for Research and Education: Bringing awareness of the geosciences to minorities in Detroit MI

    Science.gov (United States)

    Nalepa, N. A.; Murray, K. S.; Napieralski, J. A.

    2009-12-01

    According to recent studies, more than 40% of students within the Detroit Public Schools (DPS) drop out and only 21% graduate within 4 years. In an attempt to improve these statistics, The Geosciences Institute for Research and Education was developed by the University of Michigan-Dearborn (UM-D) and funded by two grants from the National Science Foundation’s (NSF) OEDG Program. The Geosciences Institute, a collaboration between the UM-D, DPS, and local corporations, aims to generate awareness of the geosciences to middle school students, facilitate an enthusiastic learning environment, encourage underrepresented minorities to stay in school, and consider the geosciences as a viable career option. This is accomplished by involving their teachers, UM-D faculty and students, and local geoscience professionals in community-based research problems relevant to SE Michigan. Students use the geosciences as a tool in which they are actively participating in research that is in their backyards. Through a mixture of field trips, participation, and demonstrational activities the students become aware of local environmental and social problems and how a background in the geosciences can prepare them. As part of the Geosciences Institute, students participate in three ongoing research projects with UM-D faculty: (1) build, install, and monitor groundwater wells along the Lower Rouge River, (2) collect soil samples from and mapping brownfields in SW Detroit, and (3) learn basic GPS and GIS skills to map local natural resources. The students also work with faculty on creating video diaries that record ideas, experiences, and impressions throughout the Institute, including during fieldtrips, modules, research, and editing. Finally, small teams of students collaborate to design and print a poster that summarizes their experience in the Institute. The Geosciences Institute concludes with a ceremony that celebrates student efforts (posters and videos) and involves school

  2. Getting It Right Matters: Temperature Goal Interpretations in Geoscience Research

    Science.gov (United States)

    Rogelj, Joeri; Schleussner, Carl-Friedrich; Hare, William

    2017-10-01

    The adoption of the 1.5°C long-term warming limit in the Paris Agreement made 1.5°C a "hot topic" in the scientific community, with researchers eager to address this issue. Long-term warming limits have a decade-long history in international policy. To effectively inform the climate policy debate, geoscience research hence needs a core understanding of their legal and policy context. Here we describe this context in detail and illustrate its importance by showing the impact it can have on global carbon budget estimates. We show that definitional clarity is essential on this important matter.

  3. Data Science in Support of Marine Geoscience Research

    Science.gov (United States)

    Ferrini, V.

    2011-12-01

    Scientific research has evolved over the past several years with an increasing emphasis on the need to preserve and share data with investigators not involved in its initial collection. Not only does this new paradigm fortify the scientific process by providing transparency and opportunities for the validation of results, but it also ensures that the significant financial investments made in basic scientific research provide ongoing benefits and continue to enable new discoveries. Effective management of scientific data relies upon familiarity with the full continuum of the data life cycle - from acquisition and analysis to preservation and dissemination. Knowledge of technical aspects of data management and informatics, coupled with an understanding of data content and scientific use, are the key ingredients for advancing data systems and developing new and innovative interfaces for accessing and analyzing data. Herein lies the work of the data scientist. Effective management of marine geoscience data requires additional specialized knowledge and expertise, much of which can only be gained by participating in field programs. By participating in field programs as both a data manager and as a domain scientist one gains a unique perspective and understanding of the complexities of sea-going field programs, and the challenges of acquiring and documenting marine geoscience data. Just as the combination of technical specialists and domain scientists is critical to the success of a research cruise, so too is it critical to the successful management of data after the conclusion of the cruise. In the case of marine geoscience data, the data scientist plays a key role not only in building bridges between informatics and domain science, but between sea-going technicians and scientists. Working with the full community of stakeholders, the data scientist can help develop realistic standards and protocols to help ensure that high quality observational data are consistently made

  4. Why They Stay - Retention Strategies for Students from Diverse Backgrounds in the Geosciences

    Science.gov (United States)

    Haacker, R.

    2014-12-01

    The geosciences have had a chronic problem of underrepresentation of students from diverse ethnic, cultural, and socio-economic backgrounds. While many programs and efforts focus on the recruitment of minorities, a strategic approach to increase retention is equally important for a student's success. Students from diverse backgrounds often face isolation in majority schools, and lack role models and guidance as they navigate through the academic system. Research has shown that continuous and individualized support can greatly strengthen a student's performance and chance of staying in the field. Successful strategies include a strong mentoring system, early involvement in research, cohort building, and creating a welcoming campus climate. At the SOARS Center for Undergraduate Research, we have found that offering students research topics that allow them to give back to society increases engagement and retention significantly. All interventions need to be applied early, often and on a continuous basis in a student's college experience. A long-term mentor assigned to the student beyond a class or a summer research experience can provide follow-up and champion the student's progress. This presentation will share successful approaches of retaining diverse students in the geosciences and discuss how we can support each other in the community to provide such resources.

  5. Minority Institutions Collaboration in Geoscience Education and Research

    Science.gov (United States)

    Morris, P. A.; Austin, S. A.; Johnson, L. P.; Salgado, C.; Walter, D. K.

    2007-12-01

    The Minority University Consortium for Earth and Space Sciences (MUCESS) is a collaboration among four diverse minority institutions to increase the number of underrepresented students pursuing professional and research careers in Earth and Atmospheric Science and Space Science. The institutions that comprise MUCESS include the University of Houston-Downtown (Hispanic Serving Institution), Medgar Evers College (Other Minority University), Norfolk State University (Historically Black College/University) and South Carolina State University (Historically Black College/University). MUCESS collaborations span a range of projects in research, education and outreach in Earth and Space Science. This includes faculty research, undergraduate internships and student exchanges among our institutions as well as outreach to K-12 schools and the general public. MUCESS has recently received an award from the National Science Foundation under Solicitation NSF 04-590 "Opportunities for Enhancing Diversity in the Geosciences (OEDG)". Under this award faculty and students will be engaged in research (both undergraduate and graduate) in atmospheric science through ozonesonde launches to better understand the distribution and transport of ozone in the lower troposphere. Faculty and students will also participate in ozone observations for validation of instruments onboard the NASA Aura satellite. Additional balloon payloads will include instruments such as temperature and data logger sensors, carbon dioxide detectors, Geiger counters and digital and analog cameras. Launches will originate from Texas, New York, Vermont, South Carolina and elsewhere. This presentation describes the formation of MUCESS and the collaborative undergraduate research and outreach projects spanning six or more years. It also describes the evolution of the joint ozone investigation as well as planned activities supported by the NSF Geoscience Diversity award. Funding for the work described has been provided by

  6. PROGRESS (PROmoting Geoscience Research Education and SuccesS): a novel mentoring program for retaining undergraduate women in the geosciences

    Science.gov (United States)

    Clinton, Sandra; Adams, Amanda; Barnes, Rebecca; Bloodhart, Brittany; Bowker, Cheryl; Burt, Melissa; Godfrey, Elaine; Henderson, Heather; Hernandez, Paul; Pollack, Ilana; Sample McMeeking, Laura Beth; Sayers, Jennifer; Fischer, Emily

    2017-04-01

    Women still remain underrepresented in many areas of the geosciences, and this underrepresentation often begins early in their university career. In 2015, an interdisciplinary team including expertise in the geosciences (multiple sub-disciplines), psychology, education and STEM persistence began a project focused on understanding whether mentoring can increase the interest, persistence, and achievement of undergraduate women in geoscience fields. The developed program (PROGRESS) focuses on mentoring undergraduate female students, starting in their 1st and 2nd year, from two geographically disparate areas of the United States: the Carolinas in the southeastern part of the United States and the Front Range of the Rocky Mountains in the western part of the United States. The two regions were chosen due to their different student demographics, as well as the differences in the number of working female geoscientists in the region. The mentoring program includes a weekend workshop, access to professional women across geoscience fields, and both in-person and virtual peer networks. Four cohorts of students were recruited and participated in our professional development workshops (88 participants in Fall 2015 and 94 participants in Fall 2016). Components of the workshops included perceptions of the geosciences, women in STEM misconceptions, identifying personal strengths, coping strategies, and skills on building their own personal network. The web-platform (http://geosciencewomen.org/), designed to enable peer-mentoring and provide resources, was launched in the fall of 2015 and is used by both cohorts in conjunction with social media platforms. We will present an overview of the major components of the program, discuss lessons learned during 2015 that were applied to 2016, and share preliminary analyses of surveys and interviews with study participants from the first two years of a five-year longitudinal study that follows PROGRESS participants and a control group.

  7. The ENGAGE Workshop: Encouraging Networks between Geoscientists and Geoscience Education Researchers

    Science.gov (United States)

    Hubenthal, M.; LaDue, N.; Taber, J.

    2015-12-01

    The geoscience education community has made great strides in the study of teaching and learning at the undergraduate level, particularly with respect to solid earth geology. Nevertheless, the 2012 National Research Council report, Discipline-based Education Research: Understanding and Improving Learning in Undergraduate Science and Engineering suggests that the geosciences lag behind other science disciplines in the integration of education research within the discipline and the establishment of a broad research base. In January 2015, early career researchers from earth, atmospheric, ocean, and polar sciences and geoscience education research (GER) gathered for the ENGAGE workshop. The primary goal of ENGAGE was to broaden awareness of discipline-based research in the geosciences and catalyze relationships and understanding between these groups of scientists. An organizing committee of geoscientists and GERs designed a two-day workshop with a variety of activities to engage participants in the establishment of a shared understanding of education research and the development of project ideas through collaborative teams. Thirty-three participants were selected from over 100 applicants, based on disciplinary diversity and demonstrated interest in geoscience education research. Invited speakers and panelists also provided examples of successful cross-disciplinary collaborations. As a result of this workshop, participants indicated that they gained new perspectives on geoscience education and research, networked outside of their discipline, and are likely to increase their involvement in geoscience education research. In fact, 26 of 28 participants indicated they are now better prepared to enter into cross-disciplinary collaborations within the next year. The workshop evaluation revealed that the physical scientists particularly valued opportunities for informal networking and collaborative work developing geoscience education research projects. Meanwhile, GERs valued

  8. Undergraduate Research in Geoscience with Students from Two-year Colleges: SAGE 2YC Resources

    Science.gov (United States)

    McDaris, J. R.; Hodder, J.; Macdonald, H.; Baer, E. M.; Blodgett, R. H.

    2014-12-01

    Undergraduate research experiences are important for the development of expertise in geoscience disciplines. These experiences have been shown to help students learn content and skills, promote students' cognitive and affective development, and develop students' sense of self. Early exposure to research experiences has shown to be effective in the recruitment of students, improved retention and persistence in degree programs, motivation for students to learn and increase self-efficacy, improved attitudes and values about science, and overall increased student success. Just as departments at four-year institutions (4YCs) are increasingly integrating research into their introductory courses, two-year college (2YC) geoscience faculty have a great opportunity to ground their students in authentic research. The Undergraduate Research with Two-year College Students website developed by SAGE 2YC: Supporting and Advancing Geoscience Education at Two-year Colleges provides ideas and advice for 2YC and 4YC faculty who want to get more 2YC students involved in research. The continuum of possibilities for faculty to explore includes things that can be done at 2YCs (eg. doing research as part of a regular course, developing a course specifically around research on a particular topic, or independent study), done in collaboration with other local institutions (eg. using their facilities, conducting joint class research, or using research to support transfer programs), and by involving students in the kind of organized Undergraduate Research programs run by a number of institutions and organizations. The website includes profiles illustrating how 2YC geoscience faculty have tackled these various models of research and addressed potential challenges such as lack of time, space, and funding as part of supporting the wide diversity of students that attend 2YCs, most of whom have less experience than that of rising seniors who are the traditional REU participant. The website also

  9. Strengthening International Collaboration: Geosciences Research and Education in Developing Countries

    Science.gov (United States)

    Fucugauchi, J. U.

    2009-05-01

    Geophysical research increasingly requires global multidisciplinary approaches and global integration. Global warming, increasing CO2 levels and increased needs of mineral and energy resources emphasize impact of human activities. The planetary view of our Earth as a deeply complex interconnected system also emphasizes the need of international scientific cooperation. International collaboration presents an immense potential and is urgently needed for further development of geosciences research and education. In analyzing international collaboration a relevant aspect is the role of scientific societies. Societies organize meetings, publish journals and books and promote cooperation through academic exchange activities and can further assist communities in developing countries providing and facilitating access to scientific literature, attendance to international meetings, short and long-term stays and student and young researcher mobility. Developing countries present additional challenges resulting from limited economic resources and social and political problems. Most countries urgently require improved educational and research programs. Needed are in-depth analyses of infrastructure and human resources and identification of major problems and needs. Questions may include what are the major limitations and needs in research and postgraduate education in developing countries? what and how should international collaboration do? and what are the roles of individuals, academic institutions, funding agencies, scientific societies? Here we attempt to examine some of these questions with reference to case examples and AGU role. We focus on current situation, size and characteristics of research community, education programs, facilities, economic support, and then move to perspectives for potential development in an international context.

  10. The IS-GEO RCN: Fostering Collaborations for Intelligent Systems Research to Support Geosciences

    Science.gov (United States)

    Gil, Y.; Pierce, S. A.

    2016-12-01

    Geoscience problems are complex and often involve data that changes across space and time. Frequently geoscience knowledge and understanding provides valuable information and insight for problems related to energy, water, climate, mineral resources, and our understanding of how the Earth evolves through time. Simultaneously, many grand challenges in the geosciences cannot be addressed without the aid of computational support and innovations. Intelligent and Information Systems (IS) research includes a broad range of computational methods and topics such as knowledge representation, information integration, machine learning, robotics, adaptive sensors, and intelligent interfaces. IS research has a very important role to play in accelerating the speed of scientific discovery in geosciences and thus in solving challenges in geosciences. Many aspects of geosciences (GEO) research pose novel open problems for intelligent systems researchers. To develop intelligent systems with sound knowledge of theory and practice, it is important that GEO and IS experts collaborate. The EarthCube Research Coordination Network for Intelligent Systems for Geosciences (IS-GEO RCN) represents an emerging community of interdisciplinary researchers producing fundamental new capabilities for understanding Earth systems. Furthermore, the educational component aims to identify new approaches to teaching students in this new interdisciplinary area, seeking to raise a new generation of scientists that are better able to apply IS methods and tools to geoscience challenges of the future. By providing avenues for IS and GEO researchers to work together, the IS-GEO RCN will serve as both a point of contact, as well as an avenue for educational outreach across the disciplines for the nascent community of research and practice. The initial efforts are focused on connecting the communities in ways that help researchers understand opportunities and challenges that can benefit from IS-GEO collaborations

  11. Geoscience Education and Cognition Research at George Mason University

    Science.gov (United States)

    Mattietti, G. K.; Peters, E. E.; Verardo, S.

    2009-12-01

    Cognition research in Geoscience is the focus of a small group of faculty from the College of Science and the College of Education and Human Development at George Mason University. We approached this research when we were involved in an Institution-wide effort to assess critical thinking, one of the competencies mandated for evaluation by the State Council of Higher Education of Virginia. Our group started spontaneously and informally from personal interests and enthusiasm for what and how our students are learning about Geology and in general about science. We want to understand what our students bring to the course, their attitude towards science, their knowledge of the scientific enterprise and preconceived ideas—and what our students take away from the course, beyond the course content. We believe that, with the support of cognitive science, we can improve the learning experience and therefore enhance the learning outcomes for science and non-science majors alike. Our Institution offers introductory Physical and Historical Geology classes populated primarily by non-science-major undergraduates. Geology lectures range in size from 90 to over 220 students per session per semester, with laboratory sessions averaging 27 students per session. With this large student population, it is necessary to use research tools that give us valuable information about student cognition, while being efficient in terms of time use and logistics. Some examples of our work include critical readings on Geoscience topics, surveys on students’ understanding of science as a way of knowing, exercises with built-in self-efficacy assessments, and concept mapping. The common denominator among these tools is that they are calibrated to address one or more of the higher levels in the revised Bloom’s Taxonomy of the Cognitive Domain, which form a complex assessment of student learning processes. These tools, once refined, can provide us with a better view of how our students learn in

  12. The Role of Geoscience Education Research in the Consilience between Science of the Mind and Science of the Natural World

    Science.gov (United States)

    Shipley, Thomas F.; Tikoff, Basil

    2017-01-01

    This manuscript addresses the potential role of geoscience education research in understanding geoscience expert practice. We note the similarity between the perception-action framework of Ulric Neisser (Neisser, 1976) and the observation-prediction framework used by geoscience practitioners. The consilience between these two approaches is that…

  13. Strategies for Broadening Participation in the Geosciences: Lessons Learned From the UCAR-SOARSr Program

    Science.gov (United States)

    Pandya, R. E.

    2004-12-01

    Broadening participation in the geosciences will advance our research, enhance our education and training, and improve our ability to meet societal needs. By attracting more diverse students, we will be better postioned to provide all our students the increasingly necessary and relevant experience of working in diverse teams. Because some traditionally underrepresented groups, particularly Latinos & Hispanics, are growing much faster than the population as a whole, broader participation will enlarge the pool of talented individuals contributing to the next generation of research. Finally the geosciences will be more effective and credible when the diversity of our nation is reflected in our workforce, especially as civic discourse includes more and more complex decisions about society's interactions with the Earth and its resources. The Significant Opportunities in Atmospheric Research and Science (SOARS) seeks to broaden participation in geosciences by helping undergraduate students successfully transition to graduate programs in the atmospheric and related sciences. SOARS combines multiple research experiences, multifaceted mentoring, an encouraging community, and financial support to help students enter and succeed in graduate school. A central feature of the SOARS program is a ten-week summer immersion program in which protégés (SOARS participants) conduct scientific research at the National Center for Atmospheric Research (NCAR) or at laboratories of SOARS sponsors. During this summer research experience, SOARS protégés are supported by up to four mentors: a science research mentor, a writing mentor, a community mentor, and a peer mentor. SOARS protégés collaborate with their mentors to perform original research, prepare scientific papers, and present their research at a colloquium. SOARS also provides extensive leadership and communication training; support for conference presentations and for graduate school; and a strong scholarly community that

  14. Geoscience information integration and visualization research of Shandong Province, China based on ArcGIS engine

    Science.gov (United States)

    Xu, Mingzhu; Gao, Zhiqiang; Ning, Jicai

    2014-10-01

    To improve the access efficiency of geoscience data, efficient data model and storage solutions should be used. Geoscience data is usually classified by format or coordinate system in existing storage solutions. When data is large, it is not conducive to search the geographic features. In this study, a geographical information integration system of Shandong province, China was developed based on the technology of ArcGIS Engine, .NET, and SQL Server. It uses Geodatabase spatial data model and ArcSDE to organize and store spatial and attribute data and establishes geoscience database of Shangdong. Seven function modules were designed: map browse, database and subject management, layer control, map query, spatial analysis and map symbolization. The system's characteristics of can be browsed and managed by geoscience subjects make the system convenient for geographic researchers and decision-making departments to use the data.

  15. Exploring the Role of Information Professionals in Improving Research Reproducibility:A Case Study in Geosciences

    Science.gov (United States)

    Yan, A.; West, J.

    2016-12-01

    The validity of Geosciences research is of great significance to general public and policy-makers. In an earlier study, we surveyed 136 faculty and graduate students in geosciences. The result indicated that nearly 80% of respondents who had ever reproduced a published study had failed at least one time in reproducing, suggesting a general lack of research reproducibility in geosciences. Although there is much enthusiasm for creation of technologies such as workflow system, literate programming, and cloud-based system to facilitate reproducibility, much less emphasis has been placed on the information services essential for meaningful use of these tools. Library and Information Science (LIS) has a rich tradition of providing customized service for research communities. LIS professionals such as academic librarians have made strong contribution to resources locating, software recommending, data curation, metadata guidance, project management, submission review and author training. In particular, university libraries have been actively developing tools and offering guidelines, consultations, and trainings on Data Management Plan (DMP) required by National Science Foundation (NSF). And effective data management is a significant first step towards reproducible research. Hereby we argue that LIS professionals may be well-positioned to assist researchers to make their research reproducible. In this study, we aim to answer the question: how can LIS professionals assist geoscience researchers in making their research capable of being reproduced? We first synthesize different definitions of "reproducibility" and provide a conceptual framework of "reproducibility" in geosciences to resolve some of the misunderstandings around related terminology. Using a case study approach, we then examine 1) university librarians' technical skills, domain knowledge, professional activities, together with their awareness of, readiness for, and attitudes towards research reproducibility and

  16. Interdisciplinary Undergraduate Research Experiences in Geosciences for Physical Science and Engineering Students

    Science.gov (United States)

    Bililign, S.; Schimmel, K.; Lin, Y. L.; Germuth, A.

    2014-12-01

    The recruitment of undergraduate students, especially minorities, into geoscience career paths continues to be a challenge. One approach for addressing this issue involves providing geoscience research experiences. Therefore, the outcomes of an undergraduate research program (REU) focused on recruiting science (physics, mathematics, chemistry) and engineering (electrical) students for an interdisciplinary research experience in geosciences will be presented. The program design has several unique features that include: (1) projects with clear societal implications, (2) projects involve multiple faculty members (at least two) and expose students to interdisciplinary approaches and thinking, (3) partnerships between national labs and universities to provide cutting-edge research, educational, and professional development opportunities for students, (4) student engagement in the creation of personalized professional development plans, (5) combined summer and academic year research experiences. Pre- and post-assessment results, successes, and challenges will be presented.

  17. Juggling the life-puzzle with Geosciences: personal experience and strategies from a female leader

    Science.gov (United States)

    Arheimer, Berit

    2017-04-01

    People are very complex and difficult to categorize. For instance, in the Geosciences community I am representing both minorities and majorities. When being in minority, I am both Underrepresented and Overrepresented by the composition of this community vs the global population, and also at EGU I am both under- and over-represented vs the total geoscience community. At present, I am underrepresented being a Woman in Geosciences but earlier in my carrier, I was also underrepresented being a Young Leader - so I will focus my presentation on both gender and age, as it is difficult for me to separate these two barriers from various sorts of exclusions I experienced. Underrepresentation is bad for several reasons, for instance (i) We might miss talents if equality of opportunities are not given in geosciences; (ii) Teams work less efficient than if they are composed by different characters, competences and skills; (iii) We are less prepared for new circumstances in this rapidly changing and unstable world; (iv) We degrade in communication skills and perception, if we don't understand similarities and differences. I will discuss some representative differences that may lead to unequal opportunities in geosciences. However, we need to be careful when searching for representation as it involves attribution of characteristics, which may lead to stigmatization and oversimplify the complexity of personality. Differences between individuals in a population are still much larger than between the averages of the populations. In my presentation I will give examples from my personal experience of barriers during 25 years in geosciences and the strategies I have used to overcome them. I will also give examples of successful methods that I have used in my 17 years of leadership when building efficient teams, to make them benefit from differences between individuals. I am currently leading a group of 26 scientists with origin from 13 countries world-wide. Finally, I will give some

  18. History of Physics Education Research as a Model for Geoscience Education Research Community Progress

    Science.gov (United States)

    Slater, T. F.

    2011-12-01

    Discipline-based Education Research (DBER) is a research field richly combining a deep understanding of how to teach a particular discipline with an evolving understanding how people learn that discipline. At its center, DBER has an overarching goal of improving the teaching and learning of a discipline by focusing on understanding the underlying mental mechanisms learners use as they develop expertise. Geoscience Education Research, or GER, is a young but rapidly advancing field which is poised to make important contributions to the teaching and learning of earth and space science. Nascent geoscience education researchers could accelerate their community's progress by learning some of the lessons from the more mature field of Physics Education Research, PER. For the past three decades, the PER community has been on the cutting edge of DBER. PER started purely as an effort among traditionally trained physicists to overcome students' tenaciously held misconceptions about force, motion, and electricity. Over the years, PER has wrestled with the extent to which they included the faculty from the College of Education, the value placed on interpretive and qualitative research methods, the most appropriate involvement of professional societies, the nature of its PhD programs in the College of Science, and how to best disseminate the results of PER to the wider physics teaching community. Decades later, as a more fully mature field, PER still struggles with some of these aspects, but has learned important lessons in how its community progresses and evolves to be successful, valuable, and pertinent.

  19. Video diaries on social media: Creating online communities for geoscience research and education

    Science.gov (United States)

    Tong, V.

    2013-12-01

    Making video clips is an engaging way to learn and teach geoscience. As smartphones become increasingly common, it is relatively straightforward for students to produce ';video diaries' by recording their research and learning experience over the course of a science module. Instead of keeping the video diaries for themselves, students may use the social media such as Facebook for sharing their experience and thoughts. There are some potential benefits to link video diaries and social media in pedagogical contexts. For example, online comments on video clips offer useful feedback and learning materials to the students. Students also have the opportunity to engage in geoscience outreach by producing authentic scientific contents at the same time. A video diary project was conducted to test the pedagogical potential of using video diaries on social media in the context of geoscience outreach, undergraduate research and teaching. This project formed part of a problem-based learning module in field geophysics at an archaeological site in the UK. The project involved i) the students posting video clips about their research and problem-based learning in the field on a daily basis; and ii) the lecturer building an online outreach community with partner institutions. In this contribution, I will discuss the implementation of the project and critically evaluate the pedagogical potential of video diaries on social media. My discussion will focus on the following: 1) Effectiveness of video diaries on social media; 2) Student-centered approach of producing geoscience video diaries as part of their research and problem-based learning; 3) Learning, teaching and assessment based on video clips and related commentaries posted on Facebook; and 4) Challenges in creating and promoting online communities for geoscience outreach through the use of video diaries. I will compare the outcomes from this study with those from other pedagogical projects with video clips on geoscience, and

  20. Designing a road map for geoscience workflows

    Science.gov (United States)

    Duffy, Christopher; Gil, Yolanda; Deelman, Ewa; Marru, Suresh; Pierce, Marlon; Demir, Ibrahim; Wiener, Gerry

    2012-06-01

    Advances in geoscience research and discovery are fundamentally tied to data and computation, but formal strategies for managing the diversity of models and data resources in the Earth sciences have not yet been resolved or fully appreciated. The U.S. National Science Foundation (NSF) EarthCube initiative (http://earthcube.ning.com), which aims to support community-guided cyberinfrastructure to integrate data and information across the geosciences, recently funded four community development activities: Geoscience Workflows; Semantics and Ontologies; Data Discovery, Mining, and Integration; and Governance. The Geoscience Workflows working group, with broad participation from the geosciences, cyberinfrastructure, and other relevant communities, is formulating a workflows road map (http://sites.google.com/site/earthcubeworkflow/). The Geoscience Workflows team coordinates with each of the other community development groups given their direct relevance to workflows. Semantics and ontologies are mechanisms for describing workflows and the data they process.

  1. Basic Research Needs for Geosciences: Facilitating 21st Century Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    DePaolo, D. J.; Orr, F. M.; Benson, S. M.; Celia, M.; Felmy, A.; Nagy, K. L.; Fogg, G. E.; Snieder, R.; Davis, J.; Pruess, K.; Friedmann, J.; Peters, M.; Woodward, N. B.; Dobson, P.; Talamini, K.; Saarni, M.

    2007-06-01

    To identify research areas in geosciences, such as behavior of multiphase fluid-solid systems on a variety of scales, chemical migration processes in geologic media, characterization of geologic systems, and modeling and simulation of geologic systems, needed for improved energy systems.

  2. Geoscience-related research needs for geothermal energy technology. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Crane, C. H.; Markiewicz, J. J. Jr.

    1983-09-30

    A project to identify and prioritize geoscience-related research needs that would be of significant benefit in the assessment, exploration, and development of US geothermal energy resources is described. The federal research needs as identified by the Panel are summarized. The research needs are organized into specific research needs for four technology areas and a group of generic research needs which relate to all of the technology areas. Arranged in order of overall need for research, these technology areas are: reservoir engineering; resource exploration and reservoir definition; well drilling, completion, and stimulation; and environmental monitoring and control. The generic research needs are: geoscience case studies, scientific drilling, information and technology transfer, and improved research coordination. (MHR)

  3. Geoscience Education Research Project: Student Benefits and Effective Design of a Course-Based Undergraduate Research Experience

    Science.gov (United States)

    Kortz, Karen M.; van der Hoeven Kraft, Katrien J.

    2016-01-01

    Undergraduate research has been shown to be an effective practice for learning science. While this is a popular discussion topic, there are few full examples in the literature for introductory-level students. This paper describes the Geoscience Education Research Project, an innovative course-based research experience designed for…

  4. The IUGS Task Group on Global Geoscience Professionalism - promoting professional skills professionalism in the teaching, research and application of geoscience for the protection and education of the public

    Science.gov (United States)

    Allington, Ruth; Fernandez-Fuentes, Isabel

    2013-04-01

    A new IUGS Task Group entitled the Task Group on Global Geoscience Professionalism was formed in 2012 and launched at a symposium at the 341GC in Brisbane on strengthening communication between fundamental and applied geosciences and between geoscientists and public. The Task Group aims to ensure that the international geoscience community is engaged in a transformation of its profession so as to embed the need for a professional skills base alongside technical and scientific skills and expertise, within a sound ethical framework in all arenas of geoscience practice. This needs to be established during training and education and reinforced as CPD throughout a career in geoscience as part of ensuring public safety and effective communication of geoscience concepts to the public. The specific objective of the Task Group on Global Geoscience Professionalism that is relevant to this poster session is: • To facilitate a more 'joined up' geoscience community fostering better appreciation by academics and teachers of the professional skills that geoscientists need in the workplace, and facilitate better communication between academic and applied communities leading to more effective application of research findings and technology to applied practitioners and development of research programmes that truly address urgent issues. Other Task Group objectives are: • To provide a specific international forum for discussion of matters of common concern and interest among geoscientists and geoscientific organizations involved in professional affairs, at the local, national and international level; • To act as a resource to IUGS on professional affairs in the geosciences as they may influence and impact "Earth Science for the Global Community" in general - both now and in the future; • To offer and provide leadership and knowledge transfer services to countries and geoscientist communities around the world seeking to introduce systems of professional governance and self

  5. Integrating Authentic Scientific Research Into an 8th Grade Honors Geoscience Curriculum

    Science.gov (United States)

    Danch, J. M.; Aker, K.

    2012-12-01

    As part of a comprehensive plan to expand the inclusion of authentic scientific research in the science curricula of the Woodbridge Township School District, an existing 8th grade geoscience program was modified to include elements pertaining to individual student research. The Geoscience textbook modules forming the basis of the course content were developed by the American Geological Institute in association with It's About Time Publishing with each unit addressing important Earth Science Concepts with emphasis on problem solving through process science and laboratory activities. Concepts crucial to performing authentic research such as the research hypothesis, variables and controls, and experimental design are introduced early in the curriculum via a series of short, daily inquiry activities designed to actively engage students in the experimental process rather than them relying on following a series of prepared steps. These inquiry activities and the course content continue to provide a basis for the development of individual student research projects conducted concurrently with the regular geoscience content. The results of student research are presented in both national and local science competitions/symposia and can form the basis for continued research at the secondary level, as students participating in this program are eligible for inclusion in the high school Science Research Program. Teachers utilizing this program participate in a series of training sessions conducted by the school district allowing them to utilize the success of the preexisting Science Research Program in the implementation of this new curriculum.

  6. Expanding the Horizon: A Journey to Explore and Share Effective Geoscience Research Experiences

    Science.gov (United States)

    Bolman, J.

    2013-12-01

    The Indian Natural Resource Science and Engineering Program (INRSEP) has worked diligently over the past 40 + years to ensure the success of Tribal, Indigenous and Underrepresented undergraduate and graduate students in geoscience and natural resources fields of study. Central to this success has been the development of cultural relevant research opportunities directed by Tribal people. The research experiences have been initiated to address culturally relevant challenges on Tribal and non-Tribal lands. It has become critically important to ensure students have multiple research experiences across North America as well as throughout the continent. The INRSEP community has found creating and maintaining relationships with organizations like the Geoscience Alliance, Minorities Striving and Pursuing Higher Degrees of Success (MSPHD's) and the Louis Stokes Alliance for Minority Participation (LSAMP) program has greatly improved the success of students matriculating to graduate STEM programs. These relationships also serve an immense capacity in tracking students, promoting best practices in research development and assessing outcomes. The presentation will highlight lessons learned on how to 1) Develop a diverse cohort or 'community' of student researchers; 2) Evolve intergenerational mentoring processes and outcomes; 3) Tether to related research and programs; and Foster the broader impact of geoscience research and outcomes.

  7. An Analysis of NSF Geosciences Research Experience for Undergraduate Site Programs from 2009 through 2011

    Science.gov (United States)

    Rom, E. L.; Patino, L. C.; Weiler, S.; Sanchez, S. C.; Colon, Y.; Antell, L.

    2011-12-01

    The Research Experience for Undergraduate (REU) Program at the U.S. National Science Foundation (NSF) provides U.S. undergraduate students from any college or university the opportunity to conduct research at a different institution and gain a better understanding of research career pathways. The Geosciences REU Sites foster research opportunities in areas closely aligned with geoscience programs, particularly those related to earth, atmospheric and ocean sciences. The aim of this paper is to provide an overview of the Geosciences REU Site programs run in 2009 through 2011. A survey requesting information on recruitment methods, student demographics, enrichment activities, and fields of research was sent to the Principal Investigators of each of the active REU Sites. Over 70% of the surveys were returned with the requested information from about 50 to 60 sites each year. The internet is the most widely used mechanism to recruit participants, with personal communication as the second most important recruiting tool. The admissions rate for REU Sites in Geosciences varies from less than 10% to 50%, with the majority of participants being rising seniors and juniors. Many of the participants come from non-PhD granting institutions. Among the participants, gender distribution varies by discipline, with ocean sciences having a large majority of women and earth sciences having a majority of men. Regarding ethnic diversity, the REU Sites reflect the difficulty of attracting diverse students into Geosciences as a discipline; a large majority of participants are Caucasian and Asian students. Furthermore, participants from minority-serving institutions and community colleges constitute a small percentage of those taking part in these research experiences. The enrichment activities are very similar across the REU Sites, and mimic activities common to the scientific community, including intellectual exchange of ideas (lab meetings, seminars, and professional meetings

  8. Linking Research, Education and Public Engagement in Geoscience: Leadership and Strategic Partnerships.

    Science.gov (United States)

    Moosavi, S. C.

    2017-12-01

    By their very nature, the geosciences address societal challenges requiring a complex interplay between the research community, geoscience educators and public engagement with the general population to build their knowledge base and convince them to act appropriately to implement policies guided by scientific understanding. The most effective responses to geoscience challenges arise when strong collaborative structures connecting research, education and the public are in place to afford rapid communication and trust at all stages of the investigative and policy implementation processes. Educational programs that involve students and scientists via service learning exploring high profile issues of community interest and outreach to teachers through professional development build the network of relationships with geoscientists to respond rapidly to solve societal problems. These pre-existing personal connections simultaneously hold wider credibility with the public than unfamiliar scientific experts less accustomed to speaking to general audiences. The Geological Society of America is leveraging the research and educational experience of its members to build a self-sustaining state/regional network of K-12 professional development workshops designed to link the academic, research, governmental and industrial communities. The goal is not only to improve the content knowledge and pedagogical skills which teachers bring to their students, but also to build a diverse community of trust capable of responding to geoscience challenges in a fashion relevant to local communities. Dr. Moosavi is building this program by drawing on his background as a biogeochemistry researcher with 20 years experience focused on use of place-based approaches in general education and pre- and in-service teacher preparation in Research 1 and comprehensive universities, liberal arts and community colleges and high school. Experience with K-12 professional development working with the Minnesota

  9. FID GEO: Digital transformation and Open Access in Germany's geoscience research community

    Science.gov (United States)

    Hübner, Andreas; Martinson, Guntars; Bertelmann, Roland; Elger, Kirsten; Pfurr, Norbert; Schüler, Mechthild

    2017-04-01

    The 'Specialized Information Service for Solid Earth Sciences' (FID GEO) supports Germany's geoscience research community in 1) electronic publishing of i) institutional and "grey" literature not released in publishing houses and ii) pre- and postprints of research articles 2) digitising geoscience literature and maps and 3) addressing the publication of research data associated with peer-reviewed research articles (data supplements). Established in 2016, FID GEO is funded by the German Research Foundation (DFG) and is run by the Göttingen State and University Library (SUB Göttingen) and the GFZ German Research Centre for Geosciences. Here we present recent success stories and lessons learned. With regard to digitisation, FID GEO received a request from one of the most prestigious geoscience societies in Germany to digitise back-issues of its journals that are so far only available in print. Aims are to ensure long-term availability in Open Access and high visibility by DOI-referenced electronic publication via the FID GEO repository. While digitisation will be financed by FID GEO funds, major challenges are to identify the copyright holders (journals date back to 1924) and negotiate digitisation and publication rights. With respect to research data publishing, we present how we target scientists to integrate the publication of research data into their workflows and institutions to promote the topic. For the latter, we successfully take advantage of existing networks as entry points to the community, like the research network Geo.X in the Berlin-Brandenburg area, individual learned societies as well as their overarching structures DV Geo and GeoUnion. FID GEO promotes the Statement of Commitment of the Coalition for Publishing Data in the Earth and Space Sciences (COPDESS) as well as the FAIR Data Principles in presentations to the above-mentioned groups and institutions. Our aim is to eventually transfer the positive feedback from the geoscience community into

  10. The Disproportionate and Potentially Negative Influence of Research Universities on the Quality of Geoscience Education

    Science.gov (United States)

    Samson, P. J.

    2010-12-01

    There is a large and growing body of research indicating that post-secondary education in science, technology, engineering, and mathematics (STEM) fields is failing to prepare citizens for the 21st century economy. Introductory STEM courses are vital for preparing science majors for their fields of study and are the only exposure to science many college students will receive, but the quality of teaching in these courses is often not informed by research on teaching and learning. Research universities play an especially prominent role in the design of introductory courses. While research and doctoral universities account for only about 6% of all higher education institutions, they confer 32 per cent of the baccalaureate degrees, and 56 per cent of the baccalaureates earned by recent recipients of science and engineering doctorates. By assuming that larger introductory classes occur at research institutions one can estimate that a dominant number of students receiving introductory instruction in the geosciences are probably occurring at research institutions. Moreover, research universities produce the majority of tenure-track faculty who will later teach at four-year colleges, so the role of research institutions in the influence of introductory course design is expected to be disproportionately large. While introductory courses at research universities play a influential role in how such courses are designed, the teaching of introductory courses is too often viewed as an undesirable assignment for instructors at those institutions. The effort seems unrewarding with incentives for improving teaching at research institutions perceived as modest at best, if not negative. It is commonly perceived that teaching introductory courses will decrease opportunities for teaching higher-level courses to graduate students and/or to conduct research. Furthermore, even for those interested in improving their pedagogical methods, current approaches to professional development are

  11. National Privacy Research Strategy

    Data.gov (United States)

    Networking and Information Technology Research and Development, Executive Office of the President — On July 1, NITRD released the National Privacy Research Strategy. Research agencies across government participated in the development of the strategy, reviewing...

  12. Delivering and Incentivizing Data Management Education to Geoscience Researchers

    Science.gov (United States)

    Knuth, S. L.; Johnson, A. M.; Hauser, T.

    2015-12-01

    Good data management practices are imperative for all researchers who want to ensure the usability of their research data. For geoscientists, this is particularly important due to the vast amount of data collected as part of field work, model studies, or other efforts. While many geoscientists want to ensure their data is appropriately maintained, they are generally not trained in good data management, which, realistically, has a much lower priority in the "publish or perish" cycle of research. Many scientists learn programming or advanced computational and data skills during the process of developing their research. With the amount of digital data being collected in the sciences increasing, and the interest federal funding agencies are taking in ensuring data collected is well maintained, there is pressure to quickly and properly educate and train geoscientists on its management. At the University of Colorado Boulder (CU-Boulder), Research Data Services (RDS) has developed several educational and outreach activities centered at training researchers and students in ways to properly manage their data, including "boot camps", workshops, individual consultations, and seminars with topics of interest to the CU-Boulder community. Part of this effort is centered at incentivizing the researcher to learn these tools and practices despite their busy schedule. Much of this incentive has come through small grant competitions at the university level. The two competitions most relevant are a new "Best Digital Data Management Plan" competition, awarding unrestricted funds to the best plan submitted in each of five categories, and an added data management plan requirement to an existing faculty competition. This presentation will focus on examples of user outreach and educational opportunities given to researchers at CU-Boulder, incentives given to the researchers to participate, and assessment of the impact of these activities.

  13. Mentoring Through Research as a Catalyst for the Success of Under-represented Minority Students in the Geosciences

    Science.gov (United States)

    Marsaglia, K.; Simila, G.; Pedone, V.; Yule, D.

    2003-12-01

    The Catalyst Program of the Department of Geological Sciences at California State University Northridge has been developed by four faculty members who were the recipients of a three-year award (2002-2005) from the National Science Foundation. The goal of the program is to increase minority participation and success in the geosciences. The program seeks to enrich the educational experience by introducing students at all levels (individual and team) to research in the geosciences (such as data analysis for earthquake hazards for 1994 Northridge event, paleoseismology of San Andreas fault, Waipaoa, New Zealand sedimentary system and provenance studies, and the Barstow formation geochronology and geochemistry), and to decrease obstacles that affect academic success. Both these goals are largely achieved by the formation of integrated high school, undergraduate, and graduate research groups, which also provide fulfilling and successful peer mentorship. New participants first complete a specially designed course that introduces them to peer-mentoring, collaborative learning (think-pair share), and research on geological data sets. Students of all experience levels then become members of research teams and conduct four mini-projects and associated poster presentations, which deepens academic and research skills as well as peer-mentor relationships. This initial research experience has been very beneficial for the student's degree requirements of a senior research project and oral presentation. Evaluation strategies include the student research course presentations, summer field projects, and external review of student experiences. The Catalyst Program provides significant financial support to participants to allow them to focus their time on their education. A component of peer-tutoring has been implemented for promoting additional student success. The program has been highly successful in its two year development. To date, undergraduates and graduate students have

  14. New frontiers: Exploring climate and health research opportunities for the geoscience community

    Science.gov (United States)

    Colwell, R. R.; Lipschultz, F.; Deangelo, B.

    2016-12-01

    The United States Global Change Research Program's report, "The Impacts of Climate Change on Human Health: A Scientific Assessment" captures the state of the science on impacts, and provides insights into future research opportunities. In particular, the report highlighted a compelling need to improve integrated climate modeling for health impacts, which is often impeded by the complex relationship between climate variability and adverse health outcomes. Closing these gaps is critical to responding to current and future health threats. This presentation will conclude the session by highlighting ways in which the geoscience community can increase its engagement with health sciences to overcome data limitations and further research.

  15. Linking research, education and public engagement in geoscience: Leadership and strategic partnerships

    Science.gov (United States)

    Laj, C. E.

    2017-12-01

    As a research scientist I have always been interested in sharing whatever I knew with the general public and with teachers, who have the responsibility of forming young people, our ambassadors to the future. The turning point in my educational activities was in 2002, when the European Geosciences Union (EGU) welcomed my proposition to develop a Committee on Education. One of the committee's main activities is the organisation of GIFT (Geosciences Information for Teachers) workshops, held annually during the EGU General Assembly. Typically, these workshops bring together about 80 teachers from 20-25 different countries around a general theme that changes every year. Teachers are offered a mixture of keynote presentations by renowned scientists, and participate to classroom hands-on activities led by high-class educators. They also participate to a poster session, open to every participant to the GA, in which they can show to everyone the activities they have developed in their classroom. Therefore, EGU GIFT workshops spread first-hand scientific information to science teachers, and also offer teachers an exceptional way to networking with fellow teachers worldwide. Speakers are chosen from the academic world, national geosciences organisations such as BGS (UK), BRGM (France), INGV (Italy), the European Space Agency (ESA), CEA (France), from private companies (Total), or from International Organizations for policy makers such as the International Energy Agency (IEA), and IPCC. Since 2010, EGU GIFT workshops have been organized beyond Europe, in connection with EGU Alexander von Humboldt Conferences and other major International Conferences, or in collaboration with local or international organisations. A `Teachers at Sea' program has also been developed for teachers to be able to take part in an Oceanographic cruise. Also, in collaboration with the media manager of EGU the Committee has participated in "Planet Press", a program of geoscience press releases for

  16. Geoscience research databases for coastal Alabama ecosystem management

    Science.gov (United States)

    Hummell, Richard L.

    1995-01-01

    Effective management of complex coastal ecosystems necessitates access to scientific knowledge that can be acquired through a multidisciplinary approach involving Federal and State scientists that take advantage of agency expertise and resources for the benefit of all participants working toward a set of common research and management goals. Cooperative geostatic investigations have led toward building databases of fundamental scientific knowledge that can be utilized to manage coastal Alabama's natural and future development. These databases have been used to assess the occurrence and economic potential of hard mineral resources in the Alabama EFZ, and to support oil spill contingency planning and environmental analysis for coastal Alabama.

  17. Geosciences projects FY 1985 listing

    Energy Technology Data Exchange (ETDEWEB)

    1986-05-01

    This report, which updates the previous working group publication issued in February 1982, contains independent sections: (A) Summary Outline of DOE Geoscience and Related Studies, and (B) Crosscut of DOE Geoscience and Geoscience Related Studies. The FY 1985 funding levels for geoscience and related activities in each of the 11 programs within DOE are presented. The 11 programs fall under six DOE organizations: Energy Research Conservation and Renewable Energy; Fossil Energy; Defense Programs; Environmental, Safety, and Health; and Civilian radioactive Waste. From time to time, there is particular need for special interprogrammatic coordination within certain topical areas. section B of the report is intended to fill this need for a topical categorization of the Department's geoscience and related activities. These topical areas in Solid Earth Geosciences, Atmospheric Geosciences, Ocean Geosciences, Space and Solar/Terrestrial Geosciences, and Hydrological Geosciences are presented in this report.

  18. Supplement to the technical assessment of geoscience-related research for geothermal energy technology. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1983-09-01

    Detailed information (e.g., project title, sponsoring organization, research area, objective status, etc.) is presented for 338 geoscience/geothermal related projects. A summary of the projects conducted by sponsoring organization is presented and an easy reference to obtain detailed information on the number and type of efforts being sponsored is presented. The projects are summarized by research area (e.g., volcanology, fluid inclusions, etc.) and an additional project cross-reference mechanism is also provided. Subsequent to the collection of the project information, a geosciences classification system was developed to categorize each project by research area (e.g., isotope geochemistry, heat flow studies) and by type of research conducted (e.g., theoretical research, modeling/simulation). A series of matrices is included that summarize, on a project-by-project basis, the research area addressed and the type of R and D conducted. In addition, a summary of the total number of projects by research area and R and D type is given.

  19. Expanding the Use of Online Remote Electron Microscopy in the Classroom to Transform Undergraduate Geoscience Education: Successes and Strategies for Increasing Student and Faculty Engagement

    Science.gov (United States)

    Hickey-Vargas, R.; Holbik, S. P.; Ryan, J. G.; MacDonald, J. H., Jr.; Beck, M.

    2015-12-01

    Geoscience faculty at the University of South Florida (USF), Florida Gulf Coast University (FCGU), Valencia College (VC) and Florida International University (FIU) have teamed to construct, test and disseminate geoscience curricula in which microbeam analytical instruments are operated by undergraduates, with data gathered in the classroom in real-time over the internet. Activities have been developed for courses Physical Geology, Oceanography, Earth Materials, Mineralogy/Petrology and Stratigraphy using the Scanning Electron Microscope (SEM) and Electron Probe Microanalyzer (EPMA) housed in the Florida Center for Analytical Electron Microscopy (FCAEM; https://fcaem.fiu.edu) at FIU. Students and faculty send research materials such as polished rock sections and microfossil mounts to FCAEM to be examined during their scheduled class and lab periods. Student control of both decision-making and selection of analytical targets is encouraged. The objective of these activities is to move students from passive learning to active, self-directed inquiry at an early stage in their undergraduate career, while providing access to advanced instruments that are not available at USF, FGCU and VC. These strategies strongly facilitate student interest in undergraduate research making use of these instruments and one positive outcome to date is an increased number of students undertaking independent research projects. Prior research by USF PI Jeff Ryan indicated that various barriers related to instrument access and use hindered interested geoscience faculty in making use of these tools and strategies. In the current project, post-doctoral researcher Dr. Sven Holbik acts as a facilitator, working directly with faculty from other institutions one-on-one to provide initial training and support, including on-site visits to field check classroom technology when needed. Several new educators and institutions will initiate classroom activities using FCAEM instrumentation this Fall.

  20. The Role of Geoscience Departments in Preparing Future Geoscience Professionals

    Science.gov (United States)

    Ormand, C. J.; MacDonald, H.; Manduca, C. A.

    2010-12-01

    The Building Strong Geoscience Departments program ran a workshop on the role of geoscience departments in preparing geoscience professionals. Workshop participants asserted that geoscience departments can help support the flow of geoscience graduates into the geoscience workforce by providing students with information about jobs and careers; providing experiences that develop career-oriented knowledge, attitudes and skills; encouraging exploration of options; and supporting students in their job searches. In conjunction with the workshop, we have developed a set of online resources designed to help geoscience departments support their students’ professional development in these ways. The first step toward sending geoscience graduates into related professions is making students aware of the wide variety of career options available in the geosciences and of geoscience employment trends. Successful means of achieving this include making presentations about careers (including job prospects and potential salaries) in geoscience classes, providing examples of practical applications of course content, talking to advisees about their career plans, inviting alumni to present at departmental seminars, participating in institutional career fairs, and publishing a departmental newsletter with information about alumni careers. Courses throughout the curriculum as well as co-curricular experiences can provide experiences that develop skills, knowledge, and attitudes that will be useful for a range of careers. Successful strategies include having an advisory board that offers suggestions about key knowledge and skills to incorporate into the curriculum, providing opportunities for students to do geoscience research, developing internship programs, incorporating professional skills training (such as HazMat training) into the curriculum, and teaching professionalism. Students may also benefit from involvement with the campus career center or from conducting informational

  1. The FY1997 meeting for information exchange of geoscience research. Collection of literature

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    The Tono Geoscience Center of PNC has been conducting research programs aiming at underground disposal of radioactive wastes. This document is the collection of summary papers presented to the meeting which was held at Toki, Gifu Prefecture on July 17 - 18, 1997. Total of 33 papers are given under two main themes: (1) research on long-term stability of geologic environment and (2) research on characteristics of geologic environment. The second theme is further divided into the four sub-themes: (a) investigation in the Tono Mine, (b) research of broad underground water flow, (c) in-situ test at Kamaishi and (d) development of survey techniques and equipment. Seven papers are contributed to the first theme and 21 papers to the second: five papers to (a), six to (b), seven to (c) and six to (d), including three of the poster session. (H. Yokoo)

  2. Academic Research Library as Broker in Addressing Interoperability Challenges for the Geosciences

    Science.gov (United States)

    Smith, P., II

    2015-12-01

    Data capture is an important process in the research lifecycle. Complete descriptive and representative information of the data or database is necessary during data collection whether in the field or in the research lab. The National Science Foundation's (NSF) Public Access Plan (2015) mandates the need for federally funded projects to make their research data more openly available. Developing, implementing, and integrating metadata workflows into to the research process of the data lifecycle facilitates improved data access while also addressing interoperability challenges for the geosciences such as data description and representation. Lack of metadata or data curation can contribute to (1) semantic, (2) ontology, and (3) data integration issues within and across disciplinary domains and projects. Some researchers of EarthCube funded projects have identified these issues as gaps. These gaps can contribute to interoperability data access, discovery, and integration issues between domain-specific and general data repositories. Academic Research Libraries have expertise in providing long-term discovery and access through the use of metadata standards and provision of access to research data, datasets, and publications via institutional repositories. Metadata crosswalks, open archival information systems (OAIS), trusted-repositories, data seal of approval, persistent URL, linking data, objects, resources, and publications in institutional repositories and digital content management systems are common components in the library discipline. These components contribute to a library perspective on data access and discovery that can benefit the geosciences. The USGS Community for Data Integration (CDI) has developed the Science Support Framework (SSF) for data management and integration within its community of practice for contribution to improved understanding of the Earth's physical and biological systems. The USGS CDI SSF can be used as a reference model to map to Earth

  3. Leveraging Global Geo-Data and Information Technologies to Bring Authentic Research Experiences to Students in Introductory Geosciences Courses

    Science.gov (United States)

    Ryan, J. G.

    2014-12-01

    The 2012 PCAST report identified the improvement of "gateway" science courses as critical to increasing the number of STEM graduates to levels commensurate with national needs. The urgent need to recruit/ retain more STEM graduates is particularly acute in the geosciences, where growth in employment opportunities, an aging workforce and flat graduation rates are leading to substantial unmet demand for geoscience-trained STEM graduates. The need to increase the number of Bachelors-level geoscience graduates was an identified priority at the Summit on the Future of Undergraduate Geoscience Education (http://www.jsg.utexas.edu/events/future-of-geoscience-undergraduateeducation/), as was the necessity of focusing on 2-year colleges, where a growing number of students are being introduced to geosciences. Undergraduate research as an instructional tool can help engage and retain students, but has largely not been part of introductory geoscience courses because of the challenge of scaling such activities for large student numbers. However, burgeoning information technology resources, including publicly available earth and planetary data repositories and freely available, intuitive data visualization platforms makes structured, in-classroom investigations of geoscience questions tractable, and open-ended student inquiry possible. Examples include "MARGINS Mini-Lessons", instructional resources developed with the support of two NSF-DUE grant awards that involve investigations of marine geosciences data resources (overseen by the Integrated Earth Data Applications (IEDA) portal: www.iedadata.org) and data visualization using GeoMapApp (www.geomapapp.org); and the growing suite of Google-Earth based data visualization and exploration activities overseen by the Google Earth in Onsite and Distance Education project (geode.net). Sample-based investigations are also viable in introductory courses, thanks to remote instrument operations technologies that allow real student

  4. The Right Tools for the Job: The Challenges of Theory and Method in Geoscience Education Research

    Science.gov (United States)

    Riggs, E. M.

    2011-12-01

    As geoscience education has matured as a research field over the last decade, workers in this area have been challenged to adapt methodologies and theoretical approaches to study design and data collection. These techniques are as diverse as the earth sciences themselves, and researchers have drawn on established methods and traditions from science education research, social science research, and the cognitive and learning sciences. While the diversity of methodological and theoretical approaches is powerful, the challenge is to ground geoscience education research in rigorous methodologies that are appropriate for the epistemological and functional realities of the content area and the environment in which the research is conducted. The issue of theory is the first hurdle. After techniques are proven, earth scientists typically need not worry much about the theoretical value or theory-laden nature of measurements they make in the field or laboratory. As an example, a field geologist does not question the validity of the gravitational field that levels the spirit level within a Brunton compass. However, in earth science education research, these issues are magnified because a theoretical approach to a study affects what is admitted as data and the weight that can be given to conclusions. Not only must one be concerned about the validity of measurements and observations, but also the value of this information from an epistemological standpoint. The assigning of meaning to student gestures, utterances, writing and actions all carries theoretical implications. For example, working with geologists learning or working in the field, purely experimental research designs are very difficult, and the majority of the work must be conducted in a naturalistic environment. In fact dealing with time pressure, distractions, and complexity of a field environment is part of intellectual backdrop for field geology that separates experts from novices and advanced students from

  5. Earth Science Pipeline: Enhancing Diversity in the Geosciences Through Outreach and Research

    Science.gov (United States)

    McGill, S. F.; Fryxell, J. E.; Smith, A. L.; Leatham, W. B.; Brunkhorst, B. J.

    2004-12-01

    Our efforts to increase diversity in the geosciences have been directed towards pre-college students and their teachers as well as towards undergraduate students. We made presentations about the geosciences and careers in geosciences at local schools, and we invited school groups to visit our campus (located near the San Andreas fault) for hands-on activities related to Earth Science. We also led field trips for high school students to other areas of geologic interest in southern California. We hired undergraduate students, including several from under-represented groups, from both our introductory and upper-division geology courses to help with these outreach activities. During 2001-2004, we conducted 169 outreach sessions that involved over 12,000 contact hours with about 5700 students, mostly middle and high school students. The majority (about 74%) of the students participating in these activities were from ethnic groups that are under-represented in the geosciences. Ninety per cent of the students said they would like to go on another field trip like the one they took to our department. At many outreach events we conducted a pre- and post-survey in which we asked students to what extent they agreed with the statement: "It would be fun to be a geologist." The pre-surveys indicated that 42% of the students either agreed or strongly agreed with the statement before participating in the outreach event. After participating, 61% of the students agreed or strongly agreed with the statement. We have also offered summer field trips and research opportunities for high school teachers. In order to attract and retain undergraduate students to the geology major, we have recruited undergraduate students from under-represented groups (and high school teachers) to participate in various research projects. The two largest projects are (1) geologic mapping and monitoring of volcanoes on the island of Dominica, in the Lesser Antilles and (2) using the Global Positioning System

  6. Undergraduate Research Experiences in Geosciences for Physical Science and Engineering Students

    Science.gov (United States)

    Bililign, S.; Schimmel, K.; Lin, Y. L.; Germuth, A.

    2015-12-01

    The recruitment of undergraduate students, especially minorities, into geoscience career paths continues to be a challenge. An REU program that focused on recruiting students majoring in physical sciences and engineering from HBCU's within North Carolina started in 2012. The program offers an academic year REU for North Carolina A&T State University (NCA&T) students (8 students), summer research for non-NCA&T students (18 students), and field experiences in national labs for selected students. In this REU, the design of projects involves several faculty members (at least two from different disciplines) that expose students to interdisciplinary research approaches. The outcomes of this program, challenges, opportunities and lessons learned will be presented.

  7. Linking research, education and public engagement in geoscience: Leadership and strategic partnerships (invited)

    Science.gov (United States)

    Harcourt, P.

    2017-12-01

    Addressing the urgent issue of climate change requires mitigation and adaptation actions on individual to global scales, and appropriate action must be based upon geoscience literacy across population sectors. The NSF-funded MADE CLEAR (Maryland and Delaware Climate Change Education, Assessment, and Research) project provides a coordinated approach to embed climate change into education programs at the university level, in formal K12 classrooms, and among informal educators. We have worked with state agencies, university systems, non-profit organizations, and community groups to establish and support research-based education about climate change. In this panel I will describe how MADE CLEAR approached the task of infusing climate change education across sectors in the highly diverse states of Delaware and Maryland. I will share the characteristics of our strongest alliances, an analysis of significant barriers to climate change education, and our perspective on the outlook for the future of climate change education.

  8. Center For Earth's Dynamics Research (cedr) - A Join Venture Towards Research In Geosciences In Cei

    Science.gov (United States)

    Kostelecky, J.; Vondrak, J.; Zeman, A.; Kalvoda, J.; Schenk, V.

    In responce to the call of the government of the Czech Republic for initialization of the new strategy in scientific research coordination the CEDR was established in 2000. The center is joint venture of five institutions oriented to the geodesy, geodynamics, Earth dynamics, geomorphology and gravimetry. The first achievements obtained until the end 2001 are outlined and evaluated.

  9. Macrosystem Analysis of Programs and Strategies to Increase Underrepresented Populations in the Geosciences

    Science.gov (United States)

    Wolfe, Benjamin A.; Riggs, Eric M.

    2017-01-01

    Meeting the future demand for a qualified geoscience workforce will require efforts to increase recruitment, retention, and graduation of an increasingly diverse student body. Doing this successfully requires renewed attention to the needs and characteristics of underrepresented students, which include ethnic and cultural minorities, women, and…

  10. Native Americans and the Geosciences: Problems With Societally Driven Research, Cultural and Racial Divisions

    Science.gov (United States)

    Redsteer, M. H.; James, K.

