Sample records for geophysics


    Institute of Scientific and Technical Information of China (English)


    20152233 An Zhenchang(Key Laboratory of Earth and Planetary Physics,Institute of Geology and Geophysics,Chinese Academy of Sciences,Beijing 100029,China);Peng Fenglin Inspection and Study on the Geomagnetic Survey,Charts and Models during 1683~1949in China(Chinese Journal of Geophysics,ISSN0001-5733,CN11-2074/P,57(11),2014,p.3795-3803,60refs.)


    Institute of Scientific and Technical Information of China (English)


    <正>20080091 Cheng Luying(Institute of Geodesy and Geophysics,Chinese Academy of Sciences,Wuhan 430077,China);Xu Houze Rotation of the Gravity Potential on the Earth’s Gravity Field Recovery(Chinese Journal of Geophysics,ISSN0001-5733,CN11-2074/P,49(1),2006,p.93-98,3 illus.,24 refs.,with English abstract)


    Institute of Scientific and Technical Information of China (English)


    <正>20111476 Chen Bin(Institute of Geophysics,China Earthquake Administration,Beijing 100081,China);Gu Zuowen Study of Geomagnetic Secular Variation in China(Chinese Journal of Geophysics,ISSN0001-5733,CN11-2074/P,53(9),2010,p.2144-2154,6 illus.,4 tables,38 refs.)Key words:secular variations of geomagnetic field,China

  4. Geophysics

    CERN Document Server

    Bolt, Bruce


    Methods in Computational Physics, Volume 13: Geophysics is a 10-chapter text that focuses with the theoretical solid-earth geophysics. This volume specifically covers the general topics of terrestrial magnetism and electricity, the Earth's gravity field, tidal deformations, dynamics of global spin, spin processing, and convective models for the deep interior. This volume surveys first the construction of mathematical models, such as the representation of the geomagnetic field by assuming arrangements of multipole sources in the core and the fast computer evaluation of two- and three-dimensiona


    Institute of Scientific and Technical Information of China (English)


    20150056 Gao Yanguang(School of Earth and Space Sciences,Peking University,Beijing 100087,China);Li Yonghua Crustal Thickness and Vp/Vsin the Northeast China-North China Region and Its Geological Implication(Chinese Journal of Geophysics,ISSN0001-5733,CN11-2074/P,57(3),2014,p.847-857,7illus.,58 refs.,with English abstract)Key words:crust,Poisson’s ration,Northeast China,North China20150057 He Lijuan(State Key Laboratory of Lithospheric Evolution,Institute of Geology and Geophysics,Chinese Academy of Sci-


    Institute of Scientific and Technical Information of China (English)


    <正>20122208 Chen Shi ( Institute of Geophysics,China Earthquake Administration,Beijing 100081,China );Wang Qianshen Thermal Isostasy of North China and Its Gravity Isostasy and Deep Structure ( Chinese Journal of Geophysics,ISSN0001-5733,CN11-2074 / P,54 ( 11 ), 2011,p.2864-2875,8illus.,1 table,37refs. ) Key words:gravity field,Bouguer anomaly,isostasy theory,North China In this paper,based on the up to date global free-air gravity anomaly dataset ( TopexV18.1 ),

  7. Geophysics (United States)

    Carr, M. H.; Cassen, P.


    Four areas of investigation, each dealing with the measurement of a particular geophysical property, are discussed. These properties are the gravity field, seismicity, magnetism, and heat flow. All are strongly affected by conditions, past or present, in the planetary interior; their measurement is the primary source of information about planetary interiors.


    Institute of Scientific and Technical Information of China (English)


    <正>20140634 Cao Lingmin(Key Laboratory of Marine Geology and Environment,Institute of Oceanology,Chinese Academy of Sciences,Qingdao 266071,China);Xu Yi Finite Difference Tomography of the Crustal Velocity Structure in Tengchong,Yunnan Province(Chinese Journal of Geophysics,ISSN0001-5733,CN11-2074/P,56(4),2013,p.1159-1167,6illus.,35refs.,with English abstract)


    Institute of Scientific and Technical Information of China (English)


