WorldWideScience

Sample records for geopotential field anomaly

  1. The Geopotential Research Mission - Mapping the near earth gravity and magnetic fields

    Science.gov (United States)

    Taylor, P. T.; Keating, T.; Smith, D. E.; Langel, R. A.; Schnetzler, C. C.; Kahn, W. D.

    1983-01-01

    The Geopotential Research Mission (GRM), NASA's low-level satellite system designed to measure the gravity and magnetic fields of the earth, and its objectives are described. The GRM will consist of two, Shuttle launched, satellite systems (300 km apart) that will operate simultaneously at a 160 km circular-polar orbit for six months. Current mission goals include mapping the global geoid to 10 cm, measuring gravity-field anomalies to 2 mgal with a spatial resolution of 100 km, detecting crustal magnetic anomalies of 100 km wavelength with 1 nT accuracy, measuring the vectors components to + or - 5 arc sec and 5 nT, and computing the main dipole or core field to 5 nT with a 2 nT/year secular variation detection. Resource analysis and exploration geology are additional applications considered.

  2. Modelling of the Global Geopotential Energy & Stress Field

    DEFF Research Database (Denmark)

    Schiffer, Christian; Nielsen, S.B.

    Lateral density and topography variations yield in and important contribution to the lithospheric stress field. The leading quantity is the Geopotential Energy, the integrated lithostatic pressure in a rock column. The horizontal gradient of this quantity is related to horizontal stresses through...... the Equations of equilibrium of stresses. The Geopotential Energy furthermore can be linearly related to the Geoid under assumption of local isostasy. Satellite Geoid measurements contain, however, also non-isostatic deeper mantle responses of long wavelength. Unfortunately, high-pass filtering of the Geoid...... flow in the presence of local isostasy and a steady state geotherm. Subsequently we use a FEM code to solve the Equations of equilibrium of stresses for a three dimensional elastic shell. The modelled results are shown and compared with the global stress field and other publications....

  3. Global Geopotential Energy & Stress Field

    DEFF Research Database (Denmark)

    Schiffer, Christian; Nielsen, S.B.

    of the oceanic lithosphere. An entire modelling of the shallow Geopotential Energy is hereby approached, not taking into account possible deeper signals but all lithospheric signals for the subsequent stress calculation. Therefore a global lithospheric density model is necessary to calculate the corresponding...... response to Geopotential Energy and the Geoid. A linearized inverse method fits a lithospheric reference model to reproduce measured data sets, such as topography and surface heat flow, while assuming isostasy and solving the steady state heat equation. A FEM code solves the equations of equilibrium...

  4. Geopotential Stress

    DEFF Research Database (Denmark)

    Schiffer, Christian; Nielsen, S.B.

    Density heterogeneity in the Earth’s lithosphere causes lateral pressure variations. Horizontal gradients of the vertically integrated lithostatic pressure, the Geopotential Energy (GPE), are a source of stresses (Geopotential Stress) that contribute to the Earth’s Stress Field. In theory the GPE...... is linearly related to the lithospheric part of the Geoid. The Geopotential Stress can be calculated if either the density structure and as a consequence the GPE or the lithospheric contribution to the Geoid is known. The lithospheric Geoid is usually obtained by short pass filtering of satellite Geoid...... are not entirely suitable for the stress calculations but can be compiled and adjusted. We present an approach in which a global lithospheric density model based on CRUST2.0 is obtained by simultaneously fitting topography and surface heat flow in the presence of isostatic compensation and long-wavelength lateral...

  5. Tectonic Interpretation of CHAMP Geopotential Data over the Northern Adriatic Sea.

    Science.gov (United States)

    Taylor, P. T.; Kim, H. R.; Mayer-Gürr, T.

    2006-05-01

    Recent aeromagnetic anomaly compilations (Chiappini et al., 2000 and Tontini et al., 2004) show a large positive (>700 nT) northwest-southeast trending magnetic anomaly off the Dalmatian coast. Unfortunately these aeromagnetic data cover only a part of this anomaly. We wanted to investigate if this large magnetic anomaly could be detected at satellite altitude and what is the extent and source of this feature. Therefore, magnetic and gravity anomaly maps were made from the CHAMP geopotential data, measured at the current low altitude of 345-350 km over the northern Adriatic Sea. We made the magnetic anomaly map over this relatively small region using 36 descending and 85 ascending orbits screened to be at the lowest altitude and the most magnetically quietest data. We removed the main field component (i.e., IGRF-10 up to degree and order 13) and then demeaned individual tracks and subtracted a second order polynomial to remove regional and/or un-modeled external field features. The resulting map from these well-correlated anomalies revealed a positive magnetic anomaly (>2 nT). Reduction-to-the pole brought these CHAMP anomaly features into coincidence with the aeromagnetic data. Previously Cantini et al. (1999) compared the surface magnetic data with MAGSAT by continuing upward the former and downwards the latter to 100 km and found a good correlation for wavelengths of 300-500 km. We also investigated the CHAMP gravity data. They were reduced using the kinematic short-arc integration method (Ilk et al., 2005 and Mayer Gürr et al., 2005). However, no corresponding short-wavelength gravity anomaly was observed in our study area. This tectonically complex region is under horizontal stress and the source of the large magnetic anomaly can be modelled by an associated ophiolite melange.

  6. Spheroidal Integral Equations for Geodetic Inversion of Geopotential Gradients

    Science.gov (United States)

    Novák, Pavel; Šprlák, Michal

    2018-03-01

    The static Earth's gravitational field has traditionally been described in geodesy and geophysics by the gravitational potential (geopotential for short), a scalar function of 3-D position. Although not directly observable, geopotential functionals such as its first- and second-order gradients are routinely measured by ground, airborne and/or satellite sensors. In geodesy, these observables are often used for recovery of the static geopotential at some simple reference surface approximating the actual Earth's surface. A generalized mathematical model is represented by a surface integral equation which originates in solving Dirichlet's boundary-value problem of the potential theory defined for the harmonic geopotential, spheroidal boundary and globally distributed gradient data. The mathematical model can be used for combining various geopotential gradients without necessity of their re-sampling or prior continuation in space. The model extends the apparatus of integral equations which results from solving boundary-value problems of the potential theory to all geopotential gradients observed by current ground, airborne and satellite sensors. Differences between spherical and spheroidal formulations of integral kernel functions of Green's kind are investigated. Estimated differences reach relative values at the level of 3% which demonstrates the significance of spheroidal approximation for flattened bodies such as the Earth. The observation model can be used for combined inversion of currently available geopotential gradients while exploring their spectral and stochastic characteristics. The model would be even more relevant to gravitational field modelling of other bodies in space with more pronounced spheroidal geometry than that of the Earth.

  7. Studying the Representation Accuracy of the Earth's Gravity Field in the Polar Regions Based on the Global Geopotential Models

    Science.gov (United States)

    Koneshov, V. N.; Nepoklonov, V. B.

    2018-05-01

    The development of studies on estimating the accuracy of the Earth's modern global gravity models in terms of the spherical harmonics of the geopotential in the problematic regions of the world is discussed. The comparative analysis of the results of reconstructing quasi-geoid heights and gravity anomalies from the different models is carried out for two polar regions selected within a radius of 1000 km from the North and South poles. The analysis covers nine recently developed models, including six high-resolution models and three lower order models, including the Russian GAOP2012 model. It is shown that the modern models determine the quasi-geoid heights and gravity anomalies in the polar regions with errors of 5 to 10 to a few dozen cm and from 3 to 5 to a few dozen mGal, respectively, depending on the resolution. The accuracy of the models in the Arctic is several times higher than in the Antarctic. This is associated with the peculiarities of gravity anomalies in every particular region and with the fact that the polar part of the Antarctic has been comparatively less explored by the gravity methods than the polar Arctic.

  8. Hamiltonian Anomalies from Extended Field Theories

    Science.gov (United States)

    Monnier, Samuel

    2015-09-01

    We develop a proposal by Freed to see anomalous field theories as relative field theories, namely field theories taking value in a field theory in one dimension higher, the anomaly field theory. We show that when the anomaly field theory is extended down to codimension 2, familiar facts about Hamiltonian anomalies can be naturally recovered, such as the fact that the anomalous symmetry group admits only a projective representation on the Hilbert space, or that the latter is really an abelian bundle gerbe over the moduli space. We include in the discussion the case of non-invertible anomaly field theories, which is relevant to six-dimensional (2, 0) superconformal theories. In this case, we show that the Hamiltonian anomaly is characterized by a degree 2 non-abelian group cohomology class, associated to the non-abelian gerbe playing the role of the state space of the anomalous theory. We construct Dai-Freed theories, governing the anomalies of chiral fermionic theories, and Wess-Zumino theories, governing the anomalies of Wess-Zumino terms and self-dual field theories, as extended field theories down to codimension 2.

  9. Validation of gravity data from the geopotential field model for subsurface investigation of the Cameroon Volcanic Line (Western Africa)

    Science.gov (United States)

    Marcel, Jean; Abate Essi, Jean Marcel; Nouck, Philippe Njandjock; Sanda, Oumarou; Manguelle-Dicoum, Eliézer

    2018-03-01

    Belonging to the Cameroon Volcanic Line (CVL), the western part of Cameroon is an active volcanic zone with volcanic eruptions and deadly gas emissions. The volcanic flows generally cover areas and bury structural features like faults. Terrestrial gravity surveys can hardly cover entirely this mountainous area due to difficult accessibility. The present work aims to evaluate gravity data derived from the geopotential field model, EGM2008 to investigate the subsurface of the CVL. The methodology involves upward continuation, horizontal gradient, maxima of horizontal gradient-upward continuation combination and Euler deconvolution techniques. The lineaments map inferred from this geopotential field model confirms several known lineaments and reveals new ones covered by lava flows. The known lineaments are interpreted as faults or geological contacts such as the Foumban fault and the Pan-African Belt-Congo craton contact. The lineaments highlighted coupled with the numerous maar lakes identified in this volcanic sector attest of the vulnerability of the CVL where special attention should be given for geohazard prevention.

  10. Recent variations in geopotential height associated with West African monsoon variability

    Science.gov (United States)

    Okoro, Ugochukwu K.; Chen, Wen; Nath, Debashis

    2018-02-01

    In the present study, the atmospheric circulation patterns associated with the seasonal West Africa (WA) monsoon (WAM) rainfall variability has been investigated. The observational rainfall data from the Climatic Research Unit (CRU) and atmospheric fields from the National Center for Environmental Prediction (NCEP) reanalysis 2, from 1979 to 2014, have been used. The rainfall variability extremes, classified as wet or dry years, are the outcomes of simultaneous 6-month SPI at the three rainfall zones, which shows increasing trends [Guinea Coast (GC = 0.012 year-1), Eastern Sudano Sahel (ESS = 0.045 year-1) and Western Sudano Sahel (WSS = 0.056 year-1) from Sen's slope]; however, it is significant only in the Sahel region (α = 0.05 and α = 0.001 at ESS and WSS, respectively, from Mann-Kendall test). The vertical profile of the geopotential height (GpH) during the wet and dry years reveals that the 700 hPa anomalies show remarkable pattern at about 8°N to 13°N. This shows varying correlation with the zonal averaged vertically integrated moisture flux convergence and rainfall anomalies, respectively, as well as the oceanic pulsations indexes [Ocean Nino Index (ONI) and South Atlantic Ocean dipole index (SAODI), significant from t test], identified as precursors to the Sahel and GC rainfall variability respectively. The role of GpH anomalies at 700 hPa has been identified as the facilitator to the West African Westerly Jet's input to the moisture flux transported over the WA. This is a new perspective of the circulation processes associated with WAM and serves as a basis for modeling investigations.

  11. On the axial anomalies in external tensor fields

    International Nuclear Information System (INIS)

    Khudaverdyan, O.M.; Mkrtchyan, R.L.; Zurabyan, L.A.

    1985-01-01

    Computation of the axial anomaly for Dirac fermions in external tensor fields is studied. The sequence of the supersymmetric one-dimensional models is presented. Their supercharges are equal, after quantization, to Dirac operators in external tensor fields, and the density of Witten's partition function gives the anomaly. It is shown that action in the corresponding path integral differs from the classical one. Gaussian approximation gives the anomaly only in the case of third-rank tensor with zero exterior derivative and in that case anomaly is calculated in all dimensions. The interpretation of that field as the torsion of gravitational field and also connection with the results of Witten and Alvarez-Gaume and Atiyah-Singer index theorem are discussed

  12. Evaluation of the geopotential value W0LVD of China

    Directory of Open Access Journals (Sweden)

    Lin He

    2017-11-01

    Full Text Available Estimation of the zero-height geopotential value W0LVD for the CVD (China Vertical Datum plays a fundamental role in the connection of traditional height reference systems into a global height system. Estimation the W0LVD of China is based on the computation of the mean geopotential offset between the value W0 = 62636856.0 m2s−2, selected as reference in this study, and the unknown geopotential value W0LVD. This estimation is based on the combination of ellipsoidal heights, levelled heights (referring to the CVD, and some physical parameters, such as geopotential values, gravity values, and geoid undulations. The geoid undulations derived from the GGM (Global Geopotential Models. This combination is performed through three approaches: The first one is based on the theory of Molodensky, and the second one compares levelled heights and geopotential values derived from the GGMs, while the third one analyses the differences between GPS/Levelling and GGMs geoid undulations. The approaches are evaluated at 65 benchmarks (BMs covered around Qingdao where the tide gauge is used to observe the local mean sea level of China. The results from three approaches are very similar. Furthermore, the W0LVD determined for the China local vertical datum was 62636852.9462 m2s−2, indicates a bias of about 3.0538 m2/s−2 compared to the conventional value of 62636856.0 m2s−2.

  13. Stabilized determination of geopotential coefficients by the mixed hom-BLUP approach

    Science.gov (United States)

    Middel, B.; Schaffrin, B.

    1989-01-01

    For the determination of geopotential coefficients, data can be used from rather different sources, e.g., satellite tracking, gravimetry, or altimetry. As each data type is particularly sensitive to certain wavelengths of the spherical harmonic coefficients it is of essential importance how they are treated in a combination solution. For example the longer wavelengths are well described by the coefficients of a model derived by satellite tracking, while other observation types such as gravity anomalies, delta g, and geoid heights, N, from altimetry contain only poor information for these long wavelengths. Therefore, the lower coefficients of the satellite model should be treated as being superior in the combination. In the combination a new method is presented which turns out to be highly suitable for this purpose due to its great flexibility combined with robustness.

  14. The use of absolute gravity data for the validation of Global Geopotential Models and for improving quasigeoid heights determined from satellite-only Global Geopotential Models

    Science.gov (United States)

    Godah, Walyeldeen; Krynski, Jan; Szelachowska, Malgorzata

    2018-05-01

    The objective of this paper is to demonstrate the usefulness of absolute gravity data for the validation of Global Geopotential Models (GGMs). It is also aimed at improving quasigeoid heights determined from satellite-only GGMs using absolute gravity data. The area of Poland, as a unique one, covered with a homogeneously distributed set of absolute gravity data, has been selected as a study area. The gravity anomalies obtained from GGMs were validated using the corresponding ones determined from absolute gravity data. The spectral enhancement method was implemented to overcome the spectral inconsistency in data being validated. The quasigeoid heights obtained from the satellite-only GGM as well as from the satellite-only GGM in combination with absolute gravity data were evaluated with high accuracy GNSS/levelling data. Estimated accuracy of gravity anomalies obtained from GGMs investigated is of 1.7 mGal. Considering omitted gravity signal, e.g. from degree and order 101 to 2190, satellite-only GGMs can be validated at the accuracy level of 1 mGal using absolute gravity data. An improvement up to 59% in the accuracy of quasigeoid heights obtained from the satellite-only GGM can be observed when combining the satellite-only GGM with absolute gravity data.

  15. Mixed global anomalies and boundary conformal field theories

    OpenAIRE

    Numasawa, Tokiro; Yamaguchi, Satoshi

    2017-01-01

    We consider the relation of mixed global gauge gravitational anomalies and boundary conformal field theory in WZW models for simple Lie groups. The discrete symmetries of consideration are the centers of the simple Lie groups. These mixed anomalies prevent to gauge them i.e, take the orbifold by the center. The absence of anomalies impose conditions on the levels of WZW models. Next, we study the conformal boundary conditions for the original theories. We consider the existence of a conformal...

  16. Hawking radiation of a vector field and gravitational anomalies

    International Nuclear Information System (INIS)

    Murata, Keiju; Miyamoto, Umpei

    2007-01-01

    Recently, the relation between Hawking radiation and gravitational anomalies has been used to estimate the flux of Hawking radiation for a large class of black objects. In this paper, we extend the formalism, originally proposed by Robinson and Wilczek, to the Hawking radiation of vector particles (photons). It is explicitly shown, with the Hamiltonian formalism, that the theory of an electromagnetic field on d-dimensional spherical black holes reduces to one of an infinite number of massive complex scalar fields on 2-dimensional spacetime, for which the usual anomaly-cancellation method is available. It is found that the total energy emitted from the horizon for the electromagnetic field is just (d-2) times that for a scalar field. The results support the picture that Hawking radiation can be regarded as an anomaly eliminator on horizons. Possible extensions and applications of the analysis are discussed

  17. Time series of low-degree geopotential coefficients from SLR data: estimation of Earth's figure axis and LOD variations

    Science.gov (United States)

    Luceri, V.; Sciarretta, C.; Bianco, G.

    2012-12-01

    The redistribution of the mass within the earth system induces changes in the Earth's gravity field. In particular, the second-degree geopotential coefficients reflect the behaviour of the Earth's inertia tensor of order 2, describing the main mass variations of our planet impacting the EOPs. Thanks to the long record of accurate and continuous laser ranging observations to Lageos and other geodetic satellites, SLR is the only current space technique capable to monitor the long time variability of the Earth's gravity field with adequate accuracy. Time series of low-degree geopotential coefficients are estimated with our analysis of SLR data (spanning more than 25 years) from several geodetic satellites in order to detect trends and periodic variations related to tidal effects and atmospheric/oceanic mass variations. This study is focused on the variations of the second-degree Stokes coefficients related to the Earth's principal figure axis and oblateness: C21, S21 and C20. On the other hand, surface mass load variations induce excitations in the EOPs that are proportional to the same second-degree coefficients. The time series of direct estimates of low degree geopotential and those derived from the EOP excitation functions are compared and presented together with their time and frequency analysis.

  18. MAGSAT anomaly field inversion and interpretation for the US

    Science.gov (United States)

    Mayhew, M. A. (Principal Investigator)

    1982-01-01

    Long wavelength anomalies in the total magnetic field measured by MAGSAT over the United States and adjacent areas are inverted to an equivalent layer crustal magnetization distribution. The model is based on an equal area dipole grid at the Earth's surface. Model resolution, defined as the closest dipole spacing giving a solution having physical significance, is about 220 km for MAGSAT data in the elevation range 300-500 km. The magnetization contours correlate well with large scale tectonic provinces. A higher resolution (200 km) model based on relatively noise free synthetic "pseudodata" is also presented. Magnetic anomaly component data measured by MAGSAT is compared with synthetic anomaly component fields arising from an equivalent source dipole array at the Earth's surface generated from total field anomaly data alone. An excellent inverse correlation between apparent magnetization and heat flow in the western U.S. is demonstrated. A regional heat flow map which is presented and compared with published maps, predicts high heat flow in Nebraska and the Dakotas, suggesting the presence of a "blind" geothermal area of regional extent.

  19. Photonic chiral current and its anomaly in a gravitational field

    International Nuclear Information System (INIS)

    Dolgov, A.D.; Khriplovich, I.B.; Vajnshtejn, A.I.; Zakharov, V.I.

    1988-01-01

    The notion of chirality for electromagnetic field which is conserved in interactions with gravitons is formulated. The correponding chiral current is the one-particle-state analogue of the Pauli-Lubansky vector. The anomaly of this current in an external gravitational field is found. The results obtained are used for the calculation of the electromagnetic radiative correction to the fermionic chiral anomaly in a gravitational field

  20. Modeling and estimation of a low degree geopotential model from terrestrial gravity data

    Science.gov (United States)

    Pavlis, Nikolaos K.

    1988-01-01

    The development of appropriate modeling and adjustment procedures for the estimation of harmonic coefficients of the geopotential, from surface gravity data was studied, in order to provide an optimum way of utilizing the terrestrial gravity information in combination solutions currently developed at NASA/Goddard Space Flight Center, for use in the TOPEX/POSEIDON mission. The mathematical modeling was based on the fundamental boundary condition of the linearized Molodensky boundary value problem. Atmospheric and ellipsoidal corrections were applied to the surface anomalies. Terrestrial gravity solutions were found to be in good agreement with the satellite ones over areas which are well surveyed (gravimetrically), such as North America or Australia. However, systematic differences between the terrestrial only models and GEMT1, over extended regions in Africa, the Soviet Union, and China were found. In Africa, gravity anomaly differences on the order of 20 mgals and undulation differences on the order of 15 meters, over regions extending 2000 km in diameter, occur. Comparisons of the GEMT1 implied undulations with 32 well distributed Doppler derived undulations gave an RMS difference of 2.6 m, while corresponding comparison with undulations implied by the terrestrial solution gave RMS difference on the order of 15 m, which implies that the terrestrial data in that region are substantially in error.

  1. DeepAnomaly: Combining Background Subtraction and Deep Learning for Detecting Obstacles and Anomalies in an Agricultural Field

    Directory of Open Access Journals (Sweden)

    Peter Christiansen

    2016-11-01

    Full Text Available Convolutional neural network (CNN-based systems are increasingly used in autonomous vehicles for detecting obstacles. CNN-based object detection and per-pixel classification (semantic segmentation algorithms are trained for detecting and classifying a predefined set of object types. These algorithms have difficulties in detecting distant and heavily occluded objects and are, by definition, not capable of detecting unknown object types or unusual scenarios. The visual characteristics of an agriculture field is homogeneous, and obstacles, like people, animals and other obstacles, occur rarely and are of distinct appearance compared to the field. This paper introduces DeepAnomaly, an algorithm combining deep learning and anomaly detection to exploit the homogenous characteristics of a field to perform anomaly detection. We demonstrate DeepAnomaly as a fast state-of-the-art detector for obstacles that are distant, heavily occluded and unknown. DeepAnomaly is compared to state-of-the-art obstacle detectors including “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks” (RCNN. In a human detector test case, we demonstrate that DeepAnomaly detects humans at longer ranges (45–90 m than RCNN. RCNN has a similar performance at a short range (0–30 m. However, DeepAnomaly has much fewer model parameters and (182 ms/25 ms = a 7.28-times faster processing time per image. Unlike most CNN-based methods, the high accuracy, the low computation time and the low memory footprint make it suitable for a real-time system running on a embedded GPU (Graphics Processing Unit.

  2. The Lagrangian structure of ozone mini-holes and potential vorticity anomalies in the Northern Hemisphere

    Directory of Open Access Journals (Sweden)

    P. M. James

    2002-06-01

    Full Text Available An ozone mini-hole is a synoptic-scale area of strongly reduced column total ozone, which undergoes a growth-decay cycle in association with baroclinic weather systems. The tracks of mini-hole events recorded during the TOMS observation period over the Northern Hemisphere provide a database for building anomaly fields of various meteorological parameters, following each mini-hole center in a Lagrangian sense. The resulting fields provide, for the first time, a complete mean Lagrangian picture of the three-dimensional structure of typical ozone mini-holes in the Northern Hemisphere. Mini-holes are shown to be associated with anomalous warm anticyclonic flow in the upper troposphere and cold cyclonic anomalies in the middle stratosphere. Ascending air columns occur upstream and descent downstream of the mini-hole centers. Band-pass filtering is used to reveal the transient synoptic nature of mini-holes embedded within larger scale circulation anomalies. Significant correlations between ozone and Ertel’s potential vorticity on isentropes (IPV both near the tropopause and in the middle stratosphere are shown and then utilized by reconstructing the Lagrangian analysis to follow local IPV anomalies instead of ozone minima. By using IPV as a proxy for ozone, the geopotential anomaly dipolar structure in the vertical characteristic of mini-holes is shown to result from a superposition of two largely independent dynamical components, stratospheric and tropospheric, typically operating on different time scales. Hence, ozone mini-holes may be viewed primarily as phenomena of coincidence.Key words. Meteorology and atmospheric dynamics (middle atmosphere dynamics; synoptic-scale meteorology

  3. The Lagrangian structure of ozone mini-holes and potential vorticity anomalies in the Northern Hemisphere

    Directory of Open Access Journals (Sweden)

    P. M. James

    Full Text Available An ozone mini-hole is a synoptic-scale area of strongly reduced column total ozone, which undergoes a growth-decay cycle in association with baroclinic weather systems. The tracks of mini-hole events recorded during the TOMS observation period over the Northern Hemisphere provide a database for building anomaly fields of various meteorological parameters, following each mini-hole center in a Lagrangian sense. The resulting fields provide, for the first time, a complete mean Lagrangian picture of the three-dimensional structure of typical ozone mini-holes in the Northern Hemisphere. Mini-holes are shown to be associated with anomalous warm anticyclonic flow in the upper troposphere and cold cyclonic anomalies in the middle stratosphere. Ascending air columns occur upstream and descent downstream of the mini-hole centers. Band-pass filtering is used to reveal the transient synoptic nature of mini-holes embedded within larger scale circulation anomalies. Significant correlations between ozone and Ertel’s potential vorticity on isentropes (IPV both near the tropopause and in the middle stratosphere are shown and then utilized by reconstructing the Lagrangian analysis to follow local IPV anomalies instead of ozone minima. By using IPV as a proxy for ozone, the geopotential anomaly dipolar structure in the vertical characteristic of mini-holes is shown to result from a superposition of two largely independent dynamical components, stratospheric and tropospheric, typically operating on different time scales. Hence, ozone mini-holes may be viewed primarily as phenomena of coincidence.

    Key words. Meteorology and atmospheric dynamics (middle atmosphere dynamics; synoptic-scale meteorology

  4. MLS/Aura L2 Geopotential Height V003

    Data.gov (United States)

    National Aeronautics and Space Administration — ML2GPH is the EOS Aura Microwave Limb Sounder (MLS) standard product for geopotential height derived from radiances measured by the 118 and 240 GHz radiometers. The...

  5. MLS/Aura L2 Geopotential Height V002

    Data.gov (United States)

    National Aeronautics and Space Administration — ML2GPH is the EOS Aura Microwave Limb Sounder (MLS) standard product for geopotential height derived from radiances measured by the 118 and 240 GHz radiometers. The...

  6. Local Analysis Approach for Short Wavelength Geopotential Variations

    Science.gov (United States)

    Bender, P. L.

    2009-12-01

    The value of global spherical harmonic analyses for determining 15 day to 30 day changes in the Earth's gravity field has been demonstrated extensively using data from the GRACE mission and previous missions. However, additional useful information appears to be obtainable from local analyses of the data. A number of such analyses have been carried out by various groups. In the energy approximation, the changes in the height of the satellite altitude geopotential can be determined from the post-fit changes in the satellite separation during individual one-revolution arcs of data from a GRACE-type pair of satellites in a given orbit. For a particular region, it is assumed that short wavelength spatial variations for the arcs crossing that region during a time T of interest would be used to determine corrections to the spherical harmonic results. The main issue in considering higher measurement accuracy in future missions is how much improvement in spatial resolution can be achieved. For this, the shortest wavelengths that can be determined are the most important. And, while the longer wavelength variations are affected by mass distribution changes over much of the globe, the shorter wavelength ones hopefully will be determined mainly by more local changes in the mass distribution. Future missions are expected to have much higher accuracy for measuring changes in the satellite separation than GRACE. However, how large an improvement in the derived results in hydrology will be achieved is still very much a matter of study, particularly because of the effects of uncertainty in the time variations in the atmospheric and oceanic mass distributions. To be specific, it will be assumed that improving the spatial resolution in continental regions away from the coastlines is the objective, and that the satellite altitude is in the range of roughly 290 to 360 km made possible for long missions by drag-free operation. The advantages of putting together the short wavelength

  7. Prediction of North Pacific Height Anomalies During Strong Madden-Julian Oscillation Events

    Science.gov (United States)

    Kai-Chih, T.; Barnes, E. A.; Maloney, E. D.

    2017-12-01

    The Madden Julian Oscillation (MJO) creates strong variations in extratropical atmospheric circulations that have important implications for subseasonal-to-seasonal prediction. In particular, certain MJO phases are characterized by a consistent modulation of geopotential height in the North Pacific and adjacent regions across different MJO events. Until recently, only limited research has examined the relationship between these robust MJO tropical-extratropical teleconnections and model prediction skill. In this study, reanalysis data (MERRA and ERA-Interim) and ECMWF ensemble hindcasts are used to demonstrate that robust teleconnections in specific MJO phases and time lags are also characterized by excellent agreement in the prediction of geopotential height anoma- lies across model ensemble members at forecast leads of up to 3 weeks. These periods of enhanced prediction capabilities extend the possibility for skillful extratropical weather prediction beyond traditional 10-13 day limits. Furthermore, we also examine the phase dependency of teleconnection robustness by using Linear Baroclinic Model (LBM) and the result is consistent with the ensemble hindcasts : the anomalous heating of MJO phase 2 (phase 6) can consistently generate positive (negative) geopotential height anomalies around the extratropical Pacific with a lead of 15-20 days, while other phases are more sensitive to the variaion of the mean state.

  8. Influence of the sea surface temperature anomaly over the Indian Ocean in March on the summer rainfall in Xinjiang

    Science.gov (United States)

    Zhou, Yang; Huang, Anning; Zhao, Yong; Yang, Qing; Jiang, Jing; La, Mengke

    2015-02-01

    This study explores the relationship between the sea surface temperature over the Indian Ocean (IOSST) in March and the summer rainfall in Xinjiang. In the observations, the IOSST in March significantly correlates with the summer rainfall in Xinjiang with a correlation coefficient of about 0.49 during 1961-2007. This relationship is independent from the El Niño Southern Oscillation (ENSO), with a partial correlation coefficient of about 0.40-0.48 controlling for the ENSO indices from December to March. In addition to the observations, three sets of numerical sensitivity experiments are conducted with a regional climate model (RegCM4.3). The model results show that warm IOSST can excite a negative anomaly of geopotential height at 500 hPa over the Indian Ocean in March. This anomaly stays over the tropical Indian Ocean, and then propagates north to central Asia in June. Consequently, the anomalous wind associated with this geopotential height anomaly transports moisture from the Persian Gulf and the coast of Iran to Xinjiang, passing over Pakistan and the Tibetan Plateau. Therefore, the warm (cold) IOSST in March tends to cause the increase (decrease) of the summer rainfall over Xinjiang, especially in the Tian Shan and Kunlun Mountains.

  9. Gauge anomaly with vector and axial-vector fields in 6D curved space

    Science.gov (United States)

    Yajima, Satoshi; Eguchi, Kohei; Fukuda, Makoto; Oka, Tomonori

    2018-03-01

    Imposing the conservation equation of the vector current for a fermion of spin 1/2 at the quantum level, a gauge anomaly for the fermion coupling with non-Abelian vector and axial-vector fields in 6D curved space is expressed in tensorial form. The anomaly consists of terms that resemble the chiral U(1) anomaly and the commutator terms that disappear if the axial-vector field is Abelian.

  10. Conformal anomalies and the Einstein field equations

    Energy Technology Data Exchange (ETDEWEB)

    Godazgar, Hadi [Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut), Mühlenberg 1, D-14476 Potsdam (Germany); Meissner, Krzysztof A. [Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw (Poland); Nicolai, Hermann [Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut), Mühlenberg 1, D-14476 Potsdam (Germany)

    2017-04-28

    We compute corrections to the Einstein field equations which are induced by the anomalous effective actions associated to the type A conformal anomaly, both for the (non-local) Riegert action, as well as for the local action with dilaton. In all cases considered we find that these corrections can be very large.

  11. Chiral Anomaly from Strain-Induced Gauge Fields in Dirac and Weyl Semimetals

    Science.gov (United States)

    Pikulin, D. I.; Chen, Anffany; Franz, M.

    2016-10-01

    Dirac and Weyl semimetals form an ideal platform for testing ideas developed in high-energy physics to describe massless relativistic particles. One such quintessentially field-theoretic idea of the chiral anomaly already resulted in the prediction and subsequent observation of the pronounced negative magnetoresistance in these novel materials for parallel electric and magnetic fields. Here, we predict that the chiral anomaly occurs—and has experimentally observable consequences—when real electromagnetic fields E and B are replaced by strain-induced pseudo-electromagnetic fields e and b . For example, a uniform pseudomagnetic field b is generated when a Weyl semimetal nanowire is put under torsion. In accordance with the chiral anomaly equation, we predict a negative contribution to the wire resistance proportional to the square of the torsion strength. Remarkably, left- and right-moving chiral modes are then spatially segregated to the bulk and surface of the wire forming a "topological coaxial cable." This produces hydrodynamic flow with potentially very long relaxation time. Another effect we predict is the ultrasonic attenuation and electromagnetic emission due to a time-periodic mechanical deformation causing pseudoelectric field e . These novel manifestations of the chiral anomaly are most striking in the semimetals with a single pair of Weyl nodes but also occur in Dirac semimetals such as Cd3 As2 and Na3Bi and Weyl semimetals with unbroken time-reversal symmetry.

  12. African Plate Seismicity and Gravity Field Anomalies

    Science.gov (United States)

    Ryzhii, B. P.; Nachapkin, N. I.; Milanovsky, Svet

    The analysis of connection plate of earthquakes of the African continent with Bouguer gravity anomalies is carried out. As input dataSs were used the catalog of earthquakes and numeral map of Bouguer gravity field. The catalog contains geographical coor- dinates of epicenters and magnitudes of 8027 earthquakes recorded on continent and adjacent oceanic areas for the period from 1904 to 1988 years. The values of a gravity field preset in knots of a grid with a step 1 grade. For the analysis of plate seismicity from the catalog the parameters of 6408 earthquakes were chosen, which one have taken place in the field of restricted shore line. The earthquakes fixed in a band of a concatenation of continent with the Arabian plate were excluded from the analysis. On the basis of a numeral gravity map for everyone epicenter the value of Bouguer anomaly was calculated. The allocation of epicenters of earthquakes with magnitude M is obtained depending on value of a gravity Bouguer field. The outcomes of a sta- tistical analysis testify that practically all earthquakes are associated with the areas with negative values of Bouguer gravity field. Thus in areas with values of a field -160 mgal to -100 mgal there was 80 % of all earthquakes. It is necessary to note, that the mean value of the field for the African continent is -70 mgal. Obtained result gives us the possibility to make a conclusion about connection of plate earthquakes of Africa predominantly with structural complexes of earth crust with lower density. These out- comes are in the consent with a hypothesis of one of the authors (Ryzhii B.P.) about connection of plate earthquakes hypocenters on the territory of Russia with negative values of a gravity field and heightened silica content in the Earth crust. This work was supported with RFFI grant N 00-05-65067

  13. Clustering of France Monthly Precipitation, Temperature and Discharge Based on their Multiresolution Links with 500mb Geopotential Height from 1968 to 2008

    Science.gov (United States)

    Massei, N.; Fossa, M.; Dieppois, B.; Vidal, J. P.; Fournier, M.; Laignel, B.

    2017-12-01

    In the context of climate change and ever growing use of water resources, identifying how the climate and watershed signature in discharge variability changes with the geographic location is of prime importance. This study aims at establishing how 1968-2008 multiresolution links between 3 local hydrometerological variables (precipitation, temperature and discharge) and 500 mb geopotential height are structured over France. First, a methodology that allows to encode the 3D geopotential height data into its 1D conformal modulus time series is introduced. Then, for each local variable, their covariations with the geopotential height are computed with cross wavelet analysis. Finally, a clustering analysis of each variable cross spectra is done using bootstrap clustering.We compare the clustering results for each local variable in order to untangle the watershed from the climate drivers in France's rivers discharge. Additionally, we identify the areas in the geopotential height field that are responsible for the spatial structure of each local variable.Main results from this study show that for precipitation and discharge, clear spatial zones emerge. Each cluster is characterized either by different different amplitudes and/or time scales of covariations with geopotential height. Precipitation and discharge clustering differ with the later being simpler which indicates a strong low frequency modulation by the watersheds all over France. Temperature on the other hand shows less clearer spatial zones. For precipitation and discharge, we show that the main action path starts at the northern tropical zone then moves up the to central North Atlantic zone which seems to indicates an interaction between the convective cells variability and the reinforcement of the westerlies jets as one of the main control of the precipitation and discharge over France. Temperature shows a main zone of action directly over France hinting at local temperature/pressure interactions.

  14. Chiral Anomaly from Strain-Induced Gauge Fields in Dirac and Weyl Semimetals

    Directory of Open Access Journals (Sweden)

    D. I. Pikulin

    2016-10-01

    Full Text Available Dirac and Weyl semimetals form an ideal platform for testing ideas developed in high-energy physics to describe massless relativistic particles. One such quintessentially field-theoretic idea of the chiral anomaly already resulted in the prediction and subsequent observation of the pronounced negative magnetoresistance in these novel materials for parallel electric and magnetic fields. Here, we predict that the chiral anomaly occurs—and has experimentally observable consequences—when real electromagnetic fields E and B are replaced by strain-induced pseudo-electromagnetic fields e and b. For example, a uniform pseudomagnetic field b is generated when a Weyl semimetal nanowire is put under torsion. In accordance with the chiral anomaly equation, we predict a negative contribution to the wire resistance proportional to the square of the torsion strength. Remarkably, left- and right-moving chiral modes are then spatially segregated to the bulk and surface of the wire forming a “topological coaxial cable.” This produces hydrodynamic flow with potentially very long relaxation time. Another effect we predict is the ultrasonic attenuation and electromagnetic emission due to a time-periodic mechanical deformation causing pseudoelectric field e. These novel manifestations of the chiral anomaly are most striking in the semimetals with a single pair of Weyl nodes but also occur in Dirac semimetals such as Cd_{3}As_{2} and Na_{3}Bi and Weyl semimetals with unbroken time-reversal symmetry.

  15. Crustal Magnetic Field Anomalies and Global Tectonics

    Science.gov (United States)

    Storetvedt, Karsten

    2014-05-01

    A wide variety of evidence suggests that the ruling isochron (geomagnetic polarity versus age) hypothesis of marine magnetic lineations has no merit - undermining therefore one of the central tenets of plate tectonics. Instead, variable induction by the ambient geomagnetic field is likely to be the principal agent for mega-scale crustal magnetic features - in both oceanic and continental settings. This revitalizes the fault-controlled susceptibility-contrast model of marine magnetic lineations, originally proposed in the late 1960s. Thus, the marine magnetic 'striping' may be ascribed to tectonic shearing and related, but variable, disintegration of the original iron-oxide mineralogy, having developed primarily along one of the two pan-global sets of orthogonal fractures and faults. In this way, fault zones (having the more advanced mineral alteration) would be characterized by relatively low susceptibility, while more moderately affected crustal sections (located between principal fault zones) would be likely to have less altered oxide mineralogy and therefore higher magnetic susceptibility. On this basis, induction by the present geomagnetic field is likely to produce oscillating magnetic field anomalies with axis along the principal shear grain. The modus operandi of the alternative magneto-tectonic interpretation is inertia-driven wrenching of the global Alpine age palaeo-lithosphere - triggered by changes in Earth's rotation. Increasing sub-crustal loss to the upper mantle during the Upper Mesozoic had left the ensuing Alpine Earth in a tectonically unstable state. Thus, sub-crustal eclogitization and associated gravity-driven delamination to the upper mantle led to a certain degree of planetary acceleration which in turn gave rise to latitude-dependent, westward inertial wrenching of the global palaeo-lithosphere. During this process, 1) the thin and mechanically fragile oceanic crust were deformed into a new type of broad fold belts, and 2) the continents

  16. The linkage between geopotential height and monthly precipitation in Iran

    Science.gov (United States)

    Shirvani, Amin; Fadaei, Amir Sabetan; Landman, Willem A.

    2018-04-01

    This paper investigates the linkage between large-scale atmospheric circulation and monthly precipitation during November to April over Iran. Canonical correlation analysis (CCA) is used to set up the statistical linkage between the 850 hPa geopotential height large-scale circulation and monthly precipitation over Iran for the period 1968-2010. The monthly precipitation dataset for 50 synoptic stations distributed in different climate regions of Iran is considered as the response variable in the CCA. The monthly geopotential height reanalysis dataset over an area between 10° N and 60° N and from 20° E to 80° E is utilized as the explanatory variable in the CCA. Principal component analysis (PCA) as a pre-filter is used for data reduction for both explanatory and response variables before applying CCA. The optimal number of principal components and canonical variables to be retained in the CCA equations is determined using the highest average cross-validated Kendall's tau value. The 850 hPa geopotential height pattern over the Red Sea, Saudi Arabia, and Persian Gulf is found to be the major pattern related to Iranian monthly precipitation. The Pearson correlation between the area averaged of the observed and predicted precipitation over the study area for Jan, Feb, March, April, November, and December months are statistically significant at the 5% significance level and are 0.78, 0.80, 0.82, 0.74, 0.79, and 0.61, respectively. The relative operating characteristic (ROC) indicates that the highest scores for the above- and below-normal precipitation categories are, respectively, for February and April and the lowest scores found for December.

  17. Exploration of geomagnetic field anomaly with balloon for geophysical research

    Science.gov (United States)

    Jia, Wen-Kui

    The use of a balloon to explore the geomagnetic field anomaly in the area east of Beijing is demonstrated. The present results are compared with those of aerial surveys. Descriptions are given of the fluxgate magnetometer, the sensor's attitude control and measurement, and data transmission and processing. At an altitude of about 30 km, a positive anomaly of the vertical component of about 100 nanoteslas was measured. The results suggest that, for this particular area, the shallow layer of a small-scale geological structure differs from the deep layer of a large-scale geological structure.

  18. Gravitational anomalies

    Energy Technology Data Exchange (ETDEWEB)

    Leutwyler, H; Mallik, S

    1986-12-01

    The effective action for fermions moving in external gravitational and gauge fields is analyzed in terms of the corresponding external field propagator. The central object in our approach is the covariant energy-momentum tensor which is extracted from the regular part of the propagator at short distances. It is shown that the Lorentz anomaly, the conformal anomaly and the gauge anomaly can be expressed in terms of the local polynomials which determine the singular part of the propagator. (There are no coordinate anomalies). Except for the conformal anomaly, for which we give explicit representations only in dless than or equal to4, we consider an arbitrary number of dimensions.

  19. Detection of sinkholes or anomalies using full seismic wave fields.

    Science.gov (United States)

    2013-04-01

    This research presents an application of two-dimensional (2-D) time-domain waveform tomography for detection of embedded sinkholes and anomalies. The measured seismic surface wave fields were inverted using a full waveform inversion (FWI) technique, ...

  20. Global gravitational anomalies

    International Nuclear Information System (INIS)

    Witten, E.

    1985-01-01

    A general formula for global gauge and gravitational anomalies is derived. It is used to show that the anomaly free supergravity and superstring theories in ten dimensions are all free of global anomalies that might have ruined their consistency. However, it is shown that global anomalies lead to some restrictions on allowed compactifications of these theories. For example, in the case of O(32) superstring theory, it is shown that a global anomaly related to π 7 (O(32)) leads to a Dirac-like quantization condition for the field strength of the antisymmetric tensor field. Related to global anomalies is the question of the number of fermion zero modes in an instanton field. It is argued that the relevant gravitational instantons are exotic spheres. It is shown that the number of fermion zero modes in an instanton field is always even in ten dimensional supergravity. (orig.)

  1. Large short-term deviations from dipolar field during the Levantine Iron Age Geomagnetic Anomaly ca. 1050-700 BCE

    Science.gov (United States)

    Shaar, R.; Tauxe, L.; Ebert, Y.

    2017-12-01

    Continuous decadal-resolution paleomagnetic data from archaeological and sedimentary sources in the Levant revealed the existence a local high-field anomaly, which spanned the first 350 years of the first millennium BCE. This so-called "the Levantine Iron Age geomagnetic Anomaly" (LIAA) was characterized by a high averaged geomagnetic field (virtual axial dipole moments, VADM > 140 Z Am2, nearly twice of today's field), short decadal-scale geomagnetic spikes (VADM of 160-185 Z Am2), fast directional and intensity variations, and substantial deviation (20°-25°) from dipole field direction. Similar high field values in the time frame of LIAA have been observed north, and northeast to the Levant: Eastern Anatolia, Turkmenistan, and Georgia. West of the Levant, in the Balkans, field values in the same time are moderate to low. The overall data suggest that the LIAA is a manifestation of a local positive geomagnetic field anomaly similar in magnitude and scale to the presently active negative South Atlantic Anomaly. In this presentation we review the overall archaeomagnetic and sedimentary evidences supporting the local anomaly hypothesis, and compare these observations with today's IGRF field. We analyze the global data during the first two millennia BCE, which suggest some unexpected large deviations from a simple dipolar geomagnetic structure.

  2. Small Modifications of Curvilinear Coordinates and Successive Approximations Applied in Geopotential Determination

    Science.gov (United States)

    Holota, P.; Nesvadba, O.

    2016-12-01

    The mathematical apparatus currently applied for geopotential determination is undoubtedly quite developed. This concerns numerical methods as well as methods based on classical analysis, equally as classical and weak solution concepts. Nevertheless, the nature of the real surface of the Earth has its specific features and is still rather complex. The aim of this paper is to consider these limits and to seek a balance between the performance of an apparatus developed for the surface of the Earth smoothed (or simplified) up to a certain degree and an iteration procedure used to bridge the difference between the real and smoothed topography. The approach is applied for the solution of the linear gravimetric boundary value problem in geopotential determination. Similarly as in other branches of engineering and mathematical physics a transformation of coordinates is used that offers a possibility to solve an alternative between the boundary complexity and the complexity of the coefficients of the partial differential equation governing the solution. As examples the use of modified spherical and also modified ellipsoidal coordinates for the transformation of the solution domain is discussed. However, the complexity of the boundary is then reflected in the structure of Laplace's operator. This effect is taken into account by means of successive approximations. The structure of the respective iteration steps is derived and analyzed. On the level of individual iteration steps the attention is paid to the representation of the solution in terms of function bases or in terms of Green's functions. The convergence of the procedure and the efficiency of its use for geopotential determination is discussed.

  3. Long-term stability of geoidal geopotential from Topex/Poseidon satellite altimetry 1993-1999

    Czech Academy of Sciences Publication Activity Database

    Burša, Milan; Kenyon, S.; Kouba, J.; Müller, A.; Raděj, K.; Vatrt, V.; Vojtíšková, M.; Vítek, V.

    2001-01-01

    Roč. 84, - (2001), s. 163-176 ISSN 0167-9295 Institutional research plan: CEZ:AV0Z1003909 Keywords : geoidal geopotential * Topex/Poseidon altimetry Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 1.457, year: 2001

  4. An improved model for the Earth's gravity field

    Science.gov (United States)

    Tapley, B. D.; Shum, C. K.; Yuan, D. N.; Ries, J. C.; Schutz, B. E.

    1989-01-01

    An improved model for the Earth's gravity field, TEG-1, was determined using data sets from fourteen satellites, spanning the inclination ranges from 15 to 115 deg, and global surface gravity anomaly data. The satellite measurements include laser ranging data, Doppler range-rate data, and satellite-to-ocean radar altimeter data measurements, which include the direct height measurement and the differenced measurements at ground track crossings (crossover measurements). Also determined was another gravity field model, TEG-1S, which included all the data sets in TEG-1 with the exception of direct altimeter data. The effort has included an intense scrutiny of the gravity field solution methodology. The estimated parameters included geopotential coefficients complete to degree and order 50 with selected higher order coefficients, ocean and solid Earth tide parameters, Doppler tracking station coordinates and the quasi-stationary sea surface topography. Extensive error analysis and calibration of the formal covariance matrix indicate that the gravity field model is a significant improvement over previous models and can be used for general applications in geodesy.

  5. Towards the Selection of an Optimal Global Geopotential Model for the Computation of the Long-Wavelength Contribution: A Case Study of Ghana

    Directory of Open Access Journals (Sweden)

    Caleb Iddissah Yakubu

    2017-11-01

    Full Text Available The selection of a global geopotential model (GGM for modeling the long-wavelength for geoid computation is imperative not only because of the plethora of GGMs available but more importantly because it influences the accuracy of a geoid model. In this study, we propose using the Gaussian averaging function for selecting an optimal GGM and degree and order (d/o for the remove-compute-restore technique as a replacement for the direct comparison of terrestrial gravity anomalies and GGM anomalies, because ground data and GGM have different frequencies. Overall, EGM2008 performed better than all the tested GGMs and at an optimal d/o of 222. We verified the results by computing geoid models using Heck and Grüninger’s modification and validated them against GPS/trigonometric data. The results of the validation were consistent with those of the averaging process with EGM2008 giving the smallest standard deviation of 0.457 m at d/o 222, resulting in an 8% improvement over the previous geoid model. In addition, this geoid model, the Ghanaian Gravimetric Geoid 2017 (GGG 2017 may be used to replace second-order class II leveling, with an expected error of 6.8 mm/km for baselines ranging from 20 to 225 km.

  6. Influence of calculation error of total field anomaly in strongly magnetic environments

    Science.gov (United States)

    Yuan, Xiaoyu; Yao, Changli; Zheng, Yuanman; Li, Zelin

    2016-04-01

    An assumption made in many magnetic interpretation techniques is that ΔTact (total field anomaly - the measurement given by total field magnetometers, after we remove the main geomagnetic field, T0) can be approximated mathematically by ΔTpro (the projection of anomalous field vector in the direction of the earth's normal field). In order to meet the demand for high-precision processing of magnetic prospecting, the approximate error E between ΔTact and ΔTpro is studied in this research. Generally speaking, the error E is extremely small when anomalies not greater than about 0.2T0. However, the errorE may be large in highly magnetic environments. This leads to significant effects on subsequent quantitative inference. Therefore, we investigate the error E through numerical experiments of high-susceptibility bodies. A systematic error analysis was made by using a 2-D elliptic cylinder model. Error analysis show that the magnitude of ΔTact is usually larger than that of ΔTpro. This imply that a theoretical anomaly computed without accounting for the error E overestimate the anomaly associated with the body. It is demonstrated through numerical experiments that the error E is obvious and should not be ignored. It is also shown that the curves of ΔTpro and the error E had a certain symmetry when the directions of magnetization and geomagnetic field changed. To be more specific, the Emax (the maximum of the error E) appeared above the center of the magnetic body when the magnetic parameters are determined. Some other characteristics about the error Eare discovered. For instance, the curve of Emax with respect to the latitude was symmetrical on both sides of magnetic equator, and the extremum of the Emax can always be found in the mid-latitudes, and so on. It is also demonstrated that the error Ehas great influence on magnetic processing transformation and inversion results. It is conclude that when the bodies have highly magnetic susceptibilities, the error E can

  7. The gravity field and GGOS

    DEFF Research Database (Denmark)

    Forsberg, René; Sideris, M.G.; Shum, C.K.

    2005-01-01

    The gravity field of the earth is a natural element of the Global Geodetic Observing System (GGOS). Gravity field quantities are like spatial geodetic observations of potential very high accuracy, with measurements, currently at part-per-billion (ppb) accuracy, but gravity field quantities are also...... unique as they can be globally represented by harmonic functions (long-wavelength geopotential model primarily from satellite gravity field missions), or based on point sampling (airborne and in situ absolute and superconducting gravimetry). From a GGOS global perspective, one of the main challenges...... is to ensure the consistency of the global and regional geopotential and geoid models, and the temporal changes of the gravity field at large spatial scales. The International Gravity Field Service, an umbrella "level-2" IAG service (incorporating the International Gravity Bureau, International Geoid Service...

  8. Anomaly cancelation in field theory and F-theory on a circle

    International Nuclear Information System (INIS)

    Grimm, Thomas W.; Kapfer, Andreas

    2016-01-01

    We study the manifestation of local gauge anomalies of four- and six-dimensional field theories in the lower-dimensional Kaluza-Klein theory obtained after circle compactification. We identify a convenient set of transformations acting on the whole tower of massless and massive states and investigate their action on the low-energy effective theories in the Coulomb branch. The maps employ higher-dimensional large gauge transformations and precisely yield the anomaly cancelation conditions when acting on the one-loop induced Chern-Simons terms in the three- and five-dimensional effective theory. The arising symmetries are argued to play a key role in the study of the M-theory to F-theory limit on Calabi-Yau manifolds. For example, using the fact that all fully resolved F-theory geometries inducing multiple Abelian gauge groups or non-Abelian groups admit a certain set of symmetries, we are able to generally show the cancelation of pure Abelian or pure non-Abelian anomalies in these models.

  9. On the statistical connection between tropospheric and stratospheric circulation of the northern hemisphere in winter

    International Nuclear Information System (INIS)

    Perlwitz, J.; Graf, H.F.

    1994-01-01

    The associated anomaly patterns of the stratospheric geopotential height field and the tropospheric geopotential and temperature height fields of the northern hemisphere are determined applying the Canonical Correlation Analysis (CCA). With this linear multivariate technique the coupled modes of variability of time series of two fields are isolated in the EOF space. The one data set is the 50 hPa geopotential field, the other set consists of different height fields of the tropospheric pressure levels (200 hPa, 500 hPa, 700 hPa, 850 hPa) and the temperature of the 850 hPa pressure level. For the winter months (December, January, February) two natural coupled modes, a barotropic and a baroclinic one, of linear relationship between stratospheric and tropospheric circulation are found. The baroclinic mode describes a connection between the strength of the stratospheric cyclonic winter vortex and the tropospheric circulation over the North Atlantic. The corresponding temperature pattern for an anomalously strong stratospheric cyclonic vortex is characterized by positive temperature anomalies over higher latitudes of Eurasia. These 'Winter Warmings' are observed e.g. after violent volcanic eruptions. The barotropic mode is characterized by a zonal wave number one in the lower stratosphere and by a PNA-like pattern in the troposphere. It was shown by Labitzke and van Loon (1987) that this mode can be enhanced e.g. by El Ninos via the intensification of the Aleutian low. (orig.)

  10. Development of references of anomalies detection on P91 material using Self-Magnetic Leakage Field (SMLF) technique

    Science.gov (United States)

    Husin, Shuib; Afiq Pauzi, Ahmad; Yunus, Salmi Mohd; Ghafar, Mohd Hafiz Abdul; Adilin Sekari, Saiful

    2017-10-01

    This technical paper demonstrates the successful of the application of self-magnetic leakage field (SMLF) technique in detecting anomalies in weldment of a thick P91 materials joint (1 inch thickness). Boiler components such as boiler tubes, stub boiler at penthouse and energy piping such as hot reheat pipe (HRP) and H-balance energy piping to turbine are made of P91 material. P91 is ferromagnetic material, therefore the technique of self-magnetic leakage field (SMLF) is applicable for P91 in detecting anomalies within material (internal defects). The technique is categorized under non-destructive technique (NDT). It is the second passive method after acoustic emission (AE), at which the information on structures radiation (magnetic field and energy waves) is used. The measured magnetic leakage field of a product or component is a magnetic leakage field occurring on the component’s surface in the zone of dislocation stable slipbands under the influence of operational (in-service) or residual stresses or in zones of maximum inhomogeneity of metal structure in new products or components. Inter-granular and trans-granular cracks, inclusion, void, cavity and corrosion are considered types of inhomogeneity and discontinuity in material where obviously the output of magnetic leakage field will be shown when using this technique. The technique does not required surface preparation for the component to be inspected. This technique is contact-type inspection, which means the sensor has to touch or in-contact to the component’s surface during inspection. The results of application of SMLF technique on the developed P91 reference blocks have demonstrated that the technique is practical to be used for anomaly inspection and detection as well as identification of anomalies’ location. The evaluation of this passive self-magnetic leakage field (SMLF) technique has been verified by other conventional non-destructive tests (NDTs) on the reference blocks where simulated

  11. Measurement of the terrestrial magnetic field and its anomalies

    International Nuclear Information System (INIS)

    Duret, D.

    1994-01-01

    After a presentation of the terrestrial magnetic field and its various anomalies, the different types of magnetometers commonly used are reviewed with their characteristics and performances: scalar magnetometers (free precession and continuous polarization proton magnetometers, dynamic polarization proton magnetometers, optical pumping magnetometers, electronic resonance scalar magnetometers (without pumping)); vectorial magnetometers (flux gate magnetometers, induction magnetometers, suspended magnet magnetometers, superconducting magnetometers, integrated magnetometers, resonance directional magnetometers). The magnetometry market and applications are discussed. 20 figs., 9 tabs., 72 refs

  12. Geopotential coefficient determination and the gravimetric boundary value problem: A new approach

    Science.gov (United States)

    Sjoeberg, Lars E.

    1989-01-01

    New integral formulas to determine geopotential coefficients from terrestrial gravity and satellite altimetry data are given. The formulas are based on the integration of data over the non-spherical surface of the Earth. The effect of the topography to low degrees and orders of coefficients is estimated numerically. Formulas for the solution of the gravimetric boundary value problem are derived.

  13. A Semi-Vectorization Algorithm to Synthesis of Gravitational Anomaly Quantities on the Earth

    Science.gov (United States)

    Abdollahzadeh, M.; Eshagh, M.; Najafi Alamdari, M.

    2009-04-01

    The Earth's gravitational potential can be expressed by the well-known spherical harmonic expansion. The computational time of summing up this expansion is an important practical issue which can be reduced by an efficient numerical algorithm. This paper proposes such a method for block-wise synthesizing the anomaly quantities on the Earth surface using vectorization. Fully-vectorization means transformation of the summations to the simple matrix and vector products. It is not a practical for the matrices with large dimensions. Here a semi-vectorization algorithm is proposed to avoid working with large vectors and matrices. It speeds up the computations by using one loop for the summation either on degrees or on orders. The former is a good option to synthesize the anomaly quantities on the Earth surface considering a digital elevation model (DEM). This approach is more efficient than the two-step method which computes the quantities on the reference ellipsoid and continues them upward to the Earth surface. The algorithm has been coded in MATLAB which synthesizes a global grid of 5′Ã- 5′ (corresponding 9 million points) of gravity anomaly or geoid height using a geopotential model to degree 360 in 10000 seconds by an ordinary computer with 2G RAM.

  14. Introduction to anomalies

    International Nuclear Information System (INIS)

    Alvarez-Gaume, L.

    1986-01-01

    These lectures are dedicated to the study of the recent progress and implications of anomalies in quantum field theory. In this introduction the author recapitulates some of the highlights in the history of the subject. The outline of these lectures is as follows: Section II contains a quick review of spinors in Euclidean and Minkowski space, some other group theory results relevant for the computation of anomalies in various dimensions, and an exposition of the index theorem. Section III starts the analysis of fermion determinants and chiral effective actions by deriving the non-Abelian anomaly from index theory. Using the results of Section II, the anomaly cancellation recently discovered by Green and Schwarz will be presented in Section IV as well as the connection of these results of Section III with the descent equations and the Wess-Zumino-Witten Lagrangians. Section V contains the generalization of anomalies to σ-models and some of its application in string theory. Section VI will deal with the anomalies from the Hamiltonian point of view. An exact formula for the imaginary part of the effective action for chiral fermions in the presence of arbitrary external gauge and gravitational fields will be derived in Section VII, and used in Section VIII for the study of global anomalies. 85 references

  15. Improved techniques in data analysis and interpretation of potential fields: examples of application in volcanic and seismically active areas

    Directory of Open Access Journals (Sweden)

    G. Florio

    2002-06-01

    Full Text Available Geopotential data may be interpreted by many different techniques, depending on the nature of the mathematical equations correlating specific unknown ground parameters to the measured data set. The investigation based on the study of the gravity and magnetic anomaly fields represents one of the most important geophysical approaches in the earth sciences. It has now evolved aimed both at improving of known methods and testing other new and reliable techniques. This paper outlines a general framework for several applications of recent techniques in the study of the potential methods for the earth sciences. Most of them are here described and significant case histories are shown to illustrate their reliability on active seismic and volcanic areas.

  16. Coordinate and Kaehler σ-model anomalies and their cancellation in string effective field theories

    International Nuclear Information System (INIS)

    Lopes Cardoso, G.; Ovrut, B.A.

    1993-01-01

    We discuss the complete set of one-loop triangle graphs involving the Yang-Mills gauge connection, the Kaehler connection and the σ-model coordinate connection in the effective field theory of (2, 2) symmetric Z N orbifolds. That is, we discuss pure gauge, pure Kaehler and pure σ-model coordinate anomalies as well as the mixed anomalies, such as Kaehler-gauge, some of which have been discussed elsewhere. We propose a mechanism for restoring both Kaehler and σ-model coordinate symmetry based upon the introduction of two types of counterterms. Finally, we enlarge σ-model generalization of the Green-Schwarz mechanism to allow the removal of the universal parts of a wider class of anomalies than those previously discussed. (orig.)

  17. Short note: the experimental geopotential model XGM2016

    Science.gov (United States)

    Pail, R.; Fecher, T.; Barnes, D.; Factor, J. F.; Holmes, S. A.; Gruber, T.; Zingerle, P.

    2018-04-01

    As a precursor study for the upcoming combined Earth Gravitational Model 2020 (EGM2020), the Experimental Gravity Field Model XGM2016, parameterized as a spherical harmonic series up to degree and order 719, is computed. XGM2016 shares the same combination methodology as its predecessor model GOCO05c (Fecher et al. in Surv Geophys 38(3): 571-590, 2017. doi: 10.1007/s10712-016-9406-y). The main difference between these models is that XGM2016 is supported by an improved terrestrial data set of 15^' × 15^' gravity anomaly area-means provided by the United States National Geospatial-Intelligence Agency (NGA), resulting in significant upgrades compared to existing combined gravity field models, especially in continental areas such as South America, Africa, parts of Asia, and Antarctica. A combination strategy of relative regional weighting provides for improved performance in near-coastal ocean regions, including regions where the altimetric data are mostly unchanged from previous models. Comparing cumulative height anomalies, from both EGM2008 and XGM2016 at degree/order 719, yields differences of 26 cm in Africa and 40 cm in South America. These differences result from including additional information of satellite data, as well as from the improved ground data in these regions. XGM2016 also yields a smoother Mean Dynamic Topography with significantly reduced artifacts, which indicates an improved modeling of the ocean areas.

  18. Evaluation of JGM 2 geopotential errors from geosat, TOPEX/poseidon and ERS-1 crossover altimetry

    Science.gov (United States)

    Wagner, C. A.; Klokocník, J.; Tai, C. K.

    1995-08-01

    World-ocean distribution of the crossover altimetry data from Geosat, TOPEX/Poseidon (T/P) and the ERS 1 missions have provided strong independent evidence that NASA's/CSR's JGM 2 geopotential model (70 x 70 in spherical harmonics) yields accurate radial ephemerides for these satellites. In testing the sea height crossover differences found from altimetry and JGM 2 orbits for these satellites, we have used the sea height differences themselves (of ascending minus descending passes averaged at each location over many exact repeat cycles) and the Lumped Latitude Coefficients (LLC) derived from them. For Geosat we find the geopotential-induced LLC errors (exclusive of non-gravitational and initial state discrepancies) mostly below 6 cm, for TOPEX the corresponding errors are usually below 2 cm, and for ERS 1 (35-day cycle) they are generally belo2 5 cm. In addition, we have found that these observations agree well overall with predictions of accuracy derived from the JGM 2 variance-covariance matrix; the corresponding projected LLC errors for Geosat, T/P, and ERS 1 are usually between 1 and 4 cm, 1 - 2 cm, and 1 - 4 cm, respectively (they depend on the filtering of long-periodic perturbations and on the order of the LLC). This agreement is especially impressive for ERS 1 since no data of any kind from this mission was used in forming JGM 2. The observed crossover differences for Geosat, T/P and ERS 1 are 8, 3, and 11 cm (rms), respectively. These observations also agree well with prediction of accuracy derived from the JGM 2 variance-covariance matrix; the corresponding projected crossover errors for Geosat and T/P are 8 cm and 2.3 cm, respectively. The precision of our mean difference observations is about 3 cm for Geosat (approx. 24,000 observations), 1.5 cm for T/P (approx. 6,000 observations) and 5 cm for ERS 1 (approx. 44,000 observations). Thus, these ``global'' independent data should provide a valuable new source for improving geopotential models. Our results

  19. Measurement of the terrestrial magnetic field and its anomalies; Mesures du champ magnetique terrestre et de ses anomalies

    Energy Technology Data Exchange (ETDEWEB)

    Duret, D.

    1994-12-31

    After a presentation of the terrestrial magnetic field and its various anomalies, the different types of magnetometers commonly used are reviewed with their characteristics and performances: scalar magnetometers (free precession and continuous polarization proton magnetometers, dynamic polarization proton magnetometers, optical pumping magnetometers, electronic resonance scalar magnetometers (without pumping)); vectorial magnetometers (flux gate magnetometers, induction magnetometers, suspended magnet magnetometers, superconducting magnetometers, integrated magnetometers, resonance directional magnetometers). The magnetometry market and applications are discussed. 20 figs., 9 tabs., 72 refs.

  20. The Holocene Geomagnetic Field: Spikes, Low Field Anomalies, and Asymmetries

    Science.gov (United States)

    Constable, C.

    2017-12-01

    Our understanding of the Holocene magnetic field is constrained by individual paleomagnetic records of variable quality and resolution, composite regional secular variation curves, and low resolution global time-varying geomagnetic field models. Although spatial and temporal data coverages have greatly improved in recent years, typical views of millennial-scale secular variation and the underlying physical processes continue to be heavily influenced by more detailed field structure and short term variability inferred from the historical record and modern observations. Recent models of gyre driven decay of the geomagnetic dipole on centennial time scales, and studies of the evolution of the South Atlantic Anomaly provide one prominent example. Since 1840 dipole decay has largely been driven by meridional flux advection, with generally smaller fairly steady contributions from magnetic diffusion. The decay is dominantly associated with geomagnetic activity in the Southern Hemisphere. In contrast to the present decay, dipole strength generally grew between 1500 and 1000 BC, sustaining high but fluctuating values around 90-100 ZAm2 until after 1500 AD. Thus high dipole moments appear to have been present shortly after 1000 AD at the time of the Levantine spikes, which represent extreme variations in regional geomagnetic field strength. It has been speculated that the growth in dipole moment originated from a strong flux patch near the equatorial region at the core-mantle boundary that migrated north and west to augment the dipole strength, suggesting the presence of a large-scale anticyclonic gyre in the northern hemisphere, not totally unlike the southern hemisphere flow that dominates present day dipole decay. The later brief episodes of high field strength in the Levant may have contributed to prolonged values of high dipole strength until the onset of dipole decay in the late second millennium AD. This could support the concept of a large-scale stable flow

  1. Volcanomagnetic anomalies: a review and the computation of the piezomagnetic field expected at Vulcano (Aeolian Islands, Italy

    Directory of Open Access Journals (Sweden)

    F. Ferricci

    1994-06-01

    Full Text Available he volcanic area of Vulcano experienced major unrest, which brought the fumarolic field temperatures from slightly less than 300 °C to ca. 700 °C between 1988-1993. The structure underlying the crater, investigated by drillings and by different geophysical techniques, is relatively well-known. This led us to attempt modelling the magnetic anomaly which could be generated by sudden pressure variations in the magma chamber at shallow depth. The rocks embedding the intrusive rock penetrated by drill-holes to a depth of ca. 2000 m are characterized by high susceptibility, which points to the possibility of obtaining significant magnetic anomalies with acceptably weak pressure pulses. The model for straightforward computing of the anomalous field was drawn accounting for (1 the inferred geometry of the Curie isotherrn, (2 presence of a spherical magma reservoir, 2 km wide and centred at a depth of 3.5 km, overlain by (3 a 0.5 km wide and 1.5 km high cylinder simulating the intrusion first revealed by drillings. The model elements (2 and (3 behave as a single source zone and are assumed to lie beyond the Curie point, the contribution to the piezomagnetic effect being provided by the surrounding medium. Under such conditions, a 10 MPa pressure pulse applied within the sourcezone provides a 4 nT piezomagnetic anomaly, compatible with the amplitude of the anomalies observed at those volcanoes of the world where magnetic surveillance is routinely carried out. The analytical method used for computation of the magnetic field generated by mechanical stress is extensively discussed, and the contribution of piezomagnetism to rapid variations of the magnetic field is compared to other types of magnetic anomalies likely to occur at active volcanoes.