    2004-12-01

    Why are Native Americans absent from the geosciences? It doesn't seem to make sense when one view common to most traditional Native communities is earth and ecosystem stewardship, i.e. respect for Mother Earth. In addition, Native American communities could benefit from contributions made through earth science research. Land, and the natural resources that accompany it, are most tribes' greatest assets. Natural resource and land-use plans require information on geologic hazards, water quality and availability, soils, and environmentally sensitive areas: all data that are sorely lacking in Native communities. Native communities, with rapidly growing populations, desperately need geologic information for planning urban development. Even so, there are several reasons for a lack of interest in the geosciences: Mainstream science has historically served non-Native society to the detriment of Native communities, leaving few positive examples of earth science research for communities to draw from. Native North American communities have suffered greater harm from resource exploitation and have gained less from natural resource development than non-Native communities. Moreover, the earth scientist is usually the one who begins the assessing what is available for corporate exploitation, making the role of earth scientist adversarial. Racism, that begins at the elementary school level or earlier, leaves students feeling inadequate to pursue any degree, let alone those that are considered more challenging. Western science has a long history of denigrating indigenous knowledge and beliefs, producing a social stigma that Native American scientists must overcome. In addition, research tends to be narrowly focused, and based on the desire for individual academic achievement. This attitude counters cultural values of most Native groups, who seek to serve the collective group, rather than seeking self promotion.

  11. Opportunities for Geoscience Research Onboard Virgin Galactic's SpaceShipTwo

    Science.gov (United States)

    Pomerantz, W.; Beerer, I.; Stephens, K.; Griffith, J.; Persall, W.; Tizard, J.

    2012-12-01

    Virgin Galactic has developed a reusable spaceplane, called SpaceShipTwo (SS2), designed to make routine voyages into suborbital space. SS2 is air-launched from a jet aircraft at an altitude of 50,000 ft. before igniting its rocket motor engine. The vehicle reaches a maximum apogee as high as 110 km before gliding to a conventional runway landing. With the ability to fly multiple times per week, SS2 will be capable of providing routine access to a rarely sampled and poorly understood region of the atmosphere and ionosphere, making it a valuable platform for geoscience research. With a payload capacity up to 1300 lbs., SS2 provides access to space and the upper atmosphere for substantially larger payloads than sounding rockets and at a dramatically lower cost than orbital satellites. The main cabin provides as much as 500 cubic ft. of useable volume in a shirt-sleeve environment and payload mounting interfaces that are compatible with standard architectures, such as Middeck Lockers, Cargo Transfer Bags, and server racks. A flight test engineer will be available on board to operate payloads during flight. In the future, SS2 will also offer a variety of external payload mounting locations, enabling researchers to make frequent in situ measurements in the mesosphere (50-90 km), lower thermosphere (above 80 km), and lower ionosphere (above 60 km). SS2 may also offer optical quality windows, allowing optical investigations from main cabin payloads. Researchers will have access to their payloads until just hours before flight and within three hours post-flight. While commercial operations will begin out of Spaceport America in New Mexico, SS2 may eventually be able to launch from a variety of geographic locations. Funding to develop and fly payloads for SS2 is currently available through many NASA programs including the Flight Opportunities Program and the Game Changing Development Program. Virgin Galactic expects the SS2 research platform to enable significant progress

  12. The Geosciences Division of the Council on Undergraduate Research (GeoCUR): Supporting Faculty that Mentor Undergraduate Researchers

    Science.gov (United States)

    Fox, L. K.; Guertin, L. A.; Manley, P. L.; Fortner, S. K.

    2012-12-01

    Undergraduate research is a proven effective pedagogy that has a number of benefits including: enhancing student learning through mentoring relationships with faculty; increasing retention; increasing enrollment in graduate programs; developing critical thinking, creativity, problem solving and intellectual independence; and, developing an understanding of research methodology. Undergraduate research also has been demonstrated in preparing students for careers. In addition to developing disciplinary and technical expertise, participation in undergraduate research helps students improve communication skills (written, oral, and graphical) and time management. Early involvement in undergraduate research improves retention and, for those engaged at the 2YC level, helps students successfully transfers to 4YC. The Geosciences Division of the Council on Undergraduate Research (GeoCUR) supports faculty in their development of undergraduate research programs at all levels. GeoCUR leads workshops for new and future faculty covering all aspects of undergraduate research including incorporating research into coursework, project design, mentoring students, sustaining programs, and funding sources. GeoCUR members support new faculty by providing a range of services including: peer-review of grant proposals; advice on establishing an undergraduate research program; balancing teaching and research demands; and networking with other geoscientist. GeoCUR has also developed web resources that support faculty and departments in development of undergraduate research programs (http://serc.carleton.edu/NAGTWorkshops/undergraduate_research/index.html). This presentation will describe the services provided by GeoCUR and highlight examples of programs and resources available to geoscientists in all career stages for effective undergraduate research mentoring and development.

  13. Broadening Diversity in the Geosciences through Teacher-Student Workshops that Emphasizes Community-Based Research Projects

    Science.gov (United States)

    Napieralski, J.; Murray, K.; Luera, G.; Brown, K. Thomas; Reynolds Keefer, L.

    2012-04-01

    The Geosciences Institute for Research and Education at the University of Michigan-Dearborn (UM-D) has been an example of a successful and effective model in increasing the participation of underrepresented groups in the geosciences. The program emphasizes involving middle school and at-risk high school students from Detroit area public schools along with their teachers in urban geology research projects through a series of spring and summer workshops. The workshops introduce students to the geosciences by emphasizing how geology can be used as a tool to solve community-based environmental problems in a metropolitan setting. Students work alongside their teachers and UM-D faculty on projects that include the assessment of brownfield sites, installation of groundwater monitoring wells, and evaluation of land use impact on groundwater and surface water quality. Spring workshops focused on students from three middle schools in Detroit, while the summer workshops focused more on middle school and high school teacher training, but also included a small group of middle school and high school students. Instruments used to evaluate the effectiveness of the summer workshops included the Science Teaching Efficacy Belief Instrument (STEBI), Geoscience Concept Inventory (GCI), and pre- and post-workshop questionnaires and focus groups demonstrate that we have not only increased student awareness of the geosciences but are motivating students to pursue career opportunities in science. Since the Institute began in 2005, we have reached over 100 middle and high school students and 75 teachers, and the Earth Science major at UM-D has tripled in size and we have quadrupled the number of minority students taking introductory geology courses during this time.

  14. Beyond the Data: Effective Methods for Communicating the Value of Geoscience Research

    Science.gov (United States)

    Lees, J. M.; Parker, M. L.

    2017-12-01

    The health of Earth Science departments depends critically on effective campus outreach and communication. Where competing narratives across a broad spectrum of intellectual pursuits draws the attention of administrators for resources, geological sciences are positioned, in a unique way, to make a big impact in both public relations within the institution and outward to the community at large. Researchers, by themselves, often make poor advocates for their exciting discoveries, especially when dealing with colleagues who have little or no appreciation for the interdisciplinary nature of Earth Science. Our communication efforts at the University of North Carolina—Chapel Hill have represented the Department of Geological Sciences with spectacular visual content and riveting storytelling. Long-form features, photos, and videos published in science-oriented campus publications (Endeavors), alumni outreach (Carolina Alumni Review) and more general issues (Arts & Sciences magazine) offer glimpses into geophysical research areas such as coastal evolution, active volcanoes, and stratospheric acoustics. A well crafted story can go a long way towards raising the stature of a small department, and increase the exposure of critical environmental issues on campus. This presentation will include the key elements for crafting a compelling geoscience research story, common issues that can arise in science communication, and best practices for utilizing storytelling methods for outreach in both academic and industry settings.

  15. Psychometric Principles in Measurement for Geoscience Education Research: A Climate Change Example

    Science.gov (United States)

    Libarkin, J. C.; Gold, A. U.; Harris, S. E.; McNeal, K.; Bowles, R.

    2015-12-01

    Understanding learning in geoscience classrooms requires that we use valid and reliable instruments aligned with intended learning outcomes. Nearly one hundred instruments assessing conceptual understanding in undergraduate science and engineering classrooms (often called concept inventories) have been published and are actively being used to investigate learning. The techniques used to develop these instruments vary widely, often with little attention to psychometric principles of measurement. This paper will discuss the importance of using psychometric principles to design, evaluate, and revise research instruments, with particular attention to the validity and reliability steps that must be undertaken to ensure that research instruments are providing meaningful measurement. An example from a climate change inventory developed by the authors will be used to exemplify the importance of validity and reliability, including the value of item response theory for instrument development. A 24-item instrument was developed based on published items, conceptions research, and instructor experience. Rasch analysis of over 1000 responses provided evidence for the removal of 5 items for misfit and one item for potential bias as measured via differential item functioning. The resulting 18-item instrument can be considered a valid and reliable measure based on pre- and post-implementation metrics. Consideration of the relationship between respondent demographics and concept inventory scores provides unique insight into the relationship between gender, religiosity, values and climate change understanding.

  16. National uses and needs for separated stable isotopes in physics, chemistry, and geoscience research

    International Nuclear Information System (INIS)

    Zisman, M.S.

    1982-01-01

    Present uses of separated stable isotopes in the fields of physics, chemistry, and the geosciences have been surveyed to identify current supply problems and to determine future needs. Demand for separated isotopes remains strong, with 220 different nuclides having been used in the past three years. The largest needs, in terms of both quantity and variety of isotopes, are found in nuclear physics research. Current problems include a lack of availability of many nuclides, unsatisfactory enrichment of rare species, and prohibitively high costs for certain important isotopes. It is expected that demands for separated isotopes will remain roughly at present levels, although there will be a shift toward more requests for highly enriched rare isotopes. Significantly greater use will be made of neutron-rich nuclides below A = 100 for producing exotic ion beams at various accelerators. Use of transition metal nuclei for nuclear magnetic resonance spectroscopy will expand. In addition, calibration standards will be required for the newer techniques of radiological dating, such as the Sm/Nd and Lu/Hf methods, but in relatively small quantities. Most members of the research community would be willing to pay considerably more than they do now to maintain adequate supplies of stable isotopes

  17. National uses and needs for separated stable isotopes in physics, chemistry, and geoscience research

    Energy Technology Data Exchange (ETDEWEB)

    Zisman, M.S.

    1982-01-01

    Present uses of separated stable isotopes in the fields of physics, chemistry, and the geosciences have been surveyed to identify current supply problems and to determine future needs. Demand for separated isotopes remains strong, with 220 different nuclides having been used in the past three years. The largest needs, in terms of both quantity and variety of isotopes, are found in nuclear physics research. Current problems include a lack of availability of many nuclides, unsatisfactory enrichment of rare species, and prohibitively high costs for certain important isotopes. It is expected that demands for separated isotopes will remain roughly at present levels, although there will be a shift toward more requests for highly enriched rare isotopes. Significantly greater use will be made of neutron-rich nuclides below A = 100 for producing exotic ion beams at various accelerators. Use of transition metal nuclei for nuclear magnetic resonance spectroscopy will expand. In addition, calibration standards will be required for the newer techniques of radiological dating, such as the Sm/Nd and Lu/Hf methods, but in relatively small quantities. Most members of the research community would be willing to pay considerably more than they do now to maintain adequate supplies of stable isotopes.

  18. Building a diverse geoscience workforce

    Science.gov (United States)

    Macdonald, R. Heather; Blodgett, Robert H.; Hodder, Janet

    2012-12-01

    Preparing Students in Two-Year Colleges for Geoscience Degrees and Careers; Tacoma, Washington, 18-21 July 2012 Building a strong and diverse geoscience workforce is a critical national challenge. An important role is played by 2-year colleges (2YCs) in increasing both the number and diversity of geoscience graduates. At the workshop, called Preparing Students in Two-Year Colleges for Geoscience Degrees and Careers, faculty from 2YCs and 4-year colleges and universities (4YCs), as well as representatives from professional organizations, discussed the successes and challenges of programs, strategies, and activities that support career preparation of 2YC students for geoscience careers, either as geotechnician graduates or geoscience majors at 4YCs. The workshop program, which includes links to presentations and specific examples of these strategies, can be found at http://serc.carleton.edu/sage2yc/workforce2012/program.html.

  19. Engaging diverse community college students in the geosciences through a year-round career mentoring and research workforce program

    Science.gov (United States)

    Sloan, V.; Barge, L. M.; Smith, M.

    2017-12-01

    Student attrition from STEM majors most often occurs in the first or second year of college. To retain underrepresented minority students who are largely enrolled in community colleges in STEM pathways, it is critical to provide hands-on experiences and exposure to STEM occupations in a supportive community, before the students transfer to four-year colleges. The goal of the Bridge to the Geosciences is to provide community college students with year-round career mentoring, exposure to different fields and organizations in the geosciences through small field or research experiences, and community-building within the cohort and in connection with a broader community of scientists. Each year, 20 students from Citrus College in Glendora, California participate in research "geomodules" organized around the planetary, atmospheric, ocean, and environmental science subfields of the geosciences at: (1) the Oak Crest Institute of Science, a chemistry research and diversity-oriented education organization in Monrovia, CA; (2) the NASA Jet Propulsion Laboratory (JPL), a NASA center in Pasadena, CA; (3) the University of Southern California's (USC) Wrigley Institute for Environmental Studies, a research center on Catalina Island; and (4) the University Corporation for Atmospheric Research (UCAR) in Boulder, CO. A peak experience of the program is a ten-day mini-internship at UCAR in Colorado where the students are immersed in atmospheric research, training, fieldwork, and presenting at a premier facility. Professional development, mentoring, science communication and cohort-development are woven across all four geomodules and throughout the year. This program is funded by the National Science Foundation's Improving Undergraduate STEM Education or IUSE program. Preliminary results indicate that the students' interest in the geosciences, confidence in their skills and identify as a scientist, and their sense of belonging to a cohort are increased by participation in this program.

  20. Creating Authentic Geoscience Research Experiences for Underrepresented Students in Two-Year Undergraduate Programs

    Science.gov (United States)

    Liou-Mark, J.; Blake, R.

    2014-12-01

    With community college and two-year program students playing pivotal roles in advancing the nation's STEM agenda now and throughout the remainder of this young millennia, it is incumbent on educators to devise innovative and sustainable STEM initiatives to attract, retain, graduate, and elevate these students to four-year programs and beyond. Involving these students in comprehensive, holistic research experiences is one approach that has paid tremendous dividends. The New York City College of Technology (City Tech) was recently awarded a National Science Foundation Research Experiences for Undergraduates (REU) supplemental grant to integrate a community college/two-year program component into its existing REU program. The program created an inviting and supportive community of scholars for these students, nurtured them through strong, dynamic mentoring, provided them with the support structures needed for successful scholarship, and challenged them to attain the same research prominence as their Bachelor degree program companions. Along with their colleagues, the community college/two-year program students were given an opportunity to conduct intensive satellite and ground-based remote sensing research at the National Oceanic and Atmospheric Administration Cooperative Remote Sensing Science and Technology Center (NOAA-CREST) at City College and its CREST Institute Center for Remote Sensing and Earth System Science (ReSESS) at City Tech. This presentation highlights the challenges, the rewards, and the lessons learned from this necessary and timely experiment. Preliminary results indicate that this paradigm for geoscience inclusion and high expectation has been remarkably successful. (The program is supported by NSF REU grant #1062934.)

  1. Critical Components of a Successful Undergraduate Research Experience in the Geosciences for Minority Students

    Science.gov (United States)

    Liou-Mark, J.; Blake, R.; Chukuigwe, C.

    2013-12-01

    For the past five years, the New York City College of Technology has administered a successful National Science Foundation (NSF) Research Experience for Undergraduates (REU) program. The program provides rich, substantive, academic and life-transformative STEM educational experiences for students who would otherwise not pursue STEM education altogether or would not pursue STEM education through to the graduate school level. The REU Scholars are provided with an opportunity to conduct intensive satellite and ground-based remote sensing research at the National Oceanic and Atmospheric Administration Cooperative Remote Sensing Science and Technology Center (NOAA-CREST). Candidates for the program are recruited from the City University of New York's twenty-three separate campuses. These students engage in a research experience that spans the summer and the fall and spring semesters. Eighty-four percent (84%) of the program participants are underrepresented minorities in STEM, and they are involved in a plethora of undergraduate research best practice activities that include: training courses in MATLAB programming, Geographic Information Systems, and Remote Sensing; workshops in Research Ethics, Scientific Writing, and Oral and Poster Research Presentations; national, regional, and local conference presentations; graduate school support; and geoscience exposure events at national laboratories, agencies, and research facilities. To enhance their success in the program, the REU Scholars are also provided with a comprehensive series of safety nets that include a multi-tiered mentoring design specifically to address critical issues faced by this diverse population. Since the inception of the REU program in 2008, a total of 61 undergraduate students have finished or are continuing with their research or are pursuing their STEM endeavors. All the REU Scholars conducted individual satellite and ground-based remote sensing research projects that ranged from the study of

  2. Place-Based Education in Geoscience: Theory, Research, Practice, and Assessment

    Science.gov (United States)

    Semken, Steven; Ward, Emily Geraghty; Moosavi, Sadredin; Chinn, Pauline W. U.

    2017-01-01

    Place-based education (PBE) is a situated, context-rich, transdisciplinary teaching and learning modality distinguished by its unequivocal relationship to place, which is any locality that people have imbued with meanings and personal attachments through actual or vicarious experiences. As an observational and historical science, geoscience is…

  3. Using Network-Based Language Analysis to Bridge Expertise and Cultivate Sensitivity to Differentiated Language Use in Interdisciplinary Geoscience Research

    Science.gov (United States)

    Hannah, M. A.; Simeone, M.

    2017-12-01

    On interdisciplinary teams, expertise is varied, as is evidenced by differences in team members' language use. Developing strategies to combine that expertise and bridge differentiated language practices is especially difficult between geoscience subdisciplines as researchers assume they use a shared language—vocabulary, jargon, codes, linguistic styles. In our paper, we discuss a network-based approach used to identify varied expertise and language practices between geoscientists (n=29) on a NSF team funded to study how deep and surface Earth processes worked together to give rise to the Great Oxygenation Event. We describe how we modeled the team's expertise from a language corpus consisting of 220 oxygen-related terms frequently used by team members and then compared their understanding of the terms to develop interventions to bridge the team's expertise. Corpus terms were identified via team member interviews, observations of members' interactions at research meetings, and discourse analysis of members' publications. Comparisons of members' language use were based on a Likert scale survey that asked members to assess how they understood a term; how frequently they used a term; and whether they conceptualized a term as an object or process. Rather than use our method as a communication audit tool (Zwijze-Koning & de Jong, 2015), teams can proactively use it in a project's early stages to assess the contours of the team's differentiated expertise and show where specialized knowledge resides in the team, where latent or non-obvious expertise exists, where expertise overlaps, and where gaps are in the team's knowledge. With this information, teams can make evidence based recommendations to forward their work such as allocating resources; identifying and empowering members to serve as connectors and lead cross-functional project initiatives; and developing strategies to avoid communication barriers. The method also generates models for teaching language

  4. Partnering with a Community College and Research University to attract Underrepresented Students to the Geosciences: The Student Experience

    Science.gov (United States)

    Wickham, J. S.; Saunders, D.; Smith, G.

    2015-12-01

    A NSF sponsored partnership between the University of Texas at Arlington and the Tarrant County College District aimed to attract underrepresented lower-division students interested in STEM to the geosciences. The program recruited 32 students over 3 years, developed an innovative field course, provided tutoring and mentoring programs, and offered research assistantships for students to work with the research university faculty on funded projects. Under-represented students were 66% of the group. The data was gathered via a web-based survey from April 2nd to April 17th, 2015, using both open ended and item-level responses. Out of 32 participants, the response rate was a significant 50%. Some of the survey results include: 1) Most students heard about the program from faulty who recruited them in introductory level classes; 2) Almost all agreed that the geosciences were interesting, fun, important and a good career path; 3) 92% of the community college respondents found transferring to a research university somewhat or not too difficult; 4) The most helpful parts of the program included faculty mentors, the field course, research assistant experiences and relationships with faculty. The least helpful parts included the tutoring services, relationships with other students, and the semester kickoff meetings; 5) over 60% of the students felt very confident in research skills, formulating research questions, lab skills, quantitative skills, time management, collaborating and working independently. They were less confident in planning research, graphing results, writing papers and making oral presentations; 6) most found the faculty very helpful in advising and mentoring, and 86% said they were comfortable asking at least one faculty member for a reference letter; 7) 93% said they were likely to pursue a geoscience career and 86% were confident or somewhat confident they would be successful.

  5. Decision Strategy Research

    International Nuclear Information System (INIS)

    Hardeman, F.

    2001-01-01

    The objective of SCK-CEN's R and D programme on decision strategies is: (1) to study the decision-making process in a nuclear context with particular emphasis on emergency preparedness; (2) to disseminate knowledge on nuclear emergency preparedness including courses in the field of off-site emergency response to nuclear accidents; (3) to co-ordinate efforts within SCK-CEN in the field of medical applications of radiation; (4) to support projects and reflexion groups related to interdisciplinary research on the no-technical aspects of radiation protection or nuclear apllications; (5) to give advice and support to authorities and the industry on any topic related to radiation protection and to make expertise and infrastructure available. Main focus of the programme is on the surveillance of the territory and emergency preparedness. Principal achievements in 2000 are described

  6. Decision Strategy Research

    Energy Technology Data Exchange (ETDEWEB)

    Hardeman, F

    2001-04-01

    The objective of SCK-CEN's R and D programme on decision strategies is: (1) to study the decision-making process in a nuclear context with particular emphasis on emergency preparedness; (2) to disseminate knowledge on nuclear emergency preparedness including courses in the field of off-site emergency response to nuclear accidents; (3) to co-ordinate efforts within SCK-CEN in the field of medical applications of radiation; (4) to support projects and reflexion groups related to interdisciplinary research on the no-technical aspects of radiation protection or nuclear apllications; (5) to give advice and support to authorities and the industry on any topic related to radiation protection and to make expertise and infrastructure available. Main focus of the programme is on the surveillance of the territory and emergency preparedness. Principal achievements in 2000 are described.

  7. Software Writing Skills for Your Research - Lessons Learned from Workshops in the Geosciences

    Science.gov (United States)

    Hammitzsch, Martin

    2016-04-01

    reviews. This assumes that scientist learn to write and release code and software as they learn to write and publish papers. Having this in mind, software could be valued and assessed as a contribution to science. But this requires the relevant skills that can be passed to colleagues and followers. Therefore, the GFZ German Research Centre for Geosciences performed three workshops in 2015 to address the passing of software writing skills to young scientists, the next generation of researchers in the Earth, planetary and space sciences. Experiences in running these workshops and the lessons learned will be summarized in this presentation. The workshops have received support and funding by Software Carpentry, a volunteer organization whose goal is to make scientists more productive, and their work more reliable, by teaching them basic computing skills, and by FOSTER (Facilitate Open Science Training for European Research), a two-year, EU-Funded (FP7) project, whose goal to produce a European-wide training programme that will help to incorporate Open Access approaches into existing research methodologies and to integrate Open Science principles and practice in the current research workflow by targeting the young researchers and other stakeholders.

  8. NanTroSEIZE in 3-D: Creating a Virtual Research Experience in Undergraduate Geoscience Courses

    Science.gov (United States)

    Reed, D. L.; Bangs, N. L.; Moore, G. F.; Tobin, H.

    2009-12-01

    Marine research programs, both large and small, have increasingly added a web-based component to facilitate outreach to K-12 and the public, in general. These efforts have included, among other activities, information-rich websites, ship-to-shore communication with scientists during expeditions, blogs at sea, clips on YouTube, and information about daily shipboard activities. Our objective was to leverage a portion of the vast collection of data acquired through the NSF-MARGINS program to create a learning tool with a long lifespan for use in undergraduate geoscience courses. We have developed a web-based virtual expedition, NanTroSEIZE in 3-D, based on a seismic survey associated with the NanTroSEIZE program of NSF-MARGINS and IODP to study the properties of the plate boundary fault system in the upper limit of the seismogenic zone off Japan. The virtual voyage can be used in undergraduate classes at anytime, since it is not directly tied to the finite duration of a specific seagoing project. The website combines text, graphics, audio and video to place learning in an experiential framework as students participate on the expedition and carry out research. Students learn about the scientific background of the program, especially the critical role of international collaboration, and meet the chief scientists before joining the sea-going expedition. Students are presented with the principles of 3-D seismic imaging, data processing and interpretation while mapping and identifying the active faults that were the likely sources of devastating earthquakes and tsunamis in Japan in 1944 and 1948. They also learn about IODP drilling that began in 2007 and will extend through much of the next decade. The website is being tested in undergraduate classes in fall 2009 and will be distributed through the NSF-MARGINS website (http://www.nsf-margins.org/) and the MARGINS Mini-lesson section of the Science Education Resource Center (SERC) (http

  9. Along the Virtuality Continuum - Two Showcases on how xR Technologies Transform Geoscience Research and Education

    Science.gov (United States)

    Klippel, A.; Zhao, J.; Masrur, A.; Wallgruen, J. O.; La Femina, P. C.

    2017-12-01

    We present work along the virtuality continuum showcasing both AR and VR environments for geoscience applications and research. The AR/VR project focusses on one of the most prominent landmarks on the Penn State campus which, at the same time, is a representation of the geology of Pennsylvania. The Penn State Obelisk is a 32" high, 51 ton monument composed of 281 rocks collected from across Pennsylvania. While information about its origins and composition are scattered in articles and some web databases, we compiled all the available data from the web and archives and curated them as a basis for an immersive xR experience. Tabular data was amended by xR data such as 360° photos, videos, and 3D models (e.g., the Obelisk). Our xR (both AR and VR) prototype provides an immersive analytical environment that supports interactive data visualization and virtual navigation in a natural environment (a campus model of today and of 1896, the year of the Obelisk's installation). This work-in-progress project can provide an interactive immersive learning platform (specifically, for K-12 and introductory level geosciences students) where learning process is enhanced through seamless navigation between 3D data space and physical space. The, second, VR focused application is creating and empirically evaluating virtual reality (VR) experiences for geosciences research, specifically, an interactive volcano experience based on LiDAR and image data of Iceland's Thrihnukar volcano. The prototype addresses the lack of content and tools for immersive virtual reality (iVR) in geoscientific education and research and how to make it easier to integrate iVR into research and classroom experiences. It makes use of environmentally sensed data such that interaction and linked content can be integrated into a single experience. We discuss our workflows as well as methods and authoring tools for iVR analysis and creation of virtual experiences. These methods and tools aim to enhance the utility

  10. Workshop on Requirements for Robotic Underwater Drills in U.S. Marine Geoscience Research

    Science.gov (United States)

    Sager, W. W.; Johnson, H. P.; Dick, H.; Fryer, P.

    2001-05-01

    At present, subsurface hard rock samples and sediment cores deeper than ~30 m must be acquired using a drill ship, but a drill ship has severe limitations: high cost, limited availability, and poor performance in some lithologies. Many marine geoscience studies require more sampling than can be provided by the drill ship, samples from those problem lithologies, or samples from locations where the drill ship cannot go. Robotic underwater drills may help satisfy this need. Twenty-five scientists and engineers, representing a variety of academic institutions and scientific interests, met on November 3 and 4, 2000, to discuss how to bring about the ready access to robotic underwater drills for scientists engaged in academic research. The workshop considered what science programs would benefit from robotic drills, how many drills of what specifications are needed, and how such drills should be supported. The consensus was that there is a widespread need for a several drills. Most scientists wish for a Robotic Ocean-Bottom drill (ROBO-drill) that can core 50-100 m below the seafloor, with either rotary diamond bits or hydraulic corer, and retrieve cores >5 cm diameter from water depths up to ~4500 m. Although this big ROBO-drill has the widest application, attendees also favored three "niche" drills with different configurations. On the smaller end, there is a need for mini-ROBO-drill that is simple, can work in deeper water, is easily shipped and maintained, and would likely have a single core barrel 1-2 m in length. This drill would be for projects in which small penetration is adequate but cost is a primary concern. An ROV-based drill is also needed, attached to a widely available platform. With high maneuverability and excellent imaging capability, the ROV-drill would be the equivalent of a geologist roaming the seafloor with a rock hammer. There also may be a need for a slightly larger, single-barrel drill that can core up to ~5 m depth to reach below small sediment

  11. Linking research, education and public engagement in geoscience: Leadership and strategic partnerships

    Science.gov (United States)

    Chambers, L. H.

    2017-12-01

    Cloud and aerosol feedbacks remain the largest source of uncertainty in understanding and predicting Earth's climate (IPCC, 2013), and are the focus of multiple ongoing research studies. Clouds are a challenge because of their extreme variability and diversity. This is also what makes them interesting to people. Clouds may be the only essential climate variable with an Appreciation Society (https://cloudappreciationsociety.org/). As a result, clouds led me into a multi-decade effort to engage a wider public in observing and understanding our planet. A series of experiences in the mid-1990's led to a meeting with educators that resulted in the creation of the Students' Cloud Observations On-Line Project (S'COOL), which I directed for about 2 decades, and which engaged students around the world in ground truth observation and data analysis for the Clouds and the Earth's Radiant Energy System (CERES) satellite instruments. Beginning around 2003, I developed a contrail observation protocol for the GLOBE Program to serve a similar function for additional audiences. Starting in 2004, I worked with an interdisciplinary team to launch the MY NASA DATA Project, an effort to make the vast trove of NASA Earth Science data actually usable in K-12 classrooms and student projects. Later I gained key experiences around strategic partnerships as I worked from 2008 onward with tri-agency partners at NOAA and NSF to integrate activities around climate change education. Currently I serve as Program Scientist for Education & Communication in the Earth Science Division at NASA, where I have the privilege to oversee and guide these and related activities in education and public engagement around Earth system science. As someone who completed advanced degrees in aerospace engineering without ever taking an Earth science class, this ongoing engagement is very important to me. Understanding Earth processes should be integral to how all people choose to live on our planet. In my experience

  12. Gigapixel imaging as a resource for geoscience teaching, research, and outreach

    Science.gov (United States)

    Bentley, C.; Pitts, A.; Rohrback, R. C.; Dudek, M.

    2015-12-01

    The Mid-Atlantic Geo-Image Collection is a repository of gigapixel-resolution geologic imagery intended as a tool for geoscience professionals, educators, students, & researchers (http://gigapan.com/groups/100/galleries). GigaPan provides a unique combination of context & detail, with images that maintain a high level of resolution through every level of magnification. Using geological GigaPans, physically disabled students can participate in virtual field trips, instructors can bring inaccessible outcrops into the classroom, & students can zoom in on hand samples without expensive microscopes. Because GigaPan images permit detailed visual examination of geologic, MAGIC is particularly suitable for use in online geology courses. The images are free to use and tag. Our 10 contributors (3 faculty, 2 graduate students, & 6 undergraduates) use 4 models of mobile robot cameras (outcrop/landscape), 2 laboratory-based GIGAmacro imaging systems (hand samples) & 2 experimental units: 1 for thin sections, 1 for GigaPans of scanning electron microscopy. Each of these has strengths & weaknesses. MAGIC has suites of images of Appalachian structure & stratigraphy, Rocky Mountains, Snowball Earth hypothesis, & doomed outcrops of Miocene strata on Chesapeake Bay. Virtual field trips with our imagery have been developed for: Billy Goat Trail, MD; Helen Lake, AB; Wind River Canyon, WY; the Canadian Rockies; El Paso, TX; glaciation around the world; and Corridor H, WV (a GSA field trip in Nov. 2015). Virtual sample sets have been developed for introductory minerals, igneous, sedimentary, & metamorphic rocks, the stratigraphy of VA's physiographic provinces, & the Snowball Earth hypothesis. The virtual field trips have been tested in both online & onsite courses. There are close to a thousand images in the collection, each averaging about 0.9 gigapixels in size, with close to 900,000 views total. A new viewer for GigaPans was released this year by GIGAmacro. This new viewer allows

  13. Visualizing dynamic geosciences phenomena using an octree-based view-dependent LOD strategy within virtual globes

    Science.gov (United States)

    Li, Jing; Wu, Huayi; Yang, Chaowei; Wong, David W.; Xie, Jibo

    2011-09-01

    Geoscientists build dynamic models to simulate various natural phenomena for a better understanding of our planet. Interactive visualizations of these geoscience models and their outputs through virtual globes on the Internet can help the public understand the dynamic phenomena related to the Earth more intuitively. However, challenges arise when the volume of four-dimensional data (4D), 3D in space plus time, is huge for rendering. Datasets loaded from geographically distributed data servers require synchronization between ingesting and rendering data. Also the visualization capability of display clients varies significantly in such an online visualization environment; some may not have high-end graphic cards. To enhance the efficiency of visualizing dynamic volumetric data in virtual globes, this paper proposes a systematic framework, in which an octree-based multiresolution data structure is implemented to organize time series 3D geospatial data to be used in virtual globe environments. This framework includes a view-dependent continuous level of detail (LOD) strategy formulated as a synchronized part of the virtual globe rendering process. Through the octree-based data retrieval process, the LOD strategy enables the rendering of the 4D simulation at a consistent and acceptable frame rate. To demonstrate the capabilities of this framework, data of a simulated dust storm event are rendered in World Wind, an open source virtual globe. The rendering performances with and without the octree-based LOD strategy are compared. The experimental results show that using the proposed data structure and processing strategy significantly enhances the visualization performance when rendering dynamic geospatial phenomena in virtual globes.

  14. Teaching stream geomorphology to in-service teachers as part of the Geoscience Institute for Research and Education

    Science.gov (United States)

    Napieralski, J. A.; Murray, K.

    2009-12-01

    The Geosciences Institute is a partnership that includes the University of Michigan-Dearborn, the Detroit Public Schools, and local corporations that extends research and learning opportunities in the geosciences to in-service teachers within the Detroit metropolitan area. Since Michigan recently removed Earth science from the core curriculum and, according to a recent survey, fewer than 2% of teachers who teach geology in SE Michigan had college-level courses or training in geology, the Institute aims to improve teacher knowledge and efficacy in geology and increase awareness of opportunities within geology for teachers and underrepresented students. This is accomplished through an intensive 3-week course that uses a watershed approach (interdisciplinary) to teach geoscience, especially the environmental problems affecting SE Michigan, including soil pollution and brownfield mapping, groundwater contamination, and stream quality. This paper presents the approach used to teach basic stream geomorphology necessary to address middle and high school standards on watershed science, landforms, and the hydrologic cycle. Small teams of teachers collaborate with a research team comprised of faculty and students to study the impact of urbanization along the Lower Rouge River, a heavily polluted and populated watershed within SE Michigan. The teachers learn basic concepts in geomorphology and stream sampling techniques and then sample and describe the Rouge River at four sites between the outer and lower branch of the watershed. On the final day, each team utilizes two mapping tools (Google Earth and L-THIA) to compare results between the sites, including discharge, percent imperviousness and land use characteristics, dissolved oxygen and conductivity, and vegetation type. Examples of data and observations and interpretations and maps are presented, along with preliminary post-evaluations and related assessment of the program. It is expected this experience will improve

  15. Geothermal Technologies Program Geoscience and Supporting Technologies 2001 University Research Summaries

    Energy Technology Data Exchange (ETDEWEB)

    Creed, R.J.; Laney, P.T.

    2002-05-14

    The U.S. Department of Energy Office of Wind and Geothermal Technologies (DOE) is funding advanced geothermal research through University Geothermal Research solicitations. These solicitations are intended to generate research proposals in the areas of fracture permeability location and characterization, reservoir management and geochemistry. The work funded through these solicitations should stimulate the development of new geothermal electrical generating capacity through increasing scientific knowledge of high-temperature geothermal systems. In order to meet this objective researchers are encouraged to collaborate with the geothermal industry. These objectives and strategies are consistent with DOE Geothermal Energy Program strategic objectives.

  16. Geothermal Technologies Program Geoscience and Supporting Technologies 2001 University Research Summaries

    Energy Technology Data Exchange (ETDEWEB)

    Creed, Robert John; Laney, Patrick Thomas

    2002-06-01

    The U.S. Department of Energy Office of Wind and Geothermal Technologies (DOE) is funding advanced geothermal research through University Geothermal Research solicitations. These solicitations are intended to generate research proposals in the areas of fracture permeability location and characterization, reservoir management and geochemistry. The work funded through these solicitations should stimulate the development of new geothermal electrical generating capacity through increasing scientific knowledge of high-temperature geothermal systems. In order to meet this objective researchers are encouraged to collaborate with the geothermal industry. These objectives and strategies are consistent with DOE Geothermal Energy Program strategic objectives.

  17. Geothermal Technologies Program Geoscience and Supporting Technologies 2001 University Research Summaries

    International Nuclear Information System (INIS)

    Creed, R.J.; Laney, P.T.

    2002-01-01

    The U.S. Department of Energy Office of Wind and Geothermal Technologies (DOE) is funding advanced geothermal research through University Geothermal Research solicitations. These solicitations are intended to generate research proposals in the areas of fracture permeability location and characterization, reservoir management and geochemistry. The work funded through these solicitations should stimulate the development of new geothermal electrical generating capacity through increasing scientific knowledge of high-temperature geothermal systems. In order to meet this objective researchers are encouraged to collaborate with the geothermal industry. These objectives and strategies are consistent with DOE Geothermal Energy Program strategic objectives

  18. Research Methodology in Global Strategy Research

    DEFF Research Database (Denmark)

    Cuervo-Cazurra, Alvaro; Mudambi, Ram; Pedersen, Torben

    2017-01-01

    We review advances in research methodology used in global strategy research and provide suggestions on how researchers can improve their analyses and arguments. Methodological advances in the extraction of information, such as computer-aided text analysis, and in the analysis of datasets......-explained logics and mechanisms so that researchers can provide better and more relevant recommendations to managers designing the global strategies of their organizations....

  19. Environmental Economics Research Strategy (2005)

    Science.gov (United States)

    This 2005 Environmental Economics Research Strategy outlines EPA’s research effort to provide the necessary behavioral science foundation for making decisions and designing environmental policies at the least cost to American businesses and consumers.

  20. Pharmaceutical Research Strategies

    NARCIS (Netherlands)

    S.M.W. Phlippen (Sandra); A. Vermeersch (Ad)

    2008-01-01

    textabstractThis study analyses 1400 research projects of the top 20 R&D-spending pharmaceuticals to identify the determinants of successful research projects. We provide clear evidence that externally sourced projects and projects involving biotechnologies perform better than internal projects and

  1. Math Fact Strategies Research Project

    Science.gov (United States)

    Boso, Annie

    2011-01-01

    An action research project was conducted in order to determine effective math fact strategies for first graders. The traditional way of teaching math facts included using timed tests and flashcards, with most students counting on their fingers or a number line. Six new research-based strategies were taught and analyzed to decide which methods…

  2. SKI's research strategy

    International Nuclear Information System (INIS)

    2002-01-01

    SKI's research is a prerequisite for SKI's ability to fulfil its assignment. Research to support supervision is focused today on a number of strategically important areas such as reactor technology, material and fuel questions, human factors, waste and non-proliferation (safeguards). SKI's intelligence analysis shows that this focus should be maintained over the next few years. Some reallocation of priorities between research areas may be necessary due to changes in the nuclear area. For this research, SKI contracts universities as well as consulting companies. The resources that are of importance for nuclear research are concentrated to a few organisations in Sweden. But the national research resources alone do not cover the existing needs. One reason is that the previously highly competent and well funded Swedish expert organisations within the nuclear power utilities have gradually been phased out or transformed into consulting firms. Changes have also taken place at the Swedish vendor of boiling-water plants, now Westinghouse Atom, and the activities have been down sized considerably in Sweden. There has been a similar trend in other countries. Moreover, countries which previously conducted expensive experiments have themselves increasingly sought international support as their research resources have dwindled. As a result, numerous international projects have or are planned to be started. SKI notes that Swedish nuclear activities are also becoming increasingly dependent on international collaboration. SKI further notes that in order to fulfil its assignment, the Inspectorate needs not only financial resources but also competent personnel. This enables targeted support to be maintained to strategic national infrastructure and to international cooperation including internationally financed projects. With this is meant above all experimental research where small countries such as Sweden can join forces with other countries on to important research information at

  3. Tracking the Health of the Geoscience Workforce

    Science.gov (United States)

    Gonzales, L. M.; Keane, C. M.; Martinez, C. M.

    2008-12-01

    Increased demands for resources and environmental activities, relative declines in college students entering technical fields, and expectations of growth commensurate with society as a whole challenge the competitiveness of the U.S. geoscience workforce. Because of prior business cycles, more than 50% of the workforce needed in natural resource industries in 10 years is currently not in the workforce. This issue is even more acute in government at all levels and in academic institutions. Here, we present a snapshot of the current status of the geoscience profession that spans geoscientists in training to geoscience professionals in government, industry, and academia to understand the disparity between the supply of and demand for geoscientists. Since 1996, only 1% of high school SAT test takers plan to major in geosciences at college. Although the total number of geoscience degrees granted at community colleges have increased by 9% since 1996 , the number of geoscience undergraduate degrees has decreased by 7%. The number of geoscience master's and doctoral degrees have increased 4% and 14% respectively in the same time period. However, by 2005, 68 geoscience departments were consolidated or closed in U.S. universities. Students who graduate with geoscience degrees command competitive salaries. Recent bachelors geoscience graduates earned an average salary of 31,366, whereas recent master's recipients earned an average of 81,300. New geosciences doctorates commanded an average salary of 72,600. Also, fFederal funding for geoscience research has increase steadily from 485 million in 1970 to $3.5 billion in 2005. Economic indicators suggest continued growth in geoscience commodity output and in market capitalization of geoscience industries. Additionally, the Bureau of Labor Statistics projects a 19% increase in the number of geoscience jobs from 2006 to 2016. Despite the increased demand for geoscientists and increase in federal funding of geoscience research

  4. Marketing Strategy Research

    Energy Technology Data Exchange (ETDEWEB)

    None

    2010-03-31

    This report documents the research that has been undertaken as background for preparation of a marketing campaign for middle and high school students to increase interest in national security careers at the National Nuclear Security Administration. This work is a part of the National Security Preparedness Project (NSPP), being performed under a Department of Energy (DOE)/National Nuclear Security Administration (NNSA) grant. Previous research on the development of a properly trained and skilled national security workforce has identified a lack of interest by k-12 students in the STEM (Science, Technology, Engineering, and Mathematics) fields. Further, participation in these careers by women and minority populations is limited and is not increasing. Added to this are low educational achievement levels in New Mexico, where the marketing campaign will be deployed.

  5. Preparing students in two-year colleges for geoscience degrees and careers: Workshop results

    Science.gov (United States)

    Macdonald, H.; Baer, E. M.; Blodgett, R. H.; Hodder, J.

    2012-12-01

    Building a strong and diverse geoscience workforce is a critical national challenge. Two-year colleges (2YCs) play an important role in increasing both the number and diversity of geoscience graduates. A workshop on Preparing Students from Two-year Colleges for Geoscience Degrees and Careers was held in Tacoma, WA in July 2012 to discuss the successes and challenges of programs, strategies, and activities that support career preparation of 2YC students for geoscience careers, either as geotechnical graduates or as geoscience majors at four-year colleges and universities, and to make recommendations for future efforts. At the workshop several successful partnerships between employers and two-year colleges as well as between two-year colleges and four-year institutions were discussed as potential models that could be replicated with adaptations for local employment needs. Participants shared successful techniques for supporting 2YC students in their career path such as internships, early opportunities for participating in research, joint fieldtrips with transfer institutions, and supportive curriculum alignment between two and four-year institutions. Professional organizations have much to offer including information about career options, networking opportunities, and more. Participants discussed strategies for supporting geoscience workforce development at 2YCs such as making connections between 2YCs and local employers, identifying geoscience students at 2YCs who are planning to transfer and building relationships with 4YCs, establishing internship programs, supporting student geoscience clubs, and developing a repository of geoscience employment information targeted to 2YC students. Participants recognized significant barriers to incorporating career training and information into the geoscience curriculum at two-year colleges. These barriers include a predominance of non-geoscience students in classes, lack of support or rewards for improving or increasing the

  6. Empathic design: Research strategies

    Directory of Open Access Journals (Sweden)

    Joyce Thomas

    2013-01-01

    Full Text Available This paper explores the role of empathy within new product development from the perspective of human-centred design. The authors have developed a range of empathic design tools and strategies that help to identify authentic human needs.For products and services to be effective, they need to satisfy both functional and emotional needs of individuals. In addition, the individual user needs to feel that the product and/or service has been designed ‘just for them’, otherwise they may misuse, underuse or abandon the product/service. This becomes critical with a product such as a Zimmer frame (walker, when it fails to resonate with the patient due to any stigma the patient may perceive, and thus remains unused.When training young designers to consider the wider community (people unlike themselves during the design process, it has proven extremely valuable to take them outside their comfort zones, by seeking to develop empathy with the end user for whom they are designing. Empathic modelling offers designers the opportunity to develop greater insight and understanding, in order to support more effective design outcomes. Sensitising designers to the different ways that individuals complete daily tasks has helped to diminish the gap between themselves and others (e.g. people with disabilities.The authors intend for this paper to resonate with health care providers. Human-centred design can help to refocus the designer, by placing the individual end user’s needs at the heart of their decision-making.

  7. Tribal and Indigenous Geoscience and Earth System Science: Ensuring the Evolution and Practice of Underrepresented Scientists and Researchers in the 21ST Century and Beyond

    Science.gov (United States)

    Bolman, J.

    2014-12-01

    The time is critical for Tribal, Indigenous and Underrepresented K-12/university students and communities to accept the duty to provide representation in Earth System Sciences/Geosciences fields of study and professions. Tribal nations in the U.S have a unique legal status rooted in a complex relationship between the U.S. federal government, individual state/local governments and Tribal authorities. Although geosciences are often at the center of these relationships, especially as they pertain to the development of natural resources, tribal economics, and environmental stewardship, Tribal/Indigenous people remain severely underrepresented in advanced geoscience education. Our students and communities have responded to the invitation. To represent and most important develop and lead research initiatives. Leadership is a central focus of the invitation to participate, as Tribal people have immense responsibility for significant landscapes across North American Continent, critical natural resources and millennia of unpretentious natural evolution with the localized native geologies, species and environmental systems. INRSEP and Pacific Northwest Tribal Nations found sustaining relationships with the Geoscience Alliance, MS PHD's, Woods Hole PEP, Native American Pacific Islander Research Experience (NAPIRE) and LSAMP programs, in addition to state/federal agencies, has advanced culturally-relevant STEM research. Research foundationally grounded on traditional ecological knowledge, individual and Tribal self-determination. A key component is student research experiences within their ancestral homelands and traversing to REU's in multiple national and international Tribal/Indigenous ancestral territories. The relationships also serve an immense capacity in tracking student achievement, promoting best practices in research development and assessing outcomes. The model has significantly improved the success of students completing STEM graduate programs. The presentation

  8. A Worldwide Community of Primary and Secondary Students and Their Teachers Engage in and Contribute to Geoscience Research

    Science.gov (United States)

    Sparrow, E. B.; Kopplin, M. R.; Yule, S.

    2009-12-01

    The GLOBE (Global learning and Observations to Benefit the Environment) program is among the most successful long-term citizen scientist programs engaging K-12 students, in-service and pre-service teachers, as well as community members in different areas of geoscience investigations: atmosphere/weather, land cover biology, soils, hydrology, and vegetation phenology. What sustains this multi-nation project is the interest and collaboration among scientists, educators, students and the GLOBE Partnerships that are mostly self-supporting and function in the United States and in a hundred other countries. The GLOBE Program Office in the United States continues to offer, an overall coordinating and leadership function, a website, an infrastructure, management and support for web data entry and access, as well as visualizations, and a much used help desk. In Alaska, GLOBE research and activities are maintained through professional development workshops for educators, continued year-long support for teachers and their students (classroom visits, email, mail and newsletters) including program assessments, funded through federal grants to the University of Alaska Fairbanks. The current earth system science Seasons and Biomes project uses GLOBE protocols as well as newly developed ones to fit the needs of the locale, such as ice freeze-up and break-up seasonality protocols for rivers and lakes in tundra, taiga and other northern biomes, and mosquito phenology protocols for tropical and sub-tropical moist broadleaf forests and other biomes in Asia and Africa, invasive plant species for Africa, and modified plant phenology protocols for temperate deciduous forests in Australia. Students contribute data and use archived data as needed when they conduct geoscience research individually, in small groups or as a class and/or collaboratively with others in schools in other parts of the country and the world.

  9. Enrichment Programs and Professional Development in the Geosciences: Best Practices and Models (OEDG Research Report, Stony Brook University)

    Science.gov (United States)

    Gafney, Leo

    2017-01-01

    This report is based on several evaluations of NSF-funded geoscience projects at Stony Brook University on Long Island, NY. The report reviews the status of K-12 geoscience education, identifying challenges posed by the Next Generation Science Standards (NGSS), the experiences of university faculty engaged in teacher preparation, state…

  10. Cascadia GeoSciences: Community-Based Earth Science Research Focused on Geologic Hazard Assessment and Environmental Restoration.

    Science.gov (United States)

    Williams, T. B.; Patton, J. R.; Leroy, T. H.

    2007-12-01

    Cascadia GeoSciences (CG) is a new non-profit membership governed corporation whose main objectives are to conduct and promote interdisciplinary community based earth science research. The primary focus of CG is on geologic hazard assessment and environmental restoration in the Western U.S. The primary geographic region of interest is Humboldt Bay, NW California, within the southern Cascadia subduction zone (SCSZ). This region is the on-land portion of the accretionary prism to the SCSZ, a unique and exciting setting with numerous hazards in an active, dynamic geologic environment. Humboldt Bay is also a region rich in history. Timber harvesting has been occurring in California's coastal forestlands for approximately 150 years. Timber products transported with ships and railroads from Mendocino and Humboldt Counties helped rebuild San Francisco after the 1906 earthquake. Historic land-use of this type now commonly requires the services of geologists, engineers, and biologists to restore road networks as well as provide safe fish passage. While Humboldt Bay is a focus of some of our individual research goals, we welcome regional scientists to utilize CG to support its mission while achieving their goals. An important function of CG is to provide student opportunities in field research. One of the primary charitable contributions of the organization is a student grant competition. Funds for the student grant will come from member fees and contributions, as well as a percent of all grants awarded to CG. A panel will review and select the student research proposal annually. In addition to supporting student research financially, professional members of CG will donate their time as mentors to the student researchers, promoting a student mentor program. The Humboldt Bay region is well suited to support annual student research. Thorough research like this will help unravel some of the mysteries of regional earthquake-induced land-level changes, as well as possible fault

  11. Lessons learnt from Volcanoes' Night I-II-III - a Marie Curie Researchers' Night project series dedicated to geosciences

    Science.gov (United States)

    Cseko, Adrienn; Bodo, Balazs; Ortega Rodriguez, Ariadna

    2017-04-01

    European Researchers' Nights (ERNs) are a pan-European series of events funded by the European Commission, organised on the last Friday of every September since 2005. ERNs mobilise scientific, academic and research organisations with the aim of giving the public the opportunity to meet researchers in an informal setting. The overall objective of ERNs is to achieve better awareness among the general public concerning the importance of science in everyday life and to combat stereotypes about researchers. The longer-term strategic objective of ERNs is to encourage young people to embark on a scientific career. Volcanoes' Night I-II-III has been an ERN project series funded by the EC FP7 and H2020 programmes between 2012-2015 (EC contract No. 316558, 610050, 633310, www.nochedevolcanes.es). The concept of Volcanoes' Night was created by researchers from the Canary Islands, Spain, where both the researchers and the public live in the close vicinity of volcanoes. The objective of the project was to use volcanoes as a background against which the role of geoscientists could be explained to the public. The scope of Volcanoes' Night was exclusively dedicated to geoscience, and in this respect it stands out among all other ERN projects, which are always more general in scope. During its four years of EC funding, the geographical coverage of Volcanoes' Night expanded substantially from a single location in 2012 (Fuencaliente de La Palma, Spain) to a dozen locations in 2015, mobilising multiple scientific organisations, researchers, and public authorities for engagement with the public. The last EC-funded project, Volcanoes' Night III, which was organised in 2014 and 2015, engaged approximately 21,000 visitors through its outreach activities, which included experiments, science cafés, volcano movies, My Day presentations, excursions, science workshops and more. The impact of the project was carefully assessed via surveys and social studies during its lifetime, and an Impact

  12. Supporting Geoscience Students at Two-Year Colleges: Career Preparation and Academic Success

    Science.gov (United States)

    McDaris, J. R.; Kirk, K. B.; Layou, K.; Macdonald, H.; Baer, E. M.; Blodgett, R. H.; Hodder, J.

    2013-12-01

    and after transfer, research opportunities, and 2YC-4YC collaborations. Improving student success is an important priority at most 2YCs, and is especially challenging because students who enroll at a 2YC arrive with a wide range of abilities, preparation, and goals. Web resources that build on research from education, cognitive science, and psychology address topics such as stereotype threat, solo status, the affective domain, and effective teaching approaches. Other materials describe how to work with various student populations (e.g., English-language learners, students with disabilities, veterans), approaches to strengthening students' ability to monitor their own learning, and other strategies for supporting student success. Programs that support student success in general are important for the more specific goal of developing the geoscience workforce.

  13. ``I Didn't Realize that Science Could Be So Useful'': Integrating Service Learning and Student Research on Water-Quality Issues within an Undergraduate Geoscience Curriculum (Invited)

    Science.gov (United States)

    Lea, P. D.; Urquhart, J.

    2010-12-01

    The title quote, from a senior geoscience major, illustrates one of the important aspects of service learning. The associated authentic research experiences benefit not only learning of geoscience concepts, but also students’ perceptions of the role of science in society. For the past two years, a wide-ranging study of water-quality dynamics in the Androscoggin Lake watershed of Maine has engaged (1) introductory students and non-science majors in spring-semester courses, (2) upper-level geoscience majors in fall-semester courses, and (3) seniors undertaking independent summer research. The overall focus of the research is to understand nutrient loading to Androscoggin Lake, which receives back-flooded water from the industrialized Androscoggin River, as well as from agricultural lands in the connecting Dead River valley. Stakeholders include the local lake association, the state DEP, pulp-mill and wastewater-plant operators, and local farmers. A key element in the project is the role adopted by the student researchers vis-à-vis policy options. Following the taxonomy of Pielke (2007, The Honest Broker: Cambridge University Press), students doing service learning may serve as issue advocates, seeking to provide scientific support for the policy positions of community partners. In contrast, we have adopted explicitly the position of honest brokers who seek to understand and communicate the workings of this complex system without advocating specific policy solutions. This approach has facilitated buy-in from a larger range of stakeholders, and encouraged students to address choices in the roles and responsibilities of scientists in policy decisions—a valuable perspective for future scientists and non-scientists alike. In service-learning courses, groups of 3 to 5 students engage in a variety of sub-projects, such as lake-bottom sediment studies, nutrient sampling in streams and lakes, developing rating curves for streamflow, and calculating phosphorus fluxes

  14. Future Careers in Geoscience

    Science.gov (United States)

    van der Vink, G. E.; van der Vink, G. E.

    2001-05-01

    A new generation of Geoscientists are abandoning the traditional pathways of oil exploration and academic research to pursue careers in public policy, international affairs, business, education and diplomacy. They are using their backgrounds in Geoscience to address challenging, multi-disciplinary problems of societal concern. To prepare for such careers, students are developing a broad understanding of science and a basic literacy in economics, international affairs, and policy-making.

  15. Complementary Research on Student Geoscience Learning at Grand Canyon by Means of In-situ and Virtual Modalities

    Science.gov (United States)

    Semken, S. C.; Ruberto, T.; Mead, C.; Bruce, G.; Buxner, S.; Anbar, A. D.

    2016-12-01

    Education through exploration—typically in the field—is fundamental in geoscience. But not all students enjoy equal access to field-based learning, while technological advances afford ever more immersive, rich, and student-centered virtual field experiences. No virtual modalities yet conceived can supplant field-based learning, but logistical and financial contraints can render them the only practical option for enabling most students to explore pedagogically powerful but inaccessible places located across and even beyond Earth. We are producers of a growing portfolio of immersive virtual field trips (iVFTs) situated around the globe, and engaged in research on iVFT effectiveness. Our methods are more complementary than comparative, given that virtual and in-situ modalities have distinct advantages and disadvantages. In the case of iVFTs, these factors have not yet been well-studied. We conducted a mixed-methods complementary study in an introductory historical-geology class (n = 120) populated mostly by non-majors and representing the diversity of our large urban Southwestern research university. For the same course credit, students chose either an in-person field trip (ipFT) to Grand Canyon National Park (control group) or an online Grand Canyon iVFT (experimental group) to be done in the same time interval. We collected quantitative and qualitative data from both groups before, during, and after both interventions. Learning outcomes based on content elements of the Trail of Time Exhibition at Grand Canyon were assessed using pre/post concept sketching and formative inquiry exercises. Student attitudes and novelty-space factors were assessed pre- and post-intervention using the PANAS instrument of Watson and Clark and with questionnaires tailored to each modality. Coding and comparison of pre/post concept sketches showed improved conceptual knowledge in both groups, but more so in the experimental (iVFT) group. Emergent themes from the pre/post questionnaires

  16. Impacts and Feedbacks in a Warming Arctic: Engaging Diverse Learners in Geoscience Education and Research

    Science.gov (United States)

    Sparrow, Elena; Spellman, Katie; Fabbri, Cindy; Verbyla, David; Yoshikawa, Kenji; Fochesatto, Gilberto; Comiso, Josefino; Chase, Malinda; Jones, Debra; Bacsujlaky, Mara

    2016-04-01

    A warming climate has changed the timing of the seasons in the Arctic and elsewhere. Our project will engage learners in the investigation of the shifting seasons' impacts on vegetation, soils, hydrology, infrastructure, livelihoods, and communities and the feedbacks between these factors. Primary and secondary students, pre- and in-service teachers and lifelong learners will use historical and current National Aeronautics and Space Agency (NASA) data, NASA experts, and the Global Learning and Observations to Benefit the Environment (GLOBE) methods to help uncover the surprises from and consequences of earlier springs, warmer and later falls, changing ice cover, later freeze-up and earlier break-up of rivers and lakes. Key objectives are to: 1) provide new opportunities to bring NASA assets to learners of all ages, 2) enhance Science, Technology, Engineering and Mathematics (STEM) learning and understanding of the Earth system, 3) improve STEM instruction, 4) enhance STEM experience of undergraduate students, and 5) increase participation of groups historically underrepresented in STEM such as Native Americans who are also more vulnerable to climate change impacts. Incorporating issues of local importance with national and global implications, into educational experiences will make learning relevant which may be helpful to communities in developing strategies for adaptation. We intend to use NASA assets (e.g. MODIS snow data, NDVI, Cloudsat, and SMAP data), GLOBE methodologies (classic and new ground observations and measurements) to develop and deliver curriculum materials including culturally responsive learning activities, course/modules, professional development workshops, and educational experiences using best practices in pedagogy such as constructivism, inquiry- and place- based, interdisciplinary and systems approach, and cutting-edge technology to reach a variety of target audiences, while improving STEM education. Audiences include K-12 teachers and their

  17. Decision Strategy Research: Policy Support

    International Nuclear Information System (INIS)

    Hardeman, F.

    2000-01-01

    The objective of SCK-CEN's R and D programme on decision strategy research are (1) to support and advise the Belgian authorities on specific problems concerning existing and potential hazards from exposure to ionising radiation, both in normal and emergency situations; (2) to perform research on relevant topics that might have an important impact on decision making related to nuclear applications, including social and economic sciences. Main achievements in this area in 1999 are described

  18. Strong Geoscience Departments in Research-Intensive Universities: How do you Know you are One and how Much Planning is Needed to Stay One?

    Science.gov (United States)

    Richardson, R. M.; Beck, S. L.