    <正>20091452 Cai Xuelin(School of Earth Science,Chengdu University of Technology,Chengdu 610059,China);Cao Jiaming Lithospheric and Asthenospheric Structures of the Koktokay of Xinjiang to Jianyang of Sichuan Geoscience Transect(Geology in China,ISSN1000-3657,CN11-1167/P,35(3),2008,p.375-391,8 illus.,2 tables,64 refs.)Key words:lithosphere,asthenosphere,Xinjiang,SichuanBy using the theory and method of modern structural analysis,this paper analyzes the explosion seismic sounding profiling and natural seismic surface wave tomographic imaging in the Koktokay of Xinjiang to Jianyang of Sichuan geoscience transect and integrates the results of research on geology,geochemistry,structural petrology of deep-seated xenoliths and geophysical signs.The studies indicate that the geometric structure pattern of high-speed blocks or mantle block tectonics is one of the basic conditions for controlling the lithospheric tectonic pattern and tectonic deformation of the lithospheric surface.


    Institute of Scientific and Technical Information of China (English)


    <正>20131193 Bing Pingping (Key Lab.of Geophysical Exploration of CNPC , China University of Petroleum , Beijing 102249 , China); Cao Siyuan Non-Linear AVO Inversion Based on Support Vector Machine (Chinese Journal of Geophysics , ISSN0001-5733 , CN11-2074/P , 55 (3), 2012 , p.1025-1032 , 4illus. , 26 tables , 2refs.)


    Institute of Scientific and Technical Information of China (English)


    20160511An Yulin(School of Geophysics and Information Technology,China University of Geosciences,Beijing100083,China);Guo Lianghui High Precision Computation and Numerical Value Characteristics of Gravity Emendation Values Arising from Mass of the Earth

  12. Exploration Geophysics (United States)

    Savit, Carl H.


    Expansion of activity and confirmation of new technological directions characterized several fields of exploration geophysics in 1977. Advances in seismic-reflection exploration have been especially important. (Author/MA)

  13. Agricultural Geophysics (United States)

    The four geophysical methods predominantly used for agricultural purposes are resistivity, electromagnetic induction, ground penetrating radar (GPR), and time domain reflectometry (TDR). Resistivity and electromagnetic induction methods are typically employed to map lateral variations of apparent so...


    Institute of Scientific and Technical Information of China (English)


    <正>20072109 An Yong(Key Lab of Geophysics Exploration under CNPC,China University of Petroleum,Beijing 102249,China);Wei Lichun Most Homogeneous Dip-Scanning Method Using Edge Preserving Smoothing for Seismic Noise Attenuation(Applied Geophysics,ISSN1672-7975,CN11-5212/O,3(4),2006,p.210-217,17 illus.,3 refs.)Key words:seismic exploration,denoising


    Institute of Scientific and Technical Information of China (English)


    20161263Ao Ruide(State Key Laboratory of Marine Geology,Tongji University,Shanghai200092,China);Dong Liangguo Source-Independent Envelope-Based FWI to Build an Initial Model(Chinese Journal of Geophysics,ISSN0001-5733,CN11-2074/P,58(6),2015,p.1998-2010,15illus.,18refs.,


    Institute of Scientific and Technical Information of China (English)


    20151907 Bai Yang(Key Laboratory of Petroleum Resources Research,Institute of Geology a nd Geophysics,Chinese Academy of Sci-ences,Beijing100029,China);Song Haibin Structural Characteristics and Genesis of Pockmarks in the Northwest of the South China Sea Derived from Reflective Seismic and Multibeam

  17. From Geophysical Data to Geophysical Informatics

    Directory of Open Access Journals (Sweden)

    Fenglin Peng


    Full Text Available Geophysics is based on massive data work including data observation, data gathering/collecting, data management, and data analysis. Over the years, in China and other countries, geophysicists and geophysical institutions have accumulated a huge amount of geophysical data, built up many geophysical data banks and data centers, constructed/established many monitoring and transferring systems and infrastructures of geophysical data, and developed many advanced data analysis methods about data on land, ocean, and space. Based on this work, a new discipline of geophysics, geophysical informatics, has been gradually developing over the past 20 years. The recent advances of geophysical informatics in China are introduced and reviewed in this paper.