  2. The Holographic Weyl anomaly

    CERN Document Server

    Henningson, M; Henningson, Mans; Skenderis, Kostas

    1998-01-01

    We calculate the Weyl anomaly for conformal field theories that can be described via the adS/CFT correspondence. This entails regularizing the gravitational part of the corresponding supergravity action in a manner consistent with general covariance. Up to a constant, the anomaly only depends on the dimension d of the manifold on which the conformal field theory is defined. We present concrete expressions for the anomaly in the physically relevant cases d = 2, 4 and 6. In d = 2 we find for the central charge c = 3 l/ 2 G_N in agreement with considerations based on the asymptotic symmetry algebra of adS_3. In d = 4 the anomaly agrees precisely with that of the corresponding N = 4 superconformal SU(N) gauge theory. The result in d = 6 provides new information for the (0, 2) theory, since its Weyl anomaly has not been computed previously. The anomaly in this case grows as N^3, where N is the number of coincident M5 branes, and it vanishes for a Ricci-flat background.

  3. Along-track geopotential difference and deflection of the vertical from grace range rate : Use of GEOGRACE

    NARCIS (Netherlands)

    Tangdamrongsub, N.; Hwang, Cheinway

    2016-01-01

    We present a theory and numerical algorithm to directly determine the time-varying along-track geopotential difference and deflection of the vertical at the Gravity Recovery and Climate Experiment (GRACE) satellite altitude. The determination was implemented using the GEOGRACE computer program

  4. On the electric field transient anomaly observed at the time of the Kythira M=6.9 earthquake on January 2006

    Directory of Open Access Journals (Sweden)

    M. R. Varley

    2007-11-01

    Full Text Available The study of the Earth's electromagnetic fields prior to the occurrence of strong seismic events has repeatedly revealed cases were transient anomalies, often deemed as possible earthquake precursors, were observed on electromagnetic field recordings of surface, atmosphere and near space carried out measurements. In an attempt to understand the nature of such signals several models have been proposed based upon the exhibited characteristics of the observed anomalies and different possible generation mechanisms, with electric earthquake precursors (EEP appearing to be the main candidates for short-term earthquake precursors. This paper discusses the detection of a ULF electric field transient anomaly and its identification as a possible electric earthquake precursor accompanying the Kythira M=6.9 earthquake occurred on the 8 January 2006.

  5. The possible physical mechanism for the EAP–SR co-action

    KAUST Repository

    Gong, Zhiqiang

    2017-11-17

    The anomalous characteristics of summer precipitation and atmospheric circulation in the East Asia–West Pacific Region (EA–WP) associated with the co-action of East Asia/Pacific teleconnection–Silk Road teleconnection (EAP–SR) are investigated in this study. The compositions of EAP–SR phase anomalies can be expressed as pattern I (+ +), pattern II (+ −), pattern III (− −), and pattern IV (− +) using EAP and SR indices. It is found that the spatial distribution of summer precipitation anomalies in EA–WP corresponding to pattern I (III) shows a tripole structure in the meridional direction and a zonal dipole structure in the subtropical region, while pattern II (IV) presents a tripole pattern in meridional direction with compressed and continuous anomalies in the zonal direction over the subtropical region. The similar meridional and zonal structures are also found in the geopotential height anomalies at 500-hPa, as well as wind anomalies and moisture convergence at 850-hPa. Finally, a schematic mechanism for the EAP–SR co-action upon the summer precipitation in EA–WP is built: (1) Pattern I (III) exhibits that the negative (positive) sea surface temperature (SST) anomalies over tropical East Pacific may cause the enhanced (weakened) convective activity dominating the West Pacific, trigger the positive (negative) EAP teleconnection and produce more (less) precipitation. Besides, the negative (positive) SST anomalies over the Indonesia Maritime Continent (IMC) may further weaken (strengthen) anomalous downward (upward) motion over the South China Sea (SCS), cause negative (positive) geopotential height anomalies at the middle troposphere and surrounding regions through the function of the tropical Hadley circulation. Then the negative (positive) geopotential height anomalies could motivate the positive (negative) EAP teleconnection through the northward propagation of wave-activity perturbation. Meanwhile, a positive (negative) geopotential

  6. The possible physical mechanism for the EAP-SR co-action

    Science.gov (United States)

    Gong, Zhiqiang; Feng, Guolin; Dogar, Muhammad Mubashar; Huang, Gang

    2017-11-01

    The anomalous characteristics of summer precipitation and atmospheric circulation in the East Asia-West Pacific Region (EA-WP) associated with the co-action of East Asia/Pacific teleconnection-Silk Road teleconnection (EAP-SR) are investigated in this study. The compositions of EAP-SR phase anomalies can be expressed as pattern I (+ +), pattern II (+ -), pattern III (- -), and pattern IV (- +) using EAP and SR indices. It is found that the spatial distribution of summer precipitation anomalies in EA-WP corresponding to pattern I (III) shows a tripole structure in the meridional direction and a zonal dipole structure in the subtropical region, while pattern II (IV) presents a tripole pattern in meridional direction with compressed and continuous anomalies in the zonal direction over the subtropical region. The similar meridional and zonal structures are also found in the geopotential height anomalies at 500-hPa, as well as wind anomalies and moisture convergence at 850-hPa. Finally, a schematic mechanism for the EAP-SR co-action upon the summer precipitation in EA-WP is built: (1) Pattern I (III) exhibits that the negative (positive) sea surface temperature (SST) anomalies over tropical East Pacific may cause the enhanced (weakened) convective activity dominating the West Pacific, trigger the positive (negative) EAP teleconnection and produce more (less) precipitation. Besides, the negative (positive) SST anomalies over the Indonesia Maritime Continent (IMC) may further weaken (strengthen) anomalous downward (upward) motion over the South China Sea (SCS), cause negative (positive) geopotential height anomalies at the middle troposphere and surrounding regions through the function of the tropical Hadley circulation. Then the negative (positive) geopotential height anomalies could motivate the positive (negative) EAP teleconnection through the northward propagation of wave-activity perturbation. Meanwhile, a positive (negative) geopotential height anomalous pattern

  7. Satellite magnetic anomalies of the Antarctic crust

    Directory of Open Access Journals (Sweden)

    D. E. Alsdorf

    2000-06-01

    Full Text Available Spatially and temporally static crustal magnetic anomalies are contaminated by static core field effects above spherical harmonic degree 12 and dynamic, large-amplitude external fields. To extract crustal magnetic anomalies from the measurements of NASA's Magsat mission, we separate crustal signals from both core and external field effects. In particular, we define Magsat anomalies relative to the degree 11 field and use spectral correlation theory to reduce them for external field effects. We obtain a model of Antarctic crustal thickness by comparing the region's terrain gravity effects to free-air gravity anomalies derived from the Earth Gravity Model 1996 (EGM96. To separate core and crustal magnetic effects, we obtain the pseudo-magnetic effect of the crustal thickness variations from their gravity effect via Poisson's theorem for correlative potentials. We compare the pseudo-magnetic effect of the crustal thickness variations to field differences between degrees 11 and 13 by spectral correlation analysis. We thus identify and remove possible residual core field effects in the Magsat anomalies relative to the degree 11 core field. The resultant anomalies reflect possible Antarctic contrasts due both to crustal thickness and intracrustal variations of magnetization. In addition, they provide important constraints on the geologic interpretation of aeromagnetic survey data, such as are available for the Weddell Province. These crustal anomalies also may be used to correct for long wavelength errors in regional compilations of near-surface magnetic survey data. However, the validity of these applications is limited by the poor quality of the Antarctic Magsat data that were obtained during austral Summer and Fall when south polar external field activity was maximum. Hence an important test and supplement for the Antarctic crustal Magsat anomaly map will be provided by the data from the recently launched Ørsted mission, which will yield coverage

  8. Effects of air-sea interaction on extended-range prediction of geopotential height at 500 hPa over the northern extratropical region

    Science.gov (United States)

    Wang, Xujia; Zheng, Zhihai; Feng, Guolin

    2018-04-01

    The contribution of air-sea interaction on the extended-range prediction of geopotential height at 500 hPa in the northern extratropical region has been analyzed with a coupled model form Beijing Climate Center and its atmospheric components. Under the assumption of the perfect model, the extended-range prediction skill was evaluated by anomaly correlation coefficient (ACC), root mean square error (RMSE), and signal-to-noise ratio (SNR). The coupled model has a better prediction skill than its atmospheric model, especially, the air-sea interaction in July made a greater contribution for the improvement of prediction skill than other months. The prediction skill of the extratropical region in the coupled model reaches 16-18 days in all months, while the atmospheric model reaches 10-11 days in January, April, and July and only 7-8 days in October, indicating that the air-sea interaction can extend the prediction skill of the atmospheric model by about 1 week. The errors of both the coupled model and the atmospheric model reach saturation in about 20 days, suggesting that the predictable range is less than 3 weeks.

  9. Classical geometrical interpretation of ghost fields and anomalies in Yang-Mills theory and quantum gravity

    International Nuclear Information System (INIS)

    Thierry-Mieg, J.

    1985-01-01

    The reinterpretation of the BRS equations of Quantum Field Theory as the Maurer Cartan equation of a classical principal fiber bundle leads to a simple gauge invariant classification of the anomalies in Yang Mills theory and gravity

  10. Worldwide complete spherical Bouguer and isostatic anomaly maps

    Science.gov (United States)

    Bonvalot, S.; Balmino, G.; Briais, A.; Peyrefitte, A.; Vales, N.; Biancale, R.; Gabalda, G.; Reinquin, F.

    2011-12-01

    We present here a set of digital maps of the Earth's gravity anomalies (surface "free air", Bouguer and isostatic), computed at Bureau Gravimetric International (BGI) as a contribution to the Global Geodetic Observing Systems (GGOS) and to the global geophysical maps published by the Commission for the Geological Map of the World (CGMW). The free air and Bouguer anomaly concept is extensively used in geophysical interpretation to investigate the density distributions in the Earth's interior. Complete Bouguer anomalies (including terrain effects) are usually computed at regional scales by integrating the gravity attraction of topography elements over and beyond a given area (under planar or spherical approximations). Here, we developed and applied a worldwide spherical approach aimed to provide a set of homogeneous and high resolution gravity anomaly maps and grids computed at the Earth's surface, taking into account a realistic Earth model and reconciling geophysical and geodetic definitions of gravity anomalies. This first version (1.0) has been computed by spherical harmonics analysis / synthesis of the Earth's topography-bathymetry up to degree 10800. The detailed theory of the spherical harmonics approach is given in Balmino et al., (Journal of Geodesy, submitted). The Bouguer and terrain corrections have thus been computed in spherical geometry at 1'x1' resolution using the ETOPO1 topography/bathymetry, ice surface and bedrock models from the NOAA (National Oceanic and Atmospheric Administration) and taking into account precise characteristics (boundaries and densities) of major lakes, inner seas, polar caps and of land areas below sea level. Isostatic corrections have been computed according to the Airy Heiskanen model in spherical geometry for a constant depth of compensation of 30km. The gravity information given here is provided by the Earth Geopotential Model (EGM2008), developed at degree 2160 by the National Geospatial Intelligence Agency (NGA) (Pavlis

  11. An Analysis of Mechanical Constraints when Using Superconducting Gravimeters for Far-Field Pre-Seismic Anomaly Detection

    Directory of Open Access Journals (Sweden)

    Shyh-Chin Lan

    2011-01-01

    Full Text Available Pre-seismic gravity anomalies from records obtained at a 1 Hz sampling rate from superconducting gravimeters (SG around East Asia are analyzed. A comparison of gravity anomalies to the source parameters of associated earthquakes shows that the detection of pre-seismic gravity anomalies is constrained by several mechanical conditions of the seismic fault plane. The constraints of the far-field pre-seismic gravity amplitude perturbation were examined and the critical spatial relationship between the SG station and the epicenter precursory signal for detection was determined. The results show that: (1 the pre-seismic amplitude perturbation of gravity is inversely proportional to distance; (2 the transfer path from the epicenter to the SG station that crosses a tectonic boundary has a relatively low pre-seismic gravity anomaly amplitude; (3 the pre-seismic gravity perturbation amplitude is also affected by the attitude between the location of an SG station and the strike of the ruptured fault plane. The removal of typhoon effects and the selection of SG stations within a certain intersection angle to the strike of the fault plane are essential for obtaining reliable pre-seismic gravity anomaly results.

  12. High magnetic field magnetoresistance anomalies in the charge density wave state of the quasi-two dimensional bronze KMo6O{17}

    Science.gov (United States)

    Guyot, H.; Dumas, J.; Marcus, J.; Schlenker, C.; Vignolles, D.

    2005-12-01

    We report high magnetic field magnetoresistance measurements performed in pulsed fields up to 55 T on the quasi-two dimensional charge density wave conductor KMo{6}O{17}. Magnetoresistance curves show several anomalies below 28 T. First order transitions to smaller gap states take place at low temperature above 30 T. A phase diagram T(B) has been obtained. The angular dependence of the anomalies is reported.

  13. Holographic entanglement entropy and gravitational anomalies

    NARCIS (Netherlands)

    Castro, A.; Detournay, S.; Iqbal, N.; Perlmutter, E.

    2014-01-01

    We study entanglement entropy in two-dimensional conformal field theories with a gravitational anomaly. In theories with gravity duals, this anomaly is holographically represented by a gravitational Chern-Simons term in the bulk action. We show that the anomaly broadens the Ryu-Takayanagi minimal

  14. U.S. West Coast MODIS Aqua High Resolution CHLA Anomaly Fields (July 2002 - March 2014)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This suite of CHLA and SST climatology and anomaly data products are derived from daily, 0.0125 degree x 0.0125 degree, MODIS Aqua CHLA and SST fields that cover the...

  15. Classical geometrical interpretation of ghost fields and anomalies in Yang-Mills theory and quantum gravity

    International Nuclear Information System (INIS)

    Thierry-Mieg, J.

    1985-01-01

    This paper discusses the reinterpretation of the BRS equations of Quantum Field Theory as the Maurer Cartan equation of a classical principal fiber bundle leads to a simple gauge invariant classification of the anomalies in Yang Mills theory and gravity

  16. U.S. West Coast MODIS Aqua High Resolution SST Anomaly Fields (July 2002 - March 2014)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This suite of CHLA and SST climatology and anomaly data products are derived from daily, 0.0125 degree x 0.0125 degree, MODIS Aqua CHLA and SST fields that cover the...

  17. Global anomalies in chiral lattice gauge theories

    International Nuclear Information System (INIS)

    Baer, O.

    2000-07-01

    We study global anomalies in a new approach to chiral gauge theories on the lattice, which is based on the Ginsparg-Wilson relation. In this approach, global anomalies make it impossible to define consistently a fermionic measure for the functional integral. We show that a global anomaly occurs in an SU(2) theory if the fundamental representation is used for the fermion fields. The generalization to higher representations is also discussed. In addition we establish a close relation between global anomalies and the spectral flow of the Dirac operator and employ it in a numerical computation to prove the existence of the global SU(2) anomaly in a different way. This method is inspired by an earlier work of Witten who first discovered this type of anomalies in continuum field theory. (orig.)

  18. Anomalies and modular invariance in string theory

    International Nuclear Information System (INIS)

    Schellekens, A.N.; Warner, N.P.

    1986-01-01

    All known anomaly cancellations of heterotic string theories are derived directly from one-loop modular invariance, and are shown to be related to a property of modular functions of weight 2. Using modular invariance infinite classes of anomaly free field theories are constructed in (8m+2) dimensions for any m. A generating function is obtained for the anomalies of string-related field theories in (8m+2) dimensions. (orig.)

  19. Anomalous western Pacific subtropical high during El Niño developing summer in comparison with decaying summer

    Science.gov (United States)

    Xue, Feng; Dong, Xiao; Fan, Fangxing

    2018-03-01

    The anomalous behavior of the western Pacific subtropical high (WPSH) in El Niño developing summer is studied based on the composite results of eight major El Niño events during 1979-2013. It is shown that the WPSH tends to retreat eastwards with weak intensity during the developing summer. The anomaly exhibits an intraseasonal variation with a weaker anomaly in June and July and a stronger anomaly in August, indicating that different underlying physical mechanisms may be responsible for the anomalous WPSH during early and late summer periods. In June and July, owing to the cold advection anomaly characterized as a weak northerly anomaly from high latitudes, geopotential height in East Asia is reduced and the WPSH tends to retreat eastwards slightly. By contrast, enhanced convection over the warm pool in August makes the atmosphere more sensitive to El Niño forcing. Consequently, a cyclonic anomaly in the western Pacific is induced, which is consistent with the seasonal march of atmospheric circulation from July to August. Accordingly, geopotential height in the western Pacific is reduced significantly, and the WPSH tends to retreat eastwards remarkably in August. Different from the developing summer, geopotential height in the decaying summer over East Asia and the western Pacific tends to enhance and extend northwards from June to August consistently, reaching the maximum anomaly in August. Therefore, the seasonal march plays an important role in the WPSH anomaly for both the developing and decaying summer.

  20. Testing global geopotential models through comparison of a local quasi-geoid model with GPS/leveling data

    Czech Academy of Sciences Publication Activity Database

    Novák, P.; Kostelecký, J.; Klokočník, Jaroslav

    2009-01-01

    Roč. 53, č. 1 (2009), s. 39-60 ISSN 0039-3169 R&D Projects: GA AV ČR IAA3003407; GA MŠk(CZ) LC506 Institutional research plan: CEZ:AV0Z10030501 Keywords : global geopotential model s * CHAMP * GRACE Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 1.000, year: 2009

  1. QED fermi fields as operator-valued distributions and anomalies

    International Nuclear Information System (INIS)

    Grange, P.; Werner, E.

    2005-01-01

    The treatment of fields as operator-valued distributions (OPVD) is recalled with the emphasis on the importance of causality following the work of Epstein and Glaser. Gauge-invariant theories demand the extension of the usual translation operation on OPVD, thereby leading to a generalized QED formulation. At D = 2 the solvability of the Schwinger model is totally preserved. At D = 4 the paracompactness property of the Euclidean manifold permits the use of test functions which are a decomposition of unity and thereby provides a natural justification and extension of the non-perturbative heat kernel method (Fujikawa) for Abelian anomalies. On the Minkowski manifold the specific role of causality in the restauration of gauge invariance (and mass generation for QED 2 is exemplified in a simple way. (author)

  2. Characteristics of uranium geological anomaly in Northern Guangdong province

    International Nuclear Information System (INIS)

    Wang Xinwu; Cheng Danping

    2001-01-01

    The geological anomaly characteristics of uranium deposit region in northern Guangdong are discussed on the aspects of uranium source, structure and thermal activity. Uranium deposits usually occur in the uranium-rich background field. Structure activity provides favourable places for the transportation and precipitation of uranium. Uranium deposits are formed in the central and edge of frequent thermal activity. The assembled entropy anomaly field is the synthetical display for above three anomaly. The biggest assembled entropy anomaly is the most favourable space field for forming uranium deposit

  3. Prediction of rainfall anomalies during the dry to wet transition season over the Southern Amazonia using machine learning tools

    Science.gov (United States)

    Shan, X.; Zhang, K.; Zhuang, Y.; Fu, R.; Hong, Y.

    2017-12-01

    Seasonal prediction of rainfall during the dry-to-wet transition season in austral spring (September-November) over southern Amazonia is central for improving planting crops and fire mitigation in that region. Previous studies have identified the key large-scale atmospheric dynamic and thermodynamics pre-conditions during the dry season (June-August) that influence the rainfall anomalies during the dry to wet transition season over Southern Amazonia. Based on these key pre-conditions during dry season, we have evaluated several statistical models and developed a Neural Network based statistical prediction system to predict rainfall during the dry to wet transition for Southern Amazonia (5-15°S, 50-70°W). Multivariate Empirical Orthogonal Function (EOF) Analysis is applied to the following four fields during JJA from the ECMWF Reanalysis (ERA-Interim) spanning from year 1979 to 2015: geopotential height at 200 hPa, surface relative humidity, convective inhibition energy (CIN) index and convective available potential energy (CAPE), to filter out noise and highlight the most coherent spatial and temporal variations. The first 10 EOF modes are retained for inputs to the statistical models, accounting for at least 70% of the total variance in the predictor fields. We have tested several linear and non-linear statistical methods. While the regularized Ridge Regression and Lasso Regression can generally capture the spatial pattern and magnitude of rainfall anomalies, we found that that Neural Network performs best with an accuracy greater than 80%, as expected from the non-linear dependence of the rainfall on the large-scale atmospheric thermodynamic conditions and circulation. Further tests of various prediction skill metrics and hindcasts also suggest this Neural Network prediction approach can significantly improve seasonal prediction skill than the dynamic predictions and regression based statistical predictions. Thus, this statistical prediction system could have

  4. On global and regional spectral evaluation of global geopotential models

    International Nuclear Information System (INIS)

    Ustun, A; Abbak, R A

    2010-01-01

    Spectral evaluation of global geopotential models (GGMs) is necessary to recognize the behaviour of gravity signal and its error recorded in spherical harmonic coefficients and associated standard deviations. Results put forward in this wise explain the whole contribution of gravity data in different kinds that represent various sections of the gravity spectrum. This method is more informative than accuracy assessment methods, which use external data such as GPS-levelling. Comparative spectral evaluation for more than one model can be performed both in global and local sense using many spectral tools. The number of GGMs has grown with the increasing number of data collected by the dedicated satellite gravity missions, CHAMP, GRACE and GOCE. This fact makes it necessary to measure the differences between models and to monitor the improvements in the gravity field recovery. In this paper, some of the satellite-only and combined models are examined in different scales, globally and regionally, in order to observe the advances in the modelling of GGMs and their strengths at various expansion degrees for geodetic and geophysical applications. The validation of the published errors of model coefficients is a part of this evaluation. All spectral tools explicitly reveal the superiority of the GRACE-based models when compared against the models that comprise the conventional satellite tracking data. The disagreement between models is large in local/regional areas if data sets are different, as seen from the example of the Turkish territory

  5. A MATLAB-based graphical user interface program for computing functionals of the geopotential up to ultra-high degrees and orders

    Science.gov (United States)

    Bucha, Blažej; Janák, Juraj

    2013-07-01

    We present a novel graphical user interface program GrafLab (GRAvity Field LABoratory) for spherical harmonic synthesis (SHS) created in MATLAB®. This program allows to comfortably compute 38 various functionals of the geopotential up to ultra-high degrees and orders of spherical harmonic expansion. For the most difficult part of the SHS, namely the evaluation of the fully normalized associated Legendre functions (fnALFs), we used three different approaches according to required maximum degree: (i) the standard forward column method (up to maximum degree 1800, in some cases up to degree 2190); (ii) the modified forward column method combined with Horner's scheme (up to maximum degree 2700); (iii) the extended-range arithmetic (up to an arbitrary maximum degree). For the maximum degree 2190, the SHS with fnALFs evaluated using the extended-range arithmetic approach takes only approximately 2-3 times longer than its standard arithmetic counterpart, i.e. the standard forward column method. In the GrafLab, the functionals of the geopotential can be evaluated on a regular grid or point-wise, while the input coordinates can either be read from a data file or entered manually. For the computation on a regular grid we decided to apply the lumped coefficients approach due to significant time-efficiency of this method. Furthermore, if a full variance-covariances matrix of spherical harmonic coefficients is available, it is possible to compute the commission errors of the functionals. When computing on a regular grid, the output functionals or their commission errors may be depicted on a map using automatically selected cartographic projection.

  6. Gaugino-Assisted Anomaly Mediation

    International Nuclear Information System (INIS)

    Kaplan, David Elazzar; Kribs, Graham D.

    2000-01-01

    We present a model of supersymmetry breaking mediated through a small extra dimension. Standard model matter multiplets and a supersymmetry-breaking (or ''hidden'') sector are confined to opposite four-dimensional boundaries while gauge multiplets live in the bulk. The hidden sector does not contain a singlet and the dominant contribution to gaugino masses is via anomaly-mediated supersymmetry breaking. Scalar masses get contributions from both anomaly mediation and a tiny hard breaking of supersymmetry by operators on the hidden-sector boundary. These operators contribute to scalar masses at one loop and in most of parameter space, their contribution dominates. Thus it is easy to make all squared scalar masses positive. As no additional fields or symmetries are required below the Planck scale, we consider this the simplest working model of anomaly mediation. The gaugino spectrum is left untouched and the phenomenology of the model is roughly similar to anomaly mediated supersymmetry breaking with a universal scalar mass added. We identify the main differences in the spectrum between this model and other approaches. We also discuss mechanisms for generating the μ term and constraints on additional bulk fields. (author)

  7. Palaeomagnetic evidence for the persistence or recurrence of geomagnetic main field anomalies in the South Atlantic

    Science.gov (United States)

    Shah, Jay; Koppers, Anthony A. P.; Leitner, Marko; Leonhardt, Roman; Muxworthy, Adrian R.; Heunemann, Christoph; Bachtadse, Valerian; Ashley, Jack A. D.; Matzka, Jürgen

    2016-05-01

    We present a dataset of a full-vector palaeomagnetic study of Late Pleistocene lavas from the island Tristan da Cunha in the South Atlantic Ocean. The current day geomagnetic field intensity in this region is approximately 25 μT, compared to an expected value of ∼43 μT; this phenomenon is known as the South Atlantic geomagnetic Anomaly (SAA). Geomagnetic field models extending back to the last 10 ka find no evidence for this being a persistent feature of the geomagnetic field, albeit, all models are constructed from data which is particularly sparse in the southern hemisphere. New 40Ar/39Ar incremental heating dating indicates the studied lavas from Tristan da Cunha extruded between 90 and 46 ka. Palaeointensity estimations of eight lava flows made using the Thellier method yield an average palaeointensity of 18 ± 6 μT and virtual axial dipole moment (VADM) of 3.1 ± 1.2 ×1022 Am2. The lava flows demonstrate four time intervals comparable to the present day SAA, where the average VADM of the Tristan da Cunha lavas is weaker than the global VADM average. This suggests a persistent or recurring low intensity anomaly to the main geomagnetic field similar to the SAA existed in the South Atlantic between 46 and 90 ka.

  8. High resolution Slovak Bouguer gravity anomaly map and its enhanced derivative transformations: new possibilities for interpretation of anomalous gravity fields

    Science.gov (United States)

    Pašteka, Roman; Zahorec, Pavol; Kušnirák, David; Bošanský, Marián; Papčo, Juraj; Szalaiová, Viktória; Krajňák, Martin; Ivan, Marušiak; Mikuška, Ján; Bielik, Miroslav

    2017-06-01

    The paper deals with the revision and enrichment of the present gravimetric database of the Slovak Republic. The output of this process is a new version of the complete Bouguer anomaly (CBA) field on our territory. Thanks to the taking into account of more accurate terrain corrections, this field has significantly higher quality and higher resolution capabilities. The excellent features of this map will allow us to re-evaluate and improve the qualitative interpretation of the gravity field when researching the structural and tectonic geology of the Western Carpathian lithosphere. In the contribution we also analyse the field of the new CBA based on the properties of various transformed fields - in particular the horizontal gradient, which by its local maximums defines important density boundaries in the lateral direction. All original and new transformed maps make a significant contribution to improving the geological interpretation of the CBA field. Except for the horizontal gradient field, we are also interested in a new special transformation of TDXAS, which excellently separates various detected anomalies of gravity field and improves their lateral delimitation.

  9. The geopotential value W 0 for specifying the relativistic atomic time scale and a global vertical reference system

    Czech Academy of Sciences Publication Activity Database

    Burša, Milan; Kenyon, S.; Kouba, J.; Šíma, Zdislav; Vatrt, V.; Vítek, V.; Vojtíšková, M.

    2007-01-01

    Roč. 81, č. 2 (2007), s. 103-110 ISSN 0949-7714 R&D Projects: GA ČR GA205/05/2381 Institutional research plan: CEZ:AV0Z10030501 Keywords : geopotential * vertical datum unification * relativistic atomic time scale Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 1.636, year: 2007

  10. Water radon anomaly fields

    Energy Technology Data Exchange (ETDEWEB)

    Yin, H.

    1980-01-01

    A striking aspect of water radon levels in relation to earthquakes is that before the Tangshan quake there was a remarkable synchronicity of behavior of many wells within 200 km of Tangshan. However, for many wells anomalous values persisted after the earthquake, particularly outside the immediate region of the quake. It is clear that radon may be produced by various processes; some candidates are pressure, shear, vibration, temperature and pressure, mixing of water-bearing strata, breakdown of mineral crystal structure, and the like, although it is not clear which of these are primary. It seems that a possible explanation of the persistence of the anomaly in the case of Tangshan may be that the earthquake released strain in the vicinity of Tangshan but increased it further along the geological structures involved, thus producing a continued radon buildup.

  11. 6d, Coulomb branch anomaly matching

    Science.gov (United States)

    Intriligator, Kenneth

    2014-10-01

    6d QFTs are constrained by the analog of 't Hooft anomaly matching: all anomalies for global symmetries and metric backgrounds are constants of RG flows, and for all vacua in moduli spaces. We discuss an anomaly matching mechanism for 6d theories on their Coulomb branch. It is a global symmetry analog of Green-Schwarz-West-Sagnotti anomaly cancellation, and requires the apparent anomaly mismatch to be a perfect square, . Then Δ I 8 is cancelled by making X 4 an electric/magnetic source for the tensor multiplet, so background gauge field instantons yield charged strings. This requires the coefficients in X 4 to be integrally quantized. We illustrate this for theories. We also consider the SCFTs from N small E8 instantons, verifying that the recent result for its anomaly polynomial fits with the anomaly matching mechanism.

  12. Chiral symmetry breaking and nonperturbative scale anomaly in gauge field theories

    International Nuclear Information System (INIS)

    Miranskij, V.A.; Gusynin, V.P.

    1987-01-01

    The nonperturbative dynamics of chiral and scale symmetry breaking in asymtotically free and non-asymptotically free (with an ultraviolet stable fixed point) vector-like gauge theories is investigated. In the two-loop approximation analytical expressions for the chiral and gluon condensates are obtained. The hypothesis about a soft behaviour at small distances of composite operators in non-asymptotically free gauge theories with a fixed point is put forward and substantiated. It is shown that in these theories the form of the scale anomaly depends on the type of the phase in coupling constant to which it relates. A new dilaton effective lagrangian for glueball and chiral fields is suggested. The mass relation for the single scalar fermion-antifermion bound state is obtained. The important ingredient of this approach is a large (d≅ 2) dynamical dimension of composite chiral fields. The application of this approach to QCD and technicolour models is discussed

  13. Analyticity properties of Graham-Witten anomalies

    International Nuclear Information System (INIS)

    Asnin, Vadim

    2008-01-01

    Analytic properties of Graham-Witten anomalies are considered. Weyl anomalies according to their analytic properties are of type A (coming from δ-singularities in correlators of several energy-momentum tensors) or of type B (originating in counterterms which depend logarithmically on a mass scale). It is argued that all Graham-Witten anomalies can be divided into two groups, internal and external, and that all external anomalies are of type B, whereas among internal anomalies there is one term of type A and all the rest are of type B. This argument is checked explicitly for the case of a free scalar field in a six-dimensional space with a two-dimensional submanifold

  14. Gravitational Anomaly and Transport Phenomena

    International Nuclear Information System (INIS)

    Landsteiner, Karl; Megias, Eugenio; Pena-Benitez, Francisco

    2011-01-01

    Quantum anomalies give rise to new transport phenomena. In particular, a magnetic field can induce an anomalous current via the chiral magnetic effect and a vortex in the relativistic fluid can also induce a current via the chiral vortical effect. The related transport coefficients can be calculated via Kubo formulas. We evaluate the Kubo formula for the anomalous vortical conductivity at weak coupling and show that it receives contributions proportional to the gravitational anomaly coefficient. The gravitational anomaly gives rise to an anomalous vortical effect even for an uncharged fluid.

  15. LIMS/Nimbus-7 Level 2 Vertical Profiles of O3, NO2, H2O, HNO3, Geopotential Height, and Temperature V006

    Data.gov (United States)

    National Aeronautics and Space Administration — The Limb Infrared Monitor of the Stratosphere (LIMS) version 6 Level-2 data product consists of daily, geolocated, vertical profiles of temperature, geopotential...

  16. Mesotron Decays and the Role of Anomalies

    OpenAIRE

    Bardeen, William A.

    2007-01-01

    Puzzles associated with Yukawa's mesotron theory of nuclear interactions led to the discovery of "anomalies" in quantum field theory. I will discuss some of the remarkable consequences of these anomalies in the physics of elementary particles.

  17. Novel topological invariants and anomalies

    International Nuclear Information System (INIS)

    Hirayama, M.; Sugimasa, N.

    1987-01-01

    It is shown that novel topological invariants are associated with a class of Dirac operators. Trace formulas which are similar to but different from Callias's formula are derived. Implications of these topological invariants to anomalies in quantum field theory are discussed. A new class of anomalies are calculated for two models: one is two dimensional and the other four dimensional

  18. The extended algebra of observables for Dirac fields and the trace anomaly of their stress-energy tensor

    International Nuclear Information System (INIS)

    Dappiagi, Claudio; Hack, Thomas-Paul; Pinamonti, Nicola

    2009-03-01

    We discuss from scratch the classical structure of Dirac spinors on an arbitrary globally hyperbolic, Lorentzian spacetime, their formulation as a locally covariant quantum field theory, and the associated notion of a Hadamard state. Eventually, we develop the notion of Wick polynomials for spinor fields, and we employ the latter to construct a covariantly conserved stress-energy tensor suited for back-reaction computations. We explicitly calculate its trace anomaly in particular. (orig.)

  19. The extended algebra of observables for Dirac fields and the trace anomaly of their stress-energy tensor

    Energy Technology Data Exchange (ETDEWEB)

    Dappiagi, Claudio; Hack, Thomas-Paul; Pinamonti, Nicola [Hamburg Univ. (Germany). II. Inst. fuer Theoretische Physik

    2009-03-15

    We discuss from scratch the classical structure of Dirac spinors on an arbitrary globally hyperbolic, Lorentzian spacetime, their formulation as a locally covariant quantum field theory, and the associated notion of a Hadamard state. Eventually, we develop the notion of Wick polynomials for spinor fields, and we employ the latter to construct a covariantly conserved stress-energy tensor suited for back-reaction computations. We explicitly calculate its trace anomaly in particular. (orig.)

  20. Two-dimensional Lorentz-Weyl anomaly and gravitational Chern-Simons theory

    International Nuclear Information System (INIS)

    Chamseddine, A.H.; Froehlich, J.

    1992-01-01

    Two-dimensional chiral fermions and bosons, more generally conformal blocks of two-dimensional conformal field theories, exhibit Weyl-, Lorentz- and mixed Lorentz-Weyl anomalies. A novel way of computing these anomalies for a system of chiral bosons of arbitrary conformal spin j is sketched. It is shown that the Lorentz- and mixed Lorentz-Weyl anomalies of these theories can be cancelled by the anomalies of a three-dimensional classical Chern-Simons action for the spin connection, expressed in terms of the dreibein field. Some tentative applications of this result to string theory are indicated. (orig.)

  1. Trace anomaly and counterterms in designer gravity

    International Nuclear Information System (INIS)

    Anabalón, Andrés; Astefanesei, Dumitru; Choque, David; Martínez, Cristián

    2016-01-01

    We construct concrete counterterms of the Balasubramanian-Kraus type for Einstein-scalar theories with designer gravity boundary conditions in AdS_4, so that the total action is finite on-shell and satisfy a well defined variational principle. We focus on scalar fields with the conformal mass m"2=−2l"−"2 and show that the holographic mass matches the Hamiltonian mass for any boundary conditions. We compute the trace anomaly of the dual field theory in the generic case, as well as when there exist logarithmic branches of non-linear origin. As expected, the anomaly vanishes for the boundary conditions that are AdS invariant. When the anomaly does not vanish, the dual stress tensor describes a thermal gas with an equation of state related to the boundary conditions of the scalar field. In the case of a vanishing anomaly, we recover the dual theory of a massless thermal gas. As an application of the formalism, we consider a general family of exact hairy black hole solutions that, for some particular values of the parameters in the moduli potential, contains solutions of four-dimensional gauged N=8 supergravity and its ω-deformation. Using the AdS/CFT duality dictionary, they correspond to triple trace deformations of the dual field theory.

  2. Determination Gradients of the Earth's Magnetic Field from the Measurements of the Satellites and Inversion of the Kursk Magnetic Anomaly

    Science.gov (United States)

    Karoly, Kis; Taylor, Patrick T.; Geza, Wittmann

    2014-01-01

    We computed magnetic field gradients at satellite altitude, over Europe with emphasis on the Kursk Magnetic Anomaly (KMA). They were calculated using the CHAMP satellite total magnetic anomalies. Our computations were done to determine how the magnetic anomaly data from the new ESA/Swarm satellites could be utilized to determine the structure of the magnetization of the Earths crust, especially in the region of the KMA. Since the ten years of 2 CHAMP data could be used to simulate the Swarm data. An initial East magnetic anomaly gradient map of Europe was computed and subsequently the North, East and Vertical magnetic gradients for the KMA region were calculated. The vertical gradient of the KMA was determined using Hilbert transforms. Inversion of the total KMA was derived using Simplex and Simulated Annealing algorithms. Our resulting inversion depth model is a horizontal quadrangle with upper 300-329 km and lower 331-339 km boundaries.

  3. Large geomagnetic field anomalies revealed in Bronze to Iron Age archeomagnetic data from Tel Megiddo and Tel Hazor, Israel

    Science.gov (United States)

    Shaar, Ron; Tauxe, Lisa; Ron, Hagai; Ebert, Yael; Zuckerman, Sharon; Finkelstein, Israel; Agnon, Amotz

    2016-05-01

    Geomagnetic field measurements from the past few centuries show heightened secular variation activity in the southern hemisphere associated with the south Atlantic anomaly (SAA). It is uncertain whether geomagnetic anomalies at a similar scale have existed in the past owing to limited coverage and uncertainties in the paleomagnetic database. Here we provide new evidence from archaeological sources in the Levant suggesting a large positive northern hemisphere anomaly, similar in magnitude to the SAA during the 9th-8th centuries BCE, called ;Levantine Iron Age anomaly;. We also report an additional geomagnetic spike in the 8th century. The new dataset comprises 73 high precision paleointensity estimates from ca. 3000 BCE to 732 BCE, and five directional measurements between the 14th and the 9th centuries BCE. Well-dated pottery and cooking ovens were collected from twenty archaeological strata in two large contemporaneous stratigraphical mounds (tells) in Israel: Tel Megiddo and Tel Hazor. The new data are combined with previously published data and interpreted automatically using the PmagPy Thellier GUI program. The Tel Megiddo and Tel Hazor data sets demonstrate excellent internal consistency and remarkable agreement with published data from Mesopotamia (Syria). The data illustrate the evolution of an extreme geomagnetic high that culminated in at least two spikes between the 11th and the 8th centuries BCE (Iron Age in the Levant). The paleomagnetic directional data of the 9th century BCE show positive inclination anomalies, and deviations of up to 22° from the averaged geocentric axial dipole (GAD) direction. From comparison of the Levantine archaeomagnetic data with IGRF model for 2015 we infer the ;Levantine Iron Age anomaly; between the 10th and the 8th centuries BCE is a local positive anomaly. The eastward extent of the anomaly is currently unknown.

  4. Bjorken-Johnson-Low analysis of commutator anomalies, current-divergence anomalies, and Fujikawa's relation in chiral gauge theories

    International Nuclear Information System (INIS)

    Seo, K.

    1990-01-01

    Fermion one-loop corrections to the commutators of the gauge field, the electric field, and the charge density with the total Hamiltonian are evaluated by the Bjorken-Johnson-Low method in chiral gauge theories. It turns out that individual terms of the Hamiltonian give anomalous terms to the commutator with the electric field, but the total Hamiltonian does not. That is, the classical equation of motion for the electric field holds as the Heisenberg equation. The current-divergence anomaly is identified with the anomalous terms of the commutator between the charge density and the total Hamiltonian. These two results are combined to show that the time derivative of the Gauss-law operator amounts to the current-divergence anomaly (Fujikawa's relation)

  5. Path Integrals and Anomalies in Curved Space

    International Nuclear Information System (INIS)

    Louko, Jorma

    2007-01-01

    Bastianelli and van Nieuwenhuizen's monograph 'Path Integrals and Anomalies in Curved Space' collects in one volume the results of the authors' 15-year research programme on anomalies that arise in Feynman diagrams of quantum field theories on curved manifolds. The programme was spurred by the path-integral techniques introduced in Alvarez-Gaume and Witten's renowned 1983 paper on gravitational anomalies which, together with the anomaly cancellation paper by Green and Schwarz, led to the string theory explosion of the 1980s. The authors have produced a tour de force, giving a comprehensive and pedagogical exposition of material that is central to current research. The first part of the book develops from scratch a formalism for defining and evaluating quantum mechanical path integrals in nonlinear sigma models, using time slicing regularization, mode regularization and dimensional regularization. The second part applies this formalism to quantum fields of spin 0, 1/2, 1 and 3/2 and to self-dual antisymmetric tensor fields. The book concludes with a discussion of gravitational anomalies in 10-dimensional supergravities, for both classical and exceptional gauge groups. The target audience is researchers and graduate students in curved spacetime quantum field theory and string theory, and the aims, style and pedagogical level have been chosen with this audience in mind. Path integrals are treated as calculational tools, and the notation and terminology are throughout tailored to calculational convenience, rather than to mathematical rigour. The style is closer to that of an exceedingly thorough and self-contained review article than to that of a textbook. As the authors mention, the first part of the book can be used as an introduction to path integrals in quantum mechanics, although in a classroom setting perhaps more likely as supplementary reading than a primary class text. Readers outside the core audience, including this reviewer, will gain from the book a

  6. Trace anomaly and counterterms in designer gravity

    Energy Technology Data Exchange (ETDEWEB)

    Anabalón, Andrés [Departamento de Ciencias, Facultad de Artes Liberalesand Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez,Av. Padre Hurtado 750, Viña del Mar (Chile); Astefanesei, Dumitru [Instituto de Física, Pontificia Universidad Católica de Valparaíso,Casilla 4059, Valparaíso (Chile); Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut,14476 Golm (Germany); Choque, David [Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut,14476 Golm (Germany); Universidad Técnica Federico Santa María,Av. España 1680, Valparaíso (Chile); Martínez, Cristián [Centro de Estudios Científicos (CECs),Av. Arturo Prat 514, Valdivia (Chile)

    2016-03-17

    We construct concrete counterterms of the Balasubramanian-Kraus type for Einstein-scalar theories with designer gravity boundary conditions in AdS{sub 4}, so that the total action is finite on-shell and satisfy a well defined variational principle. We focus on scalar fields with the conformal mass m{sup 2}=−2l{sup −2} and show that the holographic mass matches the Hamiltonian mass for any boundary conditions. We compute the trace anomaly of the dual field theory in the generic case, as well as when there exist logarithmic branches of non-linear origin. As expected, the anomaly vanishes for the boundary conditions that are AdS invariant. When the anomaly does not vanish, the dual stress tensor describes a thermal gas with an equation of state related to the boundary conditions of the scalar field. In the case of a vanishing anomaly, we recover the dual theory of a massless thermal gas. As an application of the formalism, we consider a general family of exact hairy black hole solutions that, for some particular values of the parameters in the moduli potential, contains solutions of four-dimensional gauged N=8 supergravity and its ω-deformation. Using the AdS/CFT duality dictionary, they correspond to triple trace deformations of the dual field theory.

  7. Nonperturbative scale anomaly and composite operators in gauge field theories

    International Nuclear Information System (INIS)

    Gusynin, V.P.; Miranskij, V.A.

    1987-01-01

    In non-asymptotically free gauge theories with a non-trivial ultraviolet fixed point scale symmetry breaking (the scale anomaly) caused by the nonperturbative PCAC dynamics is studied. In the two-loop approximation the analytical expression for the gluon condensate is obtained. It is shown that the form of the anomaly depends on the type of the phase of a theory to which it relates. The hypothesis about the soft behaviour at small distances of composite operators in such theories is confirmed. 14 refs.; 1 fig

  8. Tropospheric mid-latitude geopotential wave characteristics associated with strong wind events in the North Atlantic/European region

    Science.gov (United States)

    Wild, Simon; Simmonds, Ian; Leckebusch, Gregor C.

    2015-04-01

    The variability of strong synoptic scale wind events in the mid-latitudes have long been linked to baroclinic wave activity in the mid troposphere. Previous studies have also shown that greater amplitudes of planetary waves in the mid troposphere are likely to increase the occurrence of regional extremes in temperature and precipitation. In this study we examine whether characteristics of planetary and synoptic mid-latitude waves show systematic anomalies in the North Atlantic/ European region which can be related to the occurrence of a strong surface wind event. We will mainly focus on two questions: 1) Do amplitudes for waves with different wave lengths show a systematic anomaly when a strong wind event occurs? 2) Can phases of the individual wave components be detected that favour strong wind events? In order to decompose the mid-tropospheric flow into longitudinal waves we employ the fast Fourier transform to the meridional mean of the geopotential height in 500hPa between 35° and 60°N for i) the entire latitude belt and ii) for a North Atlantic/European sector (36°W to 36°E). Our definition of strong wind events is based on the Storm Severity Index (SSI) alongside a wind tracking algorithm identifying areas of exceedances of the local 98th percentile of the 10m wind speed. First results using ERA-Interim Reanalysis from 1979 - 2014 for the extended winter season (ONDJFM) for the 50 most intense strong wind systems with respect to the SSI reveal a greater amplitude for all investigated wave numbers. Especially waves with wave lengths below 2000km show an increase of about 25% of the daily standard deviation on average. The distribution of wave phases for the different wave numbers with respect to the location of a strong wind event shows a less homogenous picture. There is however a high proportion of events that can be associated with phases around 3π/4 and 5π/4 of waves with lengths of around 6000km, equivalent to wave number 5 on a planetary scale

  9. Anomaly cancellation condition in abelian lattice gauge theories

    International Nuclear Information System (INIS)

    Suzuki, Hiroshi

    1999-11-01

    We analyze the general solution of the Wess-Zumino consistency condition in abelian lattice gauge theories, without taking the classical continuum limit. We find that, if the anomaly density is a local pseudo-scalar field on the lattice, the non-trivial anomaly is always proportional to the anomaly coefficient in the continuum theory. The possible extension of this result to non-abelian theories is briefly discussed. (author)

  10. Application of neural network technique to determine a corrector surface for global geopotential model using GPS/levelling measurements in Egypt

    Science.gov (United States)

    Elshambaky, Hossam Talaat

    2018-01-01

    Owing to the appearance of many global geopotential models, it is necessary to determine the most appropriate model for use in Egyptian territory. In this study, we aim to investigate three global models, namely EGM2008, EIGEN-6c4, and GECO. We use five mathematical transformation techniques, i.e., polynomial expression, exponential regression, least-squares collocation, multilayer feed forward neural network, and radial basis neural networks to make the conversion from regional geometrical geoid to global geoid models and vice versa. From a statistical comparison study based on quality indexes between previous transformation techniques, we confirm that the multilayer feed forward neural network with two neurons is the most accurate of the examined transformation technique, and based on the mean tide condition, EGM2008 represents the most suitable global geopotential model for use in Egyptian territory to date. The final product gained from this study was the corrector surface that was used to facilitate the transformation process between regional geometrical geoid model and the global geoid model.

  11. Ultraviolet and infrared aspects of the axial anomaly. I

    International Nuclear Information System (INIS)

    Horejsi, J.

    1992-01-01

    The paper is the first part of a brief review of some perturbative aspects of the Adler-Bell-Jackiw axial anomaly, described in terms of ultraviolet and infrared behavior of the famous VVA triangle graph. Apart from a general overview of the diversified role played by the anomaly in quantum field theory and particle physics, an elementary introduction is presented to the subject of the anomaly, comprehensible to an uninitiated reader with only a basic background in quantum field theory. The ultraviolet aspects of the anomaly are stressed and the topics covered are the following: vector and axial-vector Ward identities for the VVA triangle graph; the anomaly and several ways to derive it, namely the symmetric momentum cut-off and shifting the integration variables in linearly divergent integrals; the Adler-Rosenberg argument; the Pauli-Villars method; and dimensional regularization. (author) 2 figs., 34 refs

  12. The reactor antineutrino anomalies

    Energy Technology Data Exchange (ETDEWEB)

    Haser, Julia; Buck, Christian; Lindner, Manfred [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany)

    2016-07-01

    Major discoveries were made in the past few years in the field of neutrino flavour oscillation. Nuclear reactors produce a clean and intense flux of electron antineutrinos and are thus an essential neutrino source for the determination of oscillation parameters. Most currently the reactor antineutrino experiments Double Chooz, Daya Bay and RENO have accomplished to measure θ{sub 13}, the smallest of the three-flavour mixing angles. In the course of these experiments two anomalies emerged: (1) the reanalysis of the reactor predictions revealed a deficit in experimentally observed antineutrino flux, known as the ''reactor antineutrino anomaly''. (2) The high precision of the latest generation of neutrino experiments resolved a spectral shape distortion relative to the expected energy spectra. Both puzzles are yet to be solved and triggered new experimental as well as theoretical studies, with the search for light sterile neutrinos as most popular explanation for the flux anomaly. This talk outlines the two reactor antineutrino anomalies. Discussing possible explanations for their occurrence, recent and upcoming efforts to solve the reactor puzzles are highlighted.

  13. SEISMIC DISCRIMINATION OF THERMAL AND MAGNETIC ANOMALIES IN SUNSPOT UMBRAE

    International Nuclear Information System (INIS)

    Lindsey, C.; Cally, P. S.; Rempel, M.

    2010-01-01

    Efforts to model sunspots based on helioseismic signatures need to discriminate between the effects of (1) a strong magnetic field that introduces time-irreversible, vantage-dependent phase shifts, apparently connected to fast- and slow-mode coupling and wave absorption and (2) a thermal anomaly that includes cool gas extending an indefinite depth beneath the photosphere. Helioseismic observations of sunspots show travel times considerably reduced with respect to equivalent quiet-Sun signatures. Simulations by Moradi and Cally of waves skipping across sunspots with photospheric magnetic fields of order 3 kG show travel times that respond strongly to the magnetic field and relatively weakly to the thermal anomaly by itself. We note that waves propagating vertically in a vertical magnetic field are relatively insensitive to the magnetic field, while remaining highly responsive to the attendant thermal anomaly. Travel-time measurements for waves with large skip distances into the centers of axially symmetric sunspots are therefore a crucial resource for discrimination of the thermal anomaly beneath sunspot umbrae from the magnetic anomaly. One-dimensional models of sunspot umbrae based on compressible-radiative-magnetic-convective simulations such as by Rempel et al. can be fashioned to fit observed helioseismic travel-time spectra in the centers of sunspot umbrae. These models are based on cooling of the upper 2-4 Mm of the umbral subphotosphere with no significant anomaly beneath 4.5 Mm. The travel-time reductions characteristic of these models are primarily a consequence of a Wilson depression resulting from a strong downward buoyancy of the cooled umbral medium.

  14. Anomaly Busters II

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1985-11-15

    The anomaly busters had struck on the first day of the Kyoto meeting with Yoji Totsuka of Tokyo speaking on baryon number nonjjonservation and 'related topics'. The unstable proton is a vital test of grand unified pictures pulling together the electroweak and quark/gluon forces in a single field theory.

  15. Singlet deflected anomaly/gauge mediation

    International Nuclear Information System (INIS)

    Blas, J. de; Delgado, A.

    2012-01-01

    We study an extension of the standard anomaly/gauge mediation scenario where the messenger fields have direct interactions with an extra gauge singlet. This realizes a phenomenologically viable NMSSM-like scenario free of the μ-b μ problem. Current cosmological constraints imply a small size for the anomaly-mediation contributions, unless some source of R-parity violation is permitted. In the latter case the allowed regions in the parameter space can be substantially larger than in the corresponding gauge-mediation scenario.

  16. Anomaly Busters II

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    The anomaly busters had struck on the first day of the Kyoto meeting with Yoji Totsuka of Tokyo speaking on baryon number nonjjonservation and 'related topics'. The unstable proton is a vital test of grand unified pictures pulling together the electroweak and quark/gluon forces in a single field theory

  17. Hawking radiation of black rings from anomalies

    International Nuclear Information System (INIS)

    Chen Bin; He Wei

    2008-01-01

    We derive Hawking radiation of five-dimensional black rings from gauge and gravitational anomalies using the method proposed by Robinson and Wilczek. We find, as in the black hole case, that the problem could reduce to a (1+1)-dimensional field theory and the anomalies result in correct Hawking temperature for neutral, dipole and charged black rings

  18. The stress field and its sources in the North Atlantic Realm and Europe

    DEFF Research Database (Denmark)

    Nielsen, S.B.; Schiffer, Christian; Stephenson, Randell Alexander

    A number of sources contribute to the lithospheric stress field. Lithospheric density heterogeneities cause horizontal gradients of the vertically integrated lithostatic pressure, which give rise to gravitational/geopotential stresses. Variations of pressure, temperature and composition in the co...

  19. On the trace anomaly of a Weyl fermion

    Energy Technology Data Exchange (ETDEWEB)

    Bastianelli, Fiorenzo; Martelli, Riccardo [Dipartimento di Fisica e Astronomia, Università di Bologna,via Irnerio 46, I-40126 Bologna (Italy); INFN - Sezione di Bologna,via Irnerio 46, I-40126 Bologna (Italy)

    2016-11-29

    We calculate the trace anomaly of a Weyl fermion coupled to gravity by using Fujikawa’s method supplemented by a consistent regulator. The latter is constructed out of Pauli-Villars regulating fields. The motivation for presenting such a calculation stems from recent studies that suggest that the trace anomaly of chiral fermions in four dimensions might contain an imaginary part proportional to the Pontryagin density. We find that the trace anomaly of a Weyl fermion is given by half the trace anomaly of a Dirac fermion, so that no imaginary part proportional to the Pontryagin density is seen to arise.

  20. Anomaly matching conditions and the moduli space of supersymmetric gauge theories

    International Nuclear Information System (INIS)

    Dotti, G.; Manohar, A.V.

    1998-01-01

    The structure of the moduli space of N=1 supersymmetric gauge theories is analyzed from an algebraic geometric viewpoint. The connection between the fundamental fields of the ultraviolet theory, and the gauge-invariant composite fields of the infrared theory is explained in detail. The results are then used to prove an anomaly matching theorem. The theorem is used to study anomaly matching for supersymmetric QCD, and can explain all the known anomaly matching results for this case. (orig.)

  1. Structure of gauge and gravitational anomalies*

    International Nuclear Information System (INIS)

    Alvarez-Gaume, L.; Ginsparg, P.

    1985-01-01

    It is shown how the form of the gauge and gravitational anomalies in quantum field theories may be derived from classical index theorems. The gravitational anomaly in both Einstein and Lorentz form is considered and their equivalence is exhibited. The formalism of gauge and gravitational theories is reviewed using the language of differential geometry, and notions from the theory of characteristic classes necessary for understanding the classical index theorems are introduced. The treatment of known topological results includes a pedagogical derivation of the Wess-Zumino effective Lagrangian in abitrary even dimension. The relation between various forms of the anomaly present in the literature is also clarified

  2. Gaugino-assisted anomaly mediation

    International Nuclear Information System (INIS)

    Kribs, Graham D.

    2001-01-01

    I present a model of supersymmetry breaking mediated through a small extra dimension. Standard model matter multiplets and a supersymmetry-breaking (or 'hidden') sector are confined to opposite four-dimensional boundaries while gauge multiplets live in the bulk. The hidden sector does not contain a singlet and the dominant contribution to gaugino masses is via anomaly-mediated supersymmetry breaking. Scalar masses get contributions from both anomaly mediation and a tiny hard breaking of supersymmetry by operators on the hidden-sector boundary. These operators contribute to scalar masses at one loop and in most of parameter space, their contribution dominates. Thus it is easy to make all squared scalar masses positive. As no additional fields or symmetries are required below the Planck scale, this is among the simplest working models of anomaly mediation. The gaugino spectrum is left untouched and the phenomenology of the model is roughly similar to anomaly mediated supersymmetry breaking with a universal scalar mass added. Finally, the main differences in the spectrum between this model and other approaches are identified. This talk is based on work [1] done in collaboration with David E. Kaplan

  3. Quantum anomalies in nodal line semimetals

    Science.gov (United States)

    Burkov, A. A.

    2018-04-01

    Topological semimetals are a new class of condensed matter systems with nontrivial electronic structure topology. Their unusual observable properties may often be understood in terms of quantum anomalies. In particular, Weyl and Dirac semimetals, which have point band-touching nodes, are characterized by the chiral anomaly, which leads to the Fermi arc surface states, anomalous Hall effect, negative longitudinal magnetoresistance, and planar Hall effect. In this paper, we explore analogous phenomena in nodal line semimetals. We demonstrate that such semimetals realize a three-dimensional analog of the parity anomaly, which is a known property of two-dimensional Dirac semimetals arising, for example, on the surface of a three-dimensional topological insulator. We relate one of the characteristic properties of nodal line semimetals, namely, the drumhead surface states, to this anomaly, and derive the field theory, which encodes the corresponding anomalous response.

  4. The relationship between sea surface temperature anomalies and atmospheric circulation in general circulation model experiments

    International Nuclear Information System (INIS)

    Kharin, V.V.

    1994-01-01

    Several multi-year integrations of the Hamburg version of the ECMWF/T21 general circulation model driven by the sea surface temperature (SST) observed in the period 1970-1988 were examined to study the extratropical response of the atmospheric circulation to SST anomalies in the Northern Hemisphere in winter. In the first 19-years run SST anomalies were prescribed globally (GAGO run), and in two others SST variability was limited to extratropical regions (MOGA run) and to tropics (TOGA run), respectively. A canonical correlation analysis was applied to the monthly means to find the best correlated patterns of SST anomalies in the Atlantic and Pacific Oceans and the Northern Hemisphere atmospheric flow. Contrary to expectation, the extratropical response in the GAGO run is not equal to the linear combination of the responses in the MOGA and TOGA runs. In the GAGO integration with globally prescribed SST the best correlated atmospheric pattern is global and is characterized by dipole structures of the same polarity in the North Atlantic and the North Pacific sectors. In the MOGA and TOGA experiments the atmospheric response is more local with main centers in the North Atlantic and North Pacific, respectively. The atmospheric modes found by the CCA were compared with the normal modes of the barotropic vorticity equation linearized about the 500 mb winter climate of the control integration driven by the climatological SST. The normal modes with smallest eigenvalues are similar to the canonical patterns of 500 mb geopotential height. The corresponding eigenvectors of the adjoint operator, which represent an external forcing optimal for exciting normal modes, have a longitudinal structure with maxima in regions characterized by enhanced high frequency baroclinic activity over both oceans. It was suggested that variability of storm tracks could play an important role in variability of the barotropic normal modes. (orig.)

  5. Chiral anomalies in QED and QCD at finite temperature

    International Nuclear Information System (INIS)

    Alvarez-Estrada, R.F.

    1991-01-01

    Chiral anomalies (a) for QED and QCD at finite temperature are analyzed in imaginary- and real-time formalisms. Both triangle diagrams and functional methods are used. It is found that the expressions for a in terms of finite-temperature fields are formally similar to that for the zero-temperature anomaly as a function of zero-temperature fields, thereby generalizing previous work by other authors. (author). 20 refs.; 1 fig

  6. Assessing Asset Pricing Anomalies

    NARCIS (Netherlands)

    W.A. de Groot (Wilma)

    2017-01-01

    markdownabstractOne of the most important challenges in the field of asset pricing is to understand anomalies: empirical patterns in asset returns that cannot be explained by standard asset pricing models. Currently, there is no consensus in the academic literature on the underlying causes of

  7. Dyonic anomalies

    International Nuclear Information System (INIS)

    Henningson, Mans; Johansson, Erik P.G.

    2005-01-01

    We consider the problem of coupling a dyonic p-brane in d=2p+4 space-time dimensions to a prescribed (p+2)-form field strength. This is particularly subtle when p is odd. For the case p=1, we explicitly construct a coupling functional, which is a sum of two terms: one which is linear in the prescribed field strength, and one which describes the coupling of the brane to its self-field and takes the form of a Wess-Zumino term depending only on the embedding of the brane world-volume into space-time. We then show that this functional is well-defined only modulo a certain anomaly, related to the Euler class of the normal bundle of the brane world-volume

  8. Nonrelativistic trace and diffeomorphism anomalies in particle number background

    Science.gov (United States)

    Auzzi, Roberto; Baiguera, Stefano; Nardelli, Giuseppe

    2018-04-01

    Using the heat kernel method, we compute nonrelativistic trace anomalies for Schrödinger theories in flat spacetime, with a generic background gauge field for the particle number symmetry, both for a free scalar and a free fermion. The result is genuinely nonrelativistic, and it has no counterpart in the relativistic case. Contrary to naive expectations, the anomaly is not gauge invariant; this is similar to the nongauge covariance of the non-Abelian relativistic anomaly. We also show that, in the same background, the gravitational anomaly for a nonrelativistic scalar vanishes.

  9. Particle precipitation events in the South Atlantic Magnetic Anomaly (SAMA) and geomagnetic field

    International Nuclear Information System (INIS)

    Sanchez Bettucci, L.; Caraballo, R.; Da Silva Barbosa, C.

    2003-01-01

    Particle precipitation events in the South Atlantic Magnetic Anomaly (SAMA) have been correlated with impulses in the H component of the geomagnetic field. Sudden changes in the H component of the geomagnetic field can produce high intensity peaks in geomagnetic induced currents (GIC) at the Earth’s surface. The effects related to electron precipitation on the upper and middle atmosphere are still not well understood, especially in the area of the SAMA. This study focuses on the Halloween magnetic storm (29-31 October 2003) and two of the largest magnetic storms occurred in 2011. Data from POES and DMSP satellites have been contrasted with the Vassoura s magnetic observatory records and the GIC in a H V transformer neutral at Itumbiara substation (central Brazilian area) to look for possible correlations between d H, the GIC and the precipitation flux of ultrarelativistic electrons. The observations suggest some overlap between episodes of intense precipitation of electrons in the inner radiation belt and impulsive changes in these variables

  10. Using eddy geopotential height to measure the western North Pacific subtropical high in a warming climate

    Science.gov (United States)

    He, Chao; Lin, Ailan; Gu, Dejun; Li, Chunhui; Zheng, Bin; Wu, Bo; Zhou, Tianjun

    2018-01-01

    The western North Pacific subtropical high (WNPSH) is crucial to the East Asian summer climate, and geopotential height ( H) is widely used to measure the WPNSH. However, a rapidly rising trend of H in the future is projected by the models from the Coupled Model Intercomparison Project Phase 5 (CMIP5). Diagnoses based on the hypsometric equation suggest that more than 80% of the rise in H are attributable to zonal uniform warming. Because circulation is determined by the gradient of H rather than its absolute magnitude, the spatially uniform rising trend of H gives rise to difficulties when measuring the WNPSH with H. These difficulties include an invalid western boundary of WNPSH in the future and spurious information regarding long-term trends and interannual variability of WNPSH. Using CMIP5 model simulations and reanalysis data, the applicability of a metric based on eddy geopotential height ( H e ) to the warming climate is investigated. The results show that the H e metric outperforms the H metric under warming climate conditions. First, the mean state rainfall- H e relationship is more robust than the rainfall- H relationship. Second, the area, intensity, and western boundary indices of WNPSH can be effectively defined by the H e = 0-m contour in future warming climate scenarios without spurious trends. Third, the interannual variability of East Asian summer rainfall is more closely related to the H e -based WNPSH indices. We recommend that the H e metric be adopted as an operational metric on the WNPSH under the current warming climate.

  11. The Pioneer anomaly in the context of the braneworld scenario

    International Nuclear Information System (INIS)

    Bertolami, O; Paramos, J

    2004-01-01

    We examine the Pioneer anomaly-a reported anomalous acceleration affecting the Pioneer 10/11, Galileo and Ulysses spacecraft-in the context of a braneworld scenario. We show that effects due to the radion field cannot account for the anomaly, but that a scalar field with an appropriate potential is able to explain the phenomenon. Implications and features of our solution are discussed

  12. On Certain Conceptual Anomalies in Einstein's Theory of Relativity

    Directory of Open Access Journals (Sweden)

    Crothers S. J.

    2008-01-01

    Full Text Available There are a number of conceptual anomalies occurring in the Standard exposition of Einstein's Theory of Relativity. These anomalies relate to issues in both mathematics and in physics and penetrate to the very heart of Einstein's theory. This paper reveals and amplifies a few such anomalies, including the fact that Einstein's field equations for the so-called static vacuum configuration, $R_{mu u} = 0$, violates his Principle of Equivalence, and is therefore erroneous. This has a direct bearing on the usual concept of conservation of energy for the gravitational field and the conventional formulation for localisation of energy using Einstein's pseudo-tensor. Misconceptions as to the relationship between Minkowski spacetime and Special Relativity are also discussed, along with their relationships to the pseudo-Riemannian metric manifold of Einstein's gravitational field, and their fundamental geometric structures pertaining to spherical symmetry.

  13. Application of isostatic gravity anomaly in the Yellow Sea area

    Science.gov (United States)

    Hao, Z.; Qin, J.; Huang, W.; Wu, X.