    2003-12-01

    How do you know your geoscience department is strong? Can it stay that way without conscious planning, relying instead primarily upon day-to-day decisions? The University of Arizona is a member of the American Association of Universities (AAU), a self-selected group of 63 of the most research-intensive public and private institutions in the United States. We will present results of a concentrated look at our own department from both the perspective of the department head (SLB) and a newly reunited member of the department (RMR), returning from an extended stint in administration. In addition, we will present the results of a survey of selected geoscience departments at other AAU institutions. The survey will include demographic data on these departments in terms of numbers of faculty and students, and grant dollars if available, as well as what department heads see as the largest threats and opportunities for their departments in the next five years. We will also seek information on departmental efforts to recruit and retain both faculty and students, and efforts to integrate/balance research and education within the department and the institution. Finally, we will ask departments the extent to which they rely upon, or value, departmental planning efforts. As a beginning, the Department of Geosciences at the University currently has 27 tenure/tenure eligible faculty, 84 graduate students, and 68 undergraduate majors. Approximate annual grant dollars are on the order of \\$4M. The department head (SLB) feels that faculty retention and lack of space are among the largest threats to the department. Faculty retention is critical in an environment where funding is chronically short, and budget cuts have been significant over the last two years. Retention efforts typically involve collaborative efforts with the dean and/or provost. Among the opportunities for the department are the ability to extend and diversify funding within and beyond the NSF, typically multi- and

  19. A Geoscience Workforce Model for Non-Geoscience and Non-Traditional STEM Students

    Science.gov (United States)

    Liou-Mark, J.; Blake, R.; Norouzi, H.; Vladutescu, D. V.; Yuen-Lau, L.

    2016-12-01

    The Summit on the Future of Geoscience Undergraduate Education has recently identified key professional skills, competencies, and conceptual understanding necessary in the development of undergraduate geoscience students (American Geosciences Institute, 2015). Through a comprehensive study involving a diverse range of the geoscience academic and employer community, the following professional scientist skills were rated highly important: 1) critical thinking/problem solving skills; 2) effective communication; 3) ability to access and integrate information; 4) strong quantitative skills; and 5) ability to work in interdisciplinary/cross cultural teams. Based on the findings of the study above, the New York City College of Technology (City Tech) has created a one-year intensive training program that focusses on the development of technical and non-technical geoscience skills for non-geoscience, non-traditional STEM students. Although City Tech does not offer geoscience degrees, the primary goal of the program is to create an unconventional pathway for under-represented minority STEM students to enter, participate, and compete in the geoscience workforce. The selected cohort of STEM students engage in year-round activities that include a geoscience course, enrichment training workshops, networking sessions, leadership development, research experiences, and summer internships at federal, local, and private geoscience facilities. These carefully designed programmatic elements provide both the geoscience knowledge and the non-technical professional skills that are essential for the geoscience workforce. Moreover, by executing this alternate, robust geoscience workforce model that attracts and prepares underrepresented minorities for geoscience careers, this unique pathway opens another corridor that helps to ameliorate the dire plight of the geoscience workforce shortage. This project is supported by NSF IUSE GEOPATH Grant # 1540721.

  20. Sustaining Public Communication of Geoscience in the Mass Media Market

    Science.gov (United States)

    Keane, Christopher

    2017-04-01

    Most public communication about geoscience is either performed as a derivative of a research program or as part of one-off funded outreach activities. Few efforts are structured to both educate the public about geoscience while also attempting to establish a sustainable funding model. EARTH Magazine, a non-profit publications produced by the American Geosciences Institute, is a monthly geoscience news and information magazine geared towards the public. Originally a profession-oriented publication, titled Geotimes, the publication shifted towards public engagement in the 1990s, completing that focus in 1998. Though part of a non-profit institute, EARTH is not a recipient of grants or contributions to offset its costs and thus must strive to "break even" to sustain its operations and further its mission. How "break even" is measured in a mission-based enterprise incorporates a number of factors, including financial, but also community impact and offsets to other investments. A number of strategies and their successes and failures, both editorially in its focus on audience in scope, tone, and design, and from an operational perspective in the rapidly changing world of magazines, will be outlined. EARTH is now focused on exploring alternative distribution channels, new business models, and disaggregation as means towards broader exposure of geoscience to the widest audience possible.

  1. Diversifying Geoscience by Preparing Faculty as Workshop Leaders to Promote Inclusive Teaching and Inclusive Geoscience Departments

    Science.gov (United States)

    Macdonald, H.; Manduca, C. A.; Beane, R. J.; Doser, D. I.; Ebanks, S. C.; Hodder, J.; McDaris, J. R.; Ormand, C. J.

    2017-12-01

    Efforts to broaden participation in the geosciences require that faculty implement inclusive practices in their teaching and their departments. Two national projects are building the capacity for faculty and departments to implement inclusive practices. The NAGT/InTeGrate Traveling Workshops Program (TWP) and the Supporting and Advancing Geoscience Education in Two-Year Colleges (SAGE 2YC) project each prepares a cadre of geoscience educators to lead workshops that provide opportunities for faculty and departments across the country to enhance their abilities to implement inclusive teaching practices and develop inclusive environments with the goal of increasing diversity in the geosciences. Both projects prepare faculty to design and lead interactive workshops that build on the research base, emphasize practical applications and strategies, enable participants to share their knowledge and experience, and include time for reflection and action planning. The curriculum common to both projects includes a framework of support for the whole student, supporting all students, data on diversity in the geosciences, and evidence-based strategies for inclusive teaching and developing inclusive environments that faculty and departments can implement. Other workshop topics include classroom strategies for engaging all students, addressing implicit bias and stereotype threat, and attracting diverse students to departments or programs and helping them thrive. Online resources for each project provide support beyond the workshops. The TWP brings together educators from different institutional types and experiences to develop materials and design a workshop offered to departments and organizations nationwide that request the workshop; the workshop leaders then customize the workshop for that audience. In SAGE 2YC, a team of leaders used relevant literature to develop workshop materials intended for re-use, and designed a workshop session for SAGE 2YC Faculty Change Agents, who

  2. Strategies for exposing students to potential careers in the geosciences and preparing them with skillsets valued by today's workforce: a case study

    Science.gov (United States)

    Sloan, V.; Haacker, R.

    2016-12-01

    Students, graduate students, and postdocs facing the job market cite a lack of familiarity with non-academic careers in the geosciences, uncertainty about the skills needed, and fear of the future. We work with these groups in several education programs at the National Center for Atmospheric Research (NCAR), and have interviewed and polled them about these issues. Surveys of and focus groups with alumni from two of these programs, an undergraduate career development program and a postdoctoral study program, provided insight into their employment and the skills that they see as valuable in their careers. Using this data, we redesigned the one-week undergraduate program, called the NCAR Undergraduate Leadership Workshop, with the goals of: (1) exposing students to the diversity of careers in the geosciences; (2) providing students with practice developing their non-technical skills, and; (3) creating content about careers in the atmospheric sciences for sharing with other students in the community. Students self-organized into consulting groups and had to propose and design their projects. During the course of the week, students interacted with approximately twenty professionals from fields in or related to the geosciences through lectures, lunch conversations, and student-led interviews. The professionals were asked to described their own work and the meanders of their career paths, to illustrate the range of professions in our field. The teams then developed creative materials intended for sharing these profiles, such as websites, powerpoint presentations and videos, and presented them formally at the week's end. In this presentation, we will share about this case study, the survey results on competencies valued in today's STEM workforce, and techniques for giving students practice developing those skills.

  3. Improving Geoscience Education through the PolarTREC Teacher Research Experience Model (Invited)

    Science.gov (United States)

    Warburton, J.; Timm, K.; Larson, A. M.

    2010-12-01

    Teacher Research Experiences (TRE’s) are not new. For more than a decade, the National Science Foundation (NSF) as well as other federal agencies have been funding programs that place teachers with researchers in efforts to invigorate science education by bringing educators and researchers together through hands-on experiences. Many of the TRE’s are successful in providing a hands-on field experience for the teachers and researchers however many of the programs lack the resources to continue the collaborations and support the growing network of teachers that have had these field experiences. In 2007, NSF provided funding for PolarTREC—Teachers and Researchers Exploring and Collaborating, a program of the Arctic Research Consortium of the U.S. (ARCUS). PolarTREC is a TRE where K-12 teachers participate in polar field research, working closely with scientists as a pathway to improving science education. In just three years, it has become a successful TRE. What makes PolarTREC different than other the teacher research experience programs and how can others benefit from what we have learned? During this presentation, we will share data collected through the program evaluation and on how PolarTREC contributes to the discipline of Science, Technology, Engineering, and Mathematics (STEM) education and pedagogy through a model program conceived and organized according to current best practices, such as pre-research training, mentoring, support for classroom transfer, and long-term access to resources and support. Data shows that PolarTREC’s comprehensive program activities have many positive impacts on educators and their ability to teach science concepts and improve their teaching methods. Additionally, K-12 students polled in interest surveys showed significant changes in key areas including amount of time spent in school exploring research activities, importance of understanding science for future work, importance of understanding the polar regions as a person

  4. Summary of geoscience work at the AECL research site near Atikokan, Ontario

    International Nuclear Information System (INIS)

    Stone, D.

    1984-03-01

    Since 1979 June, geolgical, geophysical and hydro-geological investigations have been conducted at Research Area 4 north of Atikokan, Ontario as part of the Canadian Nuclear Fuel Waste Management Program. Composition, shape and internal structure of the Eye-Dashwa pluton were the subjects of regional field studies. Detailed research concentrated on the detection and characterization of surface and subsurface fractures within a 400-m x 800-m grid area, where five boreholes were drilled to depths of between 200 m and 1100 m. Fracture zones in the area were readily detected by surface mapping, ground very low frequency electromagnetic (VLF-EM) surveys and borehole logging. Borehole logs, downhole tube-wave seismic surveys, and thermal and television logging were successful in detecting open fractures in boreholes

  5. Geosciences research: cooperation with Swedish Nuclear Fuel and Waste Management Co. (SKB)

    International Nuclear Information System (INIS)

    1993-01-01

    PNC has been participating in the research program of the Construction Phase in Aespoe Hard Rock Laboratory project (HRL project), an underground research laboratory project initiated by Swedish Nuclear Fuel and Waste Management Company (SKB), since 1991. The main purpose of participating in the HRL project is to apply site characterization, prediction and validation methodology of geological environment in the project to R and D program on geological disposal in Japan. The outcome from investigations for the 0-700 m section in the access tunnel has been evaluated to compare with predictions on geological-structure. This report gives the summary of R and D program on the HRL project and preliminary results on evaluation of geological-structural predictions for the 0-700 m section in the access tunnel. (author)

  6. Empowering Geoscience with Improved Data Assimilation Using the Data Assimilation Research Testbed "Manhattan" Release.

    Science.gov (United States)

    Raeder, K.; Hoar, T. J.; Anderson, J. L.; Collins, N.; Hendricks, J.; Kershaw, H.; Ha, S.; Snyder, C.; Skamarock, W. C.; Mizzi, A. P.; Liu, H.; Liu, J.; Pedatella, N. M.; Karspeck, A. R.; Karol, S. I.; Bitz, C. M.; Zhang, Y.

    2017-12-01

    The capabilities of the Data Assimilation Research Testbed (DART) at NCAR have been significantly expanded with the recent "Manhattan" release. DART is an ensemble Kalman filter based suite of tools, which enables researchers to use data assimilation (DA) without first becoming DA experts. Highlights: significant improvement in efficient ensemble DA for very large models on thousands of processors, direct read and write of model state files in parallel, more control of the DA output for finer-grained analysis, new model interfaces which are useful to a variety of geophysical researchers, new observation forward operators and the ability to use precomputed forward operators from the forecast model. The new model interfaces and example applications include the following: MPAS-A; Model for Prediction Across Scales - Atmosphere is a global, nonhydrostatic, variable-resolution mesh atmospheric model, which facilitates multi-scale analysis and forecasting. The absence of distinct subdomains eliminates problems associated with subdomain boundaries. It demonstrates the ability to consistently produce higher-quality analyses than coarse, uniform meshes do. WRF-Chem; Weather Research and Forecasting + (MOZART) Chemistry model assimilates observations from FRAPPÉ (Front Range Air Pollution and Photochemistry Experiment). WACCM-X; Whole Atmosphere Community Climate Model with thermosphere and ionosphere eXtension assimilates observations of electron density to investigate sudden stratospheric warming. CESM (weakly) coupled assimilation; NCAR's Community Earth System Model is used for assimilation of atmospheric and oceanic observations into their respective components using coupled atmosphere+land+ocean+sea+ice forecasts. CESM2.0; Assimilation in the atmospheric component (CAM, WACCM) of the newly released version is supported. This version contains new and extensively updated components and software environment. CICE; Los Alamos sea ice model (in CESM) is used to assimilate

  7. Geoscience research helps rice farmers mitigate climate change and world hunger

    Science.gov (United States)

    Runkle, B.; Suvocarev, K.; Reba, M. L.

    2017-12-01

    Rice is a globally important crop - it comprises 30% of total human caloric consumption - and will be an important crop in the face of expanding population growth. Unfortunately, it is often grown in flooded paddies whose swampy conditions allow microbes to produce the strong greenhouse gas, methane. Over 10% of anthropogenic methane emission to the atmosphere are attributed to rice cultivation. Fortunately, a water-saving irrigation method known as Alternate Wetting and Drying can reduce methane emissions by periodically drying the soil. In our experiments, the method has no effect on rice harvest yields. In our research with rice farmers in Arkansas, we work to evaluate the amount of methane reductions on different fields with this irrigation practice. This research aims to expand the scientific basis for carbon emission reductions programs that enable farmers to be paid for implementing this practice. There are still gaps in our knowledge about how much methane is produced and under what conditions. Our research involves the continuous detection of field methane emissions and correlates then to changes in environmental conditions like the height and temperature of paddy water. Understanding these relationships may help more farmers qualify for credits in the growing carbon emission reductions programs. Because many farmers are already collecting information about their irrigation practices to reduce water applications, we aim to help them re-use this data to more quickly qualify for carbon emissions reductions payments.

  8. Enriching the Research Experiences for Undergraduates in Geoscience Through Student Feedback

    Science.gov (United States)

    Sears, R. F.; Bank, C. G.

    2014-12-01

    Research Experiences for Undergraduates (REU) allow students to work alongside professionals while they conduct scientific research and offer excellent opportunities to expose students to the practical components of their university education. Indeed, anecdotal evidence shows that a well-planned REU builds teamwork skills, provides a deeper understanding of the science learned in the classroom, and allows students to experience the various stages of science and thus consider wider career options. However, such evidence is difficult to measure. In this presentation we will present preliminary results from a survey of 2nd and 3rd year students who have been engaged in separate interdisciplinary projects (a geophysical survey in South Africa to assist archaeologists, and a forensic study in collaboration with the provincial police). Our before and after surveys address criteria such as students' understanding of scientific methodology, familiarity with the topic and tools for the research, expectations of the study and of themselves, and logistics of doing science. It is our hope that the student voices we present will help REU program coordinators to address limitations and establish best practices to provide the richest possible learning experience.

  9. International strategy for Nanotechnology Research

    International Nuclear Information System (INIS)

    Roco, M.C.

    2001-01-01

    The worldwide nanotechnology research and development (R and D) investment reported by government organizations has increased by a factor of 3.5 between 1997 and 2001, and the highest rate of 90% is in 2001. At least 30 countries have initiated or are beginning national activities in this field. Scientists have opened a broad net of discoveries that does not leave any major research area untouched in physical, biological, and engineering sciences. Industry has gained confidence that nanotechnology will bring competitive advantages. The worldwide annual industrial production is estimated to exceed $1 trillion in 10-15 years from now, which would require about 2 million nanotechnology workers. U.S. has initiated a multidisciplinary strategy for development of science and engineering fundamentals through the National Nanotechnology Initiative. Japan and Europe have broad programs, and their current plans look ahead to four to five years. Other countries have encouraged their own areas of strength, several of them focusing on fields of the potential markets. Differences among countries are observed in the research domain they are aiming for, the level of program integration into various industrial sectors, and in the time scale of their R and D targets. Nanotechnology is growing in an environment where international interactions accelerate in science, education and industrial R and D. A global strategy of mutual interest is envisioned by connecting individual programs of contributing countries, professional communities, and international organizations

  10. Building persistent identifier systems for geoscience research - Technical solutions and community governance

    Science.gov (United States)

    Klump, J. F.; Lehnert, K. A.; Huber, R.

    2015-12-01

    The emergence of the Internet gave rise to the expectation that the internet would lead to greater accessibility, transparency and reproducibility of research results. New communication technologies enabled far easier and faster collaboration in larger, geographically more distributed networks. However, the distributed and disorganised nature of the internet not only allowed new technologies to emerge, it also made it difficult to maintain a persistent record of science. Persistent identifiers were invented to allow unambiguous identification of resources on the net. At first, these resources referred to scholarly literature and related resources. The concept of using persistent identifiers has since been expanded to other, non-textual resources, like datasets and geological specimens, and more recently to authors and contributors of scholarly works, and to software and instruments.Setting up identifier systems is technically trivial. The real challenge lies in creating a governance system for the respective identifiers. While Digital Object Identifiers (DOI) were originally invented by the publishing industry, they quickly became an established way for the identification of research resources. Other identifier systems, some of them using DOI as an example, were developed as grass-roots efforts by the scientific community.Together with semantic technologies and linked data, unambiguous identification allows us to harness information at large scales beyond human comprehension. The technical possibilities offered by technology challenge some of the norms of scholarly cooperation, such as using and sharing resources beyond the emulation of paper-based publications.This presentation will discuss the development of persistent identification of research resources as a community effort, using the technical and governance patterns developed for DOI and for IGSN for data as an example.

  11. My geoscience research and how it matters to you: Corn, climate, and classrooms

    Science.gov (United States)

    McGill, B. M.

    2017-12-01

    In a corn field far north of New Orleans, I study how carbon moves between soils, water, and the atmosphere. More specifically, I look at how different farming practices affect carbon dioxide (CO2) emissions from the soil to the atmosphere and carbon storage in the soil and water. This is important because soils store about twice as much carbon as the atmosphere, so we need to understand how human activities, such as agriculture, disrupt or enhance carbon movement and, ultimately, contribute to or mitigate climate change. Carefully accounting for an ecosystem's greenhouse gas balance (emissions vs. storage) helps climate scientists project how future climate change will affect all of us. My research demonstrates that, in some cases, croplands are storing carbon—this finding will improve the accuracy of existing calculations of carbon gains and losses on farms. This could help farmers get credit for storing carbon in a future scenario with a price on carbon, and this could help policy makers design policy that incentivizes best management practices. Furthermore, through this work I have mentored undergraduate students and collaborated with a local high school science teacher and her classroom. This work was conducted at the only NSF-funded Long Term Ecological Research site focused on cropland agriculture, the Kellogg Biological Station LTER at Michigan State University.

  12. Linking Research, Education and Public Engagement in Geoscience: Leadership and Strategic Partnerships - Chris McEntee

    Science.gov (United States)

    McEntee, C.; Moosavi, S. C.; Laj, C. E.; Chambers, L. H.; Harcourt, P.; Spellman, K.; McEntee, C.

    2017-12-01

    The American Geophysical Union is the world's largest Earth and space science society. Under a strategic plan adopted in 2010, AGU has been steadily expanding science outreach and public engagement through a variety of different types of strategic alliances and partnerships at the local, national, regional and global levels. Building on its strength as a convener, AGU has been assuming leadership and forging strategic partnerships within and outside the scientific/research community in areas that are advancing global commitment to open data, building broader coalitions in science policy, addressing harassment in the scientific work environment, and forging scientific-community relationships to address local problems arising from climate change, hazards and disasters and natural resource limitations.

  13. Engaging Undergraduate Math Majors in Geoscience Research using Interactive Simulations and Computer Art

    Science.gov (United States)

    Matott, L. S.; Hymiak, B.; Reslink, C. F.; Baxter, C.; Aziz, S.

    2012-12-01

    As part of the NSF-sponsored 'URGE (Undergraduate Research Group Experiences) to Compute' program, Dr. Matott has been collaborating with talented Math majors to explore the design of cost-effective systems to safeguard groundwater supplies from contaminated sites. Such activity is aided by a combination of groundwater modeling, simulation-based optimization, and high-performance computing - disciplines largely unfamiliar to the students at the outset of the program. To help train and engage the students, a number of interactive and graphical software packages were utilized. Examples include: (1) a tutorial for exploring the behavior of evolutionary algorithms and other heuristic optimizers commonly used in simulation-based optimization; (2) an interactive groundwater modeling package for exploring alternative pump-and-treat containment scenarios at a contaminated site in Billings, Montana; (3) the R software package for visualizing various concepts related to subsurface hydrology; and (4) a job visualization tool for exploring the behavior of numerical experiments run on a large distributed computing cluster. Further engagement and excitement in the program was fostered by entering (and winning) a computer art competition run by the Coalition for Academic Scientific Computation (CASC). The winning submission visualizes an exhaustively mapped optimization cost surface and dramatically illustrates the phenomena of artificial minima - valley locations that correspond to designs whose costs are only partially optimal.

  14. Developing Short-Term Indicators of Recruitment and Retention in the Geosciences

    Science.gov (United States)

    Fuhrman, M.; Gonzalez, R.; Levine, R.

    2004-12-01

    The NSF Opportunities for Enhancing Diversity in the Geosciences (OEDG) program awards grants to projects that are intended to increase participation in geoscience careers by members of groups that have been traditionally underrepresented in the geosciences. OEDG grantee projects use a variety of strategies intended to influence the attitudes, beliefs, and behaviors of underrepresented students at levels from K-12 to graduate school. The ultimate criterion for assessing the success of a project is the number of underrepresented minority students who become geoscientists (and who would not have otherwise become geoscientists). For most projects this criterion can only be observed in the distant future. In order to develop shorter-term indicators of program success, researchers at AIR developed a conceptual framework based on a review of the literature and discussion with geoscientists. This model allowed us to identify an extensive, but not fully comprehensive, set of indicators. There are undoubtedly other potential indicators of recruitment and retention in the geosciences. The research literature reviewed was a general literature, dealing with science, technology, engineering, and/or mathematics (STEM) college major or career choice by individuals who are underrepresented group members, so the model is based on indicators of retention in a general STEM career path rather than a specific geoscience path. Nonetheless, it is our belief that retention in STEM is critical for retention in geoscience. In the past year, AIR staff have conducted a critical incident study to further refine this model. This study focused on factors unique to the geosciences. The goal was to learn about behaviors that encouraged or discouraged someone from becoming a geoscientist, where individual behaviors are termed as "incidents." The preliminary data, the impact of this pilot study on the model, and the revised model will be presented. Some examples of behaviors our study found that

  15. Geoscience Perspectives in Carbon Sequestration - Educational Training and Research Through Classroom, Field, and Laboratory Investigations

    Energy Technology Data Exchange (ETDEWEB)

    Wronkiewicz, David [Missouri Univ. of Science and Technology, Rolla, MO (United States); Paul, Varum [Missouri Univ. of Science and Technology, Rolla, MO (United States); Abousif, Alsedik [Missouri Univ. of Science and Technology, Rolla, MO (United States); Ryback, Kyle [Missouri Univ. of Science and Technology, Rolla, MO (United States)

    2013-09-30

    The most effective mechanism to limit CO2 release from underground Geologic Carbon Sequestration (GCS) sites over multi-century time scales will be to convert the CO2 into solid carbonate minerals. This report describes the results from four independent research investigations on carbonate mineralization: 1) Colloidal calcite particles forming in Maramec Spring, Missouri, provide a natural analog to evaluate reactions that may occur in a leaking GCS site. The calcite crystals form as a result of physiochemical changes that occur as the spring water rises from a depth of more than 190'. The resultant pressure decrease induces a loss of CO2 from the water, rise in pH, lowering of the solubility of Ca2+ and CO32-, and calcite precipitation. Equilibrium modelling of the spring water resulted in a calculated undersaturated state with respect to calcite. The discontinuity between the observed occurrence of calcite and the model result predicting undersaturated conditions can be explained if bicarbonate ions (HCO3-) are directly involved in precipitation process rather than just carbonate ions (CO32-). 2) Sedimentary rocks in the Oronto Group of the Midcontinent Rift (MCR) system contain an abundance of labile Ca-, Mg-, and Fe-silicate minerals that will neutralize carbonic acid and provide alkaline earth ions for carbonate mineralization. One of the challenges in using MCR rocks for GCS results from their low porosity and permeability. Oronto Group samples were reacted with both CO2-saturated deionized water at 90°C, and a mildly acidic leachant solution in flow-through core-flooding reactor vessels at room temperature. Resulting leachate solutions often exceeded the saturation limit for calcite. Carbonate crystals were also detected in as little as six days of reaction with Oronto Group rocks at 90oC, as well as experiments with forsterite

  16. Mentoring Through Research as a Catalyst for the Success of Under-represented Minority Students in the Geosciences at California State University Northridge

    Science.gov (United States)

    Marsaglia, K. M.; Pedone, V.; Simila, G. W.; Yule, J. D.

    2002-12-01

    The Catalyst Program of the Department of Geological Sciences at California State University Northridge has been developed by four faculty members who were the recipients of a three-year award (2002-2005) from the National Science Foundation. The goal of the program is to increase minority participation and success in the geosciences. The program seeks to enrich the educational experience by introducing students at all levels to research in the geosciences and to decrease obstacles that affect academic success. Both these goals are largely achieved by the formation of integrated high school, undergraduate, and graduate research groups, which also provide fulfilling and successful peer mentorship. The Catalyst Program provides significant financial support to participants to allow them to focus their time on their education. New participants first complete a specially designed course that introduces them to peer-mentoring, collaborative learning, and geological research. Students of all experience levels then become members of research teams, which deepens academic and research skills as well as peer-mentor relationships. The program was highly successful in its inaugural year. To date, undergraduates and graduate students in the program coauthored six abstracts at professional meetings and one conference paper. High-school students gained first hand experience of a college course and geologic research. Perhaps the most important impacts of the program are the close camaraderie that has developed and the increased ability of the Catalyst students to plan and execute research with greater confidence and self-esteem.

  17. Attracting and Retaining Undergraduate Students in the Geosciences: A Multipronged Approach

    Science.gov (United States)

    Chantale Damas, M.

    2017-04-01

    The geosciences are taught at relatively few colleges and universities in the United States. Furthermore, fewer students are selecting the geosciences as careers and where the loss of retired scientists is significant. Thus, new approaches and strategies are needed to attract and retain students in the geosciences. The aim of this project is to both increase the diversity and visibility of the geosciences at the undergraduate level. Using both an interdisciplinary and inter-institutional approach, the Queensborough Community College (QCC) of the City University of New York (CUNY) has been very successful at engaging students in educational activities and applied research in solar, geospace, and atmospheric physics, under the umbrella discipline of space weather. As an interdisciplinary field, space weather offers students a great opportunity to study the Sun-Earth connection. Additionally, students also receive support through several partner institutions including the NASA Goddard Spaceflight Center (GSFC) Community Coordinated Modeling Center (CCMC), four-year colleges and universities, and other summer research programs. With its institutional partners, QCC has implemented a year-long program with two components: 1) during the academic year, students are enrolled in a course-based introductory research (CURE) where they conduct research on real-world problems; and 2) during the summer, students are placed in research internships at partner institutions. This poster will describe these approaches, as well as present best strategies that are used to attract and retain students in the geosciences.

  18. Examining sexism in the geosciences

    Science.gov (United States)

    Simarski, Lynn Teo

    Do women geoscientists face worse obstacles because of their gender than women in other sciences? A recent survey by the Committee on Professionals in Science and Technology showed that women with geoscience bachelor's degrees start off at only 68% of their male colleagues' salaries, much lower than women in biology (92%), engineering (102%), chemistry (103%), and physics (111%).Women still lag behind men in geoscience degrees as well. In 1990, women received about one-third of geoscience bachelor's degrees, one-quarter of masters, and about one-fifth of Ph.D.'s, reports the American Geological Institute. In the sciences overall, women received about half of bachelor's degrees, 42% of masters, and about a third of Ph.D.'s in 1989, according to the National Research Council.

  19. Research strategies for human performance

    International Nuclear Information System (INIS)

    1998-01-01

    Knowledge about factors that influence Human Performance is essential for the safety of nuclear power plant operation. Through a number of tasks, workshops and projects, experience is shared among OECD countries. At its December 1996 meeting, the CSNI endorsed the SESAR/CAF report on 'Nuclear Safety Research in OECD Countries: Capabilities and Facilities' and requested that the Principal Working Groups (PWGs) review existing co-operative programmes and develop specifications for programmes which address the identified needs. Following discussions between the chairmen of these PWGs and the NEA Secretariat, it was concluded that, for this technical area, the development of programme specifications must be preceded by the development of a strategic document that further elaborates the conclusions of the SESAR/CAF report and set out the general orientation of the research over the medium and long term. Accordingly, a group of senior experts met in August 1997 to discuss possible strategies in the area of Human Performance. The objectives of this meeting were: - To exchange information on existing plans and strategies by different Member countries; - To determine relevant issues and realistic medium/long-term targets and expectations for their resolution, and - To determine, in general sense, possible research programmes, their priority and their likelihood for success. This document is the result of this meeting. Its objective is to present to the CSNI proposals for future work on Human Performance research. The proposals are built upon the work performed to date by PWG1 and PWG5. Carrying out these proposals will continue to require close coordination on joint activities between these two PWGs. Reinforced systematic networking activities are needed particularly in management and organisational performance research to initiate and manage comparison and benchmarking activities. Synchronising the availability of funding is a specific problem in many cases. Since most

  20. Nurturing a growing field: Computers & Geosciences

    Science.gov (United States)

    Mariethoz, Gregoire; Pebesma, Edzer

    2017-10-01

    Computational issues are becoming increasingly critical for virtually all fields of geoscience. This includes the development of improved algorithms and models, strategies for implementing high-performance computing, or the management and visualization of the large datasets provided by an ever-growing number of environmental sensors. Such issues are central to scientific fields as diverse as geological modeling, Earth observation, geophysics or climatology, to name just a few. Related computational advances, across a range of geoscience disciplines, are the core focus of Computers & Geosciences, which is thus a truly multidisciplinary journal.

  1. Advances and Directions for the Intelligent Systems for Geosciences Research Community: Updates and Opportunities from the NSF EarthCube IS-GEO RCN

    Science.gov (United States)

    Pierce, S. A.

    2017-12-01

    The Earthcube Intelligent Systems for Geosciences Research Collaboration Network (IS-GEO RCN) represents an emerging community of interdisciplinary researchers aiming to create fundamental new capabilities for understanding Earth systems. Collaborative efforts across IS-GEO fields of study offer opportunities to accelerate scientific discovery and understanding. The IS-GEO community has an active membership of approximately 65 researchers and includes researchers from across the US, international members, and an early career committee. Current working groups are open to new participants and are focused on four thematic areas with regular coordination meetings and upcoming sessions at professional conferences. (1) The Sensor-based data Collection and Integration Working group looks at techniques for analyzing and integrating of information from heterogeneous sources, with a possible application for early warning systems. (2) The Geoscience Case Studies Working group is creating benchmark data sets to enable new collaborations between geoscientists and data scientists. (3) The Geo-Simulations Working group is evaluating the state of the art in practices for parametrizations, scales, and model integration. (4) The Education Working group is gathering, organizing and collecting all the materials from the different IS-GEO courses. Innovative IS-GEO applications will help researchers overcome common challenges while will redefining the frontiers of discovery across fields and disciplines. (Visit IS-GEO.org for more information or to sign up for any of the working groups.)

  2. Writing fiction about geoscience

    Science.gov (United States)

    Andrews, S.

    2013-12-01

    Employment in geology provides excellent preparation for writing mystery novels that teach geoscience. While doing pure research at the USGS under the mentorship of Edwin D. McKee, I learned that the rigors of the scientific method could be applied not only to scientific inquiry but to any search for what is true, including the art of storytelling (the oldest and still most potent form of communication), which in turn supports science. Geoscience constructs narratives of what has happened or what might happen; hence, to communicate my findings, I must present a story. Having developed my writing skills while preparing colleague-reviewed papers (which required that I learn to set my ego aside and survive brutal critiques), the many rounds of edits required to push a novel through a publishing house were a snap. My geoscience training for becoming a novelist continued through private industry, consultancy, and academia. Employment as a petroleum geologist added the pragmatism of bottom-line economics and working to deadlines to my skill set, and nothing could have prepared me for surviving publishers' rejections and mixed reviews better than having to pitch drilling projects to jaded oil patch managers, especially just before lunchtime, when I was all that stood between them and their first martinis of the day. Environmental consulting was an education in ignorant human tricks and the politics of resource consumption gone astray. When teaching at the college level and guest lecturing at primary and secondary schools, my students taught me that nothing was going to stick unless I related the story of geoscience to their lives. When choosing a story form for my novels, I found the mystery apropos because geoscientists are detectives. Like police detectives, we work with fragmentary and often hidden evidence using deductive logic, though our corpses tend to be much, much older or not dead yet. Throughout my career, I learned that negative stereotypes about scientists

  3. GOLD: Building capacity for broadening participation in the Geosciences

    Science.gov (United States)

    Adams, Amanda; Patino, Lina; Jones, Michael B.; Rom, Elizabeth

    2017-04-01

    The geosciences continue to lag other science, technology, engineering, and mathematics (STEM) disciplines in the engagement, recruitment and retention of traditionally underrepresented and underserved minorities, requiring more focused and strategic efforts to address this problem. Prior investments made by the National Science Foundation (NSF) related to broadening participation in STEM have identified many effective strategies and model programs for engaging, recruiting, and retaining underrepresented students in the geosciences. These investments also have documented clearly the importance of committed, knowledgeable, and persistent leadership for making local progress in broadening participation in STEM and the geosciences. Achieving diversity at larger and systemic scales requires a network of diversity "champions" who can catalyze widespread adoption of these evidence-based best practices and resources. Although many members of the geoscience community are committed to the ideals of broadening participation, the skills and competencies that empower people who wish to have an impact, and make them effective as leaders in that capacity for sustained periods of time, must be cultivated through professional development. The NSF GEO Opportunities for Leadership in Diversity (GOLD) program was implemented in 2016, as a funding opportunity utilizing the Ideas Lab mechanism. Ideas Labs are intensive workshops focused on finding innovative solutions to grand challenge problems. The ultimate aim of this Ideas Lab, organized by the NSF Directorate for Geosciences (GEO), was to facilitate the design, pilot implementation, and evaluation of innovative professional development curricula that can unleash the potential of geoscientists with interests in broadening participation to become impactful leaders within the community. The expectation is that mixing geoscientists with experts in broadening participation research, behavioral change, social psychology, institutional

  4. Strategy for offshore research. Summaries and objectives of strategy papers

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    This report presents a summary of the Offshore Safety Division`s research strategy. Topics discussed include fire and blast, wells and well operation, collisions, structural failure (steel and concrete), moorings failure, material performance, floating stability, oceanographic and fluid loading, diver physiology, diving operations, pipelines occupational hazards, long-term health, and evacuation, escape and rescue. Research objectives within each strategy are highlighted. (UK)

  5. Outer geosciences

    International Nuclear Information System (INIS)

    Blake, R.L.

    1979-06-01

    This report presents an objective discussion of the importance of the atmospheric/solar-terrestrial system to national energy programs. A brief sketch is given of the solar-terrestrial environment, extending from the earth's surface to the sun. Processes in this natural system influence several energy activities directly or indirectly, and some present and potential energy activities can influence the natural system. It is not yet possible to assess the two-way interactions quantitatively or to evaluate the economic impact. An investment by the Department of Energy (DOE) in a long-range basic research program would be an important part of the department's mission. Existing programs by other agencies in this area of research are reviewed, and a compatible DOE program is outlined. 18 figures, 5 tables

  6. The Geoscience Diversity Enhancement Program (GDEP): Building an Earth System Science Centered Research, Education, and Outreach Effort in Urban Long Beach, California

    Science.gov (United States)

    Ambos, E. L.; Behl, R.; Francis, R. D.; Larson, D. O.; Ramirez, M.; Rodrigue, C.; Sample, J.; Wechsler, S.; Whitney, D.; Hazen, C.

    2002-12-01

    The Geoscience Diversity Enhancement Program (GDEP) is an NSF-OEDG funded project at California State University, Long Beach (CSULB). Program goals include increasing awareness of geoscience careers, and the availability and accessibility of research experiences, to area high school and community college faculty and students from underrepresented groups. Begun in fall 2001, GDEP involves faculty leadership within three CSULB departments; geological sciences, geography, and anthropology, as well as five community colleges, and one of the largest K-12 school districts in California, Long Beach Unified. In addition, linkages to CSULB's outreach and student orientation activities are strong, with the facilitation of staff in CSULB's Student Access to Science and Mathematics (SAS) Center. During the first year, program activities centered around three major objectives: (1) creating the CSULB leadership team, and developing a robust and sustainable decision-making process, coupled with extensive relationship-building with community college and high school partners, (2) creating an evaluation plan that reflects institutional and leadership goals, and comprehensively piloting evaluation instruments, and, (3) designing and implementing a summer research experience, which was successfully inaugurated during summer 2002. We were very successful in achieving objective (1): each member of the leadership group took strong roles in the design and success of the program. Several meetings were held with each community college and high school faculty colleague, to clarify and reaffirm program values and goals. Objective (2), led by project evaluator David Whitney, resulted in an array of evaluation instruments that were tested in introductory geology, geography, and archaeology courses at CSULB. These evaluation instruments were designed to measure attitudes and beliefs of a diverse cross-section of CSULB students. Preliminary analysis of survey results reveals significant

  7. Mobility of College-level Student Ideas as Revealed by the Geoscience Concept Inventory: Implications for Teaching Introductory Courses

    Science.gov (United States)

    Anderson, S. W.; Libarkin, J.

    2008-12-01

    Through the administration of the Geoscience Concept Inventory (GCI) in over 50 introductory college-level geosciences courses nationwide, we identified little to no pre- to post-test gain on many of the GCI questions. Although it may seem reasonable to attribute these results to the entrenchment of ideas in this population of students, a closer look at individual matched pre- and post-tests shows that student ideas about the Earth are extremely mobile rather than entrenched. For those individual GCI questions that show low or no gain from pre- to post-test, individual students are typically switching between wrong answers, rather than holding on to one particular alternative conception. Of the 21 GCI questions that showed a normalized gain of college-level geosciences courses. We suggest that students may have difficulty settling on a correct geosciences conception because of the shaky supporting-science underpinnings upon which these geosciences concepts are built. An important question stemming from these results is "when does learning occur in college-level courses?". Given that students in most introductory geosciences courses show little or no overall gain over the course of a semester, when do our geology majors gain a firm conceptual understanding of our fundamental geosciences topics, what role does the introductory course play in their learning, and are there strategies that can be employed in introductory courses to enhance learning for those students who will only take one college-level geosciences course? In light of findings available from GCI and other research, we suggest that longitudinal studies of learning in the geosciences are needed for time periods longer than a semester, and that more attention be paid to when conceptual change occurs for our majors.

  8. Transforming Defense Basic Research Strategy

    National Research Council Canada - National Science Library

    Fountain, Augustus W

    2004-01-01

    .... Public funding of basic research for the DoD during the Cold War was successful because it minimized risk through taking maximum advantage of long term research projects that produced rather mature...

  9. Promoting Original Scientific Research and Teacher Training Through a High School Science Research Program: A Five Year Retrospective and Analysis of the Impact on Mentored 8th Grade Geoscience Students and the Mentors Themselves

    Science.gov (United States)

    Danch, J. M.

    2015-12-01

    In 2010 a group of 8th grade geoscience students participated in an extracurricular activity allowing them to conduct original scientific research while being mentored by students enrolled in a 3 - year high school Science Research program. Upon entering high school the mentored students themselves enrolled in the Science Research program and continued for 4 years, culminating with their participation in Science Research 4. This allowed them to continue conducting original scientific research, act as mentors to 8th grade geoscience students and to provide teacher training for both middle and high school teachers conducting inquiry-based science lessons. Of the 7 Science Research 4 students participating since 2010, 100% plan on majoring or minoring in a STEM - related field in college and their individual research projects have been been granted over 70 different awards and honors in science fair and symposia including a 3rd and 4th place category awards at two different international science fairs - the International Sustainable Energy Engineering and Environment Project (iSWEEP) and the International Science and Engineering Fair (ISEF). Science Research 4 students developed and conducted a Society for Science and the Public affiliated science fair for middle school students enrolled in an 8th grade honors geoscience program allowing over 100 students from 5 middle schools to present their research and be judged by STEM professionals. Students with research judged in the top 10% were nominated for participation in the National Broadcom MASTERS program which they successfully entered upon further mentoring from the Science Research 4 students. 8th grade enrollment in the Science Research program for 2015 increased by almost 50% with feedback from students, parents and teachers indicating that the mentorship and participation in the 8th grade science fair were factors in increasing interest in continuing authentic scientific research in high school.

  10. Research by design - a research strategy

    DEFF Research Database (Denmark)

    Hauberg, Jørgen

    2011-01-01

    Abstract The idea of an expressive component in research is important to the architectural industry. The expressive element - the possibility of expressing the qualitative aspects of the world and adding something new to the existing through experiments and proposals - is characteristic for the f......Abstract The idea of an expressive component in research is important to the architectural industry. The expressive element - the possibility of expressing the qualitative aspects of the world and adding something new to the existing through experiments and proposals - is characteristic...... for the field. All research environments, in the science tradition and in the humanities, have their characteristics. On the one hand, they live up to certain common scientific and methodological criteria - originality and transparency - on the other hand they have different practices, using different methods....... Research is ‘coloured’ by traditions and professions, and research in architecture should be coloured too, taking in consideration that the practise of architects stretch from natural science and sociology to art, and because the most important way in which the architect achieves new cognition is through...

  11. Research by Design - a research strategy

    DEFF Research Database (Denmark)

    Hauberg, Jørgen

    2011-01-01

    Abstract The idea of an expressive component in research is important to the architectural industry. The expressive element - the possibility of expressing the qualitative aspects of the world and adding something new to the existing through experiments and proposals - is characteristic for the f......Abstract The idea of an expressive component in research is important to the architectural industry. The expressive element - the possibility of expressing the qualitative aspects of the world and adding something new to the existing through experiments and proposals - is characteristic...... for the field. All research environments, in the science tradition and in the humanities, have their characteristics. On the one hand, they live up to certain common scientific and methodological criteria - originality and transparency – and on the other hand, they have different practices, using different...... methods. Research is ‘coloured’ by traditions and professions, and research in architecture should be coloured too, taking into consideration that the practice of architects stretches from natural science and sociology to art and that the most important way in which the architect achieves new cognition...

  12. Foresight and strategy in national research councils and research programmes

    DEFF Research Database (Denmark)

    Andersen, Per Dannemand; Borup, Mads

    2009-01-01

    processes of two organisations: the Danish Technical Research Council and the Danish Energy Research Programme. We analysed the mechanisms of the strategy processes and studied the actors involved. The actors’ understanding of strategy was also included in the analysis. Based on these analyses we argue......This paper addresses the issue of foresight and strategy processes of national research councils and research programmes. It is based on a study of strategy processes in national research councils and programmes and the challenges faced by their strategy activities. We analysed the strategy...... that the impact of foresight exercises can be improved if we have a better understanding of the traditions and new challenges faced by the research councils. We also argue that a more formal use of foresight elements might improve the legitimacy and impact of the strategic considerations of research councils...

  13. Student Attendance: Research and Strategies. Research Brief

    Science.gov (United States)

    Johnston, Howard

    2005-01-01

    What are the characteristics of successful student attendance programs for the high school? It is commonly believed and well supported by research that students who attend school regularly are more successful than those who do not. The challenge for high schools is to design and implement attendance policies and programs that monitor, encourage,…

  14. Research-Based Instructional Strategies

    Science.gov (United States)

    Hoover, Clara

    2006-01-01

    School library media specialists have four primary responsibilities: teacher, instructional partner, information specialist, and program administrator. As instructional partners, school library media specialists collaborate in designing instruction and learning activities that "reflect the best in current research and practice." Researchers at the…

  15. Decision strategy research: system analysis

    International Nuclear Information System (INIS)

    Carle, B.

    2000-01-01

    The objective of SCK-CEN's R and D programme on decision strategies is (1) to develop theories, methods and software tools which help decision makers shape, analyse and understand their decisions; (2) to study group processes in decision making; (3) to apply theories, methods and tools in a context related to nuclear emergency preparedness and more generally to support in a context dealing with ionising radiation; (4) to increase SCK-CEN's knowledge on general emergency preparedness and to introduce SCK-CEN staff to computer supported decision techniques. Ongoing R and D has two components: (1) the study of the use of information and knowledge transfer in group decision processes, and more specific studying important factors when computers are used as information source and communication tool; and (2) the study of preference modelling individually and during group decision processes. Principal achievements in 1999 are described

  16. Decision strategy research: system analysis

    Energy Technology Data Exchange (ETDEWEB)

    Carle, B

    2000-07-01

    The objective of SCK-CEN's R and D programme on decision strategies is (1) to develop theories, methods and software tools which help decision makers shape, analyse and understand their decisions; (2) to study group processes in decision making; (3) to apply theories, methods and tools in a context related to nuclear emergency preparedness and more generally to support in a context dealing with ionising radiation; (4) to increase SCK-CEN's knowledge on general emergency preparedness and to introduce SCK-CEN staff to computer supported decision techniques. Ongoing R and D has two components: (1) the study of the use of information and knowledge transfer in group decision processes, and more specific studying important factors when computers are used as information source and communication tool; and (2) the study of preference modelling individually and during group decision processes. Principal achievements in 1999 are described.

  17. Spatiotemporal Thinking in the Geosciences

    Science.gov (United States)

    Shipley, T. F.; Manduca, C. A.; Ormand, C. J.; Tikoff, B.

    2011-12-01

    Reasoning about spatial relations is a critical skill for geoscientists. Within the geosciences different disciplines may reason about different sorts of relationships. These relationships may span vastly different spatial and temporal scales (from the spatial alignment in atoms in crystals to the changes in the shape of plates). As part of work in a research center on spatial thinking in STEM education, we have been working to classify the spatial skills required in geology, develop tests for each spatial skill, and develop the cognitive science tools to promote the critical spatial reasoning skills. Research in psychology, neurology and linguistics supports a broad classification of spatial skills along two dimensions: one versus many objects (which roughly translates to object- focused and navigation focused skills) and static versus dynamic spatial relations. The talk will focus on the interaction of space and time in spatial cognition in the geosciences. We are working to develop measures of skill in visualizing spatiotemporal changes. A new test developed to measure visualization of brittle deformations will be presented. This is a skill that has not been clearly recognized in the cognitive science research domain and thus illustrates the value of interdisciplinary work that combines geosciences with cognitive sciences. Teaching spatiotemporal concepts can be challenging. Recent theoretical work suggests analogical reasoning can be a powerful tool to aid student learning to reason about temporal relations using spatial skills. Recent work in our lab has found that progressive alignment of spatial and temporal scales promotes accurate reasoning about temporal relations at geological time scales.

  18. Research strategies for the U.S. Global Change Research Program

    National Research Council Canada - National Science Library

    Mooney, Harold A

    1990-01-01

    ... Change (U.S. National Committee for the IGBP) of the Commission on Geosciences, Environment, and Resources National Research Council NATIONAL ACADEMY PRESS Washington, D.C. 1990 Copyrightthe cannot be not from book, paper however, version for formatting, original authoritative the typesetting-specific the as from created publication files XML from ...

  19. Erratum: Google Earth as Geoscience Data Browser Project: Development of a Tool to Convert JAMSTEC Research Vessel Navigation Data to KML [Data Science Journal, Volume 8, 30 March 2009. S85-S91

    Directory of Open Access Journals (Sweden)

    Y Yamagishi

    2009-07-01

    Full Text Available The following PDF indicates errata for the original article entitled "Google Earth as Geoscience Data Browser Project: Development of a Tool to Convert JAMSTEC Research Vessel Navigation Data to KML" by Y Yamagishi, H Nagao, K Suzuki, H Tamura, T Hatakeyama, H Yanaka and S Tsuboi.

  20. Geoscience Workforce Development at UNAVCO: Leveraging the NSF GAGE Facility

    Science.gov (United States)

    Morris, A. R.; Charlevoix, D. J.; Miller, M.

    2013-12-01

    Global economic development demands that the United States remain competitive in the STEM fields, and developing a forward-looking and well-trained geoscience workforce is imperative. According to the Bureau of Labor Statistics, the geosciences will experience a growth of 19% by 2016. Fifty percent of the current geoscience workforce is within 10-15 years of retirement, and as a result, the U.S. is facing a gap between the supply of prepared geoscientists and the demand for well-trained labor. Barring aggressive intervention, the imbalance in the geoscience workforce will continue to grow, leaving the increased demand unmet. UNAVCO, Inc. is well situated to prepare undergraduate students for placement in geoscience technical positions and advanced graduate study. UNAVCO is a university-governed consortium facilitating research and education in the geosciences and in addition UNAVCO manages the NSF Geodesy Advancing Geosciences and EarthScope (GAGE) facility. The GAGE facility supports many facets of geoscience research including instrumentation and infrastructure, data analysis, cyberinfrastructure, and broader impacts. UNAVCO supports the Research Experiences in the Solid Earth Sciences for Students (RESESS), an NSF-funded multiyear geoscience research internship, community support, and professional development program. The primary goal of the RESESS program is to increase the number of historically underrepresented students entering graduate school in the geosciences. RESESS has met with high success in the first 9 years of the program, as more than 75% of RESESS alumni are currently in Master's and PhD programs across the U.S. Building upon the successes of RESESS, UNAVCO is launching a comprehensive workforce development program that will network underrepresented groups in the geosciences to research and opportunities throughout the geosciences. This presentation will focus on the successes of the RESESS program and plans to expand on this success with broader

  1. Leveraging Exceptional Teachers as Trainers in Geoscience Education: The National Center for Atmospheric Research Model for K-12 Teacher Professional Development

    Science.gov (United States)

    Henderson, S.; Johnson, R. M.; Foster, S.

    2003-12-01

    At the National Center for Atmospheric Research (NCAR), we have developed a model for educator professional development that builds upon the existing knowledge base of educators, their training experience, and the support of their educational institution. NCAR hosts two professional development workshops for middle and high school educators each summer - the NCAR Climate and Global Change Workshop and the NCAR Modeling in the Geosciences Workshop. Both of these workshops provide advanced science content, requiring that we select participants that already have significant background in one of the geosciences. In addition, participants are selected based on their demonstrated experience and success in peer training, courses taught, the support of their institution, their geographic distribution, plans for dissemination and outreach to underrepresented groups, and the populations served by their institution. Successful applicants are required to provide training to a minimum of 40 educators in their region in the year following the workshop. Our best practices come from formal program evaluation as well as informal interactions and observations. Ranging from big concepts to minutiae, careful planning and successfully taking care of the details can make the difference between a successful workshop and a disaster. Methodologies include leadership and content training, field experiences, hands-on inquiry-based activities, computer modeling, experience in presentation, preparation for local training sessions, and discussion. Reflection on relevance to national education standards is a necessary underlying theme of a successful workshop. Likewise, involving scientists not only in lecture presentations but also in some of the more informal components of a workshop such as hands-on activities and social events provides additional opportunities for scientists and teachers to get to know each other and build on-going relationships. Follow-up evaluations assess the impact of

  2. Research strategies for human performance

    International Nuclear Information System (INIS)

    Carlsson, Lennart

    1998-01-01

    This document reflects basic proposals derived from the discussions and results by the expert group on human performance within the frame of an OECD study on nuclear safety research. Different topics have identified which are herein briefly presented: cognitive models and errors of commission, organizational practices, validation of existing techniques for human reliability analysis, control room design and man-machine interactions, use of simulators, improvement of methods for evaluation of operating experience, safety culture, operator aids, shutdown, decommissioning

  3. Poultry studies and anthropological research strategies

    International Nuclear Information System (INIS)

    Whyte, M.

    2002-01-01

    Poultry are not simply birds; they are also a human creation, a social and cultural practice. The human element is the justification for an anthropology of poultry. Such an anthropology combines the objective research strategies familiar to the natural sciences with what is often called 'subjective' or qualitative research. In the study of poultry management, it is important that both research strategies focus on differences and variation. The subjective approach is particularly useful in identifying and understanding how the motivations and strategies of local actors are dependent on the social positions, which they occupy in their specific societies. (author)

  4. Marketing Capability in Strategy Research

    DEFF Research Database (Denmark)

    Ritter, Thomas; Distel, Andreas Philipp

    Following the call for a demand-side perspective of strategic management (e.g., Priem et al., 2012), a firm’s marketing capability, i.e. its ability to interact with down-stream stakeholders, becomes a pivotal element in explaining a firm’s competitiveness. While marketing capability is recognize...... ground for advancing marketing capability research and thus supporting the demand-side perspective in strategic management, we develop an integrative framework to explain the differences and propose a research agenda for developing the field.......Following the call for a demand-side perspective of strategic management (e.g., Priem et al., 2012), a firm’s marketing capability, i.e. its ability to interact with down-stream stakeholders, becomes a pivotal element in explaining a firm’s competitiveness. While marketing capability is recognized...... in the strategic management literature as an important driver of firm performance, our review of 86 articles reveals a lack of a generally accepted definition of marketing capability, a lack of a common conceptualization as well as differences in the measurement of marketing capability. In order to build a common...

  5. Meeting the Challenges for Gender Diversity in the Geosciences

    Science.gov (United States)

    Bell, R. E.; Cane, M. A.; Kastens, K. A.; Miller, R. B.; Mutter, J. C.; Pfirman, S. L.

    2003-12-01

    Women are now routinely chief scientists on major cruises, lead field parties to all continents, and have risen to leadership positions in professional organizations, academic departments and government agencies including major funding agencies. They teach at all levels, advise research students, make research discoveries and receive honors in recognition of their achievements. Despite these advances, women continue to be under-represented in the earth, ocean, and atmospheric sciences. As of 1997 women received only 29% of the doctorates in the earth, atmospheric, and oceanographic sciences and accounted for only 13% of employed Ph.D.s in these fields. Women's salaries also lag: the median annual salary for all Ph.D. geoscientists was \\60,000; for women the figure is \\47,000. Solving the problem of gender imbalance in the geosciences requires understanding of the particular obstacles women face in our field. The problem of under-representation of women requires that earth science departments, universities and research centers, funding agencies, and professional organizations like AGU take constructive action to recognize the root causes of the evident imbalance, and enact corrective policies. We have identified opportunities and challenges for each of these groups. A systematic study of the flux of women at Columbia University enabled a targeted strategy towards improving gender diversity based on the observed trends. The challenge for academic institutions is to document the flux of scientists and develop an appropriate strategy to balance the geoscience demographics. Based on the MIT study, an additional challenge faces universities and research centers. To enhance gender diversity these institutions need to develop transparency in promotion processes and open distribution of institutional resources. The challenge for granting agencies is to implement policies that ease the burden of extensive fieldwork on parents. Many fields of science require long work hours

  6. Using an Expedition Storyline, Baseline Data, Multiple Partnerships and a Varied Outreach Strategy to Engage Diverse Audiences in Geoscience Discourse: A Case Study on the Rio Maranon, Peru

    Science.gov (United States)

    Hill, A. F.; Goode, J. R.; Kramer, N. R.

    2016-12-01

    Growing energy demands in mountain regions motivate hydropower development on remote rivers previously not pursued due to difficult access and challenging terrain. These same physical factors have in part resulted in a dearth of data needed to understand these important water resources and the river systems as a whole. Resource management decisions not founded on data-driven science can not evaluate river system sustainability; decisions regarding the fate of globally important environmental resources without public awareness and discourse are missed opportunities to leverage international perspectives and lessons learned on the process. In the summer of 2015, we launched a 620 km, 30-day river expedition on the headwater stem of the Amazon River, Peru's Rio Maranon, to collect a baseline dataset as a start to filling this data gap on this river under threat from major hydropower development. We conducted a longitudinal characterization from Rio Maranon's Peruvian Andes headwaters to its lower lying Amazon jungle basin including continuous data collection on water quality, source water isotopes and invertebrate samples. A central focus of this project included outreach to broad audiences for public awareness and conservation advocacy of this critical river corridor at risk of imminent disconnection across ecosystems from dams. Outreach strategies were multi-pronged to encompass different audiences, including: a short-format documentary film, publicly available online data, oral presentations, magazine articles, blog posts and a science-education childrens' book highlighting both the adventure of the expedition and the female-dominated science team. Initiating non-traditional partnerships has been a key component of the project success given the minimal budget, including continuing partnerships with National Geographic, the Natural History Museum of Peru, Adventurers for Science and Conservation, Sierra Rios recreational river outfitter, Maranon Waterkeeper and the

  7. Exploring Student-to-Workforce Transitions with the National Geoscience Exit Survey

    Science.gov (United States)

    Gonzales, L. M.; Keane, C. M.; Houlton, H. R.

    2011-12-01

    In 2011, the American Geological Institute (AGI) launched the first pilot of a National Geoscience Exit Survey in collaboration with 32 geoscience university departments. The survey collects data about demographics, high school and community college coursework, university degrees, financial aid, field and research experiences, internships, and when and why the student chose to pursue a geosciences degree. Additionally, the survey collects information about students' future academic and career plans, and gives participants the option to take part in a longitudinal survey to track long-term career trajectories of geosciences graduates. The survey also provides geoscience departments with the ability to add customized questions to collect data about important departmental-level topics. The National Geoscience Exit Survey will be available to all U.S. geoscience programs at two- and four-year colleges and universities by the end of the 2011-2012 academic year. We use the results of the National Geoscience Exit Survey to examine student preparation and transition into geosciences and non-geoscience careers. Preliminary results from the pilot survey indicated future academic and career trajectories for geoscience Bachelor's degree recipients included graduate school (53%) and pursuit of a geoscience career (45%), with some undergraduates keeping their options open for either trajectory. Twelve percent of Bachelor's degree recipients already accepted job offers with geoscience employers. For geoscience Master's degree recipients, 17% planned to continue in graduate school, 35% were seeking a geoscience job, and 42% had already accepted job offers with geoscience employers. Furthermore, the majority of those geoscience graduates who already accepted geoscience job offers had also interned previously with the employer.

  8. InTeGrate: Transforming the Teaching of Geoscience and Sustainability

    Science.gov (United States)

    Blockstein, D.; Manduca, C. A.; Bralower, T. J.; Castendyk, D.; Egger, A. E.; Gosselin, D. C.; Iverson, E. A.; Matson, P. A.; MacGregor, J.; Mcconnell, D. A.; Mogk, D. W.; Nevle, R. J.; Oches, E. A.; Steer, D. N.; Wiese, K.

    2012-12-01

    InTeGrate is an NSF-funded community project to improve geoscience literacy and build a workforce that can apply geoscience principles to address societal issues. Three workshops offered this year by InTeGrate and its partner, On the Cutting Edge, addressed strategies for bringing together geoscience and sustainability within geoscience courses and programs, in interdisciplinary courses and programs, and in courses and programs in other disciplines or schools including arts and humanities, health science, and business. Participants in all workshops described the power of teaching geoscience in the context of sustainability and the utility of this approach in engaging students with geoscience, including student populations not traditionally represented in the sciences. Faculty involved in both courses and programs seek to teach important skills including the ability to think about systems and to make connections between local observations and challenges and global phenomena and issues. Better articulation of these skills, including learning outcomes and assessments, as well as documenting the relationship between these skills and employment opportunities were identified as important areas for further work. To support widespread integration of geoscience and sustainability concepts, these workshops initiated collections describing current teaching activities, courses, and programs. InTeGrate will continue to build these collections in collaboration with On the Cutting Edge and Building Strong Geoscience Departments, and through open contributions by individual faculty and programs. In addition, InTeGrate began developing new teaching modules and courses. Materials for use in introductory geoscience and environmental science/studies courses, distance learning courses, and courses for education majors are being developed and tested by teams of faculty drawn from at least three institutions, including several members from two-year colleges. An assessment team is

  9. Career Paths for Geosciences Students (Invited)

    Science.gov (United States)

    Bowers, T. S.; Flewelling, S. A.