    Institute of Scientific and Technical Information of China (English)


    <正>20132654Bi Xiaojia(Chengdu University of Technology,Chengdu 610059,China);Miao Fang Lithology Identification and Mapping by Hyperion Hyperspectral Remote Sensing(Computing Techniques for Geophysical and Geochemical Exploration,ISSN1001-1749,CN51-1242/P,34(5),2012,p.599-603,2illus.,14refs.)Key words:geologic mapping,hyperspectral remote sensing,Qinghai Province


    Institute of Scientific and Technical Information of China (English)


    <正>20072798 Chen Fengyun(China University of Mining and Technology,Xuzhou 221008,China);Hang Yuan Algorithm and Application of the Coherency/Variance Cube Technique(Geophysical and Geochemical Exploration,ISSN1000-8918,CN11-1906/P,30(3),2006,p.250-253,257,7 illus.,7 refs.)Key words:seismic exploration The coherency/variance cube technique has been developed in recent years as a new technique of seismic data interpretation.

  20. From Geophysical Data to Geophysical Informatics


    Peng, Fenglin; Peng, Le; Zhang, Jian; Xue, Guoqiang; Ma, Maining; Zhang, Yunfei


    Geophysics is based on massive data work including data observation, data gathering/collecting, data management, and data analysis. Over the years, in China and other countries, geophysicists and geophysical institutions have accumulated a huge amount of geophysical data, built up many geophysical data banks and data centers, constructed/established many monitoring and transferring systems and infrastructures of geophysical data, and developed many advanced data analysis methods about data on...


    Institute of Scientific and Technical Information of China (English)


    <正>20110471 Cai Shaokun(Mechatronics and Automation College,National University of Defense Technology,Changsha 410073,China);Wu Meiping A Comparison of Digital Lowpass FIR-Filters in Airborne Gravimetry(Geophysical and Geochemical Exploration,ISSN1000-8918,CN11-1906/P,34(1),2010,p.74-78,8 illus.,3 tables,14 refs.)Key words:aerogravity surveys,filtersThere is a lot of noise in the data observed by airborne gravimeter.Digital lowpass FIR-filter i

  2. Petroleum geophysics

    Energy Technology Data Exchange (ETDEWEB)


    The book is compiled from a series of e-learning modules. GeoCLASS is an e-learning system with contents from petroleum geophysics. It is the result of collaboration between professors at the University of Bergen and the University of Oslo, and its material has been used as curriculum in master program courses at these universities for several years. Using a unique feature to GeoCLASS, these advanced scientific topics are presented on multiple levels. The introductions open the door to this vast pool of knowledge, accessible even for high school students. Enter the door, and you enter the modules. Various levels of content are presented, and the more advanced levels can be shielded from the regular user, and only accessed by those with particular interest. The chapters in the book are: Elastic waves; Survey planning; Seismic acquisition; Basic seismic signal theory and processing; Seismic imaging; Seismic attributes; Rock physics; Reservoir monitoring. (AG)

  3. Handbook of Agricultural Geophysics (United States)

    Geophysical methods continue to show great promise for use in agriculture. The term “agricultural geophysics” denotes a subdiscipline of geophysics that is focused only on agricultural applications. The Handbook of Agricultural Geophysics was compiled to include a comprehensive overview of the geoph...

  4. Advances in geophysics

    CERN Document Server

    Sato, Haruo


    The critically acclaimed serialized review journal for over 50 years, Advances in Geophysics is a highly respected publication in the field of geophysics. Since 1952, each volume has been eagerly awaited, frequently consulted, and praised by researchers and reviewers alike. Now in its 54th volume, it contains much material still relevant today--truly an essential publication for researchers in all fields of geophysics.Key features: * Contributions from leading authorities * Informs and updates on all the latest developments in the field

  5. Fiber optic geophysical sensors (United States)

    Homuth, Emil F.


    A fiber optic geophysical sensor in which laser light is passed through a sensor interferometer in contact with a geophysical event, and a reference interferometer not in contact with the geophysical event but in the same general environment as the sensor interferometer. In one embodiment, a single tunable laser provides the laser light. In another embodiment, separate tunable lasers are used for the sensor and reference interferometers. The invention can find such uses as monitoring for earthquakes, and the weighing of objects.