    2017-12-01

    In order to study the deep crustal structure of the Yellow Sea area, we used the Airy-Heiskanen model to calculate the isostatic gravity anomaly of this area. Based on the Bouguer gravity anomaly and water depth data of this area, we chose the calculating parameters as standard crustal thickness 30 km, crust-mantle density difference 0.6g/cm3and grid spacing 0.1°×0.1°. This study reveals that there are six faults and four isostatic negative anomalies in the study area. The isostatic anomalies in much of Yellow Sea areas give priority to those with positive anomalies. The isostatic anomalies in North Yellow Sea are higher than South Yellow Sea with Jiashan-Xiangshui fault as the boundary. In the north of the study area, isostatic anomalies are characterized by large areas of positive anomaly. The change is relatively slow, and the trends give priority to the trend NE or NEE. In the middle of the north Yellow Sea basin, there is a local negative anomaly, arranged as a string of beads in NE to discontinuous distribution. Negative anomaly range is small, basically corresponds to the region's former Cenozoic sedimentary basin position. To the south of Jiashan-Xiangshui fault and west of Yellow Sea eastern margin fault, including most of the south Yellow Sea and Jiangsu province, the isostatic anomalies are lower. And the positive and negative anomalies are alternative distribution, and negative anomaly trap in extensive development. The trends give priority to NE, NEE, both to the NW. On the basis of the characteristics of isostatic gravity anomalies, it is concluded that the Yellow Sea belongs to continental crustal isostatic area whose isostatic anomalies is smooth and slow. ReferencesHeiskanen, W. A., F. A. V. Meinesz, and S. A. Korff (1958), The Earth and Its Gravity Field, McGraw-Hill, New York. Meng, X. J., X. H. Zhang, and J. Y. Yang (2014), Geophysical survey in eastern China seas and the characteristics of gravity and magnetic fields, Marine Geoglogy

  14. Lifshitz anomalies, Ward identities and split dimensional regularization

    Energy Technology Data Exchange (ETDEWEB)

    Arav, Igal; Oz, Yaron; Raviv-Moshe, Avia [Raymond and Beverly Sackler School of Physics and Astronomy, Tel-Aviv University,55 Haim Levanon street, Tel-Aviv, 69978 (Israel)

    2017-03-16

    We analyze the structure of the stress-energy tensor correlation functions in Lifshitz field theories and construct the corresponding anomalous Ward identities. We develop a framework for calculating the anomaly coefficients that employs a split dimensional regularization and the pole residues. We demonstrate the procedure by calculating the free scalar Lifshitz scale anomalies in 2+1 spacetime dimensions. We find that the analysis of the regularization dependent trivial terms requires a curved spacetime description without a foliation structure. We discuss potential ambiguities in Lifshitz scale anomaly definitions.

  15. Lifshitz anomalies, Ward identities and split dimensional regularization

    International Nuclear Information System (INIS)

    Arav, Igal; Oz, Yaron; Raviv-Moshe, Avia

    2017-01-01

    We analyze the structure of the stress-energy tensor correlation functions in Lifshitz field theories and construct the corresponding anomalous Ward identities. We develop a framework for calculating the anomaly coefficients that employs a split dimensional regularization and the pole residues. We demonstrate the procedure by calculating the free scalar Lifshitz scale anomalies in 2+1 spacetime dimensions. We find that the analysis of the regularization dependent trivial terms requires a curved spacetime description without a foliation structure. We discuss potential ambiguities in Lifshitz scale anomaly definitions.

  16. On Certain Conceptual Anomalies in Einstein's Theory of Relativity

    OpenAIRE

    Crothers S. J.

    2008-01-01

    There are a number of conceptual anomalies occurring in the Standard exposition of Einstein’s Theory of Relativity. These anomalies relate to issues in both mathematics and in physics and penetrate to the very heart of Einstein’s theory. This paper reveals and amplifies a few such anomalies, including the fact that Einstein’s field equations for the so-called static vacuum configuration, R = 0 , violates his Principle of Equiv- alence, and is therefore ...

  17. Global magnetic anomaly and aurora of Neptune

    International Nuclear Information System (INIS)

    Cheng, A.F.

    1990-01-01

    The large offset and tilt of Neptune's dipole magnetic field combine to create a global magnetic anomaly, analogous to but much more important than Earth's South Atlantic Anomaly. Energetic particle precipitation loss within the Neptune anomaly creates atmospheric drift shadows within which particle fluxes are greatly reduced. The energetic particle dropout observed by Voyager near closest approach occurred near the predicted times when Voyager passed within the atmospheric drift shadow. Extremely soft, structured bursts of ions and electrons within the drift shadow may result from plasma wave-induced pitch angle scattering of trapped particles confined near the magnetic equator. The dropout does not necessarily imply that Voyager passed through an Earth-like discrete auroral zone, as earlier reported. The ion and electron fluxes observed within the dropout period correspond to particles that must precipitate to Neptune's atmosphere within the anomaly region. This anomaly precipitation can account for a major portion of the ultraviolet emissions previously identified as Neptune aurora

  18. Covariant Gauss law commutator anomaly

    International Nuclear Information System (INIS)

    Dunne, G.V.; Trugenberger, C.A.; Massachusetts Inst. of Tech., Cambridge

    1990-01-01

    Using a (fixed-time) hamiltonian formalism we derive a covariant form for the anomaly in the commutator algebra of Gauss law generators for chiral fermions interacting with a dynamical non-abelian gauge field in 3+1 dimensions. (orig.)

  19. On Certain Conceptual Anomalies in Einstein's Theory of Relativity

    Directory of Open Access Journals (Sweden)

    Crothers S. J.

    2008-01-01

    Full Text Available There are a number of conceptual anomalies occurring in the Standard exposition of Einstein’s Theory of Relativity. These anomalies relate to issues in both mathematics and in physics and penetrate to the very heart of Einstein’s theory. This paper reveals and amplifies a few such anomalies, including the fact that Einstein’s field equations for the so-called static vacuum configuration, R = 0 , violates his Principle of Equiv- alence, and is therefore erroneous. This has a direct bearing on the usual concept of conservation of energy for the gravitational field and the conventional formulation for localisation of energy using Einstein’s pseudo-tensor. Misconceptions as to the relationship between Minkowski spacetime and Special Relativity are also discussed, along with their relationships to the pseudo-Riemannian metric manifold of Einstein’s gravitational field, and their fundamental geometric structures pertaining to spherical symmetry.

  20. Conformal anomaly actions for dilaton interactions

    Directory of Open Access Journals (Sweden)

    Rose Luigi Delle

    2014-01-01

    Full Text Available We discuss, in conformally invariant field theories such as QCD with massless fermions, a possible link between the perturbative signature of the conformal anomaly, in the form of anomaly poles of the 1-particle irreducible effective action, and its descrip- tion in terms of Wess-Zumino actions with a dilaton. The two descriptions are expected to capture the UV and IR behaviour of the conformal anomaly, in terms of fundamental and effective degrees of freedom respectively, with the dilaton effective state appearing in a nonlinear realization. As in the chiral case, conformal anomalies seem to be related to the appearance of these effective interactions in the 1PI action in all the gauge-invariant sectors of the Standard Model. We show that, as a consequence of the underlying anomalous symmetry, the infinite hierarchy of recurrence relations involving self-interactions of the dilaton is entirely determined only by the first four of them. This relation can be generalized to any even space-time dimension.

  1. Generalized zero point anomaly

    International Nuclear Information System (INIS)

    Nogueira, Jose Alexandre; Maia Junior, Adolfo

    1994-01-01

    It is defined Zero point Anomaly (ZPA) as the difference between the Effective Potential (EP) and the Zero point Energy (ZPE). It is shown, for a massive and interacting scalar field that, in very general conditions, the renormalized ZPA vanishes and then the renormalized EP and ZPE coincide. (author). 3 refs

  2. Anomalies, conformal manifolds, and spheres

    Energy Technology Data Exchange (ETDEWEB)

    Gomis, Jaume [Perimeter Institute for Theoretical Physics,Waterloo, Ontario, N2L 2Y5 (Canada); Hsin, Po-Shen [Department of Physics, Princeton University,Princeton, NJ 08544 (United States); Komargodski, Zohar; Schwimmer, Adam [Weizmann Institute of Science,Rehovot 76100 (Israel); Seiberg, Nathan [School of Natural Sciences, Institute for Advanced Study,Princeton, NJ 08540 (United States); Theisen, Stefan [Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut,14476 Golm (Germany)

    2016-03-04

    The two-point function of exactly marginal operators leads to a universal contribution to the trace anomaly in even dimensions. We study aspects of this trace anomaly, emphasizing its interpretation as a sigma model, whose target space M is the space of conformal field theories (a.k.a. the conformal manifold). When the underlying quantum field theory is supersymmetric, this sigma model has to be appropriately supersymmetrized. As examples, we consider in some detail N=(2,2) and N=(0,2) supersymmetric theories in d=2 and N=2 supersymmetric theories in d=4. This reasoning leads to new information about the conformal manifolds of these theories, for example, we show that the manifold is Kähler-Hodge and we further argue that it has vanishing Kähler class. For N=(2,2) theories in d=2 and N=2 theories in d=4 we also show that the relation between the sphere partition function and the Kähler potential of M follows immediately from the appropriate sigma models that we construct. Along the way we find several examples of potential trace anomalies that obey the Wess-Zumino consistency conditions, but can be ruled out by a more detailed analysis.

  3. Simulation of Synoptic Scale Circulation Features over Southern Africa Using GCMS

    International Nuclear Information System (INIS)

    Browne, Nana Ama Kum; Abiodun, Babatunde Joseph; Tadross, Mark; Hewitson, Bruce

    2009-11-01

    Two global models (HadAM3: The Hadley Centre Atmospheric Model version 3 and CAM3: The Community Atmospheric model version 3) have been studied regarding their capabilities in reproducing the small scale features over southern Africa compared with the NCEP reanalysis. In this study, geopotential height at 500hPa and 850hPa pressure levels are used to investigate the variability of small scale circulation features over southern Africa. The investigation took into consideration the magnitude of the models standard deviations. Most of the results were linked with rainfall and temperature over the region. It was found that the standardized anomalies in the geopotential height at the 500hPa pressure level are in phase with that of rainfall. In contrast, the standardized anomalies of 850hPa pressure level geopotential height are out of phase with the standardized anomalies of rainfall and temperature. In addition, the models are able to capture the variation in the mean cut-off lows, number of days with deep tropical lows and number of days with Tropical Temperate Troughs (TTTs) quite well. However, the models could not capture the number of days with temperate lows very well. Generally, the models are able to reproduce the synoptic scale circulation features which are crucial for reliable seasonal forecast over southern Africa. (author)

  4. Size-dependent avoidance of a strong magnetic anomaly in Caribbean spiny lobsters.

    Science.gov (United States)

    Ernst, David A; Lohmann, Kenneth J

    2018-03-01

    On a global scale, the geomagnetic field varies predictably across the Earth's surface, providing animals that migrate long distances with a reliable source of directional and positional information that can be used to guide their movements. In some locations, however, magnetic minerals in the Earth's crust generate an additional field that enhances or diminishes the overall field, resulting in unusually steep gradients of field intensity within a limited area. How animals respond to such magnetic anomalies is unclear. The Caribbean spiny lobster, Panulirus argus , is a benthic marine invertebrate that possesses a magnetic sense and is likely to encounter magnetic anomalies during migratory movements and homing. As a first step toward investigating whether such anomalies affect the behavior of lobsters, a two-choice preference experiment was conducted in which lobsters were allowed to select one of two artificial dens, one beneath a neodymium magnet and the other beneath a non-magnetic weight of similar size and mass (control). Significantly more lobsters selected the control den, demonstrating avoidance of the magnetic anomaly. In addition, lobster size was found to be a significant predictor of den choice: lobsters that selected the anomaly den were significantly smaller as a group than those that chose the control den. Taken together, these findings provide additional evidence for magnetoreception in spiny lobsters, raise the possibility of an ontogenetic shift in how lobsters respond to magnetic fields, and suggest that magnetic anomalies might influence lobster movement in the natural environment. © 2018. Published by The Company of Biologists Ltd.

  5. C -P -T anomaly matching in bosonic quantum field theory and spin chains

    Science.gov (United States)

    Sulejmanpasic, Tin; Tanizaki, Yuya

    2018-04-01

    We consider the O (3 ) nonlinear sigma model with the θ term and its linear counterpart in 1+1D. The model has discrete time-reflection and space-reflection symmetries at any θ , and enjoys the periodicity in θ →θ +2 π . At θ =0 ,π it also has a charge-conjugation C symmetry. Gauging the discrete space-time reflection symmetries is interpreted as putting the theory on the nonorientable R P2 manifold, after which the 2 π periodicity of θ and the C symmetry at θ =π are lost. We interpret this observation as a mixed 't Hooft anomaly among charge-conjugation C , parity P , and time-reversal T symmetries when θ =π . Anomaly matching implies that in this case the ground state cannot be trivially gapped, as long as C ,P , and T are all good symmetries of the theory. We make several consistency checks with various semiclassical regimes, and with the exactly solvable XYZ model. We interpret this anomaly as an anomaly of the corresponding spin-half chains with translational symmetry, parity, and time reversal [but not involving the SO(3)-spin symmetry], requiring that the ground state is never trivially gapped, even if SO(3) spin symmetry is explicitly and completely broken. We also consider generalizations to C PN -1 models and show that the C -P -T anomaly exists for even N .

  6. Regularization of the path integral measure for anomalies

    International Nuclear Information System (INIS)

    Umezawa, M.

    1989-01-01

    In this paper we show that the variation of the integral measure is fully equivalent to the authentic field theoretical treatment for a two-point function. To do this we first examine various ways of solving the factor A(x) in Fujikawa's expression for the functional integral measure. We define the anomaly as A(x)-A f (x), where A f (x) is the Fujikawa factor for the free field. We then propose a regulator which leads to a finite result for any anomaly. We then show that the A(x) can be defined in terms of the proper-time through a splitting procedure. The original Fujikawa prescription for A(x) is shown to be closely related to the proper-time description of the anomaly, initiated by Schwinger. Its equivalence to the authentic field theoretical treatment will be proven as a consequence of these investigations. The ξ-functional regularization for A(x) is also examined. Then we will examine the way to deduce the anomaly from the effective potential by adopting the Φ 4 model as an example. The renormalization group equation for the effective potential is solved exactly to obtain the precise form of the β-function in terms of which we reexpress the result obtained in a previous section for A(x). We discuss the physical significance of the renormalization group equation for the case of broken symmetry

  7. Numerical simulation of multiple-physical fields coupling for thermal anomalies before earthquakes: A case study of the 2008 Wenchuan Ms8.0 earthquake in southwest China

    Science.gov (United States)

    Deng, Z.

    2017-12-01

    It has become a highly focused issue that thermal anomalies appear before major earthquakes. There are various hypotheses about the mechanism of thermal anomalies. Because of lacking of enough evidences, the mechanism is still require to be further researched. Gestation and occurrence of a major earthquake is related with the interaction of multi-physical fields. The underground fluid surging out the surface is very likely to be the reason for the thermal anomaly. This study tries to answer some question, such as how the geothermal energy transfer to the surface, and how the multiple-physical fields interacted. The 2008 Wenchuan Ms8.0 earthquake, is one of the largest evens in the last decade in China mainland. Remote sensing studies indicate that distinguishable thermal anomalies occurred several days before the earthquake. The heat anomaly value is more than 3 times the average in normal time and distributes along the Longmen Shan fault zone. Based on geological and geophysical data, 2D dynamic model of coupled stress, seepage and thermal fields (HTM model) is constructed. Then using the COMSOL multi-physics filed software, this work tries to reveal the generation process and distribution patterns of thermal anomalies prior to thrust-type major earthquakes. The simulation get the results: (1)Before the micro rupture, with the increase of compression, the heat current flows to the fault in the footwall on the whole, while in the hanging wall of the fault, particularly near the ground surface, the heat flow upward. In the fault zone, heat flow upward along the fracture surface, heat flux in the fracture zone is slightly larger than the wall rock;, but the value is all very small. (2)After the occurrence of the micro fracture, the heat flow rapidly collects to the faults. In the fault zones, the heat flow accelerates up along the fracture surfaces, the heat flux increases suddenly, and the vertical heat flux reaches to the maximum. The heat flux in the 3 fracture

  8. Conformal anomalies in curved space--time

    Energy Technology Data Exchange (ETDEWEB)

    Duncan, A.

    1976-11-01

    The general form of the conformal anomaly in a dimensionally regularized theory of massless fermions in a background metric is shown to be determined by the first few terms of weak field perturbation theory.

  9. Gerbes, M5-brane anomalies and E8 gauge theory

    International Nuclear Information System (INIS)

    Aschieri, Paolo; Jurco, Branislav

    2004-01-01

    Abelian gerbes and twisted bundles describe the topology of the NS 3-form gauge field strength H. We review how they have been usefully applied to study and resolve global anomalies in open string theory. Abelian 2-gerbes and twisted nonabelian gerbes describe the topology of the 4-form field strength G of M-theory. We show that twisted nonabelian gerbes are relevant in the study and resolution of global anomalies of multiple coinciding M5-branes. Global anomalies for one M5-brane have been studied by Witten and by Diaconescu, Freed and Moore. The structure and the differential geometry of twisted nonabelian gerbes (i.e. modules for 2-gerbes) is defined and studied. The nonabelian 2-form gauge potential living on multiple coinciding M5-branes arises as curving (curvature) of twisted nonabelian gerbes. The nonabelian group is in general Ω-tildeE 8 , the central extension of the E 8 loop group. The twist is in general necessary to cancel global anomalies due to the non-triviality of the 11-dimensional 4-form field strength G and due to the possible torsion present in the cycles the M5-branes wrap. Our description of M5-branes global anomalies leads to the D4-branes one upon compactification of M-theory to Type IIA theory. (author)

  10. Gerbes, M5-Brane Anomalies and E8 Gauge Theory

    Science.gov (United States)

    Aschieri, Paolo; Jurco, Branislav

    2004-10-01

    Abelian gerbes and twisted bundles describe the topology of the NS 3-form gauge field strength H. We review how they have been usefully applied to study and resolve global anomalies in open string theory. Abelian 2-gerbes and twisted nonabelian gerbes describe the topology of the 4-form field strength G of M-theory. We show that twisted nonabelian gerbes are relevant in the study and resolution of global anomalies of multiple coinciding M5-branes. Global anomalies for one M5-brane have been studied by Witten and by Diaconescu, Freed and Moore. The structure and the differential geometry of twisted nonabelian gerbes (i.e. modules for 2-gerbes) is defined and studied. The nonabelian 2-form gauge potential living on multiple coinciding M5-branes arises as curving (curvature) of twisted nonabelian gerbes. The nonabelian group is in general tilde OmegaE8, the central extension of the E8 loop group. The twist is in general necessary to cancel global anomalies due to the nontriviality of the 11-dimensional 4-form field strength G and due to the possible torsion present in the cycles the M5-branes wrap. Our description of M5-branes global anomalies leads to the D4-branes one upon compactification of M-theory to Type IIA theory.

  11. A comparative study of spherical and flat-Earth geopotential modeling at satellite elevations

    Science.gov (United States)

    Parrott, M. H.; Hinze, W. J.; Braile, L. W.; Vonfrese, R. R. B.

    1985-01-01

    Flat-Earth modeling is a desirable alternative to the complex spherical-Earth modeling process. These methods were compared using 2 1/2 dimensional flat-earth and spherical modeling to compute gravity and scalar magnetic anomalies along profiles perpendicular to the strike of variably dimensioned rectangular prisms at altitudes of 150, 300, and 450 km. Comparison was achieved with percent error computations (spherical-flat/spherical) at critical anomaly points. At the peak gravity anomaly value, errors are less than + or - 5% for all prisms. At 1/2 and 1/10 of the peak, errors are generally less than 10% and 40% respectively, increasing to these values with longer and wider prisms at higher altitudes. For magnetics, the errors at critical anomaly points are less than -10% for all prisms, attaining these magnitudes with longer and wider prisms at higher altitudes. In general, in both gravity and magnetic modeling, errors increase greatly for prisms wider than 500 km, although gravity modeling is more sensitive than magnetic modeling to spherical-Earth effects. Preliminary modeling of both satellite gravity and magnetic anomalies using flat-Earth assumptions is justified considering the errors caused by uncertainties in isolating anomalies.

  12. Feasibility study of short-term earthquake prediction using ionospheric anomalies immediately before large earthquakes

    Science.gov (United States)

    Heki, K.; He, L.

    2017-12-01

    We showed that positive and negative electron density anomalies emerge above the fault immediately before they rupture, 40/20/10 minutes before Mw9/8/7 earthquakes (Heki, 2011 GRL; Heki and Enomoto, 2013 JGR; He and Heki 2017 JGR). These signals are stronger for earthquake with larger Mw and under higher background vertical TEC (total electron conetent) (Heki and Enomoto, 2015 JGR). The epicenter, the positive and the negative anomalies align along the local geomagnetic field (He and Heki, 2016 GRL), suggesting electric fields within ionosphere are responsible for making the anomalies (Kuo et al., 2014 JGR; Kelley et al., 2017 JGR). Here we suppose the next Nankai Trough earthquake that may occur within a few tens of years in Southwest Japan, and will discuss if we can recognize its preseismic signatures in TEC by real-time observations with GNSS.During high geomagnetic activities, large-scale traveling ionospheric disturbances (LSTID) often propagate from auroral ovals toward mid-latitude regions, and leave similar signatures to preseismic anomalies. This is a main obstacle to use preseismic TEC changes for practical short-term earthquake prediction. In this presentation, we show that the same anomalies appeared 40 minutes before the mainshock above northern Australia, the geomagnetically conjugate point of the 2011 Tohoku-oki earthquake epicenter. This not only demonstrates that electric fields play a role in making the preseismic TEC anomalies, but also offers a possibility to discriminate preseismic anomalies from those caused by LSTID. By monitoring TEC in the conjugate areas in the two hemisphere, we can recognize anomalies with simultaneous onset as those caused by within-ionosphere electric fields (e.g. preseismic anomalies, night-time MSTID) and anomalies without simultaneous onset as gravity-wave origin disturbances (e.g. LSTID, daytime MSTID).

  13. Magnetic and magnetoelastic anomalies of an Er.sub.2./sub.Co.sub.17./sub. single crystal in high magnetic fields

    Czech Academy of Sciences Publication Activity Database

    Andreev, Alexander V.; Skourski, Y.; Kuz'min, M.D.; Yasin, S.; Zherlitsyn, S.; Daou, R.; Wosnitza, J.; Iwasa, A.; Kondo, A.; Matsuo, A.; Kindo, K.

    2011-01-01

    Roč. 83, č. 18 (2011), "184422-1"-"184422-9" ISSN 1098-0121 R&D Projects: GA ČR GA202/09/0339 Institutional research plan: CEZ:AV0Z10100520 Keywords : magnetic and magnetoelastic anomalies * high magnetic fields * anisotropy constants Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.691, year: 2011

  14. Macroscopic effects of the quantum trace anomaly

    International Nuclear Information System (INIS)

    Mottola, Emil; Vaulin, Ruslan

    2006-01-01

    The low energy effective action of gravity in any even dimension generally acquires nonlocal terms associated with the trace anomaly, generated by the quantum fluctuations of massless fields. The local auxiliary field description of this effective action in four dimensions requires two additional scalar fields, not contained in classical general relativity, which remain relevant at macroscopic distance scales. The auxiliary scalar fields depend upon boundary conditions for their complete specification, and therefore carry global information about the geometry and macroscopic quantum state of the gravitational field. The scalar potentials also provide coordinate invariant order parameters describing the conformal behavior and divergences of the stress tensor on event horizons. We compute the stress tensor due to the anomaly in terms of its auxiliary scalar potentials in a number of concrete examples, including the Rindler wedge, the Schwarzschild geometry, and de Sitter spacetime. In all of these cases, a small number of classical order parameters completely determine the divergent behaviors allowed on the horizon, and yield qualitatively correct global approximations to the renormalized expectation value of the quantum stress tensor

  15. Renormalization ambiguities and conformal anomaly in metric-scalar backgrounds

    International Nuclear Information System (INIS)

    Asorey, M.; Berredo-Peixoto, G. de; Shapiro, I. L.

    2006-01-01

    We analyze the problem of the existing ambiguities in the conformal anomaly in theories with an external scalar field in curved backgrounds. In particular, we consider the anomaly of a self-interacting massive scalar field theory and of a Yukawa model in the massless conformal limit. In all cases the ambiguities are related to finite renormalizations of local nonminimal terms in the effective action. We point out the generic nature of this phenomenon and provide a general method to identify the theories where such an ambiguity can arise

  16. Chiral anomaly, Berry phase, and chiral kinetic theory from worldlines in quantum field theory

    Science.gov (United States)

    Mueller, Niklas; Venugopalan, Raju

    2018-03-01

    In previous work, we outlined a worldline framework that can be used for systematic computations of the chiral magnetic effect (CME) in ultrarelativistic heavy-ion collisions. Towards this end, we first expressed the real part of the fermion determinant in the QCD effective action as a supersymmetric worldline action of spinning, colored, Grassmanian point particles in background gauge fields, with equations of motion that are covariant generalizations of the Bargmann-Michel-Telegdi and Wong equations. The chiral anomaly, in contrast, arises from the phase of the fermion determinant. Remarkably, the latter too can be expressed as a point particle worldline path integral, which can be employed to derive the anomalous axial vector current. We will show here how Berry's phase can be obtained in a consistent nonrelativistic adiabatic limit of the real part of the fermion determinant. Our work provides a general first principles demonstration that the topology of Berry's phase is distinct from that of the chiral anomaly confirming prior arguments by Fujikawa in specific contexts. This suggests that chiral kinetic treatments of the CME in heavy-ion collisions that include Berry's phase alone are incomplete. We outline the elements of a worldline covariant relativistic chiral kinetic theory that captures the physics of how the chiral current is modified by many-body scattering and topological fluctuations.

  17. Combined analysis of magnetic and gravity anomalies using normalized source strength (NSS)

    Science.gov (United States)

    Li, L.; Wu, Y.

    2017-12-01

    Gravity field and magnetic field belong to potential fields which lead inherent multi-solution. Combined analysis of magnetic and gravity anomalies based on Poisson's relation is used to determinate homology gravity and magnetic anomalies and decrease the ambiguity. The traditional combined analysis uses the linear regression of the reduction to pole (RTP) magnetic anomaly to the first order vertical derivative of the gravity anomaly, and provides the quantitative or semi-quantitative interpretation by calculating the correlation coefficient, slope and intercept. In the calculation process, due to the effect of remanent magnetization, the RTP anomaly still contains the effect of oblique magnetization. In this case the homology gravity and magnetic anomalies display irrelevant results in the linear regression calculation. The normalized source strength (NSS) can be transformed from the magnetic tensor matrix, which is insensitive to the remanence. Here we present a new combined analysis using NSS. Based on the Poisson's relation, the gravity tensor matrix can be transformed into the pseudomagnetic tensor matrix of the direction of geomagnetic field magnetization under the homologous condition. The NSS of pseudomagnetic tensor matrix and original magnetic tensor matrix are calculated and linear regression analysis is carried out. The calculated correlation coefficient, slope and intercept indicate the homology level, Poisson's ratio and the distribution of remanent respectively. We test the approach using synthetic model under complex magnetization, the results show that it can still distinguish the same source under the condition of strong remanence, and establish the Poisson's ratio. Finally, this approach is applied in China. The results demonstrated that our approach is feasible.

  18. Radiation anomaly detection algorithms for field-acquired gamma energy spectra

    Science.gov (United States)

    Mukhopadhyay, Sanjoy; Maurer, Richard; Wolff, Ron; Guss, Paul; Mitchell, Stephen

    2015-08-01

    The Remote Sensing Laboratory (RSL) is developing a tactical, networked radiation detection system that will be agile, reconfigurable, and capable of rapid threat assessment with high degree of fidelity and certainty. Our design is driven by the needs of users such as law enforcement personnel who must make decisions by evaluating threat signatures in urban settings. The most efficient tool available to identify the nature of the threat object is real-time gamma spectroscopic analysis, as it is fast and has a very low probability of producing false positive alarm conditions. Urban radiological searches are inherently challenged by the rapid and large spatial variation of background gamma radiation, the presence of benign radioactive materials in terms of the normally occurring radioactive materials (NORM), and shielded and/or masked threat sources. Multiple spectral anomaly detection algorithms have been developed by national laboratories and commercial vendors. For example, the Gamma Detector Response and Analysis Software (GADRAS) a one-dimensional deterministic radiation transport software capable of calculating gamma ray spectra using physics-based detector response functions was developed at Sandia National Laboratories. The nuisance-rejection spectral comparison ratio anomaly detection algorithm (or NSCRAD), developed at Pacific Northwest National Laboratory, uses spectral comparison ratios to detect deviation from benign medical and NORM radiation source and can work in spite of strong presence of NORM and or medical sources. RSL has developed its own wavelet-based gamma energy spectral anomaly detection algorithm called WAVRAD. Test results and relative merits of these different algorithms will be discussed and demonstrated.

  19. Case report: a branchial cleft anomaly presenting as an oropharyngeal mass.

    Science.gov (United States)

    Mullin, David; Merz, Meredith

    2011-12-01

    Branchial anomalies are common cervical pathologic entities encountered in the field of otolaryngology and are typical in the pediatric and young adult populations. In most cases, these anomalies present as a cyst, sinus, or fistula in a rather stereotypical fashion. When a branchial anomaly deviates from the classic presentation, an improper diagnosis and inadequate management are more likely to occur, leading to an increased recurrence rate. We present a case of a 6-year-old girl with an incidental finding of a right posterior oropharyngeal wall mass, distinctly separate from the tonsillar fossa, which was found on pathologic analysis to be a branchial cleft anomaly. The theories regarding the pathogenesis of branchial anomalies are presented, along with other cases of atypical branchial anomalies.

  20. Light-front view of the axial anomaly

    International Nuclear Information System (INIS)

    Ji, C.; Rey, S.

    1996-01-01

    Motivated by an apparent puzzle of the light-front vacua incompatible with the axial anomaly, we have considered the two-dimensional massless Schwinger model for an arbitrary interpolating angle of Hornbostel close-quote s interpolating quantization surface. By examining spectral deformation of the Dirac sea under an external electric field semiclassically, we have found that the axial anomaly is quantization angle independent. This indicates an intricate nontrivial vacuum structure present even in the light-front limit. copyright 1996 The American Physical Society

  1. Modular invariance, chiral anomalies and contact terms

    International Nuclear Information System (INIS)

    Kutasov, D.

    1988-03-01

    The chiral anomaly in heterotic strings with full and partial modular invariance in D=2n+2 dimensions is calculated. The boundary terms which were present in previous calculations are shown to be cancelled in the modular invariant case by contact terms, which can be obtained by an appropriate analytic continuation. The relation to the low energy field theory is explained. In theories with partial modular invariance, an expression for the anomaly is obtained and shown to be non zero in general. (author)

  2. On the magnetic anomaly at Easter Island during the 2010 Chile tsunami

    Directory of Open Access Journals (Sweden)

    Benlong Wang

    2015-08-01

    Full Text Available A magnetic anomaly was recorded at Easter Island on 27 February 2010 during the Chile tsunami event. The physics of the magnetic anomaly is analyzed using kinematic dynamo theory. Using a single wave model, the space and time behavior of the magnetic field is given. By joint analysis of the magnetic observations, tide gauge data and numerical results of the global tsunami propagation, we show the close resemblance between the predicted spatial and temporal magnetic distributions and the field data, indicating the magnetic anomaly at Easter Island was actually induced by the motion of seawater under tsunami waves. Similarity between the field magnetic data at Easter Island during 2010 Chile tsunami and sea surface level is verified with realistic tsunami propagating model.

  3. An Entropy-Based Network Anomaly Detection Method

    Directory of Open Access Journals (Sweden)

    Przemysław Bereziński

    2015-04-01

    Full Text Available Data mining is an interdisciplinary subfield of computer science involving methods at the intersection of artificial intelligence, machine learning and statistics. One of the data mining tasks is anomaly detection which is the analysis of large quantities of data to identify items, events or observations which do not conform to an expected pattern. Anomaly detection is applicable in a variety of domains, e.g., fraud detection, fault detection, system health monitoring but this article focuses on application of anomaly detection in the field of network intrusion detection.The main goal of the article is to prove that an entropy-based approach is suitable to detect modern botnet-like malware based on anomalous patterns in network. This aim is achieved by realization of the following points: (i preparation of a concept of original entropy-based network anomaly detection method, (ii implementation of the method, (iii preparation of original dataset, (iv evaluation of the method.

  4. Topological responses from chiral anomaly in multi-Weyl semimetals

    Science.gov (United States)

    Huang, Ze-Min; Zhou, Jianhui; Shen, Shun-Qing

    2017-08-01

    Multi-Weyl semimetals are a kind of topological phase of matter with discrete Weyl nodes characterized by multiple monopole charges, in which the chiral anomaly, the anomalous nonconservation of an axial current, occurs in the presence of electric and magnetic fields. Electronic transport properties related to the chiral anomaly in the presence of both electromagnetic fields and axial electromagnetic fields in multi-Weyl semimetals are systematically studied. It has been found that the anomalous Hall conductivity has a modification linear in the axial vector potential from inhomogeneous strains. The axial electric field leads to an axial Hall current that is proportional to the distance of Weyl nodes in momentum space. This axial current may generate chirality accumulation of Weyl fermions through delicately engineering the axial electromagnetic fields even in the absence of external electromagnetic fields. Therefore this work provides a nonmagnetic mechanism of generation of chirality accumulation in Weyl semimetals and might shed new light on the application of Weyl semimetals in the emerging field of valleytronics.

  5. Magnetic anomalies in Central Bengal fan

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, T.C.S.; Lakshminarayana, S.; Sarma, K.V.L.N.S.

    Total magnetic field anomalies recorded over the Central Bengal Fan are analysed and the depths to the magnetic basement are computed using the analytical signal and the Werner deconvolution methods. To the west and east of 85 degrees E...

  6. Holonomy anomalies

    International Nuclear Information System (INIS)

    Bagger, J.; Nemeschansky, D.; Yankielowicz, S.

    1985-05-01

    A new type of anomaly is discussed that afflicts certain non-linear sigma models with fermions. This anomaly is similar to the ordinary gauge and gravitational anomalies since it reflects a topological obstruction to the reparametrization invariance of the quantum effective action. Nonlinear sigma models are constructed based on homogeneous spaces G/H. Anomalies arising when the fermions are chiral are shown to be cancelled sometimes by Chern-Simons terms. Nonlinear sigma models are considered based on general Riemannian manifolds. 9 refs

  7. Spacecraft anomalies on the CRRES satellite correlated with the environment and insulator samples

    International Nuclear Information System (INIS)

    Violet, M.D.; Frederickson, A.R.

    1993-01-01

    The CRRES satellite has been extensively surveyed for the occurrence of onboard anomalies. CRRES system and instrument responses which were not programmed or commanded are classified as anomalies. The history of anomalies is correlated with the history of plasmas, high energy particles, and electromagnetic fields as measured on CRRES. The anomalies for each instrument on CRRES are compared with those from other instruments. The 674 anomalies, as a group, correlate well with high levels of high energy electron flux and poorly with every other environmental parameter

  8. Gerbes, M5-brane anomalies and E{sub 8} gauge theory

    Energy Technology Data Exchange (ETDEWEB)

    Aschieri, Paolo [Dipartimento di Scienze e Tecnologie Avanzate, Universita del Piemonte Orientale and INFN, Via Bellini 25/G, 15100 Alessandria (Italy) and Max-Planck-Institut fuer Physik, Foehringer Ring 6, D-80805, Munich (Germany) and Sektion Physik, Universitaet Muenchen, Theresienstr. 37, D-80333 Munich (Germany)]. E-mail: aschieri@theorie.physik.uni-muenchen.de; Jurco, Branislav [Max-Planck-Institut fuer Physik, Foeringer Ring 6, D-80805, Munich (Germany); Sektion Physik, Universitaet Muechen, Theresienstr. 37, D-80333 Munich (Germany)

    2004-10-01

    Abelian gerbes and twisted bundles describe the topology of the NS 3-form gauge field strength H. We review how they have been usefully applied to study and resolve global anomalies in open string theory. Abelian 2-gerbes and twisted nonabelian gerbes describe the topology of the 4-form field strength G of M-theory. We show that twisted nonabelian gerbes are relevant in the study and resolution of global anomalies of multiple coinciding M5-branes. Global anomalies for one M5-brane have been studied by Witten and by Diaconescu, Freed and Moore. The structure and the differential geometry of twisted nonabelian gerbes (i.e. modules for 2-gerbes) is defined and studied. The nonabelian 2-form gauge potential living on multiple coinciding M5-branes arises as curving (curvature) of twisted nonabelian gerbes. The nonabelian group is in general {omega}-tildeE{sub 8}, the central extension of the E{sub 8} loop group. The twist is in general necessary to cancel global anomalies due to the non-triviality of the 11-dimensional 4-form field strength G and due to the possible torsion present in the cycles the M5-branes wrap. Our description of M5-branes global anomalies leads to the D4-branes one upon compactification of M-theory to Type IIA theory. (author)

  9. Gauge and gravitational anomalies in D=4 N=1 orientifolds.

    NARCIS (Netherlands)

    S Scrucca, C.; Serone, M.

    1999-01-01

    We analyze in detail the cancellation of U(1)-gauge and U(1)-gravitational anomalies in certain D=4 N=1 Type IIB orientifolds, from a string theory point of view. We verify the proposal that these anomalies are cancelled by a Green-Schwarz mechanism involving only twisted RR fields.By factorizing

  10. Simulation of stationary and transient geopotential-height eddies in January and July with a spectral general circulation model

    International Nuclear Information System (INIS)

    Malone, R.C.; Pitcher, E.J.; Blackmon, M.L.; Puri, K.; Bourke, W.

    1984-01-01

    We examine the characteristics of stationary and transient eddies in the geopotential-height field as simulated by a spectral general circulation model. The model possessess a realistic, but smootheed, topography. Two simulations with perpetual January and July forcing by climatological sea surface temperatures, sea ice, and insolation were extended to 1200 days, of which the final 600 days were used for the results in this study. We find that the stationary waves are well simulated in both seasons in the Northern Hemisphere, where strong forcing by orography and land-sea thermal contrast exists. However, in the Southern Hemisphere, where no continents are present in midlatitudes, the stationary waves have smaller amplitude than that observed in both seasons. In both hemispheres, the transient eddies are well simulated in the winter season but are too weak in the summer season. The model fails to generate a sufficiently intense summertime midlatitude jet in either hemisphere, and this results in a low level of transient activity. The variance in the tropical troposphere is very well simulated. We examine the geographical distribution and vertical structure of the transient eddies. Fourier analysis in zonal wavenumber and temporal filtering are used to display the wavelength and frequency characteristics of the eddies

  11. Anomalies

    International Nuclear Information System (INIS)

    Bardeen, W.A.

    1985-08-01

    Anomalies have a diverse impact on many aspects of physical phenomena. The role of anomalies in determining physical structure from the amplitude for π 0 decay to the foundations of superstring theory will be reviewed. 36 refs

  12. Investigation of the neutron diffraction anomaly and electrical behaviour of α-LiIO3 single crystal under AC field

    International Nuclear Information System (INIS)

    Wang Guang; Yang Zhen

    1990-01-01

    A systematic study of the unique neutron diffraction and electric behaviour of α-LiIO 3 single crystal under AC field is reported. A frequency dependent rectification effect was observed and can be explained as the relaxation process in the ionic conduction. Theoretical treatment using Boltzmann equation gives satisfactory agreement with experimental results. The neutron diffraction anomaly can be attributed to the effect of the rectified DC current in the sample

  13. Chiral lattice fermions, minimal doubling, and the axial anomaly

    International Nuclear Information System (INIS)

    Tiburzi, B. C.

    2010-01-01

    Exact chiral symmetry at finite lattice spacing would preclude the axial anomaly. In order to describe a continuum quantum field theory of Dirac fermions, lattice actions with purported exact chiral symmetry must break the flavor-singlet axial symmetry. We demonstrate that this is indeed the case by using a minimally doubled fermion action. For simplicity, we consider the Abelian axial anomaly in two dimensions. At finite lattice spacing and with gauge interactions, the axial anomaly arises from nonconservation of the flavor-singlet current. Similar nonconservation also leads to the axial anomaly in the case of the naieve lattice action. For minimally doubled actions, however, fine-tuning of the action and axial current is necessary to arrive at the anomaly. Conservation of the flavor nonsinglet vector current additionally requires the current to be fine-tuned. Finally, we determine that the chiral projection of a minimally doubled fermion action can be used to arrive at a lattice theory with an undoubled Dirac fermion possessing the correct anomaly in the continuum limit.

  14. On the relation between ionospheric winter anomalies and solar wind

    International Nuclear Information System (INIS)

    Rumi, G.C.

    2001-01-01

    There are two different winter anomalies. A small one that appears in connection with ionization at relatively low latitudes in the bottom of the D-region of the ionosphere. There, the electron densities in the winter happen to be less than should be expected. On the other hand, the classic winter anomaly is present when in the winter the upper D-region, again at relatively low latitudes, has more ionization than should be expected. Both these effects are due to the slant compression of the geomagnetic field produced by the solar wind in the wind in the winter season (which is, of course, the summer season when reference is made to events in the other hemisphere). It is shown that the small winter anomaly is a consequence of a hemispheric imbalance in the flux of galactic cosmic rays determined by the obliquely distorted geomagnetic field. It is shown that the standard winter anomaly can be ascribed to the influx of a super solar wind, which penetrates into the Earth's polar atmosphere down to E-region, heights and, duly concentrated through a funneling action at the winter pole of the distorted geomagnetic field, slows down the winter polar vortex. An equatorward motion of the polar air with its content of nitric oxide brings about the excess of ionization in the upper D-region at lower latitudes. The experimentally observed rhythmic recurrence of the upper winter anomaly is correlated to a possible rhythmic recurrence of the super solar wind. The actual detection of the upper winter anomaly could yield some information on the velocity of the basic solar wind. A by-product of the present analysis, the determination of Γ, the coefficient of collisional detachment of the electrons from the O 2 - ions, is presented in the Appendix

  15. On the relation between ionospheric winter anomalies and solar wind

    Energy Technology Data Exchange (ETDEWEB)

    Rumi, G.C. [Lecco, (Italy)

    2001-06-01

    There are two different winter anomalies. A small one that appears in connection with ionization at relatively low latitudes in the bottom of the D-region of the ionosphere. There, the electron densities in the winter happen to be less than should be expected. On the other hand, the classic winter anomaly is present when in the winter the upper D-region, again at relatively low latitudes, has more ionization than should be expected. Both these effects are due to the slant compression of the geomagnetic field produced by the solar wind in the wind in the winter season (which is, of course, the summer season when reference is made to events in the other hemisphere). It is shown that the small winter anomaly is a consequence of a hemispheric imbalance in the flux of galactic cosmic rays determined by the obliquely distorted geomagnetic field. It is shown that the standard winter anomaly can be ascribed to the influx of a super solar wind, which penetrates into the Earth's polar atmosphere down to E-region, heights and, duly concentrated through a funneling action at the winter pole of the distorted geomagnetic field, slows down the winter polar vortex. An equatorward motion of the polar air with its content of nitric oxide brings about the excess of ionization in the upper D-region at lower latitudes. The experimentally observed rhythmic recurrence of the upper winter anomaly is correlated to a possible rhythmic recurrence of the super solar wind. The actual detection of the upper winter anomaly could yield some information on the velocity of the basic solar wind. A by-product of the present analysis, the determination of {gamma}, the coefficient of collisional detachment of the electrons from the O{sub 2} {sup -} ions, is presented in the Appendix.

  16. Anomaly-free models for flavour anomalies

    Science.gov (United States)

    Ellis, John; Fairbairn, Malcolm; Tunney, Patrick

    2018-03-01

    We explore the constraints imposed by the cancellation of triangle anomalies on models in which the flavour anomalies reported by LHCb and other experiments are due to an extra U(1)^' gauge boson Z^' . We assume universal and rational U(1)^' charges for the first two generations of left-handed quarks and of right-handed up-type quarks but allow different charges for their third-generation counterparts. If the right-handed charges vanish, cancellation of the triangle anomalies requires all the quark U(1)^' charges to vanish, if there are either no exotic fermions or there is only one Standard Model singlet dark matter (DM) fermion. There are non-trivial anomaly-free models with more than one such `dark' fermion, or with a single DM fermion if right-handed up-type quarks have non-zero U(1)^' charges. In some of the latter models the U(1)^' couplings of the first- and second-generation quarks all vanish, weakening the LHC Z^' constraint, and in some other models the DM particle has purely axial couplings, weakening the direct DM scattering constraint. We also consider models in which anomalies are cancelled via extra vector-like leptons, showing how the prospective LHC Z^' constraint may be weakened because the Z^' → μ ^+ μ ^- branching ratio is suppressed relative to other decay modes.

  17. A non-renormalization theorem for conformal anomalies

    International Nuclear Information System (INIS)

    Petkou, Anastasios; Skenderis, Kostas

    1999-01-01

    We provide a non-renormalization theorem for the coefficients of the conformal anomaly associated with operators with vanishing anomalous dimensions. Such operators include conserved currents and chiral operators in superconformal field theories. We illustrate the theorem by computing the conformal anomaly of 2-point functions both by a computation in the conformal field theory and via the AdS/CFT correspondence. Our results imply that 2- and 3-point functions of chiral primary operators in N=4 SU(N) SYM will not renormalize provided that a 'generalized Adler-Bardeen theorem' holds. We further show that recent arguments connecting the non-renormalizability of the above-mentioned correlation functions to a bonus U(1) Y symmetry are incomplete due to possible U(1) Y violating contact terms. The tree level contribution to the contact terms may be set to zero by considering appropriately normalized operators. Non-renormalizability of the above-mentioned correlation functions, however, will follow only if these contact terms saturate by free fields

  18. A RE-INTRODUCTION TO ANOMALIES OF CRITICALITY

    International Nuclear Information System (INIS)

    Puigh, R.J.

    2009-01-01

    In 1974, a small innocuous document was submitted to the American Nuclear Society's Criticality Safety Division for publication that would have lasting impacts on this nuclear field The author was Duane Clayton, manager of the Battelle Pacific Northwest National Laboratory's Critical Mass Lab, the world's preeminent reactor critical experimenter with plutonium solutions. The document was entitled, 'Anomalies of Criticality'. 'Anomalies...' was a compilation of more than thirty separate and distinct examples of departures from what might be commonly expected in the field of nuclear criticality. Mr. Clayton's publication was the derivative of more than ten thousand experiments and countless analytical studies conducted world-wide on every conceivable reactor system imaginable: from fissile bearing solutions to solids, blocks to arrays of fuel rods, low-enriched uranium oxide systems to pure plutonium and highly enriched uranium systems. After publication, the document was commonly used within the nuclear fuel cycle and reactor community to train potential criticality/reactor analysts, experimenters and fuel handlers on important things for consideration when designing systems with critically 'safe' parameters in mind The purpose of this paper is to re-introduce 'Anomalies of Criticality' to the current Criticality Safety community and to add new 'anomalies' to the existing compendium. By so doing, it is the authors' hope that a new generation of nuclear workers and criticality engineers will benefit from its content and might continue to build upon this work in support of the nuclear renaissance that is about to occur

  19. World Gravity Map: a set of global complete spherical Bouguer and isostatic anomaly maps and grids

    Science.gov (United States)

    Bonvalot, S.; Balmino, G.; Briais, A.; Kuhn, M.; Peyrefitte, A.; Vales, N.; Biancale, R.; Gabalda, G.; Reinquin, F.

    2012-04-01

    We present here a set of digital maps of the Earth's gravity anomalies (surface free air, Bouguer and isostatic), computed at Bureau Gravimetric International (BGI) as a contribution to the Global Geodetic Observing Systems (GGOS) and to the global geophysical maps published by the Commission for the Geological Map of the World (CGMW) with support of UNESCO and other institutions. The Bouguer anomaly concept is extensively used in geophysical interpretation to investigate the density distributions in the Earth's interior. Complete Bouguer anomalies (including terrain effects) are usually computed at regional scales by integrating the gravity attraction of topography elements over and beyond a given area (under planar or spherical approximations). Here, we developed and applied a worldwide spherical approach aimed to provide a set of homogeneous and high resolution gravity anomaly maps and grids computed at the Earth's surface, taking into account a realistic Earth model and reconciling geophysical and geodetic definitions of gravity anomalies. This first version (1.0) has been computed by spherical harmonics analysis / synthesis of the Earth's topography-bathymetry up to degree 10800. The detailed theory of the spherical harmonics approach is given in Balmino et al., (Journal of Geodesy, 2011). The Bouguer and terrain corrections have thus been computed in spherical geometry at 1'x1' resolution using the ETOPO1 topography/bathymetry, ice surface and bedrock models from the NOAA (National Oceanic and Atmospheric Administration) and taking into account precise characteristics (boundaries and densities) of major lakes, inner seas, polar caps and of land areas below sea level. Isostatic corrections have been computed according to the Airy-Heiskanen model in spherical geometry for a constant depth of compensation of 30km. The gravity information given here is provided by the Earth Geopotential Model (EGM2008), developed at degree 2160 by the National Geospatial

  20. Singular value decomposition (SVD for extraction of gravity anomaly associated with gold mineralization in Tongshi gold field, Western Shandong Uplifted Block, Eastern China

    Directory of Open Access Journals (Sweden)

    B. B. Zhao

    2011-02-01

    Full Text Available A singular value decomposition (SVD program on MATLAB platform was effectively used to handle gravity signals for the Tongshi gold field. Firstly, the gravity signals were decomposed into different eigenimages with the help of singular value decomposition method (SVD. Secondly, the thresholds between the eigenvalues reflecting different layers of ore-controlling factors were established by multi-fractal method. Finally images reflecting different layers of ore-controlling factors were rebuilt. This yielded two layers of two-dimensional singular value images that depict regional and local ore-controlling factors, respectively.

    1. The regional ore-controlling factor is a saddle valley with the gravity anomaly values varying from −55 to 51 μm s−2 on the NW trending swell with the gravity anomaly values varying from −55 to 567 μm s−2 on the SW side of the Mesozoic volcanic sedimentary basin with the gravity anomaly values varying from −56 to −974 μm s−2. The saddle valley might be tectonically an extensional area where the Tongshi complex pluton and all gold deposits are located and thus this area is favorable for gold deposits.


    2. The local ore-controlling factor is the Tongshi complex pluton with a negative circular gravity anomaly varying from −339 to −11 μm s−2 and the ring contact metasomatic mineralization zone around the Tongshi complex with the positive gravity anomaly varying from 37 to 345 μm s−2. The skarn and porphyry types of gold deposits are located within the complex pluton and the Carlin and cryptobreccia types of gold deposits are located within the contact metasomatic mineralization zone. Thus both of them are potential areas for gold deposits.


    3. The Tongshi gold field exhibits a typical complexity with multi-layers of ore-controlling factors.

  1. Delineation of structural lineaments from marine magnetic anomalies off Lawson's Bay (Visakhapatnam), East Coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Murthy, K.S.R.; Rao, T.C.S.; Rao, M.M.M.

    Marine magnetic surveys have recorded total field anomalies that correspond to structural lineaments extending from the coast into the sea. The significant anomalies recorded in this area are along wavelength high amplitude negative anomaly...

  2. Non-local Effects of Conformal Anomaly

    Science.gov (United States)

    Meissner, Krzysztof A.; Nicolai, Hermann

    2018-03-01

    It is shown that the nonlocal anomalous effective actions corresponding to the quantum breaking of the conformal symmetry can lead to observable modifications of Einstein's equations. The fact that Einstein's general relativity is in perfect agreement with all observations including cosmological or recently observed gravitational waves imposes strong restrictions on the field content of possible extensions of Einstein's theory: all viable theories should have vanishing conformal anomalies. It is shown that a complete cancellation of conformal anomalies in D=4 for both the C^2 invariant and the Euler (Gauss-Bonnet) invariant can only be achieved for N-extended supergravity multiplets with N ≥ 5.

  3. Patients Using Hydroxychloroquine and without Visual Field and Fundoscopic Anomalies

    Directory of Open Access Journals (Sweden)

    A. Molina-Martín

    2015-01-01

    Full Text Available Purpose. To evaluate the usefulness of microperimetry in the early detection of the ocular anomalies associated with the use of hydroxychloroquine. Methods. Prospective comparative case series study comprising 14 healthy eyes of 7 patients (group A and 14 eyes of 7 patients under treatment with hydroxychloroquine for the treatment of rheumatologic diseases and without fundoscopic or perimetric anomalies (group B. A comprehensive ophthalmological examination including microperimetry (MP and spectral-domain optical coherence tomography was performed in both groups. Results. No significant differences were found in mean MP foveal sensitivity between groups P=0.18. However, mean MP overall sensitivity was significantly higher in group A (29.05±0.57 dB versus group B, 26.05±2.75 dB; P<0.001. Significantly higher sensitivity values were obtained in group A in comparison to group B for the three eccentric loci evaluated P<0.001. Conclusion. Microperimetry seems to be a useful tool for the early detection of retinal damage in patients treated with hydroxychloroquine.

  4. The Trace Anomaly and Dynamical Vacuum Energy in Cosmology

    CERN Document Server

    Mottola, Emil

    2010-01-01

    The trace anomaly of conformal matter implies the existence of massless scalar poles in physical amplitudes involving the stress-energy tensor. These poles may be described by a local effective action with massless scalar fields, which couple to classical sources, contribute to gravitational scattering processes, and can have long range gravitational effects at macroscopic scales. In an effective field theory approach, the effective action of the anomaly is an infrared relevant term that should be added to the Einstein-Hilbert action of classical General Relativity to take account of macroscopic quantum effects. The additional scalar degrees of freedom contained in this effective action may be understood as responsible for both the Casimir effect in flat spacetime and large quantum backreaction effects at the horizon scale of cosmological spacetimes. These effects of the trace anomaly imply that the cosmological vacuum energy is dynamical, and its value depends on macroscopic boundary conditions at the cosmol...

  5. Reports on investigations of uranium anomalies. National Uranium Resource Evaluation

    International Nuclear Information System (INIS)

    Goodknight, C.S.; Burger, J.A.

    1982-10-01

    During the National Uranium Resource Evaluation (NURE) program, conducted for the US Department of Energy (DOE) by Bendix Field Engineering Corporation (BFEC), radiometric and geochemical surveys and geologic investigations detected anomalies indicative of possible uranium enrichment. Data from the Aerial Radiometric and Magnetic Survey (ARMS) and the Hydrogeochemical and Stream-Sediment Reconnaissance (HSSR), both of which were conducted on a national scale, yielded numerous anomalies that may signal areas favorable for the occurrence of uranium deposits. Results from geologic evaluations of individual 1 0 x 2 0 quadrangles for the NURE program also yielded anomalies, which could not be adequately checked during scheduled field work. Included in this volume are individual reports of field investigations for the following six areas which were shown on the basis of ARMS, HSSR, and (or) geologic data to be anomalous: (1) Hylas zone and northern Richmond basin, Virginia; (2) Sischu Creek area, Alaska; (3) Goodman-Dunbar area, Wisconsin; (4) McCaslin syncline, Wisconsin; (5) Mt. Withington Cauldron, Socorro County, New Mexico; (6) Lake Tecopa, Inyo County, California. Field checks were conducted in each case to verify an indicated anomalous condition and to determine the nature of materials causing the anomaly. The ultimate objective of work is to determine whether favorable conditions exist for the occurrence of uranium deposits in areas that either had not been previously evaluated or were evaluated before data from recent surveys were available. Most field checks were of short duration (2 to 5 days). The work was done by various investigators using different procedures, which accounts for variations in format in their reports. All papers have been abstracted and indexed

  6. Ionospheric quasi-static electric field anomalies during seismic activity in August–September 1981

    Directory of Open Access Journals (Sweden)

    M. Gousheva

    2009-01-01

    Full Text Available The paper proposes new results, analyses and information for the plate tectonic situation in the processing of INTERCOSMOS-BULGARIA-1300 satellite data about anomalies of the quasi-static electric field in the upper ionosphere over activated earthquake source regions at different latitudes. The earthquake catalogue is made on the basis of information from the United State Geological Survey (USGS website. The disturbances in ionospheric quasi-static electric fields are recorded by IESP-1 instrument aboard the INTERCOSMOS-BULGARIA-1300 satellite and they are compared with significant seismic events from the period 14 August–20 September 1981 in magnetically very quiet, quiet and medium quiet days. The main tectonic characteristics of the seismically activated territories are also taken in account. The main goal of the above research work is to enlarge the research of possible connections between anomalous vertical electric field penetrations into the ionosphere and the earthquake manifestations, also to propose tectonic arguments for the observed phenomena. The studies are represented in four main blocks: (i previous studies of similar problems, (ii selection of satellite, seismic and plate tectonic data, (iii data processing with new specialized software and observations of the quasi-static electric field and (iiii summary, comparison of new with previous results in our studies and conclusion. We establish the high informativity of the vertical component Ez of the quasi-static electric field in the upper ionosphere according observations by INTERCOSMOS-BULGARIA-1300 that are placed above considerably activated earthquake sources. This component shows an increase of about 2–10 mV/m above sources, situated on mobile structures of the plates. The paper discusses the observed effects. It is represented also a statistical study of ionospheric effects 5–15 days before and 5–15 days after the earthquakes with magnitude M 4.8–7.9.

  7. Mesotron Decays and the Role of Anomalies(The Jubilee of the Sakata Model)

    OpenAIRE

    William A., BARDEEN; Theoretical Physics Department

    2007-01-01

    Puzzles associated with Yukawa's mesotron theory of nuclear interactions led to the discovery of "anomalies" in quantum field theory. I will discuss some of the remarkable consequences of these anomalies in the physics of elementary particles.

  8. Genotoxic Effects of Tobacco on Buccal Epithelium: Cell Nuclear Anomalies as Biomarker

    Directory of Open Access Journals (Sweden)

    Sohini Das Biswas

    2014-12-01

    Full Text Available Background: Tobacco use has toxic effects on different organs. This study was carried out to assess the effect of indigenous tobacco both in smoking (bidi and smokeless (gutkha, zarda and khaini forms on buccal cells at chromosomal level, through assessment of different nuclear anomalies as biomarker. Methods:This study was done on people living in Durgapur and its adjacent areas, West Bengal, India during January to July 2011. The samples were collected from 50 smokers (case group, 50 smokeless tobacco consumers or chewers (case group and 50 non-tobacco consumers (control group. Micronucleus assay was used to assess buccal cell nuclear changes. Buccal smears collected from study subjects were prepared on a grease free slide. Prepared slides were observed under light microscope and 2 to 5 fields were observed randomly for counting the different anomalies. In each field, the frequency of each anomaly was assessed in 100 cells and reported with percentage. Results:Chewers had significantly the highest frequency of all nuclear anomalies compared to smokers and healthy controls (HCs. Smokers also had significantly more anomalies compared to HCs. Condensed chromatin (CC, karyolysis (KL and bi-nucleation (BN in chewers and CC, pyknosis and BN in smokers were the most frequent anomalies. KL was significantly more frequent in chewers compared to smokers (59.8 ± 6.4 vs. 24.2 ± 12.4%, P < 0.001, however, the frequency of other nuclear anomalies were not significantly different in these two study groups. Presence of each nuclear anomaly was significantly greater in older ages in all study groups. Conclusion:Tobacco can cause and increase the rate of nuclear anomalies in both smoking and smokeless forms compared to HCs. The genotoxic effects of tobacco on buccal cells are partly age-related. Cell nuclear anomalies in buccal tissue can be used as biomarker indicating the detrimental effects of tobacco.

  9. Anomaly-free chiral theories in six dimensions

    International Nuclear Information System (INIS)

    Green, M.B.; Schwarz, J.H.; West, P.C.

    1985-01-01

    The coupled N = 1 Yang-Mills plus supergravity theory in ten dimensions can be made anomaly-free for SO(32) or E/sub 8/ X E/sub 8/. Only the case of SO(32) is known to correspond to a superstring theory, which is probably necessary for a fully consistent quantum theory. Anomaly-free chiral theories in lower dimensions can be obtained by considering nontrivial compactifications (involving nonzero background gauge fields) of the ten-dimensional theory that satisfy a topological consistency condition. This paper considers the compactification of four dimensions on the manifold K/sub 3/ without requiring that the equations of motion be satisfied. This leads to a large number of anomaly-free chiral supersymmetric six-dimensional theories, corresponding to various ways of embedding U(1) factors in SO(32) or E/sub 8/ X E/sub 8/

  10. Conformal anomaly and elimination of infrared divergences in curved spacetime

    International Nuclear Information System (INIS)

    Grib, A.A.; Nesteruk, A.V.; Pritomanov, S.A.

    1984-01-01

    The relation between the problem of eliminating the infrared divergences and the conformal anomaly of the regularized energy-momentum tensor is studied in homogeneous isotropic and anisotropic spacetime. It is shown that elimination of the infrared divergence by means of a cutoff or the introduction of a conformally invariant mass of the field leads to the absence of the conformal anomaly

  11. Anomaly manifestation of Lieb-Schultz-Mattis theorem and topological phases

    Science.gov (United States)

    Cho, Gil Young; Hsieh, Chang-Tse; Ryu, Shinsei

    2017-11-01

    The Lieb-Schultz-Mattis (LSM) theorem dictates that emergent low-energy states from a lattice model cannot be a trivial symmetric insulator if the filling per unit cell is not integral and if the lattice translation symmetry and particle number conservation are strictly imposed. In this paper, we compare the one-dimensional gapless states enforced by the LSM theorem and the boundaries of one-higher dimensional strong symmetry-protected topological (SPT) phases from the perspective of quantum anomalies. We first note that they can both be described by the same low-energy effective field theory with the same effective symmetry realizations on low-energy modes, wherein non-on-site lattice translation symmetry is encoded as if it were an internal symmetry. In spite of the identical form of the low-energy effective field theories, we show that the quantum anomalies of the theories play different roles in the two systems. In particular, we find that the chiral anomaly is equivalent to the LSM theorem, whereas there is another anomaly that is not related to the LSM theorem but is intrinsic to the SPT states. As an application, we extend the conventional LSM theorem to multiple-charge multiple-species problems and construct several exotic symmetric insulators. We also find that the (3+1)d chiral anomaly provides only the perturbative stability of the gaplessness local in the parameter space.

  12. Konishi anomaly approach to gravitational F-terms

    International Nuclear Information System (INIS)

    David, Justin R.; Gava, Edi; Narain, K.S.

    2003-04-01

    We study gravitational corrections to the effective superpotential in theories with a single adjoint chiral multiplet, using the generalized Konishi anomaly and the gravitationally deformed chiral ring. We show that the genus one correction to the loop equation in the corresponding matrix model agrees with the gravitational corrected anomaly equations in the gauge theory. An important ingredient in the proof is the lack of factorization of chiral gauge invariant operators in presence of a supergravity background. We also find a genus zero gravitational correction to the superpotential, which can be removed by a field redefinition. (author)

  13. String corrections to circular Wilson loop and anomalies

    Science.gov (United States)

    Cagnazzo, Alessandra; Medina-Rincon, Daniel; Zarembo, Konstantin

    2018-02-01

    We study string quantum corrections to the ratio of latitude and circular Wilson loops in N = 4 super-Yang-Mills theory at strong coupling. Conformal gauge for the corresponding minimal surface in AdS5 × S 5 is singular and we show that an IR anomaly associated with the divergence in the conformal factor removes previously reported discrepancy with the exact field-theory result. We also carefully check conformal anomaly cancellation and recalculate fluctuation determinants by directly evaluting phaseshifts for all the fluctuation modes.

  14. Anomalies in chiral W--gravity

    International Nuclear Information System (INIS)

    Carvalho, Marcelo; Vilar, Luiz Claudio Queiroz; Sorella, S.P.

    1994-01-01

    W-algebras are an extension of the Virasoro algebra. They describe the commutation relations between the components of the stress-energy tensor (T ++ ,T -- ) and the currents (W ++++... , W ----... ) of higher spin. Among the various W-algebras considered in the recent literature, the so-called W 3 -algebra plays a rather special role, due to the fact that it has a simple field theory realization. The corresponding field model, known as W 3 -gravity, yields a generalization of the usual bosonic string action. In this work, anomalies in chiral W--gravity are studied

  15. Who is afraid of anomalies?

    International Nuclear Information System (INIS)

    Rajaraman, R.

    1990-01-01

    There are situations where gauge symmetry comes into unavoidable conflict with quantum theory. Such situations are examples of what are called 'Anomalies' in quantum field theory. In these cases, although some form of gauge symmetry is present at the classical level, the process of quantisation necessarily destroys that symmetry. How to consistently treat such cases and obtain their novel features is discussed. (author)

  16. Tactile sensor of hardness recognition based on magnetic anomaly detection

    Science.gov (United States)

    Xue, Lingyun; Zhang, Dongfang; Chen, Qingguang; Rao, Huanle; Xu, Ping

    2018-03-01

    Hardness, as one kind of tactile sensing, plays an important role in the field of intelligent robot application such as gripping, agricultural harvesting, prosthetic hand and so on. Recently, with the rapid development of magnetic field sensing technology with high performance, a number of magnetic sensors have been developed for intelligent application. The tunnel Magnetoresistance(TMR) based on magnetoresistance principal works as the sensitive element to detect the magnetic field and it has proven its excellent ability of weak magnetic detection. In the paper, a new method based on magnetic anomaly detection was proposed to detect the hardness in the tactile way. The sensor is composed of elastic body, ferrous probe, TMR element, permanent magnet. When the elastic body embedded with ferrous probe touches the object under the certain size of force, deformation of elastic body will produce. Correspondingly, the ferrous probe will be forced to displace and the background magnetic field will be distorted. The distorted magnetic field was detected by TMR elements and the output signal at different time can be sampled. The slope of magnetic signal with the sampling time is different for object with different hardness. The result indicated that the magnetic anomaly sensor can recognize the hardness rapidly within 150ms after the tactile moment. The hardness sensor based on magnetic anomaly detection principal proposed in the paper has the advantages of simple structure, low cost, rapid response and it has shown great application potential in the field of intelligent robot.

  17. A Survey on Anomaly Based Host Intrusion Detection System

    Science.gov (United States)

    Jose, Shijoe; Malathi, D.; Reddy, Bharath; Jayaseeli, Dorathi

    2018-04-01

    An intrusion detection system (IDS) is hardware, software or a combination of two, for monitoring network or system activities to detect malicious signs. In computer security, designing a robust intrusion detection system is one of the most fundamental and important problems. The primary function of system is detecting intrusion and gives alerts when user tries to intrusion on timely manner. In these techniques when IDS find out intrusion it will send alert massage to the system administrator. Anomaly detection is an important problem that has been researched within diverse research areas and application domains. This survey tries to provide a structured and comprehensive overview of the research on anomaly detection. From the existing anomaly detection techniques, each technique has relative strengths and weaknesses. The current state of the experiment practice in the field of anomaly-based intrusion detection is reviewed and survey recent studies in this. This survey provides a study of existing anomaly detection techniques, and how the techniques used in one area can be applied in another application domain.