    2013-12-01

    Current and future drivers of hiring in the geosciences include climate, environment, energy, georisk and litigation areas. Although climate is closely linked to the atmospheric sciences, hiring needs in the geosciences exist as well, in understanding potential impacts of climate change on coastal erosion and water resources. Where and how to consider carbon sequestration as a climate mitigation policy will also require geosciences expertise. The environmental sciences have long been a source of geosciences hiring, and have ongoing needs in the areas of investigation of contamination, and in fluid and chemical transport. The recent expansion of the energy sector in the U.S. is providing opportunities for the geosciences in oil and gas production, hydraulic fracturing, and in geothermal development. In georisk, expertise in earthquake and volcanic hazard prediction are increasingly important, particularly in population centers. Induced seismicity is a relatively new area of georisk that will also require geosciences skills. The skills needed in the future geosciences workforce are increasingly interdisciplinary, and include those that are both observational and quantitative. Field observations and their interpretation must be focused forward as well as backwards and include the ability to recognize change as it occurs. Areas of demand for quantitative skills include hydrological, geophysical, and geochemical modeling, math and statistics, with specialties such as rock mechanics becoming an increasingly important area. Characteristics that students should have to become successful employees in these sectors include strong communication skills, both oral and written, the ability to know when to stop "studying" and identify next steps, and the ability to turn research areas into solutions to problems.

  10. Contributions of the German Research Center for Geosciences (GFZ) to the EPOS Implementation Phase 2015-18 (European Plate Observing System)

    Science.gov (United States)

    Hoffmann, T. L.; Lauterjung, J.

    2016-12-01

    The European Plate Observing System project is currently approaching the end of year one of its four-year Implementation Phase 2015-18 (EPOS-IP). Established under the Horizon 2020 Programme INFRADEV-3, the EPOS cyberinfrastructure is being established as an ERIC (European Research Infrastructure Consortium) and encompasses the implementation of both the EPOS Integrated Core Services (ICS) for solid Earth Science and a multitude of EPOS Thematic Core Services (TCS). The TCS-Elements themselves will integrate a number of Service Providers that deliver Data, Data Products, Services and Software (DDSS) to their specific scientific community. As one of the 29 awardees of the EC grant, the German Research Center for Geosciences (GFZ) plays an important role in the implementation of EPOS and its Thematic and Integrated Core Services. The presented poster will give an overview of GFZ's participation in nine technical EPOS Work Packages (WP7 ICS Development, WP8 Seismology, WP11 Volcano Observations, WP12 Satellite Data, WP13 Geomagnetic Observations, WP14 Anthropogenic Hazards, WP15 Geological Information and Modelling, WP16 Multi-Scale Laboratories and WP17 Geo Energy Test Beds) as well as in four administrative EPOS Work Packages (WP2 Communication, WP3 Harmonization, WP4 Legal & Governance, and WP5 Financial).

  11. Contributions of the German Research Center for Geosciences (GFZ) to the EPOS (European Plate Observing System) Implementation Phase 2015-18

    Science.gov (United States)

    Hoffmann, T. L.; Lauterjung, J.

    2017-12-01

    The European Plate Observing System project is currently approaching the end of year two of its four-year Implementation Phase 2015-18 (EPOS-IP). Under the Horizon 2020 Programme INFRADEV-3, the EPOS cyberinfrastructure is being established as an ERIC (European Research Infrastructure Consortium) and encompasses the implementation of both the EPOS Integrated Core Services (ICS) for solid Earth Science and a multitude of EPOS Thematic Core Services (TCS). During year two, a basic set of ICS and TCS services was developed and implemented, so that in October 2017 the validation phase (year 3) of EPOS is ready to be launched. Up to now, various TCS-Elements have integrated different Service Providers (SD) that are delivering Data, Data Products, Services and Software (DDSS) to their specific scientific community. As one of the 29 awardees of the EC grant, the German Research Center for Geosciences (GFZ) plays an important role in the implementation of EPOS and its Thematic and Integrated Core Services. The presented poster will give an overview of GFZ's participation in the work of nine technical EPOS Work Packages (WP7 ICS Development, WP8 Seismology, WP11 Volcano Observations, WP12 Satellite Data, WP13 Geomagnetic Observations, WP14 Anthropogenic Hazards, WP15 Geological Information and Modelling, WP16 Multi-Scale Laboratories and WP17 Geo Energy Test Beds) as well as in four administrative EPOS Work Packages (WP2 Communication, WP3 Harmonization, WP4 Legal & Governance, and WP5 Financial).

  12. Successful recruiting strategies for geoscience degrees and careers at the two-year college: An example from Metropolitan Community College - Kansas City

    Science.gov (United States)

    Wolfe, B.

    2012-12-01

    The overwhelming majority of students at 2-year colleges take geoscience courses (e.g. physical geology or physical geography) to fulfill part of the general education requirements of the Associates in Arts degree or General Education certificates for transfer to a 4-year school. It is common in community college earth science programs to have a relatively small number of students continuing on to major in geoscience programs at their transfer 4-year institution. To increase interest and retention in geosciences courses, we have developed a two prong approach - one aimed at students looking to transfer to a 4-year institution and the other aimed at students in the often overlooked career and technical education (CTE) programs. In the case of transfer students, we employ a "high touch" approach in introductory Physical Geology courses. This includes raising awareness of geoscience related careers combined with faculty mentor and advisor activities for students who express interest in science on their admission forms or in discussions of potential careers in science in first-year experience courses. Faculty mentorships have been very effective, not only in recruiting students to consider careers in geology, but also in advising a curriculum for students necessary to be successful upon transfer to a 4-year institution (such as completing college level chemistry, physics, and calculus courses prior to transfer). The second approach focuses on students pursuing certificates and degrees in CTE energy-related programs (such as HVAC, industrial engineering technology, electrician, and utility linemen). To increase awareness of vocational related geoscience careers, many of which require a good foundation in the vocational training students are currently pursing, we developed a foundation energy course - Energy and the Environment - which fulfills both the science general education component of the AA degree for students looking to transfer as well as CTE students. The

  13. Promoting the Geosciences for Minority Students in the Urban Coastal Environment of New York City

    Science.gov (United States)

    Liou-Mark, J.; Blake, R.

    2013-12-01

    The 'Creating and Sustaining Diversity in the Geo-Sciences among Students and Teachers in the Urban Coastal Environment of New York City' project was awarded to New York City College of Technology (City Tech) by the National Science Foundation to promote the geosciences for students in middle and high schools and for undergraduates, especially for those who are underrepresented minorities in STEM. For the undergraduate students at City Tech, this project: 1) created and introduced geoscience knowledge and opportunities to its diverse undergraduate student population where geoscience is not currently taught at City Tech; and 2) created geoscience articulation agreements. For the middle and high schools, this project: 1) provided inquiry-oriented geoscience experiences (pedagogical and research) for students; 2) provided standards-based professional development (pedagogical and research) in Earth Science for teachers; 3) developed teachers' inquiry-oriented instructional techniques through the GLOBE program; 4) increased teacher content knowledge and confidence in the geosciences; 5) engaged and intrigued students in the application of geoscience activities in a virtual environment; 6) provided students and teachers exposure in the geosciences through trip visitations and seminars; and 7) created community-based geoscience outreach activities. Results from this program have shown significant increases in the students (grades 6-16) understanding, participation, appreciation, and awareness of the geosciences. Geoscience modules have been created and new geosciences courses have been offered. Additionally, students and teachers were engaged in state-of-the-art geoscience research projects, and they were involved in many geoscience events and initiatives. In summary, the activities combined geoscience research experiences with a robust learning community that have produced holistic and engaging stimuli for the scientific and academic growth and development of grades 6

  14. International Convergence on Geoscience Cyberinfrastructure

    Science.gov (United States)

    Allison, M. L.; Atkinson, R.; Arctur, D. K.; Cox, S.; Jackson, I.; Nativi, S.; Wyborn, L. A.

    2012-04-01

    interoperability across scientific domains, 4) support the promulgation and institutionalization of agreed-upon standards, protocols, and practice, and 5) enhance knowledge transfer not only across the community, but into the domain sciences, 6) lower existing entry barriers for users and data producers, 7) build on the existing disciplinary infrastructures leveraging their service buses. . All of these objectives are required for establishing a permanent and sustainable cyber(e)-infrastructure for the geosciences. The rationale for this approach is well articulated in the AuScope mission statement: "Many of these problems can only be solved on a national, if not global scale. No single researcher, research institution, discipline or jurisdiction can provide the solutions. We increasingly need to embrace e-Research techniques and use the internet not only to access nationally distributed datasets, instruments and compute infrastructure, but also to build online, 'virtual' communities of globally dispersed researchers." Multidisciplinary interoperability can be successfully pursued by adopting a "system of systems" or a "Network of Networks" philosophy. This approach aims to: (a) supplement but not supplant systems mandates and governance arrangements; (b) keep the existing capacities as autonomous as possible; (c) lower entry barriers; (d) Build incrementally on existing infrastructures (information systems); (e) incorporate heterogeneous resources by introducing distribution and mediation functionalities. This approach has been adopted by the European INSPIRE (Infrastructure for Spatial Information in the European Community) initiative and by the international GEOSS (Global Earth Observation System of Systems) programme.

  15. Research Strategies in European Union Studies

    DEFF Research Database (Denmark)

    Manners, Ian James; Lynggaard, Kennet; Löfgren, Karl

    2015-01-01

    agenda for research on Europe. The crisis gripping the EU in the 21st century is not just an economic crisis, it is a crisis of belief in the EU. Research on the EU is deeply implicated in this crisis, not least because of the questions it does not ask, but also because of the pereceived weakness...... of demonstrating the methods and evidence used. A new agenda for research on Europe needs to acknowledge these weaknesses of the past and move beyond dichotomies towards greater awareness and openesss of the importance of research strategies, designs and methods....

  16. The Evolution of Building a Diverse Geosciences in the United States

    Science.gov (United States)

    Keane, Christopher; Houlton, Heather; Leahy, P. Patrick

    2016-04-01

    Since the 1960s, the United States has had numerous systematic efforts to support diversity in all parts of society. The American Geosciences Institute has had active ongoing research and diversity promotion programs in the geosciences since 1972. Over this time, the drivers and goals of promoting a diverse discipline have evolved, including in the scope and definition of diversity. The success of these efforts have been mixed, largely driven by wildly different responses by specific gender and racial subsets of the population. Some critical cultural barriers have been solidly identified and mitigation approaches promoted. For example, the use of field work in promotion of geoscience careers and education programs is viewed as a distinct negative by many African American and Hispanic communities as it equates geoscience as non-professional work. Similarly, efforts at improving gender diversity have had great success, especially in the private sector, as life-balance policies and mitigations of implicit biases have been addressed. Yet success in addressing some of these cultural and behavioral issues has also started to unveil other overarching factors, such as the role of socio-economic and geographic location. Recent critical changes in the definition of diversity that have been implemented will be discussed. These include dropping Asian races as underrepresented, the introduction of the multiracial definition, evolution of the nature of gender, and the increased awareness of persons with disabilities as a critical diverse population. This has been coupled with dramatic changes in the drivers for promoting diversity in the geosciences in the U.S. from a moral and ethical good to one of economic imperative and recognizing the way to access the best talent in the population as the U.S. rapidly approaches being a majority minority society. These changes are leading to new approaches and strategies, for which we will highlight specific programmatic efforts both by AGI

  17. Creative classroom strategies for teaching nursing research.

    Science.gov (United States)

    Phillips, Regina Miecznikoski

    2014-01-01

    Faculty are constantly challenged to find interesting classroom activities to teach nursing content and engage students in learning. Nursing students and graduates need to use research skills and evidence-based practice as part of their professional care. Finding creative and engaging ways to teach this material in undergraduate nursing programs are essential. This article outlines several successful strategies to engage nursing students in research content in the time and space constraints of the classroom.

  18. Translational Geoscience: Converting Geoscience Innovation into Societal Impacts

    Science.gov (United States)

    Schiffries, C. M.

    2015-12-01

    Translational geoscience — which involves the conversion of geoscience discovery into societal, economic, and environmental impacts — has significant potential to generate large benefits but has received little systematic attention or resources. In contrast, translational medicine — which focuses on the conversion of scientific discovery into health improvement — has grown enormously in the past decade and provides useful models for other fields. Elias Zerhouni [1] developed a "new vision" for translational science to "ensure that extraordinary scientific advances of the past decade will be rapidly captured, translated, and disseminated for the benefit of all Americans." According to Francis Collins, "Opportunities to advance the discipline of translational science have never been better. We must move forward now. Science and society cannot afford to do otherwise." On 9 July 2015, the White House issued a memorandum directing U.S. federal agencies to focus on translating research into broader impacts, including commercial products and decision-making frameworks [3]. Natural hazards mitigation is one of many geoscience topics that would benefit from advances in translational science. This paper demonstrates that natural hazards mitigation can benefit from advances in translational science that address such topics as improving emergency preparedness, communicating life-saving information to government officials and citizens, explaining false positives and false negatives, working with multiple stakeholders and organizations across all sectors of the economy and all levels of government, and collaborating across a broad range of disciplines. [1] Zerhouni, EA (2005) New England Journal of Medicine 353(15):1621-1623. [2] Collins, FS (2011) Science Translational Medicine 3(90):1-6. [3] Donovan, S and Holdren, JP (2015) Multi-agency science and technology priorities for the FY 2017 budget. Executive Office of the President of the United States, 5 pp.

  19. Issues, Challenges, and Opportunities in Geoscience Education and Broadening Participation in the Geosciences at Two-year Colleges

    Science.gov (United States)

    van der Hoeven Kraft, K.; Guertin, L. A.; Filson, R. H.; Macdonald, H.; McDaris, J. R.

    2011-12-01

    A workshop on The Role of Two-Year Colleges in Geoscience Education and Broadening Participation in the Geosciences was held at Northern Virginia Community College in June 2010 to identify issues, challenges, and opportunities for geoscience faculty and students in two-year colleges (2YC) and to make recommendations for strengthening this component of the geoscience community. Given the wide diversity of 2YC students, a long term goal for this workshop was to work toward broadening the participation of underrepresented students to the geosciences. The workshop included sessions on strategies for supporting all students to be successful, the role of 2YC in broadening participation in the geosciences, and preparing geoscience students for the future (recruiting and retaining students in the geosciences, career preparation and workforce development, and transfer and 2YC and 4YC partnerships). Conversations between participants and professional organizations and societies focused on how increased communication with 2YC faculty could support faculty and students from two-year colleges. Participants considered strategies for addressing isolation and building community including interdisciplinary collaborations, scholarly practices, using Web 2.0, and working with adjunct faculty. Working groups addressed the following topics: establishment of a geoscience 2YC community, best practices for geoscience 2YC programs, faculty professional development, recruitment and retention of students, diversity in the geosciences, the role of 2YC in K-12 teacher preparation, and ocean science education in 2YC. Recommendations included the need to collect and disseminate information about 2YC including demographic information and best practices of 2YC geoscience programs, the desire to establish an organization for 2YC geoscience faculty, more opportunities to communicate (workshops and electronic communications), and other approaches for supporting 2YC students, faculty, and programs

  20. Accessible Geoscience - Digital Fieldwork

    Science.gov (United States)

    Meara, Rhian

    2017-04-01

    Accessible Geoscience is a developing field of pedagogic research aimed at widening participation in Geography, Earth and Environmental Science (GEES) subjects. These subjects are often less commonly associated with disabilities, ethnic minorities, low income socio-economic groups and females. While advancements and improvements have been made in the inclusivity of these subject areas in recent years, access and participation of disabled students remains low. While universities are legally obligated to provide reasonable adjustments to ensure accessibility, the assumed incompatibility of GEES subjects and disability often deters students from applying to study these courses at a university level. Instead of making reasonable adjustments if and when they are needed, universities should be aiming to develop teaching materials, spaces and opportunities which are accessible to all, which in turn will allow all groups to participate in the GEES subjects. With this in mind, the Swansea Geography Department wish to enhance the accessibility of our undergraduate degree by developing digital field work opportunities. In the first instance, we intend to digitise three afternoon excursions which are run as part of a 1st year undergraduate module. Each of the field trips will be digitized into English- and Welsh-medium formats. In addition, each field trip will be digitized into British Sign Language (BSL) to allow for accessibility for D/deaf and hard of hearing students. Subtitles will also be made available in each version. While the main focus of this work is to provide accessible fieldwork opportunities for students with disabilities, this work also has additional benefits. Students within the Geography Department will be able to revisit the field trips, to revise and complete associated coursework. The use of digitized field work should not replace opportunities for real field work, but its use by the full cohort of students will begin to "normalize" accessible field

  1. Geoscience on television

    NARCIS (Netherlands)

    Hut, Rolf; Land-Zandstra, Anne M.; Smeets, Ionica; Stoof, Cathelijne R.

    2016-01-01

    Geoscience communication is becoming increasingly important as climate change increases the occurrence of natural hazards around the world. Few geoscientists are trained in effective science communication, and awareness of the formal science communication literature is also low. This can be

  2. Developing Resources for Teaching Ethics in Geoscience

    Science.gov (United States)

    Mogk, David W.; Geissman, John W.

    2014-11-01

    Ethics education is an increasingly important component of the pre-professional training of geoscientists. Geoethics encompasses the values and professional standards required of geoscientists to work responsibly in any geoscience profession and in service to society. Funding agencies (e.g., the National Science Foundation, the National Institutes of Health) require training of graduate students in the responsible conduct of research; employers are increasingly expecting their workers to have basic training in ethics; and the public demands the highest standards of ethical conduct by scientists. However, there is currently no formal course of instruction in ethics in the geoscience curriculum, and few faculty members have the experience, resources, and sometimes willingness required to teach ethics as a component of their geoscience courses.

  3. Promoting Sketching in Introductory Geoscience Courses: CogSketch Geoscience Worksheets.

    Science.gov (United States)

    Garnier, Bridget; Chang, Maria; Ormand, Carol; Matlen, Bryan; Tikoff, Basil; Shipley, Thomas F

    2017-10-01

    Research from cognitive science and geoscience education has shown that sketching can improve spatial thinking skills and facilitate solving spatially complex problems. Yet sketching is rarely implemented in introductory geosciences courses, due to time needed to grade sketches and lack of materials that incorporate cognitive science research. Here, we report a design-centered, collaborative effort, between geoscientists, cognitive scientists, and artificial intelligence (AI) researchers, to characterize spatial learning challenges in geoscience and to design sketch activities that use a sketch-understanding program, CogSketch. We developed 26 CogSketch worksheets that use cognitive science-based principles to scaffold problem solving of spatially complex geoscience problems and report observations of an implementation in an introductory geoscience course where students used CogSketch or human-graded paper worksheets. Overall, this research highlights the principles of interdisciplinary design between cognitive scientists, geoscientists, and AI researchers that can inform the collaborative design process for others aiming to develop effective educational materials. Copyright © 2017 Cognitive Science Society, Inc.

  4. Effectiveness of Geosciences Exploration Summer Program (GeoX) for increasing awareness and Broadening Participation in the Geosciences

    Science.gov (United States)

    Garcia, S. J.; Houser, C.

    2013-12-01

    Summer research experiences are an increasingly popular means to increase awareness of and develop interest in the Geosciences and other STEM (Science, Technology, Engineering and Math) programs. Here we describe and report the preliminary results of a new one-week program at Texas A&M University to introduce first generation, women, and underrepresented high school students to opportunities and careers in the Geosciences. Short-term indicators in the form of pre- and post-program surveys of participants and their parents suggest that there is an increase in participant understanding of geosciences and interest in pursuing a degree in the geosciences. At the start of the program, the participants and their parents had relatively limited knowledge of the geosciences and very few had a friend or acquaintance employed in the geosciences. Post-survey results suggest that the students had an improved and nuanced understanding of the geosciences and the career opportunities within the field. A survey of the parents several months after the program had ended suggests that the participants had effectively communicated their newfound understanding and that the parents now recognized the geosciences as a potentially rewarding career. With the support of their parents 42% of the participants are planning to pursue an undergraduate degree in the geosciences compared to 62% of participants who were planning to pursue a geosciences degree before the program. It is concluded that future offerings of this and similar programs should also engage the parents to ensure that the geosciences are recognized as a potential academic and career path.

  5. Addressing Issues of Broadening Participation Highlighted in the Report on the Future of Undergraduate Geoscience Education

    Science.gov (United States)

    McDaris, J. R.; Manduca, C. A.; Macdonald, H.; Iverson, E. A. R.

    2015-12-01

    The final report for the Summit on the Future of Geoscience Education lays out a consensus on issues that must be tackled by the geoscience community collectively if there are to be enough qualified people to fill the large number of expected geoscience job vacancies over the coming decade. Focus areas cited in the report include: Strengthening the connections between two-year colleges and four-year institutions Sharing and making use of successful recruitment and retention practices for students from underrepresented groups Making students aware of high-quality job prospects in the geosciences as well as its societal relevance The InTeGrate STEP Center for the Geosciences, the Supporting and Advancing Geoscience Education at Two-Year Colleges (SAGE 2YC) program, and the Building Strong Geoscience Departments (BSGD) project together have developed a suite of web resources to help faculty and program leaders begin to address these and other issues. These resources address practices that support the whole student, both in the classroom and as a part of the co-curriculum as well as information on geoscience careers, guidance for developing coherent degree programs, practical advice for mentoring and advising, and many others. In addition to developing web resources, InTeGrate has also undertaken an effort to profile successful program practices at a variety of institutions. An analysis of these data shows several common themes (e.g. proactive marketing, community building, research experiences) that align well with the existing literature on what works to support student success. But there are also indications of different approaches and emphases between Minority Serving Institutions (MSIs) and Primarily White Institutions (PWIs) as well as between different kinds of MSIs. Highlighting the different strategies in use can point both MSIs and PWIs to possible alternate solutions to the challenges their students face. InTeGrate - http

  6. OSMA Research and Technology Strategy Team Summary

    Science.gov (United States)

    Wetherholt, Martha

    2010-01-01

    This slide presentation reviews the work of the Office of Safety and Mission Assurance (OSMA), and the OSMA Research and Technology Strategy (ORTS) team. There is discussion of the charter of the team, Technology Readiness Levels (TRLs) and how the teams responsibilities are related to these TRLs. In order to improve the safety of all levels of the development through the TRL phases, improved communication, understanding and cooperation is required at all levels, particularly at the mid level technologies development.

  7. From industry to academia: Benefits of integrating a professional project management standard into (geo)science research

    Science.gov (United States)

    Cristini, Luisa

    2017-04-01

    Scientific and technological research carried out within universities and public research institutions often involves large collaborations across several countries. Despite the considerable budget (typically millions of Euros), the high expectations (high impact scientific findings, new technological developments and links with policy makers, industry and civil society) and the length of the project over several years, these international projects often rely heavily on the personal skills of the management team (project coordinator, project manager, principal investigators) without a structured, transferable framework. While this approach has become an established practice, it's not ideal and can jeopardise the success of the entire effort with consequences ranging from schedule delays, loss of templates/systems, financial charges and ultimately project failure. In this presentation I will show the advantages of integrating a globally recognised standard for professional project management, such as the PMP® by the Project Management Institute, into academic research. I will cover the project management knowledge areas (integration management, scope management, time management, cost management, quality management, human resources management, risk management, procurement management, and stakeholder management) and the processes within these throughout the phases of the project lifetime (project initiation, planning, executing, monitoring and controlling, and closure). I will show how application of standardised, transferable procedures, developed within the business & administration sector, can benefit academia and more generally scientific research.

  8. Advantages of a Unified Earth and Space Science Approach for Geoscience Education: Perspectives from the National Center for Atmospheric Research

    Science.gov (United States)

    Johnson, R. M.; Barnes, T.; Bergman, J.; Carbone, L.; Eastburn, T.; Foster, S.; Gardiner, L.; Genyuk, J.; Henderson, S.; Lagrave, M.; Munoz, R.; Russell, R.; Araujo-Pradere, E.; Metcalfe, T.; Mastie, D.; Pennington, P.

    2005-05-01

    The intellectual divisions common among scientists involved in research in specific disciplines are frequently not shared by the broader community of learners. For example, in K-12 education, the Earth sciences and the space sciences have generally been taught in an integrated approach, until opportunities for more advanced courses become available at the higher grade levels in some fortunate school districts. When scientists involved in EPO activities retain a perspective limited to their particular science mission, rather than stepping back to a broader perspective that places the research in a larger context, they risk limiting the usefulness of these activities to a broad cross-section of learners that seek to learn in a contextual framework. The re-integration of Earth and space sciences within NASA's Science Mission Directorate provides an opportunity to more systematically take advantage of the fact that Earth is one of many examples of possible planetary evolution scenarios presented in our solar system and beyond. This development should encourage integration of research across the SMD into a broader context that encourages the development of higher learning skills and a systems thinking approach. At the National Center for Atmospheric Research, the interdisciplinary nature of the research problems we address requires an approach that integrates Earth and space science, and we parallel this in our education and outreach activities, ranging from our exhibits on climate change to our professional development workshops and online courses to our websites and curriculum development efforts. The Windows to the Universe project (http://www.windows.ucar.edu), initiated at the University of Michigan with support from NASA in 1995 and now developed and maintained at the University Corporation for Atmospheric Research, has maintained this integrated approach from its inception with great success - leading to over 6 million users of our English and Spanish language

  9. Creating Geoscience Leaders

    Science.gov (United States)

    Buskop, J.; Buskop, W.

    2013-12-01

    The United Nations Educational, Scientific, and Cultural Organization recognizes 21 World Heritage in the United States, ten of which have astounding geological features: Wrangell St. Elias National Park, Olympic National Park, Mesa Verde National Park, Chaco Canyon, Glacier National Park, Carlsbad National Park, Mammoth Cave, Great Smokey Mountains National Park, Hawaii Volcanoes National Park, and Everglades National Park. Created by a student frustrated with fellow students addicted to smart phones with an extreme lack of interest in the geosciences, one student visited each World Heritage site in the United States and created one e-book chapter per park. Each chapter was created with original photographs, and a geological discovery hunt to encourage teen involvement in preserving remarkable geological sites. Each chapter describes at least one way young adults can get involved with the geosciences, such a cave geology, glaciology, hydrology, and volcanology. The e-book describes one park per chapter, each chapter providing a geological discovery hunt, information on how to get involved with conservation of the parks, geological maps of the parks, parallels between archaeological and geological sites, and how to talk to a ranger. The young author is approaching UNESCO to publish the work as a free e-book to encourage involvement in UNESCO sites and to prove that the geosciences are fun.

  10. Bridging the Geoscientist Workforce Gap: Advanced High School Geoscience Programs

    Science.gov (United States)

    Schmidt, Richard William

    The purpose of this participatory action research was to create a comprehensive evaluation of advanced geoscience education in Pennsylvania public high schools and to ascertain the possible impact of this trend on student perceptions and attitudes towards the geosciences as a legitimate academic subject and possible career option. The study builds on an earlier examination of student perceptions conducted at Northern Arizona University in 2008 and 2009 but shifts the focus to high school students, a demographic not explored before in this context. The study consisted of three phases each examining a different facet of the advanced geoscience education issue. Phase 1 examined 572 public high schools in 500 school districts across Pennsylvania and evaluated the health of the state's advanced geoscience education through the use of an online survey instrument where districts identified the nature of their geoscience programs (if any). Phase 2 targeted two groups of students at one suburban Philadelphia high school with an established advanced geoscience courses and compared the attitudes and perceptions of those who had been exposed to the curricula to a similar group of students who had not. Descriptive and statistically significant trends were then identified in order to assess the impact of an advanced geoscience education. Phase 3 of the study qualitatively explored the particular attitudes and perceptions of a random sampling of the advanced geoscience study group through the use of one-on-one interviews that looked for more in-depth patterns of priorities and values when students considered such topics as course enrollment, career selection and educational priorities. The results of the study revealed that advanced geoscience coursework was available to only 8% of the state's 548,000 students, a percentage significantly below that of the other typical K-12 science fields. It also exposed several statistically significant differences between the perceptions and

  11. The Geoscience Internet of Things

    Science.gov (United States)

    Lehnert, K.; Klump, J.

    2012-04-01

    Internet of Things is a term that refers to "uniquely identifiable objects (things) and their virtual representations in an Internet-like structure" (Wikipedia). We here use the term to describe new and innovative ways to integrate physical samples in the Earth Sciences into the emerging digital infrastructures that are developed to support research and education in the Geosciences. Many Earth Science data are acquired on solid earth samples through observations and experiments conducted in the field or in the lab. The application and long-term utility of sample-based data for science is critically dependent on (a) the availability of information (metadata) about the samples such as geographical location where the sample was collected, time of sampling, sampling method, etc. (b) links between the different data types available for individual samples that are dispersed in the literature and in digital data repositories, and (c) access to the samples themselves. Neither of these requirements could be achieved in the past due to incomplete documentation of samples in publications, use of ambiguous sample names, and the lack of a central catalog that allows researchers to find a sample's archiving location. New internet-based capabilities have been developed over the past few years for the registration and unique identification of samples that make it possible to overcome these problems. Services for the registration and unique identification of samples are provided by the System for Earth Sample Registration SESAR (www.geosamples.org). SESAR developed the International Geo Sample Number, or IGSN, as a unique identifier for samples and specimens collected from our natural environment. Since December 2011, the IGSN is governed by an international organization, the IGSN eV (www.igsn.org), which endorses and promotes an internationally unified approach for registration and discovery of physical specimens in the Geoscience community and is establishing a new modular and

  12. Supporting REU Leaders and Effective Workforce Development in the Geosciences

    Science.gov (United States)

    Sloan, V.; Haacker, R.

    2014-12-01

    Research shows that research science experiences for undergraduates are key to the engagement of students in science, and teach critical thinking and communication, as well as the professional development skills. Nonetheless, undergraduate research programs are time and resource intensive, and program managers work in relative isolation from each other. The benefits of developing an REU community include sharing strategies and policies, developing collaborative efforts, and providing support to each other. This paper will provide an update on efforts to further develop the Geoscience REU network, including running a national workshop, an email listserv, workshops, and the creation of online resources for REU leaders. The goal is to strengthen the connections between REU community members, support the sharing of best practices in a changing REU landscape, and to make progress in formalizing tools for REU site managers.

  13. National Geoscience Data Repository System. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Schiffries, C.M.; Milling, M.E.

    1994-03-01

    The American Geological Institute (AGI) has completed the first phase of a study to assess the feasibility of establishing a National Geoscience Data Repository System to capture and preserve valuable geoscientific data. The study was initiated in response to the fact that billions of dollars worth of domestic geological and geophysical data are in jeopardy of being irrevocably lost or destroyed as a consequence of the ongoing downsizing of the US energy and minerals industry. This report focuses on two major issues. First, it documents the types and quantity of data available for contribution to a National Geoscience Data Repository System. Second, it documents the data needs and priorities of potential users of the system. A National Geoscience Data Repository System would serve as an important and valuable source of information for the entire geoscience community for a variety of applications, including environmental protection, water resource management, global change studies, and basic and applied research. The repository system would also contain critical data that would enable domestic energy and minerals companies to expand their exploration and production programs in the United States for improved recovery of domestic oil, gas, and mineral resources.

  14. Energy in Ireland: context, strategy and research

    International Nuclear Information System (INIS)

    Saintherant, N.; Lerouge, Ch.; Welcker, A.

    2008-01-01

    In the present day situation of sudden awareness about climatic change and announced fossil fuels shortage, Ireland has defined a new strategy for its energy future. Context: Ireland is strongly dependent of oil and gas imports which increase regularly to meet the demand. A small part of the electricity consumed is imported from Ulster. The share of renewable energies remains weak but is increasing significantly. Therefore, from 1990 to 2006, the proportion of renewable energies increased from 1.9% (mainly of hydroelectric origin) to 4.5%. Wind power represents now the main renewable energy source. The transportation sector is the most energy consuming and the biggest source of greenhouse gases. Strategy: the Irish policy is driven by pluri-annual strategic plans which define the objectives and means. Priority is given to the security of supplies at affordable prices: 8.5 billion euros will be invested during the 2007-2013 era for the modernization of existing energy infrastructures and companies, and in a lesser extent for the development of renewable energy sources. During this period, 415 million euros more will be devoted to the research, development and demonstration (RD and D) of new energy solutions. Research: in 2005 the energy RD and D expenses reached 12.8 million euros shared between 54% for R and D and 46% for demonstration projects. Half of the financing is given to higher education schools and is devoted to energy saving purposes (33%) and to renewable energies (29%, mainly wind power and biomass). Academic research gives a particular attention to ocean energy which represents an important potential resource in Ireland and which has already led to the creation of innovative companies. The integration of renewable energy sources to the power grid and the stability of supplies are also the object of active researches. (J.S.)

  15. Geoscience Digital Data Resource and Repository Service

    Science.gov (United States)

    Mayernik, M. S.; Schuster, D.; Hou, C. Y.

    2017-12-01

    The open availability and wide accessibility of digital data sets is becoming the norm for geoscience research. The National Science Foundation (NSF) instituted a data management planning requirement in 2011, and many scientific publishers, including the American Geophysical Union and the American Meteorological Society, have recently implemented data archiving and citation policies. Many disciplinary data facilities exist around the community to provide a high level of technical support and expertise for archiving data of particular kinds, or for particular projects. However, a significant number of geoscience research projects do not have the same level of data facility support due to a combination of several factors, including the research project's size, funding limitations, or topic scope that does not have a clear facility match. These projects typically manage data on an ad hoc basis without limited long-term management and preservation procedures. The NSF is supporting a workshop to be held in Summer of 2018 to develop requirements and expectations for a Geoscience Digital Data Resource and Repository Service (GeoDaRRS). The vision for the prospective GeoDaRRS is to complement existing NSF-funded data facilities by providing: 1) data management planning support resources for the general community, and 2) repository services for researchers who have data that do not fit in any existing repository. Functionally, the GeoDaRRS would support NSF-funded researchers in meeting data archiving requirements set by the NSF and publishers for geosciences, thereby ensuring the availability of digital data for use and reuse in scientific research going forward. This presentation will engage the AGU community in discussion about the needs for a new digital data repository service, specifically to inform the forthcoming GeoDaRRS workshop.

  16. Strength Through Options: Providing Choices for Undergraduate Education in the Geosciences

    Science.gov (United States)

    Furman, T.; Freeman, K. H.; Faculty, D.

    2003-12-01

    Undergraduate major enrollments in the Department of Geosciences at Penn State have held steady over the past 5 years despite generally declining national trends. We have successfully recruited and retained new students through intensive advising coupled with innovative curricular revision aimed to meet an array of students' educational and career goals. Our focus is on degree programs that reflect emerging interdisciplinary trends in both employment and student interest, and are designed to attract individuals from underrepresented groups. In addition to a traditional Geosciences BS program we offer a rigorous integrated Earth Sciences BS and a Geosciences BA tailored to students with interests in education and environmental law. The Earth Sciences BS incorporates course work from Geosciences, Geography and Meterology, and requires completion of an interdisciplinary minor (e.g., Climatology, Marine Sciences, Global Business Strategies). A new Geobiology BS program will attract majors with interests at the intersection of the earth and life sciences. The curriculum includes both paleontological and biogeochemical coursework, and is also tailored to accommodate pre-medicine students. We are working actively to recruit African-American students. A new minor in Science and Technology in Africa crosses disciplinary boundaries to educate students from the humanities as well as sciences. Longitudinal recruitment programs include summer research group experiences for high school students, summer research mentorships for college students, and dual undergraduate degree programs with HBCUs. Research is a fundamental component of every student's degree program. We require a capstone independent thesis as well as a field program for Geosciences and Geobiology BS students, and we encourage all students to pursue research as early as the freshman year. A new 5-year combined BS-MS program will enable outstanding students to carry their undergraduate research further before

  17. Geoscience as an Agent for Change in Higher Education

    Science.gov (United States)

    Manduca, C. A.; Orr, C. H.; Kastens, K.

    2016-12-01

    As our society becomes more aware of the realities of the resource and environmental challenges that face us, we have the opportunity to educate more broadly about the role of geoscience in addressing these challenges. The InTeGrate STEP Center is using three strategies to bring learning about the Earth to a wider population of undergraduate students: 1) infusing geoscience into disciplinary courses throughout the curriculum; 2) creating interdisciplinary or transdisciplinary courses with a strong geoscience component that draw a wide audience; and 3) embedding more opportunities to learn about the methods of geoscience and their application to societal challenges in courses for future teachers. InTeGrate is also bringing more emphasis on geoscience in service to societal challenges to geoscience students in introductory geoscience courses and courses for geoscience majors. Teaching science in a societal context is known to make science concepts more accessible for many learners, while learning to use geoscience to solve real world, interdisciplinary problems better prepares students for the 21stcentury workforce and for the decisions they will make as individuals and citizens. InTeGrate has developed materials and models that demonstrate a wide variety of strategies for increasing opportunities to learn about the Earth in a societal context that are freely available on the project website (http://serc.carleton.edu/integrate) and that form the foundation of ongoing professional development opportunities nationwide. The strategies employed by InTeGrate reflect a systems approach to educational transformation, the importance of networks and communities in supporting change, and the need for resources designed for adaptability and use. The project is demonstrating how geoscience can play a larger role in higher education addressing topics of wide interest including 1) preparing a competitive workforce by increasing the STEM skills of students regardless of their major

  18. Teaching Geoethics Across the Geoscience Curriculum

    Science.gov (United States)

    Mogk, David; Bruckner, Monica; Kieffer, Susan; Geissman, John; Reidy, Michael; Taylor, Shaun; Vallero, Daniel

    2015-04-01

    Training in geoethics is an important part of pre-professional development of geoscientists. Professional societies, governmental agencies, and employers of the geoscience workforce increasingly expect that students have had some training in ethics to guide their professional lives, and the public demands that scientists abide by the highest standards of ethical conduct. The nature of the geosciences exposes the profession to ethical issues that derive from our work in a complex, dynamic Earth system with an incomplete geologic record and a high degree of uncertainty and ambiguity in our findings. The geosciences also address topics such as geohazards and resource development that have ethical dimensions that impact on the health, security, public policies, and economic well-being of society. However, there is currently no formal course of study to integrate geoethics into the geoscience curriculum and few faculty have the requisite training to effectively teach about ethics in their classes, or even informally in mentoring their research students. To address this need, an NSF-funded workshop was convened to explore how ethics education can be incorporated into the geoscience curriculum. The workshop addressed topics such as where and how should geoethics be taught in a range of courses including introductory courses for non-majors, as embedded modules in existing geoscience courses, or as a dedicated course for majors on geoethics; what are the best pedagogic practices in teaching ethics, including lessons learned from cognate disciplines (philosophy, biology, engineering); what are the goals for teaching geoethics, and what assessments can be used to demonstrate mastery of ethical principles; what resources currently exist to support teaching geoethics, and what new resources are needed? The workshop also explored four distinct but related aspects of geoethics: 1) Geoethics and self: what are the internal attributes of a geoscientist that establish the ethical

  19. Testicular Cancer Survivorship: Research Strategies and Recommendations

    Science.gov (United States)

    Beard, Clair; Allan, James M.; Dahl, Alv A.; Feldman, Darren R.; Oldenburg, Jan; Daugaard, Gedske; Kelly, Jennifer L.; Dolan, M. Eileen; Hannigan, Robyn; Constine, Louis S.; Oeffinger, Kevin C.; Okunieff, Paul; Armstrong, Greg; Wiljer, David; Miller, Robert C.; Gietema, Jourik A.; van Leeuwen, Flora E.; Williams, Jacqueline P.; Nichols, Craig R.; Einhorn, Lawrence H.; Fossa, Sophie D.

    2010-01-01

    Testicular cancer represents the most curable solid tumor, with a 10-year survival rate of more than 95%. Given the young average age at diagnosis, it is estimated that effective treatment approaches, in particular, platinum-based chemotherapy, have resulted in an average gain of several decades of life. This success, however, is offset by the emergence of considerable long-term morbidity, including second malignant neoplasms, cardiovascular disease, neurotoxicity, nephrotoxicity, pulmonary toxicity, hypogonadism, decreased fertility, and psychosocial problems. Data on underlying genetic or molecular factors that might identify those patients at highest risk for late sequelae are sparse. Genome-wide association studies and other translational molecular approaches now provide opportunities to identify testicular cancer survivors at greatest risk for therapy-related complications to develop evidence-based long-term follow-up guidelines and interventional strategies. We review research priorities identified during an international workshop devoted to testicular cancer survivors. Recommendations include 1) institution of lifelong follow-up of testicular cancer survivors within a large cohort setting to ascertain risks of emerging toxicities and the evolution of known late sequelae, 2) development of comprehensive risk prediction models that include treatment factors and genetic modifiers of late sequelae, 3) elucidation of the effect(s) of decades-long exposure to low serum levels of platinum, 4) assessment of the overall burden of medical and psychosocial morbidity, and 5) the eventual formulation of evidence-based long-term follow-up guidelines and interventions. Just as testicular cancer once served as the paradigm of a curable malignancy, comprehensive follow-up studies of testicular cancer survivors can pioneer new methodologies in survivorship research for all adult-onset cancer. PMID:20585105

  20. Migration in Vulnerable Deltas: A Research Strategy

    Science.gov (United States)

    Hutton, C.; Nicholls, R. J.; Allan, A.

    2015-12-01

    C. Hutton1, & R. J. Nicholls1, , 1 University of Southampton, University Road, Southampton, Hampshire, United Kingdom, SO17 1BJ. cwh@geodata. soton.ac.ukAbstractGlobally, deltas contain 500 million people and with rising sea levels often linked to large number of forced migrants are expected in the coming century. However, migration is already a major process in deltas, such as the growth of major cities such as Dhaka and Kolkata. Climate and environmental change interacts with a range of catchment and delta level drivers, which encompass a nexus of sea-level rise, storms, freshwater and sediment supply from the catchment, land degradation, subsidence, agricultural loss and socio-economic stresses. DECCMA (Deltas, Vulnerability and Climate Change: Migration and Adaptation/CARRIA) is investigating migration in the Ganges-Brahmaputra-Meghna (GBM), Mahanadi and Volta Deltas, including the influence of climate change. The research will explore migration from a range of perspectives including governance and stakeholder analysis, demographic analysis, household surveys of sending and receiving areas, macro-economic analysis, and hazards and hotspot analysis both historically and into the future. Migration under climate change will depend on other adaptation in the deltas and this will be examined. Collectively, integrated analysis will be developed to examine migration, other adaptation and development pathways with a particular focus on the implications for the poorest. This will require the development of input scenarios, including expert-derived exogenous scenarios (e.g., climate change) and endogenous scenarios of the delta developed in a participatory manner. This applied research will facilitate decision support methods for the development of deltas under climate change, with a focus on migration and other adaptation strategies.

  1. Exploring Various Monte Carlo Simulations for Geoscience Applications

    Science.gov (United States)

    Blais, R.

    2010-12-01

    Computer simulations are increasingly important in geoscience research and development. At the core of stochastic or Monte Carlo simulations are the random number sequences that are assumed to be distributed with specific characteristics. Computer generated random numbers, uniformly distributed on (0, 1), can be very different depending on the selection of pseudo-random number (PRN), or chaotic random number (CRN) generators. Equidistributed quasi-random numbers (QRNs) can also be used in Monte Carlo simulations. In the evaluation of some definite integrals, the resulting error variances can even be of different orders of magnitude. Furthermore, practical techniques for variance reduction such as Importance Sampling and Stratified Sampling can be implemented to significantly improve the results. A comparative analysis of these strategies has been carried out for computational applications in planar and spatial contexts. Based on these experiments, and on examples of geodetic applications of gravimetric terrain corrections and gravity inversion, conclusions and recommendations concerning their performance and general applicability are included.

  2. Building a Community for Art and Geoscience

    Science.gov (United States)

    Eriksson, S. C.; Ellins, K. K.

    2014-12-01

    Several new avenues are in place for building and supporting a community of people interested in the art and geoscience connections. Although sessions advocating for art in teaching geoscience have been scattered through geoscience professional meetings for several decades, there is now a sustained presence of artists and geoscientists with their research and projects at the annual meeting of the American Geophysical Union. In 2011, 13 abstracts were submitted and, in 2013, 20 talks and posters were presented at the annual meeting. Participants have requested more ways to connect with each other as well as advocate for this movement of art and science to others. Several words can describe new initiatives to do this: Social, Collaborative, Connected, Informed, Networked, and Included. Social activities of informal dinners, lunches, and happy hour for interested people in the past year have provided opportunity for presenters at AGU to spend time getting to know one another. This has resulted in at least two new collaborative projects. The nascent Bella Roca and more established Geology in Art websites and their associated blogs at www.bellaroca.org and http://geologyinart.blogspot.com, respectively are dedicated to highlighting the work of artists inspired by the geosciences, connecting people and informing the community of exhibits and opportunities for collaboration. Bella Roca with its social media of Facebook (Bella Roca) and Twitter (@BellRocaGeo), is a direct outgrowth of the recent 2012 and 2013 AGU sessions and, hopefully, can be grown and sustained for this community. Articles in professional journals will also help inform the broader geoscience community of the benefit of engaging with artists and designers for both improved science knowledge and communication. Organizations such as Leonardo, the International Society for the Arts, Sciences and Technology, the Art Science Gallery in Austin, Texas also promote networking among artists and scientists with

  3. GOLD (GEO Opportunities for Leadership in Diversity): Building capacity for broadening participation in the Geosciences

    Science.gov (United States)

    Jones, B.; Patino, L. C.; Rom, E. L.; Adams, A.

    2017-12-01

    The geosciences continue to lag other science, technology, engineering, and mathematics (STEM) disciplines in the engagement, recruitment and retention of traditionally underrepresented and underserved groups, requiring more focused and strategic efforts to address this problem. Prior investments made by the National Science Foundation (NSF) related to broadening participation in STEM have identified many effective strategies and model programs for engaging, recruiting, and retaining underrepresented students in the geosciences. These investments also have documented clearly the importance of committed, knowledgeable, and persistent leadership for making local progress in this area. Achieving diversity at larger and systemic scales requires a network of diversity "champions" who can catalyze widespread adoption of these evidence-based best practices and resources. Although many members of the geoscience community are committed to the ideals of broadening participation, the skills and competencies to achieve success must be developed. The NSF GEO Opportunities for Leadership in Diversity (GOLD) program was implemented in 2016, as a funding opportunity utilizing the Ideas Lab mechanism. Ideas Labs are intensive workshops focused on finding innovative solutions to grand challenge problems. The ultimate aim of this Ideas Lab, organized by the NSF Directorate for Geosciences (GEO), was to facilitate the design, pilot implementation, and evaluation of innovative professional development curricula that can unleash the potential of geoscientists with interests in broadening participation to become impactful leaders within the community. The expectation is that mixing geoscientists with experts in broadening participation research, behavioral change, social psychology, institutional change management, leadership development research, and pedagogies for professional development will not only engender fresh thinking and innovative approaches for preparing and empowering

  4. Interdisciplinary cooperation and studies in geoscience in the Carpathian Basin

    Directory of Open Access Journals (Sweden)

    Marcel MINDRESCU

    2012-06-01

    Full Text Available An interdisciplinary approach to geoscience is particularly important in this vast research field, as the more innovative studies are increasingly crossing discipline boundaries and thus benefitting from multiple research methods and viewpoints. Grasping this concept has led us to encourage interdisciplinary cooperation by supporting and promoting the creation of “meeting places” able to provide a framework for researchers and scholars involved in geoscience research to find common grounds for discussion and collaboration. Most recently, this was achieved by organizing the 1st Workshop on “Interdisciplinarity in Geosciences in the Carpathian Basin” (IGCB held in the Department of Geography at the University of Suceava (Romania, between the 18th and 22nd October 2012. This event brought together both an international group of scientists and local researchers which created opportunities for collaboration in research topics such as geography, environment, geology and botany, biology and ecology in the Carpathian Basin.

  5. Recently Identified Changes to the Demographics of the Current and Future Geoscience Workforce

    Science.gov (United States)

    Wilson, C. E.; Keane, C. M.; Houlton, H. R.

    2014-12-01

    The American Geosciences Institute's (AGI) Geoscience Workforce Program collects and analyzes data pertaining to the changes in the supply, demand, and training of the geoscience workforce. Much of these trends are displayed in detail in AGI's Status of the Geoscience Workforce reports. In May, AGI released the Status of the Geoscience Workforce 2014, which updates these trends since the 2011 edition of this report. These updates highlight areas of change in the education of future geoscientists from K-12 through graduate school, the transition of geoscience graduates into early-career geoscientists, the dynamics of the current geoscience workforce, and the future predictions of the changes in the availability of geoscience jobs. Some examples of these changes include the increase in the number of states that will allow a high school course of earth sciences as a credit for graduation and the increasing importance of two-year college students as a talent pool for the geosciences, with over 25% of geoscience bachelor's graduates attending a two-year college for at least a semester. The continued increase in field camp hinted that these programs are at or reaching capacity. The overall number of faculty and research staff at four-year institutions increased slightly, but the percentages of academics in tenure-track positions continued to slowly decrease since 2009. However, the percentage of female faculty rose in 2013 for all tenure-track positions. Major geoscience industries, such as petroleum and mining, have seen an influx of early-career geoscientists. Demographic trends in the various industries in the geoscience workforce forecasted a shortage of approximately 135,000 geoscientists in the next decade—a decrease from the previously predicted shortage of 150,000 geoscientists. These changes and other changes identified in the Status of the Geoscience Workforce will be addressed in this talk.

  6. Systems, Society, Sustainability and the Geosciences: A Workshop to Create New Curricular Materials to Integrate Geosciences into the Teaching of Sustainability

    Science.gov (United States)

    Gosselin, D. C.; Manduca, C. A.; Oches, E. A.; MacGregor, J.; Kirk, K. B.

    2012-12-01

    Sustainability is emerging as a central theme for teaching about the environment, whether it be from the perspective of science, economics, or society. The Systems, Society, Sustainability and the Geosciences workshop provided 48 undergraduate faculty from 46 institutions a forum to discuss the challenges and possibilities for integrating geoscience concepts with a range of other disciplines to teach about the fundamentals of sustainability. Participants from community college to doctorate-granting universities had expertise that included geosciences, agriculture, biological sciences, business, chemistry, economics, ethnic studies, engineering, environmental studies, environmental education, geography, history, industrial technology, landscape design, philosophy, physics, and political science. The workshop modeled a range of teaching strategies that encouraged participants to network and collaborate, share successful strategies and materials for teaching sustainability, and identify opportunities for the development of new curricular materials that will have a major impact on the integration of geosciences into the teaching of sustainability. The workshop design provided participants an opportunity to reflect upon their teaching, learning, and curriculum. Throughout the workshop, participants recorded their individual and collective ideas in a common online workspace to which all had access. A preliminary synthesis of this information indicates that the concept of sustainability is a strong organizing principle for modern, liberal education requiring systems thinking, synthesis and contributions from all disciplines. Sustainability is inherently interdisciplinary and provides a framework for educational collaboration between and among geoscientists, natural/physical scientists, social scientists, humanists, engineers, etc.. This interdisciplinary framework is intellectually exciting and productive for educating students at all levels of higher education

  7. How Accessible Are the Geosciences? a Study of Professionally Held Perceptions and What They Mean for the Future of Geoscience Workforce Development

    Science.gov (United States)

    Atchison, C.; Libarkin, J. C.

    2014-12-01

    Individuals with disabilities are not entering pathways leading to the geoscience workforce; the reasons for which continue to elude access-focused geoscience educators. While research has focused on barriers individuals face entering into STEM disciplines, very little research has considered the role that practitioner perceptions play in limiting access and accommodation to scientific disciplines. The authors argue that changing the perceptions within the geoscience community is an important step to removing barriers to entry into the myriad fields that make up the geosciences. This paper reports on an investigation of the perceptions that geoscientist practitioners hold about opportunities for engagement in geoscience careers for people with disabilities. These perspectives were collected through three separate iterations of surveys at three professional geoscience meetings in the US and Australia between 2011 and 2012. Respondents were asked to indicate the extent to which individuals with specific types of disabilities would be able to perform various geoscientific tasks. The information obtained from these surveys provides an initial step in engaging the larger geoscience community in a necessary discussion of minimizing the barriers of access to include students and professionals with disabilities. The results imply that a majority of the geoscience community believes that accessible opportunities exist for inclusion regardless of disability. This and other findings suggest that people with disabilities are viewed as viable professionals once in the geosciences, but the pathways into the discipline are prohibitive. Perceptions of how individuals gain entry into the field are at odds with perceptions of accessibility. This presentation will discuss the common geoscientist perspectives of access and inclusion in the geoscience discipline and how these results might impact the future of the geoscience workforce pathway for individuals with disabilities.

  8. National Association of Geoscience Teachers (NAGT) support for the Next Generation Science Standards

    Science.gov (United States)

    Buhr Sullivan, S. M.; Awad, A. A.; Manduca, C. A.

    2014-12-01

    The Next Generation Science Standards (NGSS) represents the best opportunity for geosciences education since 1996, describing a vision of teaching excellence and placing Earth and space science on a par with other disciplines. However, significant, sustained support and relationship-building between disciplinary communities must be forthcoming in order to realize the potential. To realize the vision, teacher education, curricula, assessments, administrative support and workforce/college readiness expectations must be developed. The National Association of Geoscience Teachers (NAGT), a geoscience education professional society founded in 1938, is comprised of members across all educational contexts, including undergraduate faculty, pre-college teachers, informal educators, geoscience education researchers and teacher educators. NAGT support for NGSS includes an upcoming workshop in collaboration with the American Geosciences Institute, deep collections of relevant digital learning resources, pertinent interest groups within the membership, professional development workshops, and more. This presentation will describe implications of NGSS for the geoscience education community and highlight some opportunities for the path forward.

  9. Open Geoscience Database

    Science.gov (United States)

    Bashev, A.

    2012-04-01

    Currently there is an enormous amount of various geoscience databases. Unfortunately the only users of the majority of the databases are their elaborators. There are several reasons for that: incompaitability, specificity of tasks and objects and so on. However the main obstacles for wide usage of geoscience databases are complexity for elaborators and complication for users. The complexity of architecture leads to high costs that block the public access. The complication prevents users from understanding when and how to use the database. Only databases, associated with GoogleMaps don't have these drawbacks, but they could be hardly named "geoscience" Nevertheless, open and simple geoscience database is necessary at least for educational purposes (see our abstract for ESSI20/EOS12). We developed a database and web interface to work with them and now it is accessible at maps.sch192.ru. In this database a result is a value of a parameter (no matter which) in a station with a certain position, associated with metadata: the date when the result was obtained; the type of a station (lake, soil etc); the contributor that sent the result. Each contributor has its own profile, that allows to estimate the reliability of the data. The results can be represented on GoogleMaps space image as a point in a certain position, coloured according to the value of the parameter. There are default colour scales and each registered user can create the own scale. The results can be also extracted in *.csv file. For both types of representation one could select the data by date, object type, parameter type, area and contributor. The data are uploaded in *.csv format: Name of the station; Lattitude(dd.dddddd); Longitude(ddd.dddddd); Station type; Parameter type; Parameter value; Date(yyyy-mm-dd). The contributor is recognised while entering. This is the minimal set of features that is required to connect a value of a parameter with a position and see the results. All the complicated data

  10. Supporting Knowledge Mobilization and Research Impact Strategies in Grant Applications

    Science.gov (United States)

    Phipps, David; Jensen, Krista E.; Johnny, Michael; Poetz, Anneliese

    2016-01-01

    Each application to the National Science Foundation (NSF) must contain a Broader Impact (BI) strategy. Similarly, grant applications for most research funders in Canada and the UK require strategies to support the translation of research into impacts on society; however, the guidance provided to researchers is too general to inform the specific…

  11. Partnership to Enhance Diversity in Marine Geosciences: Holocene Climate and Anthropogenic Changes from Long Island Sound, NY

    Science.gov (United States)

    McHugh, C. M.; Zheng, Y.; Kohfeld, K. E.; Marchese, P.; Cormier, M.; Warkentine, B.

    2005-12-01

    -term climatic variability (last 20,000 years) through studies of sediment samples and acoustic imagery of the seafloor. The field experience and curriculum in coastal marine sciences are expected to motivate and prepare students to pursue careers in the areas of geoscience, environmental science, and geoscience education. Students are trained in marine data acquisition and introduced to techniques commonly used by geoscientists and environmental scientists. The students are guided to participate in summer internships to strengthen their involvement in geosciences. A long-term goal in a future proposal is to use the strategy developed in this program and repeat the field program every two years to integrate the Long Island Sound research-education experience to the core geoscience curriculum at Queens College and other CUNY colleges. The data collected forms the basis of a unique time-series that builds over time and is used for educational purposes through CUNY colleges and NSF sponsored Digital Library for Earth System Education.

  12. Designing and Using Videos in Undergraduate Geoscience Education - a workshop and resource website review

    Science.gov (United States)

    Wiese, K.; Mcconnell, D. A.

    2014-12-01

    Do you use video in your teaching? Do you make your own video? Interested in joining our growing community of geoscience educators designing and using video inside and outside the classroom? Over four months in Spring 2014, 22 educators of varying video design and development expertise participated in an NSF-funded On the Cutting Edge virtual workshop to review the best educational research on video design and use; to share video-development/use strategies and experiences; and to develop a website of resources for a growing community of geoscience educators who use video: http://serc.carleton.edu/NAGTWorkshops/video/workshop2014/index.html. The site includes links to workshop presentations, teaching activity collections, and a growing collection of online video resources, including "How-To" videos for various video editing or video-making software and hardware options. Additional web resources support several topical themes including: using videos to flip classes, handling ADA access and copyright issues, assessing the effectiveness of videos inside and outside the classroom, best design principles for video learning, and lists and links of the best videos publicly available for use. The workshop represents an initial step in the creation of an informal team of collaborators devoted to the development and support of an ongoing network of geoscience educators designing and using video. Instructors who are interested in joining this effort are encouraged to contact the lead author.

  13. Research requirements for alternative reactor development strategies

    International Nuclear Information System (INIS)

    1979-06-01

    The purpose of this paper is to estimate and compare resource requirements and other fuel cycle quantities for alternative reactor deployment strategies. The paper examines from global and national perspectives the interaction of various fuel cycle alternatives described in the previous U.S. submissions to Working Groups 4, 5, 8 and Subgroup 1A/2A. Nuclear energy forecasts of Subgroup 1A/2A are used in the calculation of uranium demand for each strategy. These uranium demands are then compared to U.S. estimates of annual uranium producibility. Annual rather than cumulative producibility was selected because it does not assume preplanned stockpiling, and is therefore more conservative. The strategies attempt to span a range of nuclear power mixes which could evolve if appropriate commercial and governmental climates develop

  14. EXPORT STRATEGY BASED ON MARKET RESEARCH

    Directory of Open Access Journals (Sweden)

    Octavian-Liviu OLARU

    2014-05-01

    Full Text Available A strategy is a general plan aimed to develop a business. Even export firm that wants to develop and prosper needs some form of strategy. A company's strategic fit with the trading environment has to be continuously reconsidered because it is likely to erode. Managers should be well informed in order to develop their judgment and understanding of the driving forces that shape the business environment. The greatest mistakes are made by exporters who think they know a foreign market as well as they know their local one, only to find after an ill-fated export launch, that they do not.

  15. From Conant's Education Strategy to Kuhn's Research Strategy

    Science.gov (United States)

    Fuller, Steve

    The seminal influence of Kuhn's The Structure of Scientific Revolutions on the history, philosophy, and sociology of science illustrates how changes in pedagogical demands can significantly alter patterns of research. Kuhn's book was honed as a teacher in the General Education of Science curriculum designed by Harvard President James Bryant Conant, to whom Structure is dedicated. The courses targeted non-scientists who would have to make policy decisions in the dawning Atomic Age, where science would play an increasing role, despite the public skepticism generated by the atomic bomb (which Conant administered). Conant wanted these future policy makers to be connoisseurs of science who understood problematic Big Science as continuing the basic mindset of culturally valued Little Science. This partly explains why Kuhn presented science as following the same stages, regardless of the specific science and period under discussion. I consider three other senses in Conant's curriculum left its imprint on Kuhn's research practice: the use of case histories to manufacture the internal/external history distinction; the invention of the historiographical mirage known as normal science; the application of the incommensurability thesis to create a more receptive attitude to past scientists.

  16. Commercialising public research new trends and strategies

    CERN Document Server

    Organisation for Economic Co-operation and Development. Paris

    2013-01-01

    This report describes recent trends in government and institutional level policies to enhance the transfer and exploitation of public research. It also benchmarks a set of countries, universities and public research institutions (PRI) based on both traditional and new indicators.