  6. Advances in geophysics

    CERN Document Server

    Sato, Haruo


    The critically acclaimed serialized review journal for over 50 years, Advances in Geophysics is a highly respected publication in the field of geophysics. Since 1952, each volume has been eagerly awaited, frequently consulted, and praised by researchers and reviewers alike. Now in its 52nd volume, it contains much material still relevant today--truly an essential publication for researchers in all fields of geophysics.Key features: * Contributions from leading authorities * Informs and updates on all the latest developments in the field

  7. Waterberg coalfield airborne geophysics

    CSIR Research Space (South Africa)

    Fourie, S


    Full Text Available Airborne Geophysics Project Number: 1.5.5 Sub Committee: Geology and Geophysics Presenter: Dr. Stoffel Fourie Co-Workers: Dr. George Henry & Me. Leonie Marè Collaborators: Coaltech & CSIR Project Objectives Major Objectives: circle5 Initiate Semi...-Regional Exploration of the Waterberg Coalfield to the benefit of the Industry. circle5 Generate a good quality Airborne Geophysical Dataset. circle5 Generate a basic lineament and surface geology interpretation of the Ellisras Basin. circle5 Generate a basic...

  8. Geophysical Research Facility (United States)

    Federal Laboratory Consortium — The Geophysical Research Facility (GRF) is a 60 ft long qaodmasdkwaspemas5ajkqlsmdqpakldnzsdfls 22 ft wide qaodmasdkwaspemas4ajkqlsmdqpakldnzsdfls 7 ft deep concrete...

  9. Geophysics in INSPIRE (United States)

    Sőrés, László


    INSPIRE is a European directive to harmonize spatial data in Europe. Its' aim is to establish a transparent, multidisciplinary network of environmental information by using international standards and OGC web services. Spatial data themes defined in the annex of the directive cover 34 domains that are closely bundled to environment and spatial information. According to the INSPIRE roadmap all data providers must setup discovery, viewing and download services and restructure data stores to provide spatial data as defined by the underlying specifications by 2014 December 1. More than 3000 institutions are going to be involved in the progress. During the data specification process geophysics as an inevitable source of geo information was introduced to Annex II Geology. Within the Geology theme Geophysics is divided into core and extended model. The core model contains specifications for legally binding data provisioning and is going to be part of the Implementation Rules of the INSPIRE directives. To minimize the work load of obligatory data transformations the scope of the core model is very limited and simple. It covers the most essential geophysical feature types that are relevant in economic and environmental context. To fully support the use cases identified by the stake holders the extended model was developed. It contains a wide range of spatial object types for geophysical measurements, processed and interpreted results, and wrapper classes to help data providers in using the Observation and Measurements (O&M) standard for geophysical data exchange. Instead of introducing the traditional concept of "geophysical methods" at a high structural level the data model classifies measurements and geophysical models based on their spatial characteristics. Measurements are classified as geophysical station (point), geophysical profile (curve) and geophysical swath (surface). Generic classes for processing results and interpretation models are curve model (1D), surface

  10. Geophysical Research Facility (United States)

    Federal Laboratory Consortium — The Geophysical Research Facility (GRF) is a 60 ft long × 22 ft wide × 7 ft deep concrete basin at CRREL for fresh or saltwater investigations and can be temperature...

  11. Geophysical Methods: an Overview (United States)

    Becker, A.; Goldstein, N. E.; Lee, K. H.; Majer, E. L.; Morrison, H. F.; Myer, L.


    Geophysics is expected to have a major role in lunar resource assessment when manned systems return to the Moon. Geophysical measurements made from a lunar rover will contribute to a number of key studies: estimating regolith thickness, detection of possible large-diameter lava tubes within maria basalts, detection of possible subsurface ice in polar regions, detection of conductive minerals that formed directly from a melt (orthomagmatic sulfides of Cu, Ni, Co), and mapping lunar geology beneath the regolith. The techniques that can be used are dictated both by objectives and by our abilities to adapt current technology to lunar conditions. Instrument size, weight, power requirements, and freedom from orientation errors are factors we have considered. Among the geophysical methods we believe to be appropriate for a lunar resource assessment are magnetics, including gradiometry, time-domain magnetic induction, ground-penetrating radar, seismic reflection, and gravimetry.