  18. Supersymmetric Adler-Bardeen anomaly in N=1 super-Yang-Mills theories

    International Nuclear Information System (INIS)

    Baulieu, Laurent; Martin, Alexis

    2008-01-01

    We provide a study of the supersymmetric Adler-Bardeen anomaly in the N=1, d=4,6,10 super-Yang-Mills theories. We work in the component formalism that includes shadow fields, for which Slavnov-Taylor identities can be independently set for both gauge invariance and supersymmetry. We find a method with improved descent equations for getting the solutions of the consistency conditions of both Slavnov-Taylor identities and finding the local field polynomials for the standard Adler-Bardeen anomaly and its supersymmetric counterpart. We give the explicit solution for the ten-dimensional case

  19. Conformal anomaly and off-shell extensions of gravity

    Science.gov (United States)

    Meissner, Krzysztof A.; Nicolai, Hermann

    2017-08-01

    The gauge dependence of the conformal anomaly for spin-3/2 and spin-2 fields in nonconformal supergravities has been a long standing puzzle. In this paper we argue that the "correct" gauge choice is the one that follows from requiring all terms that would imply a violation of the Wess-Zumino consistency condition to be absent in the counterterm, because otherwise the usual link between the anomaly and the one-loop divergence becomes invalid. Remarkably, the "good" choice of gauge is the one that confirms our previous result [K. A. Meissner and H. Nicolai, Phys. Lett. B 772, 169 (2017)., 10.1016/j.physletb.2017.06.031] that a complete cancellation of conformal anomalies in D =4 can only be achieved for N -extended (Poincaré) supergravities with N ≥5 .

  20. Supersymmetry, quantum gauge anomalies and generalized Chern-Simons terms in chiral gauge theory

    International Nuclear Information System (INIS)

    Schmidt, Torsten

    2009-01-01

    The purpose of this thesis is to investigate the interplay of anomaly cancellation and generalized Chern-Simons terms in four-dimensional chiral gauge theory. We start with a detailed discussion of generalized Chern-Simons terms with the canellation of anomalies via the Green-Schwarz mechanism. With this at hand, we investigate the situation in general N=1 supersymmetric field theories with generalized Chern-Simons terms. Two simple consistency conditions are shown to encode strong constraints on the allowed anomalies for different types of gauge groups. In one major part of this thesis we are going to display to what extent one has to modify the existing formalism in order to allow for the cancellation of quantum gauge anomalies via the Green-Schwarz mechanism. At the end of this thesis we comment on a puzzle in the literature on supersymmetric field theories with massive tensor fields. The potential contains a term that does not arise from eliminating an auxiliary field. We clarify the origin of this term and display the relation to standard D-term potential. In an appendix it is explicitly shown how these low energy effective actions might be connected to the formulation of four-dimensional gauge theories discussed at earlier stages of this thesis. (orig.)

  1. Density heterogeneity of the upper mantle beneath Siberia from satellite gravity and a new regional crustal model

    DEFF Research Database (Denmark)

    Herceg, Matija; Thybo, Hans; Artemieva, Irina

    2013-01-01

    We present a new regional model for the density structure of the upper mantle below Siberia. The residual mantle gravity anomalies are based on gravity data derived from the GOCE gravity gradients and geopotential models, with crustal correction to the gravity field being calculated from a new...... on regional and global crustal models. We analyze how uncertainties and errors in the crustal model propagate from crustal densities to mantle residual gravity anomalies and the density model of the upper mantle. The new regional density model for the Siberian craton and the West Siberian Basin complements...... regional crustal model. This newly compiled database on the crustal seismic structure, complemented by additional constraints from petrological analysis of near-surface rocks and lower crustal xenoliths, allows for a high-resolution correction of the crustal effects as compared to previous studies based...

  2. Atmospheric circulation patterns and phenological anomalies of grapevine in Italy

    Science.gov (United States)

    Cola, Gabriele; Alilla, Roberta; Dal Monte, Giovanni; Epifani, Chiara; Mariani, Luigi; Parisi, Simone Gabriele

    2014-05-01

    Grapevine (Vitis vinifera L.) is a fundamental crop for Italian agriculture as testified by the first place of Italy in the world producers ranking. This justify the importance of quantitative analyses referred to this crucial crop and aimed to quantify meteorological resources and limitations to development and production. Phenological rhythms of grapevine are strongly affected by surface fields of air temperature which in their turn are affected by synoptic circulation. This evidence highlights the importance of an approach based on dynamic climatology in order to detect and explain phenological anomalies that can have relevant effects on quantity and quality of grapevine production. In this context, this research is aimed to study the existing relation among the 850 hPa circulation patterns over the Euro-Mediterranean area from NOAA Ncep dataset and grapevine phenological fields for Italy over the period 2006-2013, highlighting the main phenological anomalies and analyzing synoptic determinants. This work is based on phenological fields with a standard pixel of 2 km routinely produced from 2006 by the Iphen project (Italian Phenological network) on the base of phenological observations spatialized by means of a specific algorithm based on cumulated thermal resources expressed as Normal Heat Hours (NHH). Anomalies have been evaluated with reference to phenological normal fields defined for the Italian area on the base of phenological observations and Iphen model. Results show that relevant phenological anomalies observed over the reference period are primarily associated with long lasting blocking systems driving cold air masses (Arctic or Polar-Continental) or hot ones (Sub-Tropical) towards the Italian area. Specific cases are presented for some years like 2007 and 2011.

  3. The AUSGeoid98 geoid model of Australia: data treatment, computations and comparisons with GPS-levelling data

    DEFF Research Database (Denmark)

    Featherstone, W.E.; Kirby, J.F.; Kearsley, A.H.W.

    2001-01-01

    The AUSGeoid98 gravimetric geoid model of Australia has been computed using data from the EGM96 global geopotential model, the 1996 release of the Australian gravity database, a nationwide digital elevation model, and satellite altimeter-derived marine gravity anomalies. The geoid heights are on ...

  4. Pre-seismic anomalies from optical satellite observations: a review

    Science.gov (United States)

    Jiao, Zhong-Hu; Zhao, Jing; Shan, Xinjian

    2018-04-01

    Detecting various anomalies using optical satellite data prior to strong earthquakes is key to understanding and forecasting earthquake activities because of its recognition of thermal-radiation-related phenomena in seismic preparation phases. Data from satellite observations serve as a powerful tool in monitoring earthquake preparation areas at a global scale and in a nearly real-time manner. Over the past several decades, many new different data sources have been utilized in this field, and progressive anomaly detection approaches have been developed. This paper reviews the progress and development of pre-seismic anomaly detection technology in this decade. First, precursor parameters, including parameters from the top of the atmosphere, in the atmosphere, and on the Earth's surface, are stated and discussed. Second, different anomaly detection methods, which are used to extract anomalous signals that probably indicate future seismic events, are presented. Finally, certain critical problems with the current research are highlighted, and new developing trends and perspectives for future work are discussed. The development of Earth observation satellites and anomaly detection algorithms can enrich available information sources, provide advanced tools for multilevel earthquake monitoring, and improve short- and medium-term forecasting, which play a large and growing role in pre-seismic anomaly detection research.

  5. Kohn anomalies in superconductors

    International Nuclear Information System (INIS)

    Flatte, M.E.

    1994-01-01

    The detailed behavior of phonon dispersion curves near momenta which span the electronic Fermi sea in a superconductor is presented. An anomaly, similar to the metallic Kohn anomaly, exists in a superconductor's dispersion curves when the frequency of the photon spanning the Fermi sea exceeds twice the superconducting energy gap. This anomaly occurs at approximately the same momentum but is stronger than the normal-state Kohn anomaly. It also survives at finite temperature, unlike the metallic anomaly. Determination of Fermi-surface diameters from the location of these anomalies, therefore, may be more successful in the superconducting phase than in the normal state. However, the superconductor's anomaly fades rapidly with increased phonon frequency and becomes unobservable when the phonon frequency greatly exceeds the gap. This constraint makes these anomalies useful only in high-temperature superconductors such as La 1.85 Sr 0.15 CuO 4

  6. Study on relationship between evolution of regional gravity field and seismic hazard

    Science.gov (United States)

    Li, W.; Xu, C.; Shen, C.

    2017-12-01

    The lack of anomalous signal is a big issue for the study of geophysics using historical geodesy observations, which is a relatively new area of earth gravimetry application in seismology. Hence the use of the gravity anomaly (GA) derived from either a global geopotential model (GGM) or a regional gravity reanalysis (Ground Gravity Survey, GGS) becomes an important alternative solution. In this study, the GGS at 186 points for the period of 2010 2014 in the Sichuan-Yunnan region (SYR) stations are analyzed. To study the temporal and spatial distribution characteristics of regional gravity filed (RGF) and its evolution mechanism. Taking the geological and geophysical data as constraints. From the GGM expanded up to degree 360, GA were obtained after gravity reduction, especially removing the reference field. The dynamically evolutional characteristics of gravity field are closely relative to fault activity. The gravity changes with time about 5 years at LongMenShan fault (LMSF) have a slop of -12.83±2.9 μGal/a, indicating that LMSF has an uplift. To test the signal extraction algorithm in some geodynamic processes, GA from the SYR were inverted and it was also imposed as a priori information. Fortunately, some significant gravity variation have been detected at some stations in the thrust fault before and after four earthquakes, in which typical anomalies (earthquake precursor, EP) were positive GA variation near the epicenter and the occurrence of a high-gravity-gradient zone across the epicenter prior to the Lushan earthquake (Ms 7.0). The repeated observation results during about 5 years indicate that no significant gravity changes related to other geodynamical events were observed in most observation epochs. In addition, the mechanism of gravity changes at Lushan was also explored. We calculated the gravity change rates based on the model of Songpan-Ganze block (SGB) to Sichuan basin (SCB). And the changes is in good agreement with observed one, indicating

  7. Semiclassical theory of the tunneling anomaly in partially spin-polarized compressible quantum Hall states

    Science.gov (United States)

    Chowdhury, Debanjan; Skinner, Brian; Lee, Patrick A.

    2018-05-01

    Electron tunneling into a system with strong interactions is known to exhibit an anomaly, in which the tunneling conductance vanishes continuously at low energy due to many-body interactions. Recent measurements have probed this anomaly in a quantum Hall bilayer of the half-filled Landau level, and shown that the anomaly apparently gets stronger as the half-filled Landau level is increasingly spin polarized. Motivated by this result, we construct a semiclassical hydrodynamic theory of the tunneling anomaly in terms of the charge-spreading action associated with tunneling between two copies of the Halperin-Lee-Read state with partial spin polarization. This theory is complementary to our recent work (D. Chowdhury, B. Skinner, and P. A. Lee, arXiv:1709.06091) where the electron spectral function was computed directly using an instanton-based approach. Our results show that the experimental observation cannot be understood within conventional theories of the tunneling anomaly, in which the spreading of the injected charge is driven by the mean-field Coulomb energy. However, we identify a qualitatively new regime, in which the mean-field Coulomb energy is effectively quenched and the tunneling anomaly is dominated by the finite compressibility of the composite Fermion liquid.

  8. Global Gauge Anomalies in Two-Dimensional Bosonic Sigma Models

    Science.gov (United States)

    Gawȩdzki, Krzysztof; Suszek, Rafał R.; Waldorf, Konrad

    2011-03-01

    We revisit the gauging of rigid symmetries in two-dimensional bosonic sigma models with a Wess-Zumino term in the action. Such a term is related to a background closed 3-form H on the target space. More exactly, the sigma-model Feynman amplitudes of classical fields are associated to a bundle gerbe with connection of curvature H over the target space. Under conditions that were unraveled more than twenty years ago, the classical amplitudes may be coupled to the topologically trivial gauge fields of the symmetry group in a way which assures infinitesimal gauge invariance. We show that the resulting gauged Wess-Zumino amplitudes may, nevertheless, exhibit global gauge anomalies that we fully classify. The general results are illustrated on the example of the WZW and the coset models of conformal field theory. The latter are shown to be inconsistent in the presence of global anomalies. We introduce a notion of equivariant gerbes that allow an anomaly-free coupling of the Wess-Zumino amplitudes to all gauge fields, including the ones in non-trivial principal bundles. Obstructions to the existence of equivariant gerbes and their classification are discussed. The choice of different equivariant structures on the same bundle gerbe gives rise to a new type of discrete-torsion ambiguities in the gauged amplitudes. An explicit construction of gerbes equivariant with respect to the adjoint symmetries over compact simply connected simple Lie groups is given.

  9. Diffeomorphism cohomology and gravitational anomalies: Pt. 2

    International Nuclear Information System (INIS)

    Bandelloni, G.

    1985-01-01

    Using the spectral sequencies technique, it is studied the local polynomial cohomology space of the operator S deltasub(GAMMAsub(c1))sup(L) - Csup(lambda)(x)deltasub(lambda) -deltasub(lambda)Csup(lambda)(x), which is isomorphic to the local functional cohomology of the operator deltasub(GAMMAsub(c1))sup(L) which induces general co-ordinate transformations in four-dimensional space-time. In the Faddeev-Popov (PHI II) charge-one sector, it is found that all the anomalies have the form Δ(x) deltasub(lambda)Csup(lambda)(x)Δ-circumflex(x), where Csup(lambda)(x) is the ghost field, and Δ-circumflex(x) is a PHI II charge-zero anomaly

  10. Periodic analysis of solar activity and its link with the Arctic oscillation phenomenon

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Weizheng; Li, Chun; Du, Ling; Huang, Fei [Ocean University of China, 14-1' -601, 2117 Jinshui Road, Qingdao 266100 (China); Li, Yanfang, E-mail: quweizhe@ouc.edu.cn [Yantai Institute of Coastal Zone Research Chinese Academy of Sciences (China)

    2014-12-01

    Based on spectrum analysis, we provide the arithmetic expressions of the quasi 11 yr cycle, 110 yr century cycle of relative sunspot numbers, and quasi 22 yr cycle of solar magnetic field polarity. Based on a comparative analysis of the monthly average geopotential height, geopotential height anomaly, and temperature anomaly of the northern hemisphere at locations with an air pressure of 500 HPa during the positive and negative phases of AO (Arctic Oscillation), one can see that the abnormal warming period in the Arctic region corresponds to the negative phase of AO, while the anomalous cold period corresponds to its positive phase. This shows that the abnormal change in the Arctic region is an important factor in determining the anomalies of AO. In accordance with the analysis performed using the successive filtering method, one can see that the AO phenomenon occurring in January shows a clear quasi 88 yr century cycle and quasi 22 yr decadal cycle, which are closely related to solar activities. The results of our comparative analysis show that there is a close inverse relationship between the solar activities (especially the solar magnetic field index changes) and the changes in the 22 yr cycle of the AO occurring in January, and that the two trends are basically opposite of each other. That is to say, in most cases after the solar magnetic index MI rises from the lowest value, the solar magnetic field turns from north to south, and the high-energy particle flow entering the Earth's magnetosphere increases to heat the polar atmosphere, thus causing the AO to drop from the highest value; after the solar magnetic index MI drops from the highest value, the solar magnetic field turns from south to north, and the solar high-energy particle flow passes through the top of the Earth's magnetosphere rather than entering it to heat the polar atmosphere. Thus the polar temperature drops, causing the AO to rise from the lowest value. In summary, the variance

  11. Supersymmetry: Kaluza-Klein theory, anomalies, and superstrings

    International Nuclear Information System (INIS)

    Aref'eva, I.Y.; Volovich, I.V.

    1985-01-01

    Progress in the search for a unified theory of elementary particles is reviewed. The supersymmetrical Kaluza-Klein theories are described: 11-, 10-, and 6-dimensional models of supergravity. The methods of spontaneous compactification, with whose help the four-dimensional theories are obtained, are described. The properties of the massless sector: zero modes in the Kaluza-Klein theories: and the question of the stability of vacuum solutions are discussed. An important criterion for the selection of a self-consistent theory is the absence of anomalies. The basic formulas for multidimensional chiral and gravitational anomalies are presented. The mechanism of the cancellation of the anomaly for Green and Schwarz's 10-dimensional effective field theory of superstrings with the gauge groups SO(32) and E 8 x E 8 is described. The basic concepts and the results of the theory of superstrings are presented. This theory has no divergences and is at the present time a very attractive candidate for a unified theory of elementary particles

  12. Algebraic structure of chiral anomalies

    International Nuclear Information System (INIS)

    Stora, R.

    1985-09-01

    I will describe first the algebraic aspects of chiral anomalies, exercising however due care about the topological delicacies. I will illustrate the structure and methods in the context of gauge anomalies and will eventually make contact with results obtained from index theory. I will go into two sorts of generalizations: on the one hand, generalizing the algebraic set up yields e.g. gravitational and mixed gauge anomalies, supersymmetric gauge anomalies, anomalies in supergravity theories; on the other hand most constructions applied to the cohomologies which characterize anomalies easily extend to higher cohomologies. Section II is devoted to a description of the general set up as it applies to gauge anomalies. Section III deals with a number of algebraic set ups which characterize more general types of anomalies: gravitational and mixed gauge anomalies, supersymmetric gauge anomalies, anomalies in supergravity theories. It also includes brief remarks on σ models and a reminder on the full BRST algebra of quantized gauge theories

  13. Lunar magnetic anomalies detected by the Apollo substatellite magnetometers

    Science.gov (United States)

    Hood, L.L.; Coleman, P.J.; Russell, C.T.; Wilhelms, D.E.

    1979-01-01

    Properties of lunar crustal magnetization thus far deduced from Apollo subsatellite magnetometer data are reviewed using two of the most accurate presently available magnetic anomaly maps - one covering a portion of the lunar near side and the other a part of the far side. The largest single anomaly found within the region of coverage on the near-side map correlates exactly with a conspicuous, light-colored marking in western Oceanus Procellarum called Reiner Gamma. This feature is interpreted as an unusual deposit of ejecta from secondary craters of the large nearby primary impact crater Cavalerius. An age for Cavalerius (and, by implication, for Reiner Gamma) of 3.2 ?? 0.2 ?? 109 y is estimated. The main (30 ?? 60 km) Reiner Gamma deposit is nearly uniformly magnetized in a single direction, with a minimum mean magnetization intensity of ???7 ?? 10-2 G cm3/g (assuming a density of 3 g/cm3), or about 700 times the stable magnetization component of the most magnetic returned samples. Additional medium-amplitude anomalies exist over the Fra Mauro Formation (Imbrium basin ejecta emplaced ???3.9 ?? 109 y ago) where it has not been flooded by mare basalt flows, but are nearly absent over the maria and over the craters Copernicus, Kepler, and Reiner and their encircling ejecta mantles. The mean altitude of the far-side anomaly gap is much higher than that of the near-side map and the surface geology is more complex, so individual anomaly sources have not yet been identified. However, it is clear that a concentration of especially strong sources exists in the vicinity of the craters Van de Graaff and Aitken. Numerical modeling of the associated fields reveals that the source locations do not correspond with the larger primary impact craters of the region and, by analogy with Reiner Gamma, may be less conspicuous secondary crater ejecta deposits. The reason for a special concentration of strong sources in the Van de Graaff-Aitken region is unknown, but may be indirectly

  14. Chiral anomalies and differential geometry

    International Nuclear Information System (INIS)

    Zumino, B.

    1983-10-01

    Some properties of chiral anomalies are described from a geometric point of view. Topics include chiral anomalies and differential forms, transformation properties of the anomalies, identification and use of the anomalies, and normalization of the anomalies. 22 references

  15. Anomaly cancellation and smooth non-Kahler solutions in heterotic string theory

    International Nuclear Information System (INIS)

    Becker, Katrin; Becker, Melanie; Fu Jixiang; Tseng, L.-S.; Yau, S.-T.

    2006-01-01

    We show that six-dimensional backgrounds that are T 2 bundle over a Calabi-Yau two-fold base are consistent smooth solutions of heterotic flux compactifications. We emphasize the importance of the anomaly cancellation condition which can only be satisfied if the base is K3 while a T 4 base is excluded. The conditions imposed by anomaly cancellation for the T 2 bundle structure, the dilaton field, and the holomorphic stable bundles are analyzed and the solutions determined. Applying duality, we check the consistency of the anomaly cancellation constraints with those for flux backgrounds of M-theory on eight-manifolds

  16. Relational databases for rare disease study: application to vascular anomalies.

    Science.gov (United States)

    Perkins, Jonathan A; Coltrera, Marc D

    2008-01-01

    To design a relational database integrating clinical and basic science data needed for multidisciplinary treatment and research in the field of vascular anomalies. Based on data points agreed on by the American Society of Pediatric Otolaryngology (ASPO) Vascular Anomalies Task Force. The database design enables sharing of data subsets in a Health Insurance Portability and Accountability Act (HIPAA)-compliant manner for multisite collaborative trials. Vascular anomalies pose diagnostic and therapeutic challenges. Our understanding of these lesions and treatment improvement is limited by nonstandard terminology, severity assessment, and measures of treatment efficacy. The rarity of these lesions places a premium on coordinated studies among multiple participant sites. The relational database design is conceptually centered on subjects having 1 or more lesions. Each anomaly can be tracked individually along with their treatment outcomes. This design allows for differentiation between treatment responses and untreated lesions' natural course. The relational database design eliminates data entry redundancy and results in extremely flexible search and data export functionality. Vascular anomaly programs in the United States. A relational database correlating clinical findings and photographic, radiologic, histologic, and treatment data for vascular anomalies was created for stand-alone and multiuser networked systems. Proof of concept for independent site data gathering and HIPAA-compliant sharing of data subsets was demonstrated. The collaborative effort by the ASPO Vascular Anomalies Task Force to create the database helped define a common vascular anomaly data set. The resulting relational database software is a powerful tool to further the study of vascular anomalies and the development of evidence-based treatment innovation.

  17. Clustering and Recurring Anomaly Identification: Recurring Anomaly Detection System (ReADS)

    Science.gov (United States)

    McIntosh, Dawn

    2006-01-01

    This viewgraph presentation reviews the Recurring Anomaly Detection System (ReADS). The Recurring Anomaly Detection System is a tool to analyze text reports, such as aviation reports and maintenance records: (1) Text clustering algorithms group large quantities of reports and documents; Reduces human error and fatigue (2) Identifies interconnected reports; Automates the discovery of possible recurring anomalies; (3) Provides a visualization of the clusters and recurring anomalies We have illustrated our techniques on data from Shuttle and ISS discrepancy reports, as well as ASRS data. ReADS has been integrated with a secure online search

  18. Far-zone contributions of airborne gravity anomalies' upward/downward continuation

    Directory of Open Access Journals (Sweden)

    Boyang Zhou

    2016-11-01

    Full Text Available Airborne gravimetry has become a vital technique in local gravity field approximation, and upward/downward continuation of gravity data is a key process of airborne gravimetry. In these procedures, the integral domain is divided into two parts, namely the near-zone and the far-zone. The far-zone contributions are approximated by the truncation coefficients and a global geo-potential model, and their values are controlled by several issues. This paper investigates the effects of flight height, the size of near-zone cap, and Remove-Compute-Restore (RCR technique upon far-zone contributions. Results show that at mountainous area the far-zone contributions can be ignored when EIGEN-6C of 360 degree is removed from the gravity data, together with a near-zone cap of 1° and a flight height less than 10 km, while at flat area EIGEN-6C of 180 degree is feasible.

  19. Tracheobronchial Branching Anomalies

    International Nuclear Information System (INIS)

    Hong, Min Ji; Kim, Young Tong; Jou, Sung Shick; Park, A Young

    2010-01-01

    There are various congenital anomalies with respect to the number, length, diameter, and location of tracheobronchial branching patterns. The tracheobronchial anomalies are classified into two groups. The first one, anomalies of division, includes tracheal bronchus, cardiac bronchus, tracheal diverticulum, pulmonary isomerism, and minor variations. The second one, dysmorphic lung, includes lung agenesis-hypoplasia complex and lobar agenesis-aplasia complex

  20. Tracheobronchial Branching Anomalies

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Min Ji; Kim, Young Tong; Jou, Sung Shick [Soonchunhyang University, Cheonan Hospital, Cheonan (Korea, Republic of); Park, A Young [Soonchunhyang University College of Medicine, Asan (Korea, Republic of)

    2010-04-15

    There are various congenital anomalies with respect to the number, length, diameter, and location of tracheobronchial branching patterns. The tracheobronchial anomalies are classified into two groups. The first one, anomalies of division, includes tracheal bronchus, cardiac bronchus, tracheal diverticulum, pulmonary isomerism, and minor variations. The second one, dysmorphic lung, includes lung agenesis-hypoplasia complex and lobar agenesis-aplasia complex

  1. Branchial anomalies in children.

    Science.gov (United States)

    Bajaj, Y; Ifeacho, S; Tweedie, D; Jephson, C G; Albert, D M; Cochrane, L A; Wyatt, M E; Jonas, N; Hartley, B E J

    2011-08-01

    Branchial cleft anomalies are the second most common head and neck congenital lesions seen in children. Amongst the branchial cleft malformations, second cleft lesions account for 95% of the branchial anomalies. This article analyzes all the cases of branchial cleft anomalies operated on at Great Ormond Street Hospital over the past 10 years. All children who underwent surgery for branchial cleft sinus or fistula from January 2000 to December 2010 were included in this study. In this series, we had 80 patients (38 female and 42 male). The age at the time of operation varied from 1 year to 14 years. Amongst this group, 15 patients had first branchial cleft anomaly, 62 had second branchial cleft anomaly and 3 had fourth branchial pouch anomaly. All the first cleft cases were operated on by a superficial parotidectomy approach with facial nerve identification. Complete excision was achieved in all these first cleft cases. In this series of first cleft anomalies, we had one complication (temporary marginal mandibular nerve weakness. In the 62 children with second branchial cleft anomalies, 50 were unilateral and 12 were bilateral. In the vast majority, the tract extended through the carotid bifurcation and extended up to pharyngeal constrictor muscles. Majority of these cases were operated on through an elliptical incision around the external opening. Complete excision was achieved in all second cleft cases except one who required a repeat excision. In this subgroup, we had two complications one patient developed a seroma and one had incomplete excision. The three patients with fourth pouch anomaly were treated with endoscopic assisted monopolar diathermy to the sinus opening with good outcome. Branchial anomalies are relatively common in children. There are three distinct types, first cleft, second cleft and fourth pouch anomaly. Correct diagnosis is essential to avoid inadequate surgery and multiple procedures. The surgical approach needs to be tailored to the type

  2. Turtle carapace anomalies: the roles of genetic diversity and environment.

    Directory of Open Access Journals (Sweden)

    Guillermo Velo-Antón

    2011-04-01

    Full Text Available Phenotypic anomalies are common in wild populations and multiple genetic, biotic and abiotic factors might contribute to their formation. Turtles are excellent models for the study of developmental instability because anomalies are easily detected in the form of malformations, additions, or reductions in the number of scutes or scales.In this study, we integrated field observations, manipulative experiments, and climatic and genetic approaches to investigate the origin of carapace scute anomalies across Iberian populations of the European pond turtle, Emys orbicularis. The proportion of anomalous individuals varied from 3% to 69% in local populations, with increasing frequency of anomalies in northern regions. We found no significant effect of climatic and soil moisture, or climatic temperature on the occurrence of anomalies. However, lower genetic diversity and inbreeding were good predictors of the prevalence of scute anomalies among populations. Both decreasing genetic diversity and increasing proportion of anomalous individuals in northern parts of the Iberian distribution may be linked to recolonization events from the Southern Pleistocene refugium.Overall, our results suggest that developmental instability in turtle carapace formation might be caused, at least in part, by genetic factors, although the influence of environmental factors affecting the developmental stability of turtle carapace cannot be ruled out. Further studies of the effects of environmental factors, pollutants and heritability of anomalies would be useful to better understand the complex origin of anomalies in natural populations.

  3. A method of inversion of satellite magnetic anomaly data

    Science.gov (United States)

    Mayhew, M. A.

    1977-01-01

    A method of finding a first approximation to a crustal magnetization distribution from inversion of satellite magnetic anomaly data is described. Magnetization is expressed as a Fourier Series in a segment of spherical shell. Input to this procedure is an equivalent source representation of the observed anomaly field. Instability of the inversion occurs when high frequency noise is present in the input data, or when the series is carried to an excessively high wave number. Preliminary results are given for the United States and adjacent areas.

  4. Detection of sinkholes or anomalies using full seismic wave fields : phase II.

    Science.gov (United States)

    2016-08-01

    A new 2-D Full Waveform Inversion (FWI) software code was developed to characterize layering and anomalies beneath the ground surface using seismic testing. The software is capable of assessing the shear and compression wave velocities (Vs and Vp) fo...

  5. The Future of the South Atlantic Anomaly and Implications for Radiation Damage in Space

    Science.gov (United States)

    Heirtzler, J. R.; Smith, David E. (Technical Monitor)

    2000-01-01

    South Atlantic Anomaly of the geomagnetic field plays a dominant role in where radiation damage occurs in near Earth orbits. The historic and recent variations of the geomagnetic field in the South Atlantic are used to estimate the extent of the South Atlantic Anomaly until the year 2000. This projection indicates that radiation damage to spacecraft and humans in space will greatly increase and cover a much larger geographic area than present.

  6. Anomalies of the entanglement entropy in chiral theories

    Energy Technology Data Exchange (ETDEWEB)

    Iqbal, Nabil [Institute for Theoretical Physics, University of Amsterdam,Science Park 904, Postbus 94485, 1090 GL Amsterdam (Netherlands); Wall, Aron C. [School of Natural Sciences, Institute for Advanced Study,Princeton, New Jersey 08540 (United States)

    2016-10-20

    We study entanglement entropy in theories with gravitational or mixed U(1) gauge-gravitational anomalies in two, four and six dimensions. In such theories there is an anomaly in the entanglement entropy: it depends on the choice of reference frame in which the theory is regulated. We discuss subtleties regarding regulators and entanglement entropies in anomalous theories. We then study the entanglement entropy of free chiral fermions and self-dual bosons and show that in sufficiently symmetric situations this entanglement anomaly comes from an imbalance in the flux of modes flowing through the boundary, controlled by familiar index theorems. In two and four dimensions we use anomalous Ward identities to find general expressions for the transformation of the entanglement entropy under a diffeomorphism. (In the case of a mixed anomaly there is an alternative presentation of the theory in which the entanglement entropy is not invariant under a U(1) gauge transformation. The free-field manifestation of this phenomenon involves a novel kind of fermion zero mode on a gravitational background with a twist in the normal bundle to the entangling surface.) We also study d-dimensional anomalous systems as the boundaries of d+1 dimensional gapped Hall phases. Here the full system is non-anomalous, but the boundary anomaly manifests itself in a change in the entanglement entropy when the boundary metric is sheared relative to the bulk.

  7. Characteristics of chiral anomaly in view of various applications

    Science.gov (United States)

    Fujikawa, Kazuo

    2018-01-01

    In view of the recent applications of chiral anomaly to various fields beyond particle physics, we discuss some basic aspects of chiral anomaly which may help deepen our understanding of chiral anomaly in particle physics also. It is first shown that Berry's phase (and its generalization) for the Weyl model H =vFσ →.p →(t ) assumes a monopole form at the exact adiabatic limit but deviates from it off the adiabatic limit and vanishes in the high frequency limit of the Fourier transform of p →(t ) for bounded |p →(t )|. An effective action, which is consistent with the nonadiabatic limit of Berry's phase, combined with the Bjorken-Johnson-Low prescription, gives normal equal-time space-time commutators and no chiral anomaly. In contrast, an effective action with a monopole at the origin of the momentum space, which describes Berry's phase in the precise adiabatic limit but fails off the adiabatic limit, gives anomalous space-time commutators and a covariant anomaly to the gauge current. We regard this anomaly as an artifact of the postulated monopole and not a consequence of Berry's phase. As for the recent application of the chiral anomaly to the description of effective Weyl fermions in condensed matter and nuclear physics, which is closely related to the formulation of lattice chiral fermions, we point out that the chiral anomaly for each species doubler separately vanishes for a finite lattice spacing, contrary to the common assumption. Instead, a general form of pair creation associated with the spectral flow for the Dirac sea with finite depth takes place. This view is supported by the Ginsparg-Wilson fermion, which defines a single Weyl fermion without doublers on the lattice and gives a well-defined index (anomaly) even for a finite lattice spacing. A different use of anomaly in analogy to the partially conserved axial-vector current is also mentioned and could lead to an effect without fermion number nonconservation.

  8. Anomaly cancellation in effective supergravity theories from the heterotic string: Two simple examples

    Science.gov (United States)

    Gaillard, Mary K.; Leedom, Jacob

    2018-02-01

    We use Pauli-Villars regularization to evaluate the conformal and chiral anomalies in the effective field theories from Z3 and Z7 compactifications of the heterotic string without Wilson lines. We show that parameters for Pauli-Villars chiral multiplets can be chosen in such a way that the anomaly is universal in the sense that its coefficient depends only on a single holomorphic function of the three diagonal moduli. It is therefore possible to cancel the anomaly by a generalization of the four-dimensional Green-Schwarz mechanism. In particular we are able to reproduce the results of a string calculation of the four-dimensional chiral anomaly for these two models.

  9. Stress tensor from the trace anomaly in Reissner-Nordstroem spacetimes

    International Nuclear Information System (INIS)

    Anderson, Paul R.; Mottola, Emil; Vaulin, Ruslan

    2007-01-01

    The effective action associated with the trace anomaly provides a general algorithm for approximating the expectation value of the stress tensor of conformal matter fields in arbitrary curved spacetimes. In static, spherically symmetric spacetimes, the algorithm involves solving a fourth order linear differential equation in the radial coordinate r for the two scalar auxiliary fields appearing in the anomaly action, and its corresponding stress tensor. By appropriate choice of the homogeneous solutions of the auxiliary field equations, we show that it is possible to obtain finite stress tensors on all Reissner-Nordstroem event horizons, including the extreme Q=M case. We compare these finite results to previous analytic approximation methods, which yield invariably an infinite stress energy on charged black hole horizons, as well as with detailed numerical calculations that indicate the contrary. The approximation scheme based on the auxiliary field effective action reproduces all physically allowed behaviors of the quantum stress tensor, in a variety of quantum states, for fields of any spin, in the vicinity of the entire family (0≤Q≤M) of RN horizons

  10. GRACE gravity field modeling with an investigation on correlation between nuisance parameters and gravity field coefficients

    Science.gov (United States)

    Zhao, Qile; Guo, Jing; Hu, Zhigang; Shi, Chuang; Liu, Jingnan; Cai, Hua; Liu, Xianglin

    2011-05-01

    The GRACE (Gravity Recovery And Climate Experiment) monthly gravity models have been independently produced and published by several research institutions, such as Center for Space Research (CSR), GeoForschungsZentrum (GFZ), Jet Propulsion Laboratory (JPL), Centre National d’Etudes Spatiales (CNES) and Delft Institute of Earth Observation and Space Systems (DEOS). According to their processing standards, above institutions use the traditional variational approach except that the DEOS exploits the acceleration approach. The background force models employed are rather similar. The produced gravity field models generally agree with one another in the spatial pattern. However, there are some discrepancies in the gravity signal amplitude between solutions produced by different institutions. In particular, 10%-30% signal amplitude differences in some river basins can be observed. In this paper, we implemented a variant of the traditional variational approach and computed two sets of monthly gravity field solutions using the data from January 2005 to December 2006. The input data are K-band range-rates (KBRR) and kinematic orbits of GRACE satellites. The main difference in the production of our two types of models is how to deal with nuisance parameters. This type of parameters is necessary to absorb low-frequency errors in the data, which are mainly the aliasing and instrument errors. One way is to remove the nuisance parameters before estimating the geopotential coefficients, called NPARB approach in the paper. The other way is to estimate the nuisance parameters and geopotential coefficients simultaneously, called NPESS approach. These two types of solutions mainly differ in geopotential coefficients from degree 2 to 5. This can be explained by the fact that the nuisance parameters and the gravity field coefficients are highly correlated, particularly at low degrees. We compare these solutions with the official and published ones by means of spectral analysis. It is

  11. Recursive analytical solution describing artificial satellite motion perturbed by an arbitrary number of zonal terms

    Science.gov (United States)

    Mueller, A. C.

    1977-01-01

    An analytical first order solution has been developed which describes the motion of an artificial satellite perturbed by an arbitrary number of zonal harmonics of the geopotential. A set of recursive relations for the solution, which was deduced from recursive relations of the geopotential, was derived. The method of solution is based on Von-Zeipel's technique applied to a canonical set of two-body elements in the extended phase space which incorporates the true anomaly as a canonical element. The elements are of Poincare type, that is, they are regular for vanishing eccentricities and inclinations. Numerical results show that this solution is accurate to within a few meters after 500 revolutions.

  12. Hidden in the background: a local approach to CMB anomalies

    Energy Technology Data Exchange (ETDEWEB)

    Sánchez, Juan C. Bueno, E-mail: juan.c.bueno@correounivalle.edu.co [Centro de Investigaciones en Ciencias Básicas y Aplicadas, Universidad Antonio Nariño, Cra 3 Este # 47A-15, Bogotá D.C. 110231 (Colombia)

    2016-09-01

    We investigate a framework aiming to provide a common origin for the large-angle anomalies detected in the Cosmic Microwave Background (CMB), which are hypothesized as the result of the statistical inhomogeneity developed by different isocurvature fields of mass m ∼ H present during inflation. The inhomogeneity arises as the combined effect of ( i ) the initial conditions for isocurvature fields (obtained after a fast-roll stage finishing many e -foldings before cosmological scales exit the horizon), ( ii ) their inflationary fluctuations and ( iii ) their coupling to other degrees of freedom. Our case of interest is when these fields (interpreted as the precursors of large-angle anomalies) leave an observable imprint only in isolated patches of the Universe. When the latter intersect the last scattering surface, such imprints arise in the CMB. Nevertheless, due to their statistically inhomogeneous nature, these imprints are difficult to detect, for they become hidden in the background similarly to the Cold Spot. We then compute the probability that a single isocurvature field becomes inhomogeneous at the end of inflation and find that, if the appropriate conditions are given (which depend exclusively on the preexisting fast-roll stage), this probability is at the percent level. Finally, we discuss several mechanisms (including the curvaton and the inhomogeneous reheating) to investigate whether an initial statistically inhomogeneous isocurvature field fluctuation might give rise to some of the observed anomalies. In particular, we focus on the Cold Spot, the power deficit at low multipoles and the breaking of statistical isotropy.

  13. Hydrogeophysical exploration of three-dimensional salinity anomalies with the time-domain electromagnetic method (TDEM)

    DEFF Research Database (Denmark)

    Bauer-Gottwein, Peter; Gondwe, Bibi Ruth Neuman; Christiansen, Lars

    2010-01-01

    Delta is presented. Evaporative salt enrichment causes a strong salinity anomaly under the island. We show that the TDEM field data cannot be interpreted in terms of standard one-dimensional layered-earth TDEM models, because of the strongly three-dimensional nature of the salinity anomaly. Three...

  14. Vertebral column anomalies in Indo-Pacific and Atlantic humpback dolphins Sousa spp.

    Science.gov (United States)

    Weir, Caroline R; Wang, John Y

    2016-08-09

    Conspicuous vertebral column abnormalities in humpback dolphins (genus Sousa) were documented for the first time during 3 photo-identification field studies of small populations in Taiwan, Senegal and Angola. Seven Taiwanese humpback dolphins S. chinensis taiwanensis with vertebral column anomalies (lordosis, kyphosis or scoliosis) were identified, along with 2 possible cases of vertebral osteomyelitis. There was evidence from several individuals photographed over consecutive years that the anomalies became more pronounced with age. Three Atlantic humpback dolphins S. teuszii were observed with axial deviations of the vertebral column (lordosis and kyphosis). Another possible case was identified in a calf, and 2 further animals were photographed with dorsal indents potentially indicative of anomalies. Vertebral column anomalies of humpback dolphins were predominantly evident in the lumbo-caudal region, but one Atlantic humpback dolphin had an anomaly in the cervico-thoracic region. Lordosis and kyphosis occurred simultaneously in several individuals. Apart from the described anomalies, all dolphins appeared in good health and were not obviously underweight or noticeably compromised in swim speed. This study presents the first descriptions of vertebral column anomalies in the genus Sousa. The causative factors for the anomalies were unknown in every case and are potentially diverse. Whether these anomalies result in reduced fitness of individuals or populations merits attention, as both the Taiwanese and Atlantic humpback dolphin are species of high conservation concern.

  15. Extended global symmetries of the bosonic string. Their current algebra and anomalies

    International Nuclear Information System (INIS)

    Piguet, O.; Schwarz, D.; Schweda, M.

    1990-01-01

    The quantization of the bosonic string is discussed in a class of general homogeneous gauges. The corresponding bosonic string model may be characterized effectively by three global symmetries: the linearized BRS symmetry, the ghost-number symmetry, and the Lagrange-multiplier-field symmetry. In order to discuss the possible gauge (in)dependence of Noether currents and anomalies consistently, we enlarge these rigid symmetries to extended ones. In addition we construct the local version of the above global symmetries in a systematic way, by introducing appropriate external gauge fields. The possible anomalies are analysed with the help of Wess-Zumino consistency relations. (orig.)

  16. Trace Anomaly of Dilaton Coupled Scalars in Two Dimensions

    OpenAIRE

    Bousso, Raphael; Hawking, Stephen

    1997-01-01

    Conformal scalar fields coupled to the dilaton appear naturally in two-dimensional models of black hole evaporation. We calculate their trace anomaly. It follows that an RST-type counterterm appears naturally in the one-loop effective action.

  17. New Horizons in Gravity: The Trace Anomaly, Dark Energy and Condensate Stars

    CERN Document Server

    Mottola, Emil

    2010-01-01

    General Relativity receives quantum corrections relevant at macroscopic distance scales and near event horizons. These arise from the conformal scalar degrees of freedom in the extended effective field theory of gravity generated by the trace anomaly of massless quantum fields in curved space. The origin of these conformal scalar degrees of freedom as massless poles in two-particle intermediate states of anomalous amplitudes in flat space is exposed. At event horizons the conformal anomaly scalar degrees of freedom can have macroscopically large effects on the geometry, potentially removing the classical event horizon of black hole and cosmological spacetimes, replacing them with a quantum boundary layer where the effective value of the gravitational vacuum energy density can change. In the effective theory, the cosmological term becomes a dynamical condensate, whose value depends upon boundary conditions near the horizon. In the conformal phase where the anomaly induced fluctutations dominate, and the conden...

  18. Channel-closing effects in strong-field ionization by a bicircular field

    Science.gov (United States)

    Milošević, D. B.; Becker, W.

    2018-03-01

    Channel-closing effects, such as threshold anomalies and resonantlike intensity-dependent enhancements in strong-field ionization by a bicircular laser field are analyzed. A bicircular field consists of two coplanar corotating or counter-rotating circularly polarized fields having different frequencies. For the total detachment rate of a negative ion by a bicircular field we observe threshold anomalies and explain them using the Wigner threshold law and energy and angular momentum conservation. For the corotating bicircular case, these effects are negligible, while for the counter-rotating case they are pronounced and their position depends on the magnetic quantum number of the initial state. For high-order above-threshold ionization of rare-gas atoms by a counter-rotating bicircular laser field we observe very pronounced intensity-dependent enhancements. We find all four types of threshold anomalies known from collision theory. Contrary to the case of linear polarization, channel-closing effects for a bicircular field are visible also in the cutoff region of the electron energy spectrum, which is explained using quantum-orbit theory.

  19. Conformal anomaly c-coefficients of superconformal 6d theories

    Energy Technology Data Exchange (ETDEWEB)

    Beccaria, Matteo [Dipartimento di Matematica e Fisica Ennio De Giorgi, Università del Salento & INFN,Via Arnesano, 73100 Lecce (Italy); Tseytlin, Arkady A. [The Blackett Laboratory, Imperial College,London SW7 2AZ (United Kingdom)

    2016-01-04

    We propose general relations between the conformal anomaly and the chiral (R-symmetry and gravitational) anomaly coefficients in 6d (1,0) superconformal theories. The suggested expressions for the three type B conformal anomaly c{sub i}-coefficients complement the expression for the type A anomaly a-coefficient found in http://arxiv.org/abs/1506.03807. We check them on several examples — the standard (1,0) hyper and tensor multiplets as well as some higher derivative short multiplets containing vector fields that generalize the superconformal 6d vector multiplet discussed in http://arxiv.org/abs/1506.08727. We also consider a family of higher derivative superconformal (2,0) 6d multiplets associated to 7d multiplets in the KK spectrum of 11d supergravity compactified on S{sup 4}. In particular, we prove that (2,0) 6d conformal supergravity coupled to 26 tensor multiplets is free of all chiral and conformal anomalies. We discuss some interacting (1,0) superconformal theories, predicting the c{sub i}-coefficients for the “E-string” theory on multiple M5-branes at E{sub 8} 9-brane and for the theory describing M5-branes at an orbifold singularity ℂ{sup 2}/Γ. Finally, we elaborate on holographic computation of subleading corrections to conformal anomaly coefficients coming from R{sup 2}+R{sup 3} terms in 7d effective action, revisiting, in particular, the (2,0) theory case.

  20. Anomaly cancellation in effective supergravity theories from the heterotic string: Two simple examples

    Directory of Open Access Journals (Sweden)

    Mary K. Gaillard

    2018-02-01

    Full Text Available We use Pauli–Villars regularization to evaluate the conformal and chiral anomalies in the effective field theories from Z3 and Z7 compactifications of the heterotic string without Wilson lines. We show that parameters for Pauli–Villars chiral multiplets can be chosen in such a way that the anomaly is universal in the sense that its coefficient depends only on a single holomorphic function of the three diagonal moduli. It is therefore possible to cancel the anomaly by a generalization of the four-dimensional Green–Schwarz mechanism. In particular we are able to reproduce the results of a string calculation of the four-dimensional chiral anomaly for these two models.

  1. Using EVT for Geological Anomaly Design and Its Application in Identifying Anomalies in Mining Areas

    Directory of Open Access Journals (Sweden)

    Feilong Qin

    2016-01-01

    Full Text Available A geological anomaly is the basis of mineral deposit prediction. Through the study of the knowledge and characteristics of geological anomalies, the category of extreme value theory (EVT to which a geological anomaly belongs can be determined. Associating the principle of the EVT and ensuring the methods of the shape parameter and scale parameter for the generalized Pareto distribution (GPD, the methods to select the threshold of the GPD can be studied. This paper designs a new algorithm called the EVT model of geological anomaly. These study data on Cu and Au originate from 26 exploration lines of the Jiguanzui Cu-Au mining area in Hubei, China. The proposed EVT model of the geological anomaly is applied to identify anomalies in the Jiguanzui Cu-Au mining area. The results show that the model can effectively identify the geological anomaly region of Cu and Au. The anomaly region of Cu and Au is consistent with the range of ore bodies of actual engineering exploration. Therefore, the EVT model of the geological anomaly can effectively identify anomalies, and it has a high indicating function with respect to ore prospecting.

  2. The trace anomaly and massless scalar degrees of freedom

    Energy Technology Data Exchange (ETDEWEB)

    Gianotti, Maurizio [Los Alamos National Laboratory; Mottola, Emil [Los Alamos National Laboratory

    2008-01-01

    The trace anomaly of quantum fields in electromagnetic or gravitational backgrounds implies the existence of massless scalar poles in physical amplitudes involving the stress-energy tensor. Considering first the axial anomaly and using QED as an example, we compute the full one-loop triangle amplitude of the fermionic stress tensor with two current vertices, {open_square}T{sup {mu}{nu}}J{sup {alpha}}J{sup {beta}}, and exhibit the scalar pole in this amplitude associated with the trace anomaly, in the limit of zero electron mass m{yields}0. To emphasize the infrared aspect of the anomaly, we use a dispersive approach and show that this amplitude and the existence of the massless scalar pole is determined completely by its ultraviolet finite terms, together with the requirements of Poincare invariance of the vacuum, Bose symmetry under interchange of J{sup {alpha}} and J{sup {beta}}, and vector current and stress-tensor conservation. We derive a sum rule for the appropriate positive spectral function corresponding to the discontinuity of the triangle amplitude, showing that it becomes proportional to {delta}(k{sup 2}) and therefore contains a massless scalar intermediate state in the conformal limit of zero electron mass. The effective action corresponding to the trace of the triangle amplitude can be expressed in local form by the introduction of two scalar auxiliary fields which satisfy massless wave equations. These massless scalar degrees of freedom couple to classical sources, contribute to gravitational scattering processes, and can have long range gravitational effects.

  3. Decadal climate prediction with a refined anomaly initialisation approach

    Science.gov (United States)

    Volpi, Danila; Guemas, Virginie; Doblas-Reyes, Francisco J.; Hawkins, Ed; Nichols, Nancy K.

    2017-03-01

    In decadal prediction, the objective is to exploit both the sources of predictability from the external radiative forcings and from the internal variability to provide the best possible climate information for the next decade. Predicting the climate system internal variability relies on initialising the climate model from observational estimates. We present a refined method of anomaly initialisation (AI) applied to the ocean and sea ice components of the global climate forecast model EC-Earth, with the following key innovations: (1) the use of a weight applied to the observed anomalies, in order to avoid the risk of introducing anomalies recorded in the observed climate, whose amplitude does not fit in the range of the internal variability generated by the model; (2) the AI of the ocean density, instead of calculating it from the anomaly initialised state of temperature and salinity. An experiment initialised with this refined AI method has been compared with a full field and standard AI experiment. Results show that the use of such refinements enhances the surface temperature skill over part of the North and South Atlantic, part of the South Pacific and the Mediterranean Sea for the first forecast year. However, part of such improvement is lost in the following forecast years. For the tropical Pacific surface temperature, the full field initialised experiment performs the best. The prediction of the Arctic sea-ice volume is improved by the refined AI method for the first three forecast years and the skill of the Atlantic multidecadal oscillation is significantly increased compared to a non-initialised forecast, along the whole forecast time.

  4. A variant of the anomaly initialisation approach for global climate forecast models

    Science.gov (United States)

    Volpi, Danila; Guemas, Virginie; Doblas-Reyes, Francisco; Hawkins, Ed; Nichols, Nancy; Carrassi, Alberto

    2014-05-01

    This work presents a refined method of anomaly initialisation (AI) applied to the ocean and sea ice components of the global climate forecast model EC-Earth, with the following particularities: - the use of a weight to the anomalies, in order to avoid the risk of introducing too big anomalies recorded in the observed state, whose amplitude does not fit the range of the internal variability generated by the model. - the AI of the temperature and density ocean state variables instead of the temperature and salinity. Results show that the use of such refinements improve the skill over the Arctic region, part of the North and South Atlantic, part of the North and South Pacific and the Mediterranean Sea. In the Tropical Pacific the full field initialised experiment performs better. This is probably due to a displacement of the observed anomalies caused by the use of the AI technique. Furthermore, preliminary results of an anomaly nudging experiment are discussed.

  5. Elliptic hypergeometric integrals and 't Hooft anomaly matching conditions

    International Nuclear Information System (INIS)

    Spiridonov, V.P.; Vartanov, G.S.

    2012-03-01

    Elliptic hypergeometric integrals describe superconformal indices of 4d supersymmetric field theories. We show that all 't Hooft anomaly matching conditions for Seiberg dual theories can be derived from SL(3, Z)-modular transformation properties of the kernels of dual indices.

  6. Analysis of genitourinary anomalies in patients with VACTERL (Vertebral anomalies, Anal atresia, Cardiac malformations, Tracheo-Esophageal fistula, Renal anomalies, Limb abnormalities) association.

    Science.gov (United States)

    Solomon, Benjamin D; Raam, Manu S; Pineda-Alvarez, Daniel E

    2011-06-01

    The goal of this study was to describe a novel pattern of genitourinary (GU) anomalies in VACTERL association,which involves congenital anomalies affecting the vertebrae,anus, heart, trachea and esophagus, kidneys, and limbs.We collected clinical data on 105 patients diagnosed with VACTERL association and analyzed a subset of 89 patients who met more stringent inclusion criteria. Twenty-one percent of patients have GU anomalies, which are more severe (but not more frequent) in females. Anomalies were noted in patients without malformations affecting the renal, lower vertebral, or lower gastrointestinal systems. There should be a high index of suspicion for the presence of GU anomalies even in patients who do not have spatially similar malformations.

  7. Radiologic analysis of congenital limb anomalies

    International Nuclear Information System (INIS)

    Chung, Hong Jun; Kim, Ok Hwa; Shinn, Kyung Sub; Kim, Nam Ae

    1994-01-01

    Congenital limb anomalies are manifested in various degree of severity and complexity bearing conclusion for description and nomenclature of each anomaly. We retrospectively analyzed the roentgenograms of congenital limb anomalies for the purpose of further understanding of the radiologic manifestations based on the embryonal defect and also to find the incidence of each anomaly. Total number of the patients was 89 with 137 anomalies. Recently the uniform system of classification for congenital anomalies of the upper limb was adopted by International Federation of Societies for Surgery of the Hand (IFSSH), which were categorized as 7 classifications. We used the IFSSH classification with some modification as 5 classifications; failure of formation of parts, failure of differentiation of parts, duplications, overgrowth and undergrowth. The patients with upper limb anomalies were 65 out of 89(73%), lower limb were 21(24%), and both upper and lower limb anomalies were 3(4%). Failure of formation was seen in 18%, failure of differentiation 39%, duplications 39%, overgrowth 8%, and undergrowth in 12%. Thirty-five patients had more than one anomaly, and 14 patients had intergroup anomalies. The upper limb anomalies were more common than lower limb. Among the anomalies, failure of differentiation and duplications were the most common types of congenital limb anomalies. Patients with failure of formation, failure of differentiation, and undergrowth had intergroup association of anomalies, but duplication and overgrowth tended to be isolated anomalies

  8. Dental Anomalies: An Update

    Directory of Open Access Journals (Sweden)

    Fatemeh Jahanimoghadam

    2016-01-01

    Full Text Available Dental anomalies are usual congenital malformation that can happen either as isolated findings or as a part of a syndrome. Developmental anomalies influencing the morphology exists in both deciduous and permanent dentition and shows different forms such as gemination, fusion, concrescence, dilaceration, dens evaginatus (DE, enamel pearls, taurodontism or peg-shaped laterals. All These anomalies have clinical significance concerning aesthetics, malocclusion and more necessary preparing of the development of dental decays and oral diseases. Through a search in PubMed, Google, Scopus and Medline, a total of eighty original research papers during 1928-2016 were found with the keywords such as dental anomaly, syndrome, tooth and hypodontia. One hundred review titles were identified, eighty reviews were retrieved that were finally included as being relevant and of sufficient quality. In this review, dental anomalies including gemination, fusion, concrescence, dilaceration, dens invaginatus, DE, taurodontism, enamel pearls, fluorosis, peg-shaped laterals, dentinal dysplasia, regional odontodysplasia and hypodontia are discussed. Diagnosing dental abnormality needs a thorough evaluation of the patient, involving a medical, dental, familial and clinical history. Clinical examination and radiographic evaluation and in some of the cases, specific laboratory tests are also needed. Developmental dental anomalies require careful examination and treatment planning. Where one anomaly is present, clinicians should suspect that other anomalies may also be present. Moreover, careful clinical and radiographical examination is required. Furthermore, more complex cases need multidisciplinary planning and treatment.

  9. Geothermal Anomaly Mapping Using Landsat ETM+ Data in Ilan Plain, Northeastern Taiwan

    Science.gov (United States)

    Chan, Hai-Po; Chang, Chung-Pai; Dao, Phuong D.

    2018-01-01

    Geothermal energy is an increasingly important component of green energy in the globe. A prerequisite for geothermal energy development is to acquire the local and regional geothermal prospects. Existing geophysical methods of estimating the geothermal potential are usually limited to the scope of prospecting because of the operation cost and site reachability in the field. Thus, explorations in a large-scale area such as the surface temperature and the thermal anomaly primarily rely on satellite thermal infrared imagery. This study aims to apply and integrate thermal infrared (TIR) remote sensing technology with existing geophysical methods for the geothermal exploration in Taiwan. Landsat 7 (L7) Enhanced Thematic Mapper Plus (ETM+) imagery is used to retrieve the land surface temperature (LST) in Ilan plain. Accuracy assessment of satellite-derived LST is conducted by comparing with the air temperature data from 11 permanent meteorological stations. The correlation coefficient of linear regression between air temperature and LST retrieval is 0.76. The MODIS LST product is used for the cross validation of Landsat derived LSTs. Furthermore, Landsat ETM+ multi-temporal brightness temperature imagery for the verification of the LST anomaly results were performed. LST Results indicate that thermal anomaly areas appear correlating with the development of faulted structure. Selected geothermal anomaly areas are validated in detail by field investigation of hot springs and geothermal drillings. It implies that occurrences of hot springs and geothermal drillings are in good spatial agreement with anomaly areas. In addition, the significant low-resistivity zones observed in the resistivity sections are echoed with the LST profiles when compared with in the Chingshui geothermal field. Despite limited to detecting the surficial and the shallow buried geothermal resources, this work suggests that TIR remote sensing is a valuable tool by providing an effective way of mapping

  10. MAGSAT anomaly map and continental drift

    Science.gov (United States)

    Lemouel, J. L. (Principal Investigator); Galdeano, A.; Ducruix, J.

    1981-01-01

    Anomaly maps of high quality are needed to display unambiguously the so called long wave length anomalies. The anomalies were analyzed in terms of continental drift and the nature of their sources is discussed. The map presented confirms the thinness of the oceanic magnetized layer. Continental magnetic anomalies are characterized by elongated structures generally of east-west trend. Paleomagnetic reconstruction shows that the anomalies found in India, Australia, and Antarctic exhibit a fair consistency with the African anomalies. It is also shown that anomalies are locked under the continents and have a fixed geometry.

  11. Seafloor spreading anomalies and crustal ages of the Clarion-Clipperton Zone

    OpenAIRE

    Udo Barckhausen; Meike Bagge; Douglas S. Wilson

    2013-01-01

    The Clarion-Clipperton Zone (CCZ) of the central Pacific is one of the few regions in the world’s oceans that are still lacking full coverage of reliable identifications of seafloor spreading anomalies. This is mainly due to the geometry of the magnetic lineations’ strike direction sub-parallel to the Earth’s magnetic field vector near the equator resulting in low amplitude magnetic anomalies, and the remoteness of the region which has hindered systematic surveying in the past. Following rece...

  12. Cascade of Quantum Transitions and Magnetocaloric Anomalies in an Open Nanowire

    Science.gov (United States)

    Val'kov, V. V.; Mitskan, V. A.; Shustin, M. S.

    2017-12-01

    A sequence of magnetocaloric anomalies occurring with the change in a magnetic field H is predicted for an open nanowire with the Rashba spin-orbit coupling and the induced superconducting pairing potential. The nature of such anomalies is due to the cascade of quantum transitions related to the successive changes in the fermion parity of the nanowire ground state with the growth of the magnetic field. It is shown that the critical H c values fall within the parameter range corresponding to the nontrivial values of the Z 2 topological invariant of the corresponding 1D band Hamiltonian characteristic of the D symmetry class. It is demonstrated that such features in the behavior of the open nanowire are retained even in the presence of Coulomb interactions.

  13. Global aspects of gauge anomalies

    International Nuclear Information System (INIS)

    Zhang, H.

    1988-01-01

    This dissertation discusses the global aspects of gauge anomalies in even dimensions. After a very brief description of local gauge anomalies, the possible global gauge anomalies for various gauge theories are discussed using homotopy theory. One of the main results obtained in a general formula for the SU(n - k) global gauge anomaly coefficient in arbitrary 2n dimensions. The result is expressed in terms of the James number of the Stiefel manifold SU(n + 1)/SU(n - k) and the generalized Dynkin indices. From this, the possibilities of SU(n), SU(n - 1), and SU(2) global gauge anomalies in arbitrary 2n dimensions have been determined. We have also determined the possibilities of global gauge anomalies for the gauge groups SP(2N) and SO(N) in certain general dimensions, as well as for the exceptional gauge groups in specific dimensions. Moreover, several general propositions are formulated and proved which are very useful in the study of global gauge anomalies

  14. Western Continental Margin of India - Re-look using potential field data

    Science.gov (United States)

    Rajaram, M.; S P, A.

    2008-05-01

    The Western Continental Margin of India (WCMI) evolved as a result of rifting between India and Madagascar that took place during mid Cretaceous (~88Ma).The WCMI is equally important in terms of natural resources as well as research point of view. The major tectonic elements in the western offshore includes the Laxmi and Chagos- Laccadive ridge dividing the WCMI and the adjoining Arabian sea into two basins, Pratap Ridge, Alleppey platform etc. Different theories have been proposed for the evolution of each of these tectonic elements. In the current paper we look at geopotential data on the west coast of India and the western off-shore. The data sets utilized include Satellite derived High Resolution Free Air Gravity data over the off-shore, Bouguer data onland, Champ Satellite Magnetic data, published Marine Magnetic data collected by ONGC, NIO, ground magnetic data over west cost collected by IIG and available aeromagnetic data. From the free air gravity anomaly the structural details of the western offshore can be delineated. The Euler depths of FAG depict deep solutions associated with Pratap Ridge, Comorin Ridge, the west coast fault and the Laxmi Ridge. These may be associated with continental margin and continental fragments. From the aeromagnetic and marine magnetic data it is evident that the West Coast Fault is dissected at several places. The shallow circular feature associated with Bombay High is evident both on the FAG and the analytic signal derived from satellite Magnetic data. The crustal magnetic thickness from MF5 lithospheric model of the Champ appears to suggest that the continental crust extends up to the Chagos- Laccadive ridge. Based on the analysis of these geopotential data sets the various theories for the evolution of the WCMI will be evaluated and these results will be presented.

  15. Anomalies on orbifolds

    Energy Technology Data Exchange (ETDEWEB)

    Arkani-Hamed, Nima; Cohen, Andrew G.; Georgi, Howard

    2001-03-16

    We discuss the form of the chiral anomaly on an S1/Z2 orbifold with chiral boundary conditions. We find that the 4-divergence of the higher-dimensional current evaluated at a given point in the extra dimension is proportional to the probability of finding the chiral zero mode there. Nevertheless the anomaly, appropriately defined as the five dimensional divergence of the current, lives entirely on the orbifold fixed planes and is independent of the shape of the zero mode. Therefore long distance four dimensional anomaly cancellation ensures the consistency of the higher dimensional orbifold theory.

  16. First branchial groove anomaly.

    Science.gov (United States)

    Kumar, M; Hickey, S; Joseph, G

    2000-06-01

    First branchial groove anomalies are very rare. We report a case of a first branchial groove anomaly presented as an infected cyst in an 11-month-old child. Management of such lesions is complicated because of their close association with the facial nerve. Surgical management must include identification and protection of the facial nerve. Embryology and facial nerve disposition in relation to the anomaly are reviewed.

  17. Highly macroscopically degenerated single-point ground states as source of specific heat capacity anomalies in magnetic frustrated systems

    Science.gov (United States)

    Jurčišinová, E.; Jurčišin, M.

    2018-04-01

    Anomalies of the specific heat capacity are investigated in the framework of the exactly solvable antiferromagnetic spin- 1 / 2 Ising model in the external magnetic field on the geometrically frustrated tetrahedron recursive lattice. It is shown that the Schottky-type anomaly in the behavior of the specific heat capacity is related to the existence of unique highly macroscopically degenerated single-point ground states which are formed on the borders between neighboring plateau-like ground states. It is also shown that the very existence of these single-point ground states with large residual entropies predicts the appearance of another anomaly in the behavior of the specific heat capacity for low temperatures, namely, the field-induced double-peak structure, which exists, and should be observed experimentally, along with the Schottky-type anomaly in various frustrated magnetic system.

  18. Hyperspectral Imagery Target Detection Using Improved Anomaly Detection and Signature Matching Methods

    National Research Council Canada - National Science Library

    Smetek, Timothy E

    2007-01-01

    This research extends the field of hyperspectral target detection by developing autonomous anomaly detection and signature matching methodologies that reduce false alarms relative to existing benchmark detectors...

  19. Diagnostics of Rainfall Anomalies in the Nordeste During the Global Weather Experiment

    Science.gov (United States)

    Sikdar, D. M.

    1984-01-01

    The relationship of the daily variability of large-scale pressure, cloudiness and upper level wind patterns over the Brazil-Atlantic sector during March/April 1979 to rainfall anomalies in northern Nordeste was investigated. The experiment divides the rainy season (March/April) of 1979 into wet and dry days, then composites bright cloudiness, sea level pressure, and upper level wind fields with respect to persistent rainfall episodes. Wet and dry anomalies are analyzed along with seasonal mean conditions.

  20. Quantum effects and elimination of the conformal anomaly in anisotropic space-time

    International Nuclear Information System (INIS)

    Grib, A.A.; Nesteruk, A.V.

    1988-01-01

    In homogeneous anisotropic space-time the connection between the problem of the elimination of infrared divergences and the conformal anomaly of the regularized energy-momentum tensor is studied. It is shown that removal of the infrared divergence by means of a cutoff leads to the absence of a conformal anomaly. A physical interpretation of the infrared cutoff as a shift in the particle-energy spectrum by an amount equal to the effective temperature of the gravitational field is proposed

  1. A robust background regression based score estimation algorithm for hyperspectral anomaly detection

    Science.gov (United States)

    Zhao, Rui; Du, Bo; Zhang, Liangpei; Zhang, Lefei

    2016-12-01

    Anomaly detection has become a hot topic in the hyperspectral image analysis and processing fields in recent years. The most important issue for hyperspectral anomaly detection is the background estimation and suppression. Unreasonable or non-robust background estimation usually leads to unsatisfactory anomaly detection results. Furthermore, the inherent nonlinearity of hyperspectral images may cover up the intrinsic data structure in the anomaly detection. In order to implement robust background estimation, as well as to explore the intrinsic data structure of the hyperspectral image, we propose a robust background regression based score estimation algorithm (RBRSE) for hyperspectral anomaly detection. The Robust Background Regression (RBR) is actually a label assignment procedure which segments the hyperspectral data into a robust background dataset and a potential anomaly dataset with an intersection boundary. In the RBR, a kernel expansion technique, which explores the nonlinear structure of the hyperspectral data in a reproducing kernel Hilbert space, is utilized to formulate the data as a density feature representation. A minimum squared loss relationship is constructed between the data density feature and the corresponding assigned labels of the hyperspectral data, to formulate the foundation of the regression. Furthermore, a manifold regularization term which explores the manifold smoothness of the hyperspectral data, and a maximization term of the robust background average density, which suppresses the bias caused by the potential anomalies, are jointly appended in the RBR procedure. After this, a paired-dataset based k-nn score estimation method is undertaken on the robust background and potential anomaly datasets, to implement the detection output. The experimental results show that RBRSE achieves superior ROC curves, AUC values, and background-anomaly separation than some of the other state-of-the-art anomaly detection methods, and is easy to implement

  2. Analysis of pre-earthquake ionospheric anomalies before the global M = 7.0+ earthquakes in 2010

    Directory of Open Access Journals (Sweden)

    W. F. Peng

    2012-03-01

    Full Text Available The pre-earthquake ionospheric anomalies that occurred before the global M = 7.0+ earthquakes in 2010 are investigated using the total electron content (TEC from the global ionosphere map (GIM. We analyze the possible causes of the ionospheric anomalies based on the space environment and magnetic field status. Results show that some anomalies are related to the earthquakes. By analyzing the time of occurrence, duration, and spatial distribution of these ionospheric anomalies, a number of new conclusions are drawn, as follows: earthquake-related ionospheric anomalies are not bound to appear; both positive and negative anomalies are likely to occur; and the earthquake-related ionospheric anomalies discussed in the current study occurred 0–2 days before the associated earthquakes and in the afternoon to sunset (i.e. between 12:00 and 20:00 local time. Pre-earthquake ionospheric anomalies occur mainly in areas near the epicenter. However, the maximum affected area in the ionosphere does not coincide with the vertical projection of the epicenter of the subsequent earthquake. The directions deviating from the epicenters do not follow a fixed rule. The corresponding ionospheric effects can also be observed in the magnetically conjugated region. However, the probability of the anomalies appearance and extent of the anomalies in the magnetically conjugated region are smaller than the anomalies near the epicenter. Deep-focus earthquakes may also exhibit very significant pre-earthquake ionospheric anomalies.