  17. A Strategy for Involving Undergraduates in Research

    Science.gov (United States)

    Rogers, Darrin L.; Kranz, Peter L.; Ferguson, Christopher J.

    2012-01-01

    Increasingly, colleges and universities value undergraduate educational research experiences, though traditional apprenticeship models may be infeasible due to faculty time and resource limitations. The "embedded researcher" method can provide research experiences to large numbers of students within traditional courses while generating valuable…

  18. Workshop for Early Career Geoscience Faculty: Providing resources and support for new faculty to succeed

    Science.gov (United States)

    Hill, T. M.; Beane, R. J.; Macdonald, H.; Manduca, C. A.; Tewksbury, B. J.; Allen-King, R. M.; Yuretich, R.; Richardson, R. M.; Ormand, C. J.

    2015-12-01

    A vital strategy to educate future geoscientists is to support faculty at the beginning of their careers, thus catalyzing a career-long impact on the early-career faculty and on their future students. New faculty members are at a pivotal stage in their careers as they step from being research-focused graduate students and post-doctoral scholars, under the guidance of advisors, towards launching independent careers as professors. New faculty commonly, and not unexpectedly, feel overwhelmed as they face challenges to establish themselves in a new environment, prepare new courses, begin new research, and develop a network of support. The workshop for Early Career Geoscience Faculty: Teaching, Research, and Managing Your Career has been offered annually in the U.S. since 1999. The workshop is currently offered through the National Association of Geoscience Teachers On the Cutting Edge professional development program with support from the NSF, AGU and GSA. This five-day workshop, with associated web resources, offers guidance for incorporating evidence-based teaching practices, developing a research program, and managing professional responsibilities in balance with personal lives. The workshop design includes plenary and concurrent sessions, individual consultations, and personalized feedback from workshop participants and leaders. Since 1999, more than 850 U.S. faculty have attended the Early Career Geoscience Faculty workshop. Participants span a wide range of geoscience disciplines, and are in faculty positions at two-year colleges, four-year colleges, comprehensive universities and research universities. The percentages of women (~50%) and underrepresented participants (~8%) are higher than in the general geoscience faculty population. Multiple participants each year are starting positions after receiving all or part of their education outside the U.S. Collectively, participants report that they are better prepared to move forward with their careers as a result of

  19. Native Geosciences: Strengthening the Future Through Tribal Traditions

    Science.gov (United States)

    Bolman, J. R.; Quigley, I.; Douville, V.; Hollow Horn Bear, D.

    2008-12-01

    communities and a return to traditional ways of supporting the development of our "story" or purpose for being. The opportunities include residential summer field experiences, interdisciplinary curriculums and development of Tribally-driven Native research experiences. The National Science Foundation, University of North Dakota's Northern Great Plains Center for People and the Environment, Upper Midwest Aerospace Consortium (UMAC), and Tribes have provided funding to support the development of Native geosciences. The presentation will focus on current projects: NSF OEDG "He Sapa Bloketu Woecun; Geosciences at the Heart of Everything That Is", NSF S-STEM "Scientific Leadership Scholars" and the NSF BPC "Coalition of American Indians in Computing". The expressed goal of future initiatives is to connect Tribal communities across the Midwest and West in developing a Native Geosciences Pathway. This pathway supports the identification and support of Tribal students with an interest or "story" connected to geosciences ensuring a future Native geosciences workforce.

  20. Portrayal of the Geosciences in the New York Times

    Science.gov (United States)

    Wysession, M. E.; Lindstrom, A.

    2017-12-01

    An analysis of the portrayal of science, including the geosciences, in the New York Times shows that geoscience topics dominate front-page science coverage, appearing significantly more often than articles concerning biology, chemistry, or physics. This is significant because the geosciences are sometimes portrayed (in most high schools, for example) as being of less significance or importance than the other sciences, yet their portrayal in what is arguably the leading U.S. newspaper shows just the opposite - that the geosciences are the most relevant and newsworthy of the sciences. We analyzed NY Times front pages and Tuesday "Science Times" sections for 2012 - 2015, and looked at many parameters including science discipline, the kind of article (research, policy, human-interest, etc.), correlations to the "big ideas" of the Next Generation Science Standards, and for the geosciences, a break-down of sub-disciplines. For the front pages, we looked at both full articles and call-outs to articles on later pages. For front-page full articles, geoscience-related articles were more frequent (almost 60%) than biology, chemistry, and physics combined. Including call-outs to later articles, the geosciences still made the most front-page appearances (almost 40%), and this included the fact that 1/3 of front-page science articles were medicine-related, which accounted for nearly all of the biology and chemistry articles. Interestingly, what the NY Times perceived as "science" differed significantly: 60% of all Tuesday "Science Times" articles were medicine-related, and even removing these, biology (40%) edged the geosciences (35%) as the most frequent Science Times articles. Of the front-page geoscience articles, the topics were dominated each year by natural hazards, natural resources, and human impacts, with the percentage of human-impact-related articles almost doubling over the 4 years. The most significant 4-year trend was in the attention paid to climate change. For

  1. A research on vocabulary teaching strategies and students’ mastery

    OpenAIRE

    Tian, Yuan; Liu, Bingbing

    2013-01-01

    By means of questionnaire and quantitative research, this article aims at investigating the effects on students’ mastery of vocabulary by studying teachers’ adoption of seven kinds of common vocabulary teaching strategies and the usage of analyzing strategies in intensive English in order to improve vocabulary teaching strategies and to help enlarge students’ vocabulary.

  2. Resources to Transform Undergraduate Geoscience Education: Activities in Support of Earth, Oceans and Atmospheric Sciences Faculty, and Future Plans

    Science.gov (United States)

    Ryan, J. G.; Singer, J.

    2013-12-01

    that their institutions did not recognize the value of education-related scholarly activities, or undervaluing it compared to more traditional research activities. Given this reality, faculty desire strategies for balancing their time to allow time to pursue both. The current restructuring of NSF educational programs raises questions regarding future directions and the scale of support that may be available from the proposed Catalyzing Advances in Undergraduate STEM Education (CAUSE) Program. At the time of writing this abstract, specific details have not been communicated, but it appears that CAUSE could encompass components from several programs within the Division of Undergraduate Education's TUES, STEP, and WIDER programs, as well as the Geoscience Education and OEDG programs in the Geosciences Directorate. The RTUGeoEd project will continue to provide support to faculty seeking CAUSE (and other educational funding within DUE).

  3. Building Strong Geoscience Departments: Case Studies and Findings from Six Years of Programming

    Science.gov (United States)

    Iverson, E. A.; Lee, S.; Ormand, C. J.; Feiss, P. G.; Macdonald, H.; Manduca, C. A.; Richardson, R. M.

    2011-12-01

    Begun in 2005, the Building Strong Geoscience Departments project sought to help geoscience departments respond to changes in geosciences research, academic pressures, and the changing face of the geosciences workforce by working as a team, planning strategically, and learning from the experiences of other geoscience departments. Key strategies included becoming more central to their institution's mission and goals; articulating the department's learning goals for students; designing coordinated curricula, co-curricular activities, and assessments to meet these goals; and recruiting students effectively. A series of topical workshops identified effective practices in use in the U.S. and Canada. These practices were documented on the project website and disseminated through a national workshop for teams of faculty, through activities at the AGU Heads and Chairs workshops, and in a visiting workshop program bringing leaders to campuses. The program has now involved over 450 participants from 185 departments. To understand the impact of the program, we engaged in ongoing discussion with five departments of various sizes and institutional types, and facing a variety of immediate challenges. In aggregate they made use of the full spectrum of project offerings. These departments all reported that the project brought an important new perspective to their ability to work as a department: they have a better understanding of how their departments' issues relate to the national scene, have more strategies for making the case for the entire department to college administrators, and are better poised to make use of campus resources including the external review process. These results were consistent with findings from end-of-workshop surveys. Further they developed the ability to work together as a team to address departmental challenges through collective problem solving. As a result of their workshop participation, two of the departments who considered their department to be

  4. Challenges and strategies for research in prisons.

    Science.gov (United States)

    Apa, Zoltán L; Bai, RuoYu; Mukherejee, Dhritiman V; Herzig, Carolyn T A; Koenigsmann, Carl; Lowy, Franklin D; Larson, Elaine L

    2012-01-01

    In this article, we discuss some of the challenges encountered while conducting research in two maximum security prisons and approaches we found helpful to facilitate the research process through the development of collaborative relationships, the establishment of prison contacts, and the implementation of rigorous research methods. As a result of our experiences, we have been successful at maintaining a high rate of inmate participation (>80%) and a well-functioning multidisciplinary team. The approaches described may be useful to other investigators planning to conduct research in a challenging setting such as prisons. © 2012 Wiley Periodicals, Inc.

  5. A strategy for building public service motivation research Internationally

    NARCIS (Netherlands)

    Kim, S.; Vandenabeele, W.V.

    2010-01-01

    As public service motivation research grows qualitatively and quantitatively, some scholars question its appropriateness for international applications. This essay sets out a strategy of convergence for international research and measurement approaches. Studies that assess commonalities in public

  6. Developing Learning Strategies Based on Research Projects

    Science.gov (United States)

    Ampuero-Canellas, Olga; Gonzalez-Del-Rio, Jimena; Jorda-Albinana, Begona; Rojas-Sola, Jose Ignacio

    2011-01-01

    Research projects are a very important part of any professor life sheet. Through these projects, they use their knowledge to solve real problems within professional area. Besides being an advance in research area, they can essentially contribute to improving teaching process. This work originates from the idea that the experienced gotten from…

  7. Global — Rethinking strategies for agricultural research

    International Development Research Centre (IDRC) Digital Library (Canada)

    2010-12-24

    Dec 24, 2010 ... Projects under the global PRGA program support the worldwide development and assessment of gender-sensitive participatory research methods. The goal is to introduce proven approaches into the international agricultural research centres (IARCs), and eventually into national programs. The small ...

  8. Expedition Earth and Beyond: Using NASA Data Resources and Integrated Educational Strategies to Promote Authentic Research in the Classroom

    Science.gov (United States)

    Graffi, Paige Valderrama; Stefanov, William; Willis, Kim; Runco, Sue

    2009-01-01

    Teachers in today s classrooms are bound by state required skills, education standards, and high stakes testing. How can they gain skills and confidence to replace units or individual activities with curriculum that incorporates project and inquiry-based learning and promotes authentic research in the classroom? The key to promoting classroom authentic research experiences lies in educator professional development that is structured around teacher needs. The Expedition Earth and Beyond Program is a new geosciences program based at the NASA Johnson Space Center designed to engage, inspire and educate teachers and students in grades 5-14. The program promotes authentic research experiences for classrooms and uses strategies that will help NASA reach its education goals while still allowing educators to teach required standards. Teachers will have access to experts in terrestrial and planetary remote sensing and geoscience; this will enhance their use of content, structure, and relevant experiences to gain the confidence and skills they need to actively engage students in authentic research experiences. Integrated and powerful educational strategies are used to build skills and confidence in teachers. The strategies are as follows: 1) creating Standards-aligned, inquiry-based curricular resources as ready-to-use materials that can be modified by teachers to fit their unique classroom situation; 2) providing ongoing professional development opportunities that focus on active experiences using curricular materials, inquiry-based techniques and expanding content knowledge; 3) connecting science experts to classrooms to deepen content knowledge and provide relevance to classroom activities and real world applications; 4) facilitating students sharing research with their peers and scientists reinforcing their active participation and contributions to research. These components of the Expedition Earth and Beyond Education Program will be enhanced by providing exciting and

  9. Improving Undergraduate STEM Education: Pathways into Geoscience (IUSE: GEOPATHS) - A National Science Foundation Initiative

    Science.gov (United States)

    Jones, B.; Patino, L. C.

    2016-12-01

    Preparation of the future professional geoscience workforce includes increasing numbers as well as providing adequate education, exposure and training for undergraduates once they enter geoscience pathways. It is important to consider potential career trajectories for geoscience students, as these inform the types of education and skill-learning required. Recent reports have highlighted that critical thinking and problem-solving skills, spatial and temporal abilities, strong quantitative skills, and the ability to work in teams are among the priorities for many geoscience work environments. The increasing focus of geoscience work on societal issues (e.g., climate change impacts) opens the door to engaging a diverse population of students. In light of this, one challenge is to find effective strategies for "opening the world of possibilities" in the geosciences for these students and supporting them at the critical junctures where they might choose an alternative pathway to geosciences or otherwise leave altogether. To address these and related matters, The National Science Foundation's (NSF) Directorate for Geosciences (GEO) has supported two rounds of the IUSE: GEOPATHS Program, to create and support innovative and inclusive projects to build the future geoscience workforce. This program is one component in NSF's Improving Undergraduate STEM Education (IUSE) initiative, which is a comprehensive, Foundation-wide effort to accelerate the quality and effectiveness of the education of undergraduates in all of the STEM fields. The two tracks of IUSE: GEOPATHS (EXTRA and IMPACT) seek to broaden and strengthen connections and activities that will engage and retain undergraduate students in geoscience education and career pathways, and help prepare them for a variety of careers. The long-term goal of this program is to dramatically increase the number and diversity of students earning undergraduate degrees or enrolling in graduate programs in geoscience fields, as well as

  10. Case study of information product for strategy research, planning research, and policy research

    International Nuclear Information System (INIS)

    Yuan Yujun; Zou Lin; Liu Qun; Wang Yongping

    2010-01-01

    Soft science research is significant and can directly support the decision-making and development. The strategy research, planning research, and policy research each play an important role in soft science research. As the National Strategy of Informatization being implemented and advanced, some progress are made and some special information tools are produced in the process of strengthening the development research with information technologies. At first, the article introduced some cases of information products application, such as the domestic and overseas information products for energy strategy research and planning research and policy research, the governmental management information system for planning and investment, examination and approval and permission system for the planning of the land for construction, China agriculture decision support system and so on, and also gave a brief analysis on the theories and methods, main functions and application status. And then, with a analysis on the features of the works of development planning of China National Nuclear Corporation (CNNC) development, this article gave some suggestions on how to strengthen the development of information system for the development planning of the CNNC. (authors)

  11. GIS in geoscience education- geomorphometric study

    Digital Repository Service at National Institute of Oceanography (India)

    Mahender, K.; Yogita, K.; Kunte, P.D.

    The educational institutions around the world have realised the possibility of using GIS in geosciences teaching along with in many other subjects. GIS is been used in a large number of geoscience applications viz. mapping, mineral and petroleum...

  12. MS PHD'S: A Successful Model Promoting Inclusion, Preparation and Engagement of Underrepresented Minorities within the Geosciences Workforce

    Science.gov (United States)

    Padilla, E.; Scott, O.; Strickland, J. T.; Ricciardi, L.; Guzman, W. I.; Braxton, L.; Williamson, V.; Johnson, A.

    2015-12-01

    According to 2014 findings of the National Research Council, geoscience and related industries indicate an anticipated 48,000 blue-collar, scientific, and managerial positions to be filled by underrepresented minority (URM) workers in the next 15 years. An Information Handling Services (IHS) report prepared for the American Petroleum Institute forecasts even greater numbers estimating upward of 408,000 opportunities for URM workers related to growth in accelerated development of oil, gas and petroleum industries. However, many URM students lack the training in both the hard sciences and craft skills necessary to fill these positions. The Minorities Striving and Pursuing Higher Degrees of Success in Earth System Science (MS PHD'S) Professional Development Program uses integrative and holistic strategies to better prepare URM students for entry into all levels of the geoscience workforce. Through a three-phase program of mentoring, community building, networking and professional development activities, MS PHD'S promotes collaboration, critical thinking, and soft skills development for participants. Program activities expose URM students to education, training and real-life geoscience workforce experiences while maintaining a continuity of supportive mentoring and training networks via an active virtual community. MS PHD'S participants report increased self-confidence and self-efficacy in pursuing geoscience workforce goals. To date, the program supports 223 participants of who 57, 21 and 16 have received Doctorate, Masters and Baccalaureate degrees respectively and are currently employed within the geoscience and related industries workforce. The remaining 129 participants are enrolled in undergraduate and graduate programs throughout the U.S. Geographic representation of participants includes 35 states, the District of Columbia, Puerto Rico and two international postdoctoral appointments - one in Saudi Arabia and the other in France.

  13. Establishing MICHCARB, a geological carbon sequestration research and education center for Michigan, implemented through the Michigan Geological Repository for Research and Education, part of the Department of Geosciences at Western Michigan University

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, David A. [Western Michigan Univ., Kalamazoo MI (United States); Harrison, William B. [Western Michigan Univ., Kalamazoo MI (United States)

    2014-01-28

    The Michigan Geological Repository for Research and Education (MGRRE), part of the Department of Geosciences at Western Michigan University (WMU) at Kalamazoo, Michigan, established MichCarb—a geological carbon sequestration resource center by: • Archiving and maintaining a current reference collection of carbon sequestration published literature • Developing statewide and site-specific digital research databases for Michigan’s deep geological formations relevant to CO2 storage, containment and potential for enhanced oil recovery • Producing maps and tables of physical properties as components of these databases • Compiling all information into a digital atlas • Conducting geologic and fluid flow modeling to address specific predictive uses of CO2 storage and enhanced oil recovery, including compiling data for geological and fluid flow models, formulating models, integrating data, and running the models; applying models to specific predictive uses of CO2 storage and enhanced oil recovery • Conducting technical research on CO2 sequestration and enhanced oil recovery through basic and applied research of characterizing Michigan oil and gas and saline reservoirs for CO2 storage potential volume, injectivity and containment. Based on our research, we have concluded that the Michigan Basin has excellent saline aquifer (residual entrapment) and CO2/Enhanced oil recovery related (CO2/EOR; buoyant entrapment) geological carbon sequestration potential with substantial, associated incremental oil production potential. These storage reservoirs possess at least satisfactory injectivity and reliable, permanent containment resulting from associated, thick, low permeability confining layers. Saline aquifer storage resource estimates in the two major residual entrapment, reservoir target zones (Lower Paleozoic Sandstone and Middle Paleozoic carbonate and sandstone reservoirs) are in excess of 70-80 Gmt (at an overall 10% storage efficiency factor; an approximately

  14. Implementing the Next Generation Science Standards: Impacts on Geoscience Education

    Science.gov (United States)

    Wysession, M. E.

    2014-12-01

    This is a critical time for the geoscience community. The Next Generation Science Standards (NGSS) have been released and are now being adopted by states (a dozen states and Washington, DC, at the time of writing this), with dramatic implications for national K-12 science education. Curriculum developers and textbook companies are working hard to construct educational materials that match the new standards, which emphasize a hands-on practice-based approach that focuses on working directly with primary data and other forms of evidence. While the set of 8 science and engineering practices of the NGSS lend themselves well to the observation-oriented approach of much of the geosciences, there is currently not a sufficient number of geoscience educational modules and activities geared toward the K-12 levels, and geoscience research organizations need to be mobilizing their education & outreach programs to meet this need. It is a rare opportunity that will not come again in this generation. There are other significant issues surrounding the implementation of the NGSS. The NGSS involves a year of Earth and space science at the high school level, but there does not exist a sufficient workforce is geoscience teachers to meet this need. The form and content of the geoscience standards are also very different from past standards, moving away from a memorization and categorization approach and toward a complex Earth Systems Science approach. Combined with the shift toward practice-based teaching, this means that significant professional development will therefore be required for the existing K-12 geoscience education workforce. How the NGSS are to be assessed is another significant question, with an NRC report providing some guidance but leaving many questions unanswered. There is also an uneasy relationship between the NGSS and the Common Core of math and English, and the recent push-back against the Common Core in many states may impact the implementation of the NGSS.

  15. Learning Strategy Research--Where Are We Now?

    Science.gov (United States)

    Nambiar, Radha

    2009-01-01

    Learning strategy research has been very prolific and much has been written about the field and its importance to language learning. This paper traces the history and development of learning strategy research by anchoring it in the field of cognitive psychology in the early years from 1970 to 1990 before reviewing the varied and descriptive nature…

  16. Why did you decide to become a Geoscience Major: A Critical Incident Study for the Development of Recruiting Programs for Inspiring Interests in the Geosciences Amongst Pre-College Students

    Science.gov (United States)

    Carrick, T. L.; Miller, K. C.; Levine, R.; Martinez-Sussmann, C.; Velasco, A. A.

    2011-12-01

    Anecdotally, it is often stated that the majority of students that enter the geosciences usually do so sometime after their initial entrance into college. With the objective of providing concrete and useful information for individuals developing programs for inspiring interest in the Geosciences amongst pre-college students and trying to increase the number of freshman Geoscience majors, we conducted a critical incident study. Twenty-two students, who were undergraduate or graduate Geoscience majors, were asked, "Why did you decide to major in the Geosciences?" in a series of interviews. Their responses were then used to identify over 100 critical incidents, each of which described a specific behavior that was causally responsible for a student's choice to major in Geoscience. Using these critical incidents, we developed a preliminary taxonomy that is comprised of three major categories: Informal Exposure to the Geosciences (e.g., outdoor experiences, family involvement), Formal Exposure to the Geosciences (e.g., academic experiences, program participation) and a Combined Informal and Formal Exposure (e.g., media exposure). Within these three main categories we identified thirteen subcategories. These categories and subcategories, describe, classify, and provide concrete examples of strategies that were responsible for geosciences career choices. As a whole, the taxonomy is valuable as a new, data-based guide for designing geosciences recruitment programs for the pre-college student population.

  17. Teaching Spatial Thinking in Undergraduate Geology Courses Using Tools and Strategies from Cognitive Science Research

    Science.gov (United States)

    Ormand, C. J.; Shipley, T. F.; Dutrow, B. L.; Goodwin, L. B.; Hickson, T. A.; Tikoff, B.; Atit, K.; Gagnier, K. M.; Resnick, I.

    2015-12-01

    Spatial visualization is an essential skill in the STEM disciplines, including the geological sciences. Undergraduate students, including geoscience majors in upper-level courses, bring a wide range of spatial skill levels to the classroom. Students with weak spatial skills may struggle to understand fundamental concepts and to solve geological problems with a spatial component. However, spatial thinking skills are malleable. Using strategies that have emerged from cognitive science research, we developed a set of curricular materials that improve undergraduate geology majors' abilities to reason about 3D concepts and to solve spatially complex geological problems. Cognitive science research on spatial thinking demonstrates that predictive sketching, making visual comparisons, gesturing, and the use of analogy can be used to develop students' spatial thinking skills. We conducted a three-year study of the efficacy of these strategies in strengthening the spatial skills of students in core geology courses at three universities. Our methodology is a quasi-experimental quantitative design, utilizing pre- and post-tests of spatial thinking skills, assessments of spatial problem-solving skills, and a control group comprised of students not exposed to our new curricular materials. Students taught using the new curricular materials show improvement in spatial thinking skills. Further analysis of our data, to be completed prior to AGU, will answer additional questions about the relationship between spatial skills and academic performance, spatial skills and gender, spatial skills and confidence, and the impact of our curricular materials on students who are struggling academically. Teaching spatial thinking in the context of discipline-based exercises has the potential to transform undergraduate education in the geological sciences by removing one significant barrier to success.

  18. Literacy and students' interest on Geosciences - Findings and results of GEOschools project

    Science.gov (United States)

    Fermeli, Georgia; Steininger, Fritz; Dermitzakis, Michael; Meléndez, Guillermo; Page, Kevin

    2014-05-01

    GEOschools is a European project supported by the Lifelong Learning Programme. Among the main aims of the project were to investigate the interest secondary school students have on geosciences and the teaching strategies used. Also, the development of a guide for Geosciences Literacy at a European level (Fermeli et al., 2011). GEOschools' literacy framework proposal is based on a comparative analysis of geoscience curricula in the partner countries (Austria, Greece, Italy, Spain and Portugal). Results of an "Interest Research" survey involved around 1750 students and 60 teachers from partner countries, combined with specific proposals by the project partners (Calonge et al., 2011). Results of the GEOschools "Interest research" survey evidence students show a higher interest in those topics which have a potentially higher social impact, such as mass extinctions, dinosaurs, geological hazards and disasters and origin and evolution of life (including human evolution). These results provide an evidence base to justify why curriculum content and teaching strategies can be made more effective through focusing mainly on such "interest topics", instead of trying to follow an excessively rigid, or academic, development of teaching programs (Fermeli et al., 2013). GEOschools literacy framework is summarized in 14 separate chapters, each including a brief description of the main themes of each subject, the intended learning outcomes as well as keywords and a bibliography. More particularly, the chapters of the framework describe what students should know and do, and how they should relate, as European citizens, to the geosciences. To face the challenges of the present and the future, modern citizens should be literate in natural sciences and, within the context of the geosciences, be able to: • Demonstrate a knowledge and understanding of basic principles, models, laws and terminology of Geosciences. • Know how and where to find and access scientifically reliable

  19. Geoscience in Developing Countries of South Asia and International Cooperation

    Science.gov (United States)

    Gupta, K.

    2007-12-01

    Earth Science community in developing countries of South Asia is actively engaged in interdisciplinary investigations of the Earth and its envelopes through geological, geophysical and geochemical processes, for these processes are interconnected. Interdisciplinary interaction will continue to grow since problems pertaining to the solid earth, with its core-mantle-crust, and fluid envelops can be solved only with contributions from different Science disciplines. The expanding population and revolution in data handling-and-computing have now become a necessity to tackle the geoscientific problems with modern techniques and methodologies to meet these new challenges. As a future strategy, geo-data generation and handling need to be speedier and easier and hence demands a well- knit coordiantion and understanding amongst Governments, Industries and Academic organizations. Such coordination will prove valuable for better understanding of the Earth's processes, especially mitigating natural hazards with more accurate and speedy prdictions, besides sustaining Earth's resources. South Asian geoscience must, therefore, seek new directions by way of strategies, policies, and actions to move forward in this century. Environmental and resource problems affecting the world population have become international issues, since global environmental changes demand international cooperation and planning. The Earth is continually modified by the interplay of internal and external processes. Hence we need to apply modern geophysical techniques and interpret the results with the help of available geological, geochronological and gechemical informations It is through such integrated approach that we could greatly refine our understanding of the deep structure and evolution of the Indian shield. However, the inputs into multi-disciplinary studies necessary to know the crustal structure and tectonics in the adjoining regions (Nepal, Bangladesh, Myanmar, Sri Lanka etc.) still remain

  20. Strategies for Successful Aging: A Research Update

    Science.gov (United States)

    Depp, Colin A.; Harmell, Alexandrea L.; Jeste, Dilip

    2014-01-01

    Population aging is an enormous public health issue and there is clear need for strategies to maximize opportunities for successful aging. Many psychiatric illnesses are increasingly thought to be associated with accelerated aging, therefore emerging data on individual and policy level interventions that alter typical aging trajectories are relevant to mental health practitioners. Although the determinants and definition of successful aging remain controversial, increasing data indicate that psychiatric illnesses directly impact biological aging trajectories and diminish lifestyle, psychological and socio-environmental factors that seem reduce risk of morbidity and mortality. Many interventions designed to enhance the normal course of aging may be adjunctive approaches to management of psychiatric illnesses. We highlight recent data on interventions seeking to promote healthy aging, such as cognitive remediation, physical activity, nutrition, and complementary and alternative treatments for older people with and without psychiatric illnesses. PMID:25135776

  1. Decision Strategy Research and Policy Support

    International Nuclear Information System (INIS)

    Hardeman, F.

    2002-01-01

    The objective of SCK-CEN's R and D programme on decision strategies and policy support is: (1) to investigate the decision making process, with all its relevant dimensions, in the context of radiation protection or other nuclear issues (with particular emphasis on emergency preparedness); (2) to disseminate knowledge on decision making and nuclear emergencies, including the organisation of training courses, the contribution to manuals or guidelines, the participation in working groups or discussion forums; (3) to assist the authorities and the industry on any topic related to radiation protection and to make expertise and infrastructure available; (4) to participate in and contribute to initiatives related to social sciences and their implementation into SCK-CEN; (5) to co-ordinate efforts of SCK-CEN related to medical applications of ionising radiation. Principal achievements in 2001 are described

  2. Innovative Research Strategies for Business Education

    Science.gov (United States)

    O'Connor, Bridget N.

    2007-01-01

    An internal, ongoing debate that all professional areas of study have is how to understand the impact of shifting economies, demographics, technologies, and globalization. Much business education research focuses on describing current practices. To this end, issues are often addressed by using surveys that are analyzed using descriptive analysis…

  3. Understanding asphalt compaction: An action research strategy

    NARCIS (Netherlands)

    Miller, Seirgei Rosario; ter Huerne, Henderikus L.; Doree, Andries G.; Amaratunga, Dilanthi

    2007-01-01

    In Hot Mix Asphalt (HMA) construction, rollers provide the compaction energy required to produce a specified density. However, little is known about the heuristics used by the roller operators. This study forms part of a larger action research project focussing on the improvement of the HMA paving

  4. Extramural Research Grants and Scientists’ Funding Strategies

    DEFF Research Database (Denmark)

    Grimpe, Christoph

    2012-01-01

    ), government, foundation, and industry grants. Based on a sample of more than 800 scientists at universities and public research institutes in Germany, the results indicate that scientist productivity measured in terms of publication and patent stock is a statistically significant determinant only...

  5. Research strategy: one goal, two discourses

    African Journals Online (AJOL)

    Adele

    of publish-or-perish. There are many who feel that other forms of intellectual productivity should also be subsidized, and that the undue emphasis on only subsidizing publications may lead to the trivialization rather than the promotion of academia. What about the real reasons why people become productive researchers?

  6. Brain Research Strategies for Physical Educators

    Science.gov (United States)

    Blakemore, Connie L.

    2004-01-01

    This article is a follow-up to an article by the author published in the November/December 2003 issue of JOPERD, that examined the research supporting the idea that movement enhances cognitive learning. In this follow-up article the author shows how physical educators can apply this information, in a variety of ways. The following outlines some of…

  7. Research Strategies for Biomedical and Health Informatics

    Science.gov (United States)

    Kulikowski, Casimir A.; Bakken, Suzanne; de Lusignan, Simon; Kimura, Michio; Koch, Sabine; Mantas, John; Maojo, Victor; Marschollek, Michael; Martin-Sanchez, Fernando; Moen, Anne; Park, Hyeoun-Ae; Sarkar, Indra Neil; Leong, Tze Yun; McCray, Alexa T.

    2017-01-01

    Summary Background Medical informatics, or biomedical and health informatics (BMHI), has become an established scientific discipline. In all such disciplines there is a certain inertia to persist in focusing on well-established research areas and to hold on to well-known research methodologies rather than adopting new ones, which may be more appropriate. Objectives To search for answers to the following questions: What are research fields in informatics, which are not being currently adequately addressed, and which methodological approaches might be insufficiently used? Do we know about reasons? What could be consequences of change for research and for education? Methods Outstanding informatics scientists were invited to three panel sessions on this topic in leading international conferences (MIE 2015, Medinfo 2015, HEC 2016) in order to get their answers to these questions. Results A variety of themes emerged in the set of answers provided by the panellists. Some panellists took the theoretical foundations of the field for granted, while several questioned whether the field was actually grounded in a strong theoretical foundation. Panellists proposed a range of suggestions for new or improved approaches, methodologies, and techniques to enhance the BMHI research agenda. Conclusions The field of BMHI is on the one hand maturing as an academic community and intellectual endeavour. On the other hand vendor-supplied solutions may be too readily and uncritically accepted in health care practice. There is a high chance that BMHI will continue to flourish as an important discipline; its innovative interventions might then reach the original objectives of advancing science and improving health care outcomes. PMID:28119991

  8. Key Strategies for Building Research Capacity of University Faculty Members.

    Science.gov (United States)

    Huenneke, Laura F; Stearns, Diane M; Martinez, Jesse D; Laurila, Kelly

    2017-12-01

    Universities are under pressure to increase external research funding, and some federal agencies offer programs to expand research capacity in certain kinds of institutions. However, conflicts within faculty roles and other aspects of university operations influence the effectiveness of particular strategies for increasing research activity. We review conventional approaches to increasing research, focusing on outcomes for individual faculty members and use one federally-funded effort to build cancer-related research capacity at a public university as an example to explore the impact of various strategies on research outcomes. We close with hypotheses that should be tested in future formal studies.

  9. Identifying Important Career Indicators of Undergraduate Geoscience Students Upon Completion of Their Degree

    Science.gov (United States)

    Wilson, C. E.; Keane, C. M.; Houlton, H. R.

    2012-12-01

    The American Geosciences Institute (AGI) decided to create the National Geoscience Student Exit Survey in order to identify the initial pathways into the workforce for these graduating students, as well as assess their preparedness for entering the workforce upon graduation. The creation of this survey stemmed from a combination of experiences with the AGI/AGU Survey of Doctorates and discussions at the following Science Education Research Center (SERC) workshops: "Developing Pathways to Strong Programs for the Future", "Strengthening Your Geoscience Program", and "Assessing Geoscience Programs". These events identified distinct gaps in understanding the experiences and perspectives of geoscience students during one of their most profound professional transitions. Therefore, the idea for the survey arose as a way to evaluate how the discipline is preparing and educating students, as well as identifying the students' desired career paths. The discussions at the workshops solidified the need for this survey and created the initial framework for the first pilot of the survey. The purpose of this assessment tool is to evaluate student preparedness for entering the geosciences workforce; identify student decision points for entering geosciences fields and remaining in the geosciences workforce; identify geosciences fields that students pursue in undergraduate and graduate school; collect information on students' expected career trajectories and geosciences professions; identify geosciences career sectors that are hiring new graduates; collect information about salary projections; overall effectiveness of geosciences departments regionally and nationally; demonstrate the value of geosciences degrees to future students, the institutions, and employers; and establish a benchmark to perform longitudinal studies of geosciences graduates to understand their career pathways and impacts of their educational experiences on these decisions. AGI's Student Exit Survey went through

  10. SKI's research strategy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    SKI's research is a prerequisite for SKI's ability to fulfil its assignment. Research to support supervision is focused today on a number of strategically important areas such as reactor technology, material and fuel questions, human factors, waste and non-proliferation (safeguards). SKI's intelligence analysis shows that this focus should be maintained over the next few years. Some reallocation of priorities between research areas may be necessary due to changes in the nuclear area. For this research, SKI contracts universities as well as consulting companies. The resources that are of importance for nuclear research are concentrated to a few organisations in Sweden. But the national research resources alone do not cover the existing needs. One reason is that the previously highly competent and well funded Swedish expert organisations within the nuclear power utilities have gradually been phased out or transformed into consulting firms. Changes have also taken place at the Swedish vendor of boiling-water plants, now Westinghouse Atom, and the activities have been down sized considerably in Sweden. There has been a similar trend in other countries. Moreover, countries which previously conducted expensive experiments have themselves increasingly sought international support as their research resources have dwindled. As a result, numerous international projects have or are planned to be started. SKI notes that Swedish nuclear activities are also becoming increasingly dependent on international collaboration. SKI further notes that in order to fulfil its assignment, the Inspectorate needs not only financial resources but also competent personnel. This enables targeted support to be maintained to strategic national infrastructure and to international cooperation including internationally financed projects. With this is meant above all experimental research where small countries such as Sweden can join forces with other countries on to important research

  11. A Model Collaborative Platform for Geoscience Education

    Science.gov (United States)

    Fox, S.; Manduca, C. A.; Iverson, E. A.

    2012-12-01

    Over the last decade SERC at Carleton College has developed a collaborative platform for geoscience education that has served dozens of projects, thousands of community authors and millions of visitors. The platform combines a custom technical infrastructure: the SERC Content Management system (CMS), and a set of strategies for building web-resources that can be disseminated through a project site, reused by other projects (with attribution) or accessed via an integrated geoscience education resource drawing from all projects using the platform. The core tools of the CMS support geoscience education projects in building project-specific websites. Each project uses the CMS to engage their specific community in collecting, authoring and disseminating the materials of interest to them. At the same time the use of a shared central infrastructure allows cross-fertilization among these project websites. Projects are encouraged to use common templates and common controlled vocabularies for organizing and displaying their resources. This standardization is then leveraged through cross-project search indexing which allow projects to easily incorporate materials from other projects within their own collection in ways that are relevant and automated. A number of tools are also in place to help visitors move among project websites based on their personal interests. Related links help visitors discover content related topically to their current location that is in a 'separate' project. A 'best bets' feature in search helps guide visitors to pages that are good starting places to explore resources on a given topic across the entire range of hosted projects. In many cases these are 'site guide' pages created specifically to promote a cross-project view of the available resources. In addition to supporting the cross-project exploration of specific themes the CMS also allows visitors to view the combined suite of resources authored by any particular community member. Automatically

  12. Geoscience Diversity Experiential Simulations (GeoDES) Workshop Report

    Science.gov (United States)

    Houlton, H. R.; Chen, J.; Brown, B.; Samuels, D.; Brinkworth, C.

    2017-12-01

    The geosciences have to solve increasingly complex problems relating to earth and society, as resources become limited, natural hazards and changes in climate impact larger communities, and as people interacting with Earth become more interconnected. However, the profession has dismally low representation from geoscientists who are from diverse racial, ethnic, or socioeconomic backgrounds, as well as women in leadership roles. This underrepresentation also includes individuals whose gender identity/expression is non-binary or gender-conforming, or those who have physical, cognitive, or emotional disabilities. This lack of diversity ultimately impacts our profession's ability to produce our best science and work with the communities that we strive to protect and serve as stewards of the earth. As part of the NSF GOLD solicitation, we developed a project (Geoscience Diversity Experiential Simulations) to train 30 faculty and administrators to be "champions for diversity" and combat the hostile climates in geoscience departments. We hosted a 3-day workshop in November that used virtual simulations to give participants experience in building the skills to react to situations regarding bias, discrimination, microaggressions, or bullying often cited in geoscience culture. Participants interacted with avatars on screen, who responded to participants' actions and choices, given certain scenarios. The scenarios are framed within a geoscience perspective; we integrated qualitative interview data from informants who experienced inequitable judgement, bias, discrimination, or harassment during their geoscience careers. The simulations gave learners a safe environment to practice and build self-efficacy in how to professionally and productively engage peers in difficult conversations. In addition, we obtained pre-workshop survey data about participants' understanding regarding Diversity, Equity, and Inclusion practices, as well as observation data of participants' responses

  13. Southern Research Station Global Change Research Strategy 2011-2019

    Science.gov (United States)

    Kier Klepzig; Zoe Hoyle; Stevin Westcott; Emrys Treasure

    2012-01-01

    In keeping with the goals of the Research and Development agenda of the Forest Service, U.S. Department of Agriculture (USDA), the Southern Research Station (SRS) provides the information and technology needed to develop best management practices for the forest lands of the Southern United States, where science-guided actions are needed to sustain ecosystem health,...

  14. Developing Geoscience Students' Quantitative Skills

    Science.gov (United States)

    Manduca, C. A.; Hancock, G. S.

    2005-12-01

    Sophisticated quantitative skills are an essential tool for the professional geoscientist. While students learn many of these sophisticated skills in graduate school, it is increasingly important that they have a strong grounding in quantitative geoscience as undergraduates. Faculty have developed many strong approaches to teaching these skills in a wide variety of geoscience courses. A workshop in June 2005 brought together eight faculty teaching surface processes and climate change to discuss and refine activities they use and to publish them on the Teaching Quantitative Skills in the Geosciences website (serc.Carleton.edu/quantskills) for broader use. Workshop participants in consultation with two mathematics faculty who have expertise in math education developed six review criteria to guide discussion: 1) Are the quantitative and geologic goals central and important? (e.g. problem solving, mastery of important skill, modeling, relating theory to observation); 2) Does the activity lead to better problem solving? 3) Are the quantitative skills integrated with geoscience concepts in a way that makes sense for the learning environment and supports learning both quantitative skills and geoscience? 4) Does the methodology support learning? (e.g. motivate and engage students; use multiple representations, incorporate reflection, discussion and synthesis) 5) Are the materials complete and helpful to students? 6) How well has the activity worked when used? Workshop participants found that reviewing each others activities was very productive because they thought about new ways to teach and the experience of reviewing helped them think about their own activity from a different point of view. The review criteria focused their thinking about the activity and would be equally helpful in the design of a new activity. We invite a broad international discussion of the criteria(serc.Carleton.edu/quantskills/workshop05/review.html).The Teaching activities can be found on the

  15. Leveraging biology interest to broaden participation in the geosciences

    Science.gov (United States)

    Perin, S.; Conner, L.; Oxtoby, L.

    2017-12-01

    It has been well documented that female participation in the geoscience workforce is low. By contrast, the biology workforce has largely reached gender parity. These trends are rooted in patterns of interest among youth. Specifically, girls tend to like biology and value social and societal connections to science (Brotman & Moore 2008). Our NSF-funded project, "BRIGHT Girls," offers two-week summer academies to high school-aged girls, in which the connections between the geosciences and biology are made explicit. We are conducting qualitative research to trace the girls' identity work during this intervention. Using team-based video interaction analysis, we are finding that the fabric of the academy allows girls to "try on" new possible selves in science. Our results imply that real-world, interdisciplinary programs that include opportunities for agency and authentic science practice may be a fruitful approach for broadening participation in the geosciences.

  16. Educational research in Sweden: Reform strategies and research policy

    Science.gov (United States)

    Marklund, Inger

    1981-06-01

    Educational R & D in Sweden is to a large extent policy-oriented. It has been an integrated part of the Swedish educational reform system and has brought about a dialogue between politicians, administrators and researchers. Several circumstances have contributed to the `Swedish model'. One is the system with government-appointed committees in which researchers often play an active part. Another is that the Swedish educational system is highly centralized, with the National Board of Education (NBE) as the central authority, responsible for primary, secondary and adult education. A third — and a crucial one — is that, since 1962, the NBE has had increasing funds for educational R & D at its disposal. These funds account for the main part of the economic resources for R & D, along with resources allocated to research appointments at research departments of universities. Educational R & D, conducted primarily within the NBE funds, has recently been evaluated by a government-appointed committee. In its evaluations of the impact of educational R & D, the committee distinguished between the effects of R & D and the effect correlates. It concluded that the impact of R & D is more indirect than direct, more long-term than immediate. The effects are also more easily recognized at levels above the actual school situation. This finding could be interpreted as a consequence of the policy-orientation of educational R & D, which at the same time shows the difficulties in reaching the `school level' with research and development results. There are two general trends in Sweden, which will influence both research planning and research use. First, there is a trend towards the decentralization of decision-making and responsibility for the educational system. Secondly, there is a trend towards the `sectionalization' of the R & D system as a whole. This sectionalization will mean that research will to a great extent be planned to meet needs from different parts of society — labour

  17. Teaching research: strategies for a successful learning equation.

    Science.gov (United States)

    Fowler, Susan B

    2014-07-01

    Educators who teach or facilitate understanding of research need to overcome the barrier that nurses may not value research for practice, as identified by Pravikoff, Tanner, and Pierce (2005), with innovative, interactive strategies to align with requirements for the 21st century. Educators need to generate a perception that research is useful, rewarding, fun, and worthwhile. Educators of research need to extend beyond academic learning and continue to develop and implement innovative strategies in clinical education programs (Berman, 2013). Research is a skill that requires a foundation of knowledge and its applicability to practice or 'real life'.

  18. Research on Language Learning Strategies: Methods, Findings, and Instructional Issues.

    Science.gov (United States)

    Oxford, Rebecca; Crookall, David

    1989-01-01

    Surveys research on formal and informal second-language learning strategies, covering the effectiveness of research methods involving making lists, interviews and thinking aloud, note-taking, diaries, surveys, and training. Suggestions for future and improved research are presented. (131 references) (CB)

  19. A Survey Data Quality Strategy: The Institutional Research Perspective

    Science.gov (United States)

    Liu, Qin

    2009-01-01

    This paper intends to construct a survey data quality strategy for institutional researchers in higher education in light of total survey error theory. It starts with describing the characteristics of institutional research and identifying the gaps in literature regarding survey data quality issues in institutional research. Then it is followed by…

  20. What Successful Science Teachers Do: 75 Research-Based Strategies

    Science.gov (United States)

    Glasgow, Neal A.; Cheyne, Michele; Yerrick, Randy K.

    2010-01-01

    The experience and science expertise of these award-winning authors makes this easy-to-use guide a teacher's treasure trove. This latest edition to the popular What Successful Teachers Do series describes 75 research-based strategies and outlines best practices for inquiry-oriented science. Each strategy includes a brief description of the…

  1. A proposed strategy for research misconduct policy: A review on misconduct management in health research system

    Directory of Open Access Journals (Sweden)

    Shirin Djalalinia

    2016-01-01

    Conclusions: Considering the proposed strategy, regarding the strengths and weaknesses, utilization of evaluation tool can be one of the best strategies to achieving the prospective of health research papers by 2025.

  2. Drug Induced Hearing Loss: Researchers Study Strategies to Preserve Hearing

    Science.gov (United States)

    ... of this page please turn JavaScript on. Feature: Drug-Induced Hearing Loss Researchers Study Strategies to Preserve ... brain there was a sound. What are ototoxic drugs and why are they important? Ototoxic drugs are ...

  3. Advanced Marginality as a comparative research strategy in praxis:

    DEFF Research Database (Denmark)

    Larsen, Troels Schultz

    2018-01-01

    Urban Outcast and advanced marginality belongs to a theory culture rarely engaged in comparative urban studies. Here the potential of advanced marginality as a comparative research strategy is explored paying special attention to the concepts of epistemic reflexivity, analogical reasoning...

  4. New Product Development and Business Strategy of Research and Development

    International Nuclear Information System (INIS)

    Lee, Sun Cheol

    1998-05-01

    The contents of this book are new product development strategy of the top business, commercialization and new product development, development case analysis and framework of new product development, investigation strategy for idea of new product development, case analysis of research as development and goal of new product development, case analysis and planning and management for new product development, innovative item development and technical management against confusion, the map for determination procedure of development, strategy of market and goods and development strategy cases in leading company.

  5. The Global ASTER Geoscience and Mineralogical Maps

    Science.gov (United States)

    Abrams, M.

    2017-12-01

    In 2012, Australia's Commonwealth Scientific and Industrial Research Organization (CSIRO) released 17 Geoscience mineral maps for the continent of Australia We are producing the CSIRO Geoscience data products for the entire land surface of the Earth. These maps are created from Advanced Spacecraft Thermal Emission and Reflection Radiometer (ASTER) data, acquired between 2000 and 2008. ASTER, onboard the United States' Terra satellite, is part of NASA's Earth Observing System. This multispectral satellite system has 14 spectral bands spanning: the visible and near-infrared (VNIR) @ 15 m pixel resolution; shortwave-infrared (SWIR) @ 30 m pixel resolution; and thermal infrared (TIR) @ 90 m pixel resolution. In a polar-orbit, ASTER acquires a 60 km swath of data.The CSIRO maps are the first continental-scale mineral maps generated from an imaging satellite designed to measure clays, quartz and other minerals. Besides their obvious use in resource exploration, the data have applicability to climatological studies. Over Australia, these satellite mineral maps improved our understanding of weathering, erosional and depositional processes in the context of changing weather, climate and tectonics. The clay composition map showed how kaolinite has developed over tectonically stable continental crust in response to deep weathering. The same clay composition map, in combination with one sensitive to water content, enabled the discrimination of illite from montmorillonite clays that typically develop in large depositional environments over thin (sinking) continental crust. This product was also used to measure temporal gains/losses of surface clay caused by periodic wind erosion (dust) and rainfall inundation (flood) events. The two-year project is undertaken by JPL with collaboration from CSIRO. JPL has in-house the entire ASTER global archive of Level 1B image data—more than 1,500,000 scenes. This cloud-screened and vegetation-masked data set will be the basis for creation

  6. OERL: A Tool For Geoscience Education Evaluators

    Science.gov (United States)

    Zalles, D. R.

    2002-12-01

    The Online Evaluation Resource Library (OERL) is a Web-based set of resources for improving the evaluation of projects funded by the Directorate for Education and Human Resources (EHR) of the National Science Foundation (NSF). OERL provides prospective project developers and evaluators with material that they can use to design, conduct, document, and review evaluations. OERL helps evaluators tackle the challenges of seeing if a project is meeting its implementation and outcome-related goals. Within OERL is a collection of exemplary plans, instruments, and reports from evaluations of EHR-funded projects in the geosciences and in other areas of science and mathematics. In addition, OERL contains criteria about good evaluation practices, professional development modules about evaluation design and questionnaire development, a dictionary of key evaluation terms, and links to evaluation standards. Scenarios illustrate how the resources can be used or adapted. Currently housed in OERL are 137 instruments, and full or excerpted versions of 38 plans and 60 reports. 143 science and math projects have contributed to the collection so far. OERL's search tool permits the launching of precise searches based on key attributes of resources such as their subject area and the name of the sponsoring university or research institute. OERL's goals are to 1) meet the needs for continuous professional development of evaluators and principal investigators, 2) complement traditional vehicles of learning about evaluation, 3) utilize the affordances of current technologies (e.g., Web-based digital libraries, relational databases, and electronic performance support systems) for improving evaluation practice, 4) provide anytime/anyplace access to update-able resources that support evaluators' needs, and 5) provide a forum by which professionals can interact on evaluation issues and practices. Geoscientists can search the collection of resources from geoscience education projects that have

  7. Geosciences Information for Teachers (GIFT) in Catalonia

    Science.gov (United States)

    Camerlenghi, Angelo; Cacho, Isabel; Calvo, Eva; Demol, Ben; Sureda, Catalina; Artigas, Carme; Vilaplana, Miquel; Porbellini, Danilo; Rubio, Eduard

    2010-05-01

    CATAGIFT is the acronym of the project supported by the Catalan Government (trough the AGAUR agency) to support the activities of the EGU Committee on Education in Catalonia. The objective of this project is two-fold: 1) To establish a coordinated action to support the participation of three Catalan science teachers of primary and secondary schools in the GIFT Symposium, held each year during the General Assembly of the European Geosciences Union (EGU). 2) To produce a video documentary each year on hot topics in geosciences. The documentary is produced in Catalan, Spanish and English and is distributed to the Catalan science teachers attending the annual meeting organized by the Institute of Education Sciences and the Faculty of Geology of the University together with the CosmoCaixa Museum of Barcelona, to the international teachers attending the EGU GIFT Workshop, and to other schools in the Spanish territory. In the present-day context of science dissemination through documentaries and television programs there is a dominance of products of high technical quality and very high costs sold and broadcasted world wide. The wide spread of such products tends to standardize scientific information, not only in its content, but also in the format used for communicating science to the general public. In the field of geosciences in particular, there is a scarcity of products that combine high scientific quality and accessible costs to illustrate aspects of the natural life of our planet Earth through the results of the work of individual researchers and / or research groups. The scientific documentaries produced by CATAGIFT pursue the objective to support primary and secondary school teachers to critically interpret scientific information coming from the different media (television, newspapers, magazines, audiovisual products), in a way that they can transmit to their students. CataGIFT has created a series of documentaries called MARENOSTRUM TERRANOSTRA designed and

  8. Academic provenance: Investigation of pathways that lead students into the geosciences

    Science.gov (United States)

    Houlton, Heather R.

    Pathways that lead students into the geosciences as a college major have not been fully explored in the current literature, despite the recent studies on the "geoscience pipeline model." Anecdotal evidence suggests low quality geoscience curriculum in K-12 education, lack of visibility of the discipline and lack of knowledge about geoscience careers contribute to low geoscience enrollments at universities. This study investigated the reasons why college students decided to major in the geosciences. Students' interests, experiences, motivations and desired future careers were examined to develop a pathway model. In addition, self-efficacy was used to inform pathway analyses, as it is an influential factor in academic major and career choice. These results and interpretations have strong implications for recruitment and retention in academia and industry. A semi-structured interview protocol was developed, which was informed by John Flanagan's critical incident theory. The responses to this interview were used to identify common experiences that diverse students shared for reasons they became geoscience majors. Researchers used self-efficacy theory by Alfred Bandura to assess students' pathways. Seventeen undergraduate geoscience majors from two U.S. Midwest research universities were sampled for cross-comparison and analysis. Qualitative analyses led to the development of six categorical steps for the geoscience pathway. The six pathway steps are: innate attributes/interest sources, pre-college critical incidents, college critical incidents, current/near future goals, expected career attributes and desired future careers. Although, how students traversed through each step was unique for individuals, similar patterns were identified between different populations in our participants: Natives, Immigrants and Refugees. In addition, critical incidents were found to act on behavior in two different ways: to support and confirm decision-making behavior (supportive critical

  9. Developing A Large-Scale, Collaborative, Productive Geoscience Education Network

    Science.gov (United States)

    Manduca, C. A.; Bralower, T. J.; Egger, A. E.; Fox, S.; Ledley, T. S.; Macdonald, H.; Mcconnell, D. A.; Mogk, D. W.; Tewksbury, B. J.

    2012-12-01

    Over the past 15 years, the geoscience education community has grown substantially and developed broad and deep capacity for collaboration and dissemination of ideas. While this community is best viewed as emergent from complex interactions among changing educational needs and opportunities, we highlight the role of several large projects in the development of a network within this community. In the 1990s, three NSF projects came together to build a robust web infrastructure to support the production and dissemination of on-line resources: On The Cutting Edge (OTCE), Earth Exploration Toolbook, and Starting Point: Teaching Introductory Geoscience. Along with the contemporaneous Digital Library for Earth System Education, these projects engaged geoscience educators nationwide in exploring professional development experiences that produced lasting on-line resources, collaborative authoring of resources, and models for web-based support for geoscience teaching. As a result, a culture developed in the 2000s in which geoscience educators anticipated that resources for geoscience teaching would be shared broadly and that collaborative authoring would be productive and engaging. By this time, a diverse set of examples demonstrated the power of the web infrastructure in supporting collaboration, dissemination and professional development . Building on this foundation, more recent work has expanded both the size of the network and the scope of its work. Many large research projects initiated collaborations to disseminate resources supporting educational use of their data. Research results from the rapidly expanding geoscience education research community were integrated into the Pedagogies in Action website and OTCE. Projects engaged faculty across the nation in large-scale data collection and educational research. The Climate Literacy and Energy Awareness Network and OTCE engaged community members in reviewing the expanding body of on-line resources. Building Strong

  10. Geoscience meets the four horsemen?: Tracking the rise of neocatastrophism

    Science.gov (United States)

    Marriner, Nick; Morhange, Christophe; Skrimshire, Stefan

    2010-10-01

    Although it is acknowledged that there has been an exponential growth in neocatastrophist geoscience inquiry, the extent, chronology and origin of this mode have not been precisely scrutinized. In this study, we use the bibliographic research tool Scopus to explore 'catastrophic' words replete in the earth and planetary science literature between 1950 and 2009, assessing when, where and why catastrophism has gained new currency amongst the geoscience community. First, we elucidate an exponential rise in neocatastrophist research from the 1980s onwards. We then argue that the neocatastrophist mode came to prominence in North America during the 1960s and 1970s before being more widely espoused in Europe, essentially after 1980. We compare these trends with the EM-DAT disaster database, a worldwide catalogue that compiles more than 11,000 natural disasters stretching back to 1900. The findings imply a clear link between anthropogenically forced global change and an increase in disaster research (r 2 = 0.73). Finally, we attempt to explain the rise of neocatastrophism by highlighting seven non-exhaustive factors: (1) the rise of applied geoscience; (2) inherited geological epistemology; (3) disciplinary interaction and the diffusion of ideas from the planetary to earth sciences; (4) the advent of radiometric dating techniques; (5) the communications revolution; (6) webometry and the quest for high-impact geoscience; and (7) popular cultural frameworks.

  11. Enabling Global Collaboration in the Geosciences

    Science.gov (United States)

    Klump, Jens; Allison, Lee; Asch, Kristine; Fox, Peter; Gundersen, Linda; Jackson, Ian; Loewe, Peter; Snyder, Walter S.; Ritschel, Bernd

    2008-12-01

    Geoinformatics 2008; Potsdam, Germany, 11-13 June 2008; Scientists are facing an increasing flood of data and information in the Earth sciences from which they try to distill knowledge. The emerging discipline of geoinformatics brings together the tools necessary to create and make accessible the knowledge needed to respond to society's complex challenges, such as climate change, new energy and mineral resources, new sources of water, and protecting environmental and human health. Globalization of geoinformatics-based research and education in support of meeting societal challenges was the theme for the Geoinformatics 2008 conference, which was held at the German Research Centre for Geosciences, in Potsdam, Germany. Participants came from China, France, Germany, Japan, Netherlands, Russia, Switzerland, the United Kingdom, and the United States, representing academic institutions, national research centers, and government agencies.

  12. QUALITATIVE STUDIES IN ACCOUNTING: THE ABDUCTIVE. RESEARCH STRATEGY.

    Directory of Open Access Journals (Sweden)

    Claudia URDARI

    2014-11-01

    Full Text Available This paper addresses to accounting researchers and proposes the use of abductive research strategy to improve the quality of accounting research outcomes. We argue that abductive reasoning has developed as a typical research method in all fields of interpretive studies but is still unrecognized by accounting researchers and practitioners. Therefore, this study aims to raise awareness on the benefits obtained through the implementation of abduction as a research strategy. Starting from Peirce (1903 and Blaikie (1993, we explore two types of abduction designs and discuss the advantages of building accounting research on grounded concepts. While this is a conceptual paper that only describes the bridge abduction reasoning can build between studying the reality and new theory emergence, we do not tackle any ethnographical case studies, social survey, or other exploratory field analyses.

  13. Application of QA geoscience investigations

    International Nuclear Information System (INIS)

    Henderson, J.T.

    1980-01-01

    This paper discusses the evolution of a classical hardware QA program (as currently embodied in DOE/ALO Manual Chapter 08XA; NRC 10CFR Part 50, Appendix B; and other similar documents) into the present geoscience quality assurance programs that address eventual NRC licensing, if required. In the context of this paper, QA will be restricted to the tasks associated with nuclear repositories, i.e. site identification, selection, characterization, verification, and utilization

  14. Quantitative Literacy: Geosciences and Beyond

    Science.gov (United States)

    Richardson, R. M.; McCallum, W. G.

    2002-12-01

    Quantitative literacy seems like such a natural for the geosciences, right? The field has gone from its origin as a largely descriptive discipline to one where it is hard to imagine failing to bring a full range of mathematical tools to the solution of geological problems. Although there are many definitions of quantitative literacy, we have proposed one that is analogous to the UNESCO definition of conventional literacy: "A quantitatively literate person is one who, with understanding, can both read and represent quantitative information arising in his or her everyday life." Central to this definition is the concept that a curriculum for quantitative literacy must go beyond the basic ability to "read and write" mathematics and develop conceptual understanding. It is also critical that a curriculum for quantitative literacy be engaged with a context, be it everyday life, humanities, geoscience or other sciences, business, engineering, or technology. Thus, our definition works both within and outside the sciences. What role do geoscience faculty have in helping students become quantitatively literate? Is it our role, or that of the mathematicians? How does quantitative literacy vary between different scientific and engineering fields? Or between science and nonscience fields? We will argue that successful quantitative literacy curricula must be an across-the-curriculum responsibility. We will share examples of how quantitative literacy can be developed within a geoscience curriculum, beginning with introductory classes for nonmajors (using the Mauna Loa CO2 data set) through graduate courses in inverse theory (using singular value decomposition). We will highlight six approaches to across-the curriculum efforts from national models: collaboration between mathematics and other faculty; gateway testing; intensive instructional support; workshops for nonmathematics faculty; quantitative reasoning requirement; and individual initiative by nonmathematics faculty.

  15. On the Cutting Edge Professional Development Program: Workshop and Web Resources for Current and Future Geoscience Faculty

    Science.gov (United States)

    MacDonald, R.; Manduca, C. A.; Mogk, D. W.; Tewksbury, B. J.