  12. Asteroid Surface Geophysics

    CERN Document Server

    Murdoch, Naomi; Schwartz, Stephen R; Miyamoto, Hideaki


    The regolith-covered surfaces of asteroids preserve records of geophysical processes that have occurred both at their surfaces and sometimes also in their interiors. As a result of the unique micro-gravity environment that these bodies posses, a complex and varied geophysics has given birth to fascinating features that we are just now beginning to understand. The processes that formed such features were first hypothesised through detailed spacecraft observations and have been further studied using theoretical, numerical and experimental methods that often combine several scientific disciplines. These multiple approaches are now merging towards a further understanding of the geophysical states of the surfaces of asteroids. In this chapter we provide a concise summary of what the scientific community has learned so far about the surfaces of these small planetary bodies and the processes that have shaped them. We also discuss the state of the art in terms of experimental techniques and numerical simulations that...


    Institute of Scientific and Technical Information of China (English)


    Sichuan Geophysical Company (abbreviated as SCGC below), originally named Sichuan Geophysical Company of CNPC Sichuan Petroleum, was founded in 1956 and is a subsidiary of CNPC Chuanqing Drilling Engineering Company Limited. With more than 50 years' development, SCGC now owns almost 3800 employees and has become a big oil & gas seismic exploration engineering service enterprise with the characteristic mountain seismic exploration techniques, and its annual business turnover reaches nearly 2 billion RMB. It can provide the integrated seismic exploration engineering service including seismic data acquisition, processing, interpretation, and geological comprehensive evaluation in various complex regions for clients at home and abroad.

  14. Arizona Geophysical Data Base


    McLeod, Ronald G.


    A series of digital data sets were compiled for input into a geophysical data base for a one degree quadrangle in Arizona. Using a Landsat digital mosaic as a base, information on topography, geology, gravity as well as Seasat radar imagery were registered. Example overlays and tabulations are performed.

  15. Rapid geophysical surveyor

    Energy Technology Data Exchange (ETDEWEB)

    Roybal, L.G.; Carpenter, G.S.; Josten, N.E.


    The Rapid Geophysical Surveyor (RGS) is a system designed to rapidly and economically collect closely-spaced geophysical data used for characterization of Department of Energy (DOE) waste sites. Geophysical surveys of waste sites are an important first step in the remediation and closure of these sites; especially older sties where historical records are inaccurate and survey benchmarks have changed due to refinements in coordinate controls and datum changes. Closely-spaced data are required to adequately differentiate pits, trenches, and soil vault rows whose edges may be only a few feet from each other. A prototype vehicle designed to collect magnetic field data was built at the Idaho national Engineering Laboratory (INEL) during the summer of 1992. The RGS was one of several projects funded by the Buried Waste Integrated Demonstration (BWID) program. This vehicle was demonstrated at the Subsurface Disposal Area (SDA) within the Radioactive Waste Management Complex (RWMC) on the INEL in September of 1992. Magnetic data were collected over two areas in the SDA, with a total survey area of about 1.7 acres. Data were collected at a nominal density of 2 1/2 inches along survey lines spaced 1 foot apart. Over 350,000 data points were collected over a 6 day period corresponding to about 185 man-days using conventional ground survey techniques. This report documents the design and demonstration of the RGS concept including the presentation of magnetic data collected at the SDA. The surveys were able to show pit and trench boundaries and determine details of their spatial orientation never before achieved.

  16. Rapid geophysical surveyor

    Energy Technology Data Exchange (ETDEWEB)

    Roybal, L.G.; Carpenter, G.S.; Josten, N.E.


    The Rapid Geophysical Surveyor (RGS) is a system designed to rapidly and economically collect closely-spaced geophysical data used for characterization of Department of Energy (DOE) waste sites. Geophysical surveys of waste sites are an important first step in the remediation and closure of these sites; especially older sties where historical records are inaccurate and survey benchmarks have changed due to refinements in coordinate controls and datum changes. Closely-spaced data are required to adequately differentiate pits, trenches, and soil vault rows whose edges may be only a few feet from each other. A prototype vehicle designed to collect magnetic field data was built at the Idaho national Engineering Laboratory (INEL) during the summer of 1992. The RGS was one of several projects funded by the Buried Waste Integrated Demonstration (BWID) program. This vehicle was demonstrated at the Subsurface Disposal Area (SDA) within the Radioactive Waste Management Complex (RWMC) on the INEL in September of 1992. Magnetic data were collected over two areas in the SDA, with a total survey area of about 1.7 acres. Data were collected at a nominal density of 2 1/2 inches along survey lines spaced 1 foot apart. Over 350,000 data points were collected over a 6 day period corresponding to about 185 man-days using conventional ground survey techniques. This report documents the design and demonstration of the RGS concept including the presentation of magnetic data collected at the SDA. The surveys were able to show pit and trench boundaries and determine details of their spatial orientation never before achieved.