  3. Electric field versus neutral wind control of the equatorial anomaly under quiet and disturbed condition: A global perspective from SUNDIAL 86

    International Nuclear Information System (INIS)

    Abdu, M.A.; Sobral, J.H.A.; Trivedi, N.B.; Reddy, B.M.; Fejer, B.G.; Szuszczewicz, E.P.; Walker, G.O.; Kikuchi, T.

    1990-01-01

    Developments of equatorial Ionization Anomaly (EIA) under quiescent and disturbed ionospheric conditions are investigated using the data collected from the low-latitude network of ionosondes and magnetometers operated at different longitude sectors of the globe as a part of the SUNDIAL 86 campaign (22 September to 3 October, 1986). Based on case studies of EIA developments, attention is focused on identifiying the EIA response to changes in the electric fields associated with the equatorial electrojet and counter electrojet events. The response time of the EIA to electric field changes is found to vary from 2.5 to 4 h. An anomalous EIA development observed in the morning sector on September 23 suggested possible electric field penetration to low latitude during a substorm energy storage/Dst development phase. The analysis also shows that the afternoon EIA could be inhibited due to equatorward blowing disturbed neutral winds. The results of the present analysis emphasize the need for pursuing further investigations for the response of EIA to magnetosphere-induced disturbances

  4. Depth Estimates for Slingram Electromagnetic Anomalies from Dipping Sheet-like Bodies by the Normalized Full Gradient Method

    Science.gov (United States)

    Dondurur, Derman

    2005-11-01

    The Normalized Full Gradient (NFG) method was proposed in the mid 1960s and was generally used for the downward continuation of the potential field data. The method eliminates the side oscillations which appeared on the continuation curves when passing through anomalous body depth. In this study, the NFG method was applied to Slingram electromagnetic anomalies to obtain the depth of the anomalous body. Some experiments were performed on the theoretical Slingram model anomalies in a free space environment using a perfectly conductive thin tabular conductor with an infinite depth extent. The theoretical Slingram responses were obtained for different depths, dip angles and coil separations, and it was observed from NFG fields of the theoretical anomalies that the NFG sections yield the depth information of top of the conductor at low harmonic numbers. The NFG sections consisted of two main local maxima located at both sides of the central negative Slingram anomalies. It is concluded that these two maxima also locate the maximum anomaly gradient points, which indicates the depth of the anomaly target directly. For both theoretical and field data, the depth of the maximum value on the NFG sections corresponds to the depth of the upper edge of the anomalous conductor. The NFG method was applied to the in-phase component and correct depth estimates were obtained even for the horizontal tabular conductor. Depth values could be estimated with a relatively small error percentage when the conductive model was near-vertical and/or the conductor depth was larger.

  5. Abundance anomalies in RGB stars as probes of galactic chemical evolution

    Science.gov (United States)

    Charbonnel, C.; Palacios, A.

    During the last two decades, extensive spectroscopic studies have revealed chemical abundance anomalies exhibited by low mass RGB stars which bring a new light on some important aspects of stellar nucleosynthesis and chemical evolution. We underline the differences between field and globular cluster populations and discuss their possible origin both in terms of primordial pollution and stellar internal nucleosynthesis and mixing. We suggest some tests to help to understand the influence of metallicity and of a dense environment on abundance anomalies in connection with the second parameter problem and with the stellar yields.

  6. Hawking fluxes and anomalies in rotating regular black holes with a time-delay

    International Nuclear Information System (INIS)

    Takeuchi, Shingo

    2016-01-01

    Based on the anomaly cancellation method we compute the Hawking fluxes (the Hawking thermal flux and the total flux of energy-momentum tensor) from a four-dimensional rotating regular black hole with a time-delay. To this purpose, in the three metrics proposed in [1], we try to perform the dimensional reduction in which the anomaly cancellation method is feasible at the near-horizon region in a general scalar field theory. As a result we can demonstrate that the dimensional reduction is possible in two of those metrics. Hence we perform the anomaly cancellation method and compute the Hawking fluxes in those two metrics. Our Hawking fluxes involve three effects: (1) quantum gravity effect regularizing the core of the black holes, (2) rotation of the black hole, (3) time-delay. Further in this paper toward the metric in which the dimensional could not be performed, we argue that it would be some problematic metric, and mention its cause. The Hawking fluxes we compute in this study could be considered to correspond to more realistic Hawking fluxes. Further what Hawking fluxes can be obtained from the anomaly cancellation method would be interesting in terms of the relation between a consistency of quantum field theories and black hole thermodynamics. (paper)

  7. Is the geopotential directly measurable (Gauss, Bruns, Einstein : Je li geopotencijal direktno mjerljiv? (Gaus, Bruns, Ajnštajn

    Directory of Open Access Journals (Sweden)

    Helmut Moritz

    2016-12-01

    Full Text Available It has been pointed out by the great Swedish geodesist Arne Bjerhammar and others around1985 that it is possible to replace the classical method of spirit leveling for determining differences of the geopotential by a much more direct and elegant method, measuring the frequency of atomic clocks. This is impossible by classical physics and requires methods of Einstein’s General Theory of Relativity. The principle is that the geopotential can be “felt” by the “proper time” of this theory, but there remained the problem that the measuring accuracies were unthinkably high in 1985 and even later. To get a leveling accuracy of 1 cm, we must measure these frequencies to a relative accuracy of 10-18. Reaching such accuracies provided a great challenge to high-precision time observation all over the world, from USA to China. Now it seems that the required frequency accuracy is being reached. The author tries to give a short introductory review accessible to geodetic students and surveyors. It is purely didactic. : Veliki švedski geodeta Arne Bjerhammar (i neki drugi, istakao je oko 1985. godine, da je klasičnu metodu geometrijskog nivelmana za određivanje razlika geopotencijala moguće zamijeniti mnogo direktnijom i elegantnom metodom, mjerenjem frekvencije atomskih satova. Ovo nije moguće metodama klasične fizike, te zahtijeva primjenu Ajnštajnove Teorije općeg relativiteta. Princip je da se geopotencijal može “osjetiti” pomoću “pravog vremena” ove teorije, ali ostaje problem što je tačnost mjerenja bila nezamisliva u 1985. godini, pa čak i poslije. Da bi se dobila tačnost nivelanja od 1 cm, frekvencije se moraju mjeriti s relativnom tačnošću od 10-18. Dostizanje ove tačnosti bio je ogroman izazov za sve svjetske opservatorije za visokoprecizno mjerenje vremena, od SAD do Kine. Čini se da je zahtijevana tačnost ipak dostignuta. Autor nastoji dati kratak, potpuno didaktički uvod, pristupačan studentima geodezije i

  8. Elliptic hypergeometric integrals and 't Hooft anomaly matching conditions

    Energy Technology Data Exchange (ETDEWEB)

    Spiridonov, V.P. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Vartanov, G.S. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2012-05-15

    Elliptic hypergeometric integrals describe superconformal indices of 4d supersymmetric field theories. We show that all 't Hooft anomaly matching conditions for Seiberg dual theories can be derived from SL(3, Z)-modular transformation properties of the kernels of dual indices.

  9. Isostatic models and isostatic gravity anomalies of the Arabian plate and surroundings

    OpenAIRE

    M. K. Kaban; Sami El Khrepy; Nassir Al-Arifi

    2015-01-01

    Isostaic anomalies represent one of the most useful “geological” reduction of the gravity field. With the isostatic correction it is possible to remove a significant part of the effect of deep density heterogeneity, which dominates in the Bouguer gravity anomalies. This correction is based on the fact that a major part of the near-surface load is compensated by variations of the lithosphere boundaries (chiefly the Moho and LAB) and by density variations within the crust and upper man...

  10. Space weather and space anomalies

    Directory of Open Access Journals (Sweden)

    L. I. Dorman

    2005-11-01

    Full Text Available A large database of anomalies, registered by 220 satellites in different orbits over the period 1971-1994 has been compiled. For the first time, data from 49 Russian Kosmos satellites have been included in a statistical analysis. The database also contains a large set of daily and hourly space weather parameters. A series of statistical analyses made it possible to quantify, for different satellite orbits, space weather conditions on the days characterized by anomaly occurrences. In particular, very intense fluxes (>1000 pfu at energy >10 MeV of solar protons are linked to anomalies registered by satellites in high-altitude (>15000 km, near-polar (inclination >55° orbits typical for navigation satellites, such as those used in the GPS network, NAVSTAR, etc. (the rate of anomalies increases by a factor ~20, and to a much smaller extent to anomalies in geostationary orbits, (they increase by a factor ~4. Direct and indirect connections between anomaly occurrence and geomagnetic perturbations are also discussed.

  11. Shallow Drilling In The Salton Sea Region, The Thermal Anomaly

    Energy Technology Data Exchange (ETDEWEB)

    Newmark, R. L.; Kasameyer, P. W.; Younker, L. W.

    1987-01-01

    During two shallow thermal drilling programs, thermal measurements were obtained in 56 shallow (76.2 m) and one intermediate (457.3 m) depth holes located both onshore and offshore along the southern margin of the Salton Sea in the Imperial Valley, California. These data complete the surficial coverage of the thermal anomaly, revealing the shape and lateral extent of the hydrothermal system. The thermal data show the region of high thermal gradients to extend only a short distance offshore to the north of the Quaternary volcanic domes which are exposed along the southern shore of the Salton Sea. The thermal anomaly has an arcuate shape, about 4 km wide and 12 km long. Across the center of the anomaly, the transition zone between locations exhibiting high thermal gradients and those exhibiting regional thermal gradients is quite narrow. Thermal gradients rise from near regional (0.09 C/m) to extreme (0.83 C/m) in only 2.4 km. The heat flow in the central part of the anomaly is >600 mW/m{sup 2} and in some areas exceeds 1200 mW/m{sup 2}. The shape of the thermal anomaly is asymmetric with respect to the line of volcanoes previously thought to represent the center of the field, with its center line offset south of the volcanic buttes. There is no broad thermal anomaly associated with the magnetic high that extends offshore to the northeast from the volcanic domes. These observations of the thermal anomaly provide important constraints for models of the circulation of the hydrothermal system. Thermal budgets based on a simple model for this hydrothermal system indicate that the heat influx rate for local ''hot spots'' in the region may be large enough to account for the rate of heat flux from the entire Salton Trough.

  12. OceanXtremes: Scalable Anomaly Detection in Oceanographic Time-Series

    Science.gov (United States)

    Wilson, B. D.; Armstrong, E. M.; Chin, T. M.; Gill, K. M.; Greguska, F. R., III; Huang, T.; Jacob, J. C.; Quach, N.

    2016-12-01

    The oceanographic community must meet the challenge to rapidly identify features and anomalies in complex and voluminous observations to further science and improve decision support. Given this data-intensive reality, we are developing an anomaly detection system, called OceanXtremes, powered by an intelligent, elastic Cloud-based analytic service backend that enables execution of domain-specific, multi-scale anomaly and feature detection algorithms across the entire archive of 15 to 30-year ocean science datasets.Our parallel analytics engine is extending the NEXUS system and exploits multiple open-source technologies: Apache Cassandra as a distributed spatial "tile" cache, Apache Spark for in-memory parallel computation, and Apache Solr for spatial search and storing pre-computed tile statistics and other metadata. OceanXtremes provides these key capabilities: Parallel generation (Spark on a compute cluster) of 15 to 30-year Ocean Climatologies (e.g. sea surface temperature or SST) in hours or overnight, using simple pixel averages or customizable Gaussian-weighted "smoothing" over latitude, longitude, and time; Parallel pre-computation, tiling, and caching of anomaly fields (daily variables minus a chosen climatology) with pre-computed tile statistics; Parallel detection (over the time-series of tiles) of anomalies or phenomena by regional area-averages exceeding a specified threshold (e.g. high SST in El Nino or SST "blob" regions), or more complex, custom data mining algorithms; Shared discovery and exploration of ocean phenomena and anomalies (facet search using Solr), along with unexpected correlations between key measured variables; Scalable execution for all capabilities on a hybrid Cloud, using our on-premise OpenStack Cloud cluster or at Amazon. The key idea is that the parallel data-mining operations will be run "near" the ocean data archives (a local "network" hop) so that we can efficiently access the thousands of files making up a three decade time

  13. Comments on global symmetries, anomalies, and duality in (2+1)d

    Energy Technology Data Exchange (ETDEWEB)

    Benini, Francesco [School of Natural Sciences, Institute for Advanced Study,Princeton, NJ 08540 (United States); SISSA & INFN,via Bonomea 265, 34136 Trieste (Italy); Hsin, Po-Shen [Department of Physics, Princeton University,Princeton, NJ 08544 (United States); Seiberg, Nathan [School of Natural Sciences, Institute for Advanced Study,Princeton, NJ 08540 (United States)

    2017-04-21

    We analyze in detail the global symmetries of various (2+1)d quantum field theories and couple them to classical background gauge fields. A proper identification of the global symmetries allows us to consider all non-trivial bundles of those background fields, thus finding more subtle observables. The global symmetries exhibit interesting ’t Hooft anomalies. These allow us to constrain the IR behavior of the theories and provide powerful constraints on conjectured dualities.

  14. Distribution of the Crustal Magnetic Field in Sichuan-Yunnan Region, Southwest China

    Directory of Open Access Journals (Sweden)

    Chunhua Bai

    2014-01-01

    Full Text Available Based on the new and higher degree geomagnetic model NGDC-720-V3, we have investigated the spatial distribution, the altitude decay characteristics of the crustal magnetic anomaly, the contributions from different wavelength bands to the anomaly, and the relationship among the anomaly, the geological structure, and the geophysical field in Sichuan-Yunnan region of China. It is noted that the most outstanding feature in this area is the strong positive magnetic anomaly in Sichuan Basin, a geologically stable block. Contrasting with this feature, a strong negative anomaly can be seen nearby in Longmen Mountain block, an active block. This contradiction implies a possible relationship between the magnetic field and the geological activity. Completely different feature in magnetic field distribution is seen in the central Yunnan block, another active region, where positive and negative anomalies distribute alternatively, showing a complex magnetic anomaly map. Some fault belts, such as the Longmen Mountain fault, Lijiang-Xiaojinhe fault, and the Red River fault, are the transitional zones of strong and weak or negative and positive anomalies. The corresponding relationship between the magnetic anomaly and the geophysical fields was confirmed.

  15. Renal anomalies in congenital heart disease

    International Nuclear Information System (INIS)

    Lee, Byung Hee; Kim, In One; Yeon, Kyung Mo; Yoon, Yong Soo

    1987-01-01

    In general, the incidence of urinary tract anomalies in congenital heart disease is higher than that in general population. So authors performed abdominal cineradiography in 1045 infants and children undergoing cineangiographic examinations for congenital heart disease, as a screening method for the detection, the incidence, and the nature of associated urinary tract anomalies. The results were as follows: 1. The incidence of urinary tract anomaly associated with congenital heart disease was 4.1% (<2% in general population). 2. Incidence of urinary tract anomalies was 4.62% in 671 acyanotic heart diseases, 3.20% in 374 cyanotic heart diseases. 3. There was no constant relationship between the type of cardiac anomaly and the type of urinary tract anomaly

  16. Apparatus and method for detecting a magnetic anomaly contiguous to remote location by SQUID gradiometer and magnetometer systems

    Science.gov (United States)

    Overton, W.C. Jr.; Steyert, W.A. Jr.

    1981-05-22

    A superconducting quantum interference device (SQUID) magnetic detection apparatus detects magnetic fields, signals, and anomalies at remote locations. Two remotely rotatable SQUID gradiometers may be housed in a cryogenic environment to search for and locate unambiguously magnetic anomalies. The SQUID magnetic detection apparatus can be used to determine the azimuth of a hydrofracture by first flooding the hydrofracture with a ferrofluid to create an artificial magnetic anomaly therein.

  17. GRAVITY ANOMALIES OF THE CRUST AND UPPER MANTLE FOR CENTRAL AND SOUTH ASIA

    Directory of Open Access Journals (Sweden)

    V. N. Senachin

    2016-01-01

    Baranov’s digital model of the crust, AsCrust [Baranov, 2010].The study area includes the Alpine-Himalayan folded belt, the triple junction of rift zones in North Africa, and the marginal seas of Southeast Asia, which are framed by deep troughs with associated volcanic belts. Its relief ranges from the highest mountains in Himalayas to deepest troughs in Indonesia. In this region, the collision of the Indian and Asian plates causes thrusting at the Asian plate margin which results in thickening of the continental crust [Oreshin et al., 2011]. This process may be accompanied by the separation of the crustal layer of the Indian lithospheric plate from its mantle ‘cushion’, i.e. delamination, the mechanism of which is not fully understood [Jiménez-Munt et al., 2008; Krystopowicz, Currie, 2013; Ueda et al., 2012] (Fig. 1.AsCrust, the digital model of the Earth's crust: depth to Moho map. A large volume of new data on reflection, refraction and surface waves from earthquakes and explosions was analyzed and integrated into the AsCrust model (1×1° grid. Ten digital maps were constructed: Moho depth, the upper, middle and lower crustal layers, as well as Vp velocities and densities in these layers [Baranov, 2010]. In our study, we calculated gravitational anomalies from the values of thicknesses and density of crustal layers at each point of the grid. The density in the layers was calculated from longitudinal wave velocities using the formula described in [Brocher, 2005] (Fig. 2.The algorithm for gravity anomaly calculations. Modeling the gravity of large regional objects needs to take into account the curvature of the Earth's surface. Algorithms for calculating the gravity field from bodies bounded by spherical surfaces are proposed in [e.g. Kosygin et al., 1996; Starostenko et al., 1986; Strakhov et al., 1989; Jones et al., 2010; Li et al., 2011; Schmidt et al., 2007]. In this study, we used an algorithm based on equations for direct calculations of the gravity effect

  18. Situs anomalies on prenatal MRI

    International Nuclear Information System (INIS)

    Nemec, Stefan F.; Brugger, Peter C.; Nemec, Ursula; Bettelheim, Dieter; Kasprian, Gregor; Amann, Gabriele; Rimoin, David L.; Graham, John M.; Prayer, Daniela

    2012-01-01

    Objective: Situs anomalies refer to an abnormal organ arrangement, which may be associated with severe errors of development. Due regard being given to prenatal magnetic resonance imaging (MRI) as an adjunct to ultrasonography (US), this study sought to demonstrate the in utero visualization of situs anomalies on MRI, compared to US. Materials and methods: This retrospective study included 12 fetuses with situs anomalies depicted on fetal MRI using prenatal US as a comparison modality. With an MRI standard protocol, the whole fetus was assessed for anomalies, with regard to the position and morphology of the following structures: heart; venous drainage and aorta; stomach and intestines; liver and gallbladder; and the presence and number of spleens. Results: Situs inversus totalis was found in 3/12 fetuses; situs inversus with levocardia in 1/12 fetuses; situs inversus abdominis in 2/12 fetuses; situs ambiguous with polysplenia in 3/12 fetuses, and with asplenia in 2/12 fetuses; and isolated dextrocardia in 1/12 fetuses. Congenital heart defects (CHDs), vascular anomalies, and intestinal malrotations were the most frequent associated malformations. In 5/12 cases, the US and MRI diagnoses were concordant. Compared to US, in 7/12 cases, additional MRI findings specified the situs anomaly, but CHDs were only partially visualized in six cases. Conclusions: Our initial MRI results demonstrate the visualization of situs anomalies and associated malformations in utero, which may provide important information for perinatal management. Using a standard protocol, MRI may identify additional findings, compared to US, which confirm and specify the situs anomaly, but, with limited MRI visualization of fetal CHDs.

  19. Holographic entanglement entropy for gravitational anomaly in four dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Tibra [Perimeter Institute for Theoretical Physics, 31 Caroline Street N., Waterloo, ON N2L 2Y5 (Canada); Haque, S. Shajidul [Laboratory for Quantum Gravity & Strings, Department of Mathematics & Applied Mathematics,University of Cape Town, Mathematics Building, Rondebosch, Cape Town, 7700 (South Africa); Murugan, Jeff [Laboratory for Quantum Gravity & Strings, Department of Mathematics & Applied Mathematics,University of Cape Town, Mathematics Building, Rondebosch, Cape Town, 7700 (South Africa); School of Natural Sciences, Institute for Advanced Study,1 Einstein Dr., Princeton, NJ 08540 (United States)

    2017-03-15

    We compute the holographic entanglement entropy for the anomaly polynomial TrR{sup 2} in 3+1 dimensions. Using the perturbative method developed for computing entanglement entropy for quantum field theories, we also compute the parity odd contribution to the entanglement entropy of the dual field theory that comes from a background gravitational Chern-Simons term. We find that, in leading order in the perturbation of the background geometry, the two contributions match except for a logarithmic divergent term on the field theory side. We interpret this extra contribution as encoding our ignorance of the source which creates the perturbation of the geometry.

  20. RARE BRANCHIAL ARCH ANOMALIES

    Directory of Open Access Journals (Sweden)

    Jayanta Kumar

    2016-03-01

    Full Text Available AIM Amongst the branchial arch anomalies third arch anomaly occurs rarely and more so the fourth arch anomalies. We present our experience with cases of rare branchial arch anomalies. PATIENTS AND METHODS From June 2006 to January 2016, cases having their external opening in the lower third of sternocleidomastoid muscle with the tract going through thyroid gland and directing to pyriform sinus (PFS or cysts with internal opening in the PFS were studied. RESULTS No fourth arch anomaly was encountered. One cyst with internal opening which later on formed a fistula, three fistulae from beginning and two sinuses were encountered. The main stay of diagnosis was the fistula in the PFS and the tract lying posterior to the internal carotid artery. Simple excision technique with a small incision around the external opening was done. There was no recurrence. CONCLUSION Third arch fistula is not very rare as it was thought. Internal fistula is found in most of the cases. Though radiological investigations are helpful, fistulae can be diagnosed clinically and during operation. Extensive operation of the neck, mediastinum and pharynx is not required.

  1. Algorithms for Anomaly Detection - Lecture 1

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    The concept of statistical anomalies, or outliers, has fascinated experimentalists since the earliest attempts to interpret data. We want to know why some data points don’t seem to belong with the others: perhaps we want to eliminate spurious or unrepresentative data from our model. Or, the anomalies themselves may be what we are interested in: an outlier could represent the symptom of a disease, an attack on a computer network, a scientific discovery, or even an unfaithful partner. We start with some general considerations, such as the relationship between clustering and anomaly detection, the choice between supervised and unsupervised methods, and the difference between global and local anomalies. Then we will survey the most representative anomaly detection algorithms, highlighting what kind of data each approach is best suited to, and discussing their limitations. We will finish with a discussion of the difficulties of anomaly detection in high-dimensional data and some new directions for anomaly detec...

  2. Algorithms for Anomaly Detection - Lecture 2

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    The concept of statistical anomalies, or outliers, has fascinated experimentalists since the earliest attempts to interpret data. We want to know why some data points don’t seem to belong with the others: perhaps we want to eliminate spurious or unrepresentative data from our model. Or, the anomalies themselves may be what we are interested in: an outlier could represent the symptom of a disease, an attack on a computer network, a scientific discovery, or even an unfaithful partner. We start with some general considerations, such as the relationship between clustering and anomaly detection, the choice between supervised and unsupervised methods, and the difference between global and local anomalies. Then we will survey the most representative anomaly detection algorithms, highlighting what kind of data each approach is best suited to, and discussing their limitations. We will finish with a discussion of the difficulties of anomaly detection in high-dimensional data and some new directions for anomaly detec...

  3. Field-based systems and advanced diagnostics

    International Nuclear Information System (INIS)

    Eryurek, E.

    1998-01-01

    Detection and characterization of anomalies in an industrial plant provide improved plant availability and plant efficiency thus yielding increased economic efficiency. Traditionally, detection of process anomalies is done at a high-level control system through various signal validation methods. These signal validation techniques rely on data from transmitters, which measure related process variables. Correlating these signals and deducing anomalies often is a very time consuming and a difficult task. Delays in detecting these anomalies can be costly during plant operation. Conventional centralized approaches also suffer from their dependence on detailed mathematical models of the processes. Smart field devices have the advantage of providing the necessary information directly to the control system as anomalies develop during operation of the processes enabling operators to take necessary steps to either prevent an unnecessary shut down before the problem becomes serious or schedule maintenance on the problematic loop. Fisher-Rosemount's PlantWeb TM architecture addresses 'Enhanced Measurement, Advanced Diagnostics and Control in the Field'. PlantWeb TM builds open process management systems by networking intelligent field devices, scalable control and systems platforms, and integrated modular software. A description of PlantWeb TM and how it improves various process conditions and reduces operating cost of a plant as well as a high level description of 'Enhanced Measurement, Advanced Diagnostics and Control in the Field', will be provided in this paper. PlantWeb TM is the trademark for Fisher-Rosemount's new field-based architecture that uses emerging technologies to utilize the power of intelligent field devices and deliver critical process and equipment information to improve plant performance. (author)

  4. The chiral anomaly from M theory

    International Nuclear Information System (INIS)

    Guersoy, Umut; Hartnoll, Sean A.; Portugues, Ruben

    2004-01-01

    We argue that the chiral anomaly of N=1 super Yang-Mills theory admits a dual description as spontaneous symmetry breaking in M theory on G 2 holonomy manifolds. We identify an angle of the G 2 background dual to the anomalous U(1) R current in field theory. This angle is not an isometry of the metric and we therefore develop a theory of 'massive isometry' to describe fluctuations about such angles. Another example of a massive isometry occurs in the Atiyah-Hitchin metric

  5. Constraining mass anomalies in the interior of spherical bodies using Trans-dimensional Bayesian Hierarchical inference.

    Science.gov (United States)

    Izquierdo, K.; Lekic, V.; Montesi, L.

    2017-12-01

    Gravity inversions are especially important for planetary applications since measurements of the variations in gravitational acceleration are often the only constraint available to map out lateral density variations in the interiors of planets and other Solar system objects. Currently, global gravity data is available for the terrestrial planets and the Moon. Although several methods for inverting these data have been developed and applied, the non-uniqueness of global density models that fit the data has not yet been fully characterized. We make use of Bayesian inference and a Reversible Jump Markov Chain Monte Carlo (RJMCMC) approach to develop a Trans-dimensional Hierarchical Bayesian (THB) inversion algorithm that yields a large sample of models that fit a gravity field. From this group of models, we can determine the most likely value of parameters of a global density model and a measure of the non-uniqueness of each parameter when the number of anomalies describing the gravity field is not fixed a priori. We explore the use of a parallel tempering algorithm and fast multipole method to reduce the number of iterations and computing time needed. We applied this method to a synthetic gravity field of the Moon and a long wavelength synthetic model of density anomalies in the Earth's lower mantle. We obtained a good match between the given gravity field and the gravity field produced by the most likely model in each inversion. The number of anomalies of the models showed parsimony of the algorithm, the value of the noise variance of the input data was retrieved, and the non-uniqueness of the models was quantified. Our results show that the ability to constrain the latitude and longitude of density anomalies, which is excellent at shallow locations (information about the overall density distribution of celestial bodies even when there is no other geophysical data available.

  6. Small discussion of electromagnetic wave anomalies preceding earthquakes

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    Six brief pieces on various aspects of electromagnetic wave anomalies are presented. They cover: earthquake electromagnetic emanations; the use of magnetic induction information for earthquake forecasting; electromagnetic pulse emissions as pre-earthquake indicators; the use of magnetic sensors to determine medium-wavelength field strength for earthquake prediction purposes; magnetic deviation indicators inside reinforced-concrete buildings; and a discussion of the general physical principles involved.

  7. Full Field and Anomaly Initialisation using a low order climate model: a comparison, and proposals for advanced formulations

    Science.gov (United States)

    Weber, Robin; Carrassi, Alberto; Guemas, Virginie; Doblas-Reyes, Francisco; Volpi, Danila

    2014-05-01

    Full Field (FFI) and Anomaly Initialisation (AI) are two schemes used to initialise seasonal-to-decadal (s2d) prediction. FFI initialises the model on the best estimate of the actual climate state and minimises the initial error. However, due to inevitable model deficiencies, the trajectories drift away from the observations towards the model's own attractor, inducing a bias in the forecast. AI has been devised to tackle the impact of drift through the addition of this bias onto the observations, in the hope of gaining an initial state closer to the model attractor. Its goal is to forecast climate anomalies. The large variety of experimental setups, global coupled models, and observational networks adopted world-wide have led to varying results with regards to the relative performance of AI and FFI. Our research is firstly motivated in a comparison of these two initialisation approaches under varying circumstances of observational errors, observational distributions, and model errors. We also propose and compare two advanced schemes for s2d prediction. Least Square Initialisation (LSI) intends to propagate observational information of partially initialized systems to the whole model domain, based on standard practices in data assimilation and using the covariance of the model anomalies. Exploring the Parameters Uncertainty (EPU) is an online drift correction technique applied during the forecast run after initialisation. It is designed to estimate, and subtract, the bias in the forecast related to parametric error. Experiments are carried out using an idealized coupled dynamics in order to facilitate better control and robust statistical inference. Results show that an improvement of FFI will necessitate refinements in the observations, whereas improvements in AI are subject to model advances. A successful approximation of the model attractor using AI is guaranteed only when the differences between model and nature probability distribution functions (PDFs) are

  8. Interpretation of the Total Magnetic Field Anomalies Measured by the CHAMP Satellite Over a Part of Europe and the Pannonian Basin

    Science.gov (United States)

    Kis, K. I.; Taylor, Patrick T.; Wittmann, G.; Toronyi, B.; Puszta, S.

    2012-01-01

    In this study we interpret the magnetic anomalies at satellite altitude over a part of Europe and the Pannonian Basin. These anomalies are derived from the total magnetic measurements from the CHAMP satellite. The anomalies reduced to an elevation of 324 km. An inversion method is used to interpret the total magnetic anomalies over the Pannonian Basin. A three dimensional triangular model is used in the inversion. Two parameter distributions: Laplacian and Gaussian are investigated. The regularized inversion is numerically calculated with the Simplex and Simulated Annealing methods and the anomalous source is located in the upper crust. A probable source of the magnetization is due to the exsolution of the hematite-ilmenite minerals.

  9. Road Anomalies Detection System Evaluation.

    Science.gov (United States)

    Silva, Nuno; Shah, Vaibhav; Soares, João; Rodrigues, Helena

    2018-06-21

    Anomalies on road pavement cause discomfort to drivers and passengers, and may cause mechanical failure or even accidents. Governments spend millions of Euros every year on road maintenance, often causing traffic jams and congestion on urban roads on a daily basis. This paper analyses the difference between the deployment of a road anomalies detection and identification system in a “conditioned” and a real world setup, where the system performed worse compared to the “conditioned” setup. It also presents a system performance analysis based on the analysis of the training data sets; on the analysis of the attributes complexity, through the application of PCA techniques; and on the analysis of the attributes in the context of each anomaly type, using acceleration standard deviation attributes to observe how different anomalies classes are distributed in the Cartesian coordinates system. Overall, in this paper, we describe the main insights on road anomalies detection challenges to support the design and deployment of a new iteration of our system towards the deployment of a road anomaly detection service to provide information about roads condition to drivers and government entities.

  10. Effective Tolman temperature induced by trace anomaly

    International Nuclear Information System (INIS)

    Eune, Myungseok; Gim, Yongwan; Kim, Wontae

    2017-01-01

    Despite the finiteness of stress tensor for a scalar field on the four-dimensional Schwarzschild black hole in the Israel-Hartle-Hawking vacuum, the Tolman temperature in thermal equilibrium is certainly divergent on the horizon due to the infinite blue-shift of the Hawking temperature. The origin of this conflict is due to the fact that the conventional Tolman temperature was based on the assumption of a traceless stress tensor, which is, however, incompatible with the presence of the trace anomaly responsible for the Hawking radiation. Here, we present an effective Tolman temperature which is compatible with the presence of the trace anomaly by using the modified Stefan-Boltzmann law. Eventually, the effective Tolman temperature turns out to be finite everywhere outside the horizon, and so an infinite blue-shift of the Hawking temperature at the event horizon does not appear any more. In particular, it is vanishing on the horizon, so that the equivalence principle is exactly recovered at the horizon. (orig.)

  11. Effective Tolman temperature induced by trace anomaly

    Energy Technology Data Exchange (ETDEWEB)

    Eune, Myungseok [Sangmyung University, Department of Civil Engineering, Cheonan (Korea, Republic of); Gim, Yongwan [Sogang University, Department of Physics, Seoul (Korea, Republic of); Sogang University, Research Institute for Basic Science, Seoul (Korea, Republic of); Kim, Wontae [Sogang University, Department of Physics, Seoul (Korea, Republic of)

    2017-04-15

    Despite the finiteness of stress tensor for a scalar field on the four-dimensional Schwarzschild black hole in the Israel-Hartle-Hawking vacuum, the Tolman temperature in thermal equilibrium is certainly divergent on the horizon due to the infinite blue-shift of the Hawking temperature. The origin of this conflict is due to the fact that the conventional Tolman temperature was based on the assumption of a traceless stress tensor, which is, however, incompatible with the presence of the trace anomaly responsible for the Hawking radiation. Here, we present an effective Tolman temperature which is compatible with the presence of the trace anomaly by using the modified Stefan-Boltzmann law. Eventually, the effective Tolman temperature turns out to be finite everywhere outside the horizon, and so an infinite blue-shift of the Hawking temperature at the event horizon does not appear any more. In particular, it is vanishing on the horizon, so that the equivalence principle is exactly recovered at the horizon. (orig.)

  12. Congenital hand anomalies in Upper Egypt

    Directory of Open Access Journals (Sweden)

    Tarek Abulezz

    2016-01-01

    Full Text Available Background: Congenital hand anomalies are numerous and markedly variant. Their significance is attributed to the frequent occurrence and their serious social, psychological and functional impacts on patient's life. Patients and Methods: This is a follow-up study of 64 patients with hand anomalies of variable severity. All patients were presented to Plastic Surgery Department of Sohag University Hospital in a period of 24 months. Results: This study revealed that failure of differentiation and duplication deformities were the most frequent, with polydactyly was the most common anomaly encountered. The mean age of presentation was 6 years and female to male ratio was 1.46:1. Hand anomalies were either isolated, associated with other anomalies or part of a syndrome. Conclusion: Incidence of congenital hand anomalies in Upper Egypt is difficult to be estimated due to social and cultural concepts, lack of education, poor registration and deficient medical survey. Management of hand anomalies should be individualised, carefully planned and started as early as possible to achieve the best outcome.

  13. Geoid-to-Quasigeoid Separation Computed Using the GRACE/GOCE Global Geopotential Model GOCO02S - A Case Study of Himalayas and Tibet

    Directory of Open Access Journals (Sweden)

    Mohammad Bagherbandi Robert Tenzer

    2013-01-01

    Full Text Available The geoid-to-quasigeoid correction has been traditionally computed approximately as a function of the planar Bouguer gravity anomaly and the topographic height. Recent numerical studies based on newly developed theoretical models, however, indicate that the computation of this correction using the approximate formula yields large errors especially in mountainous regions with computation points at high elevations. In this study we investigate these approximation errors at the study area which comprises Himalayas and Tibet where this correction reaches global maxima. Since the GPS-leveling and terrestrial gravity datasets in this part of the world are not (freely available, global gravitational models (GGMs are used to compute this correction utilizing the expressions for a spherical harmonic analysis of the gravity field. The computation of this correction can be done using the GGM coefficients taken from the Earth Gravitational Model 2008 (EGM08 complete to degree 2160 of spherical harmonics. The recent studies based on a regional accuracy assessment of GGMs have shown that the combined GRACE/GOCE solutions provide a substantial improvement of the Earth¡¦s gravity field at medium wavelengths of spherical harmonics compared to EGM08. We address this aspect in numerical analysis by comparing the gravity field quantities computed using the satellite-only combined GRACE/GOCE model GOCO02S against the EGM08 results. The numerical results reveal that errors in the geoid-to-quasigeoid correction computed using the approximate formula can reach as much as ~1.5 m. We also demonstrate that the expected improvement of the GOCO02S gravity field quantities at medium wavelengths (within the frequency band approximately between 100 and 250 compared to EGM08 is as much as ±60 mGal and ±0.2 m in terms of gravity anomalies and geoid/quasigeoid heights respectively.

  14. Static and dynamical anomalies caused by chiral soliton lattice in molecular-based chiral magnets

    International Nuclear Information System (INIS)

    Kishine, Jun-ichiro; Inoue, Katsuya; Kikuchi, Koichi

    2007-01-01

    Interplay of crystallographic chirality and magnetic chirality has been of great interest in both chemist's and physicist's viewpoints. Crystals belonging to chiral space groups are eligible to stabilize macroscopic chiral magnetic order. This class of magnetic order is described by the chiral XY model, where the transverse magnetic field perpendicular to the chiral axis causes the chiral soliton lattice (CSL) formation. As a clear evidence of the chiral magnetic order, the temperature dependence of the transverse magnetization exhibits sharp cusp just below the mean field ferrimagnetic transition temperature, indicating the formation of the CSL. In addition to the static anomaly, we expect the CSL formation also causes dynamical anomalies such as induction of the spin supercurrent

  15. Prenatal sonographic diagnosis of focal musculoskeletal anomalies

    International Nuclear Information System (INIS)

    Ryu, Jung-Kyu; Cho, Jeong-Yeon; Choi, Jong-Sun

    2003-01-01

    Focal musculoskeletal anomalies vary, and can manifest as part of a syndrome or be accompanied by numerous other conditions such as genetic disorders, karyotype abnormalities, central nervous system anomalies and other skeletal anomalies, lsolated focal musculoskeletal anomaly does, however, also occur; its early prenatal diagnosis is important in deciding prenatal care, and also helps in counseling parents about the postnatal effects of numerous possible associated anomalies. We have encountered 50 cases involving focal musculoskeletal anomalies, including total limb dysplasia [radial ray abnormality (n=3), mesomelic dysplasia (n=1)]; anomalies of the hand [polydactyly (n=8), syndactyly (n=3), ectrodactyly (n=1), clinodactyly (n=6), clenched hand (n=5)]; anomalies of the foot [clubfoot (n=10), rockerbottom foot (n=5), sandal gap deformity (n=1), curly toe (n=2)]; amniotic band syndrome (n=3); and anomalies of the focal spine [block vertebra (n=1), hemivertebra (n=1)]. Among these 50 cases, five [polydactyly (n=1), syndactyly (n=2) and curly toe (n=2) were confirmed by postnatal physical evaluation, two (focal spine anomalies) were diagnosed after postnatal radiologic examination, and the remaining 43 were proven at autopsy. For each condition, we describe the prenatal sonographic findings, and include a brief review

  16. Prenatal sonographic diagnosis of focal musculoskeletal anomalies

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Jung-Kyu; Cho, Jeong-Yeon; Choi, Jong-Sun [Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of)

    2003-12-15

    Focal musculoskeletal anomalies vary, and can manifest as part of a syndrome or be accompanied by numerous other conditions such as genetic disorders, karyotype abnormalities, central nervous system anomalies and other skeletal anomalies, lsolated focal musculoskeletal anomaly does, however, also occur; its early prenatal diagnosis is important in deciding prenatal care, and also helps in counseling parents about the postnatal effects of numerous possible associated anomalies. We have encountered 50 cases involving focal musculoskeletal anomalies, including total limb dysplasia [radial ray abnormality (n=3), mesomelic dysplasia (n=1)]; anomalies of the hand [polydactyly (n=8), syndactyly (n=3), ectrodactyly (n=1), clinodactyly (n=6), clenched hand (n=5)]; anomalies of the foot [clubfoot (n=10), rockerbottom foot (n=5), sandal gap deformity (n=1), curly toe (n=2)]; amniotic band syndrome (n=3); and anomalies of the focal spine [block vertebra (n=1), hemivertebra (n=1)]. Among these 50 cases, five [polydactyly (n=1), syndactyly (n=2) and curly toe (n=2) were confirmed by postnatal physical evaluation, two (focal spine anomalies) were diagnosed after postnatal radiologic examination, and the remaining 43 were proven at autopsy. For each condition, we describe the prenatal sonographic findings, and include a brief review.

  17. Snow precipitation at four ice core sites in East Antarctica: provenance, seasonality and blocking factors

    Energy Technology Data Exchange (ETDEWEB)

    Scarchilli, Claudio [ENEA, Rome (Italy); Universita degli studi di Trieste, Trieste (Italy); Frezzotti, Massimo; Ruti, Paolo Michele [ENEA, Rome (Italy)

    2011-11-15

    Snow precipitation is the primary mass input to the Antarctic ice sheet and is one of the most direct climatic indicators, with important implications for paleoclimatic reconstruction from ice cores. Provenance of precipitation and the dynamic conditions that force these precipitation events at four deep ice core sites (Dome C, Law Dome, Talos Dome, and Taylor Dome) in East Antarctica were analysed with air mass back trajectories calculated using the Lagrangian model and the mean composite data for precipitation, geopotential height and wind speed field data from the European Centre for Medium Range Weather Forecast from 1980 to 2001. On an annual basis, back trajectories showed that the Atlantic-Indian and Ross-Pacific Oceans were the main provenances of precipitation in Wilkes Land (80%) and Victoria Land (40%), respectively, whereas the greatest influence of the ice sheet was on the interior near the Vostok site (80%) and in the Southwest Ross Sea (50%), an effect that decreased towards the coast and along the Antarctic slope. Victoria Land received snowfall atypically with respect to other Antarctica areas in terms of pathway (eastern instead of western), seasonality (summer instead of winter) and velocity (old air age). Geopotential height patterns at 500 hPa at low (>10 days) and high (2-6 days) frequencies during snowfall cycles at two core sites showed large positive anomalies at low frequencies developing in the Tasman Sea-Eastern Indian Ocean at higher latitudes (60-70 S) than normal. This could be considered part of an atmospheric blocking event, with transient eddies acting to decelerate westerlies in a split region area and accelerate the flow on the flanks of the low-frequency positive anomalies. (orig.)

  18. Complete second branchial cleft anomaly presenting as a fistula and a tonsillar cyst: an interesting congenital anomaly.

    Science.gov (United States)

    Thottam, Prasad John; Bathula, Samba S; Poulik, Janet M; Madgy, David N

    2014-01-01

    Branchial cleft anomalies make up 30% of all pediatric neck masses, but complete second branchial cleft anomalies are extremely rare. We report an unusual case of a complete second branchial cleft anomaly that presented as a draining neck fistula and a tonsillar cyst in an otherwise healthy 3-month-old girl. At the age of 7 months, the patient had been experiencing feeding difficulties, and there was increasing concern about the risk of persistent infections. At that point, the anomaly was excised in its entirety. Our suspicion that the patient had a complete second branchial cleft anomaly was confirmed by imaging, surgical excision, and histopathologic analysis.

  19. Isostatic models and isostatic gravity anomalies of the Arabian plate and surroundings

    Science.gov (United States)

    Kaban, Mikhail K.; El Khrepy, Sami; Al-Arifi, Nassir

    2015-04-01

    Isostaic anomalies represent one of the most useful "geological" reduction of the gravity field. With the isostatic correction it is possible to remove a significant part of the effect of deep density heterogeneity, which dominates in the Bouguer gravity anomalies. This correction is based on the fact that a major part of the near-surface load is compensated by variations of the lithosphere boundaries (chiefly the Moho and LAB) and by density variations within the crust and upper mantle. It is usually supposed that it is less important to a first order, what is the actual compensation model when reducing the effect of compensating masses, since their total weight is exactly opposite to the near-surface load. We compare several compensating models for the Arabian plate and surrounding area. The Airy model gives very significant regional isostatic anomalies, which can not be explained by the upper crust structure or disturbances of the isostatic equilibrium. Also the predicted "isostatic" Moho is very different from the existing observations. The second group of the isostatic models includes the Moho, which is based on existing seismic determinations. Additional compensation is provided by density variations within the lithosphere (chiefly in the upper mantle). In this way we minimize regional anomalies over the Arabian plate. The residual local anomalies well correspond to tectonic structure of the plate. Still very significant anomalies are associated with the Zagros fold belt, the collision zone of the Arabian and Eurasian plates.

  20. Anomalies from aerial spectrometric and total count radiometric surveys in the southeastern United States

    International Nuclear Information System (INIS)

    Lee, C.H.; Lawton, D.E.

    1978-01-01

    Aerial radiometric reconnaissance surveys are conducted because of their cost, time, and manpower savings compared to surface studies. Two types of aerial surveys are being flown in the southeastern United States: total count gamma-ray surveys for the Coastal Plains Regional Commission and the US Geological Survey, and differential gamma-ray spectrometric surveys for the US Department of Energy. Anomalous radioactivity detected during aerial surveys is related to higher concentrations of naturally occurring uranium, or to cultural activities, natural causes, or mapping errors which simulate real uranium anomalies. Each anomaly should be ground checked; however, several types of anomalies may be eliminated by evaluation of the aerial data in the office if field time is limited

  1. Analysis of Renal Anomalies in VACTERL Association

    OpenAIRE

    Cunningham, Bridget K.; Khromykh, Alina; Martinez, Ariel F.; Carney, Tyler; Hadley, Donald W.; Solomon, Benjamin D.

    2014-01-01

    VACTERL association refers to a combination of congenital anomalies that can include: Vertebral anomalies, Anal atresia, Cardiac malformations, Tracheo-Esophageal fistula with esophageal atresia, Renal anomalies (typically structural renal anomalies), and Limb anomalies. We conducted a description of a case series to characterize renal findings in a cohort of patients with VACTERL association. Out of the overall cohort, 48 patients (with at least 3 component features of VACTERL and who had ab...

  2. Sea surface temperature anomalies in the Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    RameshKumar, M.R.

    temperature anomalies for the above regions respectively. An analysis has shown that most of the short duration anomalies (i.e., anomalies with periods less than 4 months) are driven by the surface heat fluxes. The medium duration anomalies (i.e., anomalies...

  3. Anomalies and gravity

    International Nuclear Information System (INIS)

    Mielke, Eckehard W.

    2006-01-01

    Anomalies in Yang-Mills type gauge theories of gravity are reviewed. Particular attention is paid to the relation between the Dirac spin, the axial current j5 and the non-covariant gauge spin C. Using diagrammatic techniques, we show that only generalizations of the U(1)- Pontrjagin four-form F and F = dC arise in the chiral anomaly, even when coupled to gravity. Implications for Ashtekar's canonical approach to quantum gravity are discussed

  4. Fivebrane gravitational anomalies

    International Nuclear Information System (INIS)

    Becker, Katrin; Becker, Melanie

    2000-01-01

    Freed, Harvey, Minasian and Moore (FHMM) have proposed a mechanism to cancel the gravitational anomaly of the M-theory fivebrane coming from diffeomorphisms acting on the normal bundle. This procedure is based on a modification of the conventional M-theory Chern-Simons term. We apply the FHMM mechanism in the ten-dimensional type IIA theory. We then analyze the relation to the anomaly cancellation mechanism for the type IIA fivebrane proposed by Witten

  5. Phonon anomalies in trilayer high-Tc cuprate superconductors

    International Nuclear Information System (INIS)

    Dubroka, Adam; Munzar, Dominik

    2004-01-01

    We present an extension of the model proposed recently to account for dramatic chAes below T c (anomalies) of some c-axis polarized infrared-active phonons in bilayer cuprate superconductors, that applies to trilayer high-T c compounds. We discuss several types of phonon anomalies that can occur in these systems and demonstrate that our model is capable of explaining the spectral chAes occurring upon entering the superconducting state in the trilayer compound Tl 2 Ba 2 Ca 2 Cu 3 O 10 . The low-temperature spectra of this compound obtained by Zetterer and coworkers display an additional broad absorption band, similar to the one observed in underdoped YBa 2 Cu 3 O 7-δ and Bi 2 Sr 2 CaCu 2 O 8 . In addition, three phonon modes are strongly anomalous. We attribute the absorption band to the transverse Josephson plasma resonance, similar to that of the bilayer compounds. The phonon anomalies are shown to result from a modification of the local fields induced by the formation of the resonance. The spectral chAes in Tl 2 Ba 2 Ca 2 Cu 3 O 10 are compared with those occurring in Bi 2 Sr 2 Ca 2 Cu 3 O 10 , reported recently by Boris and coworkers

  6. The parity-preserving massive QED3: Vanishing β-function and no parity anomaly

    Directory of Open Access Journals (Sweden)

    O.M. Del Cima

    2015-11-01

    Full Text Available The parity-preserving massive QED3 exhibits vanishing gauge coupling β-function and is parity and infrared anomaly free at all orders in perturbation theory. Parity is not an anomalous symmetry, even for the parity-preserving massive QED3, in spite of some claims about the possibility of a perturbative parity breakdown, called parity anomaly. The proof is done by using the algebraic renormalization method, which is independent of any regularization scheme, based on general theorems of perturbative quantum field theory.

  7. Aeromagnetic anomalies over faulted strata

    Science.gov (United States)

    Grauch, V.J.S.; Hudson, Mark R.

    2011-01-01

    High-resolution aeromagnetic surveys are now an industry standard and they commonly detect anomalies that are attributed to faults within sedimentary basins. However, detailed studies identifying geologic sources of magnetic anomalies in sedimentary environments are rare in the literature. Opportunities to study these sources have come from well-exposed sedimentary basins of the Rio Grande rift in New Mexico and Colorado. High-resolution aeromagnetic data from these areas reveal numerous, curvilinear, low-amplitude (2–15 nT at 100-m terrain clearance) anomalies that consistently correspond to intrasedimentary normal faults (Figure 1). Detailed geophysical and rock-property studies provide evidence for the magnetic sources at several exposures of these faults in the central Rio Grande rift (summarized in Grauch and Hudson, 2007, and Hudson et al., 2008). A key result is that the aeromagnetic anomalies arise from the juxtaposition of magnetically differing strata at the faults as opposed to chemical processes acting at the fault zone. The studies also provide (1) guidelines for understanding and estimating the geophysical parameters controlling aeromagnetic anomalies at faulted strata (Grauch and Hudson), and (2) observations on key geologic factors that are favorable for developing similar sedimentary sources of aeromagnetic anomalies elsewhere (Hudson et al.).

  8. Toward Baseline Software Anomalies in NASA Missions

    Science.gov (United States)

    Layman, Lucas; Zelkowitz, Marvin; Basili, Victor; Nikora, Allen P.

    2012-01-01

    In this fast abstract, we provide preliminary findings an analysis of 14,500 spacecraft anomalies from unmanned NASA missions. We provide some baselines for the distributions of software vs. non-software anomalies in spaceflight systems, the risk ratings of software anomalies, and the corrective actions associated with software anomalies.

  9. HIGH IMPACT HEAT WAVES OVER THE EURO-MEDITERRANEAN REGION AND TURKEY - IN CONCERT WITH ATMOSPHERIC BLOCKING AND LARGE DYNAMICAL AND PHYSICAL ANOMALIES

    Directory of Open Access Journals (Sweden)

    Meral Demirtaş

    2017-03-01

    Full Text Available The increase in high impact heat waves in the Euro-Mediterranean region and Turkey is related to a number of concurring factors that include the persistent anticyclonic weather regimes. The present study investigates the June-July-August (JJA of 2000, 2007 and 2010 heat wave events in concert with some meteorological anomalies (the 500 hPa geopotential height, 850 hPa temperature, sea surface temperature and soil wetness and blocking anticyclones, focusing on heat wave occurrences on a grid point base. Detection methods for atmospheric blocking and heat wave are introduced and applied for the mentioned years. During the 2000 JJA very high temperatures were recorded over the Balkan Peninsula and in Turkey where 42 cities had breaking all time highest temperature records for June, but the duration of heat wave was the shortest. The 2007 summer was also abnormally hot for the region and record breaking temperatures were observed in Greece, Romania, Bulgaria and Turkey where 34 cities had highest temperature records for June and July, and the highest total heat wave duration was 60-70 days. The 2010 JJA period was extremely hot over Russia and nearby countries including Turkey where 9 cities had highest temperature records for August. The 2010 case was marked for; large anomalies, the longest heat wave duration and the highest heat wave intensity. In all cases, heat wave occurrences found to be particularly high over the western part of Turkey. The abnormally hot summers of 2000, 2007 and 2010 could reflect summers to come. The results indicate that summer climate might experience a pronounced increase in year-to-year variability. Increase in variability might be able to explain the high impact heat waves, and would strongly affect their incidence in the future. The results may also contribute to a better understanding of heat waves in context of climate variability.

  10. Anomalies and Hawking fluxes from the black holes of topologically massive gravity

    Energy Technology Data Exchange (ETDEWEB)

    Porfyriadis, Achilleas P. [Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)], E-mail: apporfyr@mit.edu

    2009-05-11

    The anomaly cancellation method proposed by Wilczek et al. is applied to the black holes of topologically massive gravity (TMG) and topologically massive gravito-electrodynamics (TMGE). Thus the Hawking temperature and fluxes of the ACL and ACGL black holes are found. The Hawking temperatures obtained agree with the surface gravity formula. Both black holes are rotating and this gives rise to appropriate terms in the effective U(1) gauge field of the reduced (1+1)-dimensional theory. It is found that the terms in this U(1) gauge field correspond exactly to the correct angular velocities on the horizon of both black holes as well as the correct electrostatic potential of the ACGL black hole. So the results for the Hawking fluxes derived here from the anomaly cancellation method, are in complete agreement with the ones obtained from integrating the Planck distribution.

  11. Paleomagnetic evidence for the persistence or recurrence of the South Atlantic geomagnetic Anomaly

    Science.gov (United States)

    Shah, Jay; Koppers, Anthony A. P.; Leitner, Marko; Leonhardt, Roman; Muxworthy, Adrian R.; Heunemann, Christoph; Bachtadse, Valerian; Ashley, Jack A. D.; Matzka, Jürgen

    2017-04-01

    The South Atlantic geomagnetic Anomaly (SAA) is known as a region of the geomagnetic field that is approximately 25 μT in intensity, compared to an expected value of ˜43 μT. Geomagnetic field models do not find evidence for the SAA being a persistent feature of the geomagnetic field, however these models are constructed from paleomagnetic data that is sparse in the southern hemisphere. We present a full-vector paleomagnetic study of 40Ar/39Ar dated Late Pleistocene lavas from Tristan da Cunha in the South Atlantic Ocean (Shah et al., 2016; EPSL). Paleointensity estimations using the Thellier method of eight lava flows yield an average paleointensity of the Tristan da Cunha lavas as 18 ± 6 μT and an average virtual axial dipole moment (VADM) of 3.1 ± 1.2 × 1022 Am2. Comparing the VADM of the lava flows against the PADM2M, PINT and SINT-800 databases indicates that the lava flows represent four distinct periods of anomalously weak intensity in the South Atlantic between 43 and 90 ka ago, constrained by newly obtained 40Ar/39Ar ages. This anomalously weak intensity in the Late Pleistocene is similar to the present-day SAA and SAA-like anomalous behavior found in the recent archeomagnetic study by Tarduno et al. (2015; Nat. Commun.). Our dataset provides evidence for the persistence or recurrence of geomagnetic main field anomalies in the South Atlantic, and potentially indicates such anomalies are the geomagnetic field manifestation of the long-existing core-mantle boundary heterogeneity seismically identified as the African Large Low Velocity Shear Province (LLSVP).

  12. Branchial anomalies in the pediatric population.

    Science.gov (United States)

    Schroeder, James W; Mohyuddin, Nadia; Maddalozzo, John

    2007-08-01

    We sought to review the presentation, evaluation, and treatment of branchial anomalies in the pediatric population and to relate these findings to recurrences and complications. We conducted a retrospective study at a tertiary care pediatric hospital. Ninety-seven pediatric patients who were treated for branchial anomalies over a 10-year period were reviewed. Patients were studied if they underwent surgical treatment for the branchial anomaly and had 1 year of postoperative follow-up; 67 children met criteria, and 74 anomalies were studied. Patients with cysts presented at a later age than did those with branchial anomaly fistulas or sinus branchial anomalies. 32% of branchial anomalies were previously infected. Of these, 71% had more than one preoperative infection. 18% of the BA were first arch derivatives, 69% were second arch derivatives and 7% were third arch derivatives. There were 22 branchial cysts, 31 branchial sinuses and 16 branchial fistulas. The preoperative and postoperative diagnoses differed in 17 cases. None of the excised specimens that contained a cystic lining recurred; all five recurrences had multiple preoperative infections. Recurrence rates are increased when there are multiple preoperative infections and when there is no epithelial lining identified in the specimen.

  13. Dynamical supersymmetry breaking and gauge anomalies

    International Nuclear Information System (INIS)

    Zhang, H.

    1991-01-01

    Some aspects of supersymmetric gauge theories are discussed. It is shown that dynamical supersymmetry breaking does not occur in supersymmetric QED in higher dimensions. The cancellation of both local (perturbative) and global (non-perturbative) gauge anomalies are also discussed in supersymmetric gauge theories. We argue that there is no dynamical supersymmetry breaking in higher dimensions in any supersymmetric gauge theories free of gauge anomalies. It is also shown that for supersymmetric gauge theories in higher dimensions with a compact connected simple gauge group, when the local anomaly-free condition is satisfied, there can be at most a possible Z 2 global gauge anomaly in extended supersymmetric SO(10) (or spin (10)) gauge theories in D=10 dimensions containing additional Weyl fermions in a spinor representation of SO(10) (or spin (10)). In four dimensions with local anomaly-free condition satisfied, the only possible global gauge anomalies in supersymmetric gauge theories are Z 2 global gauge anomalies for extended supersymmetric SP(2N) (N=rank) gauge theories containing additional Weyl fermions in a representation of SP(2N) with an odd 2nd-order Dynkin index. (orig.)

  14. On Newton-Cartan trace anomalies

    International Nuclear Information System (INIS)

    Auzzi, Roberto; Baiguera, Stefano; Nardelli, Giuseppe

    2016-01-01

    We classify the trace anomaly for parity-invariant non-relativistic Schrödinger theories in 2+1 dimensions coupled to background Newton-Cartan gravity. The general anomaly structure looks very different from the one in the z=2 Lifshitz theories. The type A content of the anomaly is remarkably identical to that of the relativistic 3+1 dimensional case, suggesting the conjecture that an a-theorem should exist also in the Newton-Cartan context.

  15. On Newton-Cartan trace anomalies

    Energy Technology Data Exchange (ETDEWEB)

    Auzzi, Roberto [Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore,Via Musei 41, 25121 Brescia (Italy); INFN Sezione di Perugia,Via A. Pascoli, 06123 Perugia (Italy); Baiguera, Stefano [Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore,Via Musei 41, 25121 Brescia (Italy); Nardelli, Giuseppe [Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore,Via Musei 41, 25121 Brescia (Italy); TIFPA - INFN, c/o Dipartimento di Fisica, Università di Trento,38123 Povo (Italy)

    2016-02-01

    We classify the trace anomaly for parity-invariant non-relativistic Schrödinger theories in 2+1 dimensions coupled to background Newton-Cartan gravity. The general anomaly structure looks very different from the one in the z=2 Lifshitz theories. The type A content of the anomaly is remarkably identical to that of the relativistic 3+1 dimensional case, suggesting the conjecture that an a-theorem should exist also in the Newton-Cartan context.

  16. Coronary Artery Anomalies in Animals

    Directory of Open Access Journals (Sweden)

    Brian A. Scansen

    2017-04-01

    Full Text Available Coronary artery anomalies represent a disease spectrum from incidental to life-threatening. Anomalies of coronary artery origin and course are well-recognized in human medicine, but have received limited attention in veterinary medicine. Coronary artery anomalies are best described in the dog, hamster, and cow though reports also exist in the horse and pig. The most well-known anomaly in veterinary medicine is anomalous coronary artery origin with a prepulmonary course in dogs, which limits treatment of pulmonary valve stenosis. A categorization scheme for coronary artery anomalies in animals is suggested, dividing these anomalies into those of major or minor clinical significance. A review of coronary artery development, anatomy, and reported anomalies in domesticated species is provided and four novel canine examples of anomalous coronary artery origin are described: an English bulldog with single left coronary ostium and a retroaortic right coronary artery; an English bulldog with single right coronary ostium and transseptal left coronary artery; an English bulldog with single right coronary ostium and absent left coronary artery with a prepulmonary paraconal interventricular branch and an interarterial circumflex branch; and a mixed-breed dog with tetralogy of Fallot and anomalous origin of all coronary branches from the brachiocephalic trunk. Coronary arterial fistulae are also described including a coronary cameral fistula in a llama cria and an English bulldog with coronary artery aneurysm and anomalous shunting vessels from the right coronary artery to the pulmonary trunk. These examples are provided with the intent to raise awareness and improve understanding of such defects.

  17. The inflationary origin of the Cold Spot anomaly

    International Nuclear Information System (INIS)

    Bueno Sánchez, Juan C.

    2014-01-01

    Single-field inflation, arguably the simplest and most compelling paradigm for the origin of our Universe, is strongly supported by the recent results of the Planck satellite and the BICEP2 experiment. The results from Planck, however, also confirm the presence of a number of anomalies in the Cosmic Microwave Background (CMB), whose origin becomes problematic in single-field inflation. Among the most prominent and well-tested of these anomalies is the Cold Spot, which constitutes the only significant deviation from Gaussianity in the CMB. Planck's non-detection of primordial non-Gaussianity on smaller scales thus suggests the existence of a physical mechanism whereby significant non-Gaussianity is generated on large angular scales only. In this Letter, we address this question by developing a localized version of the inhomogeneous reheating scenario, which postulates the existence of a scalar field able to modify the decay of the inflaton on localized spatial regions only. We demonstrate that if the Cold Spot is due to an overdensity in the last scattering surface, the localization mechanism offers a feasible explanation for it, thus providing a physical mechanism for the generation of localized non-Gaussianity in the CMB. If, on the contrary, the Cold Spot is caused by a newly discovered supervoid (as recently claimed), we argue that the localization mechanism, while managing to enhance underdensities, may well shed light on the rarity of the discovered supervoid

  18. The inflationary origin of the Cold Spot anomaly

    Energy Technology Data Exchange (ETDEWEB)

    Bueno Sánchez, Juan C., E-mail: juan.c.bueno@correounivalle.edu.co [Departamento de Física, Universidad del Valle, A.A. 25360, Santiago de Cali (Colombia); Centro de Investigaciones en Ciencias Básicas y Aplicadas, Universidad Antonio Nariño, Cra 3 Este # 47A-15, Bogotá D.C. 110231 (Colombia); Escuela de Física, Universidad Industrial de Santander, Ciudad Universitaria, Bucaramanga 680002 (Colombia); Departamento de Física Atómica, Molecular y Nuclear, Universidad Complutense de Madrid, 28040, Madrid (Spain)

    2014-12-12

    Single-field inflation, arguably the simplest and most compelling paradigm for the origin of our Universe, is strongly supported by the recent results of the Planck satellite and the BICEP2 experiment. The results from Planck, however, also confirm the presence of a number of anomalies in the Cosmic Microwave Background (CMB), whose origin becomes problematic in single-field inflation. Among the most prominent and well-tested of these anomalies is the Cold Spot, which constitutes the only significant deviation from Gaussianity in the CMB. Planck's non-detection of primordial non-Gaussianity on smaller scales thus suggests the existence of a physical mechanism whereby significant non-Gaussianity is generated on large angular scales only. In this Letter, we address this question by developing a localized version of the inhomogeneous reheating scenario, which postulates the existence of a scalar field able to modify the decay of the inflaton on localized spatial regions only. We demonstrate that if the Cold Spot is due to an overdensity in the last scattering surface, the localization mechanism offers a feasible explanation for it, thus providing a physical mechanism for the generation of localized non-Gaussianity in the CMB. If, on the contrary, the Cold Spot is caused by a newly discovered supervoid (as recently claimed), we argue that the localization mechanism, while managing to enhance underdensities, may well shed light on the rarity of the discovered supervoid.

  19. The last frontier? High-resolution, near-bottom measurements of the Hawaiian Jurassic magnetic anomaly sequence

    Science.gov (United States)

    Tivey, M.; Tominaga, M.; Sager, W. W.

    2012-12-01

    The Jurassic sequence of marine magnetic anomalies i.e. older than M29 remain the last part of the marine magnetic anomaly sequence of the geomagnetic polarity timescale (GPTS) that can be gleaned from the ocean crustal record. While Jurassic crust is present in several areas of the world's ocean basins, the oldest and arguably best preserved sequence is in the western Pacific where three lineations sets (Japanese, Hawaiian and Phoenix) converge on the oldest remaining ocean crust on the planet (i.e. crust that has not been subducted). The magnetic anomalies in these 3 lineation sets are marked by low amplitude, relatively indistinct anomalies (tiny wiggles) that collectively have been called the Jurassic quiet Zone (JQZ). Over the past 20 years we have been working on resolving the character and origin of these anomalies with various technologies to improve our resolution of this period. Following an aeromagnetic survey that revealed the possible presence of lineated anomalies older than M29 in the Japanese lineations, we conducted a deeptow magnetometer survey of the Japanese sequence in 1992. In 2002/03 we extended and confirmed this deeptow record with a deeptowed sidescan and magnetometer survey of the Japanese lineation sequence by tying in ODP Hole 801C and extending the anomaly sequence between M29 and M44. These surveys reveal remarkably fast reversals that are lineated and decrease in intensity back in time until M38, prior to which the sequence becomes somewhat confused (the LAZ or low amplitude zone) before recovering in both amplitude and lineated character around Hole 801C (M42). These results are partially supported by recently reported terrestrial magnetostratigraphy records that show the existence of reversals back to M38. A Jurassic GPTS was constructed from this Japanese anomaly sequence, but the overall global significance of the reversal sequence and systematic field intensity changes require confirmation from crustal records created at

  20. Using nudging to improve global-regional dynamic consistency in limited-area climate modeling: What should we nudge?

    Science.gov (United States)

    Omrani, Hiba; Drobinski, Philippe; Dubos, Thomas

    2015-03-01

    an immediate consequence, nudging tropospheric wind, temperature and moisture in WRF gives by far the best results with respect to the Big-Brother simulation. However, we noticed that a residual bias of the geopotential height persists due to a negative surface pressure anomaly which suggests that surface pressure is the missing quantity to nudge. Nudging the geopotential has no discernible effect. Finally, it should be noted that the proposed strategy ensures a dynamical consistency between the driving field and the simulated small-scale field but it does not ensure the best "observed" fine scale field because of the possible impact of incorrect driving large-scale field.