    2004-12-01

    Recognizing that many college and university faculty receive little formal training in teaching, are largely unaware of advances in research on teaching and learning, and face a variety of challenges in advancing in academic careers, the National Science Foundation-funded program On the Cutting Edge provides professional development for current and future faculty in the geosciences at various stages in their careers. The program includes a series of six multi-day workshops, sessions and one-day workshops at professional meetings, and a website with information about workshop opportunities and a variety of resources that bring workshop content to faculty (http://serc.carleton.edu/NAGTWorkshops). The program helps faculty improve their teaching and their job satisfaction by providing resources on instructional methods, geoscience content, and strategies for career planning. Workshop and website resources address innovative and effective practices in teaching, course design, delivery of instructional materials, and career planning, as well as approaches for teaching particular topics and strategies for starting and maintaining a research program in various institutional settings. Each year, special workshops for graduate students and post-doctoral fellows interested in academic careers and for early career faculty complement offerings on course design and emerging topics that are open to the full geoscience community. These special workshops include sessions on topics such as dual careers, gender issues, family-work balance, interviewing and negotiating strategies. The workshops serve as opportunities for networking and community building, with participants building connections with other participants as well as workshop leaders. Workshop participants reflect the full range of institutional diversity as well as ethnic and racial diversity beyond that of the geoscience faculty workforce. More than 40 percent of the faculty participants are female. Of the faculty

  16. Identifying strategies to improve research publication output in ...

    African Journals Online (AJOL)

    The health research community in South Africa annually produces a fair number of research papers in national and international health and related journals. Unfortunately, the proportion of papers produced by authors in health and rehabilitation sciences is insignificant compared with other disciplines. To identify strategies ...

  17. Second Language Listening Strategy Research: Methodological Challenges and Perspectives

    Science.gov (United States)

    Santos, Denise; Graham, Suzanne; Vanderplank, Robert

    2008-01-01

    This paper explores methodological issues related to research into second language listening strategies. We argue that a number of central questions regarding research methodology in this line of enquiry are underexamined, and we engage in the discussion of three key methodological questions: (1) To what extent is a verbal report a valid and…

  18. Using Action Research to Examine Teacher Strategy Effectiveness

    Science.gov (United States)

    Cox, Becky J.; Cox, Betty J.; Vann, Martha

    2012-01-01

    Successful teachers strive to ensure that their students learn to their maximum abilities. Is action research a valuable way for graduate students to review their effectiveness as teachers? Do students learn more through varied teaching strategies and techniques? The authors examined graduate students' perceptions of action research projects…

  19. Research Strategies in Science-based Start-ups

    DEFF Research Database (Denmark)

    Valentin, Finn; Dahlgren, Johan Henrich; Lund Jensen, Rasmus

    develop a contingency view on complex problem solving which structures the argument into three steps:1) Characterising the problem architectures addressed by different types of DBFs;2) Testing and confirming that DBFs form requisite research strategies, by which we refer to problem solving approaches...... that Shonhoovens classical argument that "strategy matters" is valid not only for the larger high-tech firms covered by her study, but also for small research-based start-ups operating at the very well springs of knowledge where science directly interacts with technologies. Even though a lot more research...

  20. Strategy for offshore research - 1996/97: summaries and objectives

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    The United Kingdom Health and Safety Executive is responsible for an offshore safety research programme currently comprising about 400 projects. An annually updated risk-based research strategy has been developed to provide a means of prioritising research effort and helping to ensure that value for money is obtained. This document provides a snapshot of the strategy at the present time. Individual strategies for the various programme areas are summarised. These include: collisions; decommissioning; diving operations; diver physiology; evacuations, escape and rescue; fire and blast; floating stability; human factors; materials performance; mechanical equipment and systems; moorings failure; occupational health; oceanography and fluid loading; organisation and management; pipelines; process system and control; safety systems; structural failure (steel and concrete); wells and well operation. The research objectives in each of the areas are listed. (UK)

  1. Innovative strategies for teaching nursing research in Taiwan.

    Science.gov (United States)

    Liou, Shwu-Ru; Cheng, Ching-Yu; Tsai, Hsiu-Min; Chang, Chia-Hao

    2013-01-01

    Evidence-based practice is imperative in clinical settings because it bridges the gap between research findings and clinical practice. Promoting nursing student interest and enthusiasm for research is therefore crucial when teaching nursing research. The aim of thus study was to develop innovative teaching strategies that increase nursing students' interests and engagement in research. This study employed a descriptive, pretest-posttest, quasiexperimental design with 103 participants in the experimental group and 106 in the control group. The Attitudes toward Research Questionnaire, Classroom Engagement Scale, Self-Directed Learning Instrument, Nursing Eight Core Competencies Scale, Value of Teams survey, and a research knowledge test were applied to evaluate the outcomes of the innovative teaching strategies. Scores for the research knowledge test were significantly higher in the experimental group than in the control group in posttest 1 and posttest 2. After the intervention, participants in the experimental group exhibited higher scores on attitudes toward research, eight core competencies in nursing,value of teams, classroom engagement, and self-directed learning than participants in the control group. Students in the experimental group perceived a lower degree of pressure and higher degrees of interest, enjoyment, and acceptance of the research course than students in the control group. This study confirmed that using innovative teaching strategies in nursing research courses enhances student interest and enthusiasm about evidence-based practice.

  2. Broadening Awareness and Participation in the Geosciences Among Underrepresented Minorities in STEM

    Science.gov (United States)

    Blake, R.; Liou-Mark, J.

    2012-12-01

    , effects, and prediction of natural disasters including earthquakes, volcanoes, tsunamis, landslides, subsidence, global climate change, severe weather, coastal erosion, floods, mass extinctions, wildfires, and meteoroid impacts. In addition to the brand new geoscience course offerings, City Tech students participate in geoscience - seminars, guest lectures, lecture series, and geoscience internship and fellowship workshops. The students also participate in geoscience exposure trips to NASA/GISS Columbia University, NOAA-CREST, and the Brookhaven National Laboratory. Moreover, the undergrads are provided opportunities for paid research internships via two NSF grants - NSF REU and NSF STEP. Geoscience projects are also integrated into course work, and students make geoscience group project presentations in class. Students also participate in geoscience career and graduate school workshops. The program also creates geoscience articulation agreements with the City College of New York so that students at City Tech may pursue Bachelor's and advanced degrees in the geosciences. This program is supported by NSF OEDG grant #1108281.

  3. Advanced Marginality as a comparative research strategy in praxis:

    DEFF Research Database (Denmark)

    Larsen, Troels Schultz

    2018-01-01

    Urban Outcast and advanced marginality belongs to a theory culture rarely engaged in comparative urban studies. Here the potential of advanced marginality as a comparative research strategy is explored paying special attention to the concepts of epistemic reflexivity, analogical reasoning...... and homology. These concepts are applied as the foundation of a comparative research design comprising three necessary and interconnected analytical moments linking reflexivity, theory and empirical analysis. Empirically this strategy and design is confronted in the case of four Danish “Grey belt” housing...... estates. The empirical confrontation demonstrates that both strategy and design are relevant and productive. Nevertheless, there is a need to question, adapt and extent the six original properties of advanced marginality. Secondly the empirical confrontation demonstrates that both strategy and design can...

  4. Geoscience terminology for data interchange

    Science.gov (United States)

    Richard, Stephen

    2013-04-01

    Workgroups formed by the Commission for the Management and Application of Geoscience Information (CGI), a Commission of the International Union of Geological Sciences (IUGS) have been developing vocabulary resources to promote geoscience information exchange. The Multilingual Thesaurus Working Group (MLT) was formed in 2003 to continue work of the Multhes working group of the 1990s. The Concept Definition Task Group was formed by the CGI Interoperability Working Group in 2007 to develop concept vocabularies for populating GeoSciML interchange documents. The CGI council has determined that it will be more efficient and effective to merge the efforts of these groups and has formed a new Geoscience Terminology Working Group (GTWG, http://www.cgi-iugs.org/tech_collaboration/geoscience_terminology_working_group.html). Each GTWG member will be expected to shepherd one or more vocabularies. There are currently 31 vocabularies in the CGI portfolio, developed for GeoSciML interchange documents (e.g. see http://resource.geosciml.org/ 201202/). Vocabulary development in both groups has been conducted first by gathering candidate terms in Excel spreadsheets because these are easy for text editing and review. When the vocabulary is mature, it is migrated into SKOS, an RDF application for encoding concepts with identifiers, definitions, source information, standard thesaurus type relationships, and language-localized labels. Currently there are 30 vocabularies still required for GeoSciML v3, and 38 proposed vocabularies for use with EarthResourceML (https://www.seegrid.csiro.au/wiki/CGIModel/EarthResourceML). In addition, a project to develop a lithogenetic map unit vocabulary to use for regional geologic map integration using OGC web map services is underway. Considerable work remains to be done to integrate multilingual geoscience terms developed by the MLT Working Group with existing CGI vocabularies to provide multilingual support, and to make the thesaurus compiled by the

  5. Research in Learning Technology Strategy 2015-17

    OpenAIRE

    Deepwell, Maren

    2015-01-01

    Research in Learning Technology is the journal published by the Association for Learning Technology (ALT) with Co-Action Publishing. At the heart of ALT’s aims and values is the importance of Learning Technology research in underpinning the intelligent use of technology in support of learning, teaching and assessment. One of our key aims as set out in our 2014-17 strategy is to strengthen learning technology research and practice through collaboration, sharing and networking, nati...

  6. Geoscience is Important? Show Me Why

    Science.gov (United States)

    Boland, M. A.

    2017-12-01

    "The public" is not homogenous and no single message or form of messaging will connect the entire public with the geosciences. One approach to promoting trust in, and engagement with, the geosciences is to identify specific sectors of the public and then develop interactions and communication products that are immediately relevant to that sector's interests. If the content and delivery are appropriate, this approach empowers people to connect with the geosciences on their own terms and to understand the relevance of the geosciences to their own situation. Federal policy makers are a distinct and influential subgroup of the general public. In preparation for the 2016 presidential election, the American Geosciences Institute (AGI) in collaboration with its 51 member societies prepared Geoscience for America's Critical Needs: Invitation to a National Dialogue, a document that identified major geoscience policy issues that should be addressed in a national policy platform. Following the election, AGI worked with eight other geoscience societies to develop Geoscience Policy Recommendations for the New Administration and the 115th Congress, which outlines specific policy actions to address national issues. State and local decision makers are another important subgroup of the public. AGI has developed online content, factsheets, and case studies with different levels of technical complexity so people can explore societally-relevant geoscience topics at their level of technical proficiency. A related webinar series is attracting a growing worldwide audience from many employment sectors. Partnering with government agencies and other scientific and professional societies has increased the visibility and credibility of these information products with our target audience. Surveys and other feedback show that these products are raising awareness of the geosciences and helping to build reciprocal relationships between geoscientists and decision makers. The core message of all

  7. Identifying research priorities for effective retention strategies in clinical trials.

    Science.gov (United States)

    Kearney, Anna; Daykin, Anne; Shaw, Alison R G; Lane, Athene J; Blazeby, Jane M; Clarke, Mike; Williamson, Paula; Gamble, Carrol

    2017-08-31

    The failure to retain patients or collect primary-outcome data is a common challenge for trials and reduces the statistical power and potentially introduces bias into the analysis. Identifying strategies to minimise missing data was the second highest methodological research priority in a Delphi survey of the Directors of UK Clinical Trial Units (CTUs) and is important to minimise waste in research. Our aim was to assess the current retention practices within the UK and priorities for future research to evaluate the effectiveness of strategies to reduce attrition. Seventy-five chief investigators of NIHR Health Technology Assessment (HTA)-funded trials starting between 2009 and 2012 were surveyed to elicit their awareness about causes of missing data within their trial and recommended practices for improving retention. Forty-seven CTUs registered within the UKCRC network were surveyed separately to identify approaches and strategies being used to mitigate missing data across trials. Responses from the current practice surveys were used to inform a subsequent two-round Delphi survey with registered CTUs. A consensus list of retention research strategies was produced and ranked by priority. Fifty out of seventy-five (67%) chief investigators and 33/47 (70%) registered CTUs completed the current practice surveys. Seventy-eight percent of trialists were aware of retention challenges and implemented strategies at trial design. Patient-initiated withdrawal was the most common cause of missing data. Registered CTUs routinely used newsletters, timeline of participant visits, and telephone reminders to mitigate missing data. Whilst 36 out of 59 strategies presented had been formally or informally evaluated, some frequently used strategies, such as site initiation training, have had no research to inform practice. Thirty-five registered CTUs (74%) participated in the Delphi survey. Research into the effectiveness of site initiation training, frequency of patient contact

  8. Strategies for Research, Education, and Innovation, A University's Considerations

    DEFF Research Database (Denmark)

    Møller, Jacob Steen

    2004-01-01

    Engineering (BYG•DTU) at The Technical University of Denmark (DTU) to this challenge are described: The Department has been reorganised and a new strategy has been adopted. The strategy was developed in collaboration with industry partners. The Strategy focuses on a) analysis and design of safe and economic......It is argued that the building and construction sector will maintain and even increase its economic and societal importance. In spite of this the private R&D effort in the sector is relatively modest, which in turn makes public research more important. The responds of the Department of Civil...

  9. Radon applications in geosciences - Progress & perspectives

    Science.gov (United States)

    Barbosa, S. M.; Donner, R. V.; Steinitz, G.

    2015-05-01

    During the last decades, the radioactive noble gas radon has found a variety of geoscientific applications, ranging from its utilization as a potential earthquake precursor and proxy of tectonic stress over its specific role in volcanic environments to a wide range of applications as a tracer in marine and hydrological settings. This topical issue summarizes the current state of research as exemplified by some original research articles covering the aforementioned as well as other closely related aspects and points to some important future directions of radon application in geosciences. This editorial provides a more detailed overview of the contents of this volume, a brief summary of the rationale underlying the diverse applications, and outlines some important perspectives.

  10. Radon applications in geosciences - Progress and perspectives

    International Nuclear Information System (INIS)

    Barbosa, S.M.; Donner, R.V.; Steinitz, G.

    2015-01-01

    During the last decades, the radioactive noble gas radon has found a variety of geo-scientific applications, ranging from its utilization as a potential earthquake precursor and proxy of tectonic stress over its specific role in volcanic environments to a wide range of applications as a tracer in marine and hydrological settings. This topical issue summarizes the current state of research as exemplified by some original research articles covering the aforementioned as well as other closely related aspects and points to some important future directions of radon application in geosciences. This editorial provides a more detailed overview of the contents of this volume, a brief summary of the rationale underlying the diverse applications, and outlines some important perspectives. (authors)

  11. DC Rocks! Using Place-Based Learning to Introduce Washington DC's K-12 Students to the Geosciences

    Science.gov (United States)

    Mayberry, G. C.; Mattietti, G. K.

    2017-12-01

    The Washington DC area has interesting geology and a multitude of agencies that deal with the geosciences, yet K-12 public school students in DC, most of whom are minorities, have limited exposure to the geosciences. Geoscience agencies in the DC area have a unique opportunity to address this by introducing the geosciences to local students who otherwise may not have such an opportunity, by highlighting the geology in the students' "backyard," and by leveraging partnerships among DC-based geoscience-related agencies. The USGS and George Mason University are developing a project called DC Rocks, which will give DC's students an exciting introduction into the world of geoscience with place-based learning opportunities that will make geoscience relevant to their lives and their futures. Both the need in DC and the potential for lasting impact are great; the geosciences have the lowest racial diversity of all the science, technology, engineering, and math (STEM) fields, 89% of students in DC public schools are minorities, and there is no dedicated geoscience curriculum in DC. DC Rocks aims to give these students early exposure to the earth sciences, and encourage them to consider careers in the profession. DC Rocks will work with partner agencies to apply several methods that are recommended by researchers to increase the participation of minority students in the geosciences, including providing profoundly positive experiences that spark interest in the geosciences (Levine et al., 2007); increasing students' sense of belonging in the geosciences (Huntoon, et al, 2016); and place-based teaching practices that emphasize the study of local sites (Semken, 2005), such as DC's Rock Creek Park. DC Rocks will apply these methods by coordinating local geoscientists and resources to provide real-world examples of the geosciences' impact on students' lives. Through the DC Rocks website, educators will be able to request geoscience-related resources such as class presentations by

  12. Teaching GeoEthics Across the Geoscience Curriculum

    Science.gov (United States)

    Mogk, D. W.; Geissman, J. W.; Kieffer, S. W.; Reidy, M.; Taylor, S.; Vallero, D. A.; Bruckner, M. Z.

    2014-12-01

    Ethics education is an increasingly important component of the pre-professional training of geoscientists. Funding agencies (NSF) require training of graduate students in the responsible conduct of research, employers are increasingly expecting their workers to have basic training in ethics, and the public demands that scientists abide by the highest standards of ethical conduct. Yet, few faculty have the requisite training to effectively teach about ethics in their classes, or even informally in mentoring their research students. To address this need, an NSF-funded workshop was convened to explore how ethics education can be incorporated into the geoscience curriculum. Workshop goals included: examining where and how geoethics topics can be taught from introductory courses for non-majors to modules embedded in "core" geoscience majors courses or dedicated courses in geoethics; sharing best pedagogic practices for "what works" in ethics education; developing a geoethics curriculum framework; creating a collection of online instructional resources, case studies, and related materials; applying lessons learned about ethics education from sister disciplines (biology, engineering, philosophy); and considering ways that geoethics instruction can contribute to public scientific literacy. Four major themes were explored in detail: (1) GeoEthics and self: examining the internal attributes of a geoscientist that establish the ethical values required to successfully prepare for and contribute to a career in the geosciences; (2) GeoEthics and the geoscience profession: identifying ethical standards expected of geoscientists if they are to contribute responsibly to the community of practice; (3) GeoEthics and society: exploring geoscientists' responsibilities to effectively and responsibly communicate the results of geoscience research to inform society about issues ranging from geohazards to natural resource utilization in order to protect public health, safety, and economic

  13. Building Strong Geoscience Departments Through the Visiting Workshop Program

    Science.gov (United States)

    Ormand, C. J.; Manduca, C. A.; Macdonald, H.; Bralower, T. J.; Clemens-Knott, D.; Doser, D. I.; Feiss, P. G.; Rhodes, D. D.; Richardson, R. M.; Savina, M. E.

    2011-12-01

    The Building Strong Geoscience Departments project focuses on helping geoscience departments adapt and prosper in a changing and challenging environment. From 2005-2009, the project offered workshop programs on topics such as student recruitment, program assessment, preparing students for the workforce, and strengthening geoscience programs. Participants shared their departments' challenges and successes. Building on best practices and most promising strategies from these workshops and on workshop leaders' experiences, from 2009-2011 the project ran a visiting workshop program, bringing workshops to 18 individual departments. Two major strengths of the visiting workshop format are that it engages the entire department in the program, fostering a sense of shared ownership and vision, and that it focuses on each department's unique situation. Departments applied to have a visiting workshop, and the process was highly competitive. Selected departments chose from a list of topics developed through the prior workshops: curriculum and program design, program elements beyond the curriculum, recruiting students, preparing students for the workforce, and program assessment. Two of our workshop leaders worked with each department to customize and deliver the 1-2 day programs on campus. Each workshop incorporated exercises to facilitate active departmental discussions, presentations incorporating concrete examples drawn from the leaders' experience and from the collective experiences of the geoscience community, and action planning to scaffold implementation. All workshops also incorporated information on building departmental consensus and assessing departmental efforts. The Building Strong Geoscience Departments website complements the workshops with extensive examples from the geoscience community. Of the 201 participants in the visiting workshop program, 140 completed an end of workshop evaluation survey with an overall satisfaction rating of 8.8 out of a possible 10

  14. Managing scientists leadership strategies in research and development

    CERN Document Server

    Sapienza, Alice M

    1995-01-01

    Managing Scientists Leadership Strategies in Research and Development Alice M. Sapienza "I found ...this book to be exciting ...Speaking as someone who has spent 30 years grappling with these issues, I certainly would be a customer." -Robert I. Taber, PhD Senior Vice President of Research & Development Synaptic Pharmaceutical Corporation In today's climate of enormous scientific and technologic competition, it is more crucial than ever that scientists involved in research and development be managed well. Often trained as individual researchers, scientists can find integration into teams difficult. Managers, from both scientific and nonscientific backgrounds, who are responsible for these teams frequently find effective team building a long and challenging process. Managing Scientists offers strategies for fostering communication and collaboration among scientists. It shows how to build cohesive, productive, and focused teams to succeed in the competitive research and development marketplace. This book wil...

  15. Advanced Marginality as a comparative research strategy in praxis:

    DEFF Research Database (Denmark)

    Larsen, Troels Schultz

    2018-01-01

    and homology. These concepts are applied as the foundation of a comparative research design comprising three necessary and interconnected analytical moments linking reflexivity, theory and empirical analysis. Empirically this strategy and design is confronted in the case of four Danish “Grey belt” housing......Urban Outcast and advanced marginality belongs to a theory culture rarely engaged in comparative urban studies. Here the potential of advanced marginality as a comparative research strategy is explored paying special attention to the concepts of epistemic reflexivity, analogical reasoning...

  16. Be Explicit: Geoscience Program Design to Prepare the Next Generation of Geoscientists

    Science.gov (United States)

    Mogk, D. W.

    2015-12-01

    The work of geoscientists is to engage inquiry, discovery and exploration of Earth history and processes, and increasingly, to apply this knowledge to the "grand challenges" that face humanity. Geoscience as a discipline is confronted with an incomplete geologic record, observations or data that are often ambiguous or uncertain, and a need to grasp abstract concepts such as temporal reasoning ('deep time'), spatial reasoning over many orders of magnitude, and complex system behavior. These factors provide challenges, and also opportunities, for training future geoscientists. Beyond disciplinary knowledge, it is also important to provide opportunities for students to engage the community of practice and demonstrate how to "be" a geoscientist. Inculcation of geoscience "ways of knowing" is a collective responsibility for geoscientists (teaching faculty and other professionals), at all instructional levels, in all geoscience disciplines, and for all students. A whole-student approach is recommended. Geoscience programs can be designed to focus on student success by explictly: 1) defining programmatic student learning outcomes , 2) embedding assessments throughout the program to demonstrate mastery, 3) aligning course sequences to reinforce and anticipate essential concepts/skills, 4) preparing students to be life-long learners; 5) assigning responsibilities to courses/faculty to ensure these goals have been met; 6) providing opportunities for students to "do" geoscience (research experiences), and 7) modeling professional behaviors in class, field, labs, and informal settings. Extracurricular departmental activities also contribute to student development such as journal clubs, colloquia, field trips, and internships. Successful design of geoscience department programs is informed by: the AGI Workforce program and Summit on the Future of Geoscience Education that define pathways for becoming a successful geoscientist; training in Geoethics; Geoscience Education

  17. ENSI research strategy; Forschungsstrategie des Eidgenoessischen Nuklearsicherheitsinspektorats ENSI

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-06-15

    This brief report issued by the Swiss Federal Nuclear Safety Inspectorate (ENSI) reviews the inspectorate's activities and the strategy being followed. The basic principles involved in the institute's research and its financing are discussed, as are six basic aims being followed. The criteria used for the support of various research projects are examined and the methods used to control and monitor work on regulatory safety research are described. Interaction with the Swiss National Cooperative for the Disposal of Radioactive Waste NAGRA is discussed and four-year programs concerning research subjects are noted.

  18. MicroRNA Detection: Current Technology and Research Strategies

    Science.gov (United States)

    Hunt, Eric A.; Broyles, David; Head, Trajen; Deo, Sapna K.

    2015-07-01

    The relatively new field of microRNA (miR) has experienced rapid growth in methodology associated with its detection and bioanalysis as well as with its role in -omics research, clinical diagnostics, and new therapeutic strategies. The breadth of this area of research and the seemingly exponential increase in number of publications on the subject can present scientists new to the field with a daunting amount of information to evaluate. This review aims to provide a collective overview of miR detection methods by relating conventional, established techniques [such as quantitative reverse transcription polymerase chain reaction (RT-qPCR), microarray, and Northern blotting (NB)] and relatively recent advancements [such as next-generation sequencing (NGS), highly sensitive biosensors, and computational prediction of microRNA/targets] to common miR research strategies. This should guide interested readers toward a more focused study of miR research and the surrounding technology.

  19. Reinvesting in Geosciences at Texas A&M University in the 21st Century

    Science.gov (United States)

    Cifuentes, L. A.; Bednarz, S. W.; Miller, K. C.

    2009-12-01

    The College of Geosciences at Texas A&M University is implementing a three-prong strategy to build a strong college: 1) reinvesting in signature areas, 2) emphasizing environmental programs, and 3) nurturing a strong multi-disciplinary approach to course, program and research development. The college is home to one of the most comprehensive concentrations of geosciences students (837), faculty (107) and research scientists (32) in the country. Its departments include Atmospheric Sciences, Geography, Geology & Geophysics, and Oceanography. The college is also home to three major research centers: the Integrated Ocean Drilling Program, the Geochemical and Environmental Research Group, and the Texas Sea Grant College Program. During the 1990’s the college experienced a 20 percent loss in faculty when allocation of university funds was based primarily on student credit hour production while research expenditures were deemphasized. As part of Texas A&M University President Robert Gates’ Faculty Reinvestment and the college’s Ocean Drilling and Sustainable Earth Sciences hiring programs, 31 faculty members were hired in the college from 2004 through 2009, representing a significant investment-2.2 million in salaries and 4.6 million in start-up. Concurrent improvements to infrastructure and services important to signature programs included $3.0 million for radiogenic isotope and core imaging facilities and the hiring of a new Director of Student Recruitment. In contrast to faculty hiring in previous decades, the expectation of involvement in multi-disciplinary teaching, learning and research was emphasized during this hiring initiative. Returns on investments to date consist of growth in our environmental programs including new multidisciplinary course offerings, generation of a new research center and significant increases in student enrollment, research expenditures, and output of research and scholarly works. Challenges ahead include providing adequate staff

  20. A Critical Look at Communication Strategies: Possibilities for Future Research

    Science.gov (United States)

    Doqaruni, Vahid Rahmani

    2015-01-01

    Like general theories of human communication, previous research into second language (L2) communication strategies (CSs) has also been characterized on either interactional conceived account or cognitively conceived one. However, this paper is a critical attempt to show that CSs' full significance can only be understood if the domain of CSs…

  1. Research in New Strategies in Conservation of Contemporary Art

    NARCIS (Netherlands)

    Stigter, S.

    2013-01-01

    New Strategies in Conservation of Contemporary Art is a collaborative, interdisciplinary research programme of Maastricht University (UM), the University of Amsterdam (UvA) and the Cultural Heritage Agency of the Netherlands (RCE). It is partly funded by the Netherlands Organization for Scientific

  2. Research Program of Adolescent HIV Prevention Strategies | CRDI ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    In Africa, HIV is having a devastating impact on young people. Globally, youth aged 15 to 24 account for almost one third of all new infections. There are unique challenges to implementing adolescent-friendly policies and HIV prevention programs. More research is needed to inform HIV prevention strategies focusing on ...

  3. Research Program of Adolescent HIV Prevention Strategies | IDRC ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    In Africa, HIV is having a devastating impact on young people. Globally, youth aged 15 to 24 account for almost one third of all new infections. There are unique challenges to implementing adolescent-friendly policies and HIV prevention programs. More research is needed to inform HIV prevention strategies focusing on ...

  4. Research Program of Adolescent HIV Prevention Strategies | IDRC ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    The second study will use a health behaviour survey to evaluate risk-taking behaviours among school-based adolescents in Entebbe, Uganda. Researchers will conduct interviews with health and education officials in Entebbe to assess acceptance levels for school-based HIV intervention strategies. Both studies will inform ...

  5. Exploring a strategy to promote nurses\\' health research contribution ...

    African Journals Online (AJOL)

    product of a Delphi study, as described in the preceding article. The need for such a strategy is evident from the seemingly limited recognition of the significance of research conducted by ... A qualitative, explorative and descriptive design was followed. Purposive sampling according to selection criteria was used to select ...

  6. Opinions on a strategy to promote nurses\\' health research ...

    African Journals Online (AJOL)

    This article describes a Delphi study that was conducted to explore the panel of experts' opinions on nurses' health research contribution and to develop a strategy to promote this contribution. A qualitative and quantitative, descriptive design was used. A Delphi study consisting of three successive rounds was conducted ...

  7. ESL Learners' Online Research and Comprehension Strategies

    Science.gov (United States)

    Sain, Noridah; Bown, Andy; Fluck, Andrew; Kebble, Paul

    2017-01-01

    In order to enhance second language (L2) acquisition, English as a Second Language (ESL) students are encouraged to exploit the abundant information and opportunities for authentic language use afforded by the Internet. This study investigated the online research and comprehension strategies employed by ESL learners in a public university in…

  8. Strategies for graceful ageing in Nigeria | Benedict | Research ...

    African Journals Online (AJOL)

    Research Journal of Health Sciences. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 1, No 1 (2013) >. Log in or Register to get access to full text downloads. Username, Password, Remember me, or Register. Strategies for graceful ageing in Nigeria. H.T. Benedict ...

  9. Towards a global data network for the geosciences

    Science.gov (United States)

    Allison, M. L.; Gundersen, L. C.; Jackson, I.; Hubbard, J.; Richard, S. M.

    2009-12-01

    surveys and organizations are collaborating to build a continent-wide geoscience data network. Emerging practices from OneGeology, 1G-E, and GIN provide a foundation for the next step in creating a global digital data network of geoscience information. This next step will provide structured data for geoscience features using OGC Web Feature Services utilizing GeoSciML as the data transport schema. A prototype global data network is emerging as more users and providers adopt these growing common standards, protocols, and procedures. Growth of this community of practice is attracting the attention of leading software developers including Microsoft Research, ESRI (ArcGIS), Schlumberger-MetaCarta, and others, presenting opportunities to integrate geoscience network capabilities with widely used software.

  10. Geoscience Workforce Development at UNAVCO: Building a Continuous Support Structure for Student Success

    Science.gov (United States)

    Morris, A. R.; Charlevoix, D. J.

    2014-12-01

    Developing confident, capable geoscientists from a diverse array of backgrounds requires, among many variables, the development of confident, capable mentors to help guide and support students along the path to professional positions. The geosciences are lagging behind other STEM fields in increasing the diversity of participants, and shifting the perspectives of those both inside and outside of the field requires intentional attention to ensuring undergraduate success. UNAVCO, Inc. is well-situated to both prepare undergraduate students for placement in geoscience technical positions and advanced graduate study and to provide mentoring resources for faculty engaged in supporting undergraduates from diverse backgrounds. UNAVCO is a university-governed consortium facilitating research and education in the geosciences. For the past 10 years, UNAVCO has managed Research Experiences in the Solid Earth Sciences for Students (RESESS), an NSF-funded multiyear geoscience research internship, community support, and professional development program. The primary goal of the RESESS program is to increase the number of historically underrepresented students entering the geosciences, whether continuing academic studies or moving into the workforce. Beginning in 2014, UNAVCO will add a second internship program to its portfolio. Leading Undergraduates in Challenges to Power Academic Development in the Geosciences (LAUNCHPAD) is aimed at involving two-year college students and lower-division undergraduates in projects that prepare them for independent research opportunities at UNAVCO and with other REU programs. LAUNCHPAD will assist early-academic career students in understanding and developing the skills necessary to transition to undergraduate research programs or to prepare for positions in the geoscience technical workforce. In order to ensure a continued student support structure, UNAVCO will host and run a two-day institute, the Faculty Institute for RESESS Mentoring

  11. Catalyzing Cross-Disciplinary Research and Education Within and Beyond the Environmental and Geosciences to Address Emerging, Societally-Relevant Issues

    Science.gov (United States)

    Cak, A. D.; Vigdor, L. J.; Vorosmarty, C. J.; Giebel, B. M.; Santistevan, C.; Chasteau, C.

    2017-12-01

    Tackling emergent, societally-relevant problems in the environmental sciences is hardly confined to a single research discipline, but rather requires collaborations that bridge diverse domains and perspectives. While new technologies (e.g., Skype) can in theory unite otherwise geographically distributed participation in collaborative research, physical distance nevertheless raises the bar on intellectual dialogue. Such barriers may reveal perceptions of or real differences across disciplines, reflecting particular traditions in their histories and academic cultures. Individual disciplines are self-defined by their scientific, epistemologic, methodologic, or philosophical traditions (e.g., difficulties in understanding processes occurring at different scales, insufficient research funding for interdisciplinary work), or cultural and discursive hurdles (e.g., navigating a new field's jargon). Coupled with these challenges is a considerable deficiency in educating the next generation of scientists to help them develop a sufficient comfort level with thinking critically across multiple disciplinary domains and conceptual frameworks. To address these issues, the City University of New York (CUNY), the largest public urban university in the U.S., made a significant investment in advancing cross-disciplinary research and education, culminating in the opening of the CUNY Advanced Science Research Center (ASRC) in New York City (NYC) in late 2014. We report here on our experiences incubating new collaborative efforts to address environmental science-related research as it is interwoven with the ASRC's five research initiatives (Environmental Sciences, Neuroscience, Structural Biology, Photonics, and Nanoscience). We describe the ASRC's overall structure and function as both a stand-alone interdisciplinary center and one that collaborates more broadly with CUNY's network of twenty-four campuses distributed across NYC's five boroughs. We identify challenges we have faced so

  12. Geoscience Academic Provenance: A Comparison of Undergraduate Students' Pathways to Faculty Pathways

    Science.gov (United States)

    Houlton, H. R.; Keane, C. M.; Wilson, C. E.

    2012-12-01

    Most Science, Technology, Engineering and Mathematics (STEM) disciplines have a direct recruiting method of high school science courses to supply their undergraduate majors. However, recruitment and retention of students into geoscience academic programs, who will be the future workforce, remains an important issue. The geoscience community is reaching a critical point in its ability to supply enough geoscientists to meet the current and near-future demand. Previous work done by Houlton (2010) determined that undergraduate geoscience majors follow distinct pathways when pursuing their degree and career. These pathways are comprised of students' interests, experiences, goals and career aspirations, which are depicted in six pathway steps. Three population groups were determined from the original 17 participants, which exhibited differences in pathway trajectories. Continued data collection efforts developed and refined the pathway framework. As part of an informal workshop activity, data were collected from 27 participants who are underrepresented minority early-career and future faculty in the geosciences. In addition, 20 geoscience departments' Heads and Chairs participated in an online survey about their pathway trajectories. Pathways were determined from each of these new sample populations and compared against the original geoscience undergraduate student participants. Several pathway components consistently spanned across sample populations. Identification of these themes have illuminated broad geoscience-related interests, experiences and aspirations that can be used to broadly impact recruitment and retention initiatives for our discipline. Furthermore, fundamental differences between participants' ages, stages in career and racial/ethnic backgrounds have exhibited subtle nuances in their geoscience pathway trajectories. In particular, those who've had research experiences, who think "creativity" is an important aspect of a geoscience career and those who

  13. Creating and maintaining a successful geoscience pathway from 2YC to 4YC for Native Hawaiian Students: First Steps

    Science.gov (United States)

    Guidry, M.; Eschenberg, A.; McCoy, F. W.; McManus, M. A.; Lee, K.; DeLay, J. K.; Taylor, S. V.; Dire, J.; Krupp, D.

    2017-12-01

    In the Fall of 2015, the two four year (4YC) institutions within the University of Hawaii (UH) system offering baccalaureate degrees in geosciences enrolled only six Native Hawaiian (NH) students out of a total of 194 students in geoscience degree programs. This percentage (3%) of NH students enrolled in geosciences is far lower than the percentage of NH students enrolled at any single institution in the UH system, which ranges from 14 to 42%. At the same time, only six (3%) of the 194 students enrolled in geoscience baccalaureate programs were transfer students from the UH community colleges. Of these six transfer students, three were NH. This reflects the need for increased transfer of NH in the geosciences from two year (2YC) to 4YC. In the Fall of 2015, UH Manoa's (UHM) School of Ocean and Earth Science and Technology (SOEST) accounted for only 0.14% of transfer students from UH community colleges. This compares to 5% in the UHM School of Engineering and 27% in the UHM College of Arts and Sciences. As part of the first year of a multi-institutional five-year NSF TCUP-PAGE (Tribal Colleges and Universities Program - PArtnerships for Geoscience Education) award, we review our first steps and strategies for building a successful and sustainable geoscience transfer pathway for Native Hawaiian and community college students into the three undergraduate geoscience programs (Atmospheric Sciences, Environmental Sciences, and Geology & Geophysics) within SOEST.

  14. Bioanalytical outsourcing strategy at Janssen Research and Development.

    Science.gov (United States)

    Verhaeghe, Tom

    2014-05-01

    The times when all bioanalytical work was supported in-house are long behind us. In the modern bioanalytical laboratory, workload is divided between in-house support and outsourcing to contract research organizations. This paper outlines the outsourcing strategy of the Janssen-regulated bioanalytical group. Keeping the knowledge of the assay and the compound internally is a cornerstone of this strategy and is a driver for balancing the workload between the internal laboratory and contract laboratories. The number of contract laboratories that are being used is limited and criteria for selecting laboratories are discussed. Special attention is paid to the experience with outsourcing clinical studies to China.

  15. Research on System Environment for Growth and Development of Young College Instructors--Taking China University of Geosciences Beijing as an Example

    Science.gov (United States)

    Zhang, Long; Cao, Yong; Shi, Yunlong

    2017-01-01

    Young college instructors have become an important force of college teachers in teaching courses and doing research, who play an essential role in promoting the development of high education. From the perspective of system environment for the growth and development of young college instructors, five parts closest to the growth and development of…

  16. Adapting qualitative research strategies to technology savvy adolescents.

    Science.gov (United States)

    Mason, Deanna Marie; Ide, Bette

    2014-05-01

    To adapt research strategies involving adolescents in a grounded theory qualitative research study by conducting email rather than face-to-face interviews. Adolescent culture relies heavily on text-based communication and teens prefer interactions mediated through technology. Traditional qualitative research strategies need to be rethought when working with adolescents. Adapting interviewing strategies to electronic environments is timely and relevant for researching adolescents. Twenty three adolescents (aged 16-21) were interviewed by email. A letter of invitation was distributed. Potential participants emailed the researcher to convey interest in participating. If the inclusion criteria were met, email interviews were initiated. Participants controlled the interviews through their rate of response to interview questions. A grounded theory methodology was employed. Initial contact with participants reiterated confidentiality and the ability to withdraw from the study at any time. Interviews began with the collection of demographic information and a broad opening based on a semi-structured interview guide. All data were permissible, including text, photos, music, videos or outside media, for example YouTube. The participant was allowed to give direction to the interview after initial questions were posed. Email interviews continued until saturation was reached in the data. Participants were enthusiastic about email interviewing. Attrition did not occur. Email interviewing gave participants more control over the research, decreased power differentials between the adolescent and researcher, allowed the study to be adapted to cultural, linguistic and developmental needs, and maintained confidentiality. As participants said that email communication was slow and they preferred instant messaging, replication in faster-paced media is recommended. Repetition in face-to-face settings is warranted to evaluate how technology may have influenced the findings. Implications for

  17. From the Classroom to the Field: Intervention Training to Address Sexual Harassment in the Geosciences

    Science.gov (United States)

    Marin-Spiotta, E.; Barnes, R.; Berhe, A. A.; Hastings, M. G.; Mattheis, A.; Schneider, B.; Williams, B. M.

    2017-12-01

    Here I report on collaborative efforts by the Earth Science Women's Network, the Association for Women Geoscientists and the American Geophysical Union to empower the earth and space science community to stop and prevent sexual harassment (SH) as part of a new NSF ADVANCE Partnership award. We aim to develop strategies of bystander intervention and to enhance ethics training of current and future geoscientists. We focus on geoscientists because it is one of the least diverse of the STEM fields. Little data on how sexual harassment affects women with intersectional identities in the geosciences leads to a lack of awareness of the unique challenges faced by minority women and a lack of appropriate institutional response. The geosciences have an additional challenge: research and training at off-campus field sites where access to support networks and clear guidelines for conduct are weakened or absent. The outcomes of our project are: (1) Broader recognition of how SH affects different populations; (2) Development and dissemination of mechanisms for heads, chairs, faculty and future geoscientists to identify, prevent and stop harassment; and (3) Adoption of codes of conduct by geoscientists.

  18. Strategy for Danish wind energy research; Startegi for dansk vindenergiforskning

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    The objective of the strategy for Danish wind energy research is to support future prioritizations - primarily as regards publicly funded programs. Most recent energy political objectives formulated in 2004 by the Danish Ministry of Economic and Business Affairs state: 'The objective of the governmental energy policy is to create efficient energy markets within a framework that secures cost efficiency, security of supplies, environmental considerations and efficient use of energy. The markets must be transparent and the competition must be fair. This will secure the energy consumers the lowest possible energy prices.' The wind energy strategy mirrors user needs and is, among other things, based upon a number of interviews with interested parties and a hearing on the strategy draft. (BA)

  19. EarthConnections: Integrating Community Science and Geoscience Education Pathways for More Resilient Communities.

    Science.gov (United States)

    Manduca, C. A.

    2017-12-01

    To develop a diverse geoscience workforce, the EarthConnections collective impact alliance is developing regionally focused, Earth education pathways. These pathways support and guide students from engagement in relevant, Earth-related science at an early age through the many steps and transitions to geoscience-related careers. Rooted in existing regional activities, pathways are developed using a process that engages regional stakeholders and community members with EarthConnections partners. Together they connect, sequence, and create multiple learning opportunities that link geoscience education and community service to address one or more local geoscience issues. Three initial pilots are demonstrating different starting points and strategies for creating pathways that serve community needs while supporting geoscience education. The San Bernardino pilot is leveraging existing academic relationships and programs; the Atlanta pilot is building into existing community activities; and the Oklahoma Tribal Nations pilot is co-constructing a pathway focus and approach. The project is using pathway mapping and a collective impact framework to support and monitor progress. The goal is to develop processes and activities that can help other communities develop similar community-based geoscience pathways. By intertwining Earth education with local community service we aspire to increase the resilience of communities in the face of environmental hazards and limited Earth resources.

  20. Mentoring K scholars: strategies to support research mentors.

    Science.gov (United States)

    Burnham, Ellen L; Schiro, Stephanie; Fleming, Michael

    2011-06-01

    The goal of this paper is to present strategies utilized to support K scholar research mentors. K scholars are generally assistant professors who are close to developing independent research programs. Of all the various types of mentees, K scholars offer the greatest challenges, as well as the greatest rewards, for research mentors. To see one's mentee achieve independent PI status and become an established investigator is one of the great joys of being a research mentor. Research mentors for K scholars, however, may not directly benefit from their mentoring relationship, neither in terms of obtaining data to support their research program or laboratory, nor in assistance with grants or scientific papers. There is a pressing need for the research community to address the workload, institutional expectations, and reward system for research mentors. The dearth of research mentors and role models in clinical translational science parallels the decreasing number of physicians choosing careers in clinical research. While there is limited empirical information on the effectiveness of mentor support mechanisms, this white paper concludes that providing mentor support is critical to expanding the available pool of mentors, as well as providing training opportunities for K scholars. © 2011 Wiley Periodicals, Inc.

  1. On the Cutting Edge: Face-to-Face and Virtual Professional Development for Current and Future Geoscience Faculty

    Science.gov (United States)

    Macdonald, H.; Manduca, C. A.; Mogk, D. W.; Tewksbury, B. J.; Iverson, E. A.; Kirk, K. B.; Beane, R. J.; McConnell, D.; Wiese, K.; Wysession, M. E.

    2011-12-01

    On the Cutting Edge, a comprehensive, discipline-wide professional development program for current and future geoscience faculty, aims to develop a geoscience professoriate committed to high-quality instruction based on currency in scientific knowledge, good pedagogic practice, and research on learning. Our program provides an integrated workshop series and online teaching resources. Since 2002, we have offered more than 80 face-to-face workshops, virtual workshops and webinars, and hybrid events. Participants come from two-year colleges and four-year colleges and universities. The workshop series is designed to address the needs of faculty in all career stages at the full spectrum of institutions and covering the breadth of the geoscience curriculum. We select timely and compelling topics and create opportunities of interest to faculty. We offer workshops on course design, new geoscience research and pedagogical topics, core geoscience curriculum topics, and introductory courses as well as workshops for early career faculty and for future faculty. Our workshops are designed to model good teaching practice. We set workshop goals that guide workshop planning and evaluation. Workshops are interactive, emphasize participant learning, provide opportunities for participants to interact and share experience/knowledge, provide good resources, give participants time to reflect and to develop action plans, and help transform their ideas about teaching. We emphasize the importance of adaptation in the context of their specific situations. For virtual workshops and webinars we use icebreakers and other structured interactions to build a comfortable workshop community; promote interaction through features on webinar software, chat-aided question and answer, small-group synchronous interactions, and/or discussion boards; plan detailed schedules for workshop events; use asynchronous discussions and recordings of synchronous events given that participants are busy with their

  2. Undergraduate Research in Earth Science Classes: Engaging Students in the First Two Years

    Science.gov (United States)

    Mogk, D. W.; Wysession, M. E.; Beauregard, A.; Reinen, L. A.; Surpless, K.; O'Connell, K.; McDaris, J. R.

    2014-12-01

    The recent PCAST report (2012), Engage to Excel, calls for a major shift in instructional modes in introductory (geo)science courses by "replacing standard laboratory courses with discovery-based research courses". An increased emphasis is recommended to engage students in experiments with the possibility of true discovery and expanded use of scientific research courses in the first two years. To address this challenge, the On the Cutting Edge program convened a workshop of geoscience faculty to explore the many ways that true research experiences can be built into introductory geoscience courses. The workshop goals included: consideration of the opportunities, strategies and methods used to provide research experiences for students in lower division geoscience courses; examination of ways to develop students' "geoscience habits of mind" through participation in authentic research activities; exploration of ways that student research projects can be designed to contribute to public science literacy with applications to a range of issues facing humanity; and development of strategies to obtain funding for these research projects, to make these programs sustainable in departments and institutions, and to scale-up these programs so that all students may participate. Access to Earth data, information technology, lab and field-based instrumentation, and field experiences provide unprecedented opportunities for students to engage in authentic research at early stages in their careers. Early exposure to research experiences has proven to be effective in the recruitment of students to the geoscience disciplines, improved retention and persistence in degree programs, motivation for students to learn and increase self-efficacy, improved attitudes and values about science, and overall increased student success. Workshop outcomes include an online collection of tested research projects currently being used in geoscience classes, resources related to effective design

  3. Formulating eLearning Support Strategies in Research Universities

    OpenAIRE

    Zellweger, Franziska

    2006-01-01

    In this contribution it is explored how strategic management practice could assist a coordinated approach toward eLearning and what elements of an eLearning support strategy are critical for a successful integration of eLearning in university teaching. After reviewing the literature on strategic management in higher education regarding eLearning and the presentation of the research methodology, conditions for support are identified as an important starting point of a more coordinated ap...

  4. The role of karst in engineering and environmental geosciences

    Directory of Open Access Journals (Sweden)

    H. C. Ho

    2011-08-01

    Full Text Available Karst is a unique landform developed by soluble rock. It usually relates to the groundwater drainage system, and provides important water resources. Current researches indicate that karst is closely related to the Earth system and environmental protection, and it can also create potential natural hazards such as sinkhole flooding and land subsidence in urban area. Its relationship with hydrogeology has also been an important factor for studying water pollution and nutrient cycles in engineering geosciences and agricultural geology.

  5. Developing a Science Commons for Geosciences

    Science.gov (United States)

    Lenhardt, W. C.; Lander, H.

    2016-12-01

    Many scientific communities, recognizing the research possibilities inherent in data sets, have created domain specific archives such as the Incorporated Research Institutions for Seismology (iris.edu) and ClinicalTrials.gov. Though this is an important step forward, most scientists, including geoscientists, also use a variety of software tools and at least some amount of computation to conduct their research. While the archives make it simpler for scientists to locate the required data, provisioning disk space, compute resources, and network bandwidth can still require significant efforts. This challenge exists despite the wealth of resources available to researchers, namely lab IT resources, institutional IT resources, national compute resources (XSEDE, OSG), private clouds, public clouds, and the development of cyberinfrastructure technologies meant to facilitate use of those resources. Further tasks include obtaining and installing required tools for analysis and visualization. If the research effort is a collaboration or involves certain types of data, then the partners may well have additional non-scientific tasks such as securing the data and developing secure sharing methods for the data. These requirements motivate our investigations into the "Science Commons". This paper will present a working definition of a science commons, compare and contrast examples of existing science commons, and describe a project based at RENCI to implement a science commons for risk analytics. We will then explore what a similar tool might look like for the geosciences.

  6. Testing the Impact of a Multi-year, Curriculum-based Undergraduate Research Experience (MY-CURE) in the Geosciences: Baseline Observations

    Science.gov (United States)

    Allen, J. L.; Creamer, E. G.; Kuehn, S. C.

    2016-12-01

    Short-term undergraduate research experiences (URE's) provide skill and confidence enhancement to students, but it is unclear how effective they are in comparison to a dedicated, longer-term URE. This study examines the impact of a long-term URE embedded in a sequence of five courses in the geology curriculum. It begins with a sophomore course in environmental geology, and continues through mineralogy, structural geology, and petrology, before concluding at our summer geology field camp. In this sequence, they build upon individual URE's related to the structure and petrology of fault rocks from a mid-crustal shear zone. Rather than have students engage in one or more short-term URE's, they retain the same project for two calendar years so that we can assess when and how different gains, including a more sophisticated understanding of the nature of science, begin to emerge and mature. As each student progresses, we document the longitudinal development of a diverse suite of gains including: (1) Technical and higher-order research skills, (2) personal gains such as self-identity as a scientist, and (3) communication skills. In this presentation, we describe the framework of the study and baseline observations recorded during the first year of a 2-year cohort. Using a Q-sort method, students were given a deck of 16 index cards with an educational outcome listed on each. They sorted the cards into three piles: Those that encouraged an interest in geology, those that deterred an interest, and those with no impact. Participants discussed the top cards from the negative and positive piles. The top attractors to geology are collegial relationships with faculty, the opportunity to use scientific equipment, field work, the concreteness of geology, and the availability of jobs. Factors that deter interest include hours of tedious homework, math courses, and time invested in wrong answers or failed experiments/sample preparation. Factors not yet evident include confidence in

  7. An Integrative and Collaborative Approach to Creating a Diverse and Computationally Competent Geoscience Workforce

    Science.gov (United States)

    Moore, S. L.; Kar, A.; Gomez, R.

    2015-12-01

    A partnership between Fort Valley State University (FVSU), the Jackson School of Geosciences at The University of Texas (UT) at Austin, and the Texas Advanced Computing Center (TACC) is engaging computational geoscience faculty and researchers with academically talented underrepresented minority (URM) students, training them to solve grand challenges . These next generation computational geoscientists are being trained to solve some of the world's most challenging geoscience grand challenges requiring data intensive large scale modeling and simulation on high performance computers . UT Austin's geoscience outreach program GeoFORCE, recently awarded the Presidential Award in Excellence in Science, Mathematics and Engineering Mentoring, contributes to the collaborative best practices in engaging researchers with URM students. Collaborative efforts over the past decade are providing data demonstrating that integrative pipeline programs with mentoring and paid internship opportunities, multi-year scholarships, computational training, and communication skills development are having an impact on URMs developing middle skills for geoscience careers. Since 1997, the Cooperative Developmental Energy Program at FVSU and its collaborating universities have graduated 87 engineers, 33 geoscientists, and eight health physicists. Recruited as early as high school, students enroll for three years at FVSU majoring in mathematics, chemistry or biology, and then transfer to UT Austin or other partner institutions to complete a second STEM degree, including geosciences. A partnership with the Integrative Computational Education and Research Traineeship (ICERT), a National Science Foundation (NSF) Research Experience for Undergraduates (REU) Site at TACC provides students with a 10-week summer research experience at UT Austin. Mentored by TACC researchers, students with no previous background in computational science learn to use some of the world's most powerful high performance

  8. Assessment Report on the national research strategy for energy

    International Nuclear Information System (INIS)

    2009-01-01

    This report was issued in 2009 by the French Parliament commission in charge of evaluating the scientific and technological choices of France's research in the field of energy. With environmental, economical and national independence concerns in view, the objective of the report is to assess the national research strategy for energy and to propose some directions for its future development. The scientific priority given in France to nuclear energy, petroleum, photovoltaic energy, second generation bio fuels and energy storage should be maintained. Mass energy storage should be considered as an essential condition for the development of renewable energies, such as offshore wind farms and storage systems

  9. Embedding Data Stewardship in Geoscience Australia

    Science.gov (United States)

    Bastrakova, I.; Fyfe, S.

    2013-12-01

    Ten years of technological innovation now enable vast amounts of data to be collected, managed, processed and shared. At the same time, organisations have witnessed government legislative and policy requirements for open access to public sector data, and a demand for flexibility in access to data by both machine-to-machine and human consumption. Geoscience Australia (GA) has adopted Data Stewardship as an organisation-wide initiative to improve the way we manage and share our data. The benefits to GA including: - Consolidated understanding of GA's data assets and their value to the Agency; - Recognition of the significant role of data custodianship and data management; - Well-defined governance, policies, standards, practices and accountabilities that promote the accessibility, quality and interoperability of GA's data; - Integration of disparate data sets into cohesive information products available online in real time and equally accessible to researchers, government, industry and the public. Although the theory behind data stewardship is well-defined and accepted and the benefits are generally well-understood, practical implementation requires an organisation to prepare for a long-term commitment of resources, both financial and human. Fundamentally this involves: 1. Raising awareness in the organisation of the need for data stewardship and the challenges this entails; 2. Establishing a data stewardship framework including a data governance office to set policy and drive organisational change; and 3. Embedding the functions and a culture of data stewardship into business as usual operations. GA holds a vast amount of data ranging from petabytes of Big Data to significant quantities of relatively small ';long tail' geoscientific observations and measurements. Over the past four years, GA has undertaken strategic activities that prepare us for Data Stewardship: - Organisation-wide audits of GA's data holdings and identification of custodians for each dataset

  10. Strategies for Disseminating Qualitative Research Findings: Three Exemplars

    Directory of Open Access Journals (Sweden)

    Steven Keen

    2007-09-01

    Full Text Available Assuming there are those who do pay attention to the dissemination of qualitative research findings, what can we learn from them? For this article, we searched for examples of qualitative research where findings have been disseminated beyond the journal article and/or conference presentation. The rationale for pursuing examples of how good qualitative research has been disseminated is that we pay attention to both scientific and communicative concerns. All three exemplars in this article go beyond the forms of dissemination that traditionally serve academic communities and attempt to address the communicative concern of qualitative research findings. This is not to say that these modes of dissemination replace the scholarship of qualitative research and/or the peer-reviewed journal manuscript—far from it. In disseminating qualitative data, researchers have an array of presentational styles and formats to choose from that best fit their research purposes, such as drama, dance, poetry, websites, video and evocative forms of writing. We conclude by considering the ethical issues that may be involved in these forms of disseminating qualitative research, as well as the challenges for evaluating the impact of such strategies. URN: urn:nbn:de:0114-fqs0703174

  11. Health for all: global ACMR debates research strategy.

    Science.gov (United States)

    1985-01-01

    At the 26th session in October 1984 the global Advisory Committee on Medical Research (ACMR) heard reports of its subcommittees on technology transfer and on health manpower research. The highlight of the session was the discussion of a set of proposals of an ACMR subcommittee -- the Subcommittee on Health Research Strategy for Health For All/2000 -- that had been asked to formulate a research strategy for the World Health Organization (WHO) in keeping with the commitment to realize health for all by the year 2000. Professor T. McKeown, chairperson of the subcommittee, began his presentation of the subcommittee's 1st report by pointing out that whereas the time that remained for attaining the objective of health for all by 2000 was short, the range of research projects related to health was almost unlimited. If progress was to be rapid, research must be sharply focused, and there must be some ordering of priorities. For the choice of research projects to be more than an arbitrary selection, a conceptual base was required and that was what the subcommittee attempted to provide. It proposed the classification of diseases into 3 categories identified according to their origin. The 1st category would include diseases determined before birth, whether at fertilization or during intrauterine life. The 2nd category would comprise diseases attributable to deficiencies and hazards and were mainly, but not excluisvely, infections. The 3rd category -- diseases due to maladaptation -- would for the most part comprise noncommunicable diseases that had become predominant in the developed countries. With regard to diseases determined before birth, the goal would be the prevention of conception or birth, or treatment. For certain diseases occurring during intrauterine life, this goal would best be realized by removing the specific environmental hazard. For other diseases originating during the intrauterine period and for abnormalities that were determined irreversible at

  12. Maximizing Research Productivity and Recognition: Strategies for Junior Scientists

    Science.gov (United States)

    Bell, R. E.; Pfirman, S.; Culligan, P.; Laird, J.

    2007-12-01

    The post-doc and the first six years of the academic lifecycle are crucial: the performance and decisions a scientist makes during this time often set the stage for the rest of his or her career. We frame our presentation around the criteria that reviewers typically use to assess candidates: reputation, impact, and productivity. Publication productivity is one of the most critical aspects of a researcher's success and the number of publications is often the first item that evaluators look for when reviewing files of job applicants and tenure candidates. Citations are typically used as a measure of impact, but they reflect a complicated set of factors besides quality, for example, visibility, size of citing community, and integration in social and professional networks. Letters of recommendation carry significant weight in evaluations for promotion because they are the only external measure that synthesizes all three parameters: reputation, impact and productivity. We have developed strategies for developing a research plan, getting the most out of scientific meetings, identifying potential letter writers, and integrating research into teaching. In this presentation we combine insights from the literature with our own experiences, to outline these strategies for increasing research productivity, recognition, and impact.

  13. Not Business-as-Usual: Resetting Expectations for Recruitment, Engagement & Professional Development of Today's URM in Geosciences

    Science.gov (United States)

    Auzenne, K.; Teranes, J. L.

    2017-12-01

    "The significant problems we have cannot be solved at the same level of thinking with which we created them." - Albert Einstein. In order to successfully recruit and retain today's URM in geosciences, we must think critically and strategically about how opportunities for professional engagement and skills-building are marketed, structured and implemented at various stages of an individual's career, and how those opportunities may be viewed and/or experienced differently by URM students and professionals. This presentation will discuss how modern professional development strategies for URMs should include: (1) clearly defined expectations that acknowledge cultural differences and challenges; (2) supportive exposure to experiences and individuals, such as role models, mentors and potential advisors; (3) constructive skill-building experiences that foster confidence and a sense of belonging, and (4) a demonstrated institutional commitment to diversity and inclusion from leadership that translates into visible resources and support. The presentation will highlight examples of these efforts and outcomes at the Scripps Institution of Oceanography, including the Scripps Undergraduate Research Fellowship (SURF) Program, a NSF-funded Research Experiences for Undergraduates (REU). With a commitment to enhancing diversity and inclusion, the SURF program has used the strategies above to help recruit and retain URM, women and veterans in graduate school and careers in the geosciences.

  14. Geoscience at Community Colleges: Availability of Programs and Geoscience Student Pathways

    Science.gov (United States)

    Gonzales, L. M.; Keane, C. M.; Houlton, H. R.

    2011-12-01

    Community colleges served over 7.5 million students in 2009, and have a more diverse student population than four-year institutions. In 2008, 58% of community college students were women and 33% of students were underrepresented minorities. Community colleges provide a large diverse pool of untapped talent for the geosciences and for all science and engineering disciplines. The most recent data from NSF's 2006 NSCRG database indicate that within the physical sciences, 43% of Bachelor's, 31% of Master's and 28% of Doctoral recipients had attended community college. Until recently, fine-grained datasets for examining the prevalence of community college education in geoscience students' academic pathways has not been available. Additionally, there has been limited information regarding the availability of geoscience programs and courses at community colleges. In 2011, the American Geological Institute (AGI) expanded its Directory of Geoscience Departments (DGD) to cover 434 community colleges that offer either geoscience programs and/or geoscience curriculum, and launched the first pilot of a standardized National Geoscience Exit Survey. The survey collects information not only about students' pathways in the university system and future academic and career plans, but also about community college attendance including geoscience course enrollments and Associate's degrees. The National Geoscience Exit Survey will be available to all U.S. geoscience programs at two- and four-year colleges and universities by the end of the 2011-2012 academic year, and will also establish a longitudinal survey effort to track students through their careers. Whereas the updated DGD now provides wider coverage of geoscience faculty members and programs at community colleges, the Exit Survey provides a rich dataset for mapping the flow of students from community colleges to university geoscience programs. We will discuss the availability of geoscience courses and programs at community

  15. Preparing for a Professional Career in the Geosciences with AEG

    Science.gov (United States)

    Barry, T.; Troost, K. G.