  17. Geophysical wave tomography (United States)

    Zhou, Chaoguang


    This study is concerned with geophysical wave tomography techniques that include advanced diffraction tomography, traveltime calculation techniques and simultaneous attenuation and velocity tomography approaches. We propose the source independent approximation, the Modified Quasi-Linear approximation and develop a fast and accurate diffraction tomography algorithm that uses this approximation. Since the Modified Quasi-Linear approximation accounts for the scattering fields within scatterers, this tomography algorithm produces better image quality than conventional Born approximation tomography algorithm does with or without the presence of multiple scatterers and can be used to reconstruct images of high contrast objects. Since iteration is not required, this algorithm is efficient. We improve the finite difference traveltime calculation algorithm proposed by Vidale (1990). The bucket theory is utilized in order to enhance the sorting efficiency, which accounts for about ten percent computing time improvement for large velocity models. Snell's law is employed to solve the causality problem analytically, which enables the modified algorithm to compute traveltimes accurately and rapidly for high velocity contrast media. We also develop two simultaneous attenuation and velocity tomography approaches, which use traveltimes and amplitude spectra of the observed data, and discuss some of their applications. One approach is processing geophysical data that come from one single survey and the other deals with the repeated survey cases. These approaches are nonlinear and therefore more accurate than linear tomography. A linear system for wave propagation and constant-Q media are assumed in order to develop the tomography algorithms. These approaches not only produce attenuation and velocity images at the same time but also can be used to infer the physical rock properties, such as the dielectric permittivity, the electric conductivity, and the porosity. A crosshole radar

  18. Geophysics publications honored (United States)

    Geophysics and geology publications by the U.S. Geological Survey were awarded one first- and two third-place prizes at the ‘Blue Pencil’ ceremony last month, sponsored by the National Association of Government Communicators.First place in the news release category went to Frank Forrester, an AGU member and recently retired USGS information officer. Editors and artists of the bimonthly USGS Earthquake Information Bulletin were awarded third place in the category for technical magazines using at least two colors.

  19. International Symposium on Airborne Geophysics (United States)

    Mogi, Toru; Ito, Hisatoshi; Kaieda, Hideshi; Kusunoki, Kenichiro; Saltus, Richard W.; Fitterman, David V.; Okuma, Shigeo; Nakatsuka, Tadashi


    Airborne geophysics can be defined as the measurement of Earth properties from sensors in the sky. The airborne measurement platform is usually a traditional fixed-wing airplane or helicopter, but could also include lighter-than-air craft, unmanned drones, or other specialty craft. The earliest history of airborne geophysics includes kite and hot-air balloon experiments. However, modern airborne geophysics dates from the mid-1940s when military submarine-hunting magnetometers were first used to map variations in the Earth's magnetic field. The current gamut of airborne geophysical techniques spans a broad range, including potential fields (both gravity and magnetics), electromagnetics (EM), radiometrics, spectral imaging, and thermal imaging.

  20. Geophysical fluid dynamics

    CERN Document Server

    Pedlosky, Joseph


    The content of this book is based, largely, on the core curriculum in geophys­ ical fluid dynamics which I and my colleagues in the Department of Geophysical Sciences at The University of Chicago have taught for the past decade. Our purpose in developing a core curriculum was to provide to advanced undergraduates and entering graduate students a coherent and systematic introduction to the theory of geophysical fluid dynamics. The curriculum and the outline of this book were devised to form a sequence of courses of roughly one and a half academic years (five academic quarters) in length. The goal of the sequence is to help the student rapidly advance to the point where independent study and research are practical expectations. It quickly became apparent that several topics (e. g. , some aspects of potential theory) usually thought of as forming the foundations of a fluid-dynamics curriculum were merely classical rather than essential and could be, however sadly, dispensed with for our purposes. At the same ti...