  1. Geotectonic variations of radon fields in Tashkent subway stations

    International Nuclear Information System (INIS)

    Yafasov, A.Ya.; Akimov, V.A.

    2001-01-01

    The anomalies of radon fields in the air of stations of Tashkent subway were investigated. These stations are located in areas with different tectonic characteristics. The influence of tectonic anomalies on formation and variations of radon fields in the environment was shown. (author)

  2. Amplitude inversion of the 2D analytic signal of magnetic anomalies through the differential evolution algorithm

    Science.gov (United States)

    Ekinci, Yunus Levent; Özyalın, Şenol; Sındırgı, Petek; Balkaya, Çağlayan; Göktürkler, Gökhan

    2017-12-01

    In this work, analytic signal amplitude (ASA) inversion of total field magnetic anomalies has been achieved by differential evolution (DE) which is a population-based evolutionary metaheuristic algorithm. Using an elitist strategy, the applicability and effectiveness of the proposed inversion algorithm have been evaluated through the anomalies due to both hypothetical model bodies and real isolated geological structures. Some parameter tuning studies relying mainly on choosing the optimum control parameters of the algorithm have also been performed to enhance the performance of the proposed metaheuristic. Since ASAs of magnetic anomalies are independent of both ambient field direction and the direction of magnetization of the causative sources in a two-dimensional (2D) case, inversions of synthetic noise-free and noisy single model anomalies have produced satisfactory solutions showing the practical applicability of the algorithm. Moreover, hypothetical studies using multiple model bodies have clearly showed that the DE algorithm is able to cope with complicated anomalies and some interferences from neighbouring sources. The proposed algorithm has then been used to invert small- (120 m) and large-scale (40 km) magnetic profile anomalies of an iron deposit (Kesikköprü-Bala, Turkey) and a deep-seated magnetized structure (Sea of Marmara, Turkey), respectively to determine depths, geometries and exact origins of the source bodies. Inversion studies have yielded geologically reasonable solutions which are also in good accordance with the results of normalized full gradient and Euler deconvolution techniques. Thus, we propose the use of DE not only for the amplitude inversion of 2D analytical signals of magnetic profile anomalies having induced or remanent magnetization effects but also the low-dimensional data inversions in geophysics. A part of this paper was presented as an abstract at the 2nd International Conference on Civil and Environmental Engineering, 8

  3. Discrimination between preseismic electromagnetic anomalies and solar activity effects

    Science.gov (United States)

    Koulouras, Gr; Balasis, G.; Kontakos, K.; Ruzhin, Y.; Avgoustis, G.; Kavouras, D.; Nomicos, C.

    2009-04-01

    Laboratory studies suggest that electromagnetic emissions in a wide frequency spectrum ranging from kHz to very high MHz frequencies are produced by the opening of microcracks, with the MHz radiation appearing earlier than the kHz radiation. Earthquakes are large-scale fracture phenomena in the Earth's heterogeneous crust. Thus, the radiated kHz-MHz electromagnetic emissions are detectable not only at laboratory but also at geological scale. Clear MHz-to-kHz electromagnetic anomalies have been systematically detected over periods ranging from a few days to a few hours prior to recent destructive earthquakes in Greece. We bear in mind that whether electromagnetic precursors to earthquakes exist is an important question not only for earthquake prediction but mainly for understanding the physical processes of earthquake generation. An open question in this field of research is the classification of a detected electromagnetic anomaly as a pre-seismic signal associated to earthquake occurrence. Indeed, electromagnetic fluctuations in the frequency range of MHz are known to related to a few sources, i.e., they might be atmospheric noise (due to lightning), man-made composite noise, solar-terrestrial noise (resulting from the Sun-solar wind-magnetosphere-ionosphere-Earth's surface chain) or cosmic noise, and finally, lithospheric effect, namely pre-seismic activity. We focus on this point. We suggest that if a combination of detected kHz and MHz electromagnetic anomalies satisfies the herein presented set of criteria these anomalies could be considered as candidate precursory phenomena of an impending earthquake.

  4. Ferret Workflow Anomaly Detection System

    National Research Council Canada - National Science Library

    Smith, Timothy J; Bryant, Stephany

    2005-01-01

    The Ferret workflow anomaly detection system project 2003-2004 has provided validation and anomaly detection in accredited workflows in secure knowledge management systems through the use of continuous, automated audits...

  5. The Asian-Bering-North American teleconnection: seasonality, maintenance, and climate impact on North America

    Science.gov (United States)

    Yu, Bin; Lin, H.; Wu, Z. W.; Merryfield, W. J.

    2018-03-01

    The Asian-Bering-North American (ABNA) teleconnection index is constructed from the normalized 500-hPa geopotential field by excluding the Pacific-North American pattern contribution. The ABNA pattern features a zonally elongated wavetrain originating from North Asia and flowing downstream across Bering Sea and Strait towards North America. The large-scale teleconnection is a year-round phenomenon that displays strong seasonality with the peak variability in winter. North American surface temperature and temperature extremes, including warm days and nights as well as cold days and nights, are significantly controlled by this teleconnection. The ABNA pattern has an equivalent barotropic structure in the troposphere and is supported by synoptic-scale eddy forcing in the upper troposphere. Its associated sea surface temperature anomalies exhibit a horseshoe-shaped structure in the North Pacific, most prominent in winter, which is driven by atmospheric circulation anomalies. The snow cover anomalies over the West Siberian plain and Central Siberian Plateau in autumn and spring and over southern Siberia in winter may act as a forcing influence on the ABNA pattern. The snow forcing influence in winter and spring can be traced back to the preceding season, which provides a predictability source for this teleconnection and for North American temperature variability. The ABNA associated energy budget is dominated by surface longwave radiation anomalies year-round, with the temperature anomalies supported by anomalous downward longwave radiation and damped by upward longwave radiation at the surface.

  6. Prenatal sonographic diagnosis of focal musculoskeletal anomalies

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Jung Kyu; Cho, Jeong Yeon; Lee, Young Ho; Kim, Ei Jeong; Chun, Yi Kyeong [Samsung Cheil Hospital, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of)

    2002-09-15

    Focal musculoskeletal anomalies are various and may be an isolated finding or may be found in conjunction with numerous associations, including genetic syndromes, Karyotype abnormals, central nervous system anomalies and other general musculoskeletal disorders. Early prenatal diagnosis of these focal musculoskeletal anomalies nor only affects prenatal care and postnatal outcome but also helps in approaching other numerous associated anomalies.

  7. Prenatal sonographic diagnosis of focal musculoskeletal anomalies

    International Nuclear Information System (INIS)

    Ryu, Jung Kyu; Cho, Jeong Yeon; Lee, Young Ho; Kim, Ei Jeong; Chun, Yi Kyeong

    2002-01-01

    Focal musculoskeletal anomalies are various and may be an isolated finding or may be found in conjunction with numerous associations, including genetic syndromes, Karyotype abnormals, central nervous system anomalies and other general musculoskeletal disorders. Early prenatal diagnosis of these focal musculoskeletal anomalies nor only affects prenatal care and postnatal outcome but also helps in approaching other numerous associated anomalies.

  8. Distribution of branchial anomalies in a paediatric Asian population.

    Science.gov (United States)

    Teo, Neville Wei Yang; Ibrahim, Shahrul Izham; Tan, Kun Kiaang Henry

    2015-04-01

    The objective of the present study was to review the distribution and incidence of branchial anomalies in an Asian paediatric population and highlight the challenges involved in the diagnosis of branchial anomalies. This was a retrospective chart review of all paediatric patients who underwent surgery for branchial anomalies in a tertiary paediatric hospital from August 2007 to November 2012. The clinical notes were correlated with preoperative radiological investigations, intraoperative findings and histology results. Branchial anomalies were classified based on the results of the review. A total of 28 children underwent surgery for 30 branchial anomalies during the review period. Two children had bilateral branchial anomalies requiring excision. Of the 30 branchial anomalies, 7 (23.3%) were first branchial anomalies, 5 (16.7%) were second branchial anomalies, 3 (10.0%) were third branchial anomalies, and 4 (13.3%) were fourth branchial anomalies (one of the four patients with fourth branchial anomalies had bilateral branchial anomalies). In addition, seven children had 8 (26.7%) branchial anomalies that were thought to originate from the pyriform sinus; however, we were unable to determine if these anomalies were from the third or fourth branchial arches. There was inadequate information on the remaining 3 (10.0%) branchial anomalies for classification. The incidence of second branchial anomalies appears to be lower in our Asian paediatric population, while that of third and fourth branchial anomalies was higher. Knowledge of embryology and the related anatomy of the branchial apparatus is crucial in the identification of the type of branchial anomaly.

  9. Coronary anomalies: what the radiologist should know*

    Science.gov (United States)

    Neves, Priscilla Ornellas; Andrade, Joalbo; Monção, Henry

    2015-01-01

    Coronary anomalies comprise a diverse group of malformations, some of them asymptomatic with a benign course, and the others related to symptoms as chest pain and sudden death. Such anomalies may be classified as follows: 1) anomalies of origination and course; 2) anomalies of intrinsic coronary arterial anatomy; 3) anomalies of coronary termination. The origin and the proximal course of anomalous coronary arteries are the main prognostic factors, and interarterial course or a coronary artery is considered to be malignant due its association with increased risk of sudden death. Coronary computed tomography angiography has become the reference method for such an assessment as it detects not only anomalies in origination of these arteries, but also its course in relation to other mediastinal structures, which plays a relevant role in the definition of the therapeutic management. Finally, it is essential for radiologists to recognize and characterize such anomalies. PMID:26379322

  10. A review of non-strabismic accommodative and vergence anomalies in school-age children. Part 2: Accommodative anomalies

    Directory of Open Access Journals (Sweden)

    Samuel O. Wajuihian

    2015-08-01

    Full Text Available Comfortable reading and the performance of related near point activities involve efficient accommodative and vergence systems. However, accommodative and convergence anomalies are associated with various symptoms of asthenopia that impair efficient near point tasks. In Part 1 of this two-part article, studies on vergence anomalies were reviewed. In the current paper (Part 2, anomalies of accommodation are reviewed. The aims of the latter paper were to derive the prevalence and distribution estimates of anomalies of accommodation in school-age children and address variations in the study methods and findings. Despite variations in the study methods and findings, anomalies of accommodation are prevalent among school-age populations. Variations and limitations of previous studies are discussed and recommendations for improving future studies are suggested.

  11. Anomaly coefficients: Their calculation and congruences

    International Nuclear Information System (INIS)

    Braden, H.W.

    1988-01-01

    A new method for the calculation of anomaly coefficients is presented. For su(n) some explicit and general expressions are given for these. In particular, certain congruences are discovered and investigated among the leading anomaly coefficients. As an application of these congruences, the absence of global six-dimensional gauge anomalies is shown

  12. A rare anomaly: Double right coronary artery

    Directory of Open Access Journals (Sweden)

    Dursun Çayan Akkoyun

    2013-01-01

    Full Text Available Coronary artery anomalies are rare anomalies. Theseare usually asymptomatic and are discovered incidentally.Double right coronary artery (RCA is a rare coronaryartery anomaly. Although there is controversy aboutidentification and classification of double RCA, it is oftena benign condition, but it can be complicated by atherosclerosisand can lead to serious conditions such asmyocardial infarction (MI and may be accompanied byother anomalies. In our case, double RCA were detectedin coronary angiography for acute anterior MI, and in thenext session successful percutaneous coronary interventionwas performed.Key words: Coronary anomaly, coronary angiography,coronary stenosis

  13. First high-resolution near-seafloor survey of magnetic anomalies of the South China Sea

    Science.gov (United States)

    Lin, J.; Xu, X.; Li, C.; Sun, Z.; Zhu, J.; Zhou, Z.; Qiu, N.

    2013-12-01

    We successfully conducted the first high-resolution near-seafloor magnetic survey of the Central, Southwest, and Northern Central Basins of the South China Sea (SCS) during two cruises on board Chinese R/V HaiYangLiuHao in October-November 2012 and March-April 2013, respectively. Measurements of magnetic field were made along four long survey lines, including (1) a NW-SE across-isochron profile transecting the Southwest Basin and covering all ages of the oceanic crust (Line CD); (2) a N-S across-isochron profile transecting the Central Basin (Line AB); and (3) two sub-parallel NE-SW across-isochron profiles transecting the Northern Central Basin of the SCS (Lines D and E). A three-axis magnetometer was mounted on a deep-tow vehicle, flying within 0.6 km above the seafloor. The position of the tow vehicle was provided by an ultra-short baseline navigation system along Lines D and E, while was estimated using shipboard GPS along Lines AB and CD. To investigate crustal magnetization, we first removed the International Geomagnetic Reference Field (IGRF) of 2010 from the measured magnetic data, and then downward continued the resultant magnetic field data to a horizontal plane at a water depth of 4.5 km to correct for variation due to the fishing depth of the deep-tow vehicle. Finally, we calculated magnetic anomalies at various water depths after reduction-to-the-pole corrections. We also constructed polarity reversal block (PRB) models of crustal magnetization by matching peaks and troughs of the observed magnetic field anomaly. Our analysis yielded the following results: (1) The near-bottom magnetic anomaly showed peak-to-trough amplitudes of more than 2,500 nT, which are several times of the anomaly amplitudes at the sea surface, illustrating that deep-tow measurements acquired much higher spatial resolutions. (2) The deep-tow data revealed several distinctive magnetic anomalies with wavelengths of 5-15 km and amplitudes of several hundred nT. These short

  14. Congenital anomalies and normal skeletal variants

    International Nuclear Information System (INIS)

    Guebert, G.M.; Yochum, T.R.; Rowe, L.J.

    1987-01-01

    Congenital anomalies and normal skeletal variants are a common occurrence in clinical practice. In this chapter a large number of skeletal anomalies of the spine and pelvis are reviewed. Some of the more common skeletal anomalies of the extremities are also presented. The second section of this chapter deals with normal skeletal variants. Some of these variants may simulate certain disease processes. In some instances there are no clear-cut distinctions between skeletal variants and anomalies; therefore, there may be some overlap of material. The congenital anomalies are presented initially with accompanying text, photos, and references, beginning with the skull and proceeding caudally through the spine to then include the pelvis and extremities. The normal skeletal variants section is presented in an anatomical atlas format without text or references

  15. Gravity anomalies, seismic structure and geothermal history of the Central Alps

    International Nuclear Information System (INIS)

    Kissling, E.; Mueller, S.; Werner, D.

    1983-01-01

    A new interpretation of the gravity anomalies in the Swiss Alps from the geothermal point of view is presented. The regional gravity distribution is partly caused by the topography of the crust-mantle boundary. Taking 0.5 g/cm 3 as the average density contrast between crust and mantle the Bouguer map of Switzerland contains a residual field which indicates a density anomaly in the mantle. This finding, results from seismic surface-wave investigations, and P-wave travel time observations can be interpreted as a consequence of the genesis of the Alps. A kinematic model of the Alps has been constructed simulating the mass displacements during the last 40 m.y. In this two-dimensional model the subsidence of cold mantle material is taken into consideration forming a ''lithospheric root''. Based on this kinematic model the temperature distribution in the moving medium can be calculated, taking into account the radiogenic heat sources. From the calculated temperatures field at present time the thermally induced density deviation can be determined. This density effect can explain the residual gravity field with a maximum value of about + 50 mgal

  16. Least-squares Minimization Approaches to Interpret Total Magnetic Anomalies Due to Spheres

    Science.gov (United States)

    Abdelrahman, E. M.; El-Araby, T. M.; Soliman, K. S.; Essa, K. S.; Abo-Ezz, E. R.

    2007-05-01

    We have developed three different least-squares approaches to determine successively: the depth, magnetic angle, and amplitude coefficient of a buried sphere from a total magnetic anomaly. By defining the anomaly value at the origin and the nearest zero-anomaly distance from the origin on the profile, the problem of depth determination is transformed into the problem of finding a solution of a nonlinear equation of the form f(z)=0. Knowing the depth and applying the least-squares method, the magnetic angle and amplitude coefficient are determined using two simple linear equations. In this way, the depth, magnetic angle, and amplitude coefficient are determined individually from all observed total magnetic data. The method is applied to synthetic examples with and without random errors and tested on a field example from Senegal, West Africa. In all cases, the depth solutions are in good agreement with the actual ones.

  17. ANALISA ANOMALI GAYABERAT TERHADAP KONDISI TATANAN TEKTONIK ZONA SUBDUKSI SUNDA MEGATHRUST DI SEBELAH BARAT PULAU SUMATERA

    Directory of Open Access Journals (Sweden)

    Anita Thea Saraswati

    2015-02-01

    Full Text Available Aktivitas tektonik yang terjadi di bumi merupakan hal yang masih terus diteliti sampai sekarang. Sumatera yang terletak pada area Sunda Megathrust, yang merupakan zona subduksi Lempeng Indo-Australia dan Lempeng Eurasia, mengakibatkan daerah ini rentan dengan aktivitas seismogenic. Salah satu akibat dari adanya pergerakan kedua lempeng ini adalah terbentuknya tatanan tektonik di wilayah Sumatera. GOCE (Gravity field and steady-state Ocean Circulation Explorer menawarkan metode yang cepat dengan cakupan global untuk mendapatkan data gayaberat bumi. Dengan memanfaatkan hitungan dari spherical harmonic coeffisien (SHC serta dilengkapi dengan data Digital Elevation Model (DEM, dapat diketahui nilai anomali gayaberat pada suatu wilayah. Distribusi anomali gayaberat mampu mencerminkan kondisi tektonik di suatu area. Variasi spasial dari anomali gayaberat menunjukkan bahwa pada palung yang terbentuk akibat subduksi kedua lempeng memiliki nilai anomali gayaberat negatif dengan nilai rata-rata sebesar -42.8729 mgal. Forearc ridge yang terbentuk akibat konvergensi lempeng memiliki nilai anomali gayaberat positif, sedangkan forearc basin yang merupakan cekungan diantara backarc dan forearc ridge, memiliki nilai anomali gayaberat negatif yang lebih kuat daripada yang terdapat pada Sunda Megathrust. Variasi temporal yang teramati menunjukkan bahwa distribusi anomali gayaberat positif yang terdapat pada prisma akresi di kedua tepian palung bergerak semakin mendekati Sunda Megathrust pada tiap seri pengamatannya, sedangkan distribusi anomali gayaberat negatif pada palung laut dan forearc basin membentuk suatu  pola distribusi yang semakin menyempit sehingga menyebabkan semakin curamnya gradient anomali gayaberat pada area di sekitarnya.

  18. Algebraic study of chiral anomalies

    Indian Academy of Sciences (India)

    Chiral anomalies; gauge theories; bundles; connections; quantum field ... The algebraic structure of chiral anomalies is made globally valid on non-trivial bundles by the introduction of a fixed background connection. ... Current Issue : Vol.

  19. Anomalies in Witten's NSR superstring field theory

    International Nuclear Information System (INIS)

    Aref'eva, I.Ya.; Medvedev, P.B.

    1988-01-01

    The action of Witten's NSR superstring field theory if shown to depend on the regularization being choosen to define its value on non-smooth states that are generated by supertransformation. The necessity of additional regularization originates from the appearance of products of picture-changing operators in coincident points. Two different regularization are described, one corresponding to Witten's scheme and the other to the scheme based on the notion of truncated fields

  20. Reliable detection of fluence anomalies in EPID-based IMRT pretreatment quality assurance using pixel intensity deviations

    International Nuclear Information System (INIS)

    Gordon, J. J.; Gardner, J. K.; Wang, S.; Siebers, J. V.

    2012-01-01

    Purpose: This work uses repeat images of intensity modulated radiation therapy (IMRT) fields to quantify fluence anomalies (i.e., delivery errors) that can be reliably detected in electronic portal images used for IMRT pretreatment quality assurance. Methods: Repeat images of 11 clinical IMRT fields are acquired on a Varian Trilogy linear accelerator at energies of 6 MV and 18 MV. Acquired images are corrected for output variations and registered to minimize the impact of linear accelerator and electronic portal imaging device (EPID) positioning deviations. Detection studies are performed in which rectangular anomalies of various sizes are inserted into the images. The performance of detection strategies based on pixel intensity deviations (PIDs) and gamma indices is evaluated using receiver operating characteristic analysis. Results: Residual differences between registered images are due to interfraction positional deviations of jaws and multileaf collimator leaves, plus imager noise. Positional deviations produce large intensity differences that degrade anomaly detection. Gradient effects are suppressed in PIDs using gradient scaling. Background noise is suppressed using median filtering. In the majority of images, PID-based detection strategies can reliably detect fluence anomalies of ≥5% in ∼1 mm 2 areas and ≥2% in ∼20 mm 2 areas. Conclusions: The ability to detect small dose differences (≤2%) depends strongly on the level of background noise. This in turn depends on the accuracy of image registration, the quality of the reference image, and field properties. The longer term aim of this work is to develop accurate and reliable methods of detecting IMRT delivery errors and variations. The ability to resolve small anomalies will allow the accuracy of advanced treatment techniques, such as image guided, adaptive, and arc therapies, to be quantified.

  1. Clinical Study of Second Branchial Cleft Anomalies.

    Science.gov (United States)

    Lee, Dong Hoon; Yoon, Tae Mi; Lee, Joon Kyoo; Lim, Sang Chul

    2018-03-30

    The objective of this study was to review the clinical characteristics and surgical treatment outcomes of second branchial cleft anomalies, and to evaluate the usefulness and accuracy of preoperative fine-needle aspiration cytology (FNAC) in the diagnosis of branchial cleft cysts. A retrospective chart review was performed at Chonnam National University Hwasun Hospital from January 2010 to December 2016. Among 25 patients with second branchial cleft anomalies, in 23 patients (92.0%), these anomalies presented as cysts, and in the remaining 2 patients (8.0%), these anomalies presented as fistulas. Fine-needle aspiration cytology had a diagnostic sensitivity of 100%, a positive-predictive value of 100%, and accuracy of 100% for diagnosing second branchial cleft cyst. All patients of second branchial cleft anomalies were treated surgically under general anesthesia. No recurrence of second branchial cleft anomalies was observed. Branchial cleft cysts were the most common type of second branchial cleft anomalies. Preoperative FNAC is a useful and accurate method for preoperative evaluation of branchial cleft cysts. Surgical excision of second branchial cleft anomalies is the treatment of choice without any complications and with no recurrence.

  2. Anomaly depth detection in trans-admittance mammography: a formula independent of anomaly size or admittivity contrast

    International Nuclear Information System (INIS)

    Zhang, Tingting; Lee, Eunjung; Seo, Jin Keun

    2014-01-01

    Trans-admittance mammography (TAM) is a bioimpedance technique for breast cancer detection. It is based on the comparison of tissue conductivity: cancerous tissue is identified by its higher conductivity in comparison with the surrounding normal tissue. In TAM, the breast is compressed between two electrical plates (in a similar architecture to x-ray mammography). The bottom plate has many sensing point electrodes that provide two-dimensional images (trans-admittance maps) that are induced by voltage differences between the two plates. Multi-frequency admittance data (Neumann data) are measured over the range 50 Hz–500 kHz. TAM aims to determine the location and size of any anomaly from the multi-frequency admittance data. Various anomaly detection algorithms can be used to process TAM data to determine the transverse positions of anomalies. However, existing methods cannot reliably determine the depth or size of an anomaly. Breast cancer detection using TAM would be improved if the depth or size of an anomaly could also be estimated, properties that are independent of the admittivity contrast. A formula is proposed here that can estimate the depth of an anomaly independent of its size and the admittivity contrast. This depth estimation can also be used to derive an estimation of the size of the anomaly. The proposed estimations are verified rigorously under a simplified model. Numerical simulation shows that the proposed method also works well in general settings. (paper)

  3. Road Traffic Anomaly Detection via Collaborative Path Inference from GPS Snippets

    Directory of Open Access Journals (Sweden)

    Hongtao Wang

    2017-03-01

    Full Text Available Road traffic anomaly denotes a road segment that is anomalous in terms of traffic flow of vehicles. Detecting road traffic anomalies from GPS (Global Position System snippets data is becoming critical in urban computing since they often suggest underlying events. However, the noisy ands parse nature of GPS snippets data have ushered multiple problems, which have prompted the detection of road traffic anomalies to be very challenging. To address these issues, we propose a two-stage solution which consists of two components: a Collaborative Path Inference (CPI model and a Road Anomaly Test (RAT model. CPI model performs path inference incorporating both static and dynamic features into a Conditional Random Field (CRF. Dynamic context features are learned collaboratively from large GPS snippets via a tensor decomposition technique. Then RAT calculates the anomalous degree for each road segment from the inferred fine-grained trajectories in given time intervals. We evaluated our method using a large scale real world dataset, which includes one-month GPS location data from more than eight thousand taxi cabs in Beijing. The evaluation results show the advantages of our method beyond other baseline techniques.

  4. An introduction to gravitational anomalies

    International Nuclear Information System (INIS)

    Alvarez-Gaume', L.

    1984-01-01

    The outline of these lectures is as follows: We will first analyze the abelian anomaly from the point of view of the Atiyah-Singer index theorem. This is clearly not the first time that this analysis has been carried out, but it will give us a chance of introducing a general method of computing anomalies based on supersymmetric quantum mechanics. Then we will present the general strategy for identifying and computing the anomalies in the energy-momentum tensor and what can be learned from them

  5. Prevalence of dental anomalies in Saudi orthodontic patients.

    Science.gov (United States)

    Al-Jabaa, Aljazi H; Aldrees, Abdullah M

    2013-07-01

    This study aimed to investigate the prevalence of dental anomalies and study the association of these anomalies with different types of malocclusion in a random sample of Saudi orthodontic patients. Six hundred and two randomly selected pretreatment records including orthopantomographs (OPG), and study models were evaluated. The molar relationship was determined using pretreatment study models, and OPG were examined to investigate the prevalence of dental anomalies among the sample. The most common types of the investigated anomalies were: impaction followed by hypodontia, microdontia, macrodontia, ectopic eruption and supernumerary. No statistical significant correlations were observed between sex and dental anomalies. Dental anomalies were more commonly found in class I followed by asymmetric molar relation, then class II and finally class III molar relation. No malocclusion group had a statistically significant relation with any individual dental anomaly. The prevalence of dental anomalies among Saudi orthodontic patients was higher than the general population. Although, orthodontic patients have been reported to have high rates of dental anomalies, orthodontists often fail to consider this. If not detected, dental anomalies can complicate dental and orthodontic treatment; therefore, their presence should be carefully investigated during orthodontic diagnosis and considered during treatment planning.

  6. MR imaging of paediatric uterovaginal anomalies

    International Nuclear Information System (INIS)

    Lang, I.M.; Babyn, P.; Oliver, G.D.

    1999-01-01

    Background. Transabdominal ultrasound (US) has not proved completely reliable in Muellerian duct anomalies. One study has shown it useful in obstructed uterovaginal anomalies. We are unaware of a study that has used endovaginal ultrasound in children to investigate uterovaginal anomalies. Magnetic resonance imaging (MRI) is now gaining wide acceptance in imaging congenital abnormalities of the genital tract. Objective. To identify the problems and potential pitfalls of using MRI to evaluate the female genital tract in paediatric patients. Materials and methods. A retrospective review of the MRI scans of 19 patients, aged 3 months to 19 years (mean 14 years), with uterovaginal anomalies. Results. The uterovaginal anomalies were categorised into three groups: (1) congenital absence of the Muellerian ducts, or the Mayer-Rokitansky-Kuster-Hauser syndrome (n = 7), (2) disorders of vertical fusion (n = 2) and (3) disorders of lateral fusion (n = 10). Conclusions. MRI is a reliable method for evaluating paediatric uterovaginal anomalies, but should be analysed in conjunction with other imaging modalities (US and genitography). Previous surgery makes interpretation more difficult and, if possible, MRI should be carried out prior to any surgery. An accurate MRI examination can be extremely helpful prior to surgery and it is important for the radiologist to have knowledge of how these complex anomalies are managed and what pitfalls to avoid. (orig.)

  7. Praenatalt diagnosticeret hydronefrose og andre urologiske anomalier

    DEFF Research Database (Denmark)

    Cortes, Dina; Jørgensen, Troels Munch; Rittig, Søren

    2006-01-01

    By renal ultrasound examination, urological anomalies may be demonstrated in 1-2% of fetuses and in about 0.5% of newborns. Boys have about twice the frequency of girls. Surgical treatment is indicated in about one fourth of these urological anomalies. If all pregnant women in Denmark were to hav...... in cases of urological anomalies and guidelines for post-natal diagnosis, follow-up and treatment of these anomalies, especially hydronephrosis....

  8. Prevalence of dental anomalies in Indian population.

    Science.gov (United States)

    Patil, Santosh; Doni, Bharati; Kaswan, Sumita; Rahman, Farzan

    2013-10-01

    Developmental anomalies of the dentition are not infrequently observed by the dental practitioner. The aim of the present study was to determine the prevalence of dental anomalies in the Indian population. A retrospective study of 4133 panoramic radiographs of patients, who attended the Department of Oral Medicine and Radiology, Jodhpur Dental College General Hospital between September 2008 to December 2012 was done. The ages of the patients ranged from 13 to 38 years with a mean age of 21.8 years. The orthopantomographs (OPGs) and dental records were examined for any unusual finding such as congenitally missing teeth, impactions, ectopic eruption, supernumerary teeth, odontoma, dilacerations, taurodontism, dens in dente, germination and fusion, among others. 1519 (36.7%) patients had at least one dental anomaly. The congenitally missing teeth 673 (16.3%) had the highest prevalence, followed by impacted teeth 641 (15.5%), supernumerary teeth 51 (1.2%) and microdontia 41 (1.0%). Other anomalies were found at lower prevalence ranging from transposition 7 (0.1%) to ectopic eruption 30 (0.7%). The most prevalent anomaly in the Indian population was congenitally missing teeth (16.3%), and the second frequent anomaly was impacted teeth (15.5%), whereas, macrodontia, odontoma and transposition were the least frequent anomalies, with a prevalence of 0.2%, 0.2% and 0.1% respectively. While the overall prevalence of these anomalies may be low, the early diagnosis is imperative for the patient management and treatment planning. Key words:Dental anomaly, prevalence, panoramic radiography.

  9. Anomaly-specified virtual dimensionality

    Science.gov (United States)

    Chen, Shih-Yu; Paylor, Drew; Chang, Chein-I.

    2013-09-01

    Virtual dimensionality (VD) has received considerable interest where VD is used to estimate the number of spectral distinct signatures, denoted by p. Unfortunately, no specific definition is provided by VD for what a spectrally distinct signature is. As a result, various types of spectral distinct signatures determine different values of VD. There is no one value-fit-all for VD. In order to address this issue this paper presents a new concept, referred to as anomaly-specified VD (AS-VD) which determines the number of anomalies of interest present in the data. Specifically, two types of anomaly detection algorithms are of particular interest, sample covariance matrix K-based anomaly detector developed by Reed and Yu, referred to as K-RXD and sample correlation matrix R-based RXD, referred to as R-RXD. Since K-RXD is only determined by 2nd order statistics compared to R-RXD which is specified by statistics of the first two orders including sample mean as the first order statistics, the values determined by K-RXD and R-RXD will be different. Experiments are conducted in comparison with widely used eigen-based approaches.

  10. Small cosmological constant from the QCD trace anomaly?

    International Nuclear Information System (INIS)

    Schuetzhold, Ralf

    2002-01-01

    According to recent astrophysical observations the large scale mean pressure of our present Universe is negative suggesting a positive cosmological constant-like term. The issue of whether nonperturbative effects of self-interacting quantum fields in curved space-times may yield a significant contribution is addressed. Focusing on the trace anomaly of quantum chromodynamics, a preliminary estimate of the expected order of magnitude yields a remarkable coincidence with the empirical data, indicating the potential relevance of this effect

  11. Inversion of self-potential anomalies caused by simple-geometry bodies using global optimization algorithms

    International Nuclear Information System (INIS)

    Göktürkler, G; Balkaya, Ç

    2012-01-01

    Three naturally inspired meta-heuristic algorithms—the genetic algorithm (GA), simulated annealing (SA) and particle swarm optimization (PSO)—were used to invert some of the self-potential (SP) anomalies originated by some polarized bodies with simple geometries. Both synthetic and field data sets were considered. The tests with the synthetic data comprised of the solutions with both noise-free and noisy data; in the tests with the field data some SP anomalies observed over a copper belt (India), graphite deposits (Germany) and metallic sulfide (Turkey) were inverted. The model parameters included the electric dipole moment, polarization angle, depth, shape factor and origin of the anomaly. The estimated parameters were compared with those from previous studies using various optimization algorithms, mainly least-squares approaches, on the same data sets. During the test studies the solutions by GA, PSO and SA were characterized as being consistent with each other; a good starting model was not a requirement to reach the global minimum. It can be concluded that the global optimization algorithms considered in this study were able to yield compatible solutions with those from widely used local optimization algorithms. (paper)

  12. Higher derivative regularization and chiral anomaly

    International Nuclear Information System (INIS)

    Nagahama, Yoshinori.

    1985-02-01

    A higher derivative regularization which automatically leads to the consistent chiral anomaly is analyzed in detail. It explicitly breaks all the local gauge symmetry but preserves global chiral symmetry and leads to the chirally symmetric consistent anomaly. This regularization thus clarifies the physics content contained in the consistent anomaly. We also briefly comment on the application of this higher derivative regularization to massless QED. (author)

  13. A conceptual prediction model for seasonal drought processes using atmospheric and oceanic standardized anomalies: application to regional drought processes in China

    Science.gov (United States)

    Liu, Zhenchen; Lu, Guihua; He, Hai; Wu, Zhiyong; He, Jian

    2018-01-01

    Reliable drought prediction is fundamental for water resource managers to develop and implement drought mitigation measures. Considering that drought development is closely related to the spatial-temporal evolution of large-scale circulation patterns, we developed a conceptual prediction model of seasonal drought processes based on atmospheric and oceanic standardized anomalies (SAs). Empirical orthogonal function (EOF) analysis is first applied to drought-related SAs at 200 and 500 hPa geopotential height (HGT) and sea surface temperature (SST). Subsequently, SA-based predictors are built based on the spatial pattern of the first EOF modes. This drought prediction model is essentially the synchronous statistical relationship between 90-day-accumulated atmospheric-oceanic SA-based predictors and SPI3 (3-month standardized precipitation index), calibrated using a simple stepwise regression method. Predictor computation is based on forecast atmospheric-oceanic products retrieved from the NCEP Climate Forecast System Version 2 (CFSv2), indicating the lead time of the model depends on that of CFSv2. The model can make seamless drought predictions for operational use after a year-to-year calibration. Model application to four recent severe regional drought processes in China indicates its good performance in predicting seasonal drought development, despite its weakness in predicting drought severity. Overall, the model can be a worthy reference for seasonal water resource management in China.

  14. The Egyptian geomagnetic reference field to the Epoch, 2010.0

    Directory of Open Access Journals (Sweden)

    H.A. Deebes

    2017-06-01

    The geomagnetic anomaly maps, the normal geomagnetic field maps with their corresponding secular variation maps, the normal geomagnetic field equations of the geomagnetic elements (EGRF and their corresponding secular variations equations, are outlined. The anomalous sites, as discovered from the anomaly maps are, only, mentioned. In addition, a correlation between the International Geomagnetic Reference Field (IGRF 2010.0 and the Egyptian Geomagnetic Reference Field (EGRF 2010 is indicated.

  15. Evolution of ENSO-related rainfall anomalies in Southeast Asia region and its relationship with atmosphere-ocean variations in Indo-Pacific sector

    Energy Technology Data Exchange (ETDEWEB)

    Juneng, Liew; Tangang, Fredolin T. [Technology National University of Malaysia, Marine Science Program, School of Environmental and Natural Resource Sciences, Bangi Selangor (Malaysia)

    2005-09-01

    The Southeast Asia rainfall (SEAR) anomalies depend strongly on phases of El Nino (La Nina). Using an extended empirical orthogonal function (EEOF) analysis, it is shown that the dominant EEOF mode of SEAR anomalies evolves northeastward throughout a period from the summer when El Nino develops to spring the following year when the event weakens. This evolution is consistent with northeastward migration of the ENSO-related anomalous out going radiation field. During boreal summer (winter), the strong ENSO-related anomaly tends to reside in regions south (north) of the equator. The evolution of dominant mode of SEAR anomalies is in tandem with the evolution of ENSO-related sea surface temperature (SST) anomalies. The strengthening and weakening of ''boomerang-shaped'' SST in western Pacific, the changing sign of anomalous SST in Java Sea and the warming in Indian Ocean and South China Sea are all part of ENSO-related changes and all are linked to SEAR anomaly. The anomalous low-level circulation associated with ENSO-related SEAR anomaly indicates the strengthening and weakening of two off-equatorial anticyclones, one over the Southern Indian Ocean and the other over the western North Pacific. Together with patterns of El Nino minus La Nina composites of various fields, it is proposed that the northeastward evolution of SEAR anomaly is basically part of the large-scale eastward evolution of ENSO-related signal in the Indo-Pacific sector. The atmosphere-ocean interaction plays an important role in this evolution. (orig.)

  16. The influence of sea surface temperature anomalies on low-frequency variability of the North Atlantic Oscillation

    Energy Technology Data Exchange (ETDEWEB)

    Manganello, Julia V. [Center for Ocean-Land-Atmosphere Studies, Calverton, MD (United States)

    2008-05-15

    The influence of sea surface temperature anomalies (SSTA) on multi-year persistence of the North Atlantic Oscillation (NAO) during the second half of the twentieth century is investigated using the Center for Ocean-Land-Atmosphere Studies (COLA) Atmospheric GCM (AGCM) with an emphasis on isolating the geographic location of the SSTA that produce this influence. The present study focuses on calculating the atmospheric response to the SSTA averaged over 1988-1995 (1961-1968) corresponding to the observed period of strong persistence of the positive (negative) phase of the decadal NAO. The model response to the global 1988-1995 average SSTA shows a statistically significant large-scale pattern characteristic of the positive phase of the NAO. Forcing with the global 1961-1968 average SSTA generates a NAO of the opposite polarity compared to observations. However, all large-scale features both in the model and observations during this period are weaker in magnitude and less significant compared to 1988-1995. Additional idealized experiments show that over the northern center of the NAO the non-linear component of the forced response appears to be quite important and acts to enhance the positive NAO signal. On the other hand, over the southern center where the model response is the strongest, it is also essentially linear. The 1988-1995 average SSTA restricted to the western tropical Pacific region produce a positive NAO remarkably similar in structure but stronger in magnitude than the model response to the global and tropical Indo-Pacific 1988-1995 forcing. A 200-hPa geopotential height response in these experiments shows a positive anomaly over the southern center of the NAO embedded in the Rossby wave trains propagating from the western tropical Pacific. Indian Ocean SSTA lead to much weaker positive NAO primarily through the effect on its northern center. SST forcing confined to the North Atlantic north of equator does not produce a response statistically different

  17. On the algebraic structure of the holomorphic anomaly for c-circumflex 3 topological strings

    International Nuclear Information System (INIS)

    Lopez, E.

    1995-01-01

    An introduction to topological field theories and topological strings have been made. t t-bar-equations as consistency conditions of a contact term algebra are solved. The holomorphic anomaly for correlators is derived. 16 refs

  18. Trace and axial anomalies in dimensional renormalization through Zimmermann-like identities

    International Nuclear Information System (INIS)

    Bonneau, G.

    1980-01-01

    The problem of anomalies is solved in dimensional renormalization in two steps. Firstly one shows that trace and γ 5 anomalies can be expressed as the anomalous normal product N[gsub(μ rho)Osub(μ rho lambda)...(x)] where gsub(μ rho) is the metric tensor in D-4 dimensions (D being the space-time dimension) and Osub(μ rho lambda)...(x) a monomial in the fields and their derivatives. Then, with techniques similar to those used in a previous work to study N[(4-D)Osub(μ rho lambda)(x)], we prove a Zimmermann-like identity that gives the decomposition of such anomalous normal product on 'usual' normal products, the coefficients being explicitly given as residues of the simple pole in v = 4-D of definite proper Green functions where the overall subtraction has not been done. We apply the above formalism to obtain the renormalization group as a consequence of trace anomalies in the dilatation current and to derive the Adler-Bardeen theorem for massive QED. (orig.)

  19. Shaded relief magnetic anomaly map of Italy and surrounding marine areas

    International Nuclear Information System (INIS)

    Chiappini, M.; Meloni, A.; Boschi, E.; Faggioni, O.; Beverini, N.; Carmisciano, C.; Marson, I.

    2000-01-01

    Magnetic observations made onshore the Italian Peninsula, and across the adjacent seas, have been compiled in a new digital database that provides the first complete regional scale view of the crustal scale magnetic anomalies of the regional at sea level. The offshore data were acquired between 1965-1972 by the Osservatorio Geofisico Sperimentale (OGS) while the ground measurements were performed within the framework of the Progetto Finalizzato Geodinamica of the Calling's Nazionale delle Ricerche (PFG-CNR) between 1977 and 1981. The new shaded relief magnetic anomaly map of total intensity of the Earth's magnetic field for Italy and the surrounding seas has been produced at sea level, for the geomagnetic epoch 1979.0. The most remarkable result of this new map, with respect to the previous compilations and to the aero magnetic map of Italy, is an unprecedented view of the magnetic signature of the major tectonic elements in their regional setting. There is good correlation between known structural geology and the magnetic anomalies, and now that the longer wavelength signatures have been corrected, deeper interpretations are possible

  20. Shaded relief magnetic anomaly map of Italy and surrounding marine areas

    Directory of Open Access Journals (Sweden)

    C. Carmisciano

    2000-06-01

    Full Text Available Magnetic observations made onshore the Italian Peninsula, and across the adjacent seas, have been compiled in a new digital database that provides the first complete regional scale view of the crustal scale magnetic anomalies of the region at sea level. The offshore data were acquired between 1965-1972 by the Osservatorio Geofisico Sperimentale (OGS while the ground measurements were performed within the framework of the Progetto Finalizzato Geodinamica of the Consiglio Nazionale delle Ricerche (PFG-CNR between 1977 and 1981. The new shaded relief magnetic anomaly map of total intensity of the Earth's magnetic field for Italy and the surrounding seas has been produced at sea level, for the geomagnetic epoch 1979.0. The most remarkable result of this new map, with respect to the previous compilations and to the aeromagnetic map of Italy, is an unprecedented view of the magnetic signature of the major tectonic elements in their regional setting. There is good correlation between known structural geology and the magnetic anomalies, and now that the longer wavelength signatures have been corrected, deeper interpretations are possible.

  1. Marine Geoid Undulation Assessment Over South China Sea Using Global Geopotential Models and Airborne Gravity Data

    Science.gov (United States)

    Yazid, N. M.; Din, A. H. M.; Omar, K. M.; Som, Z. A. M.; Omar, A. H.; Yahaya, N. A. Z.; Tugi, A.

    2016-09-01

    Global geopotential models (GGMs) are vital in computing global geoid undulations heights. Based on the ellipsoidal height by Global Navigation Satellite System (GNSS) observations, the accurate orthometric height can be calculated by adding precise and accurate geoid undulations model information. However, GGMs also provide data from the satellite gravity missions such as GRACE, GOCE and CHAMP. Thus, this will assist to enhance the global geoid undulations data. A statistical assessment has been made between geoid undulations derived from 4 GGMs and the airborne gravity data provided by Department of Survey and Mapping Malaysia (DSMM). The goal of this study is the selection of the best possible GGM that best matches statistically with the geoid undulations of airborne gravity data under the Marine Geodetic Infrastructures in Malaysian Waters (MAGIC) Project over marine areas in Sabah. The correlation coefficients and the RMS value for the geoid undulations of GGM and airborne gravity data were computed. The correlation coefficients between EGM 2008 and airborne gravity data is 1 while RMS value is 0.1499.In this study, the RMS value of EGM 2008 is the lowest among the others. Regarding to the statistical analysis, it clearly represents that EGM 2008 is the best fit for marine geoid undulations throughout South China Sea.

  2. MR imaging of neuronal migration anomaly

    International Nuclear Information System (INIS)

    Hong, Hyun Sook; Choi, Eun Wan; Kim, Dae Ho; Chung, Moo Chan; Kwon, Kuy Hyang; Kim, Ki Jung

    1991-01-01

    Abnormalities of neuronal migration are characterized by anectopic location of neurons in the cerebral cortex. This broad group of anomalies includes agyria, pachygyria, schizencephaly, unilateral megalencephaly, and gray matter heterotopia. Patients with this anomaly present clinically with a variety of symptoms which are proportional to the extent of the brain involved. These abnormalities have characterized pathologically in vivo by sonography and CT scan. MR appears to be an imaging technique of choice in evaluating these anomalies because it is capable of exceptionally good differentiation between gray and white matter, high contrast resolution, multiplanar display of the anatomy, and lack of overlying bone artifac. The purpose of this paper is to describe the MR findings of neuronal migration anomaly. The results of our study support that MR appears to be the imaging method of choice for diagnosing migration anomalies and the primary screening method for infants or children who have seisure/and delayed development

  3. Analysis of renal anomalies in VACTERL association.

    Science.gov (United States)

    Cunningham, Bridget K; Khromykh, Alina; Martinez, Ariel F; Carney, Tyler; Hadley, Donald W; Solomon, Benjamin D

    2014-10-01

    VACTERL association refers to a combination of congenital anomalies that can include: vertebral anomalies, anal atresia, cardiac malformations, tracheo-esophageal fistula with esophageal atresia, renal anomalies (typically structural renal anomalies), and limb anomalies. We conducted a description of a case series to characterize renal findings in a cohort of patients with VACTERL association. Out of the overall cohort, 48 patients (with at least three component features of VACTERL and who had abdominal ultrasound performed) met criteria for analysis. Four other patients were additionally analyzed separately, with the hypothesis that subtle renal system anomalies may occur in patients who would not otherwise meet criteria for VACTERL association. Thirty-three (69%) of the 48 patients had a clinical manifestation affecting the renal system. The most common renal manifestation (RM) was vesicoureteral reflux (VUR) in addition to a structural defect (present in 27%), followed by unilateral renal agenesis (24%), and then dysplastic/multicystic kidneys or duplicated collected system (18% for each). Twenty-two (88%) of the 25 patients with a structural RM had an associated anorectal malformation. Individuals with either isolated lower anatomic anomalies, or both upper and lower anatomic anomalies were not statistically more likely to have a structural renal defect than those with isolated upper anatomic anomalies (p = 0.22, p = 0.284, respectively). Given the high prevalence of isolated VUR in our cohort, we recommend a screening VCUG or other imaging modality be obtained to evaluate for VUR if initial renal ultrasound shows evidence of obstruction or renal scarring, as well as ongoing evaluation of renal health. © 2014 Wiley Periodicals, Inc.

  4. The prevalence of congenital anomalies in Europe

    DEFF Research Database (Denmark)

    Dolk, Helen; Loane, Maria; Garne, Ester

    2010-01-01

    EUROCAT (European Surveillance of Congenital Anomalies) is the network of population-based registers of congenital anomaly in Europe, with a common protocol and data quality review, covering 1.5 million annual births in 22 countries. EUROCAT recorded a total prevalence of major congenital anomali...

  5. The Green-Schwarz mechanism and geometric anomaly relations in 2d (0,2) F-theory vacua

    Science.gov (United States)

    Weigand, Timo; Xu, Fengjun

    2018-04-01

    We study the structure of gauge and gravitational anomalies in 2d N = (0 , 2) theories obtained by compactification of F-theory on elliptically fibered Calabi-Yau 5-folds. Abelian gauge anomalies, induced at 1-loop in perturbation theory, are cancelled by a generalized Green-Schwarz mechanism operating at the level of chiral scalar fields in the 2d supergravity theory. We derive closed expressions for the gravitational and the non-abelian and abelian gauge anomalies including the Green-Schwarz counterterms. These expressions involve topological invariants of the underlying elliptic fibration and the gauge background thereon. Cancellation of anomalies in the effective theory predicts intricate topological identities which must hold on every elliptically fibered Calabi-Yau 5-fold. We verify these relations in a non-trivial example, but their proof from a purely mathematical perspective remains as an interesting open problem. Some of the identities we find on elliptic 5-folds are related in an intriguing way to previously studied topological identities governing the structure of anomalies in 6d N = (1 , 0) and 4d N = 1 theories obtained from F-theory.

  6. Modelling extreme dry spells in the Mediterranean region in connection with atmospheric circulation

    Science.gov (United States)

    Tramblay, Yves; Hertig, Elke

    2018-04-01

    Long droughts periods can affect the Mediterranean region during the winter season, when most of annual precipitation occurs, and consequently have strong impacts on agriculture, groundwater levels and water resources. The goal of this study is to model annual maximum dry spells lengths (AMDSL) that occur during the extended winter season (October to April). The spatial patterns of extreme dry spells and their relationships with large-scale atmospheric circulation were first investigated. Then, AMDSL were modelled using Generalized Extreme Value (GEV) distributions incorporating climatic covariates, to evaluate the dependences of extreme dry spells to synoptic patterns using an analogue approach. The data from a network of 160 rain gauges having daily precipitation measurements between 1960 and 2009 are considered together with the ERA-20C reanalysis of the 20th century to provide atmospheric variables (geopotential heights, humidity, winds). A regional classification of both the occurrence and the duration of AMDSL helped to distinguish three spatially contiguous regions in which the regional distributions were found homogeneous. From composite analysis, significant positive anomalies in geopotential height (Z500) and negative anomalies in zonal wind (U850) and relative and specific humidity (S850, R850) were found to be associated with AMDSL in the three regions and provided the reference to build analogue days. Finally, non-stationary GEV models have been compared, in which the location and scale parameters are related to different atmospheric indices. Results indicates, at the whole Mediterranean scale, that positives anomalies of the North Atlantic Oscillation index and to a lesser extent the Mediterranean Oscillation index are linked to longer extreme dry spells in the majority of stations. For the three regions identified, the frequency of U850 negative anomalies over North Africa is significantly associated with the magnitude of AMDSL. AMDL are also

  7. Distribution of female genital tract anomalies in two classifications.

    Science.gov (United States)

    Heinonen, Pentti K

    2016-11-01

    This study assessed the distribution of Müllerian duct anomalies in two verified classifications of female genital tract malformations, and the presence of associated renal defects. 621 women with confirmed female genital tract anomalies were retrospectively grouped under the European (ESHRE/ESGE) and the American (AFS) classification. The diagnosis of uterine malformation was based on findings in hysterosalpingography, two-dimensional ultrasonography, endoscopies, laparotomy, cesarean section and magnetic resonance imaging in 97.3% of cases. Renal status was determined in 378 patients, including 5 with normal uterus and vagina. The European classification covered all 621 women studied. Uterine anomalies without cervical or vaginal anomaly were found in 302 (48.6%) patients. Uterine anomaly was associated with vaginal anomaly in 45.2%, and vaginal anomaly alone was found in 26 (4.2%) cases. Septate uterus was the most common (49.1%) of all genital tract anomalies, followed by bicorporeal uteri (18.2%). The American classification covered 590 (95%) out of the 621 women with genital tract anomalies. The American system did not take into account vaginal anomalies in 170 (34.7%) and cervical anomalies in 174 (35.5%) out of 490 cases with uterine malformations. Renal abnormalities were found in 71 (18.8%) out of 378 women, unilateral renal agenesis being the most common defect (12.2%), also found in 4 women without Müllerian duct anomaly. The European classification sufficiently covered uterine and vaginal abnormalities. The distribution of the main uterine anomalies was equal in both classifications. The American system missed cervical and vaginal anomalies associated with uterine anomalies. Evaluation of renal system is recommended for all patients with genital tract anomalies. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. Prevalence of dental developmental anomalies: a radiographic study.

    Science.gov (United States)

    Ezoddini, Ardakani F; Sheikhha, M H; Ahmadi, H

    2007-09-01

    To determine the prevalence of developmental dental anomalies in patients attending the Dental Faculty of Medical University of Yazd, Iran and the gender differences of these anomalies. A retrospective study based on the panoramic radiographs of 480 patients. Patients referred for panoramic radiographs were clinically examined, a detailed family history of any dental anomalies in their first and second degree relatives was obtained and finally their radiographs were studied in detail for the presence of dental anomalies. 40.8% of the patients had dental anomalies. The more common anomalies were dilaceration (15%), impacted teeth (8.3%) and taurodontism (7.5%) and supernumerary teeth (3.5%). Macrodontia and fusion were detected in a few radiographs (0.2%). 49.1% of male patients had dental anomalies compared to 33.8% of females. Dilaceration, taurodontism and supernumerary teeth were found to be more prevalent in men than women, whereas impacted teeth, microdontia and gemination were more frequent in women. Family history of dental anomalies was positive in 34% of the cases.. Taurodontism, gemination, dens in dente and talon cusp were specifically limited to the patients under 20 year's old, while the prevalence of other anomalies was almost the same in all groups. Dilaceration, impaction and taurodontism were relatively common in the studied populaton. A family history of dental anomalies was positive in a third of cases.

  9. Axial anomaly at finite temperature

    International Nuclear Information System (INIS)

    Chaturvedi, S.; Gupte, Neelima; Srinivasan, V.

    1985-01-01

    The Jackiw-Bardeen-Adler anomaly for QED 4 and QED 2 are calculated at finite temperature. It is found that the anomaly is independent of temperature. Ishikawa's method [1984, Phys. Rev. Lett. vol. 53 1615] for calculating the quantised Hall effect is extended to finite temperature. (author)

  10. Global gravitational anomalies and transport

    Energy Technology Data Exchange (ETDEWEB)

    Chowdhury, Subham Dutta; David, Justin R. [Centre for High Energy Physics, Indian Institute of Science,C. V. Raman Avenue, Bangalore 560012 (India)

    2016-12-21

    We investigate the constraints imposed by global gravitational anomalies on parity odd induced transport coefficients in even dimensions for theories with chiral fermions, gravitinos and self dual tensors. The η-invariant for the large diffeomorphism corresponding to the T transformation on a torus constraints the coefficients in the thermal effective action up to mod 2. We show that the result obtained for the parity odd transport for gravitinos using global anomaly matching is consistent with the direct perturbative calculation. In d=6 we see that the second Pontryagin class in the anomaly polynomial does not contribute to the η-invariant which provides a topological explanation of this observation in the ‘replacement rule’. We then perform a direct perturbative calculation for the contribution of the self dual tensor in d=6 to the parity odd transport coefficient using the Feynman rules proposed by Gaumé and Witten. The result for the transport coefficient agrees with that obtained using matching of global anomalies.

  11. Prediction of the Midlatitude Response to Strong Madden-Julian Oscillation Events on S2S Time Scales

    Science.gov (United States)

    Tseng, K.-C.; Barnes, E. A.; Maloney, E. D.

    2018-01-01

    The Madden-Julian Oscillation (MJO) forces strong variations in extratropical atmospheric circulations that have important implications for subseasonal-to-seasonal (S2S) prediction. In particular, certain MJO phases are characterized by a consistent modulation of geopotential height in the North Pacific and adjacent regions across different MJO events. Until recently, only limited research has examined the relationship between these robust MJO tropical-extratropical teleconnections and model prediction skill. In this study, reanalysis data and numerical forecast model ensemble hindcasts are used to demonstrate that robust teleconnections in specific MJO phases and time lags are also characterized by excellent agreement in the prediction of geopotential height anomalies across model ensemble members at forecast leads of up to 3 weeks. These periods of enhanced prediction capabilities extend the possibility for skillful extratropical weather prediction beyond traditional 10-13 day limits.

  12. Hawking radiation from rotating black holes in anti-de Sitter spaces via gauge and gravitational anomalies

    International Nuclear Information System (INIS)

    Jiang Qingquan; Wu Shuangqing

    2007-01-01

    Robinson-Wilczek's recent work, which treats Hawking radiation as a compensating flux to cancel gravitational anomaly at the horizon of a Schwarzschild-type black hole, is extended to study Hawking radiation of rotating black holes in anti-de Sitter spaces, especially that in dragging coordinate system, via gauge and gravitational anomalies. The results show that in order to restore gauge invariance and general coordinate covariance at the quantum level in the effective field theory, the charge and energy flux by requiring to cancel gauge and gravitational anomalies at the horizon, must have a form equivalent to that of a (1+1)-dimensional blackbody radiation at Hawking temperature with an appropriate chemical potential

  13. Free-air and Bouguer gravity anomalies and the Martian crustal dichotomy

    Science.gov (United States)

    Frey, Herbert; Bills, Bruce G.; Kiefer, Walter S.; Nerem, R. Steven; Roark, James H.; Zuber, Maria T.

    1993-01-01

    Free-air and Bouguer gravity anomalies from a 50x50 field, derived from re-analysis of Viking Orbiter and Mariner 9 tracking data and using a 50x50 expansion of the current Mars topography and the GSFC degree 50 geoid as the equipotential reference surface, with the Martian crustal dichotomy are compared. The spherical harmonic topography used has zero mean elevation, and differs from the USGS maps by about 2 km. In this field the dichotomy boundary in eastern Mars lies mostly at -1 to -2 km elevation. Bouguer gravity anomalies are shown on a map of Noachian, Hesperian, and Amazonian age terrains, simplified from current geologic maps. The map is centered at 300 deg W to show the continuity of the dichotomy boundary. Contour interval is 100 mgals. Gravity and topography were compared along approximately 40 profiles oriented parallel to the dichotomy boundary topographic gradient, to determine how the geophysical character of the boundary changes along its length and what this implies for its origin and development.

  14. Low Risk Anomalies?

    DEFF Research Database (Denmark)

    Schneider, Paul; Wagner, Christian; Zechner, Josef

    . Empirically, we find that option-implied ex-ante skewness is strongly related to ex-post residual coskewness and alphas. Beta- and volatility-based low risk anomalies are largely driven by a single principal component, which is in turn largely explained by skewness. Controlling for skewness renders the alphas......This paper shows that stocks' CAPM alphas are negatively related to CAPM betas if investors demand compensation for negative skewness. Thus, high (low) beta stocks appear to underperform (outperform). This apparent anomaly merely reflects compensation for residual coskewness ignored by the CAPM...... of betting-against-beta and -volatility insignificant....

  15. Congenital laryngeal anomalies,

    Directory of Open Access Journals (Sweden)

    Michael J. Rutter

    2014-12-01

    Full Text Available Introduction: It is essential for clinicians to understand issues relevant to the airway management of infants and to be cognizant of the fact that infants with congenital laryngeal anomalies are at particular risk for an unstable airway. Objectives: To familiarize clinicians with issues relevant to the airway management of infants and to present a succinct description of the diagnosis and management of an array of congenital laryngeal anomalies. Methods: Revision article, in which the main aspects concerning airway management of infants will be analyzed. Conclusions: It is critical for clinicians to understand issues relevant to the airway management of infants.

  16. The developmental field concept in pediatric pathology--especially with respect to fibular a/hypoplasia and the DiGeorge anomaly.

    Science.gov (United States)

    Opitz, J M; Lewin, S O

    1987-01-01

    Identical anomalies produced by different causes such as aneuploidy, gene mutation, teratogenic chemicals, and certain surgical procedures are a clear indication that embryonic primordia respond as units in the production of developmental anomalies of anatomic structure. Hence, they must also act as units during normal ontogeny. The presence of identical malformations in different mammalian species identifies developmental and anatomic homology by virtue of descent from a common ancestor. These dys- and orthomorphogenetically reactive units are the equivalents of the classic experimental embryologist's epimorphic fields, which are those units of the embryo in which the development of complex structures appropriate to the species is determined and controlled in a spatially coordinated, temporarily synchronous, and epimorphically hierarchical manner that expresses both species-nonspecific (that is, phylogenetic) and species-specific genetically coded developmental information. Thus, it is as important for pathologists as it is for clinical geneticists to steep themselves in the art and science of phenotype analysis and to be able to do all of those studies, including anthropometry, dermatoglyphics, and growth analysis, that are required to arrive at inferences of cause and pathogenesis from the phenotype. There is probably one other incentive besides the ethical and intellectual ones to do this and to do it as well as possible, namely, the medico-legal consequences. If pathologists fail to illuminate the causal genesis of a given case to aid in preventing recurrence, then, in short order, they might be held equally as liable as clinicians for missing high recurrence risk genetic diagnoses. These depressing considerations aside, it is important to close on a positive note. As at the outset, we want to emphasize once more that, without question, this is the most exciting time to be working in the field of developmental pathology. In this specialty a marriage is

  17. Nose Structure Delineation of Bouguer Anomaly as the Interpretation Basis of Probable Hydrocarbon Traps: A Case Study on the Mainland Area of Northwest Java Basin

    Directory of Open Access Journals (Sweden)

    Kamtono Kamtono

    2014-06-01

    Full Text Available DOI: 10.17014/ijog.v7i3.144Two important aspects in the exploration of oil and gas are technology and exploration concepts, but the use of technology is not always suitable for areas with geological conditions covered by young volcanic sediments or limestone. The land of the Northwest Java Basin is mostly covered by young volcanic products, so exploration using seismic methods will produce less clear image resolution. To identify and interpret the subsurface structure and the possibility of hydrocarbon trap, gravity measurements have been carried out. Delineation of nose structures of a Bouguer anomaly map was used to interpret the probability of hydrocarbon traps. The result of the study shows that the gravity anomalies could be categorized into three groups : low anomaly (< 34 mgal, middle anomaly (34 - 50 mgal, and high anomaly (> 50 mgal. The analysis of Bouguer anomaly indicates that the low anomaly is concentrated in Cibarusa area as a southern part of Ciputat Subbasin, and in Cikampek area. The result of delineation of the Bouguer anomaly map shows the nose structures existing on Cibinong-Cileungsi and Pangkalan-Bekasi Highs, while delineation of residual anomaly map shows the nose structures occurs on Cilamaya-Karawang high. Locally, the gas fields of Jatirangon and Cicauh areas exist on the flank of the nose structure of Pangkalan-Bekasi High, while the oil/gas field of Northern Cilamaya is situated on the flank of the nose structure of Cilamaya-Karawang High. The concept of fluid/gas migration concentrated on nose structures which are delineated from gravity data can be applied in the studied area. This concept needs to be tested in other oil and gas field areas.

  18. [Occlusal anomalies in the deciduous and mixed bites].

    Science.gov (United States)

    Legovic, M; Mady, L

    1998-01-01

    In 311 examines (177 boys and 134 girls) with primary dentition and 535 examinees (285 boys and 250 girls) with mixed dentition in Istria--Croatia, the frequency of orthodontic and occlusive anomalies in regard of space plane and premature extraction of c, m1 and m2 are investigated. The orthodontic anomalies are defected in 46.95%, premature loss in 11.25% and occlusive anomalies in 40.85% of examinees with primary dentition, while in mixed dentition the 58.69% of examinees have orthodontic anomaly, the 17.20% premature loss and the 48.97% of examinees have occlusal anomaly. In both phases of dentition the most frequent are occlusive anomalies in the following planes: sagittal, vertical and sagittal-vertical.

  19. Anomalies in instanton calculus

    International Nuclear Information System (INIS)

    Anselmi, D.

    1995-01-01

    I develop a formalism for solving topological field theories explicitly, in the case when the explicit expression of the instantons is known. I solve topological Yang-Mills theory with the k=1 instanton of Belavin et al. and topological gravity with the Eguchi-Hanson instanton. It turns out that naively empty theories are indeed nontrivial. Many unexpected interesting hidden quantities (punctures, contact terms, nonperturbative anomalies with or without gravity) are revealed. Topological Yang-Mills theory with G=SU(2) is not just Donaldson theory, but contains a certain link theory. Indeed, local and non-local observables have the property of marking cycles. Moreover, from topological gravity one learns that an object can be considered BRST exact only if it is so all over the moduli space M , boundary included. Being BRST exact in any interior point of M is not sufficient to make an amplitude vanish. Presumably, recursion relations and hierarchies can be found to solve topological field theories in four dimensions, in particular topological Yang-Mills theory with G=SU(2) on R 4 and topological gravity with the full set of asymptotically locally Euclidean manifolds. ((orig.))

  20. Lunar Bouguer gravity anomalies - Imbrian age craters

    Science.gov (United States)

    Dvorak, J.; Phillips, R. J.

    1978-01-01

    The Bouguer gravity of mass anomalies associated with four Imbrian age craters, analyzed in the present paper, are found to differ considerably from the values of the mass anomalies associated with some young lunar craters. Of the Imbrian age craters, only Piccolomini exhibits a negative gravity anomaly (i.e., a low density region) which is characteristic of the young craters studied. The Bouguer gravity anomalies are zero for each of the remaining Imbrian age craters. Since, Piccolomini is younger, or at least less modified, than the other Imbrian age craters, it is suggested that the processes responsible for the post-impact modification of the Imbrian age craters may also be responsible for removing the negative mass anomalies initially associated with these features.

  1. Intracranial developmental venous anomaly: is it asymptomatic?

    Science.gov (United States)

    Puente, A Bolívar; de Asís Bravo Rodríguez, F; Bravo Rey, I; Romero, E Roldán

    2018-03-16

    Intracranial developmental venous anomalies are the most common vascular malformation. In the immense majority of cases, these anomalies are asymptomatic and discovered incidentally, and they are considered benign. Very exceptionally, however, they can cause neurological symptoms. In this article, we present three cases of patients with developmental venous anomalies that presented with different symptoms owing to complications derived from altered venous drainage. These anomalies were located in the left insula, right temporal lobe, and cerebellum. The exceptionality of the cases presented as well as of the images associated, which show the mechanism through which the symptoms developed, lies in the low incidence of symptomatic developmental venous anomalies reported in the literature. Copyright © 2018 SERAM. Publicado por Elsevier España, S.L.U. All rights reserved.

  2. Branchial anomalies: diagnosis and management.

    Science.gov (United States)

    Prasad, Sampath Chandra; Azeez, Arun; Thada, Nikhil Dinaker; Rao, Pallavi; Bacciu, Andrea; Prasad, Kishore Chandra

    2014-01-01

    Objective. To find out the incidence of involvement of individual arches, anatomical types of lesions, the age and sex incidence, the site and side of predilection, the common clinical features, the common investigations, treatment, and complications of the different anomalies. Setting. Academic Department of Otolaryngology, Head and Neck Surgery. Design. A 10 year retrospective study. Participants. 30 patients with clinically proven branchial anomalies including patients with bilateral disease totaling 34 lesions. Main Outcome Measures. The demographical data, clinical features, type of branchial anomalies, and the management details were recorded and analyzed. Results and Observations. The mean age of presentation was 18.67 years. Male to female sex ratio was 1.27 : 1 with a male preponderance. Of the 34 lesions, maximum incidence was of second arch anomalies (50%) followed by first arch. We had two cases each of third and fourth arch anomalies. Only 1 (3.3%) patients of the 30 presented with lesion at birth. The most common pathological type of lesions was fistula (58.82%) followed by cyst. 41.18% of the lesions occurred on the right side. All the patients underwent surgical excision. None of our patients had involvement of facial nerve in first branchial anomaly. All patients had tracts going superficial to the facial nerve. Conclusion. Confirming the extent of the tract is mandatory before any surgery as these lesions pass in relation to some of the most vital structures of the neck. Surgery should always be the treatment option. injection of dye, microscopic removal and inclusion of surrounding tissue while excising the tract leads to a decreased incidence of recurrence.