    2012-12-01

    The Association of Environmental and Engineering Geologists offers multiple resources to students and faculty about careers in the geosciences, such as description of what employers are looking for, career options, mentoring, and building your professional network. Our website provides easy access to these and other resources. Most of AEG's 3000 members found their first job through association with another AEG member and more than 75% of our membership is working in applied geoscience jobs. We know that employers are looking for the following qualities: passion for your career and the geosciences, an enthusiastic personality, flexibility, responsibility, ability to communicate well in oral and written modes, and the ability to work well in teams or independently. Employers want candidates with a strong well-rounded geoscience education and the following skills/experience: attendance at field camp, working knowledge of field methodologies, strong oral and written communication skills, basic to advanced computer skills, and the ability to conduct research. In addition, skill with GIS applications, computer modeling, and 40-hour OSHA training are desired. The most successful technique for finding a job is to have and use a network. Students can start building their network by attending regular AEG or other professional society monthly meetings, volunteering with the society, attending annual meetings, going on fieldtrips and participating in other events. Students should research what kind of job they want and build a list of potential preferred employers, then market themselves to people within those companies using networking opportunities. Word-of-mouth sharing of job openings is the most powerful tool for getting hired, and if students have name recognition established within their group of preferred employers, job interviews will occur at a faster rate than otherwise.

  16. Impacting earthquake science and geoscience education: Educational programming to earthquake relocation

    Science.gov (United States)

    Carrick, Tina Louise

    This dissertation is comprised of four studies: three related to research on geoscience education and another seismological study of the South Island of New Zealand. The geoscience education research is grounded in 10 years of data collection and its implications for best practices for recruitment and retention of underrepresented minority students into higher education in the geosciences. The seismological component contains results from the relocation of earthquakes from the 2009 Dusky Sound Mw 7.8 event, South Island, New Zealand. In recent years, many have cited a major concern that U.S. is not producing enough STEM graduates to fit the forecasted economic need. This situation is exacerbated by the fact that underrepresented minorities are becoming a growing portion of the population, and people in these groups enter STEM careers at rates much smaller than their proportion of the populations. Among the STEM disciplines the Geosciences are the worst at attracting young people from underrepresented minorities. This dissertation reports on results the Pathways program at the University of Texas at El Paso Pathways which sought to create a geoscience recruitment and training network in El Paso, Texas to increase the number of Hispanic Americans students to attain higher degrees and increase the awareness of the geosciences from 2002-2012. Two elements of the program were a summer program for high school students and an undergraduate research program conducted during the academic year, called PREP. Data collected from pre- and post-surveys from the summer program showed statistically significant positive changes in attitudes towards the geosciences. Longitudinal data shows a strong positive correlation of the program with retention of participants in the geoscience pipeline. Results from the undergraduate research program show that it produced far more women and minority geoscience professionals than national norms. Combination of the institutional data, focus

  17. Internships and UNAVCO: Training the Future Geoscience Workforce Through the NSF GAGE Facility

    Science.gov (United States)

    Morris, A. R.; MacPherson-Krutsky, C. C.; Charlevoix, D. J.; Bartel, B. A.

    2015-12-01

    Facilities are uniquely positioned to both serve a broad, national audience and provide unique workforce experience to students and recent graduates. Intentional efforts dedicated to broadening participation in the future geoscience workforce at the NSF GAGE (Geodesy Advancing Geosciences and EarthScope) Facility operated by UNAVCO, are designed to meet the needs of the next generation of students and professionals. As a university-governed consortium facilitating research and education in the geosciences, UNAVCO is well-situated to both prepare students for geoscience technical careers and advanced research positions. Since 1998, UNAVCO has offered over 165 student assistant or intern positions including engineering, data services, education and outreach, and business support. UNAVCO offers three formal programs: the UNAVCO Student Internship Program (USIP), Research Experiences in Solid Earth Science for Students (RESESS), and the Geo-Launchpad (GLP) internship program. Interns range from community college students up through graduate students and recent Masters graduates. USIP interns gain real-world work experience in a professional setting, collaborate with teams toward a common mission, and contribute their knowledge, skills, and abilities to the UNAVCO community. RESESS interns conduct authentic research with a scientist in the Front Range area as well as participate in a structured professional development series. GLP students are in their first 2 years of higher education and work alongside UNAVCO technical staff gaining valuable work experience and insight into the logistics of supporting scientific research. UNAVCO's efforts in preparing the next generation of scientists largely focuses on increasing diversity in the geosciences, whether continuing academic studies or moving into the workforce. To date, well over half of our interns and student assistants come from backgrounds historically underrepresented in the geosciences. Over 80% of former interns

  18. THE STRATEGY OF EMPIRICAL RESEARCH AND OPTIMIZATION PROCESS

    Directory of Open Access Journals (Sweden)

    L.E. Brossard Perez

    2001-06-01

    Full Text Available Empirical modeling is considered from the perspectives of a general scheme for the Strategy of Empirical Research and Optimization Process (SEROP. This approach intends to facilitate the understanding of the necessary steps to arrive to mathematical models able to appropriately describe the behavior of a group of controllable independent variables related to a certain response. Aspects connected with definition of the problem, variable’s identification and optimization stages are discussed. As an example of SEROP application, it is presented the empirical modeling of the basic extraction of alginic acid from brown algae.

  19. Grounded Theorising Applied to IS Research - Developing a Coding Strategy

    Directory of Open Access Journals (Sweden)

    Bruce Rowlands

    2005-05-01

    Full Text Available This paper provides an example of developing a coding strategy to build theory of the roles of methods in IS development. The research seeks to identify and understand how system development methods are used in an IS department within a large Australian bank. The paper details a theoretical framework, particulars of data collection, and documents an early phase of analysis – data reduction and the generation of an initial coding scheme. Guided by a framework to study the use of methods, the analysis demonstrates the framework’s plausibility in order to develop theoretical relationships with which to develop a grounded theory.

  20. Characterizing Researchers by Strategies Used for Retaining Minority Participants: Results of a National Survey

    Science.gov (United States)

    Butler, James; Quinn, Sandra C.; Fryer, Craig S.; Garza, Mary A.; Kim, Kevin H.; Thomas, Stephen B.

    2013-01-01

    Limited attention has been given to the optimal strategies for retaining racial and ethnic minorities within studies and during the follow-up period. High attrition limits the interpretation of results and reduces the ability to translate findings into successful interventions. This study examined the retention strategies used by researchers when retaining minorities in research studies. From May to August 2010, we conducted an online survey with researchers (principal investigators, research staff, and IRB members) and examined their use of seven commonly used retention strategies. The number and type of retention strategies used, how these strategies differ by researcher type, and other characteristics (e.g., funding) were explored. We identified three clusters of researchers: comprehensive retention strategy researchers - utilized the greatest number of retention strategies; moderate retention strategy researchers - utilized an average number of retention strategies; and limited retention strategy researchers - utilized the least number of retention strategies. The comprehensive and moderate retention strategy researchers were more likely than the limited retention strategy researchers to conduct health outcomes research, work with a community advisory board, hire minority staff, use steps at a higher rate to overcome retention barriers, develop new partnerships with the minority community, modify study materials for the minority population, and allow staff to work flexible schedules. This study is a novel effort to characterize researchers, without implying a value judgment, according to their use of specific retention strategies. It provides critical information for conducting future research to determine the effectiveness of using a combination of retention strategies. PMID:23764697

  1. "YouTube Geology" - Increasing Geoscience Visibility Through Short Films

    Science.gov (United States)

    Piispa, E. J.; Lerner, G. A.

    2016-12-01

    Researchers have the responsibility to communicate their science to a broad audience: scientists, non-scientist, young and old. Effective ways of reaching these groups include using pathways that genuinely spark interest in the target audience. Communication techniques should evolve as the means of communication evolve. Here we talk about our experiences using short films to increase geoscience visibility and appreciation. At a time when brevity and quick engagement are vital to capturing people's attention, creating videos that fit popular formats is an effective way to draw and hold people's interest, and spreading these videos on popular sites is a good way to reach a non-academic audience. Creating videos that are fun, exciting, and catchy in order to initially increase awareness and interest is equally important as the educational content. The visual medium can also be powerful way to make complex scientific concepts seem less intimidating. We have experimented with this medium of geoscience communication by creating a number of short films that target a variety of audiences: short summaries of research topics, mock movie trailers, course advertisements, fieldwork highlight reels and geology lessons for elementary school children. Our two rules of thumb are to put the audience first and use style as a vital element. This allows for the creation of films that are more engaging and often less serious than standard informational (and longer-format) videos. Science does not need to be dry and dull - it can be humorous and entertaining while remaining highly accurate. Doing these short films has changed our own mindset as well - thinking about what to film while doing research helps keep the practical applications of our research in focus. We see a great deal of potential for collaboration between geoscientists and amateur or professional filmmakers creating hip and edgy videos that further raise awareness and interest. People like movies. We like movies. We like

  2. Radioisotope Production Plan and Strategy of Kijang Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kye Hong; Lee, Jun Sig [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    This reactor will be located at Kijang, Busan, Korea and be dedicated to produce mainly medical radioisotopes. Tc-99m is very important isotope for diagnosis and more than 80% of radiation diagnostic procedures in nuclear medicine depend on this isotope. There were, however, several times of insecure production of Mo-99 due to the shutdown of major production reactors worldwide. OECD/NEA is leading member countries to resolve the shortage of this isotope and trying to secure the international market of Mo-99. The radioisotope plan and strategy of Kijang Research Reactor (KJRR) should be carefully established to fit not only the domestic but also international demand on Mo-99. The implementation strategy of 6 principles of HLG-MR should be established that is appropriate to national environments. Ministry of Science, ICT and Future Planning and Ministry of Health and welfare should cooperate well to organize the national radioisotope supply structure, to set up the reasonable and competitive pricing of radioisotopes, and to cope with the international supply strategy.

  3. DOIs for Data: Progress in Data Citation and Publication in the Geosciences

    Science.gov (United States)

    Callaghan, S.; Murphy, F.; Tedds, J.; Allan, R.

    2012-12-01

    Identifiers for data are the bedrock on which data citation and publication rests. These, in their turn, are widely proposed as methods for encouraging researchers to share their datasets, and at the same time receive academic credit for their efforts in producing them. However, neither data citation nor publication can be properly achieved without a method of identifying clearly what is, and what isn't, part of the dataset. Once a dataset becomes part of the scientific record (either through formal data publication or through being cited) then issues such as dataset stability and permanence become vital to address. In the geosciences, several projects in the UK are concentrating on issues of dataset identification, citation and publication. The UK's Natural Environment Research Council's (NERC) Science Information Strategy data citation and publication project is addressing the issue of identifiers for data, stability, transparency, and credit for data producers through data citation. At a data publication level, 2012 has seen the launch of the new Wiley title Geoscience Data Journal and the PREPARDE (Peer Review for Publication & Accreditation of Research Data in the Earth sciences) project, both aiming to encourage data publication by addressing issues such as data paper submission workflows and the scientific peer-review of data. All of these initiatives work with a range of partners including academic institutions, learned societies, data centers and commercial publishers, both nationally and internationally, with a cross-project aim of developing the mechanisms so data can be identified, cited and published with confidence. This involves investigating barriers and drivers to data publishing and sharing, peer review, and re-use of geoscientific datasets, and specifically such topics as dataset requirements for citation, workflows for dataset ingestion into data centers and publishers, procedures and policies for editors, reviewers and authors of data

  4. Remote Sensing and Geosciences for Archaeology

    Directory of Open Access Journals (Sweden)

    Deodato Tapete

    2018-01-01

    Full Text Available Archaeological remote sensing is not a novel discipline. Indeed, there is already a suite of geoscientific techniques that are regularly used by practitioners in the field, according to standards and best practice guidelines. However, (i the technological development of sensors for data capture; (ii the accessibility of new remote sensing and Earth Observation data; and (iii the awareness that a combination of different techniques can lead to retrieval of diverse and complementary information to characterize landscapes and objects of archaeological value and significance, are currently three triggers stimulating advances in methodologies for data acquisition, signal processing, and the integration and fusion of extracted information. The Special Issue “Remote Sensing and Geosciences for Archaeology” therefore presents a collection of scientific contributions that provides a sample of the state-of-the-art and forefront research in this field. Site discovery, understanding of cultural landscapes, augmented knowledge of heritage, condition assessment, and conservation are the main research and practice targets that the papers published in this Special Issue aim to address.

  5. Ecosystem approach to inland fisheries: research needs and implementation strategies

    Science.gov (United States)

    Beard, T. Douglas; Arlinghaus, Robert; Cooke, Steven J.; McIntyre, Peter B.; De Silva, Sena; Bartley, Devin M.; Cowx, Ian G.

    2011-01-01

    Inland fisheries are a vital component in the livelihoods and food security of people throughout the world, as well as contributing huge recreational and economic benefits. These valuable assets are jeopardized by lack of research-based understanding of the impacts of fisheries on inland ecosystems, and similarly the impact of human activities associated with inland waters on fisheries and aquatic biodiversity. To explore this topic, an international workshop was organized in order to examine strategies to incorporate fisheries into ecosystem approaches for management of inland waters. To achieve this goal, a new research agenda is needed that focuses on: quantifying the ecosystem services provided by fresh waters; quantifying the economic, social and nutritional benefits of inland fisheries; improving assessments designed to evaluate fisheries exploitation potential; and examining feedbacks between fisheries, ecosystem productivity and aquatic biodiversity. Accomplishing these objectives will require merging natural and social science approaches to address coupled social–ecological system dynamics.

  6. Virtual Reality as a Story Telling Platform for Geoscience Communication

    Science.gov (United States)

    Lazar, K.; Moysey, S. M.

    2017-12-01

    Capturing the attention of students and the public is a critical step for increasing societal interest and literacy in earth science issues. Virtual reality (VR) provides a means for geoscience engagement that is well suited to place-based learning through exciting and immersive experiences. One approach is to create fully-immersive virtual gaming environments where players interact with physical objects, such as rock samples and outcrops, to pursue geoscience learning goals. Developing an experience like this, however, can require substantial programming expertise and resources. At the other end of the development spectrum, it is possible for anyone to create immersive virtual experiences with 360-degree imagery, which can be made interactive using easy to use VR editing software to embed videos, audio, images, and other content within the 360-degree image. Accessible editing tools like these make the creation of VR experiences something that anyone can tackle. Using the VR editor ThingLink and imagery from Google Maps, for example, we were able to create an interactive tour of the Grand Canyon, complete with embedded assessments, in a matter of hours. The true power of such platforms, however, comes from the potential to engage students as content authors to create and share stories of place that explore geoscience issues from their personal perspective. For example, we have used combinations of 360-degree images with interactive mapping and web platforms to enable students with no programming experience to create complex web apps as highly engaging story telling platforms. We highlight here examples of how we have implemented such story telling approaches with students to assess learning in courses, to share geoscience research outcomes, and to communicate issues of societal importance.

  7. International Geoscience Workforce Trends: More Challenges for Federal Agencies

    Science.gov (United States)

    Groat, C. G.

    2005-12-01

    Concern about the decreasing number of students entering undergraduate geoscience programs has been chronic and, at times, acute over the past three decades. Despite dwindling populations of undergraduate majors, graduate programs have remained relatively robust, bolstered by international students. With Increasing competition for graduate students by universities in Europe, Japan, Australia, and some developing countries, and with procedural challenges faced by international students seeking entry into the United States and its universities, this supply source is threatened. For corporations operating on a global scale, the opportunity to employ students from and trained in the regions in which they operate is generally a plus. For U.S. universities that have traditionally supplied this workforce, the changing situation poses challenges, but also opportunities for creative international partnerships. Federal government science agencies face more challenges than opportunities in meeting workforce needs under both present and changing education conditions. Restrictions on hiring non-U.S. citizens into the permanent workforce have been a long-standing issue for federal agencies. Exceptions are granted only where they can document the absence of eligible U.S.-citizen candidates. The U.S. Geological Survey has been successful in doing this in its Mendenhall Postdoctoral Research Fellowship Program, but there has been no solution to the broader limitation. Under current and forecast workforce recruitment conditions, creativity, such as that evidenced by the Mendenhall program,will be necessary if federal agencies are to draw from the increasingly international geoscience talent pool. With fewer U.S. citizens in U.S. geoscience graduate programs and a growing number of advanced-degreed scientists coming from universities outside the U.S., the need for changes in federal hiring policies is heightened. The near-term liklihood of this is low and combined with the decline in

  8. ARM Climate Research Facility: Outreach Tools and Strategies

    Science.gov (United States)

    Roeder, L.; Jundt, R.

    2009-12-01

    Sponsored by the Department of Energy, the ARM Climate Research Facility is a global scientific user facility for the study of climate change. To publicize progress and achievements and to reach new users, the ACRF uses a variety of Web 2.0 tools and strategies that build off of the program’s comprehensive and well established News Center (www.arm.gov/news). These strategies include: an RSS subscription service for specific news categories; an email “newsletter” distribution to the user community that compiles the latest News Center updates into a short summary with links; and a Facebook page that pulls information from the News Center and links to relevant information in other online venues, including those of our collaborators. The ACRF also interacts with users through field campaign blogs, like Discovery Channel’s EarthLive, to share research experiences from the field. Increasingly, field campaign Wikis are established to help ACRF researchers collaborate during the planning and implementation phases of their field studies and include easy to use logs and image libraries to help record the campaigns. This vital reference information is used in developing outreach material that is shared in highlights, news, and Facebook. Other Web 2.0 tools that ACRF uses include Google Maps to help users visualize facility locations and aircraft flight patterns. Easy-to-use comment boxes are also available on many of the data-related web pages on www.arm.gov to encourage feedback. To provide additional opportunities for increased interaction with the public and user community, future Web 2.0 plans under consideration for ACRF include: evaluating field campaigns for Twitter and microblogging opportunities, adding public discussion forums to research highlight web pages, moving existing photos into albums on FlickR or Facebook, and building online video archives through YouTube.

  9. Terrestrial ecosystem responses to global change: A research strategy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    Uncertainty about the magnitude of global change effects on terrestrial ecosystems and consequent feedbacks to the atmosphere impedes sound policy planning at regional, national, and global scales. A strategy to reduce these uncertainties must include a substantial increase in funding for large-scale ecosystem experiments and a careful prioritization of research efforts. Prioritization criteria should be based on the magnitude of potential changes in environmental properties of concern to society, including productivity; biodiversity; the storage and cycling of carbon, water, and nutrients; and sensitivity of specific ecosystems to environmental change. A research strategy is proposed that builds on existing knowledge of ecosystem responses to global change by (1) expanding the spatial and temporal scale of experimental ecosystem manipulations to include processes known to occur at large scales and over long time periods; (2) quantifying poorly understood linkages among processes through the use of experiments that manipulate multiple interacting environmental factors over a broader range of relevant conditions than did past experiments; and (3) prioritizing ecosystems for major experimental manipulations on the basis of potential positive and negative impacts on ecosystem properties and processes of intrinsic and/or utilitarian value to humans and on feedbacks of terrestrial ecosystems to the atmosphere.

  10. Starting Point: Linking Methods and Materials for Introductory Geoscience Courses

    Science.gov (United States)

    Manduca, C. A.; MacDonald, R. H.; Merritts, D.; Savina, M.

    2004-12-01

    Introductory courses are one of the most challenging teaching environments for geoscience faculty. Courses are often large, students have a wide variety of background and skills, and student motivation can include completing a geoscience major, preparing for a career as teacher, fulfilling a distribution requirement, and general interest. The Starting Point site (http://serc.carleton.edu/introgeo/index.html) provides help for faculty teaching introductory courses by linking together examples of different teaching methods that have been used in entry-level courses with information about how to use the methods and relevant references from the geoscience and education literature. Examples span the content of geoscience courses including the atmosphere, biosphere, climate, Earth surface, energy/material cycles, human dimensions/resources, hydrosphere/cryosphere, ocean, solar system, solid earth and geologic time/earth history. Methods include interactive lecture (e.g think-pair-share, concepTests, and in-class activities and problems), investigative cases, peer review, role playing, Socratic questioning, games, and field labs. A special section of the site devoted to using an Earth System approach provides resources with content information about the various aspects of the Earth system linked to examples of teaching this content. Examples of courses incorporating Earth systems content, and strategies for designing an Earth system course are also included. A similar section on Teaching with an Earth History approach explores geologic history as a vehicle for teaching geoscience concepts and as a framework for course design. The Starting Point site has been authored and reviewed by faculty around the country. Evaluation indicates that faculty find the examples particularly helpful both for direct implementation in their classes and for sparking ideas. The help provided for using different teaching methods makes the examples particularly useful. Examples are chosen from

  11. Human Pathogens on Plants: Designing a Multidisciplinary Strategy for Research.

    Science.gov (United States)

    Fletcher, Jacqueline; Leach, Jan E; Eversole, Kellye; Tauxe, Robert

    2014-10-15

    Recent efforts to address concerns about microbial contamination of food plants and resulting foodborne illness have prompted new collaboration and interactions between the scientific communities of plant pathology and food safety. This article provides perspectives from scientists of both disciplines and presents selected research results and concepts that highlight existing and possible future synergisms for audiences of both disciplines. Plant pathology is a complex discipline that encompasses studies of the dissemination, colonization, and infection of plants by microbes such as bacteria, viruses, fungi, and oomycetes. Plant pathologists study plant diseases as well as host plant defense responses and disease management strategies with the goal of minimizing disease occurrences and impacts. Repeated outbreaks of human illness attributed to the contamination of fresh produce, nuts and seeds, and other plant-derived foods by human enteric pathogens such as Shiga toxin-producing Escherichia coli and Salmonella spp. have led some plant pathologists to broaden the application of their science in the past two decades, to address problems of human pathogens on plants (HPOPs). Food microbiology, which began with the study of microbes that spoil foods and those that are critical to produce food, now also focuses study on how foods become contaminated with pathogens and how this can be controlled or prevented. Thus, at the same time, public health researchers and food microbiologists have become more concerned about plant-microbe interactions before and after harvest. New collaborations are forming between members of the plant pathology and food safety communities, leading to enhanced research capacity and greater understanding of the issues for which research is needed. The two communities use somewhat different vocabularies and conceptual models. For example, traditional plant pathology concepts such as the disease triangle and the disease cycle can help to define

  12. Proceedings of the geosciences workshop

    Energy Technology Data Exchange (ETDEWEB)

    None

    1991-01-01

    The manuscripts in these proceedings represent current understanding of geologic issues associated with the Weldon Spring Site Remedial Action Project (WSSRAP). The Weldon Spring site is in St. Charles County, Missouri. The proceedings are the record of the information presented during the WSSRAP Geosciences Workshop conducted on February 21, 1991. The objective of the workshop and proceedings is to provide the public and scientific community with technical information that will facilitate a common understanding of the geology of the Weldon Spring site, of the studies that have been and will be conducted, and of the issues associated with current and planned activities at the site. This coverage of geologic topics is part of the US Department of Energy overall program to keep the public fully informed of the status of the project and to address public concerns as we clean up the site and work toward the eventual release of the property for use by this and future generations. Papers in these proceedings detail the geology and hydrology of the site. The mission of the WSSRAP derives from the US Department of Energy's Surplus Facilities Management Program. The WSSRAP will eliminate potential hazards to the public and the environment and make surplus real property available for other uses to the extent possible. This will be accomplished by conducting remedial actions which will place the quarry, the raffinate pits, the chemical plant, and the vicinity properties in a radiologically and chemically safe condition. The individual papers have been catalogued separately.

  13. Raft River geoscience case study

    Energy Technology Data Exchange (ETDEWEB)

    Dolenc, M.R.; Hull, L.C.; Mizell, S.A.; Russell, B.F.; Skiba, P.A.; Strawn, J.A.; Tullis, J.A.

    1981-11-01

    The Raft River Geothermal Site has been evaluated over the past eight years by the United States Geological Survey and the Idaho National Engineering Laboratory as a moderate-temperature geothermal resource. The geoscience data gathered in the drilling and testing of seven geothermal wells suggest that the Raft River thermal reservoir is: (a) produced from fractures found at the contact metamorphic zone, apparently the base of detached normal faulting from the Bridge and Horse Well Fault zones of the Jim Sage Mountains; (b) anisotropic, with the major axis of hydraulic conductivity coincident to the Bridge Fault Zone; (c) hydraulically connected to the shallow thermal fluid of the Crook and BLM wells based upon both geochemistry and pressure response; (d) controlled by a mixture of diluted meteoric water recharging from the northwest and a saline sodium chloride water entering from the southwest. Although the hydrogeologic environment of the Raft River geothermal area is very complex and unique, it is typical of many Basin and Range systems.

  14. AMS Online Weather Studies: The National Dissemination of a Distance Learning Course for Enhancing Diversity in the Geosciences

    Science.gov (United States)

    Weinbeck, R. S.; Geer, I. W.; Mills, E. W.; Porter, W. A.; Moran, J. M.

    2004-12-01

    and makes it available to colleges and universities as a user-friendly turnkey package with electronic and printed components. The AMS Geosciences Diversity Program, in cooperation with the National Weather Service (NWS), facilitates institutional participation in Online Weather Studies. Prior to an instructor's initial offering of the course, he or she is invited to attend a one-week course implementation workshop at the NWS Training Center at Kansas City, MO. Participants are encouraged to share best practices ideas in science content and teaching strategies related to their offering of Online Weather Studies. Through the course homepage, students are provided with information on further studies in the atmospheric sciences, opportunities for internships and summer research, and career counseling. Meteorologists-in-Charge at NWS Weather Forecast Offices across the nation have interacted with minority-serving institutions to encourage adoption of the AMS weather course. Also, participating faculty members are invited to the Educational Symposium of the AMS Annual Meeting where they will attend a special Diversity Session and are encouraged to present posters.

  15. BCube: Building a Geoscience Brokering Framework

    Science.gov (United States)

    Jodha Khalsa, Siri; Nativi, Stefano; Duerr, Ruth; Pearlman, Jay

    2014-05-01

    BCube is addressing the need for effective and efficient multi-disciplinary collaboration and interoperability through the advancement of brokering technologies. As a prototype "building block" for NSF's EarthCube cyberinfrastructure initiative, BCube is demonstrating how a broker can serve as an intermediary between information systems that implement well-defined interfaces, thereby providing a bridge between communities that employ different specifications. Building on the GEOSS Discover and Access Broker (DAB), BCube will develop new modules and services including: • Expanded semantic brokering capabilities • Business Model support for work flows • Automated metadata generation • Automated linking to services discovered via web crawling • Credential passing for seamless access to data • Ranking of search results from brokered catalogs Because facilitating cross-discipline research involves cultural and well as technical challenges, BCube is also addressing the sociological and educational components of infrastructure development. We are working, initially, with four geoscience disciplines: hydrology, oceans, polar and weather, with an emphasis on connecting existing domain infrastructure elements to facilitate cross-domain communications.

  16. Transformation and communication research strategies: language - society – culture

    Directory of Open Access Journals (Sweden)

    S. M. Forkosh

    2017-06-01

    Full Text Available Main research strategies in the humanitarian sphere, connected with the transformation-communicative approach by K.-O. Apel, have been studied in the article. This approach is based on I. Kant’s classic transcendental method, but has much wider sphere of application. Syncretic tendencies in humanitarian sciences cause the search of criteria or generalizing principles, which would allow not only combining basic research strategies, but also covering variable forms of the social-dynamics. Language in its various forms becomes the common ground, where it is possible not only to describe, but to explain disparate elements of the society’s functioning. These elements, when developed, cause the formation of culture. The basis for the analysis of the interdisciplinary communication features are relevant branches of philosophy. Specific realities of the research activity are understood by the methodologist as the deep interrelation of language tools and specific features of scientific knowledge’s changes. In fact, the researcher simultaneously performs double task: interprets scientific texts, improves his/her understanding of their structural characteristics, and also studies social, cultural, humanistic priorities of the available practices. Based on the characteristics of the modern culture (rapidity of development, lack of self-awareness and «maturation» vector, non-manifestation of methodological tools, sociological and linguistic sciences become to be a model in the humanitarian area. At the same time, awareness of the structural maturation of such knowledge is low. The development of linguistic sciences has more advanced conceptual design and it resonates with the evolution of the language philosophy. That’s why, considering the socio-cultural transformations of the globalization era, grounds of clarification of the specific methodological potential, which are accumulated in the contemporary linguistics, should be considered. In this

  17. Researcher Mobility at a US Research-Intensive University: Implications for Research and Internationalization Strategies

    Science.gov (United States)

    Payumo, Jane G.; Lan, George; Arasu, Prema

    2018-01-01

    This study offers a unique lens on the patterns, productivity, and impact of researcher mobility at a US research-intensive university. Bibliometric data for Washington State University (WSU) was extracted from Elsevier's Scopus database and analyzed for the 10-year period from 2002 to 2012. We grouped researchers into four categories based on…

  18. The Person Behind the Picture: Influence of Social and Cultural Capital on Geoscience Career Pathways

    Science.gov (United States)

    Rappolee, E.; Libarkin, J. C.; McCallum, C.; Kurz, S.

    2017-12-01

    The amalgamation of fields in the geosciences share one desire: a better understanding of the natural world and the relationship humans have with that world. As issues such as climate change and clean water become globally recognized the geoscience job market grows. To insure these issues are resolved in ways that are fully representative of the entire human population, attention has been turned to increasing diversity of scientists in the geosciences. This study is based in the theory of social and cultural capital, types of non-financial wealth obtained by individuals and groups through connections and experiences. In particular, we investigated how individuals accessed specific resources and opportunities which eventually led to their entering the geosciences. Surveys were distributed to volunteers at a multinational geoscience conference held in fall of 2016. These surveys asked participants to "draw a picture of the people and experiences that have influenced your career up to this point." Nearly 150 completed drawings were coded through a thematic content analysis, wherein salient characteristics of drawings were documented and later grouped into common themes. We found that specific people (family, professors, peers) provided access to resources (education, museums, parks) as well as experiences (camping, traveling, research) that were instrumental in career building. Correlation analysis revealed two representative models of the drawings. These models aligned with the constructs of social and cultural capital. Cultural capital was more prevalent in majority white than nonwhite participants, suggesting different pathways into geoscience careers. We hope this research will inspire future work as well as highlight ways in which social and cultural capital can become accessible to future generations to produce a system with equal opportunities and increase diversity in the geosciences, resulting in better decision-making on global issues.

  19. NSF-Sponsored Summit on the Future of Undergraduate Geoscience Education: outcomes

    Science.gov (United States)

    Mosher, S.

    2014-12-01

    The NSF-sponsored Summit on the Future of Undergraduate Geoscience Education made major progress toward developing a collective community vision for the geosciences. A broad spectrum of the geoscience education community, ~200 educators from research universities/four and two year colleges, focused on preparation of undergraduates for graduate school and future geoscience careers, pedagogy, use of technology, broadening participation/retention of underrepresented groups, and preparation of K-12 science teachers. Participants agreed that key concepts, competencies and skills learned throughout the curriculum were more important than specific courses. Concepts included understanding Earth as complex, dynamic system, deep time, evolution of life, natural resources, energy, hazards, hydrogeology, surface processes, Earth materials and structure, and climate change. Skills/competencies included ability to think spatially and temporally, reason inductively and deductively, make and use indirect observations, engage in complex open, coupled systems thinking, and work with uncertainty, non-uniqueness, and incompleteness, as well as critical thinking, problem solving, communication, and ability to think like a scientist and continue to learn. Successful ways of developing these include collaborative, integrative projects involving teams, interdisciplinary projects, fieldwork and research experiences, as well as flipped classrooms and integration and interactive use of technology, including visualization, simulation, modeling and analysis of real data. Wider adoption of proven, effective best practices is our communities' main pedagogical challenge, and we focused on identifying implementation barriers. Preparation of future teachers in introductory and general geoscience courses by incorporating Next Generation Science Standards and using other sciences/math to solve real world geoscience problems should help increase diversity and number of future geoscientists and

  20. Strategies for involving undergraduates in mentored research (Invited)

    Science.gov (United States)

    Marin-Spiotta, E.

    2013-12-01

    Early engagement in research can transform the undergraduate experience and has a positive effect on minority student recruitment to graduate school. Multiple strategies used to involve undergraduates in research at a large R1 university are presented. During my first four years as an assistant professor, my lab has hosted 14 undergraduates, 9 of them women and 4 of them Hispanic. Institutional support has been critical for undergraduate student involvement. UW supports a research program for incoming underrepresented students. An advantage of this program is very early research participation, with the opportunity for long-term training. One disadvantage is that many first year students have not yet identified their interests. The Biology major also requires students to complete an independent project, which culminates in a research symposium. Competitive research fellowships and grants are available for students to conduct work under faculty mentorship. We have been successful at keeping students on even when their majors are very different from our research discipline, mainly by providing flexibility and a welcoming lab environment. This mentoring culture is strongly fostered by graduate student interest and involvement with all undergraduates as well as active mentor training. By offering multiple pathways for involvement, we can accommodate students' changing schedules and priorities as well as changing lab needs. Students can volunteer, receive course credit, conduct an independent project or honors thesis, contribute to an existing project, do lab work or write a literature review, work with one mentor or on multiple projects. We often provide employment over the summer and subsequent semesters for continuing students. Some will increase their commitment over time and work more closely with me. Others reduce down to a few hours a week as they gain experience elsewhere. Most students stay multiple semesters and multiple years because they 'enjoy being in the

  1. Energy in Ireland: context, strategy and research; Energie en Irlande: contexte, strategie et recherche

    Energy Technology Data Exchange (ETDEWEB)

    Saintherant, N.; Lerouge, Ch.; Welcker, A

    2008-01-15

    In the present day situation of sudden awareness about climatic change and announced fossil fuels shortage, Ireland has defined a new strategy for its energy future. Context: Ireland is strongly dependent of oil and gas imports which increase regularly to meet the demand. A small part of the electricity consumed is imported from Ulster. The share of renewable energies remains weak but is increasing significantly. Therefore, from 1990 to 2006, the proportion of renewable energies increased from 1.9% (mainly of hydroelectric origin) to 4.5%. Wind power represents now the main renewable energy source. The transportation sector is the most energy consuming and the biggest source of greenhouse gases. Strategy: the Irish policy is driven by pluri-annual strategic plans which define the objectives and means. Priority is given to the security of supplies at affordable prices: 8.5 billion euros will be invested during the 2007-2013 era for the modernization of existing energy infrastructures and companies, and in a lesser extent for the development of renewable energy sources. During this period, 415 million euros more will be devoted to the research, development and demonstration (RD and D) of new energy solutions. Research: in 2005 the energy RD and D expenses reached 12.8 million euros shared between 54% for R and D and 46% for demonstration projects. Half of the financing is given to higher education schools and is devoted to energy saving purposes (33%) and to renewable energies (29%, mainly wind power and biomass). Academic research gives a particular attention to ocean energy which represents an important potential resource in Ireland and which has already led to the creation of innovative companies. The integration of renewable energy sources to the power grid and the stability of supplies are also the object of active researches. (J.S.)

  2. Strategy for standardization of preeclampsia research study design.

    Science.gov (United States)

    Myatt, Leslie; Redman, Christopher W; Staff, Anne Cathrine; Hansson, Stefan; Wilson, Melissa L; Laivuori, Hannele; Poston, Lucilla; Roberts, James M

    2014-06-01

    Preeclampsia remains a major problem worldwide for mothers and babies. Despite intensive study, we have not been able to improve the management or early recognition of preeclampsia. At least part of this is because of failure to standardize the approach to studying this complex syndrome. It is possible that within the syndrome there may be different phenotypes with pathogenic pathways that differ between the subtypes. The capacity to recognize and to exploit different subtypes is of obvious importance for prediction, prevention, and treatment. We present a strategy for research to study preeclampsia, which will allow discrimination of such possible subtypes and also allow comparison and perhaps combinations of findings in different studies by standardized data and biosample collection. To make studies relevant to current clinical practice, the definition of preeclampsia can be that currently used and accepted. However, more importantly, sufficient data should be collected to allow other diagnostic criteria to be used and applied retrospectively. To that end, we present what we consider to be the minimum requirements for a data set in a study of preeclampsia that will facilitate comparisons. We also present a comprehensive or optimal data set for in-depth investigation of pathophysiology. As we approach the definition of phenotypes of preeclampsia by clinical and biochemical criteria, adherence to standardized protocols will hasten our understanding of the causes of preeclampsia and development of targeted treatment strategies.

  3. [Cropping system and research strategies in Panax ginseng].

    Science.gov (United States)

    Shen, Liang; Xu, Jiang; Dong, Lin-lin; Li, Xi-wen; Chen, Shi-lin

    2015-09-01

    Panax ginseng is the king of herbs and plays important roles in the traditional Chinese medicine industry. In this paper, we summarized the development of ginseng cultivation in China and other main countries, analyzed the effects of ecological factors of soil and climate on ginseng distribution, and investigated the characteristic of main cultivation patterns (conversion of forest to cultivate ginseng soils, cultivated ginseng in the farmland and wild nursery). Aimed at the serious issues in the cultivation, research strategies have been provided to guarantee the sustainable development of the ginseng industry. The patterns of cultivated ginseng in the farmland should be strive to develop; pollution-free cultivation and studies of continuous cropping obstacles should be carried out; ginseng varieties suited to ecological environment of farmland should be bred using modern biotechnology.

  4. Curating research data practical strategies for your digital repository

    CERN Document Server

    Johnston, Lisa R

    2017-01-01

    Volume One of Curating Research Data explores the variety of reasons, motivations, and drivers for why data curation services are needed in the context of academic and disciplinary data repository efforts. Twelve chapters, divided into three parts, take an in-depth look at the complex practice of data curation as it emerges around us. Part I sets the stage for data curation by describing current policies, data sharing cultures, and collaborative efforts currently underway that impact potential services. Part II brings several key issues, such as cost recovery and marketing strategy, into focus for practitioners when considering how to put data curation services in action. Finally, Part III describes the full lifecycle of data by examining the ethical and practical reuse issues that data curation practitioners must consider as we strive to prepare data for the future.

  5. Brushless DC motor speed control strategy of simulation research

    Directory of Open Access Journals (Sweden)

    Xiang Wen

    2017-01-01

    Full Text Available In view of the brushless DC motor speed regulation problem, an ideal control strategy is designed. Through the model and analysis of Brushless DC motor, the mathematical model of the brushless DC motor is obtained. By comparing three control strategies of PID control strategy, fuzzy control strategy and fuzzy PID control strategy, PID controller, fuzzy controller and fuzzy PID controller are designed respectively for simulation test. The simulation results show that the fuzzy PID controller has good control effect.

  6. Preserving and maintaining vital Ecosystem Services: the importance of linking knowledge from Geosciences and social-ecological System analysis

    Science.gov (United States)

    Finger, David; Petursdottir, Thorunn

    2013-04-01

    Human kind has always been curios and motivated to understand and quantify environmental processes in order to predict and anticipate the evolution of vital ecosystem services. Even the very first civilizations used empirical correlations to predict outcomes of rains and subsequent harvest efficiencies. Along with the insights into the functioning of ecosystems, humans also became aware that their anthropogenic activities can have positive and negative impact on ecosystem services. In recent years, geosciences have brought forward new sophisticated observations and modeling tools, with the aim to improve predictions of ecological developments. At the same time, the added value of linking ecological factors to the surrounding social structure has received a growing acceptance among scientists. A social-ecological system approach brings in a holistic understanding of how these systems are inevitably interlinked and how their sustainability can be better maintained. We claim that the biggest challenge for geoscience in the coming decades will be to link these two disciplines in order to establish adequate strategies to preserve natural ecosystems and their services, parallel to their utilization. We will present various case studies from more than a decade of research, ranging from water quality in mountain lakes, climate change impacts on water availability and declining fishing yields in freshwaters and discuss how the studies outcomes could be given added value by interpreting them via social-ecological system analysis. For instance, sophisticated field investigations revealed that deep water mixing in lake Issyk-Kul, Kirgizstan, is intensively distributing pollutants in the entire lake. Although fishery is an important sector in the region, the local awareness of the importance of water quality is low. In Switzerland, strict water protection laws led to ologotrophication of alpine lakes, reducing fishing yields. While local fishermen argued that local fishery is

  7. Geoscience and the 21st Century Workforce

    Science.gov (United States)

    Manduca, C. A.; Bralower, T. J.; Blockstein, D.; Keane, C. M.; Kirk, K. B.; Schejbal, D.; Wilson, C. E.

    2013-12-01

    Geoscience knowledge and skills play new roles in the workforce as our society addresses the challenges of living safely and sustainably on Earth. As a result, we expect a wider range of future career opportunities for students with education in the geosciences and related fields. A workshop offered by the InTeGrate STEP Center on 'Geoscience and the 21st Century Workforce' brought together representatives from 24 programs with a substantial geoscience component, representatives from different employment sectors, and workforce scholars to explore the intersections between geoscience education and employment. As has been reported elsewhere, employment in energy, environmental and extractive sectors for geoscientists with core geology, quantitative and communication skills is expected to be robust over the next decade as demand for resources grow and a significant part of the current workforce retires. Relatively little is known about employment opportunities in emerging areas such as green energy or sustainability consulting. Employers at the workshop from all sectors are seeking the combination of strong technical, quantitative, communication, time management, and critical thinking skills. The specific technical skills are highly specific to the employer and employment needs. Thus there is not a single answer to the question 'What skills make a student employable?'. Employers at this workshop emphasized the value of data analysis, quantitative, and problem solving skills over broad awareness of policy issues. Employers value the ability to articulate an appropriate, effective, creative solution to problems. Employers are also very interested in enthusiasm and drive. Participants felt that the learning outcomes that their programs have in place were in line with the needs expressed by employers. Preparing students for the workforce requires attention to professional skills, as well as to the skills needed to identify career pathways and land a job. This critical

  8. Teaching Quantitative Skills in a Geoscience Context

    Science.gov (United States)

    Manduca, C. A.; MacDonald, R. H.; Savina, M.; Andersen, J.; Patterson, S.; Mason, M.

    2002-12-01

    New attention is needed to the ways in which quantitative skills are taught in the geosciences. At the introductory level, geoscience courses play an important role in teaching students the basic abilities needed to use and understand quantitative information. These skills are becoming more important as quantitative information is increasingly used by all citizens to make informed personal choices, for financial success, and to guide our democracy (Mathematics and Democracy, Steen, 2001). Mathematical skills are also becoming increasingly fundamental to success as a practicing geoscientist requiring modification of teaching within the major. An integrated approach developing synergies between mathematics, geoscience and other science courses will be most effective in enhancing students learning in these areas. This summer 40 mathematics and geoscience faculty met at Carleton College for 5 days to explore the ways in which geoscience and mathematical approaches to teaching skills complement each other and to develop materials that reflected the strengths of both approaches. Primary outcomes included 1) new appreciation of the importance of incorporating multiple representations, in-depth problems, contextual examples, and group work in teaching mathematical and quantitative skills, 2) a preliminary list of skills that can form a basic vocabulary for discussions of course content, 3) ten resources developed jointly by mathematicians and geoscientists for use in courses, and 4) new collaborations between geoscientists and mathematicians both on campuses and beyond. Full information about the workshop and its results are available at http://serc.carleton.edu/quantskills/events/NAGT02

  9. Geoscience for society. 125th Anniversary volume

    Energy Technology Data Exchange (ETDEWEB)

    Nenonen, K.; Nurmi, P.A. (eds.)

    2011-07-01

    Our knowledge of Finnish geology and natural resources has considerably increased during the last few decades. Geological Survey of Finland - GTK has mapped the bedrock and Quaternary deposits, as well as mineral resources in great detail using modern geological, geochemical and geophysical techniques, so that Finland today has one of the best geological databases in the world. We have recently compiled countrywide datasets of seamless bedrock information at the scale of 1:200,000, and completed low-altitude airborne geophysical (200 m line spacing and 40 m terrain clearance), regional geochemical (80 000 samples), and reflection seismic surveys at the crustal scale and at high resolution on the main orepotential formations. Isotopic age determinations have been performed at GTK since the 1960s, and we now have accurate ages for about thousand samples, which is a key to studying the complex evolution of the Finnish Precambrian. GTK currently plays a vital role in providing geological expertise to the government, the business sector and the wider community. Specific responsibilities include the promotion and implementation of sustainable approaches to the supply and management of minerals, energy and construction materials, and to ensure environmental compliance through monitoring, assessment and remediation programmes. GTK also contributes to a wide range of international geoscience, mapping, mineral resources and environmental monitoring projects, and is active in developing multidisciplinary research programmes with universities, government agencies and stakeholders across related sectors. This 125th Anniversary Publication aims at elucidating, through a number of short articles, the current focus of research and development at GTK. In reaching the milestone of 125 years, we can state that our anniversary slogan, 'forever young', is justified by the vitality and increasing societal impact of the organization and our research focusing on sustainable

  10. Quantitative proteomics in cardiovascular research: global and targeted strategies

    Science.gov (United States)

    Shen, Xiaomeng; Young, Rebeccah; Canty, John M.; Qu, Jun

    2014-01-01

    Extensive technical advances in the past decade have substantially expanded quantitative proteomics in cardiovascular research. This has great promise for elucidating the mechanisms of cardiovascular diseases (CVD) and the discovery of cardiac biomarkers used for diagnosis and treatment evaluation. Global and targeted proteomics are the two major avenues of quantitative proteomics. While global approaches enable unbiased discovery of altered proteins via relative quantification at the proteome level, targeted techniques provide higher sensitivity and accuracy, and are capable of multiplexed absolute quantification in numerous clinical/biological samples. While promising, technical challenges need to be overcome to enable full utilization of these techniques in cardiovascular medicine. Here we discuss recent advances in quantitative proteomics and summarize applications in cardiovascular research with an emphasis on biomarker discovery and elucidating molecular mechanisms of disease. We propose the integration of global and targeted strategies as a high-throughput pipeline for cardiovascular proteomics. Targeted approaches enable rapid, extensive validation of biomarker candidates discovered by global proteomics. These approaches provide a promising alternative to immunoassays and other low-throughput means currently used for limited validation. PMID:24920501

  11. Attracting Urban Minority Students to Geosciences through Exposure to Careers and Applied Aspects in Newark, NJ

    Science.gov (United States)

    Gates, A. E.; Kalczynski, M. J.

    2014-12-01

    A solid pipeline of URM students into the Geosciences has been established in Newark, NJ by introducing them to applied opportunities. Prior to an OEDG program designed to engage URM students, there were no students from or near Newark interested in pursuing geosciences at Rutgers-Newark or Essex Community College, the two local urban campuses. By infusing activities that showed the applied aspects of geoscience and opportunities for careers into regular high school lesson plans, a significant number of students became interested. These students were recruited into a 4-week modular summer institute that focused on energy, mining resources, environment and surface processes. About 90 students per year attended the institute which included 2 local field trips per week, presentations by industry professionals, activities that placed academic subjects into career perspective and a research project that directly affected the well-being of the students and their families. The most interested dozen of the 90 students were invited to participate in a high profile applied project that received significant media coverage, further enhancing their impression of the importance of geosciences. Previous graduates of the program were employed as assistants in subsequent programs to recycle the experience and enthusiasm. This had a positive effect on the persistence of the assistants who viewed themselves as role models to the younger students. The results are burgeoning numbers of URM geoscience majors at Rutgers, offering of geoscience for the first time in 30 years at Essex Community College as well as a new 2+2 geoscience track and several dual-credit courses at local high schools. An important aspect of this pathway or pipeline is that students must be able to clearly see the next step and their role in it. They are very tentative in this essentially pioneering pursuit. If they don't get a sense of a welcoming community and an ultimate career outcome, they quickly lose

  12. Examining the Professional Development Experiences and Non-Technical Skills Desired for Geoscience Employment

    Science.gov (United States)

    Houlton, H. R.; Ricci, J.; Wilson, C. E.; Keane, C.

    2014-12-01

    Professional development experiences, such as internships, research presentations and professional network building, are becoming increasingly important to enhance students' employability post-graduation. The practical, non-technical skills that are important for succeeding during these professional development experiences, such as public speaking, project management, ethical practices and writing, transition well and are imperative to the workplace. Thereby, graduates who have honed these skills are more competitive candidates for geoscience employment. Fortunately, the geoscience community recognizes the importance of these professional development opportunities and the skills required to successfully complete them, and are giving students the chance to practice non-technical skills while they are still enrolled in academic programs. The American Geosciences Institute has collected data regarding students' professional development experiences, including the preparation they receive in the corresponding non-technical skills. This talk will discuss the findings of two of AGI's survey efforts - the Geoscience Student Exit Survey and the Geoscience Careers Master's Preparation Survey (NSF: 1202707). Specifically, data highlighting the role played by internships, career opportunities and the complimentary non-technical skills will be discussed. As a practical guide, events informed by this research, such as AGI's professional development opportunities, networking luncheons and internships, will also be included.

  13. Social Technologies to Jump Start Geoscience Careers

    Science.gov (United States)

    Keane, Christopher; Martinez, Cynthia; Gonzales, Leila

    2010-05-01

    Collaborative and social technologies have been increasingly used to facilitate distributed data collection and observation in science. However, "Web 2.0" and basic social media are seeing limited coordinated use in building student and early-career geoscientists knowledge and understanding of the profession and career for which they have undertaken. The current generation of geology students and early career professionals are used to ready access to myriad of information and interaction opportunities, but they remain largely unaware about the geoscience profession, what the full scope of their opportunities are, and how to reach across institutional and subdisciplinary boundaries to build their own professional network. The American Geological Institute Workforce Program has tracked and supported the human resources of the geosciences since 1952. With the looming retirement of Baby Boomers, increasing demand for quality geoscientists, and a continued modest supply of students entering the geosciences, AGI is working to strengthen the human resource pipeline in the geosciences globally. One aspect of this effort is the GeoConnection Network, which is an integrated set of social networking, media sharing and communication Web 2.0 applications designed to engage students in thinking about careers in the geosciences and enabling them to build their own personal professional network. Developed by the American Geological Institute (AGI), GeoConnection links practicing and prospective geoscientists in an informal setting to share information about the geoscience profession, including student and career opportunities, current events, and future trends in the geosciences. The network includes a Facebook fan page, YouTube Channel, Twitter account and GeoSpectrum blog, with the goal of helping science organizations and departments recruit future talent to the geoscience workforce. On the social-networking platform, Facebook, the GeoConnection page is a forum for students and

  14. Research on Energy Management Strategy of Hybrid Electric Vehicle

    OpenAIRE

    Deng Tao; Huang Xiguang

    2015-01-01

    To improve the fuel economy and reduce emissions of hybrid electric vehicles, energy management strategy has received high attention. In this paper, by analyzing the deficiency of existing energy management strategy for hybrid cars, it not only puts forward the minimal equivalent fuel consumption adaptive strategy, but also is the first time to consider the driving dynamics target simultaneously, and to explain the future development direction of China’s hybrid energy management strategy.

  15. Research on Energy Management Strategy of Hybrid Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Deng Tao

    2015-01-01

    Full Text Available To improve the fuel economy and reduce emissions of hybrid electric vehicles, energy management strategy has received high attention. In this paper, by analyzing the deficiency of existing energy management strategy for hybrid cars, it not only puts forward the minimal equivalent fuel consumption adaptive strategy, but also is the first time to consider the driving dynamics target simultaneously, and to explain the future development direction of China’s hybrid energy management strategy.

  16. Visual Analytics for Heterogeneous Geoscience Data

    Science.gov (United States)

    Pan, Y.; Yu, L.; Zhu, F.; Rilee, M. L.; Kuo, K. S.; Jiang, H.; Yu, H.

    2017-12-01

    Geoscience data obtained from diverse sources have been routinely leveraged by scientists to study various phenomena. The principal data sources include observations and model simulation outputs. These data are characterized by spatiotemporal heterogeneity originated from different instrument design specifications and/or computational model requirements used in data generation processes. Such inherent heterogeneity poses several challenges in exploring and analyzing geoscience data. First, scientists often wish to identify features or patterns co-located among multiple data sources to derive and validate certain hypotheses. Heterogeneous data make it a tedious task to search such features in dissimilar datasets. Second, features of geoscience data are typically multivariate. It is challenging to tackle the high dimensionality of geoscience data and explore the relations among multiple variables in a scalable fashion. Third, there is a lack of transparency in traditional automated approaches, such as feature detection or clustering, in that scientists cannot intuitively interact with their analysis processes and interpret results. To address these issues, we present a new scalable approach that can assist scientists in analyzing voluminous and diverse geoscience data. We expose a high-level query interface that allows users to easily express their customized queries to search features of interest across multiple heterogeneous datasets. For identified features, we develop a visualization interface that enables interactive exploration and analytics in a linked-view manner. Specific visualization techniques such as scatter plots to parallel coordinates are employed in each view to allow users to explore various aspects of features. Different views are linked and refreshed according to user interactions in any individual view. In such a manner, a user can interactively and iteratively gain understanding into the data through a variety of visual analytics operations. We

  17. A Strategy for Nuclear Energy Research and Development

    International Nuclear Information System (INIS)

    Bennett, Ralph G.

    2008-01-01

    The United States is facing unprecedented challenges in climate change and energy security. President-elect Obama has called for a reduction of CO2 emissions to 1990 levels by 2020, with a further 80% reduction by 2050. Meeting these aggressive goals while gradually increasing the overall energy supply requires that all non-emitting technologies must be advanced. The development and deployment of nuclear energy can, in fact, help the United States meet several key challenges: (1) Increase the electricity generated by non-emitting sources to mitigate climate change, (2) Foster the safe and proliferation-resistant use of nuclear energy throughout the world, (3) Reduce the transportation sector's dependence on imported fossil fuels, and (4) Reduce the demand on natural gas for process heat and hydrogen production. However, because of the scale, cost, and time horizons involved, increasing nuclear energy's share will require a coordinated research effort-combining the efforts of industry and government, supported by innovation from the research community. This report outlines the significant nuclear energy research and development (R and D) necessary to create options that will allow government and industrial decision-makers to set policies and create nuclear energy initiatives that are decisive and sustainable. The nuclear energy R and D strategy described in this report adopts the following vision: Safe and economical nuclear energy in the United States will expand to address future electric and non-electric needs, significantly reduce greenhouse gas emissions and provide energy diversity, while providing leadership for safe, secure and responsible expansion of nuclear energy internationally

  18. Spinning Your Own Story - Marketing the Geosciences to the Public

    Science.gov (United States)

    Sturm, D.; Jones, T. S.

    2006-12-01

    Studies of high achieving African-American and Hispanic students have shown the students do not go into STEM (Science, Technology, Engineering and Math) disciplines due to the poor teaching by some STEM teachers, lack of encouragement from teachers or parents and a self perception the students will not be successful. One underlying component to this problem is the issue of perception of the STEM disciplines by the general public. This study focuses on changing the often negative or neutral perception into one more positive and diverse. This study utilizes clear, and hopefully effective, media communication through the use of traditional marketing strategies to promote the geosciences and the geology program at the University of Tennessee at Chattanooga to the general public in the Chattanooga metropolitan area. Average citizens are generally unaware of the various geoscience divisions and career opportunities available. Pioneer marketing, used in this study, introduces new ideas and concepts to the general public, but does not ask for direct action to be taken. The primary goal is to increase awareness of the geosciences. The use of printed and online media delivers the message to the public. In the media, personal interviews with geoscientists from all races and backgrounds were included to demonstrate diversity. An invitation was made to all high school students to participate in an associated after-school program. Elements developed for this program include: 1) clearly defining goals for the marketing effort; 2) delineating the target market by age, education, race and gender; 3) developing a story to tell in the marketing effort; and 4) producing products to achieve the marketing goals. For this effort, the product results included: an annual newspaper tabloid, an associated website and a departmental brochure. The marketing results show increased public awareness, increased awareness of the geology program within the University of Tennessee at Chattanooga

  19. LIME: 3D visualisation and interpretation of virtual geoscience models

    Science.gov (United States)

    Buckley, Simon; Ringdal, Kari; Dolva, Benjamin; Naumann, Nicole; Kurz, Tobias

    2017-04-01

    Three-dimensional and photorealistic acquisition of surface topography, using methods such as laser scanning and photogrammetry, has become widespread across the geosciences over the last decade. With recent innovations in photogrammetric processing software, robust and automated data capture hardware, and novel sensor platforms, including unmanned aerial vehicles, obtaining 3D representations of exposed topography has never been easier. In addition to 3D datasets, fusion of surface geometry with imaging sensors, such as multi/hyperspectral, thermal and ground-based InSAR, and geophysical methods, create novel and highly visual datasets that provide a fundamental spatial framework to address open geoscience research questions. Although data capture and processing routines are becoming well-established and widely reported in the scientific literature, challenges remain related to the analysis, co-visualisation and presentation of 3D photorealistic models, especially for new users (e.g. students and scientists new to geomatics methods). Interpretation and measurement is essential for quantitative analysis of 3D datasets, and qualitative methods are valuable for presentation purposes, for planning and in education. Motivated by this background, the current contribution presents LIME, a lightweight and high performance 3D software for interpreting and co-visualising 3D models and related image data in geoscience applications. The software focuses on novel data integration and visualisation of 3D topography with image sources such as hyperspectral imagery, logs and interpretation panels, geophysical datasets and georeferenced maps and images. High quality visual output can be generated for dissemination purposes, to aid researchers with communication of their research results. The background of the software is described and case studies from outcrop geology, in hyperspectral mineral mapping and geophysical-geospatial data integration are used to showcase the novel

  20. The research strategy of the Swedish Nuclear Power Inspectorate

    International Nuclear Information System (INIS)

    2002-06-01

    In its directive to the Swedish Nuclear Power Inspectorate for 2001 and 2002, the Government asked for a report on SKI's future research strategy. This report is meant to describe future needs for SKI's regulatory and supervisory work, the need for expertise in Sweden and the possibility of international co-operation. SKI's research currently focuses on a number of strategically important areas such as reactor technology, materials and fuel issues, human factors, nuclear waste and nuclear safeguards. Over the past decade, the nuclear infrastructure has changed considerably. The nuclear power companies' previous organisations with specialist expertise and resources have been successively closed down or converted into consulting companies. Furthermore, education and research in the nuclear area at universities have been considerably reduced and expertise, resources and interest in the area have thereby decreased. A review of the availability of expertise in Sweden shows that, in many areas, resources are adequate, but that SKI, in certain cases, needs to provide focused support in order to maintain the expertise that SKI needs for its regulatory and supervisory activities. The analysis highlights two areas without any real education and research: 'Materials testing and control' and 'Management, control and organisation'. Education and research in the latter area lacks a safety perspective. SKI intends to take the initiative to conduct work within both of these areas. Since national research resources are limited, SKI has, for a long time, actively participated in international research. SKI is prioritising co-operation on research conducted in the OECD/NEA and is participating in a large number of projects organised within this framework. Since Sweden joined the EU, the importance of joint European work has increased. SKI is itself also actively participating and supporting Swedish organisations participating in European Commission projects and intends to support

  1. Terrestrial Ecosystem Responses to Global Change: A Research Strategy

    Energy Technology Data Exchange (ETDEWEB)

    Ecosystems Working Group,

    1998-09-23

    Uncertainty about the magnitude of global change effects on terrestrial ecosystems and consequent feedbacks to the atmosphere impedes sound policy planning at regional, national, and global scales. A strategy to reduce these uncertainties must include a substantial increase in funding for large-scale ecosystem experiments and a careful prioritization of research efforts. Prioritization criteria should be based on the magnitude of potential changes in environmental properties of concern to society, including productivity; biodiversity; the storage and cycling of carbon, water, and nutrients; and sensitivity of specific ecosystems to environmental change. A research strategy is proposed that builds on existing knowledge of ecosystem responses to global change by (1) expanding the spatial and temporal scale of experimental ecosystem manipulations to include processes known to occur at large scales and over long time periods; (2) quantifying poorly understood linkages among processes through the use of experiments that manipulate multiple interacting environmental factors over a broader range of relevant conditions than did past experiments; and (3) prioritizing ecosystems for major experimental manipulations on the basis of potential positive and negative impacts on ecosystem properties and processes of intrinsic and/or utilitarian value to humans and on feedbacks of terrestrial ecosystems to the atmosphere. Models and experiments are equally important for developing process-level understanding into a predictive capability. To support both the development and testing of mechanistic ecosystem models, a two-tiered design of ecosystem experiments should be used. This design should include both (1) large-scale manipulative experiments for comprehensive testing of integrated ecosystem models and (2) multifactor, multilevel experiments for parameterization of process models across the critical range of interacting environmental factors (CO{sub 2}, temperature, water

  2. Native Geoscience: Pathways to Knowledge

    Science.gov (United States)

    Bolman, J. R.; Seielstad, G.