  1. Geophysical fluid dynamics

    CERN Document Server

    Pedlosky, Joseph


    The content of this book is based, largely, on the core curriculum in geophys­ ical fluid dynamics which land my colleagues in the Department of Geophysical Sciences at The University of Chicago have taught for the past decade. Our purpose in developing a core curriculum was to provide to advanced undergraduates and entering graduate students a coherent and systematic introduction to the theory of geophysical fluid dynamics. The curriculum and the outline of this book were devised to form a sequence of courses of roughly one and a half academic years (five academic quarters) in length. The goal of the sequence is to help the student rapidly advance to the point where independent study and research are practical expectations. It quickly became apparent that several topics (e. g. , some aspects of potential theory) usually thought of as forming the foundations of a fluid-dynamics curriculum were merely classical rather than essential and could be, however sadly, dispensed with for our purposes. At the same tim...

  2. Sampling functions for geophysics (United States)

    Giacaglia, G. E. O.; Lunquist, C. A.


    A set of spherical sampling functions is defined such that they are related to spherical-harmonic functions in the same way that the sampling functions of information theory are related to sine and cosine functions. An orderly distribution of (N + 1) squared sampling points on a sphere is given, for which the (N + 1) squared spherical sampling functions span the same linear manifold as do the spherical-harmonic functions through degree N. The transformations between the spherical sampling functions and the spherical-harmonic functions are given by recurrence relations. The spherical sampling functions of two arguments are extended to three arguments and to nonspherical reference surfaces. Typical applications of this formalism to geophysical topics are sketched.

  3. Geophysics of Mars (United States)

    Wells, R. A.


    A physical model of Mars is presented on the basis of light-scattering observations of the Martian atmosphere and surface and interior data obtained from observations of the geopotential field. A general description of the atmosphere is presented, with attention given to the circulation and the various cloud types, and data and questions on the blue haze-clearing effect and the seasonal darkening wave are summarized and the Mie scattering model developed to explain these observations is presented. The appearance of the planet from earth and spacecraft through Mariner 9 is considered, and attention is given to the preparation of topographical contour maps, the canal problem and large-scale lineaments observed from Mariner 9, the gravity field and shape of the planet and the application of Runcorn's geoid/convection theory to Mars. Finally, a summary of Viking results is presented and their application to the understanding of Martian geophysics is discussed.

  4. Serious games for Geophysics (United States)

    Lombardo, Valerio; Rubbia, Giuliana


    Childhood stage is indispensable in the education of human beings and especially critical to arise scientific interest in children. We discuss the participatory design of a didactic videogame, i.e. a "serious" game to teach geophysics and Earth sciences to high and low-school students. Geophysics is the application of the laws and techniques of physics to uncover knowledge about the earth's dynamic processes and subsurface structure. It explores phenomena such as earthquakes, volcanoes, tsunamis to improve our understanding of the earth's physical processes and our ability to predict reoccurrences. Effective mitigation of risks from catastrophic geologic hazards requires knowledge and understanding of local geology and geologic processes. Scientific outreach can be defined as discourse activity, whose main objective is to communicate some knowledge previously produced in scientific contexts to a non-expert massive audience. One of the difficulties science educators need to overcome is to explain specific concepts from a given discipline in a language simple and understandable for their audience. Digital games today play a large role in young people's lives. Games are directly connected to the life of today's adolescents. Therefore, digital games should be included and broached as a subject in the classroom. The ardor and enthusiasm that digital games evoke in teenagers has indeed brought many researchers, school leaders and teachers to the question "how video games" can be used to engage young people and support their learning inside the classroom. Additionally, studies have shown that digital games can enhance various skills such as the ability to concentrate, stamina, tactical aptness, anticipatory thinking, orientation in virtual spaces, and deductive reasoning. Thus, videogames become an effective didactic mechanism and should have a place in the classroom. The project aims to explore the potentials of entertainment technologies in educational processes

  5. Sustainable Geophysical Observatory Networks (United States)

    Willemann, R. J.; Lerner-Lam, A.; Aster, R.; Beck, S.; Ekstrom, G.; Nyblade, A.; Sandvol, E.