  3. Branchial Anomalies: Diagnosis and Management

    Science.gov (United States)

    Azeez, Arun; Thada, Nikhil Dinaker; Rao, Pallavi; Prasad, Kishore Chandra

    2014-01-01

    Objective. To find out the incidence of involvement of individual arches, anatomical types of lesions, the age and sex incidence, the site and side of predilection, the common clinical features, the common investigations, treatment, and complications of the different anomalies. Setting. Academic Department of Otolaryngology, Head and Neck Surgery. Design. A 10 year retrospective study. Participants. 30 patients with clinically proven branchial anomalies including patients with bilateral disease totaling 34 lesions. Main Outcome Measures. The demographical data, clinical features, type of branchial anomalies, and the management details were recorded and analyzed. Results and Observations. The mean age of presentation was 18.67 years. Male to female sex ratio was 1.27 : 1 with a male preponderance. Of the 34 lesions, maximum incidence was of second arch anomalies (50%) followed by first arch. We had two cases each of third and fourth arch anomalies. Only 1 (3.3%) patients of the 30 presented with lesion at birth. The most common pathological type of lesions was fistula (58.82%) followed by cyst. 41.18% of the lesions occurred on the right side. All the patients underwent surgical excision. None of our patients had involvement of facial nerve in first branchial anomaly. All patients had tracts going superficial to the facial nerve. Conclusion. Confirming the extent of the tract is mandatory before any surgery as these lesions pass in relation to some of the most vital structures of the neck. Surgery should always be the treatment option. injection of dye, microscopic removal and inclusion of surrounding tissue while excising the tract leads to a decreased incidence of recurrence. PMID:24772172

  4. BPS state counting using wall-crossing, holomorphic anomalies and modularity

    Energy Technology Data Exchange (ETDEWEB)

    Wotschke, Thomas

    2013-05-15

    In this thesis we examine the counting of BPS states using wall-crossing, holomorphic anomalies and modularity. We count BPS states that arise in two setups: multiple M5-branes wrapping P x T{sup 2}, where P denotes a divisor inside a Calabi-Yau threefold and topological string theory on elliptic Calabi-Yau threefolds. The first setup has a dual description as type IIA string theory via a D4-D2-D0 brane system. Furthermore it leads to two descriptions depending on the size of P and T{sup 2} relative to each other. For the case of a small divisor P this setup is described by the (0,4) Maldacena-Strominger-Witten conformal field theory of a black hole in M-theory and for the case of small T{sup 2} the setup can by described by N=4 topological Yang-Mills theory on P. The BPS states are counted by the modified elliptic genus, which can be decomposed into a vector-valued modular form that provides the generating function for the BPS invariants and a Siegel-Narain theta function. In the first part we discuss the holomorphic anomaly of the modified elliptic genus for the case of two M5-branes and divisors with b{sup +}{sub 2}(P)=1. Due to the wall-crossing effect the change in the generating function is captured by an indefinite theta function, which is a mock modular form. We use the Kontsevich-Soibelman wall-crossing formula to determine the jumps in the modified elliptic genus. Using the regularisation procedure for mock modular forms of Zwegers, modularity can be restored at the cost of holomorphicity. We show that the non-holomorphic completion is due to bound states of single M5-branes. At the attractor point in the moduli space we prove the holomorphic anomaly equation, which is compatible with the holomorphic anomaly equations observed in the context of N=4 Yang-Mills theory on P{sup 2} and E-strings on a del Pezzo surface. We calculate the generating functions of BPS invariants for the divisors P{sup 2}, F{sub 0}, F{sub 1} and the del Pezzo surface dP{sub 8} and

  5. BPS state counting using wall-crossing, holomorphic anomalies and modularity

    International Nuclear Information System (INIS)

    Wotschke, Thomas

    2013-05-01

    In this thesis we examine the counting of BPS states using wall-crossing, holomorphic anomalies and modularity. We count BPS states that arise in two setups: multiple M5-branes wrapping P x T 2 , where P denotes a divisor inside a Calabi-Yau threefold and topological string theory on elliptic Calabi-Yau threefolds. The first setup has a dual description as type IIA string theory via a D4-D2-D0 brane system. Furthermore it leads to two descriptions depending on the size of P and T 2 relative to each other. For the case of a small divisor P this setup is described by the (0,4) Maldacena-Strominger-Witten conformal field theory of a black hole in M-theory and for the case of small T 2 the setup can by described by N=4 topological Yang-Mills theory on P. The BPS states are counted by the modified elliptic genus, which can be decomposed into a vector-valued modular form that provides the generating function for the BPS invariants and a Siegel-Narain theta function. In the first part we discuss the holomorphic anomaly of the modified elliptic genus for the case of two M5-branes and divisors with b + 2 (P)=1. Due to the wall-crossing effect the change in the generating function is captured by an indefinite theta function, which is a mock modular form. We use the Kontsevich-Soibelman wall-crossing formula to determine the jumps in the modified elliptic genus. Using the regularisation procedure for mock modular forms of Zwegers, modularity can be restored at the cost of holomorphicity. We show that the non-holomorphic completion is due to bound states of single M5-branes. At the attractor point in the moduli space we prove the holomorphic anomaly equation, which is compatible with the holomorphic anomaly equations observed in the context of N=4 Yang-Mills theory on P 2 and E-strings on a del Pezzo surface. We calculate the generating functions of BPS invariants for the divisors P 2 , F 0 , F 1 and the del Pezzo surface dP 8 and dP 9 ((1)/(2) K3). In the second part we study

  6. FOETAL ULTRASOUND - NEUROECTODERMAL ANOMALIES IN RURAL PREGNANT WOMEN

    Directory of Open Access Journals (Sweden)

    Mala Venkata

    2016-06-01

    Full Text Available BACKGROUND A prospective clinical study to know the various types of congenital Neuroectodermal Anomalies on obstetric Ultrasound, in rural pregnant women. To reduce the maternal morbidity and mortality by early detection of these Congenital Neuroectodermal Anomalies. To calculate the incidence and prevalence of different types of Congenital Neuroectodermal Anomalies, in these rural pregnant women. To assist the obstetrician in taking decisions regarding the termination or continuation of the pregnancy in relation to the type of malformation and its prognosis. METHODS A prospective clinical study of Congenital Neuroectodermal Anomalies in 22,000 rural pregnant women coming to the Santhiram Medical College, Radiology Department for a routine obstetric scan. 44 cases of neuroectodermal anomalies were detected out of the 22000 cases, within an incidence of 2 per 1000 cases. Approximately 1 in every 500 cases showed an anomaly. RESULTS The most common lesions detected were hydrocephalus, and spina bifida followed by anencephaly. Association of these lesions with consanguinity, previous history of similar anomaly and intake of iron and folic acid tablets was noted. CONCLUSION Ultrasound is an excellent modality for the diagnosis and characterisation of the neuroectodermal anomalies. Its multiplanar imaging property along with real time image visualisation make it an excellent tool for the diagnosis and characterisation of these anomalies

  7. Model parameter estimations from residual gravity anomalies due to simple-shaped sources using Differential Evolution Algorithm

    Science.gov (United States)

    Ekinci, Yunus Levent; Balkaya, Çağlayan; Göktürkler, Gökhan; Turan, Seçil

    2016-06-01

    An efficient approach to estimate model parameters from residual gravity data based on differential evolution (DE), a stochastic vector-based metaheuristic algorithm, has been presented. We have showed the applicability and effectiveness of this algorithm on both synthetic and field anomalies. According to our knowledge, this is a first attempt of applying DE for the parameter estimations of residual gravity anomalies due to isolated causative sources embedded in the subsurface. The model parameters dealt with here are the amplitude coefficient (A), the depth and exact origin of causative source (zo and xo, respectively) and the shape factors (q and ƞ). The error energy maps generated for some parameter pairs have successfully revealed the nature of the parameter estimation problem under consideration. Noise-free and noisy synthetic single gravity anomalies have been evaluated with success via DE/best/1/bin, which is a widely used strategy in DE. Additionally some complicated gravity anomalies caused by multiple source bodies have been considered, and the results obtained have showed the efficiency of the algorithm. Then using the strategy applied in synthetic examples some field anomalies observed for various mineral explorations such as a chromite deposit (Camaguey district, Cuba), a manganese deposit (Nagpur, India) and a base metal sulphide deposit (Quebec, Canada) have been considered to estimate the model parameters of the ore bodies. Applications have exhibited that the obtained results such as the depths and shapes of the ore bodies are quite consistent with those published in the literature. Uncertainty in the solutions obtained from DE algorithm has been also investigated by Metropolis-Hastings (M-H) sampling algorithm based on simulated annealing without cooling schedule. Based on the resulting histogram reconstructions of both synthetic and field data examples the algorithm has provided reliable parameter estimations being within the sampling limits of

  8. Fetal renal anomalies : diagnosis, management, and outcome

    NARCIS (Netherlands)

    Damen-Elias, Henrica Antonia Maria

    2004-01-01

    In two to three percent of fetuses structural anomalies can be found with prenatal ultrasound investigation. Anomalies of the urinary tract account for 15 to 20% of these anomalies with a detection rate of approximately of 90%. In Chapter 2, 3 and 4 we present reference curves for size and growth

  9. Congenital anomalies of the male urethra

    International Nuclear Information System (INIS)

    Levin, Terry L.; Han, Bokyung; Little, Brent P.

    2007-01-01

    The spectrum of congenital anomalies of the male urethra is presented. The embryologic basis of each anomaly, when known, is discussed. Clinical and imaging features of each entity are presented. (orig.)

  10. Signal anomaly detection and characterization

    International Nuclear Information System (INIS)

    Morgenstern, V.M.; Upadhyaya, B.R.; Gloeckler, O.

    1988-08-01

    As part of a comprehensive signal validation system, we have developed a signal anomaly detector, without specifically establishing the cause of the anomaly. A signal recorded from process instrumentation is said to have an anomaly, if during steady-state operation, the deviation in the level of the signal, its root-mean-square (RMS) value, or its statistical distribution changes by a preset value. This deviation could be an unacceptable increase or a decrease in the quantity being monitored. An anomaly in a signal may be characterized by wideband or single-frequency noise, bias error, pulse-type error, nonsymmetric behavior, or a change in the signal bandwidth. Various signatures can be easily computed from data samples and compared against specified threshold values. We want to point out that in real processes, pulses can appear with different time widths, and at different rates of change of the signal. Thus, in characterizing an anomaly as a pulse-type, the fastest pulse width is constrained by the signal sampling interval. For example, if a signal is sampled at 100 Hz, we will not be able to detect pulses occurring at kHz rates. Discussion with utility and Combustion Engineering personnel indicated that it is not practical to detect pulses having a narrow time width. 9 refs., 11 figs., 8 tabs

  11. Thermal infrared anomalies of several strong earthquakes.

    Science.gov (United States)

    Wei, Congxin; Zhang, Yuansheng; Guo, Xiao; Hui, Shaoxing; Qin, Manzhong; Zhang, Ying

    2013-01-01

    In the history of earthquake thermal infrared research, it is undeniable that before and after strong earthquakes there are significant thermal infrared anomalies which have been interpreted as preseismic precursor in earthquake prediction and forecasting. In this paper, we studied the characteristics of thermal radiation observed before and after the 8 great earthquakes with magnitude up to Ms7.0 by using the satellite infrared remote sensing information. We used new types of data and method to extract the useful anomaly information. Based on the analyses of 8 earthquakes, we got the results as follows. (1) There are significant thermal radiation anomalies before and after earthquakes for all cases. The overall performance of anomalies includes two main stages: expanding first and narrowing later. We easily extracted and identified such seismic anomalies by method of "time-frequency relative power spectrum." (2) There exist evident and different characteristic periods and magnitudes of thermal abnormal radiation for each case. (3) Thermal radiation anomalies are closely related to the geological structure. (4) Thermal radiation has obvious characteristics in abnormal duration, range, and morphology. In summary, we should be sure that earthquake thermal infrared anomalies as useful earthquake precursor can be used in earthquake prediction and forecasting.

  12. Euro-African MAGSAT anomaly-tectonic observations

    Science.gov (United States)

    Hinze, W. J.; Olivier, R.; Vonfrese, R. R. B.

    1985-01-01

    Preliminary satellite (MAGSAT) scalar magnetic anomaly data are compiled and differentially reduced to radial polarization by equivalent point source inversion for comparison with tectonic data of Africa, Europe and adjacent marine areas. A number of associations are evident to constrain analyses of the tectonic features and history of the region. The Precambrian shields of Africa and Europe exhibit varied magnetic signatures. All shields are not magnetic highs and, in fact, the Baltic shield is a marked minimum. The reduced-to-the-pole magnetic map shows a marked tendency for northeasterly striking anomalies in the eastern Atlantic and adjacent Africa, which is coincident to the track of several hot spots for the past 100 million years. However, there is little consistency in the sign of the magnetic anomalies and the track of the hot spots. Comparison of the radially polarized anomalies of Africa and Europe with other reduced-to-the-pole magnetic satellite anomaly maps of the Western Hemisphere support the reconstruction of the continents prior to the origin of the present-day Atlantic Ocean in the Mesozoic Era.

  13. Comparison of full field and anomaly initialisation for decadal climate prediction: towards an optimal consistency between the ocean and sea-ice anomaly initialisation state

    Science.gov (United States)

    Volpi, Danila; Guemas, Virginie; Doblas-Reyes, Francisco J.

    2017-08-01

    Decadal prediction exploits sources of predictability from both the internal variability through the initialisation of the climate model from observational estimates, and the external radiative forcings. When a model is initialised with the observed state at the initial time step (Full Field Initialisation—FFI), the forecast run drifts towards the biased model climate. Distinguishing between the climate signal to be predicted and the model drift is a challenging task, because the application of a-posteriori bias correction has the risk of removing part of the variability signal. The anomaly initialisation (AI) technique aims at addressing the drift issue by answering the following question: if the model is allowed to start close to its own attractor (i.e. its biased world), but the phase of the simulated variability is constrained toward the contemporaneous observed one at the initialisation time, does the prediction skill improve? The relative merits of the FFI and AI techniques applied respectively to the ocean component and the ocean and sea ice components simultaneously in the EC-Earth global coupled model are assessed. For both strategies the initialised hindcasts show better skill than historical simulations for the ocean heat content and AMOC along the first two forecast years, for sea ice and PDO along the first forecast year, while for AMO the improvements are statistically significant for the first two forecast years. The AI in the ocean and sea ice components significantly improves the skill of the Arctic sea surface temperature over the FFI.

  14. Intercomparison of Satellite Derived Gravity Time Series with Inferred Gravity Time Series from TOPEX/POSEIDON Sea Surface Heights and Climatological Model Output

    Science.gov (United States)

    Cox, C.; Au, A.; Klosko, S.; Chao, B.; Smith, David E. (Technical Monitor)

    2001-01-01

    The upcoming GRACE mission promises to open a window on details of the global mass budget that will have remarkable clarity, but it will not directly answer the question of what the state of the Earth's mass budget is over the critical last quarter of the 20th century. To address that problem we must draw upon existing technologies such as SLR, DORIS, and GPS, and climate modeling runs in order to improve our understanding. Analysis of long-period geopotential changes based on SLR and DORIS tracking has shown that addition of post 1996 satellite tracking data has a significant impact on the recovered zonal rates and long-period tides. Interannual effects such as those causing the post 1996 anomalies must be better characterized before refined estimates of the decadal period changes in the geopotential can be derived from the historical database of satellite tracking. A possible cause of this anomaly is variations in ocean mass distribution, perhaps associated with the recent large El Nino/La Nina. In this study, a low-degree spherical harmonic gravity time series derived from satellite tracking is compared with a TOPEX/POSEIDON-derived sea surface height time series. Corrections for atmospheric mass effects, continental hydrology, snowfall accumulation, and ocean steric model predictions will be considered.

  15. No parity anomaly in massless QED3: A BPHZL approach

    International Nuclear Information System (INIS)

    Del Cima, O.M.; Franco, D.H.T.; Piguet, O.; Schweda, M.

    2009-01-01

    In this Letter we call into question the perturbatively parity breakdown at 1-loop for the massless QED 3 frequently claimed in the literature. As long as perturbative quantum field theory is concerned, whether a parity anomaly owing to radiative corrections exists or not shall be definitely proved by using a renormalization method independent of any regularization scheme. Such a problem has been investigated in the framework of BPHZL renormalization method, by adopting the Lowenstein-Zimmermann subtraction scheme. The 1-loop parity-odd contribution to the vacuum-polarization tensor is explicitly computed in the framework of the BPHZL renormalization method. It is shown that a Chern-Simons term is generated at that order induced through the infrared subtractions - which violate parity. We show then that, what is called 'parity anomaly', is in fact a parity-odd counterterm needed for restauring parity.

  16. Quantitative Examination of Piezoelectric/Seismoelectric Anomalies from Near-Surface Targets

    Directory of Open Access Journals (Sweden)

    Lev Eppelbaum

    2017-09-01

    Full Text Available The piezoelectric and seismo-electrokinetic phenomena are manifested by electrical and electromagnetic processes that occur in rocks under the influence of elastic oscillations triggered by shots or mechanical impacts. Differences in piezoelectric properties between the studied targets and host media determine the possibilities of the piezoelectric/seismoelectric method application. Over a long time, an interpretation of obtained data is carried out by the use of methods developed in seismic prospecting. Examination of nature of piezoelectric/seismoelectric anomalies observed in subsurface indicates that these may be related (mainly to electric potential field. In this paper, it is shown that quantitative analysis of piezoelectric/seismoelectric anomalies may be performed by the advanced and reliable methodologies developed in magnetic prospecting. Some examples from mining geophysics (Russia and ancient metallurgical site (Israel confirm applicability of the suggested approach.

  17. Coronary artery anomalies in Turner Syndrome.

    Science.gov (United States)

    Viuff, Mette H; Trolle, Christian; Wen, Jan; Jensen, Jesper M; Nørgaard, Bjarne L; Gutmark, Ephraim J; Gutmark-Little, Iris; Mortensen, Kristian H; Gravholt, Claus Højbjerg; Andersen, Niels H

    Congenital heart disease, primarily involving the left-sided structures, is often seen in patients with Turner Syndrome. Moreover, a few case reports have indicated that coronary anomalies may be more prevalent in Turner Syndrome than in the normal population. We therefore set out to systematically investigate coronary arterial anatomy by computed tomographic coronary angiography (coronary CTA) in Turner Syndrome patients. Fifty consecutive women with Turner Syndrome (mean age 47 years [17-71]) underwent coronary CTA. Patients were compared with 25 gender-matched controls. Coronary anomaly was more frequent in patients with Turner Syndrome than in healthy controls [20% vs. 4% (p = 0.043)]. Nine out of ten abnormal cases had an anomalous left coronary artery anatomy (absent left main trunk, n = 7; circumflex artery originating from the right aortic sinus, n = 2). One case had a tubular origin of the right coronary artery above the aortic sinus. There was no correlation between the presence of coronary arterial anomalies and karyotype, bicuspid aortic valve, or other congenital heart defects. Coronary anomalies are highly prevalent in Turner Syndrome. The left coronary artery is predominantly affected, with an absent left main coronary artery being the most common anomaly. No hemodynamically relevant coronary anomalies were found. Copyright © 2016 Society of Cardiovascular Computed Tomography. All rights reserved.

  18. Education on, Exposure to, and Management of Vascular Anomalies During Otolaryngology Residency and Pediatric Otolaryngology Fellowship.

    Science.gov (United States)

    Chun, Robert; Jabbour, Noel; Balakrishnan, Karthik; Bauman, Nancy; Darrow, David H; Elluru, Ravindhra; Grimmer, J Fredrik; Perkins, Jonathan; Richter, Gresham; Shin, Jennifer

    2016-07-01

    The field of vascular anomalies presents diverse challenges in diagnosis and management. Although many lesions involve the head and neck, training in vascular anomalies is not universally included in otolaryngology residencies and pediatric otolaryngology (POTO) fellowships. To explore the education in, exposure to, and comfort level of otolaryngology trainees with vascular anomalies. A survey was distributed to 39 POTO fellows and 44 residents in postgraduate year 5 who matched into POTO fellowships from April 22 through June 16, 2014. Survey responses from trainees on exposure to, education on, and comfort with vascular anomalies. Forty-four residents in postgraduate year 5 who applied to POTO fellowships and 39 POTO fellows were emailed the survey. Fourteen respondents were unable to be contacted owing to lack of a current email address. Thirty-six of 69 residents and fellows (18 fellows and 18 residents [52%]) responded to the survey. Twenty-seven trainees (75%) reported no participation in a vascular anomalies clinic during residency; 6 of these 27 individuals (22%) trained at institutions with a vascular anomalies clinic but did not participate in the clinic, and 28 of the 36 respondents (78%) reported that they had less than adequate or no exposure to vascular anomalies in residency. Among POTO fellows, 11 of 17 (65%) did not participate in a vascular anomalies clinic during fellowship, even though 8 of the 11 had a vascular anomalies clinic at their fellowship program. During fellowship training, 12 of 18 fellows (67%) reported that they had adequate exposure to vascular anomalies. Only 20 respondents (56%) felt comfortable distinguishing among diagnoses of vascular anomalies, and only 4 residents (22%) and 9 fellows (50%) felt comfortable treating patients with vascular anomalies. All fellows believed that training in vascular anomalies was important in fellowship, and 100% of respondents indicated that increased exposure to diagnosis and management of

  19. IceBridge Scintrex CS-3 Cesium Magnetometer L1B Geolocated Magnetic Anomalies, Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — The NASA IceBridge Scintrex CS-3 Cesium Magnetometer L1B Geolocated Magnetic Anomalies (IMCS31B) data set contains magnetic field readings taken over Greenland using...

  20. Recent developments in the understanding of equatorial ionization anomaly: A review

    Science.gov (United States)

    Balan, N.; Souza, J.; Bailey, G. J.

    2018-06-01

    A brief review of the recent developments in the understanding of the equatorial plasma fountain (EPF) and equatorial ionization anomaly (EIA) under quiet and active conditions is presented. It is clarified that (1) the EPF is not upward ExB plasma drift at the equator followed by downward plasma diffusion, but it is field perpendicular ExB plasma drift and field-aligned plasma diffusion acting together all along the field lines at all altitudes and plasma flowing in the direction of the resultant. (2) The EIA is formed not from the accumulation of plasma at the crests but mainly from the removal of plasma from around the equator by the upward ExB drift with small accumulations when the crests are within approximately ±20° magnetic latitude. The accumulations reduce with increasing latitude and become zero by approximately ±25°. (3) An asymmetric neutral wind makes EPF and EIA asymmetric with stronger fountain and stronger crest usually occurring in opposite hemispheres especially at equinoxes when winter anomaly is absent. (4) During the early stages of daytime main phase of major geomagnetic storms, the plasma fountain becomes a super fountain and the EIA becomes strong not due to the eastward prompt penetration electric field (PPEF) alone but due to the combined effect of eastward PPEF and storm-time equatorward winds (SEW). (5) During the later stages of the storms when EIA gets inhibited a peak sometimes occurs around the equator not due to westward electric fields but mainly due to the convergence of plasma from both hemispheres due to SEW.

  1. On High-Frequency Topography-Implied Gravity Signals for a Height System Unification Using GOCE-Based Global Geopotential Models

    Science.gov (United States)

    Grombein, Thomas; Seitz, Kurt; Heck, Bernhard

    2017-03-01

    National height reference systems have conventionally been linked to the local mean sea level, observed at individual tide gauges. Due to variations in the sea surface topography, the reference levels of these systems are inconsistent, causing height datum offsets of up to ±1-2 m. For the unification of height systems, a satellite-based method is presented that utilizes global geopotential models (GGMs) derived from ESA's satellite mission Gravity field and steady-state Ocean Circulation Explorer (GOCE). In this context, height datum offsets are estimated within a least squares adjustment by comparing the GGM information with measured GNSS/leveling data. While the GNSS/leveling data comprises the full spectral information, GOCE GGMs are restricted to long wavelengths according to the maximum degree of their spherical harmonic representation. To provide accurate height datum offsets, it is indispensable to account for the remaining signal above this maximum degree, known as the omission error of the GGM. Therefore, a combination of the GOCE information with the high-resolution Earth Gravitational Model 2008 (EGM2008) is performed. The main contribution of this paper is to analyze the benefit, when high-frequency topography-implied gravity signals are additionally used to reduce the remaining omission error of EGM2008. In terms of a spectral extension, a new method is proposed that does not rely on an assumed spectral consistency of topographic heights and implied gravity as is the case for the residual terrain modeling (RTM) technique. In the first step of this new approach, gravity forward modeling based on tesseroid mass bodies is performed according to the Rock-Water-Ice (RWI) approach. In a second step, the resulting full spectral RWI-based topographic potential values are reduced by the effect of the topographic gravity field model RWI_TOPO_2015, thus, removing the long to medium wavelengths. By using the latest GOCE GGMs, the impact of topography

  2. Seasonal climatology of hydrographic conditions in the upwelling region off northern Chile

    Science.gov (United States)

    Blanco, J. L.; Thomas, A. C.; Carr, M.-E.; Strub, P. T.

    2001-06-01

    Over 30 years of hydrographic data from the northern Chile (18°S-24°S) upwelling region are used to calculate the surface and subsurface seasonal climatology extending 400 km offshore. The data are interpolated to a grid with sufficient spatial resolution to preserve cross-shelf gradients and then presented as means within four seasons: austral winter (July-September), spring (October-December), summer (January-March), and fall (April-June). Climatological monthly wind forcing, surface temperature, and sea level from three coastal stations indicate equatorward (upwelling favorable) winds throughout the year, weakest in the north. Seasonal maximum alongshore wind stress is in late spring and summer (December-March). Major water masses of the region are identified in climatological T-S plots and their sources and implied circulation discussed. Surface fields and vertical transects of temperature and salinity confirm that upwelling occurs year-round, strongest in summer and weakest in winter, bringing relatively fresh water to the surface nearshore. Surface geostrophic flow nearshore is equatorward throughout the year. During summer, an anticyclonic circulation feature in the north which extends to at least 200 m depth is evident in geopotential anomaly and in both temperature and geopotential variance fields. Subsurface fields indicate generally poleward flow throughout the year, strongest in an undercurrent near the coast. This undercurrent is strongest in summer and most persistent and organized in the south (south of 21°S). A subsurface oxygen minimum, centered at ˜250 m, is strongest at lower latitudes. Low-salinity subsurface water intrudes into the study area near 100 m, predominantly in offshore regions, strongest during summer and fall and in the southernmost portion of the region. The climatological fields are compared to features off Baja within the somewhat analogous California Current and to measurements from higher latitudes within the Chile

  3. Effect of Warm Atlantic Waters on the Climate Anomalies in the West Arctic

    Directory of Open Access Journals (Sweden)

    A. N. Zolotokrylin

    2015-01-01

    Full Text Available Significant climatic changes of oceanic and atmospheric elements and a relation of them to the ocean surface winter anomalies in North Atlantic are analyzed in the paper. Periods of «warm» ocean (2002–2012 and «cold» ocean (1960–1970 were determined. Positive anomalies of the ocean surface temperature increase the ice-free water area and, correspondingly, decrease the ice-field area. As a result of such changes in a state of the ocean surface (open water and ice, surface air temperature rises, and, consequently, atmospheric pressure in central part of a given Arctic sector drops.

  4. Hawking radiation via anomaly cancellation for the black holes of five-dimensional minimal gauged supergravity

    International Nuclear Information System (INIS)

    Porfyriadis, Achilleas P.

    2009-01-01

    The anomaly cancellation method proposed by Wilczek et al. is applied to the general charged rotating black holes in five-dimensional minimal gauged supergravity. Thus Hawking temperature and fluxes are found. The Hawking temperature obtained agrees with the surface gravity formula. The black holes have charge and two unequal angular momenta, and these give rise to appropriate terms in the effective U(1) gauge field of the reduced (1+1)-dimensional theory. In particular, it is found that the terms in this U(1) gauge field correspond exactly to the correct electrostatic potential and the two angular velocities on the horizon of the black holes, and so the results for the Hawking fluxes derived here from the anomaly cancellation method are in complete agreement with the ones obtained from integrating the Planck distribution.

  5. Magnetic resonance imaging of Muellerian duct anomalies in children

    International Nuclear Information System (INIS)

    Li, Yi; Phelps, Andrew; Zapala, Matthew A.; MacKenzie, John D.; MacKenzie, Tippi C.; Courtier, Jesse

    2016-01-01

    Muellerian duct anomalies encompass a wide variety of disorders resulting from abnormalities in the embryological development of the Muellerian ducts. In the prepubertal pediatric population, Muellerian duct anomalies are often incidental findings on studies obtained for other reasons. The onset of menses can prompt more clinical symptoms. Proper characterization of Muellerian duct anomalies is important because these anomalies can affect the development of gynecological disorders as well as fertility. Muellerian duct anomalies also carry a high association with other congenital anomalies, particularly renal abnormalities. MRI is widely considered the best modality for assessing Muellerian duct anomalies; it provides multiplanar capability, clear anatomical detail and tissue characterization without ionizing radiation. MRI allows for careful description of Muellerian duct anomalies, often leading to classification into the most widely accepted classification system for Muellerian duct anomalies. This system, developed by the American Society of Reproductive Medicine, includes seven subtypes: uterine agenesis/hypoplasia, unicornuate, didelphys, bicornuate, septate, arcuate, and diethylstilbestrol (DES) drug-related uterus. In cases of complex anomalies that defy classification, MRI allows detailed depiction of all components of the anatomical abnormality, allowing for proper management and surgical planning. (orig.)

  6. Coexistence of bilateral first and second branchial arch anomalies

    Science.gov (United States)

    Thakur, J S; Shekar, Vidya; Saluja, Manika; Mohindroo, N K

    2013-01-01

    Branchial arch anomalies are one of the most common congenital anomalies that are usually unilateral and bilateral presentation is rare. The simultaneous presence of bilateral second branchial arch anomalies along with bilateral first arch anomalies is extremely rare, with only three such cases reported in the literature. We present two non-syndromic cases of coexisting bilateral first and second arch anomalies. Developmental anomalies of the branchial apparatus account for 17% of all paediatric cervical masses and are the most common type of congenital cervical mass. They usually present in the paediatric age group. About 96–97% of these anomalies are unilateral. Bilateral presentation is seen in 2–3% having a strong familial association. Congenital syndromes also have been associated with first and second branchial arch anomalies. Thorough clinical examination and investigations should be done to rule out these syndromes. PMID:23580675

  7. Limb body wall complex: A rare anomaly

    Directory of Open Access Journals (Sweden)

    Panduranga Chikkannaiah

    2013-01-01

    Full Text Available We present autopsy findings of a case of limb body wall complex (LBWC. The fetus had encephalocele, genitourinary agenesis, skeletal anomalies and body wall defects. The rare finding in our case is the occurrence of both cranial and urogenital anomalies. The presence of complex anomalies in this fetus, supports embryonal dysplasia theory of pathogenesis for LBWC.

  8. TEMPO: an ESA-funded project for uncovering significant features of the South Atlantic Anomaly

    Science.gov (United States)

    Pavón-Carrasco, F. Javier; De Santis, Angelo

    2016-04-01

    In this work we provide the last results of the ESA (European Space Agency) funded project TEMPO ("Is The Earth's Magnetic field POtentially reversing? New insights from Swarm mission"). The mail goal of this project is to analyse the time and spatial evolution of one of the most important features of the present geomagnetic field, i.e. the South Atlantic Anomaly (SAA). The region covered by this anomaly is characterized by values of geomagnetic field intensity around 30% lower than expected for those latitudes and extends over a large area in the South Atlantic Ocean, South America, South Africa and the Eastern Pacific Ocean. This large depression of the geomagnetic field strength has its origin in a prominent patch of reversed polarity flux in the Earth's outer core. The study of the SAA is an important challenge nowadays not only for the geomagnetic and paleomagnetic community, but also for other areas focused on the Earth Observation due to the protective role of this potential field against the charged particles forming the solar wind. A further increase of the SAA surface extent could have dramatic consequences for human health and technologies because a larger number of solar charged particles could reach the Earth's surface.

  9. Mobile Anomaly Detection Based on Improved Self-Organizing Maps

    Directory of Open Access Journals (Sweden)

    Chunyong Yin

    2017-01-01

    Full Text Available Anomaly detection has always been the focus of researchers and especially, the developments of mobile devices raise new challenges of anomaly detection. For example, mobile devices can keep connection with Internet and they are rarely turned off even at night. This means mobile devices can attack nodes or be attacked at night without being perceived by users and they have different characteristics from Internet behaviors. The introduction of data mining has made leaps forward in this field. Self-organizing maps, one of famous clustering algorithms, are affected by initial weight vectors and the clustering result is unstable. The optimal method of selecting initial clustering centers is transplanted from K-means to SOM. To evaluate the performance of improved SOM, we utilize diverse datasets and KDD Cup99 dataset to compare it with traditional one. The experimental results show that improved SOM can get higher accuracy rate for universal datasets. As for KDD Cup99 dataset, it achieves higher recall rate and precision rate.

  10. Discrimination between pre-seismic electromagnetic anomalies and solar activity effects

    Science.gov (United States)

    Koulouras, G.; Balasis, G.; Kiourktsidis, I.; Nannos, E.; Kontakos, K.; Stonham, J.; Ruzhin, Y.; Eftaxias, K.; Cavouras, D.; Nomicos, C.

    2009-04-01

    Laboratory studies suggest that electromagnetic emissions in a wide frequency spectrum ranging from kilohertz (kHz) to very high megahertz (MHz) frequencies are produced by the opening of microcracks, with the MHz radiation appearing earlier than the kHz radiation. Earthquakes are large-scale fracture phenomena in the Earth's heterogeneous crust. Thus, the radiated kHz-MHz electromagnetic emissions are detectable not only in the laboratory but also at a geological scale. Clear MHz-to-kHz electromagnetic anomalies have been systematically detected over periods ranging from a few days to a few hours prior to recent destructive earthquakes in Greece. We should bear in mind that whether electromagnetic precursors to earthquakes exist is an important question not only for earthquake prediction but mainly for understanding the physical processes of earthquake generation. An open question in this field of research is the classification of a detected electromagnetic anomaly as a pre-seismic signal associated with earthquake occurrence. Indeed, electromagnetic fluctuations in the frequency range of MHz are known to be related to a few sources, including atmospheric noise (due to lightning), man-made composite noise, solar-terrestrial noise (resulting from the Sun-solar wind-magnetosphere-ionosphere-Earth's surface chain) or cosmic noise, and finally, the lithospheric effect, namely pre-seismic activity. We focus on this point in this paper. We suggest that if a combination of detected kHz and MHz electromagnetic anomalies satisfies the set of criteria presented herein, these anomalies could be considered as candidate precursory phenomena of an impending earthquake.

  11. Discrimination between pre-seismic electromagnetic anomalies and solar activity effects

    International Nuclear Information System (INIS)

    Koulouras, G; Kiourktsidis, I; Stonham, J; Balasis, G; Nannos, E; Kontakos, K; Nomicos, C; Ruzhin, Y; Eftaxias, K; Cavouras, D

    2009-01-01

    Laboratory studies suggest that electromagnetic emissions in a wide frequency spectrum ranging from kilohertz (kHz) to very high megahertz (MHz) frequencies are produced by the opening of microcracks, with the MHz radiation appearing earlier than the kHz radiation. Earthquakes are large-scale fracture phenomena in the Earth's heterogeneous crust. Thus, the radiated kHz-MHz electromagnetic emissions are detectable not only in the laboratory but also at a geological scale. Clear MHz-to-kHz electromagnetic anomalies have been systematically detected over periods ranging from a few days to a few hours prior to recent destructive earthquakes in Greece. We should bear in mind that whether electromagnetic precursors to earthquakes exist is an important question not only for earthquake prediction but mainly for understanding the physical processes of earthquake generation. An open question in this field of research is the classification of a detected electromagnetic anomaly as a pre-seismic signal associated with earthquake occurrence. Indeed, electromagnetic fluctuations in the frequency range of MHz are known to be related to a few sources, including atmospheric noise (due to lightning), man-made composite noise, solar-terrestrial noise (resulting from the Sun-solar wind-magnetosphere-ionosphere-Earth's surface chain) or cosmic noise, and finally, the lithospheric effect, namely pre-seismic activity. We focus on this point in this paper. We suggest that if a combination of detected kHz and MHz electromagnetic anomalies satisfies the set of criteria presented herein, these anomalies could be considered as candidate precursory phenomena of an impending earthquake.

  12. Spatially modulated instabilities of holographic gauge-gravitational anomaly

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yan [Department of Space Science, and International Research Institute of Multidisciplinary Science,Beihang University,Beijing 100191 (China); Instituto de Fisica Teorica UAM/CSIC, Universidad Autonoma de Madrid,Cantoblanco, 28049 Madrid (Spain); Pena-Benitez, Francisco [Dipartimento di Fisica, Università di Perugia, I.N.F.N. Sezione di Perugia,Via A. Pascoli, I-06123 Perugia (Italy)

    2017-05-19

    We performed a study of the perturbative instabilities in Einstein-Maxwell-Chern-Simons theory with a gravitational Chern-Simons term, which is dual to a strongly coupled field theory with both chiral and mixed gauge-gravitational anomaly. With an analysis of the fluctuations in the near horizon regime at zero temperature, we found that there might be two possible sources of instabilities. The first one corresponds to a real mass-squared which is below the BF bound of AdS{sub 2}, and it leads to the bell-curve phase diagram at finite temperature. The effect of mixed gauge-gravitational anomaly is emphasised. Another source of instability is independent of gauge Chern-Simons coupling and exists for any finite gravitational Chern-Simons coupling. There is a singular momentum close to which unstable mode appears. The possible implications of this singular momentum are discussed. Our analysis suggests that the theory with a gravitational Chern-Simons term around Reissner-Nordström black hole is unreliable unless the gravitational Chern-Simons coupling is treated as a small perturbative parameter.

  13. Enhanced transmission via evanescent-to-propagating conversion in metallic nanoslits: role of Rayleigh anomalies

    International Nuclear Information System (INIS)

    Skigin, Diana C; Lester, Marcelo

    2014-01-01

    We analyze the enhanced transmission phenomenon in subwavelength slit structures near a dielectric interface. In particular, we investigate the influence of Rayleigh anomalies in the spectral position as well as in the bandwidth of Fabry–Perot resonances excited on such structures. We consider the cases of propagating and evanescent incidence, i.e., when the metallic structure is illuminated from the dielectric medium side with an incidence angle larger than the critical angle. We show that Rayleigh anomalies strongly interact with Fabry–Perot resonances, and make them deviate from the spectral positions predicted by the infinitely thin slit model. To get physical insight into this problem, we develop a simplified electromagnetic model and show that there is a close correspondence between the transmitted response of the structure and the behavior of certain function that depends on the geometrical and the illumination parameters. Our results suggest that Rayleigh anomalies strongly modify the electromagnetic response of the structure due to the existence of surface waves that modify the coupling condition between the fields inside and outside the slits. Besides, we show that even in absence of Fabry–Perot resonances, it is possible to produce enhanced transmission by taking advantage of the pseudoperiodicity condition of the fields. (paper)

  14. A least-squares minimization approach for model parameters estimate by using a new magnetic anomaly formula

    Science.gov (United States)

    Abo-Ezz, E. R.; Essa, K. S.

    2016-04-01

    A new linear least-squares approach is proposed to interpret magnetic anomalies of the buried structures by using a new magnetic anomaly formula. This approach depends on solving different sets of algebraic linear equations in order to invert the depth ( z), amplitude coefficient ( K), and magnetization angle ( θ) of buried structures using magnetic data. The utility and validity of the new proposed approach has been demonstrated through various reliable synthetic data sets with and without noise. In addition, the method has been applied to field data sets from USA and India. The best-fitted anomaly has been delineated by estimating the root-mean squared (rms). Judging satisfaction of this approach is done by comparing the obtained results with other available geological or geophysical information.

  15. Seismic Travel Time Tomography in Modeling Low Velocity Anomalies between the Boreholes

    Science.gov (United States)

    Octova, A.; Sule, R.

    2018-04-01

    Travel time cross-hole seismic tomography is applied to describing the structure of the subsurface. The sources are placed at one borehole and some receivers are placed in the others. First arrival travel time data that received by each receiver is used as the input data in seismic tomography method. This research is devided into three steps. The first step is reconstructing the synthetic model based on field parameters. Field parameters are divided into 24 receivers and 45 receivers. The second step is applying inversion process for the field data that consists of five pairs bore holes. The last step is testing quality of tomogram with resolution test. Data processing using FAST software produces an explicit shape and resemble the initial model reconstruction of synthetic model with 45 receivers. The tomography processing in field data indicates cavities in several place between the bore holes. Cavities are identified on BH2A-BH1, BH4A-BH2A and BH4A-BH5 with elongated and rounded structure. In resolution tests using a checker-board, anomalies still can be identified up to 2 meter x 2 meter size. Travel time cross-hole seismic tomography analysis proves this mothod is very good to describing subsurface structure and boundary layer. Size and anomalies position can be recognized and interpreted easily.

  16. Structural Anomalies and Multiferroic Behavior in Magnetically Frustrated TbMn2O5

    NARCIS (Netherlands)

    Chapon, L.C.; Blake, G.R.; Gutmann, M.J.; Park, S.; Hur, N.; Radaelli, P.G.; Cheong, S-W.

    2004-01-01

    We have studied the magnetostructural phase diagram of multiferroic TbMn2O5 as a function of temperature and magnetic field by neutron diffraction. Dielectric and magnetic anomalies are found to be associated with steps in the magnetic propagation vector, including a rare example of a

  17. Optical spectral weight anomalies and strong correlation

    International Nuclear Information System (INIS)

    Toschi, A.; Capone, M.; Ortolani, M.; Calvani, P.; Lupi, S.; Castellani, C.

    2007-01-01

    The anomalous behavior observed in the optical spectral weight (W) of the cuprates provides valuable information about the physics of these compounds. Both the doping and the temperature dependences of W are hardly explained through conventional estimates based on the f-sum rule. By computing the optical conductivity of the doped Hubbard model with the Dynamical Mean Field Theory, we point out that the strong correlation plays a key role in determining the basic features of the observed anomalies: the proximity to a Mott insulating phase accounts simultaneously for the strong temperature dependence of W and for its zero temperature value

  18. Regional magnetic anomaly constraints on continental rifting

    Science.gov (United States)

    Vonfrese, R. R. B.; Hinze, W. J.; Olivier, R.; Bentley, C. R.

    1985-01-01

    Radially polarized MAGSAT anomalies of North and South America, Europe, Africa, India, Australia and Antarctica demonstrate remarkably detailed correlation of regional magnetic lithospheric sources across rifted margins when plotted on a reconstruction of Pangea. These major magnetic features apparently preserve their integrity until a superimposed metamorphoric event alters the magnitude and pattern of the anomalies. The longevity of continental scale magnetic anomalies contrasts markedly with that of regional gravity anomalies which tend to reflect predominantly isostatic adjustments associated with neo-tectonism. First observed as a result of NASA's magnetic satellite programs, these anomalies provide new and fundamental constraints on the geologic evolution and dynamics of the continents and oceans. Accordingly, satellite magnetic observations provide a further tool for investigating continental drift to compliment other lines of evidence in paleoclimatology, paleontology, paleomagnetism, and studies of the radiometric ages and geometric fit of the continents.

  19. Congenital anomalies of the spine: radiologic findings

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Jung Kyu; Kim, Sang Won; Ryu, Kyung Nam [Kyunghee University College of Medicine, Seoul (Korea, Republic of)

    2003-04-01

    Congenital anomalies of the spine are frequent and variable. Some are restricted to skeletal structures, while others involve combine neural tube defects or are associated with other multi-systemic disorders. Structural spinal anomalies can be classified according to their location: 1) the vertebral body, 2) the articular process, 3) the lamina with spinous process, 4) the pars interarticularis, 5) the facet joint, 6) the pedicle, or 7) other. Because of similarities between these congenital anomalies and (a) secondary changes involving infection or joint disease and (b) deformities resulting from trauma and uncertain tumorous conditions, significant confusion can occur during diagnosis. Moreover, since the anomalies often give rise to both functional impairment and cosmetic problem, appropriate treatment relies crucially on accurate diagnosis. The authors illustrate the pathogenesis and radiologic findings of the relatively common spinal anomalies confined to skeletal structures.

  20. Chiral battery, scaling laws and magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Anand, Sampurn; Bhatt, Jitesh R.; Pandey, Arun Kumar, E-mail: sampurn@prl.res.in, E-mail: jeet@prl.res.in, E-mail: arunp@prl.res.in [Physical Research Laboratory, Ahmedabad, 380009 (India)

    2017-07-01

    We study the generation and evolution of magnetic field in the presence of chiral imbalance and gravitational anomaly which gives an additional contribution to the vortical current. The contribution due to gravitational anomaly is proportional to T {sup 2} which can generate seed magnetic field irrespective of plasma being chirally charged or neutral. We estimate the order of magnitude of the magnetic field to be 10{sup 30} G at T ∼ 10{sup 9} GeV, with a typical length scale of the order of 10{sup −18} cm, which is much smaller than the Hubble radius at that temperature (10{sup −8} cm). Moreover, such a system possess scaling symmetry. We show that the T {sup 2} term in the vorticity current along with scaling symmetry leads to more power transfer from lower to higher length scale as compared to only chiral anomaly without scaling symmetry.

  1. Positively deflected anomaly mediation

    International Nuclear Information System (INIS)

    Okada, Nobuchika

    2002-01-01

    We generalize the so-called 'deflected anomaly mediation' scenario to the case where threshold corrections of heavy messengers to the sparticle squared masses are positive. A concrete model realizing this scenario is also presented. The tachyonic slepton problem can be fixed with only a pair of messengers. The resultant sparticle mass spectrum is quite different from that in the conventional deflected anomaly mediation scenario, but is similar to the one in the gauge mediation scenario. The lightest sparticle is mostly B-ino

  2. Towards a Theory of Tropical/Midlatitude Mass Exchange from the Earth's Surface through the Stratosphere

    Science.gov (United States)

    Hartley, Dana

    1998-01-01

    The main findings of this research project have been the following: (1) there is a significant feedback from the stratosphere on tropospheric dynamics, and (2) a detailed analysis of the interaction between tropical and polar wave breaking in controlling stratospheric mixing. Two papers are were written and are included. The first paper is titled, "A New Perspective on the Dynamical Link Between the Stratosphere and Troposphere." Atmospheric processes of tropospheric origin can perturb the stratosphere, but direct feedback in the opposite direction is usually assumed to be negligible, despite the troposphere's sensitivity to changes in the release of wave activity into the stratosphere. Here, however, we present evidence that such a feedback exists and can be significant. We find that if the wintertime Arctic polar stratospheric vortex is distorted, either by waves propagating upward from the troposphere or by eastward-travelling stratospheric waves, then there is a concomitant redistribution of stratospheric potential vorticity that induces perturbations in key meteorological fields in the upper troposphere. The feedback is large despite the much greater mass of the troposphere: it can account for up to half of the geopotential height anomaly at the tropopause. Although the relative strength of the feedback is partly due to a cancellation between contributions to these anomalies from lower altitudes, our results imply that stratospheric dynamics and its feedback on the troposphere are more significant for climate modelling and data assimilation than was previously assumed. The second article is titled "Diagnosing the Polar Excitation of Subtropical Waves in the Stratosphere". The poleward migration of planetary scale tongues of subtropical air has often been associated with intense polar vortex disturbances in the stratosphere. This question of vortex influence is reexamined from a potential vorticity (PV) perspective. Anomalous geopotential height and wind fields

  3. Energy-momentum tensor in quantum field theory

    International Nuclear Information System (INIS)

    Fujikawa, K.

    1981-01-01

    The definition of the energy-momentum tensor as a source current coupled to the background gravitational field receives an important modification in quantum theory. In the path-integral approach, the manifest covariance of the integral measure under general coordinate transformations dictates that field variables with weight 1/2 should be used as independent integration variables. An improved energy-momentum tensor is then generated by the variational derivative, and it gives rise to well-defined gravitational conformal (Weyl) anomalies. In the flat--space-time limit, all the Ward-Takahashi identities associated with space-time transformations including the global dilatation become free from anomalies in terms of this energy-momentum tensor, reflecting the general covariance of the integral measure; the trace of this tensor is thus finite at zero momentum transfer for renormalizable theories. The Jacobian for the local conformal transformation, however, becomes nontrivial, and it gives rise to an anomaly for the conformal identity. All the familiar anomalies are thus reduced to either chiral or conformal anomalies. The consistency of the dilatation and conformal identities at vanishing momentum transfer determines the trace anomaly of this energy-momentum tensor in terms of the renormalization-group b function and other parameters. In contrast, the trace of the conventional energy-momentum tensor generally diverges even at vanishing momentum transfer depending on the regularization scheme, and it is subtractively renormalized. We also explain how the apparently different renormalization properties of the chiral and trace anomalies arise

  4. Energy-momentum tensor in quantum field theory

    International Nuclear Information System (INIS)

    Fujikawa, Kazuo.

    1980-12-01

    The definition of the energy-momentum tensor as a source current coupled to the background gravitational field receives an important modification in quantum theory. In the path integral approach, the manifest covariance of the integral measure under general coordinate transformations dictates that field variables with weight 1/2 should be used as independent integration variables. An improved energy-momentum tensor is then generated by the variational derivative, and it gives rise to well-defined gravitational conformal (Weyl) anomalies. In the flat space-time limit, all the Ward-Takahashi identities associate with space-time transformations including the global dilatation become free from anomalies, reflecting the general covariance of the integral measure; the trace of this energy-momentum tensor is thus finite at the zero momentum transfer. The Jacobian for the local conformal transformation however becomes non-trivial, and it gives rise to an anomaly for the conformal identity. All the familiar anomalies are thus reduced to either chiral or conformal anomalies. The consistency of the dilatation and conformal identities at the vanishing momentum transfer determines the trace anomaly of this energy-momentum tensor in terms of the renormalization group β-function and other parameters. In contrast, the trace of the conventional energy-momentum tensor generally diverges even at the vanishing momentum transfer depending on the regularization scheme, and it is subtractively renormalized. We also explain how the apparently different renormalization properties of the chiral and trace anomalies arise. (author)

  5. Properties of the geoelectric structure that promote the detection of electrotelluric anomalies. The case of Ioannina, Greece

    Energy Technology Data Exchange (ETDEWEB)

    Makris, J. P. [Technological Educational Institute of Crete, Dept. of Electronics (Branch of Chania), Chalepa, Chania, Crete (Greece)

    2001-04-01

    The reliable detection and identification of electrotelluric anomalies that could be considered as precursory phenomena of earthquakes become fundamental aspects of earthquake prediction research. Special arrangements, in local and/or regional scale, of the geoelectric structure beneath the measuring point, may act as natural realtime filters on the ULF electrotelluric data improving considerably the signal to magnetotelluric-noise ratio of anomalies originated by probably non-magnetotelluric sources. Linear polarization, i.e. local channelling of the electric field on the surface is expected in cases where 3D-local inhomogeneities, producing strong shear distortion, are present in the vicinity of the monitoring site and/or when a 2D-regional geoelectrical setting exhibits high anisotropy. By assuming different generation mechanisms and modes of propagation for the electrotelluric anomalies that could be considered earthquake precursory phenomena, a rotationally originated residual electrotelluric field results, eliminating background magnetotelluric-noise and revealing hidden transient variations that could be associated to earthquakes. The suggested method is applicable in real-time data collection, thus simplifies and accelerates the tedious task of identification of suspicious signals. As an indicative example, the case of Ioannina (located in Northwestern Greece) is presented. The local polarization of the electrotelluric field varies dramatically even at neighboring points although the regional geoelectric strike direction does not change.

  6. A Correlation between Renal Anomalies and Vesicoureteral Reflux

    International Nuclear Information System (INIS)

    Kim, Seung Soo; Kim, Young Tong; Kim, Il Young; Shin, Hyeong Cheol

    2011-01-01

    To investigate the frequency of vesicoureteral reflux (VUR) in children with renal anomalies a evaluate the correlation between renal anomalies and VUR. Eighty-one children (1 day-8 years) with renal anomalies underwent voiding cystourethrogram between 2006 and 2009 were reviewed. This study included ureteropelvic junction stenosis (n = 32), ureteropelvic duplication (n = 20), multicystic dysplastic kidney (n = 12), fusion anomaly (n = 11), renal agenesis (n = 3), unilateral renal hypoplasia (n = 2), and ectopic kidney (n = 1). The frequency, grade, and location of VUR were evaluated. The grade of VUR according to age and anomaly type was statistically analyzed, and the patients with VUR were followed. The VUR was present in 14 (17.3%); ipsilateral VUR was present in 8 (57.1%), bilateral VUR in 4 (28.6%), and contralateral VUR in 2 (14.2%). VUR was detected in 9 patients under the age of one. There was no statistical correlation between VUR grade and either age or anomaly type of the nine patients showed continuous VUR on up. The frequency of VUR in children with renal anomalies was 17.3%. VUR was most frequently detected in children under the age of one, and VUR grade was not related to age and anomaly type.

  7. A Correlation between Renal Anomalies and Vesicoureteral Reflux

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seung Soo; Kim, Young Tong; Kim, Il Young; Shin, Hyeong Cheol [Dept. of Radiology, Cheonan Hospital, Soonchunhyang University College of Medicine, Cheonan (Korea, Republic of)

    2011-12-15

    To investigate the frequency of vesicoureteral reflux (VUR) in children with renal anomalies a evaluate the correlation between renal anomalies and VUR. Eighty-one children (1 day-8 years) with renal anomalies underwent voiding cystourethrogram between 2006 and 2009 were reviewed. This study included ureteropelvic junction stenosis (n = 32), ureteropelvic duplication (n = 20), multicystic dysplastic kidney (n = 12), fusion anomaly (n = 11), renal agenesis (n = 3), unilateral renal hypoplasia (n = 2), and ectopic kidney (n = 1). The frequency, grade, and location of VUR were evaluated. The grade of VUR according to age and anomaly type was statistically analyzed, and the patients with VUR were followed. The VUR was present in 14 (17.3%); ipsilateral VUR was present in 8 (57.1%), bilateral VUR in 4 (28.6%), and contralateral VUR in 2 (14.2%). VUR was detected in 9 patients under the age of one. There was no statistical correlation between VUR grade and either age or anomaly type of the nine patients showed continuous VUR on up. The frequency of VUR in children with renal anomalies was 17.3%. VUR was most frequently detected in children under the age of one, and VUR grade was not related to age and anomaly type.

  8. First branchial cleft anomalies: otologic manifestations and treatment outcomes.

    Science.gov (United States)

    Shinn, Justin R; Purcell, Patricia L; Horn, David L; Sie, Kathleen C Y; Manning, Scott C

    2015-03-01

    This study describes the presentation of first branchial cleft anomalies and compares outcomes of first branchial cleft with other branchial cleft anomalies with attention to otologic findings. Case series with chart review. Pediatric tertiary care facility. Surgical databases were queried to identify children with branchial cleft anomalies. Descriptive analysis defined sample characteristics. Risk estimates were calculated using Fisher's exact test. Queries identified 126 subjects: 27 (21.4%) had first branchial cleft anomalies, 80 (63.4%) had second, and 19 (15.1%) had third or fourth. Children with first anomalies often presented with otologic complications, including otorrhea (22.2%), otitis media (25.9%), and cholesteatoma (14.8%). Of 80 children with second branchial cleft anomalies, only 3 (3.8%) had otitis. Compared with children with second anomalies, children with first anomalies had a greater risk of requiring primary incision and drainage: 16 (59.3%) vs 2 (2.5%) (relative risk [RR], 3.5; 95% confidence interval [CI], 2.4-5; Pbranchial cleft anomalies often present with otologic complaints. They are at increased risk of persistent disease, particularly if anomalies lie medial to the facial nerve. They may require ear-specific surgery such as tympanoplasty. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2014.

  9. Winter to winter recurrence of atmospheric circulation anomalies over East Asia and its impact on winter surface air temperature anomalies.

    Science.gov (United States)

    Zhao, Xia; Yang, Guang

    2017-01-01

    The persistence of atmospheric circulation anomalies over East Asia shows a winter to winter recurrence (WTWR) phenomenon. Seasonal variations in sea level pressure anomalies and surface wind anomalies display significantly different characteristics between WTWR and non-WTWR years. The WTWR years are characterized by the recurrence of both a strong (weak) anomalous Siberian High and an East Asian winter monsoon over two successive winters without persistence through the intervening summer. However, anomalies during the non-WTWR years have the opposite sign between the current and ensuing winters. The WTWR of circulation anomalies contributes to that of surface air temperature anomalies (SATAs), which is useful information for improving seasonal and interannual climate predictions over East Asia and China. In the positive (negative) WTWR years, SATAs are cooler (warmer) over East Asia in two successive winters, but the signs of the SATAs are opposite in the preceding and subsequent winters during the non-WTWR years.

  10. Anomaly detection in random heterogeneous media Feynman-Kac formulae, stochastic homogenization and statistical inversion

    CERN Document Server

    Simon, Martin

    2015-01-01

    This monograph is concerned with the analysis and numerical solution of a stochastic inverse anomaly detection problem in electrical impedance tomography (EIT). Martin Simon studies the problem of detecting a parameterized anomaly in an isotropic, stationary and ergodic conductivity random field whose realizations are rapidly oscillating. For this purpose, he derives Feynman-Kac formulae to rigorously justify stochastic homogenization in the case of the underlying stochastic boundary value problem. The author combines techniques from the theory of partial differential equations and functional analysis with probabilistic ideas, paving the way to new mathematical theorems which may be fruitfully used in the treatment of the problem at hand. Moreover, the author proposes an efficient numerical method in the framework of Bayesian inversion for the practical solution of the stochastic inverse anomaly detection problem.   Contents Feynman-Kac formulae Stochastic homogenization Statistical inverse problems  Targe...

  11. Coronary artery anomalies. Diagnosis and classification based on cardiac CT and MRI (CMR) - from ALCAPA to anomalies of termination

    International Nuclear Information System (INIS)

    Heermann, Philipp; Heindel, Walter; Schuelke, Christoph

    2017-01-01

    Coronary artery anomalies encompass a clinically and anatomically variable spectrum including physiological variants and pathophysiologically relevant anomalies. The majority of the variants has no hemodynamic relevance and is often detected accidentally. The recognition of the rare and relevant anomalies that cause either relevant shunt volumes leading to myocardial ischemia or ventricular tachyarrhythmias with the risk of sudden cardiac death is of major importance. This review is based on a literature search in PubMed conducted using the key words ''coronary artery'' and/or ''anomaly'' and/or ''anomalous origin'' and/or ''myocardial bridging'' and/or ''coronary artery fistula'' and/or ''Bland-White-Garland'' and/or ''ALCAPA''. Coronary artery anomalies can be anatomically subdivided into anomalies of origin, course and termination. The method of choice for anatomical imaging is ECG-triggered or gated multislice CT (MSCT) that provides high spatial resolution and the capability of multiplanar reconstructions. It facilitates the delineation of the precise course of all three coronary arteries and thus allows for correct classification in the anatomical classification system of coronary artery anomalies. The strengths of cardiac magnetic resonance imaging (CMR) are the evaluation of cardiac morphology, myocardial tissue properties and myocardial function. Basic methods are the analysis of myocardial contraction and perfusion with and without pharmacologic stress. Furthermore, potential shunt volumes could be quantified by phase contrast imaging or volumetry.

  12. Magnetic Fields of the Earth and Mars a Comparison and Discussion

    Science.gov (United States)

    Taylor, Patrick T.

    2004-01-01

    In several aspects the magnetic fields of the Earth and Mars are similar but also different. In the past both bodies had planetary magnetic fields but while they Earth's field remains today the Martian ceased to operate, at some unknown time in the past, leaving this planet without a main or core field. This fact resulted in the interaction between the solar and interplanetary magnetic fields with the surfaces of these planets being very different. In addition, Mars has large crustal magnetic anomalies, nearly ten times larger than those on the Earth. Since crustal magnetic anomalies are the product of the thickness of the layer of magnetization, both the magnetizing material and the thickness of the layer of this material must be very different on Mars than Earth. Furthermore, the martian anomalies can only be produced by remanent or fossil magnetization, in contrast with the Earth where both induced and remanent magnetization are producing these anomalies. Crustal magnetic anomalies on the Earth are mainly produced by single-domain, irontitanium oxides, in the form of magnetite being the most common on Mars the main magnetic mineral(s) are unknown. The thickness of the martian magnetized layer in comparison with the Earth remains a major area for research. Determining the paleopole position for the Earth has been done by some of the earliest paleomagnetic researchers. Since we do not have oriented martian rock samples determining the paleopoles for Mars has been done by fitting a magnetization vector to individual magnetic anomalies. Several groups have worked on this problem with somewhat differing results.

  13. A Fortran 77 computer code for damped least-squares inversion of Slingram electromagnetic anomalies over thin tabular conductors

    Science.gov (United States)

    Dondurur, Derman; Sarı, Coşkun

    2004-07-01

    A FORTRAN 77 computer code is presented that permits the inversion of Slingram electromagnetic anomalies to an optimal conductor model. Damped least-squares inversion algorithm is used to estimate the anomalous body parameters, e.g. depth, dip and surface projection point of the target. Iteration progress is controlled by maximum relative error value and iteration continued until a tolerance value was satisfied, while the modification of Marquardt's parameter is controlled by sum of the squared errors value. In order to form the Jacobian matrix, the partial derivatives of theoretical anomaly expression with respect to the parameters being optimised are calculated by numerical differentiation by using first-order forward finite differences. A theoretical and two field anomalies are inserted to test the accuracy and applicability of the present inversion program. Inversion of the field data indicated that depth and the surface projection point parameters of the conductor are estimated correctly, however, considerable discrepancies appeared on the estimated dip angles. It is therefore concluded that the most important factor resulting in the misfit between observed and calculated data is due to the fact that the theory used for computing Slingram anomalies is valid for only thin conductors and this assumption might have caused incorrect dip estimates in the case of wide conductors.

  14. Quantum mechanical path integrals in curved spaces and the type-A trace anomaly

    Energy Technology Data Exchange (ETDEWEB)

    Bastianelli, Fiorenzo [Dipartimento di Fisica ed Astronomia, Università di Bologna,via Irnerio 46, I-40126 Bologna (Italy); INFN, Sezione di Bologna,via Irnerio 46, I-40126 Bologna (Italy); Corradini, Olindo [Dipartimento di Scienze Fisiche, Informatiche e Matematiche,Università di Modena e Reggio Emilia,Via Campi 213/A, I-41125 Modena (Italy); INFN, Sezione di Bologna,via Irnerio 46, I-40126 Bologna (Italy); Vassura, Edoardo [Dipartimento di Fisica ed Astronomia, Università di Bologna,via Irnerio 46, I-40126 Bologna (Italy); INFN, Sezione di Bologna,via Irnerio 46, I-40126 Bologna (Italy)

    2017-04-10

    Path integrals for particles in curved spaces can be used to compute trace anomalies in quantum field theories, and more generally to study properties of quantum fields coupled to gravity in first quantization. While their construction in arbitrary coordinates is well understood, and known to require the use of a regularization scheme, in this article we take up an old proposal of constructing the path integral by using Riemann normal coordinates. The method assumes that curvature effects are taken care of by a scalar effective potential, so that the particle lagrangian is reduced to that of a linear sigma model interacting with the effective potential. After fixing the correct effective potential, we test the construction on spaces of maximal symmetry and use it to compute heat kernel coefficients and type-A trace anomalies for a scalar field in arbitrary dimensions up to d=12. The results agree with expected ones, which are reproduced with great efficiency and extended to higher orders. We prove explicitly the validity of the simplified path integral on maximally symmetric spaces. This simplified path integral might be of further use in worldline applications, though its application on spaces of arbitrary geometry remains unclear.

  15. Major congenital anomalies in a Danish region

    DEFF Research Database (Denmark)

    Garne, Ester; Hansen, Anne Vinkel; Birkelund, Anne Sofie

    2014-01-01

    INTRODUCTION: This study describes the prevalence of congenital anomalies and changes over time in birth outcome, mortality and chronic maternal diseases. MATERIAL AND METHODS: This study was based on population data from the EUROCAT registry covering the Funen County, Denmark, 1995...... mortality decreased significantly over time for cases with major congenital anomalies (p congenital anomaly cases, 8% had a registration of one of these chronic maternal diseases......: diabetes, epilepsy, mental disorder, thyroid disease, asthma, or inflammatory bowel disease. Medication for these conditions accounted for 46% of maternal drug use. CONCLUSION: Maternal morbidity and use of potentially teratogenic medication have increased among congenital anomaly cases. Foetal and infant...

  16. Anomaly mediation deformed by axion

    Energy Technology Data Exchange (ETDEWEB)

    Nakayama, Kazunori, E-mail: kazunori@hep-th.phys.s.u-tokyo.ac.jp [Department of Physics, University of Tokyo, Bunkyo-ku, Tokyo 113-0033 (Japan); Kavli Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwa 277-8583 (Japan); Yanagida, Tsutomu T. [Kavli Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwa 277-8583 (Japan)

    2013-05-13

    We show that in supersymmetric axion models the axion supermultiplet obtains a sizable F-term due to a non-supersymmetric dynamics and it generally gives the gaugino masses comparable to the anomaly mediation contribution. Thus the gaugino mass relation predicted by the anomaly mediation effect can be significantly modified in the presence of axion to solve the strong CP problem.

  17. Splenic Anomalies of Shape, Size, and Location: Pictorial Essay

    Directory of Open Access Journals (Sweden)

    Adalet Elcin Yildiz

    2013-01-01

    Full Text Available Spleen can have a wide range of anomalies including its shape, location, number, and size. Although most of these anomalies are congenital, there are also acquired types. Congenital anomalies affecting the shape of spleen are lobulations, notches, and clefts; the fusion and location anomalies of spleen are accessory spleen, splenopancreatic fusion, and wandering spleen; polysplenia can be associated with a syndrome. Splenosis and small spleen are acquired anomalies which are caused by trauma and sickle cell disease, respectively. These anomalies can be detected easily by using different imaging modalities including ultrasonography, computed tomography, magnetic resonance imaging, and also Tc-99m scintigraphy. In this pictorial essay, we review the imaging findings of these anomalies which can cause diagnostic pitfalls and be interpreted as pathologic processes.