    2006-12-01

    We are living in a definite time of change. Distinct changes are being experienced in our most sacred and natural environments. This is especially true on Native lands. Native people have lived for millennia in distinct and unique ways. The knowledge of balancing the needs of people with the needs of our natural environments is paramount in all tribal societies. This inherent accumulated knowledge has become the foundation on which to build a "blended" contemporary understanding of western science. The Dakota's and Northern California have embraced the critical need of understanding successful tribal strategies to engage educational systems (K-12 and higher education), to bring to prominence the professional development opportunities forged through working with tribal peoples and ensure the continued growth of Native earth and environmental scientists The presentation will highlight: 1) past and present philosophies on building and maintaining Native/Tribal students in earth and environmental sciences; 2) successful educational programs/activities in PreK-Ph.D. systems; 3) current Native leadership development in earth and environmental sciences; and 4) forward thinking for creating proaction collaborations addressing sustainable environmental, educational and social infrastructures for all people. Humboldt State University (HSU) and the University of North Dakota's Northern Great Plains Center for People and the Environment and the Upper Midwest Aerospace Consortium (UMAC) have been recognized nationally for their partnerships with Native communities. Unique collaborations are emerging "bridging" Native people across geographic areas in developing educational/research experiences which integrate the distinctive earth/environmental knowledge of tribal people. The presentation will highlight currently funded projects and initiatives as well as success stories of emerging Native earth system students and scientists.

  3. Communication masking in marine mammals: A review and research strategy.

    Science.gov (United States)

    Erbe, Christine; Reichmuth, Colleen; Cunningham, Kane; Lucke, Klaus; Dooling, Robert

    2016-02-15

    Underwater noise, whether of natural or anthropogenic origin, has the ability to interfere with the way in which marine mammals receive acoustic signals (i.e., for communication, social interaction, foraging, navigation, etc.). This phenomenon, termed auditory masking, has been well studied in humans and terrestrial vertebrates (in particular birds), but less so in marine mammals. Anthropogenic underwater noise seems to be increasing in parts of the world's oceans and concerns about associated bioacoustic effects, including masking, are growing. In this article, we review our understanding of masking in marine mammals, summarise data on marine mammal hearing as they relate to masking (including audiograms, critical ratios, critical bandwidths, and auditory integration times), discuss masking release processes of receivers (including comodulation masking release and spatial release from masking) and anti-masking strategies of signalers (e.g. Lombard effect), and set a research framework for improved assessment of potential masking in marine mammals. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Current Research Therapeutic Strategies for Alzheimer’s Disease Treatment

    Directory of Open Access Journals (Sweden)

    Jaume Folch

    2016-01-01

    Full Text Available Alzheimer’s disease (AD currently presents one of the biggest healthcare issues in the developed countries. There is no effective treatment capable of slowing down disease progression. In recent years the main focus of research on novel pharmacotherapies was based on the amyloidogenic hypothesis of AD, which posits that the beta amyloid (Aβ peptide is chiefly responsible for cognitive impairment and neuronal death. The goal of such treatments is (a to reduce Aβ production through the inhibition of β and γ secretase enzymes and (b to promote dissolution of existing cerebral Aβ plaques. However, this approach has proven to be only modestly effective. Recent studies suggest an alternative strategy centred on the inhibition of the downstream Aβ signalling, particularly at the synapse. Aβ oligomers may cause aberrant N-methyl-D-aspartate receptor (NMDAR activation postsynaptically by forming complexes with the cell-surface prion protein (PrPC. PrPC is enriched at the neuronal postsynaptic density, where it interacts with Fyn tyrosine kinase. Fyn activation occurs when Aβ is bound to PrPC-Fyn complex. Fyn causes tyrosine phosphorylation of the NR2B subunit of metabotropic glutamate receptor 5 (mGluR5. Fyn kinase blockers masitinib and saracatinib have proven to be efficacious in treating AD symptoms in experimental mouse models of the disease.

  5. 2004 Space Report: Environment and Strategy for Space Research at NATO's Research and Technology Organisation (RTO)

    Science.gov (United States)

    Woods-Vedeler, Jessica A.

    2007-01-01

    This report describes the motivation for and a strategy to enhance the NATO Research and Technology Organisation's (RTO) current space research effort to reflect NATO's growing military dependence on space systems. Such systems and services provided by these systems are critical elements of military operations. NATO uses space systems for operational planning and support, communication, radio navigation, multi-sensor and multi-domain demonstrations. Such systems are also used to promote regional stability. A quantitative analysis of work related to space in the NATO RTO showed that during the period of 1998 - 2004, 5% of the research pursued in the NATO RTO has been clearly focused on space applications. Challenging environmental and organizational barriers for increasing RTO space research were identified. In part, these include lack of sufficient space expertise representation on panels, the military sensitivity of space, current panel work loads and the need for specific technical recommendations from peers. A strategy for enhancing space research in the RTO is to create a limited-life Space Advisory Group (SAG) composed of Space Expert Consultants who are panel members with appropriate expertise and additional expertise from the nations. The SAG will recommend and find support in the nations for specific technical activities related to space in the areas of Space Science, Remote Sensing Data Analysis, Spacecraft Systems, Surveillance and Early Warning, Training and Simulation and Policy. An RTO Space Advisory Group will provide an organizational mechanism to gain recognition of RTO as a forum for trans-Atlantic defence space research and to enhance space research activities.

  6. Research vs. Practice on Manufacturing Firms’ Servitization Strategies: A Gap Analysis and Research Agenda

    Directory of Open Access Journals (Sweden)

    Marco Perona

    2017-02-01

    Full Text Available Servitization in the manufacturing industry implies a shift from an offer based mainly on standard goods, to a wider value proposition composed of solutions aimed at solving specific customers’ problems, obtained by integrating tangible and intangible elements. The purpose of this paper is to investigate the servitization strategies of manufacturing firms, more specifically about: (i how manufacturing companies move toward servitization (servitization pattern; (ii how they achieve the capabilities needed; and (iii which factors enable this transition. We did so by comparing the state of the art of academic research with a qualified sample of case studies of global companies that famously improved their competitiveness by shifting from products to solutions. The results show some gaps between research and practice, concerning in particular: the impact (either transformational or integrative of servitization on the manufacturing organization; the role of financial resources in shaping the capability achievement strategy, particularly for external acquisitions, and; the role of servitization enablers poorly considered by the extant literature, such as time, leadership and continuity, operational excellence and digital technologies. These findings lead to the definition of seven formalized research directions, thus outlining an agenda for future research.

  7. Novice Interpretations of Visual Representations of Geosciences Data

    Science.gov (United States)

    Burkemper, L. K.; Arthurs, L.

    2013-12-01

    that they might encounter in a course, television news, newspapers and magazines, and websites. Such recommendations would also be the potential subject of future investigations and have the potential to impact the design features when data is presented to the public and instructional strategies not only in geoscience courses but also other science, technology, engineering, and mathematics (STEM) courses.

  8. Association for Women Geoscientists: enhancing gender diversity in the geosciences.

    Science.gov (United States)

    Holmes, M.; O'Connell, S.; Foos, A.

    2001-12-01

    The Association for Women Geoscientists (AWG) has been working to increase the representation and advancement of women in geoscience careers since its founding in 1977. We promote the professional development of our members and encourage women to become geoscientists by gathering and providing data on the status of women in the field, providing publications to train women in professional skills, encouraging networking, publicizing mentoring opportunities, organizing and hosting workshops, funding programs to encourage women to enter the field of geosciences, and providing scholarships, particularly to non-traditional students. We promote women geoscientists' visibility through our Phillips Petroleum Speaker's List, by recognizing an Outstanding Educator at our annual breakfast at the Geological Society of America meetings, and by putting qualified women's names forward for awards given by other geo-societies. Our paper and electronic newsletters inform our members of job and funding opportunities. These newsletters provide the geoscience community with a means of reaching a large pool of women (nearly 1000 members). Our outreach is funded by the AWG Foundation and carried out by individual members and association chapters. We provide a variety of programs, from half-day "Fossil Safaris" to two-week field excursions such as the Lincoln Chapter/Homestead Girl Scouts Council Wider Opportunity, "Nebraska Rocks!!". Our programs emphasize the field experience as the most effective "hook" for young people. We have found that women continue to be under-represented in academia in the geosciences. Data from 1995 indicate we hold only 11 percent of academic positions and 9 percent of tenure-track positions, while our enrollment at the undergraduate level has risen from 25 to 34 percent over the last ten years. The proportion of women in Master's degree programs is nearly identical with our proportions in undergraduate programs, but falls off in doctoral programs. Between 1986

  9. Research on Taxi Driver Strategy Game Evolution with Carpooling Detour

    OpenAIRE

    Zhang, Wei; He, Ruichun; Ma, Changxi; Gao, Mingxia

    2018-01-01

    For the problem of taxi carpooling detour, this paper studies driver strategy choice with carpooling detour. The model of taxi driver strategy evolution with carpooling detour is built based on prospect theory and evolution game theory. Driver stable strategies are analyzed under the conditions of complaint mechanism and absence of mechanism, respectively. The results show that passenger’s complaint mechanism can effectively decrease the phenomenon of driver refusing passengers with carpoolin...

  10. AGI's Earth Science Week and Education Resources Network: Connecting Teachers to Geoscience Organizations and Classroom Resources that Support NGSS Implementation

    Science.gov (United States)

    Robeck, E.; Camphire, G.; Brendan, S.; Celia, T.

    2016-12-01

    There exists a wide array of high quality resources to support K-12 teaching and motivate student interest in the geosciences. Yet, connecting teachers to those resources can be a challenge. Teachers working to implement the NGSS can benefit from accessing the wide range of existing geoscience resources, and from becoming part of supportive networks of geoscience educators, researchers, and advocates. Engaging teachers in such networks can be facilitated by providing them with information about organizations, resources, and opportunities. The American Geoscience Institute (AGI) has developed two key resources that have great value in supporting NGSS implement in these ways. Those are Earth Science Week, and the Education Resources Network in AGI's Center for Geoscience and Society. For almost twenty years, Earth Science Week, has been AGI's premier annual outreach program designed to celebrate the geosciences. Through its extensive web-based resources, as well as the physical kits of posters, DVDs, calendars and other printed materials, Earth Science Week offers an array of resources and opportunities to connect with the education-focused work of important geoscience organizations such as NASA, the National Park Service, HHMI, esri, and many others. Recently, AGI has initiated a process of tagging these and other resources to NGSS so as to facilitate their use as teachers develop their instruction. Organizing Earth Science Week around themes that are compatible with topics within NGSS contributes to the overall coherence of the diverse array of materials, while also suggesting potential foci for investigations and instructional units. More recently, AGI has launched its Center for Geoscience and Society, which is designed to engage the widest range of audiences in building geoscience awareness. As part of the Center's work, it has launched the Education Resources Network (ERN), which is an extensive searchable database of all manner of resources for geoscience

  11. A Synthesis of Language Learning Strategies: Current Issues, Problems and Claims Made in Learner Strategy Research

    Science.gov (United States)

    Barjesteh, Hamed; Mukundan, Jayakaran; Vaseghi, Reza

    2014-01-01

    The current paper presented theoretical assumptions behind language learning strategies (LLS) and an overview of methods used to identify learners' strategies, first, and then summarized what have been reported from large number of descriptive studies of strategies by language learners. Moreover, the paper tried to present the variety of…

  12. The Geoscience Laser Altimeter System Laser Transmitter

    Science.gov (United States)

    Afzal, R. S.; Dallas, J. L.; Yu, A. W.; Mamakos, W. A.; Lukemire, A.; Schroeder, B.; Malak, A.

    2000-01-01

    The Geoscience Laser Altimeter System (GLAS), scheduled to launch in 2001, is a laser altimeter and lidar for tile Earth Observing System's (EOS) ICESat mission. The laser transmitter requirements, design and qualification test results for this space- based remote sensing instrument are presented.

  13. Geoscience Field Education: A Recent Resurgence

    Science.gov (United States)

    Whitmeyer, Steven J.; Mogk, David W.

    2009-10-01

    Field education traditionally has been an integral component of undergraduate geoscience curricula. Students have learned the fundamentals of field techniques during core geology courses and have honed their field credentials during class-specific field trips, semester-long field courses, and capstone summer field camps. In many geoscience departments, field camp remains a graduation requirement, and more than 100 field camps currently are offered by U.S. universities and colleges (see http://geology.com/field-camp.shtml). During the past several decades, however, many geoscience departments have moved away from traditional geologic fieldwork and toward a broader theoretical and laboratory-intensive focus that encompasses a range of subdisciplines. Trends that have influenced these shifts include (1) the decline in the late twentieth century of the petroleum and mining industries, which have consistently championed the values of fieldwork; (2) a decrease in the number of professional jobs that incorporate field mapping; (3) a decline in the number of geoscience majors nationwide [American Geological Institute (AGI), 2009]; and (4) barriers to fieldwork, including time requirements, cost, liability, and decreasing access to field sites.

  14. Research Publication as a Strategy to Improve International Academic Ranking

    Science.gov (United States)

    Tie, Fatt Hee

    2012-01-01

    Many universities in Asia are now focused on enhancing their global academic competitiveness. Various strategies are implemented to restructure, reform and transform universities aimed at improving ranking in the global university league. One significant strategy is to encourage academicians to place priority on publishing in high-impact…

  15. Building Strong Geoscience Programs: Perspectives From Three New Programs

    Science.gov (United States)

    Flood, T. P.; Munk, L.; Anderson, S. W.

    2005-12-01

    During the past decade, at least sixteen geoscience departments in the U.S. that offer a B.S. degree or higher have been eliminated or dispersed. During that same time, three new geoscience departments with degree-granting programs have been developed. Each program has unique student demographics, affiliation (i.e. public institution versus private liberal arts college), geoscience curricula and reasons for initiation. Some of the common themes for each program include; 1) strong devotion to providing field experiences, 2) commitment to student-faculty collaborative research, 3) maintaining traditional geology program elements in the core curriculum and 4) placing students into high quality graduate programs and geoscience careers. Although the metrics for each school vary, each program can claim success in the area of maintaining solid enrollments. This metric is critical because programs are successful only if they have enough students, either in the major and/or general education courses, to convince administrators that continued support of faculty, including space and funding is warranted. Some perspectives gained through the establishment of these new programs may also be applicable to established programs. The success and personality of a program can be greatly affected by the personality of a single faculty member. Therefore, it may not be in the best interest of a program to distribute programmatic work equally among all faculty. For example, critical responsibilities such as teaching core and introductory courses should be the responsibility of faculty who are fully committed to these pursuits. However, if these responsibilities reduce scholarly output, well-articulated arguments should be developed in order to promote program quality and sustainability rather than individual productivity. Field and undergraduate research experiences should be valued as much as high-quality classroom and laboratory instruction. To gain the support of the administration

  16. Broadening Pathways to Geosciences with an Integrated Program at The University of Michigan

    Science.gov (United States)

    Dick, G.; Munson, J.

    2017-12-01

    Low participation of under-represented minorities (URM) in the geosciences is an acute issue at the University of Michigan (U-M), where the number of undergraduate URM students majoring in the Department of Earth and Environmental Sciences (EES) is typically 5% of total majors. The goal of our project is to substantially increase the number and success rate of underrepresented minorities majoring in EES at U-M. We are pursuing this goal with five primary objectives: (i) inspire and recruit high schools seniors to pursue geoscience at U-M, especially through hands-on experiences including field trips; (ii) establish infrastructure to support students interested in geosciences through the critical juncture between high school and college; (iii) increase the number of URM students transferring from community college; (iv) develop student interest in geosciences through research and field experiences; (v) expose students to career opportunities in the geosciences. To accomplish these objectives we are leveraging existing programs, including Earth Camp, Foundations for Undergraduate Teaching: Uniting Research and Education (FUTURE), M-Sci, and college academic advisors. Throughout our interactions with students from high-school through college, we expose them to career opportunities in the geosciences, including private industry, academia, and government agencies. Evaluation of the program revealed three main conclusions: (i) the program increased student interest in pursuing an earth science degree; (ii) participating students showed a marked increase in awareness about the various opportunities that are available with an earth science degree including pathways to graduate school and earth science careers; (iii) field trips were the most effective route for achieving outcomes (i) and (ii).

  17. The Role of Geoscience Departments in Developing the Earth Science Teacher Workforce: A Workshop Report

    Science.gov (United States)

    Manduca, C. A.; MacDonald, R. H.; Karsten, J.

    2003-12-01

    Undergraduate geoscience departments play a critical role in the preparation of future teachers. This workshop sponsored by AGU and NAGT with funding from NSF brought together geoscience faculty known for their work in teacher preparation, Earth Science teachers and representatives from schools of education. Discussion focused on critical contributions of geoscience departments in recruiting, mentoring and advising future teachers; designing research and teaching experiences for future teachers; developing links between education and geoscience departments; supporting alumni in the teaching profession; and the role of introductory courses in teacher preparation. Each participant contributed a short essay describing the strengths of their program for teachers. The essay collection provides a snapshot of the breadth and innovative nature of current practice in geoscience departments around the country (serc.carleton.edu/NAGTWorkshops/teacherprep03). A summary of the program, powerpoint presentations, and discussion highlights are also available on the website. Of special interest are 1) approaches to introductory courses including revision of teaching methods in the general introductory course to demonstrate a range of pedagogy; separate introductory course sections or laboratory sections for pre-service teachers; and an integrated science approach for pre-service elementary teachers; 2) results of brainstorming sessions on mechanisms for recruiting and supporting Earth Science teachers suggesting a range of activities taking place before, during, and after participation in the geoscience program; 3) a summary of why teaching and research experiences are important for pre-service teachers and recommendations for program elements that lead to successful experiences and 4) plenary presentations on lessons learned from the NSF programs (Prival) and effective program design (Ridkey).

  18. EarthCube - Results of Test Governance in Geoscience Cyberinfrastructure

    Science.gov (United States)

    Davis, R.; Allison, M. L.; Keane, C. M.; Robinson, E.

    2016-12-01

    In September 2016, the EarthCube Test Enterprise Governance Project completed its three-year long process to engage the community and test a demonstration governing organization with the goal of facilitating a community-led process on designing and developing a geoscience cyberinfrastructure to transform geoscience research. The EarthCube initiative is making an important transition from creating a coherent community towards adoption and implemention of technologies that can serve scientists working in and across many domains. The emerging concept of a "system of systems" approach to cyberinfrastructure architecture is a critical concept in the EarthCube program, but has not been fully defined. Recommendations from an NSF-appointed Advisory Committee include: a. developing a succinct definition of EarthCube; b. changing the community-elected governance approach towards structured rather than consensus-driven decision-making; c. restructuring the process to articulate program solicitations; and d. producing an effective implementation roadmap. These are seen as prerequisites to adoption of best practices, system concepts, and evolving to a production track. The EarthCube governing body is preparing responses to the Advisory Committee findings and recommendations with a target delivery date of late 2016 but broader involvement may be warranted. We conclude that there is ample justification to continue evolving to a governance framework that facilitates convergence on a system architecture that guides EarthCube activities and plays an influential role in making operational the EarthCube vision of cyberinfrastructure for the geosciences. There is widespread community expectation for support of a multiyear EarthCube governing effort to put into practice the science, technical, and organizational plans that are continuing to emerge. However, the active participants in EarthCube represent a small sub-set of the larger population of geoscientists.

  19. Communicating Geosciences with Policy-makers: a Grand Challenge for Academia

    Science.gov (United States)

    Harrison, W. J.; Walls, M. R.; Boland, M. A.

    2015-12-01

    Geoscientists interested in the broader societal impacts of their research can make a meaningful contribution to policy making in our changing world. Nevertheless, policy and public decision making are the least frequently cited Broader Impacts in proposals and funded projects within NSF's Geosciences Directorate. Academic institutions can play a lead role by introducing this societal dimension of our profession to beginning students, and by enabling interdisciplinary research and promoting communication pathways for experienced career geoscientists. Within the academic environment, the public interface of the geosciences can be presented through curriculum content and creative programs. These include undergraduate minors in economics or public policy designed for scientists and engineers, and internships with policy makers. Federal research institutions and other organizations provide valuable policy-relevant experiences for students. Academic institutions have the key freedom of mission to tackle interdisciplinary research challenges at the interface of geoscience and policy. They develop long-standing relationships with research partners, including national laboratories and state geological surveys, whose work may support policy development and analysis at local, state, regional, and national levels. CSM's Payne Institute for Earth Resources awards mini-grants for teams of researchers to develop collaborative research efforts between engineering/science and policy researchers. Current work in the areas of nuclear generation and the costs of climate policy and on policy alternatives for capturing fugitive methane emissions are examples of work at the interface between the geosciences and public policy. With academic engagement, geoscientists can steward their intellectual output when non-scientists translate geoscience information and concepts into action through public policies.

  20. Diversity, Geosciences, and Societal Impact: Perspectives From a Geoscientist, Workforce Development Specialist, and Former Congressional Science Fellow

    Science.gov (United States)

    Morris, A. R.

    2014-12-01

    In order for the United States to remain competitive in the STEM fields, all available interested citizens must be engaged, prepared, and retained in the geoscience workforce. The misperception that the geosciences do little to support the local community and give back to fellow citizens contributes to the lack of diversity in the field. Another challenge is that the assumptions of career paths for someone trained in geosciences are often limited to field work, perpetuated by visuals found in media, popular culture and recruiting materials and university websites. In order to combat these views it is critical that geoscientists make visible both the diverse career opportunities for those trained in geoscience and the relevance of the field to societal issues. In order to make a substantive change in the number of underrepresented minorities pursuing and working in geosciences we must rethink how we describe our work, its impacts and its relevance to society. At UNAVCO, we have undertaken this charge to change they way the future generation of geoscientists views opportunities in our field. This presentation will include reflections of a trained geoscientist taking a non-field/research career path and the opportunities it has afforded as well as the challenges encountered. The presentation will also highlight how experience managing a STEM program for middle school girls, serving as a Congressional Science Fellow, and managing an undergraduate research internship program is aiding in shaping the Geoscience Workforce Initiative at UNAVCO.

  1. Geo-Needs: Investigating Models for Improved Access to Geosciences at Two-Year and Minority-Serving Colleges

    Science.gov (United States)

    Her, X.; Turner, S. P.; LaDue, N.; Bentley, A. P.; Petcovic, H. L.; Mogk, D. W.; Cartwright, T.

    2015-12-01

    Geosciences are an important field of study for the future of energy, water, climate resilience, and infrastructure in our country. Geoscience related job growth is expected to steeply climb in the United States, however many of these positions will be left unfilled. One untapped population of Americans is ethnic minorities, who have historically been underrepresented in the geosciences. In 2010, the Bureau of Labor Statistics (BLS) reported that black and Hispanics only make 8.1% of geoscience related jobs, while making up nearly 30% of Americans. This pattern of underrepresentation has been attributed to 1) minority serving institutions lacking geoscience programs, 2) low interest in the outdoors due to a lack of opportunity, and 3) negative and low prestigious perceptions of geoscientists. Our project focuses specifically on the first barrier. Preliminary research suggests that only 2.5% of institutions with geoscience programs (n= 609) are also minority serving. The goals of the Geo-Needs project are to identify obstacles to and opportunities for better use of existing educational resources in two-year and minority-serving institutions, and to explore "ideal" models of resources, partnerships, and other support for geoscience faculty and students in these institutions. Four focus group meetings were held in August 2015 bringing administrators, instructors, resource providers, and education researchers together to discuss and develop these models. Activities at the meetings included small and whole group prompted discussion, guest speakers, gallery walks, and individual reflection. Content from the focus group meetings is available at the project's website: http://serc.carleton.edu/geoneeds/index.html. Findings from the meetings can be used to inform future efforts aimed toward broadening access to the geosciences at two-year and minority-serving institutions.

  2. Launching an Academic Career: On the Cutting Edge Resources for Geoscience Graduate Students, Post-doctoral Fellows, and Early Career Faculty

    Science.gov (United States)

    Richardson, R. M.; Ormand, C. J.; MacDonald, H.; Dunbar, R. W.; Allen-King, R. M.; Manduca, C. A.

    2010-12-01

    Launching an academic career presents a number of challenges. A recent article in the Chronicle of Higher Education depicts academia as an “ivory sweatshop,” citing rising standards for tenure. Most graduate programs provide minimal training for life beyond graduate school. The professional development program “On the Cutting Edge” fills this gap by providing workshops and web resources on academic careers for graduate students, postdoctoral fellows, and early career faculty. These workshops and web resources address a wide range of topics related to teaching, research, and managing one’s career, tailored for each group. The Preparing for an Academic Career in the Geosciences workshop to help graduate students and postdoctoral fellows make the transition into an academic career has been offered annually since 2003. It provides a panel on academic careers in different institutional settings, sessions on research on learning, various teaching strategies, design of effective teaching activities, moving research forward to new settings, effective teaching and research statements, the job search process, negotiation, and presenting oneself to others. Complementary online resources (http://serc.carleton.edu/NAGTWorkshops/careerprep/index.html) focus on these topics. The workshops and web resources offer guidance for each step of the job search process, for developing and teaching one’s own courses, and for making the transition from being a research student to being in charge of a research program. Online resources also include case studies of successful dual career couples, documenting their job search strategies. A four-day workshop for Early Career Geoscience Faculty: Teaching, Research, and Managing Your Career, offered annually since 1999, provides sessions on teaching strategies, course design, developing a strategic plan for research, supervising student researchers, navigating departmental and institutional politics, preparing for tenure, time and

  3. Mathematics Prerequisites for Introductory Geoscience Courses: Using Technology to Help Solve the Problem

    Science.gov (United States)

    Burn, H. E.; Wenner, J. M.; Baer, E. M.

    2011-12-01

    The quantitative components of introductory geoscience courses can pose significant barriers to students. Many academic departments respond by stripping courses of their quantitative components or by attaching prerequisite mathematics courses [PMC]. PMCs cause students to incur additional costs and credits and may deter enrollment in introductory courses; yet, stripping quantitative content from geoscience courses masks the data-rich, quantitative nature of geoscience. Furthermore, the diversity of math skills required in geoscience and students' difficulty with transferring mathematical knowledge across domains suggest that PMCs may be ineffective. Instead, this study explores an alternative strategy -- to remediate students' mathematical skills using online modules that provide students with opportunities to build contextual quantitative reasoning skills. The Math You Need, When You Need It [TMYN] is a set of modular online student resources that address mathematical concepts in the context of the geosciences. TMYN modules are online resources that employ a "just-in-time" approach - giving students access to skills and then immediately providing opportunities to apply them. Each module places the mathematical concept in multiple geoscience contexts. Such an approach illustrates the immediate application of a principle and provides repeated exposure to a mathematical skill, enhancing long-term retention. At the same time, placing mathematics directly in several geoscience contexts better promotes transfer of learning by using similar discourse (words, tools, representations) and context that students will encounter when applying mathematics in the future. This study uses quantitative and qualitative data to explore the effectiveness of TMYN modules in remediating students' mathematical skills. Quantitative data derive from ten geoscience courses that used TMYN modules during the fall 2010 and spring 2011 semesters; none of the courses had a PMC. In all courses

  4. A Ten-Year Retrospective Look at the NSF/GEO Opportunities for Enhancing Diversity in the Geosciences (OEDG) Program

    Science.gov (United States)

    Karsten, J. L.

    2013-12-01

    The Opportunities for Enhancing Diversity in the Geosciences (OEDG) program - established in 2002 by the National Science Foundation's Directorate for Geosciences (GEO) - has been a mainstay in GEO's efforts to broaden participation of traditionally underrepresented minorities in the geosciences. The primary goal of the OEDG program has been to engage a diverse population of students in learning about - and pursuing advanced degrees and careers in - the geosciences. Raising public awareness of the importance and relevance of the geosciences among diverse audiences has been a secondary goal. During the past decade, the OEDG program has supported a variety of planning grants, proof-of-concept projects, and larger full-scale implementation efforts across the U.S. These projects have contributed a rich array of culturally-tailored resources for learning about geoscience career pathways and opportunities to participate in geoscience research experiences. OEDG has also developed networking and mentoring programs tailored for diverse student audiences, as well as the educators who work with them, and has helped to build capacity in the geosciences at minority-serving institutions. Perhaps the most important legacy of the OEDG program has been the establishment of an enthusiastic and effective community of educators, administrators, students and organizations dedicated to increasing diversity in the geosciences. Evaluation data collected for individual OEDG projects has helped to improve the impact of specific projects and increase our understanding of which approaches are more successful in achieving OEDG program goals. In addition, GEO has supported a decade-long, program-wide evaluation of the OEDG portfolio through a contract to the American Institutes for Research (AIR). Synthesis of results from both the project- and program-level evaluation activities has identified evidence-based 'best practices' that are essential for achieving success in broadening participation

  5. Research on Taxi Driver Strategy Game Evolution with Carpooling Detour

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    2018-01-01

    Full Text Available For the problem of taxi carpooling detour, this paper studies driver strategy choice with carpooling detour. The model of taxi driver strategy evolution with carpooling detour is built based on prospect theory and evolution game theory. Driver stable strategies are analyzed under the conditions of complaint mechanism and absence of mechanism, respectively. The results show that passenger’s complaint mechanism can effectively decrease the phenomenon of driver refusing passengers with carpooling detour. When probability of passenger complaint reaches a certain level, the stable strategy of driver is to take carpooling detour passengers. Meanwhile, limiting detour distance and easing traffic congestion can decrease the possibility of refusing passengers. These conclusions have a certain guiding significance to formulating taxi policy.

  6. Integrated Design for Geoscience Education with Upward Bound Students

    Science.gov (United States)

    Cartwright, T. J.; Hogsett, M.; Ensign, T. I.; Hemler, D.

    2009-05-01

    implications of the project. On-line learning modules continue to expand the number impacted by the program. Through collaboration with both GLOBE headquarters and the GLOBE Country Coordinator, an international teacher workshop in Costa Rica provided GLOBE training and equipment necessary for a true GLOBE student collaborative project. IDGE continues to expand the impacts beyond the limited participants involved in the program. Overall, the preliminary results show sufficient data that IDGE is successful in: exposing students to an inquiry-based hands-on science experience; providing a positive challenging yet enjoyable science experience for students; providing a science experience which was different than their formal science class; enhancing or maintaining positive attitudes and habits of mind about science; improving some student perceptions of science, science processes, and the nature of science; increasing the number of students considering science careers; enhanced student understanding of the importance of science knowledge and coursework for everyone. Through the practice of field research and inquiry-based learning, the quality of geoscience instruction is inspiring a new generation of geoscientists. This work was supported in part by the National Science Foundation under award #0735596. Any opinions, findings, conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect those of the National Science Foundation.

  7. A practical guide to ethical and effective delivery of geoscience for the service of society

    Science.gov (United States)

    Allington, Ruth

    2017-04-01

    Competence, integrity, accountability and high ethical standards - judged peer-to-peer - are the hallmarks of what it means to be a professional and part of a professional community. The geoscience profession is no different and professionalism is relevant in all of its constituent communities - academia, industry, government etc There are three propositions that illustrate the importance of professionalism in the delivery of geoscience across the board. The first: Without understanding the skills and expertise needed by 'industry', how can educators prepare students for the workplace? Most of those graduating in geoscience will not stay in universities - do we not owe it to them to develop a realistic idea of what a non-academic career might look like? This is done very well in some institutions and not at all in others and the author's impression is that the latter is the norm. The second: Without understanding societal needs, how can researchers design research which is truly relevant to those needs? A more connected geoscience community that is, in turn, more connected to the needs and wants of Society will develop research agendas that are truly relevant. And finally…… Without access to high quality graduates and excellent underpinning fundamental and applied research, how can geoscientists in 'industry' or public service deliver their expertise effectively? This contribution, which draws on ideas set out in the author's plenary speech at 35IGC, will consider the practical skills, experience, ethical and behavioural regulatory frameworks, codes and norms that underpin success in meeting these challenges.

  8. Using Q Methodology to Investigate Undergraduate Students' Attitudes toward the Geosciences

    Science.gov (United States)

    Young, Julia M.; Shepardson, Daniel P.

    2018-01-01

    Undergraduate students have different attitudes toward the geosciences, but few studies have investigated these attitudes using Q methodology. Q methodology allows the researcher to identify more detailed reasons for students' attitudes toward geology than Likert methodology. Thus this study used Q methodology to investigate the attitudes that 15…

  9. Visualizing Geoscience Concepts Through Textbook Art (Invited)

    Science.gov (United States)

    Marshak, S.

    2013-12-01

    Many, if not most, college students taking an introductory geoscience course purchase, borrow, download, or rent one of several commercial textbooks currently available. Art used in such books has evolved significantly over the past three decades. Concepts once conveyed only by black-and-white line drawings, drawn by hand in ink, have gradually been replaced by full-color images produced digitally. Multiple high-end graphics programs, when used in combination, can yield images with super-realistic textures and palettes so that, in effect, anything that a book author wants to be drawn can be drawn. Because of the time and skill level involved in producing the art, the process commonly involves professional artists. In order to produce high-quality geoscience art that can help students (who are, by definition, non-experts) understand concepts, develop geoscience intuition, and hone their spatial-visualization skills, an author must address two problems. First, design a figure which can convey complex concepts through visual elements that resonate with students. Second, communicate the concepts to a professional artist who does not necessarily have personal expertise in geoscience, so that the figure rendered is both technically correct and visually engaging. The ultimate goal of geoscience art in textbooks is to produce an image that avoids unnecessary complexity that could distract from the art's theme, includes sufficient realism for a non-expert to relate the image to the real world, provides a personal context in which to interpret the figure, and has a layout that conveys relationships among multiple components of the art so that the art tells a coherent story. To accomplish this goal, a chain of choices--about perspective, sizes, colors, texture, labeling, captioning, line widths, and fonts--must be made in collaboration between the author and artist. In the new world of computer-aided learning, figures must also be able to work both on the computer screen and

  10. Language Learner Strategy Research and Modern Foreign Language Teaching and Learning

    Science.gov (United States)

    Grenfell, Michael

    2007-01-01

    This article addresses language learner strategy research in the context of second language learning and teaching in the UK. It arises from two sources: firstly, a personal background in research and writing about language learner strategy research in the context of modern foreign language learning and teaching in England and Wales; secondly, a…

  11. Mainstreaming Climate Change Into Geosciences Curriculum of Tertiary Educational Systems in Ghana

    Science.gov (United States)

    Nyarko, B. K.

    2015-12-01

    The impact of Climate Change has a far-reaching implication for economies and people living in the fragile Regions of Africa analysts project that by 2020, between 75 million and 250 million people will be exposed various forms of Climate Change Stresses. Education as a key strategy identified under Agenda 21 has been incorporated into the efforts of various educational institutions as a means of mitigating climate change and enhancing sustainability. Climate Change education offers many opportunities and benefits for educators, researchers, learners, and for wider society, but there are also many challenges, which can hinder the successful mainstreaming of climate change education. The study aims at understanding barriers for Climate Change Education in selected tertiary institutions in Ghana. The study was conducted among Geoscience Departments of the 7 main public universities of Ghana and also juxtapose with the WASCAL graduate school curriculum. The transcript analysis identified issues that hinders the mainstreaming of Climate Change, these includes existing levels of knowledge and understanding of the concept of climate change, appreciating the threshold concepts, ineffective teaching of Climate Change and some Departments are slow in embracing Climate Change as a discipline. Hence to develop strategies to mainstream climate change education it is important to recognize that increasing the efficiency and delivery of Climate Change education requires greater attention and coordination of activities and updating the educators knowledge and skill's. Institutions and Educator should be encouraged to undertake co-curricula activities and finding ways to make Climate Change education practical.

  12. Language learning strategy research and modern foreign language teaching and learning in England

    OpenAIRE

    Grenfell, Michael

    2005-01-01

    This paper addresses language learner strategy research. It arises from two sources: firstly, an individual background in research and writing about Language Learning Strategy research in the context of Modern Foreign Language Learning and Teaching in the UK over the past decades; secondly, a newly constituted British based interest group dedicated to this area of applied linguistics - UK Project on Language Learner Strategies (UKPOLLS). The aim of this SIG paper is to introduce and present t...

  13. Research on Network Scanning Strategy Based on Information Granularity

    Science.gov (United States)

    Qin, Futong; Shi, Pengfei; Du, Jing; Cheng, Ruosi; Zhou, Yunyan

    2017-10-01

    As the basic mean to obtain the information of the targets network, network scanning is often used to discover the security risks and vulnerabilities existing on the network. However, with the development of network technology, the scale of network is more and more large, and the network scanning efficiency put forward higher requirements. In this paper, the concept of network scanning information granularity is proposed, and the design method of network scanning strategy based on information granularity is proposed. Based on single information granularity and hybrid information granularity, four network scanning strategies were designed and verified experimentally. Experiments show that the network scanning strategies based on hybrid information granularity can improve the efficiency of network scanning.

  14. Database versioning and its implementation in geoscience information systems

    Science.gov (United States)

    Le, Hai Ha; Schaeben, Helmut; Jasper, Heinrich; Görz, Ines

    2014-09-01

    Many different versions of geoscience data concurrently exist in a database for different geological paradigms, source data, and authors. The aim of this study is to manage these versions in a database management system. Our data include geological surfaces, which are triangulated meshes in this study. Unlike revision/version/source control systems, our data are stored in a central database without local copies. The main contributions of this study include (1) a data model with input/output/manage functions, (2) a mesh comparison function, (3) a version merging strategy, and (4) the implementation of all of the concepts in PostgreSQL and gOcad. The software has been tested using synthetic surfaces and a simple tectonic model of a deformed stratigraphic horizon.

  15. The Canadian Geoscience Education Network: a collaborative grassroots effort to support geoscience education

    Science.gov (United States)

    Bank, C.; Halfkenny, B.; Hymers, L.; Clinton, L.; Heenan, S.; Jackson, D.; Nowlan, G.; Haidl, F.; Vodden, C.

    2009-12-01

    The Canadian Geoscience Education Network (CGEN) numbers over 300 members who are active in promoting geoscience to the general public and especially in schools. Our membership spreads from coast to coast to coast in Canada and represents the wide range of geosciences. Most members work in education, government, industry, academia, or not-for-profit organizations. Our common goals are to (1) provide resources to teachers for the K-12 curriculum, (2) encourage students to pursue higher education and a rewarding career in geoscience, and (3) lobby to effect change to the school curriculum. Our strength is grounded in a grassroots approach (eg, regional chapters), flexible organization, and emphasis on a cost-effective style. Together we have created and maintain resources for teachers; for example, EdGEO (local workshops for teachers), Geoscape (community-based posters and lesson plans), and EarthNet (virtual resource centre). A new website showcases careers in the Earth sciences. CGEN members ensure that these resources remain current, promote them at individual outreach activities, and see to it that they are maintained. Although we have limited funding we draw strength from the networks of our members and capitalize on partnerships between seemingly disparate organizations and groups to get experts involved in the education of future geoscientists. (Details about CGEN may be found at http://www.geoscience.ca/cgen/principal.html.)

  16. Apparel Merchandising Students Learn Customer Service Strategies while Conducting Research.

    Science.gov (United States)

    Paulins, V, Ann

    2000-01-01

    Apparel merchandising students participated in a cooperative research project in which they observed customer service techniques by posing as customers in retail stores. The project taught research processes, collaboration, and principles of customer service. (SK)

  17. Report on Implementing the Federal Cybersecurity Research and Development Strategy

    Data.gov (United States)

    Networking and Information Technology Research and Development, Executive Office of the President — In December 2011 the NSTC released Trustworthy Cyberspace: Strategic Plan for the Federal Cybersecurity Research and Development Program, outlining a vision for the...

  18. Translation of EPA Research: Data Interpretation and Communication Strategies

    Science.gov (United States)

    Symposium Title: Social Determinants of Health, Environmental Exposures, and Disproportionately Impacted Communities: What We Know and How We Tell Others Topic 3: Community Engagement and Research Translation Title: Translation of EPA Research: Data Interpretation and Communicati...

  19. Evolving the US Army Research Laboratory (ARL) Technical Communication Strategy

    Science.gov (United States)

    2016-10-01

    organizational restructuring, awards, visiting officials, summer student research, and research advances in S&T. The number of articles generated...the research field. Great research, website, videos When interacting with potential post docs; students ; professors; partners Attract higher...doesn’t really read it. How many others are distributed and set on shelf or coffee table. YouTube is a natural way to convey message. General

  20. Research on RBV Control Strategy of Large Angle Maneuver

    Directory of Open Access Journals (Sweden)

    Jiangtao Xu

    2014-01-01

    Full Text Available Considering the hypersonic aerospace vehicle, with high dynamic, strong varying parameters, strong nonlinear, strong coupling, and the complicated flight environment, conventional flight control methods based on linear system may become invalid. To the high precision and reliable control problem of this vehicle, nonlinear flight control strategy based on neural network robust adaptive dynamic inversion is proposed. Firstly, considering the nonlinear characteristics of aerodynamic coefficients varying with Mach numbers, attack angle, and sideslip angle, the complete nonlinear 6-DOF model of RBV is established. Secondly, based on the time-scale separation, using the nonlinear dynamic inversion control strategy achieves the pseudolinear decoupling of RBV. And then, using the neural network with single hidden layer approximates the dynamic inversion error for system model uncertainty. Next, the external disturbance and network approximating error are suppressed by robust adaptive control. Finally, using Lyapunov’s theory proves that all error signals of closed loop system are uniformly bounded finally under this control strategy. Nonlinear simulation verifies the feasibility and validity of this control strategy to the RBV control system.

  1. An Action Research on Deep Word Processing Strategy Instruction

    Science.gov (United States)

    Zhang, Limei

    2010-01-01

    For too long a time, how to memorize more words and keep them longer in mind has been a primary and everlasting problem for vocabulary teaching and learning. This study focused on deep processing as a word memorizing strategy in contextualizing, de- and re- contextualizing learning stages. It also examined possible effects of such pedagogy on…

  2. Instructional Design-Based Research on Problem Solving Strategies

    Science.gov (United States)

    Emre-Akdogan, Elçin; Argün, Ziya

    2016-01-01

    The main goal of this study is to find out the effect of the instructional design method on the enhancement of problem solving abilities of students. Teaching sessions were applied to ten students who are in 11th grade, to teach them problem solving strategies which are working backwards, finding pattern, adopting a different point of view,…

  3. Complexity Science Applications to Dynamic Trajectory Management: Research Strategies

    Science.gov (United States)

    Sawhill, Bruce; Herriot, James; Holmes, Bruce J.; Alexandrov, Natalia

    2009-01-01

    The promise of the Next Generation Air Transportation System (NextGen) is strongly tied to the concept of trajectory-based operations in the national airspace system. Existing efforts to develop trajectory management concepts are largely focused on individual trajectories, optimized independently, then de-conflicted among each other, and individually re-optimized, as possible. The benefits in capacity, fuel, and time are valuable, though perhaps could be greater through alternative strategies. The concept of agent-based trajectories offers a strategy for automation of simultaneous multiple trajectory management. The anticipated result of the strategy would be dynamic management of multiple trajectories with interacting and interdependent outcomes that satisfy multiple, conflicting constraints. These constraints would include the business case for operators, the capacity case for the Air Navigation Service Provider (ANSP), and the environmental case for noise and emissions. The benefits in capacity, fuel, and time might be improved over those possible under individual trajectory management approaches. The proposed approach relies on computational agent-based modeling (ABM), combinatorial mathematics, as well as application of "traffic physics" concepts to the challenge, and modeling and simulation capabilities. The proposed strategy could support transforming air traffic control from managing individual aircraft behaviors to managing systemic behavior of air traffic in the NAS. A system built on the approach could provide the ability to know when regions of airspace approach being "full," that is, having non-viable local solution space for optimizing trajectories in advance.

  4. Best Practice in Using Business Intelligence to Determine Research Strategy

    Science.gov (United States)

    Green, John; Rutherford, Scott; Turner, Thomas

    2009-01-01

    The authors recognise that there is no "one-size-fits-all" approach to implementing business intelligence strategy within universities. Elements of best practice have been taken from a case study of Imperial College, which may be applied across other institutions. The process starts with implementing and developing systems that capture…

  5. Strategy to Promote Active Learning of an Advanced Research Method

    Science.gov (United States)

    McDermott, Hilary J.; Dovey, Terence M.

    2013-01-01

    Research methods courses aim to equip students with the knowledge and skills required for research yet seldom include practical aspects of assessment. This reflective practitioner report describes and evaluates an innovative approach to teaching and assessing advanced qualitative research methods to final-year psychology undergraduate students. An…

  6. New Strategies of Control: Academic Freedom and Research Ethics Boards

    Science.gov (United States)

    Lewis, Magda

    2008-01-01

    This article, detailing the implications of "ethics drift" for critical work in the academy, reports on an ethics challenge to a non-research-based scholarly text. It analyzes how General Research Ethics Boards (GREBs) can threaten academic freedom when they lack a clear definition of "human subject" research, fail to…

  7. We Can Recruit Minorities Into The Geosciences

    Science.gov (United States)

    O'Connell, S.

    2011-12-01

    Despite the dismal numbers, efforts to recruit minorities into the geosciences are improving, thanks in part to NSF's "Opportunities for Enhancing Diversity in the Geosciences" (OEDG) initiative. At Wesleyan University, a small liberal arts college in Connecticut, we have significantly increased our recruitment of minority students. Twenty percent (four students) of the class of 2013 are African American. Most of the recruitment is done on an individual basis and working in conjunction with the "Dean for Diversity and Student Engagement" and courting minority students in introductory classes. The Dean for Diversity and Student Engagement is aware of our interest in increasing diversity and that we are able to hire minority students during the academic year and through the summer with OEDG funds. When she identifies minority students who might be interested in the geosciences, she refers them to faculty in the Earth and Environmental Sciences Department. Our faculty can provide employment, mentoring and a variety of geo-related experiences. Courting students in introductory courses can include inviting them to lunch or other activity, and attending sports, theater or dance events in which they are participating. Not all efforts result in new majors. Courses in ancillary sciences may be stumbling blocks and higher grades in less demanding courses have lured some students into other majors. Nevertheless, we now have a large enough cohort of minority students so that minority students from other majors visit their friends in our labs. A critical mass? Even a student, who chooses another major, may continue an interest in geoscience and through outreach efforts and discussions with younger family members, may provide a bridge that becomes a conduit for future students.

  8. Smartphones: Powerful Tools for Geoscience Education

    Science.gov (United States)

    Johnson, Zackary I.; Johnston, David W.

    2013-11-01

    Observation, formation of explanatory hypotheses, and testing of ideas together form the basic pillars of much science. Consequently, science education has often focused on the presentation of facts and theories to teach concepts. To a great degree, libraries and universities have been the historical repositories of scientific information, often restricting access to a small segment of society and severely limiting broad-scale geoscience education.

  9. Teaching Reading Comprehension Strategies to Students with Learning Disabilities: A Review of Research.

    Science.gov (United States)

    Gersten, Russell; Fuchs, Lynn S.; Williams, Joanna P.; Baker, Scott

    2001-01-01

    Reviews research on reading comprehension for students with learning disabilities focusing on studies on instruction to improve comprehension of narrative text and expository text. Discusses emerging issues in the field, including use of socially mediated strategies, teaching multiple strategies to students, and teaching specific strategies as…

  10. The Role of the National Science Foundation: Providing Opporunities to Enhance Geoscience Education

    Science.gov (United States)

    Leinen, M.

    2005-12-01

    Over the past two or three decades several trends have led to a decrease in the availability of courses in Earth and space sciences at the secondary and undergraduate levels. This is particularly frustrating given the continued need for well-trained Earth and space scientists, the need for greater sophistication in scientific training of our community and the lack of diversity of our scientific community. The National Science Foundation has responded to this challenge in several ways. At the most general level, the second criterion for evaluation of proposals requires the identification of the broader impact of the research. Many scientists choose to address this criterion by creative efforts to integrate research and education. These efforts are already resulting in substantially more focus on educational and diversity issues. At a more specific level, the Geosciences Directorate of the National Science Foundation has increased our funding for the education and diversity efforts of the earth, ocean and atmospheric sciences communities. In each of the three divisions of Geosciences - Earth Sciences, Ocean Sciences and Atmospheric Sciences - there are special programs for funding educational efforts. In addition, programs in Geoscience Education and in Opportunities to Enhance the Diversity of the Geosciences, provide funding opportunities for geoscientists of all disciplines to propose innovative ways to meet the challenge of training a new generation of geoscientists.

  11. Developing a Geoscience Literacy Exam: Pushing Geoscience Literacy Assessment to New Levels

    Science.gov (United States)

    Iverson, E. A.; Steer, D. N.; Manduca, C. A.

    2012-12-01

    InTeGrate is a community effort aimed at improving geoscience literacy and building a workforce that can use geoscience to solve societal issues. As part of this work we have developed a geoscience literacy assessment instrument to measure students' higher order thinking. This assessment is an important part of the development of curricula designed to increase geoscience literacy for all undergraduate students. To this end, we developed the Geoscience Literacy Exam (GLE) as one of the tools to quantify the effectiveness of these materials on students' understandings of geoscience literacy. The InTeGrate project is a 5-year, NSF-funded STEP Center grant in its first year of funding. Details concerning the project are found at http://serc.carleton.edu/integrate/index.html. The GLE instrument addresses content and concepts in the Earth, Climate, and Ocean Science literacy documents. The testing schema is organized into three levels of increasing complexity. Level 1 questions are single answer, understanding- or application-level multiple choice questions. For example, selecting which type of energy transfer is most responsible for the movement of tectonic plates. They are designed such that most introductory level students should be able to correctly answer after taking an introductory geoscience course. Level 2 questions are more advanced multiple answer/matching questions, at the understanding- through analysis-level. Students might be asked to determine the types of earth-atmosphere interactions that could result in changes to global temperatures in the event of a major volcanic eruption. Because the answers are more complicated, some introductory students and most advanced students should be able to respond correctly. Level 3 questions are analyzing- to evaluating-level short essays, such as describe the ways in which the atmosphere sustains life on Earth. These questions are designed such that introductory students could probably formulate a rudimentary response

  12. Advancing prevention research on child abuse, youth violence, and domestic violence: emerging strategies and issues.

    Science.gov (United States)

    Guterman, Neil B

    2004-03-01

    Prevention research on the related problems of child abuse, youth violence, and domestic violence has grown at an accelerating pace in recent years. In this context, a set of shared methodological issues has emerged as investigators seek to advance the interpersonal violence prevention knowledge base. This article considers some of the persistent methodological issues in these areas and points out emerging research strategies that are forging advances in garnering valid, rigorous, and useful knowledge to prevent interpersonal violence. Research issues and emerging strategies in three key domains of prevention research are considered, including complexities in validly conceptualizing and measuring varying forms of violence as specific targets for preventive intervention, research issues and strategies designed to reliably predict and identify future violence risk to be targeted by preventive intervention, and research issues and emerging strategies in the application of empirical methods to forge specific advances in preventive intervention strategies themselves.

  13. Website Resources and Support for Two-Year College Geoscience Educators

    Science.gov (United States)

    McDaris, J. R.; Macdonald, H.; Blodgett, R. H.; Manduca, C. A.; Maier, M.

    2011-12-01

    Geoscience faculty at two-year colleges (2YC) face a number of challenges, from the wide diversity of the student population to being isolated from other geoscience faculty. Several projects have developed web resources that address some of these issues by providing professional development, teaching materials, and opportunities to connect with their colleagues at other institutions. The Role of Two-Year Colleges in Geoscience Education and in Broadening Participation in the Geosciences project brought together 2YC faculty from across the country for a planning workshop to discuss these issues and propose strategies and mechanisms to strengthen the 2YC geoscience education community (http://serc.carleton.edu/geo2yc/index.html). The website now hosts more than 30 essays on the state of 2YC education, teaching activities, and course descriptions submitted by 2YC faculty as well as an email discussion list and other ways of networking and discussing important. One outcome of this work is that the National Association of Geoscience Teachers has created a division for 2YC faculty so that members can network with each other and discuss solutions to pressing issues. (http://nagt.org/nagt/divisions/2yc/index.html) The On the Cutting Edge program has an array of professional development resources available (http://serc.carleton.edu/NAGTWorkshops/). Over its decade of work, the program has developed resources on topics of interest to 2YC faculty including: teaching introductory courses, the affective domain, teaching with data, metacognition, online courses, teaching about hazards, and many others. There are also extensive collections of teaching activities and visualizations. In addition, the program continues to hold face-to-face and virtual professional development workshops and webinars that are accessible to 2YC faculty and can help them feel less isolated The Starting Point: Teaching Introductory Geoscience (http://serc.carleton.edu/introgeo) website is specifically

  14. [Training of institutional research networks as a strategy of improvement].

    Science.gov (United States)

    Galván-Plata, María Eugenia; Almeida-Gutiérrez, Eduardo; Salamanca-Gómez, Fabio Abdel

    2017-01-01

    The Instituto Mexicano del Seguro Social (IMSS) through the Coordinación de Investigación en Salud (Health Research Council) has promoted a strong link between the generation of scientific knowledge and the clinical care through the program Redes Institucionales de Investigación (Institutional Research Network Program), whose main aim is to promote and generate collaborative research between clinical, basic, epidemiologic, educational, economic and health services researchers, seeking direct benefits for patients, as well as to generate a positive impact on institutional processes. All of these research lines have focused on high-priority health issues in Mexico. The IMSS internal structure, as well as the sufficient health services coverage, allows the integration of researchers at the three levels of health care into these networks. A few years after their creation, these networks have already generated significant results, and these are currently applied in the institutional regulations in diseases that represent a high burden to health care. Two examples are the National Health Care Program for Patients with Acute Myocardial Infarction "Código Infarto", and the Early Detection Program on Chronic Kidney Disease; another result is the generation of multiple scientific publications, and the promotion of training of human resources in research from the same members of our Research Networks. There is no doubt that the Coordinación de Investigación en Salud advances steadily implementing the translational research, which will keep being fruitful to the benefit of our patients, and of our own institution.

  15. A Strategy-Based Approach towards Optimising Research Output

    Science.gov (United States)

    Lues, L.

    2013-01-01

    The South African higher education fraternity has experienced an outflow of senior research capacity during the past decade, resulting in a large influx of younger and less-published academics. More emphasis is therefore placed on the role of the central institution in ensuring research output. The Faculty of Economic and Management Sciences at a…

  16. University Research Centers: Heuristic Categories, Issues, and Administrative Strategies

    Science.gov (United States)

    Hall, Kelly

    2011-01-01

    University-based research centers can bring prestige and revenue to the institutions of higher education with which they are affiliated. Collaborating with corporations, units of government, and foundations, centers provide services to organizational leaders, policy makers, and communities. University research centers continue to increase in…

  17. Forest Service Global Change Research Strategy, 2009-2019

    Science.gov (United States)

    Allen Solomon; Richard Birdsey; Linda A. Joyce; Jennifer Hayes

    2009-01-01

    In keeping with the research goals of the U.S. Climate Change Science Program, the Research and Development agenda of the Forest Service, U.S. Department of Agriculture (USDA), helps define climate change policy and develop best management practices for forests (both rural and urban) and grasslands. These actions are taken to sustain ecosystem health, adjust management...

  18. Using the senses in qualitative interview research: Practical strategies

    NARCIS (Netherlands)

    Guillemin, M.; Harris, A.

    2014-01-01

    In the social sciences, there has been an increasing level of interest in the five senses, especially in disciplines such as anthropology, sociology, architecture and human geography. In this case study, we focus on using the senses in qualitative research interviews. We discuss a research method

  19. Ethical considerations in developing the next generation of geoscientists and defining a common cause for the geosciences

    Science.gov (United States)

    Keane, Christopher; Boland, Maeve

    2017-04-01

    Much of the discussion about ethics in geoscience centers around the ethical use of the science in a societal context or the social and professional conduct between individuals within the geoscience community. Little has been discussed about the challenges and ethical issues associated with the discipline's effort to build its future workforce in light of cyclical hiring, tightening research budgets, and rapidly evolving skill demands for professional geoscientists. Many geoscientists assume that the profession is underappreciated by society and insufficiently visible to students in higher education. Yet, at least in the United States, we are coming out of nearly a decade of record geoscience undergraduate enrollments and graduate programs that are operating at full capacity. During this time we have witnessed several fundamental shifts in the hiring demands for geoscientists, but in aggregate, have not seen any decrease in hiring of new graduates. The formal education system has not been able to respond to rapid changes in the skills required by employers and is producing a proportion of students unprepared to engage in a career as a geoscientist and, in some cases, unaware of the realities of business cycles and the need for professional and geographic mobility. Another problem for the future workforce is the lack of a fundamental rationale for the geosciences. Currently, the geosciences do not have a substantive vision for their role in society that can define the perception and destiny of the geosciences. During the Cold War and the Space Race, for example, advances in geoscience helped shape the next steps by society. Several initiatives, such as Resourcing Future Generations, are proposing research and social context frameworks for the geosciences that address critical global priorities, such as the Sustainable Development Goals. These projects may establish long-term trends and momentum that the discipline can build around. But what is the discipline's, and

  20. Characterizing Researchers by Strategies Used for Retaining Minority Participants: Results of a National Survey

    OpenAIRE

    Butler, James; Quinn, Sandra C.; Fryer, Craig S.; Garza, Mary A.; Kim, Kevin H.; Thomas, Stephen B.

    2013-01-01

    Limited attention has been given to the optimal strategies for retaining racial and ethnic minorities within studies and during the follow-up period. High attrition limits the interpretation of results and reduces the ability to translate findings into successful interventions. This study examined the retention strategies used by researchers when retaining minorities in research studies. From May to August 2010, we conducted an online survey with researchers (principal investigators, research...

  1. Equality of opportunities in geosciences: The EGU Awards Committee experience

    Science.gov (United States)

    Karatekin, Özgür

    2017-04-01

    Scientists are evaluated on the basis of creativity and productivity, and their scientific excellence are rewarded by scientific associations. Providing equal opportunities and ensuring balance is a strict necessity when recognizing scientific excellence. The processes and procedures that lead to the recognition of excellence has to be transparent and free of gender biases. However, establishment of clear and transparent evaluation criteria and performance metrics in order to provide equal opportunities to researchers across gender, continents and ethnic groups can be challenging since the definition of scientific excellence is elusive. This talk aims to present the experience and the efforts of the European Geosciences Union to ensure balance, with a particular focus on gender balance. Data and statistics will be presented in the attempt to provide constructive indications to get to the target of giving equal opportunities to researchers across gender, continents and ethnic groups.

  2. Research on the strategy of multinational enterprises: Key approaches and new avenues

    Directory of Open Access Journals (Sweden)

    Marina Dabic

    2014-04-01

    The links between human capital and knowledge are the factors on which to underpin the explanation of the MNEs’ strategies and support the coevolving theory. This theory is a promising avenue of research under the umbrella of RBV and KBV approaches. The context-dependency of strategy implies that different contexts require different approaches. Accordingly, we provide insights for future research by combining main schools of strategy thought.

  3. Research on The Marketing Strategy of Zhou Heiya in Yangtze River Delta Economic Zone

    OpenAIRE

    Zhou, Lijun

    2016-01-01

    The purpose of this thesis was to give some recommendations on market strategy for a case company in a specific district, through analyze its current market situation and strategy. Zhou Heiya Food Company was chosen as case company, and the Yangtze River Delta Economic Zone in China was the target market where Zhou Heiya ran its business. The theoretical part was composed by the literatures re