  18. Adaptive cancellation of geomagnetic background noise for magnetic anomaly detection using coherence

    International Nuclear Information System (INIS)

    Liu, Dunge; Xu, Xin; Huang, Chao; Zhu, Wanhua; Liu, Xiaojun; Fang, Guangyou; Yu, Gang

    2015-01-01

    Magnetic anomaly detection (MAD) is an effective method for the detection of ferromagnetic targets against background magnetic fields. Currently, the performance of MAD systems is mainly limited by the background geomagnetic noise. Several techniques have been developed to detect target signatures, such as the synchronous reference subtraction (SRS) method. In this paper, we propose an adaptive coherent noise suppression (ACNS) method. The proposed method is capable of evaluating and detecting weak anomaly signals buried in background geomagnetic noise. Tests with real-world recorded magnetic signals show that the ACNS method can excellently remove the background geomagnetic noise by about 21 dB or more in high background geomagnetic field environments. Additionally, as a general form of the SRS method, the ACNS method offers appreciable advantages over the existing algorithms. Compared to the SRS method, the ACNS algorithm can eliminate the false target signals and represents a noise suppressing capability improvement of 6.4 dB. The positive outcomes in terms of intelligibility make this method a potential candidate for application in MAD systems. (paper)

  19. Airborne gravity field Measurements - status and developments

    DEFF Research Database (Denmark)

    Olesen, Arne Vestergaard; Forsberg, René

    2016-01-01

    English Abstract:DTU-Space has since 1996 carried out large area airborne surveys over both polar, tropical and temperate regions, especially for geoid determination and global geopotential models. Recently we have started flying two gravimeters (LCR and Chekan-AM or inertial navigation systems) ...

  20. Structural modeling of the Vichada impact structure from interpreted ground gravity and magnetic anomalies

    International Nuclear Information System (INIS)

    Hernandez, Orlando; Khurama, Sait; Alexander, Gretta C

    2011-01-01

    A prominent positive free-air gravity anomaly mapped over a roughly 50-km diameter basin is consistent with a mascon centered on (4 degrades 30 minutes N, 69 degrades 15 minutes W) in the Vichada Department, Colombia, South America. Ground follow up gravity and magnetic anomalies were modeled confirming the regional free air gravity anomalies. These potential field anomalies infer a hidden complex impact basin structure filled with tertiary sedimentary rocks and recent quaternary deposits. Negative Bouguer anomalies of 8 mgals to 15 mgals amplitude are associated with a concentric sedimentary basin with a varying thickness from 100 m to 500 m in the outer rings to 700 m to 1000 m at the center of the impact crater basin. Strong positive magnetic anomalies of 100 nt to 300 nt amplitude infer the presence of a local Precambrian crystalline basement that was affected by intensive faulting producing tectonic blocks dipping to the center of the structure, showing a typical domino structure of impact craters such as that of Sudbury, Ontario, Canada. Basic to intermediate mineralized veins and dikes with contrasting density and magnetic susceptibility properties could be emplaced along these faulting zones, as inferred from local gravity and magnetic highs. The geologic mapping of the area is limited by the flat topography and absence of outcrops/ geomorphologic units. Nevertheless, local normal faults along the inner ring together with radially sparse irregular blocks over flat terrains can be associated with terraced rims or collapse of the inner crater structure and eject blanket, respectively. A detailed airborne electromagnetic survey is recommended to confirm the gravity and magnetic anomalies together with a seismic program to evaluate the economic implications for energy and mineral exploration of the Vichada impact structure.

  1. Chromosomal study in newborn infants with congenital anomalies in ...

    African Journals Online (AJOL)

    Congenital anomalies were found in 103 cases with a prevalence of 2.06% with male to female ratio of 1.7:1. Skeletal system anomalies had the highestfrequency (37.9%), followed in descending order by chromosomal abnormalities (27.2%), circulatory system anomalies (22.3%), central nervous system (CNS) anomalies ...

  2. Distribution, Management Difficulty and Outcome of Branchial Anomalies.

    Science.gov (United States)

    Sattar, M A; Sultana, M T; Ahmed, S

    2018-01-01

    Branchial arch anomalies are one of the most common congenital anomalies of the neck. Developmental anomalies of the branchial apparatus account for 17% of all pediatric cervical masses. This study aimed to focus on proper diagnosis of branchial anomaly and describe occurrence, presentation, management and outcome of usual and unusual types. This ten-year prospective observational study was conducted from November 2005 to November 2015 including 2-year postoperative follow-up of the patients in Department of ENT, Bangabandhu Sheikh Mujib Medical University (BSMMU), Dhaka, Bangladesh. Total 89 patients were enrolled for this study. Information was recorded on Clinical examination, relevant investigation, Per-operative findings and Histo-pathological findings. After receiving Histo-pathological findings 61 cases were proved as branchial arch anomalies. Ultrasonography and Histopathology was done for every patient. Fistulogram and sinogram was done for patient of fistula and sinus respectively. CT scan was needed for 9 patients, MRI for 3 patients and 12 patient undergone FNAC. Outcomes of those patients were described in terms of Hospital stay, Complications and Follow up studies. Data analysis was done by Standard Statistical Method.Presentation of a number of participant's mimics Branchial arch anomalies; 4.91% was syndromal. Second branchial arch anomalies were the highest. Management was exclusively surgical. Recurrence rate was about 6.56%. Surgery is the tool for diagnosis, treatment, preventing complications, avoiding carcinoma for branchial arch anomalies.

  3. MR imaging features of the congenital uterine anomalies

    International Nuclear Information System (INIS)

    Hamcan, S.; Akgun, V.; Battal, B.; Kocaoglu, M.

    2012-01-01

    Full text: Introduction: Congenital uterine anomalies are common and usually asymptomatic. The agenesis, malfusion or deficient resorption of the Mullerian canals during embryogenesis may lead to these anomalies. Although ultrasonography (US) is the first step imaging technique in assessment of the uterine pathologies, it can be insufficient in differentiation of them. Magnetic resonance (MR) imaging is an adequate imaging technique in depicting pelvic anatomy and different types of uterine anomalies. Objectives and tasks: In this article, we aimed to present imaging features of the uterine anomalies. Material and methods: Pelvic MR scans of the cases who were referred to our radiology department for suspicious uterine anomaly were evaluated retrospectively. Results: We determined uniconuate uterus (type II), uterus didelphys (type III), bicornuate uterus (type IV), uterine septum (type V) and arcuate uterus (type VI) anomalies according to ASRM (American Society of Reproductive Medicine) classification. Conclusion: In cases with such pathologies leading to obstruction, dysmenorrhea or palpable pelvic mass in the puberty are the main clinical presentations. In cases without obstruction, infertility or multiple abortions can be encountered in reproductive ages. The identification of the subtype of the uterine anomalies is important for the preoperative planning of the management. MR that has multiplanar imaging capability and high soft tissue resolution is a non-invasive and the most important imaging modality for the detection and classification of the uterine anomalies

  4. Ionospheric Anomaly before Kyushu|Japan Earthquake

    Directory of Open Access Journals (Sweden)

    YANG Li

    2017-05-01

    Full Text Available GIM data released by IGS is used in the article and a new method of combining the Sliding Time Window Method and the Ionospheric TEC correlation analysis method of adjacent grid points is proposed to study the relationship between pre-earthquake ionospheric anomalies and earthquake. By analyzing the abnormal change of TEC in the 5 grid points around the seismic region, the abnormal change of ionospheric TEC is found before the earthquake and the correlation between the TEC sequences of lattice points is significantly affected by earthquake. Based on the analysis of the spatial distribution of TEC anomaly, anomalies of 6 h, 12 h and 6 h were found near the epicenter three days before the earthquake. Finally, ionospheric tomographic technology is used to do tomographic inversion on electron density. And the distribution of the electron density in the ionospheric anomaly is further analyzed.

  5. Detection of Airway Anomalies in?Pediatric?Patients with Cardiovascular Anomalies with Low Dose Prospective ECG-Gated Dual-Source CT

    OpenAIRE

    Jiao, Hui; Xu, Zhuodong; Wu, Lebin; Cheng, Zhaoping; Ji, Xiaopeng; Zhong, Hai; Meng, Chen

    2013-01-01

    OBJECTIVES: To assess the feasibility of low-dose prospective ECG-gated dual-source CT (DSCT) in detecting airway anomalies in pediatric patients with cardiovascular anomalies compared with flexible tracheobronchoscopy (FTB). METHODS: 33 pediatrics with respiratory symptoms who had been revealed cardiovascular anomalies by transthoracic echocardiography underwent FTB and contrast material-enhanced prospective ECG-triggering CT were enrolled. The study was approved by our institution review bo...

  6. DOWN'S ANOMALY.

    Science.gov (United States)

    PENROSE, L.S.; SMITH, G.F.

    BOTH CLINICAL AND PATHOLOGICAL ASPECTS AND MATHEMATICAL ELABORATIONS OF DOWN'S ANOMALY, KNOWN ALSO AS MONGOLISM, ARE PRESENTED IN THIS REFERENCE MANUAL FOR PROFESSIONAL PERSONNEL. INFORMATION PROVIDED CONCERNS (1) HISTORICAL STUDIES, (2) PHYSICAL SIGNS, (3) BONES AND MUSCLES, (4) MENTAL DEVELOPMENT, (5) DERMATOGLYPHS, (6) HEMATOLOGY, (7)…

  7. Integrating age in the detection and mapping of incongruous patches in coffee (Coffea arabica) plantations using multi-temporal Landsat 8 NDVI anomalies

    Science.gov (United States)

    Chemura, Abel; Mutanga, Onisimo; Dube, Timothy

    2017-05-01

    The development of cost-effective, reliable and easy to implement crop condition monitoring methods is urgently required for perennial tree crops such as coffee (Coffea arabica), as they are grown over large areas and represent long term and higher levels of investment. These monitoring methods are useful in identifying farm areas that experience poor crop growth, pest infestation, diseases outbreaks and/or to monitor response to management interventions. This study compares field level coffee mean NDVI and LSWI anomalies and age-adjusted coffee mean NDVI and LSWI anomalies in identifying and mapping incongruous patches across perennial coffee plantations. To achieve this objective, we first derived deviation of coffee pixels from the global coffee mean NDVI and LSWI values of nine sequential Landsat 8 OLI image scenes. We then evaluated the influence of coffee age class (young, mature and old) on Landsat-scale NDVI and LSWI values using a one-way ANOVA and since results showed significant differences, we adjusted NDVI and LSWI anomalies for age-class. We then used the cumulative inverse distribution function (α ≤ 0.05) to identify fields and within field areas with excessive deviation of NDVI and LSWI from the global and the age-expected mean for each of the Landsat 8 OLI scene dates spanning three seasons. Results from accuracy assessment indicated that it was possible to separate incongruous and healthy patches using these anomalies and that using NDVI performed better than using LSWI for both global and age-adjusted mean anomalies. Using the age-adjusted anomalies performed better in separating incongruous and healthy patches than using the global mean for both NDVI (Overall accuracy = 80.9% and 68.1% respectively) and for LSWI (Overall accuracy = 68.1% and 48.9% respectively). When applied to other Landsat 8 OLI scenes, the results showed that the proportions of coffee fields that were modelled incongruent decreased with time for the young age category and

  8. Illustration, detection and prevention of sleep deprivation anomaly in mobile ad hoc networks

    International Nuclear Information System (INIS)

    Nadeem, A.; Ahsan, K.; Sarim, M.

    2017-01-01

    MANETs (Mobile Ad Hoc Networks) have applications in various walks of life from rescue operations to battle field operations, personal and commercial. However, routing operations in MANETs are still vulnerable to anomalies and DoS (Denial of Service) attacks such as sleep deprivation. In SD (Sleep Deprivation) attack malicious node exploits the vulnerability in the route discovery function of the reactive routing protocol for example AODV (Ad Hoc On-Demand Distance Vector). In this paper, we first illustrate the SD anomaly in MANETs and then propose a SD detection and prevention algorithm which efficiently deals with this attack. We assess the performance of our proposed approach through simulation, evaluating its successfulness using different network scenarios. (author)

  9. Anomalies of Nuclear Criticality, Revision 6

    Energy Technology Data Exchange (ETDEWEB)

    Clayton, E. D.; Prichard, Andrew W.; Durst, Bonita E.; Erickson, David; Puigh, Raymond J.

    2010-02-19

    This report is revision 6 of the Anomalies of Nuclear Criticality. This report is required reading for the training of criticality professionals in many organizations both nationally and internationally. This report describes many different classes of nuclear criticality anomalies that are different than expected.

  10. Analysis of Anomaly in Land Surface Temperature Using MODIS Products

    Science.gov (United States)

    Yorozu, K.; Kodama, T.; Kim, S.; Tachikawa, Y.; Shiiba, M.

    2011-12-01

    Atmosphere-land surface interaction plays a dominant role on the hydrologic cycle. Atmospheric phenomena cause variation of land surface state and land surface state can affect on atmosphereic conditions. Widely-known article related in atmospheric-land interaction was published by Koster et al. in 2004. The context of this article is that seasonal anomaly in soil moisture or soil surface temperature can affect summer precipitation generation and other atmospheric processes especially in middle North America, Sahel and south Asia. From not only above example but other previous research works, it is assumed that anomaly of surface state has a key factor. To investigate atmospheric-land surface interaction, it is necessary to analyze anomaly field in land surface state. In this study, soil surface temperature should be focused because it can be globally and continuously observed by satellite launched sensor. To land surface temperature product, MOD11C1 and MYD11C1 products which are kinds of MODIS products are applied. Both of them have 0.05 degree spatial resolution and daily temporal resolution. The difference of them is launched satellite, MOD11C1 is Terra and MYD11C1 is Aqua. MOD11C1 covers the latter of 2000 to present and MYD11C1 covers the early 2002 to present. There are unrealistic values on provided products even if daily product was already calibrated or corrected. For pre-analyzing, daily data is aggregated into 8-days data to remove irregular values for stable analysis. It was found that there are spatial and temporal distribution of 10-years average and standard deviation for each 8-days term. In order to point out extreme anomaly in land surface temperature, standard score for each 8-days term is applied. From the analysis of standard score, it is found there are large anomaly in land surface temperature around north China plain in early April 2005 and around Bangladesh in early May 2009.

  11. Simple recipe for holographic Weyl anomaly

    Energy Technology Data Exchange (ETDEWEB)

    Bugini, F. [Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Concepción,Casilla 160-C, Concepción (Chile); Diaz, D.E. [Departamento de Ciencias Físicas, Facultad de Ciencias Exactas, Universidad Andres Bello,Autopista Concepción-Talcahuano 7100, Talcahuano (Chile)

    2017-04-20

    We propose a recipe — arguably the simplest — to compute the holographic type-B Weyl anomaly for general higher-derivative gravity in asymptotically AdS spacetimes. In 5 and 7 dimensions we identify a suitable basis of curvature invariants that allows to read off easily, without any further computation, the Weyl anomaly coefficients of the dual CFT. We tabulate the contributions from quadratic, cubic and quartic purely algebraic curvature invariants and also from terms involving derivatives of the curvature. We provide few examples, where the anomaly coefficients have been obtained by other means, to illustrate the effectiveness of our prescription.

  12. Anomalies of temperature dependence of the upper critical magnetic field of GdBa2Cu3O7-x and their relation with layered crystal structure

    International Nuclear Information System (INIS)

    Anshukova, N.V.; Veselago, V.G.; Golovashkin, A.I.

    1989-01-01

    Temperature dependence of upper critical field H c2 (T) near T c was investigated on polycrystal GdBa 2 Cu 3 O 7-x . The resistive superconductive transitions were measured in magnetic fields up to 15 T. We observed a magnetic-field induced broadening of transition and an appearance of H c2 (T) nonlinearity near T c and explained such effects by the influence of individual grains H c2 anisotropy on the base of the percolation model. Estimated are slopes: for magnetic field along superconductive layers -dH c2 parallel /dT≅ 7T/K and for field across layers -dH c2 tr /dT=0.2 T/K. It was found that H c2 (T)-curves display anomalies in a break form, which were not explained in the percolation model. The across coherence length ξ tr (T) obtained from values of the slopes was comparable with distance d between two superconductive layers. So we think that in this situation a fracture on the H c2 (T)-curves may be explained by the appearance of electronic density nonuniformity and it is precursor of crossover to two-dimensional superconductivity

  13. South Atlantic Anomaly evolution by means of Swarm data

    Science.gov (United States)

    Pavon-Carrasco, F. Javier; Qamili, Enkelejda; De Santis, Angelo

    2015-04-01

    The study of the South Atlantic Anomaly (SAA) is an important challenge nowadays not only for the geomagnetic and paleomagnetic community, but also for other areas focused on the Earth Observation. This large magnetic anomaly is characterized by values of geomagnetic field intensity around 30% lower than expected for those latitudes and covers a large area in the South Atlantic Ocean between Southwest Brazil and South Africa. This great depression of the geomagnetic field strength at the Earth's surface has an internal deep origin: it is caused by a prominent patch of reversed polarity flux in the outer core. Since the Earth's magnetic field has an important protective role for the all geosphere because it deflects a large part of the solar radiation that would otherwise reach the Earth's surface, a large increase of the SAA could have dramatic consequences for human health and technologies. In the last three decades, an almost constant monitoring of the SAA has been carried out using satellite data showing a clear picture of the behaviour and evolution of the SAA, which area is growing alarmingly during the most recent years at the Earth's surface and at the core mantle boundary. In this context, the ESA Swarm mission (constituted by a constellation of three satellites in near-polar low orbits at two different altitudes) is providing detailed measurements of the intensity and directional elements of the geomagnetic field with high-precision and resolution never reached in the former space missions. This work aims to analyse in detail in space and time the SAA from the Earth's surface up to the satellite altitude. In order to carry out this study, comprehensive geomagnetic models at regional and global scale will be performed using the dataset provided by the Swarm satellites and all the available ground data. This kind of study is crucial to understand the evolution of the Earth's magnetic field in this area, and to possibly predict its future behaviour.

  14. Prevalence and distribution of dental anomalies in orthodontic patients.

    Science.gov (United States)

    Montasser, Mona A; Taha, Mahasen

    2012-01-01

    To study the prevalence and distribution of dental anomalies in a sample of orthodontic patients. The dental casts, intraoral photographs, and lateral panoramic and cephalometric radiographs of 509 Egyptian orthodontic patients were studied. Patients were examined for dental anomalies in number, size, shape, position, and structure. The prevalence of each dental anomaly was calculated and compared between sexes. Of the total study sample, 32.6% of the patients had at least one dental anomaly other than agenesis of third molars; 32.1% of females and 33.5% of males had at least one dental anomaly other than agenesis of third molars. The most commonly detected dental anomalies were impaction (12.8%) and ectopic eruption (10.8%). The total prevalence of hypodontia (excluding third molars) and hyperdontia was 2.4% and 2.8%, respectively, with similiar distributions in females and males. Gemination and accessory roots were reported in this study; each of these anomalies was detected in 0.2% of patients. In addition to genetic and racial factors, environmental factors could have more important influence on the prevalence of dental anomalies in every population. Impaction, ectopic eruption, hyperdontia, hypodontia, and microdontia were the most common dental anomalies, while fusion and dentinogenesis imperfecta were absent.

  15. Magnetic anomalies in the Cosmonauts Sea, off East Antarctica

    Science.gov (United States)

    Nogi, Y.; Hanyu, T.; Fujii, M.

    2017-12-01

    Identification of magnetic anomaly lineations and fracture zone trends in the Southern Indian Ocean, are vital to understanding the breakup of Gondwana. However, the magnetic spreading anomalies and fracture zones are not clear in the Southern Indian Ocean. Magnetic anomaly lineations in the Cosmonauts Sea, off East Antarctica, are key to elucidation of separation between Sri Lanka/India and Antarctica. No obvious magnetic anomaly lineations are observed from a Japanese/German aerogeophysical survey in the Cosmonauts Sea, and this area is considered to be created by seafloor spreading during the Cretaceous Normal Superchron. Vector magnetic anomaly measurements have been conducted on board the Icebreaker Shirase mainly to understand the process of Gondwana fragmentation in the Indian Ocean. Magnetic boundary strikes are derived from vector magnetic anomalies obtained in the Cosmonauts Sea. NE-SW trending magnetic boundary strikes are mainly observed along the several NW-SE oriented observation lines with magnetic anomaly amplitudes of about 200 nT. These NE-SW trending magnetic boundary strikes possibly indicate M-series magnetic anomalies that can not be detected from the aerogeophysical survey with nearly N-S observation lines. We will discuss the magnetic spreading anomalies and breakup process between Sri Lanka/India and Antarctica in the Cosmonauts Sea.

  16. Graph anomalies in cyber communications

    Energy Technology Data Exchange (ETDEWEB)

    Vander Wiel, Scott A [Los Alamos National Laboratory; Storlie, Curtis B [Los Alamos National Laboratory; Sandine, Gary [Los Alamos National Laboratory; Hagberg, Aric A [Los Alamos National Laboratory; Fisk, Michael [Los Alamos National Laboratory

    2011-01-11

    Enterprises monitor cyber traffic for viruses, intruders and stolen information. Detection methods look for known signatures of malicious traffic or search for anomalies with respect to a nominal reference model. Traditional anomaly detection focuses on aggregate traffic at central nodes or on user-level monitoring. More recently, however, traffic is being viewed more holistically as a dynamic communication graph. Attention to the graph nature of the traffic has expanded the types of anomalies that are being sought. We give an overview of several cyber data streams collected at Los Alamos National Laboratory and discuss current work in modeling the graph dynamics of traffic over the network. We consider global properties and local properties within the communication graph. A method for monitoring relative entropy on multiple correlated properties is discussed in detail.

  17. Isostatic and Decompensative Gravity Anomalies of the Arabian Plate and Surrounding Regions: a Key for the Crustal Structure

    Science.gov (United States)

    Kaban, M. K.; El Khrepy, S.; Al-Arifi, N. S.

    2016-12-01

    The isostatic anomalies are often considered as one of the most useful correction of the gravity field for investigation of the upper crust structure in many practical applications. By applying this correction, a substantial part of the effect of deep density heterogeneity, which dominates in the Bouguer gravity anomaly, can be removed. With this approach, it is not even necessary to know the deep density structure of the crust and upper mantle in details; it is sufficient to prescribe some type of compensation (regional vs. local) and a compensation depth. However, even when all the parameters are chosen correctly, this reduction of the gravity field does not show the full gravity effect of unknown anomalies in the crust. The last ones should be also compensated to some extent; therefore their impact is substantially reduced by the isostatic compensation. Long ago (Cordell et al., 1991), it was suggested a so-called decompensative correction of the isostatic anomalies, which provides a possibility to separate these effects. However, the decompensative correction is very sensitive to the parameters of the compensation scheme. In the present study we analyse the ways to choose these parameters and extend this approach by assuming a possibility for the regional compensation via elastic deformations of the lithosphere. Based on this technique, we estimate the isostatic and decompensative anomalies for the Arabian plate and surrounding regions. The parameters of the isostatic model are chosen based on previous studies. It was demonstrated that the decompensative correction is very significant at the mid-range wavelengths and may exceed 100 mGal, therefore ignoring this effect would lead to wrong conclusions about the upper crust structure. The total amplitude of the decompensative anomalies reaches ±250 mGal, evidencing for both, large density anomalies of the upper crust (including sediments) and strong isostatic disturbances of the lithosphere. These results improve

  18. Hidden supersymmetry and spectral asymmetry: Fermion number fractionization and anomalies in even and odd dimensions

    International Nuclear Information System (INIS)

    Akhoury, R.; Comtet, A.

    1986-01-01

    We discuss how a ''hidden supersymmetry'' of the underlying field theories can be used to interpret and to calculate fermion number fractionization, axial anomalies, and anomalies in odd dimensions. All of the above effects can be related to a corresponding Witten index Δ(β) defined using the hidden sypersymmetry: thus providing a unified treatment for them. The relevance of the β dependence of the Witten index in the different cases is also discussed. Further, for the three-dimensional case, an expression for the parity violating part of the effective action at finite temperatures is obtained. copyright 1986 Academic Press, Inc

  19. Communication: On the isotope anomaly of nuclear quadrupole coupling in molecules

    Science.gov (United States)

    Filatov, Michael; Zou, Wenli; Cremer, Dieter

    2012-10-01

    The dependence of the nuclear quadrupole coupling constants (NQCC) on the interaction between electrons and a nucleus of finite size is theoretically analyzed. A deviation of the ratio of the NQCCs obtained from two different isotopomers of a molecule from the ratio of the corresponding bare nuclear electric quadrupole moments, known as quadrupole anomaly, is interpreted in terms of the logarithmic derivatives of the electric field gradient at the nuclear site with respect to the nuclear charge radius. Quantum chemical calculations based on a Dirac-exact relativistic methodology suggest that the effect of the changing size of the Au nucleus in different isotopomers can be observed for Au-containing molecules, for which the predicted quadrupole anomaly reaches values of the order of 0.1%. This is experimentally detectable and provides an insight into the charge distribution of non-spherical nuclei.

  20. A holomorphic anomaly in the elliptic genus

    International Nuclear Information System (INIS)

    Murthy, Sameer

    2014-01-01

    We consider a class of gauged linear sigma models (GLSMs) in two dimensions that flow to non-compact (2,2) superconformal field theories in the infra-red, a prototype of which is the SL(2,ℝ)/U(1) (cigar) coset. We compute the elliptic genus of the GLSMs as a path-integral on the torus using supersymmetric localization. We find that the result is a Jacobi-like form that is non-holomorphic in the modular parameter τ of the torus, with mock modular behavior. This agrees with a previously-computed expression in the cigar coset. We show that the lack of holomorphicity of the elliptic genus arises from the contributions of a compact boson carrying momentum and winding excitations. This boson has an axionic shift symmetry and plays the role of a compensator field that is needed to cancel the chiral anomaly in the rest of the theory.

  1. Needs for reactivity anomaly monitoring in CRBRP

    International Nuclear Information System (INIS)

    Bullock, J.B.

    1975-01-01

    Two general classifications of reactivity anomalies are defined and explicit design criteria and operational philosophy for an anomaly monitoring system for the Clinch River Breeder Reactor are presented. (JWR)

  2. The Application of Biogeophysical Studies in the Search for Oil Fields

    Directory of Open Access Journals (Sweden)

    M.Sh. Mardanov

    2017-08-01

    Full Text Available The article gives an analysis of qualitative and quantitative indices of biogeophysical anomalies (BGPh-anomalies recorded over oil deposits, obtained as a result of experimental and methodological work on the oil fields studied in detail. By the degree of intensity and complexity of the BGPh-anomalies registered in digital form with special equipment developed by the authors, a set of qualitative and quantitative features has been developed that make it possible to determine the genetic type of the structural trap of the identified oil deposit, and, under favorable conditions, the depth of its occurrence. BGPh-anomalies of the “tectonic fault” type, their influence on the “oil deposit” type of BGPh-anomalies have been studied. The limiting values ​​of the watercut in the exploited oil reservoir are determined, when exceeding, the oil reservoir ceases to create a BGPh-anomaly such as “oil deposit”, which can be used for the areal monitoring of oil fields. The minimum thickness of the oil-saturated reservoir is determined, which creates an anomaly of the “oil deposit” type. Based on this analysis, it is assumed that the BGPh-anomalies arise only over oil deposits, potential for industrial development.

  3. Hot Flow Anomaly formation by magnetic deflection

    International Nuclear Information System (INIS)

    Onsager, T.G.; Thomsen, M.F.; Winske, D.

    1990-01-01

    Hot Flow Anomalies (HFAs) are localized plasma structures observed in the solar wind and magnetosheath near the Earth's quasi-parallel bow shock. The authors present 1-D hybrid computer simulations illustrating a formation mechanism for HFAs in which the single, hot, ion population results from a spatial separation of two counterstreaming ion beams. The higher-density, cooler regions are dominated by the background (solar wind) ions, and the lower-density, hotter, internal regions are dominated by the beam ions. The spatial separation of the beam and background is caused by the deflection of the ions in large amplitude magnetic fields which are generated by ion/ion streaming instabilities

  4. Full-field and anomaly initialization using a low-order climate model: a comparison and proposals for advanced formulations

    Science.gov (United States)

    Carrassi, A.; Weber, R. J. T.; Guemas, V.; Doblas-Reyes, F. J.; Asif, M.; Volpi, D.

    2014-04-01

    Initialization techniques for seasonal-to-decadal climate predictions fall into two main categories; namely full-field initialization (FFI) and anomaly initialization (AI). In the FFI case the initial model state is replaced by the best possible available estimate of the real state. By doing so the initial error is efficiently reduced but, due to the unavoidable presence of model deficiencies, once the model is let free to run a prediction, its trajectory drifts away from the observations no matter how small the initial error is. This problem is partly overcome with AI where the aim is to forecast future anomalies by assimilating observed anomalies on an estimate of the model climate. The large variety of experimental setups, models and observational networks adopted worldwide make it difficult to draw firm conclusions on the respective advantages and drawbacks of FFI and AI, or to identify distinctive lines for improvement. The lack of a unified mathematical framework adds an additional difficulty toward the design of adequate initialization strategies that fit the desired forecast horizon, observational network and model at hand. Here we compare FFI and AI using a low-order climate model of nine ordinary differential equations and use the notation and concepts of data assimilation theory to highlight their error scaling properties. This analysis suggests better performances using FFI when a good observational network is available and reveals the direct relation of its skill with the observational accuracy. The skill of AI appears, however, mostly related to the model quality and clear increases of skill can only be expected in coincidence with model upgrades. We have compared FFI and AI in experiments in which either the full system or the atmosphere and ocean were independently initialized. In the former case FFI shows better and longer-lasting improvements, with skillful predictions until month 30. In the initialization of single compartments, the best

  5. Improved prenatal detection of chromosomal anomalies

    DEFF Research Database (Denmark)

    Frøslev-Friis, Christina; Hjort-Pedersen, Karina; Henriques, Carsten U

    2011-01-01

    Prenatal screening for karyotype anomalies takes place in most European countries. In Denmark, the screening method was changed in 2005. The aim of this study was to study the trends in prevalence and prenatal detection rates of chromosome anomalies and Down syndrome (DS) over a 22-year period....

  6. New Bouguer Gravity Maps of Venezuela: Representation and Analysis of Free-Air and Bouguer Anomalies with Emphasis on Spectral Analyses and Elastic Thickness

    OpenAIRE

    Sanchez-Rojas, Javier

    2012-01-01

    A new gravity data compilation for Venezuela was processed and homogenized. Gravity was measured in reference to the International Gravity Standardization Net 1971, and the complete Bouguer anomaly was calculated by using the Geodetic Reference System 1980 and 2.67 Mg/m3. A regional gravity map was computed by removing wavelengths higher than 200 km from the Bouguer anomaly. After the anomaly separation, regional and residual Bouguer gravity fields were then critically discussed in term of th...

  7. Dental and oral anomalies in incontinentia pigmenti: a systematic review.

    Science.gov (United States)

    Minić, Snežana; Trpinac, Dušan; Gabriel, Heinz; Gencik, Martin; Obradović, Miljana

    2013-01-01

    Incontinentia pigmenti (IP) is an X-linked genodermatosis caused by a mutation of the IKBKG gene. The objective of this study was to present a systematic review of the dental and oral types of anomalies, to determine the total number and sex distribution of the anomalies, and to analyze possible therapies. We analyzed the literature data from 1,286 IP cases from the period 1993-2010. Dental and/or oral anomalies were diagnosed for 54.38% of the investigated IP patients. Most of the anomaly types were dental, and the most frequent of these were dental shape anomalies, hypodontia, and delayed dentition. The most frequent oral anomaly types were cleft palate and high arched palate. IKBKG exon 4-10 deletion was present in 86.36% of genetically confirmed IP patients. According to the frequency, dental and/or oral anomalies represent the most frequent and important IP minor criteria. The most frequent mutation was IKBKG exon 4-10 deletion. The majority of dental anomalies and some of the oral anomalies could be corrected. Because of the presence of cleft palate and high arched palate in IP patients, these two anomalies may be considered as diagnostic IP minor criteria as well.

  8. High-resolution precipitation database for the last two centuries in Italy: climatologies and anomalies

    Science.gov (United States)

    Crespi, Alice; Brunetti, Michele; Maugeri, Maurizio

    2017-04-01

    The availability of gridded high-resolution spatial climatologies and corresponding secular records has acquired an increasing importance in the recent years both to research purposes and as decision-support tools in the management of natural resources and economical activities. High-resolution monthly precipitation climatologies for Italy were computed by gridding on a 30-arc-second-resolution Digital Elevation Model (DEM) the precipitation normals (1961-1990) obtained from a quality-controlled dataset of about 6200 stations covering the Italian surface and part of the Northern neighbouring regions. Starting from the assumption that the precipitation distribution is strongly influenced by orography, especially elevation, a local weighted linear regression (LWLR) of precipitation versus elevation was performed at each DEM cell. The regression coefficients for each cell were estimated by selecting the stations with the highest weights in which the distances and the level of similarity between the station cells and the considered grid cell, in terms of orographic features, are taken into account. An optimisation procedure was then set up in order to define, for each month and for each grid cell, the most suitable decreasing coefficients for the weighting factors which enter in the LWLR scheme. The model was validated by the comparison with the results provided by inverse distance weighting (IDW) applied both to station normals and to the residuals of a global regression of station normals versus elevation. In both cases, the LWLR leave-one-out reconstructions show the best agreement with the observed station normals, especially when considering specific station clusters (high elevation sites for example). After producing the high-resolution precipitation climatological field, the temporal component on the high-resolution grid was obtained by following the anomaly method. It is based on the assumption that the spatio-temporal structure of the signal of a

  9. Modeling of self-potential anomalies near vertical dikes.

    Science.gov (United States)

    Fitterman, D.V.

    1983-01-01

    The self-potential (SP) Green's function for an outcropping vertical dike is derived from solutions for the dc resistivity problem for the same geometry. The Green's functions are numerically integrated over rectangular source regions on the contacts between the dike and the surrounding material to obtain the SP anomaly. The analysis is valid for thermoelectrical source mechanisms. Two types of anomalies can be produced by this geometry. When the two source planes are polarized in opposite directions, a monopolar anomaly is produced. This corresponds to the thermoelectrical properties of the dike being in contrast with the surrounding material. When the thermoelectric coefficients change monotonically across the dike, a dipolar anomaly is produced. In either case positive and negative anomalies are possible, and the greatest variation in potential will occur in the most resistive regions. -Author

  10. Forecasting experiments of a dynamical-statistical model of the sea surface temperature anomaly field based on the improved self-memorization principle

    Science.gov (United States)

    Hong, Mei; Chen, Xi; Zhang, Ren; Wang, Dong; Shen, Shuanghe; Singh, Vijay P.

    2018-04-01

    With the objective of tackling the problem of inaccurate long-term El Niño-Southern Oscillation (ENSO) forecasts, this paper develops a new dynamical-statistical forecast model of the sea surface temperature anomaly (SSTA) field. To avoid single initial prediction values, a self-memorization principle is introduced to improve the dynamical reconstruction model, thus making the model more appropriate for describing such chaotic systems as ENSO events. The improved dynamical-statistical model of the SSTA field is used to predict SSTA in the equatorial eastern Pacific and during El Niño and La Niña events. The long-term step-by-step forecast results and cross-validated retroactive hindcast results of time series T1 and T2 are found to be satisfactory, with a Pearson correlation coefficient of approximately 0.80 and a mean absolute percentage error (MAPE) of less than 15 %. The corresponding forecast SSTA field is accurate in that not only is the forecast shape similar to the actual field but also the contour lines are essentially the same. This model can also be used to forecast the ENSO index. The temporal correlation coefficient is 0.8062, and the MAPE value of 19.55 % is small. The difference between forecast results in spring and those in autumn is not high, indicating that the improved model can overcome the spring predictability barrier to some extent. Compared with six mature models published previously, the present model has an advantage in prediction precision and length, and is a novel exploration of the ENSO forecast method.

  11. Interplay between the b →s l l anomalies and dark matter physics

    Science.gov (United States)

    Kawamura, Junichiro; Okawa, Shohei; Omura, Yuji

    2017-10-01

    Recently, the LHCb Collaboration has reported the excesses in the b →s l l processes. One of the promising candidates for new physics to explain the anomalies is the extended Standard Model (SM) with vectorlike quarks and leptons. In that model, Yukawa couplings between the extra fermions and SM fermions are introduced, adding extra scalars. Then, the box diagrams involving the extra fields achieve the b →s l l anomalies. It has been known that the excesses require the large Yukawa couplings of leptons, so that this kind of model can be tested by studying correlations with other observables. In this paper, we consider the extra scalar to be a dark matter (DM) candidate, and investigate DM physics as well as the flavor physics and the LHC physics. The DM relic density and the direct-detection cross section are also dominantly given by the Yukawa couplings, so that we find some explicit correlations between DM physics and the flavor physics. In particular, we find the predictions of the b →s l l anomalies against the direct detection of DM.

  12. Sciences of geodesy II innovations and future developments

    CERN Document Server

    Xu, Guochang

    2014-01-01

    This series of reference books describes the sciences of different fields in and around geodesy. Each chapter, is written by experts in the respective fields and covers an individual field and describes the history, theory, the objective, the technology, and the development, the highlight of the research, the applications, the problems, as well as future directions. Contents of Volume II include: Geodetic LEO Satellite Missions, Satellite Altimetry, Airborne Lidar, GNSS Software Receiver, Geodetic Boundary Problem, GPS and INS, VLBI, Geodetic Reference Systems, Spectral Analysis, Earth Tide and Ocean Loading Tide, Remote Sensing, Photogrammetry, Occultation, Geopotential Determination, Geoid Determination, Local Gravity Field, Geopotential Determination, Magnet Field, Mobile Mapping, General Relativity, Wide-area Precise Positioning etc.

  13. Axial anomaly at finite temperature and finite density

    International Nuclear Information System (INIS)

    Qian Zhixin; Su Rukeng; Yu, P.K.N.

    1994-01-01

    The U(1) axial anomaly in a hot fermion medium is investigated by using the real time Green's function method. After calculating the lowest order triangle diagrams, we find that finite temperature as well as finite fermion density does not affect the axial anomaly. The higher order corrections for the axial anomaly are discussed. (orig.)

  14. Dental anomalies in primary dentition and their corresponding permanent teeth.

    Science.gov (United States)

    Gomes, R R; Fonseca, J A C; Paula, L M; Acevedo, A C; Mestrinho, H D

    2014-05-01

    The objectives of this paper are to estimate the prevalence of dental anomalies in primary dentition in a sample of 2- to 5-year-old Brazilian preschool children, determine their distribution, and investigate their occurrence in the succedaneous teeth of the sample compared with a control group of children with no dental anomalies in the primary dentition. The one-stage sample comprised 1,718 two to five-year-old children with fully erupted primary dentition clinically examined for dental anomalies. All children presenting dental anomalies underwent panoramic radiographs. Descriptive statistics were performed for the studied variables. A control group matched by sex and age was studied to compare the prevalence ratio for dental anomalies in the permanent dentition. The prevalence of dental anomalies in the primary dentition was 1.8 %, with no significant statistical difference between sexes. Double teeth were the most frequently observed. Dental anomalies on the succedaneous permanent teeth were diagnosed in 54.8 % of the children with affected primary dentition. The prevalence ratio (PR) for dental anomalies in the succedaneous permanent teeth was 17.1 (confidence interval (CI) 5.33-54.12) higher compared with the control group, higher in children with bilateral anomalies (PR = 31.2, CI 10.18-94.36). An association between anomalies of the permanent dentition and the presence of dental anomalies in primary teeth was observed, especially when they occur bilaterally. The results in the present study have a clinical relevance in the diagnosis of children with dental anomalies in primary dentition. Early identification of these anomalies can aid the dentist in planning dental treatment at the appropriate time.

  15. Derivation of the Time-Reversal Anomaly for (2 +1 )-Dimensional Topological Phases

    Science.gov (United States)

    Tachikawa, Yuji; Yonekura, Kazuya

    2017-09-01

    We prove an explicit formula conjectured recently by Wang and Levin for the anomaly of time-reversal symmetry in (2 +1 )-dimensional fermionic topological quantum field theories. The crucial step is to determine the cross-cap state in terms of the modular S matrix and T2 eigenvalues, generalizing the recent analysis by Barkeshli et al. in the bosonic case.

  16. Marine magnetic anomalies off Ratnagiri, Western continental shelf of India

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, D.G.

    of magnetic anomalies. Two-dimensional model and spectral studies of these anomalies were carried out, and subsurface models of the geology in the area have been derived from anomalies at a number of places. The results suggest that the anomalies occur over a...

  17. Network anomaly detection a machine learning perspective

    CERN Document Server

    Bhattacharyya, Dhruba Kumar

    2013-01-01

    With the rapid rise in the ubiquity and sophistication of Internet technology and the accompanying growth in the number of network attacks, network intrusion detection has become increasingly important. Anomaly-based network intrusion detection refers to finding exceptional or nonconforming patterns in network traffic data compared to normal behavior. Finding these anomalies has extensive applications in areas such as cyber security, credit card and insurance fraud detection, and military surveillance for enemy activities. Network Anomaly Detection: A Machine Learning Perspective presents mach

  18. Time series analysis of infrared satellite data for detecting thermal anomalies: a hybrid approach

    Science.gov (United States)

    Koeppen, W. C.; Pilger, E.; Wright, R.

    2011-07-01

    We developed and tested an automated algorithm that analyzes thermal infrared satellite time series data to detect and quantify the excess energy radiated from thermal anomalies such as active volcanoes. Our algorithm enhances the previously developed MODVOLC approach, a simple point operation, by adding a more complex time series component based on the methods of the Robust Satellite Techniques (RST) algorithm. Using test sites at Anatahan and Kīlauea volcanoes, the hybrid time series approach detected ~15% more thermal anomalies than MODVOLC with very few, if any, known false detections. We also tested gas flares in the Cantarell oil field in the Gulf of Mexico as an end-member scenario representing very persistent thermal anomalies. At Cantarell, the hybrid algorithm showed only a slight improvement, but it did identify flares that were undetected by MODVOLC. We estimate that at least 80 MODIS images for each calendar month are required to create good reference images necessary for the time series analysis of the hybrid algorithm. The improved performance of the new algorithm over MODVOLC will result in the detection of low temperature thermal anomalies that will be useful in improving our ability to document Earth's volcanic eruptions, as well as detecting low temperature thermal precursors to larger eruptions.

  19. Muon g−2 in anomaly mediated SUSY breaking

    International Nuclear Information System (INIS)

    Chowdhury, Debtosh; Yokozaki, Norimi

    2015-01-01

    Motivated by two experimental facts, the muon g−2 anomaly and the observed Higgs boson mass around 125 GeV, we propose a simple model of anomaly mediation, which can be seen as a generalization of mixed modulus-anomaly mediation. In our model, the discrepancy of the muon g−2 and the Higgs boson mass around 125 GeV are easily accommodated. The required mass splitting between the strongly and weakly interacting SUSY particles are naturally achieved by the contribution from anomaly mediation. This model is easily consistent with SU(5) or SO(10) grand unified theory.

  20. Muon g−2 in anomaly mediated SUSY breaking

    Energy Technology Data Exchange (ETDEWEB)

    Chowdhury, Debtosh; Yokozaki, Norimi [Istituto Nazionale di Fisica Nucleare, Sezione di Roma,Piazzale Aldo Moro 2, I-00185 Rome (Italy)

    2015-08-24

    Motivated by two experimental facts, the muon g−2 anomaly and the observed Higgs boson mass around 125 GeV, we propose a simple model of anomaly mediation, which can be seen as a generalization of mixed modulus-anomaly mediation. In our model, the discrepancy of the muon g−2 and the Higgs boson mass around 125 GeV are easily accommodated. The required mass splitting between the strongly and weakly interacting SUSY particles are naturally achieved by the contribution from anomaly mediation. This model is easily consistent with SU(5) or SO(10) grand unified theory.

  1. The Long Term Features of Tropical Cyclones Nearby Taiwan

    Science.gov (United States)

    Wu, Yueh-Shyuan; Lee, Cheng-Shang

    2017-04-01

    Tropical cyclone (TC) activity is affected by several factors. The variability of TC activity over the western North Pacific (WNP) has been examined in the past decade. Previous studies showed that TC activity (such as TC number, intensity and tracks) has multiscale variation or affected by natural oscillation of different scales. However, most of these studies focused mainly on the entire WNP. Very few studies examined the variability of annual TC track or the variability of TC number in the area nearby Taiwan, which caused severe economic loss and life damage to Taiwan in the typhoon season. The main purpose of this study is to analyze the variation of TC activity nearby Taiwan to address its long term features, and also the possible relationship with the associated flow patterns. Preliminary results of wavelet analysis showed that the TC number nearby Taiwan during 1970-2014 had multiscale variations. The following analysis focused on the scale about 4- and 11-year signals, in the targeted area of 118o-125oE, 20o-27oN. The positive phases of both scale 4 and scale 11 showed a tendency of TC tracks toward Taiwan area, while the negative phases showed a lower tendency toward Taiwan. An empirical orthogonal function (EOF) analysis was applied on the 4-yr and the 11-yr filtered 500-hPa wind fields and geopotential heights. Results showed that the 4-yr signal was mostly dominated by the 500-hPa U- and V-wind fields, suggesting that the TC track patterns were affected mainly by the midlevel steering flow. On the other hand, the 11-yr signal was mostly dominated by the 500-hPa U-wind field and geopotential anomalies, indicating that the main cause of the difference in TC occurrence nearby Taiwan was the location of TC formation.

  2. The South Atlantic Anomaly: the key for a possible geomagnetic reversal

    Directory of Open Access Journals (Sweden)

    F. Javier ePavón-Carrasco

    2016-04-01

    Full Text Available The South Atlantic Anomaly is nowadays one of the most important features of the Earth’s magnetic field. Its extent area at the Earth’s surface is continuously growing since the intensity instrumental measurements are available covering part of the Southern Hemisphere and centred in South America. Several studies associate this anomaly as an indicator of an upcoming geomagnetic transition, such an excursion or reversal. In this paper we carry out a detailed study about this issue using the most recent models that also include data from the last ESA mission Swarm. Our results reveal that one of the reversed polarity patch located under the South Atlantic Ocean is growing with a pronounced rate of -2.54•105 nT per century and with western drift. In addition, we demonstrate that the quadrupole field mainly controls this reversal patch at the CMB along with the rapid decay of the dipolar field. The presence of the reversal patches at the CMB seems to be characteristic during the preparation phase of a geomagnetic transition. However, the present value of the dipolar moment (7.7 1022A•m2 is not so low when compared with recent paleomagnetic data for the Holocene (last 12ka and for the entire Brunhes geomagnetic normal polarity (last 0.8 Ma, although the rate of decay is similar of the previous documented geomagnetic reversals or excursions.

  3. Two and Three Parameter Waveform Retracking of Cryosat-2 LRM Waveforms for Gravity Field Determination

    DEFF Research Database (Denmark)

    Jain, Maulik; Andersen, Ole Baltazar; Dall, Jørgen

    2013-01-01

    The project deals with sea surface height and gravity field determination in open ocean using Cryosat-2 LRM data. A three parameter model is being used to find the retracking offset for sea surface height determination. The estimates from the three parameter model are further improved upon by using...... a two parameter model. The sea surface heights thus obtained are used to develop sea surface height anomalies which are further processed to give gravity fields. Retracker performance evaluation is done using sea surface height anomaly and gravity field anomaly....

  4. Congenital anomalies of the limbs in mythology and antiquity.

    Science.gov (United States)

    Mavrogenis, Andreas F; Markatos, Konstantinos; Nikolaou, Vasilios; Gartziou-Tatti, Ariadne; Soucacos, Panayotis N

    2018-04-01

    Congenital anomalies of the limbs have been observed since ancient human civilizations, capturing the imagination of ancient physicians and people. The knowledge of the era could not possibly theorize on the biologic aspects of these anomalies; however, from the very beginning of civilization the spiritual status of people attempted to find a logical explanation for the existence of such cases. The next logical step of the spiritual and religious system of the ancients was to correlate these anomalies with the Gods and to attribute them to a different level of existence in order to rationalize their existence. In these settings, the mythology and religious beliefs of ancient civilizations comprised several creatures that were related to the observed congenital anomalies in humans. The purpose of this historic review is to summarize the depiction of congenital anomalies of the limbs in mythology and antiquity, to present several mythological creatures with resemblance to humans with congenital anomalies of the limbs, to present the atmosphere of the era concerning the congenital anomalies, and to theorize on the anomaly and medical explanation upon which such creatures were depicted. Our aim is to put historic information in one place, creating a comprehensive review that the curious reader would find interesting and enjoyable.

  5. Isostatic Model and Isostatic Gravity Anomalies of the Arabian Plate and Surroundings

    Science.gov (United States)

    Kaban, Mikhail K.; El Khrepy, Sami; Al-Arifi, Nassir

    2016-04-01

    The isostatic modeling represents one of the most useful "geological" reduction methods of the gravity field. With the isostatic correction, it is possible to remove a significant part of the effect of deep density heterogeneity, which dominates in the Bouguer gravity anomalies. Although there exist several isostatic compensation schemes, it is usually supposed that a choice of the model is not an important factor to first order, since the total weight of compensating masses remains the same. We compare two alternative models for the Arabian plate and surrounding area. The Airy model gives very significant regional isostatic anomalies, which cannot be explained by the upper crust structure or disturbances of the isostatic equilibrium. Also, the predicted "isostatic" Moho is very different from existing seismic observations. The second isostatic model includes the Moho, which is based on seismic determinations. Additional compensation is provided by density variations within the lithosphere (chiefly in the upper mantle). According to this model, the upper mantle under the Arabian Shield is less dense than under the Platform. In the Arabian platform, the maximum density coincides with the Rub' al Khali, one of the richest oil basin in the world. This finding agrees with previous studies, showing that such basins are often underlain by dense mantle, possibly related to an eclogite layer that has caused their subsidence. The mantle density variations might be also a result of variations of the lithosphere thickness. With the combined isostatic model, it is possible to minimize regional anomalies over the Arabian plate. The residual local anomalies correspond well to tectonic structure of the plate. Still very significant anomalies, showing isostatic disturbances of the lithosphere, are associated with the Zagros fold belt, the collision zone of the Arabian and Eurasian plates.

  6. THE PREVALENCE OF DENTAL ANOMALIES IN A TURKISH POPULATION

    Directory of Open Access Journals (Sweden)

    Gamze Aren

    2015-10-01

    Full Text Available Purpose: The aim of the present study was to investigate the prevalence of dental anomalies in a Turkish population according to the gender and age. Materials and Methods: A retrospective study was performed using panoramic radiographs of 2025 patients (885 males and 1140 females ranging in age from 9 to 35 (mean age 25.61±10.04 years attending Department of Oral Radiology, University of Istanbul, Faculty of Dentistry. These patients were examined to determine the presence of developmental dental anomalies involving hypodontia, hyperdontia, microdontia, taurodontism and other root anomalies. The incidence of these anomalies were assessed according to the gender and age. Results: Among the 2025 subjects, a total of 96 individuals (42 males and 54 females showed at least one of the selected dental anomalies (4.74%. Tooth agenesis was the most common dental abnormality (1.77% followed by taurodontism (1.18%, hyperdontia (0.79%, microdontia (0.54% and root anomalies (0.44%, respectively. Conclusion: Tooth agenesis is the most common developmental dental anomaly in the studied Turkish population followed by taurodontism.

  7. The prevalence of dental anomalies in a turkish population.

    Science.gov (United States)

    Aren, Gamze; Guven, Yeliz; Guney Tolgay, Ceren; Ozcan, Ilknur; Bayar, Ozlem Filiz; Kose, Taha Emre; Koyuncuoglu, Gulhan; Ak, Gulsum

    2015-01-01

    The aim of the present study was to investigate the prevalence of dental anomalies in a Turkish population according to the gender and age. A retrospective study was performed using panoramic radiographs of 2025 patients (885 males and 1140 females) ranging in age from 9 to 35 (mean age 25.61±10.04) years attending Department of Oral Radiology, University of Istanbul, Faculty of Dentistry. These patients were examined to determine the presence of developmental dental anomalies involving hypodontia, hyperdontia, microdontia, taurodontism and other root anomalies. The incidence of these anomalies were assessed according to the gender and age. Among the 2025 subjects, a total of 96 individuals (42 males and 54 females) showed at least one of the selected dental anomalies (4.74%). Tooth agenesis was the most common dental abnormality (1.77%) followed by taurodontism (1.18%), hyperdontia (0.79%), microdontia (0.54%) and root anomalies (0.44%), respectively. Tooth agenesis is the most common developmental dental anomaly in the studied Turkish population followed by taurodontism.

  8. Spectrum of congenital anomalies in pregnancies with pregestational diabetes

    DEFF Research Database (Denmark)

    Garne, Ester; Loane, Maria; Dolk, Helen

    2012-01-01

    Maternal pregestational diabetes is a well-known risk factor for congenital anomalies. This study analyses the spectrum of congenital anomalies associated with maternal diabetes using data from a large European database for the population-based surveillance of congenital anomalies....

  9. Aspects of extratropical synoptic-scale processes in opposing ENSO phases

    Science.gov (United States)

    Schwierz, C.; Wernli, H.; Hess, D.

    2003-04-01

    Energy and momentum provided by anomalous tropical heating/cooling affect the circulation on the global scale. Pacific Sea surface temperature anomalies strongly force local conditions in the equatorial Pacific, but are also known to change the climate in the extratropics, particularly over the American continent. The impact on more remote areas such as the Atlantic-European region is less clear. There the observed effects in both analyses and model studies show dependence on the resolution of the model/data, as well as on the time scales under consideration (Merkel and Latif, 2002; Compo et al., 2001). Most of the previous studies focus on larger-scale processes and seasonal time scales (or longer). Here we concentrate on the impact of opposing ENSO phases on extratropical synoptic-scale dynamics. The investigation is undertaken for the Niño/Niña events of 1972/3 and 1973/4 respectively, for 5 winter months (NDJFM) using ECMWF ERA40 data with 1o× 1o horizontal resolution and 60 vertical levels. The examination of the resulting differences in terms of standard dynamical fields (temperature, sea level pressure, precipitation, geopotential) is complemented with additional diagnostic fields (e.g. potential vorticity (PV), anti-/cyclone tracks and frequencies, PV streamers/cut-offs, blocking) in an attempt to gain more insight into aspects of extratropical synoptic-scale dynamical processes associated with ENSO SST anomalies.

  10. Dimensional reduction in anomaly mediation

    International Nuclear Information System (INIS)

    Boyda, Ed; Murayama, Hitoshi; Pierce, Aaron

    2002-01-01

    We offer a guide to dimensional reduction in theories with anomaly-mediated supersymmetry breaking. Evanescent operators proportional to ε arise in the bare Lagrangian when it is reduced from d=4 to d=4-2ε dimensions. In the course of a detailed diagrammatic calculation, we show that inclusion of these operators is crucial. The evanescent operators conspire to drive the supersymmetry-breaking parameters along anomaly-mediation trajectories across heavy particle thresholds, guaranteeing the ultraviolet insensitivity

  11. No parity anomaly in massless QED{sub 3}: A BPHZL approach

    Energy Technology Data Exchange (ETDEWEB)

    Del Cima, O.M. [Universidade Federal Fluminense (UFF), Polo Universitario de Rio das Ostras (PURO), Departamento de Ciencia e Tecnologia, Rua Recife s/n, 28890-000, Rio das Ostras, RJ (Brazil)], E-mail: wadodelcima@if.uff.br; Franco, D.H.T. [Universidade Federal de Vicosa (UFV), Departamento de Fisica - Campus Universitario, Avenida Peter Henry Rolfs s/n, 36570-000, Vicosa, MG (Brazil)], E-mail: dhtfranco@gmail.com; Piguet, O. [Universidade Federal do Espirito Santo (UFES), CCE, Departamento de Fisica, Campus Universitario de Goiabeiras, 29060-900, Vitoria, ES (Brazil)], E-mail: opiguet@pq.cnpq.br; Schweda, M. [Institut fuer Theoretische Physik, Technische Universitaet Wien (TU-Wien), Wiedner Hauptstrasse 8-10, A-1040, Vienna (Austria)], E-mail: mschweda@tph.tuwien.ac.at

    2009-09-14

    In this Letter we call into question the perturbatively parity breakdown at 1-loop for the massless QED{sub 3} frequently claimed in the literature. As long as perturbative quantum field theory is concerned, whether a parity anomaly owing to radiative corrections exists or not shall be definitely proved by using a renormalization method independent of any regularization scheme. Such a problem has been investigated in the framework of BPHZL renormalization method, by adopting the Lowenstein-Zimmermann subtraction scheme. The 1-loop parity-odd contribution to the vacuum-polarization tensor is explicitly computed in the framework of the BPHZL renormalization method. It is shown that a Chern-Simons term is generated at that order induced through the infrared subtractions - which violate parity. We show then that, what is called 'parity anomaly', is in fact a parity-odd counterterm needed for restauring parity.

  12. Spectrum of congenital anomalies in pregnancies with pregestational diabetes

    NARCIS (Netherlands)

    Garne, Ester; Loane, Maria; Dolk, Helen; Barisic, Ingeborg; Addor, Marie-Claude; Arriola, Larraitz; Bakker, Marian; Calzolari, Elisa; Dias, Carlos Matias; Doray, Berenice; Gatt, Miriam; Melve, Kari Klyungsoyr; Nelen, Vera; O'Mahony, Mary; Pierini, Anna; Randrianaivo-Ranjatoelina, Hanitra; Rankin, Judith; Rissmann, Anke; Tucker, David; Verellun-Dumoulin, Christine; Wiesel, Awi

    BACKGROUND Maternal pregestational diabetes is a well-known risk factor for congenital anomalies. This study analyses the spectrum of congenital anomalies associated with maternal diabetes using data from a large European database for the population-based surveillance of congenital anomalies.

  13. Anomaly General Circulation Models.

    Science.gov (United States)

    Navarra, Antonio

    The feasibility of the anomaly model is assessed using barotropic and baroclinic models. In the barotropic case, both a stationary and a time-dependent model has been formulated and constructed, whereas only the stationary, linear case is considered in the baroclinic case. Results from the barotropic model indicate that a relation between the stationary solution and the time-averaged non-linear solution exists. The stationary linear baroclinic solution can therefore be considered with some confidence. The linear baroclinic anomaly model poses a formidable mathematical problem because it is necessary to solve a gigantic linear system to obtain the solution. A new method to find solution of large linear system, based on a projection on the Krylov subspace is shown to be successful when applied to the linearized baroclinic anomaly model. The scheme consists of projecting the original linear system on the Krylov subspace, thereby reducing the dimensionality of the matrix to be inverted to obtain the solution. With an appropriate setting of the damping parameters, the iterative Krylov method reaches a solution even using a Krylov subspace ten times smaller than the original space of the problem. This generality allows the treatment of the important problem of linear waves in the atmosphere. A larger class (nonzonally symmetric) of basic states can now be treated for the baroclinic primitive equations. These problem leads to large unsymmetrical linear systems of order 10000 and more which can now be successfully tackled by the Krylov method. The (R7) linear anomaly model is used to investigate extensively the linear response to equatorial and mid-latitude prescribed heating. The results indicate that the solution is deeply affected by the presence of the stationary waves in the basic state. The instability of the asymmetric flows, first pointed out by Simmons et al. (1983), is active also in the baroclinic case. However, the presence of baroclinic processes modifies the

  14. Invesigation of prevalence of dental anomalies by using digital panoramic radiographs.

    Science.gov (United States)

    Bilge, Nebiha Hilal; Yeşiltepe, Selin; Törenek Ağırman, Kübra; Çağlayan, Fatma; Bilge, Osman Murat

    2017-09-21

    This study was performed to evaluate the prevalence of all types and subtypes of dental anomalies among 6 to 40 year-old patients by using panoramic radiographs. This cross-sectional study was conducted by analyzing digital panoramic radiographs of 1200 patients admitted to our clinic in 2014. Dental anomalies were examined under 5 types and 16 subtypes. Dental anomalies were divided into five types: (a) number (including hypodontia, oligodontia and hyperdontia); (b) size (including microdontia and macrodontia); (c) structure (including amelogenesis imperfecta, dentinogenesis imperfecta and dentin dysplasia); (d) position (including transposition, ectopia, displacement, impaction and inversion); (e) shape (including fusion-gemination, dilaceration and taurodontism); RESULTS: The prevalence of dental anomalies diagnosed by panoramic radiographs was 39.2% (men (46%), women (54%)). Anomalies of position (60.8%) and shape (27.8%) were the most common types of abnormalities and anomalies of size (8.2%), structure (0.2%) and number (17%) were the least in both genders. Anomalies of impaction (45.5%), dilacerations (16.3%), hypodontia (13.8%) and taurodontism (11.2%) were the most common subtypes of dental anomalies. Taurodontism was more common in the age groups of 13-19 years. The age range of the most frequent of all other anomalies was 20-29. Anomalies of tooth position were the most common type of dental anomalies and structure anomalies were the least in this Turkish dental population. The frequency and type of dental anomalies vary within and between populations, confirming the role of racial factors in the prevalence of dental anomalies. Digital panoramic radiography is a very useful method for the detection of dental anomalies.

  15. Non-perturbative supersymmetry anomaly in supersymmetric QCD

    International Nuclear Information System (INIS)

    Shamir, Y.

    1991-03-01

    The zero modes of the Dirac operator in an instanton and other topologically non-trivial backgrounds are unstable in a large class of massless or partially massless supersymmetric gauge theories. We show that under a generic perturbation of the scalar fields all zero modes become resonances, and discuss the ensuing breakdown of conventional perturbation theory. As a result, despite of the presence of massless fermions, the field theoretic tunneling amplitude is not suppressed. In massless supersymmetric QCD with N c ≤ N f the effective potential is found to be negative and monotonically increasing in the weak coupling regime for scalar VEVs which lie on the perturbatively flat directions. Consequently, massless supersymmetric QCD with N c ≤ N f exhibits a non-perturbative supersymmetry anomaly and exists in a strongly interacting phase which closely resembles ordinary QCD. The same conclusions apply if small masses are added to the lagrangian and the massless limit is smooth. (author). 21 refs, 5 figs

  16. Penile Anomalies in Adolescence

    Directory of Open Access Journals (Sweden)

    Dan Wood

    2011-01-01

    Full Text Available This article considers the impact and outcomes of both treatment and underlying condition of penile anomalies in adolescent males. Major congenital anomalies (such as exstrophy/epispadias are discussed, including the psychological outcomes, common problems (such as corporal asymmetry, chordee, and scarring in this group, and surgical assessment for potential surgical candidates. The emergence of new surgical techniques continues to improve outcomes and potentially raises patient expectations. The importance of balanced discussion in conditions such as micropenis, including multidisciplinary support for patients, is important in order to achieve appropriate treatment decisions. Topical treatments may be of value, but in extreme cases, phalloplasty is a valuable option for patients to consider. In buried penis, the importance of careful assessment and, for the majority, a delay in surgery until puberty has completed is emphasised. In hypospadias patients, the variety of surgical procedures has complicated assessment of outcomes. It appears that true surgical success may be difficult to measure as many men who have had earlier operations are not reassessed in either puberty or adult life. There is also a brief discussion of acquired penile anomalies, including causation and treatment of lymphoedema, penile fracture/trauma, and priapism.

  17. Penile anomalies in adolescence.

    Science.gov (United States)

    Wood, Dan; Woodhouse, Christopher

    2011-03-07

    This article considers the impact and outcomes of both treatment and underlying condition of penile anomalies in adolescent males. Major congenital anomalies (such as exstrophy/epispadias) are discussed, including the psychological outcomes, common problems (such as corporal asymmetry, chordee, and scarring) in this group, and surgical assessment for potential surgical candidates. The emergence of new surgical techniques continues to improve outcomes and potentially raises patient expectations. The importance of balanced discussion in conditions such as micropenis, including multidisciplinary support for patients, is important in order to achieve appropriate treatment decisions. Topical treatments may be of value, but in extreme cases, phalloplasty is a valuable option for patients to consider. In buried penis, the importance of careful assessment and, for the majority, a delay in surgery until puberty has completed is emphasised. In hypospadias patients, the variety of surgical procedures has complicated assessment of outcomes. It appears that true surgical success may be difficult to measure as many men who have had earlier operations are not reassessed in either puberty or adult life. There is also a brief discussion of acquired penile anomalies, including causation and treatment of lymphoedema, penile fracture/trauma, and priapism.

  18. Thermodynamic mechanism of density anomaly of liquid water

    Directory of Open Access Journals (Sweden)

    Makoto eYasutomi

    2015-03-01

    Full Text Available Although density anomaly of liquid water has long been studied by many different authors up to now, it is not still cleared what thermodynamic mechanism induces the anomaly. The thermodynamic properties of substances are determined by interparticle interactions. We analyze what characteristics of pair potential cause the density anomaly on the basis of statistical mechanics and thermodynamics using a thermodynamically self-consistent Ornstein-Zernike approximation (SCOZA. We consider a fluid of spherical particles with a pair potential given by a hard-core repulsion plus a soft-repulsion and an attraction. We show that the density anomaly occurs when the value of the soft-repulsive potential at hard-core contact is in some proper range, and the range depends on the attraction. Further, we show that the behavior of the excess internal energy plays an essential role in the density anomaly and the behavior is mainly determined by the values of the soft-repulsive potential, especially near the hard core contact. Our results show that most of ideas put forward up to now are not the direct causes of the density anomaly of liquid water.

  19. Experimental investigations on the anomaly of the electric conductivity in magnetohydrodynamic shock waves

    International Nuclear Information System (INIS)

    Zeyer, G.

    1975-01-01

    In the present work results of experimental investigations on the structure of resistive MHD shock waves are reported. The anomaly of the electric conductivity possibly occurring in such shock waves is an effect which has given new insight on the interaction mechanims of a plasma. In a modified Theta-Pinch setup deuterium plasma shock waves perpendicular to the magnetic field are studied with the aid of probes and scattering of laser light to determine the internal magnetic field and electron temperature and density. (GG) [de

  20. Seafloor spreading magnetic anomalies in the southeastern Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Chaubey, A.K.; Bhattacharya, G.C; Rao, D.G.

    . A new geomagnetic polarity time scale for the Late Cretaceous and Cenozoic. J. Geophys. Res., 97: 13,917-13,951. Cande, S.C., La Brecque, J.L., Larson, R.L., Pitman, W.C., Golovchenko, X. and Haxby, W.F., 1989. Magnetic linea- tions of the world....O., Herron, E.M., Pitman, W.C. and Le Pichon, X., 1968. Marine magnetic anomalies, geomagnetic field reversals, and motions of the ocean floor and continents. J. Geophys. Res., 73: 2119-2136. McKenzie, D.P. and Sclater, J.G., 1971. The evolution...