    Geophysical networks are defined not only by their technical specifications, but also by the characteristics and needs of the communities that use them. Growing populations supported by more elaborate urban infrastructure with its fine-grained socio-economic interdependencies and relying on global and regional connections for sustainability make new demands for natural hazard risk management. Taking advantage of advances in the underlying science to provide society with accurate risk assessments often requires higher fidelity measurements, entirely new types of observations, and an evolutionary sense of data products and information management. Engineering a high-tech system to address stakeholder needs is difficult, and designing for unpredictable developments requires an emphasis on adaptation. Thus, it is essential to promote formation of organizations or communities that can support evolution of a technological system, imagine new uses, and develop the societal relationships that sustain operations and provide capital for improvement. The owners must have a deep understanding of why the system works in particular ways and how to manage data products for the benefits of stakeholders. To be effective, community promotion must be sustained over a longer period of time than required to build a network and should be aimed at integrating the community into worldwide partnerships. Practices that can promote community formation if they are sustained include repeated training and scientific exchange workshops, extended visits by experts and staff at all levels to and from countries where networks are installed, mechanisms that make timely upgrades realistically possible, and routine exchange and wide dissemination of data in all directions. The combination of international research and educational collaborations, supported by open data exchange, with regionalized and specific assessments of local stakeholder needs and concerns, provides a sustainable model for

  6. Developments in geophysical exploration methods

    CERN Document Server


    One of the themes in current geophysical development is the bringing together of the results of observations made on the surface and those made in the subsurface. Several benefits result from this association. The detailed geological knowledge obtained in the subsurface can be extrapolated for short distances with more confidence when the geologi­ cal detail has been related to well-integrated subsurface and surface geophysical data. This is of value when assessing the characteristics of a partially developed petroleum reservoir. Interpretation of geophysical data is generally improved by the experience of seeing the surface and subsurface geophysical expression of a known geological configuration. On the theoretical side, the understanding of the geophysical processes themselves is furthered by the study of the phenomena in depth. As an example, the study of the progress of seismic wave trains downwards and upwards within the earth has proved most instructive. This set of original papers deals with some of ...


    Directory of Open Access Journals (Sweden)

    Fabio Florindo


    Full Text Available Annals of Geophysics is a bimonthly international journal, which publishes scientific papers in the field of geophysics sensu lato. It derives from Annali di Geofisica, which commenced publication in January 1948 as a quarterly periodical devoted to general geophysics, seismology, earth magnetism, and atmospheric studies. The journal was published regularly for a quarter of a century until 1982 when it merged with the French journal Annales de Géophysique to become Annales Geophysicae under the aegis of the European Geophysical Society. In 1981, this journal ceased publication of the section on solid earth geophysics, ending the legacy of Annali di Geofisica. In 1993, the Istituto Nazionale di Geofisica (ING, founder of the journal, decided to resume publication of its own journal under the same name, Annali di Geofisica. To ensure continuity, the first volume of the new series was assigned the volume number XXXVI (following the last issue published in 1982. In 2002, with volume XLV, the name of the journal was translated into English to become Annals of Geophysics and in consequence the journal impact factor counter was restarted. Starting in 2010, in order to improve its status and better serve the science community, Annals of Geophysics has instituted a number of editorial changes including full electronic open access, freely accessible online, the possibility to comment on and discuss papers online, and a board of editors representing Asia and the Americas as well as Europe. [...

  8. Jesuit Geophysical Observatories (United States)

    Udias, Agustin; Stauder, William

    Jesuits have had ah interest in observing and explaining geophysical phenomena since this religious order, the Society of Jesus, was founded by Ignatius of Loyola in 1540. Three principal factors contributed to this interest: their educational work in colleges and universities, their missionary endeavors to remote lands where they observed interesting and often as yet undocumented natural phenomena, and a network of communication that brought research of other Jesuits readily to their awareness.One of the first and most important Jesuit colleges was the Roman College (today the Gregorian University) founded in 1551 in Rome, which served as a model for many other universities throughout the world. By 1572, Christopher Clavius (1537-1612), professor of mathematics at the Roman College, had already initiated an important tradition of Jesuit research by emphasizing applied mathematics and insisting on the need of serious study of mathematics in the program of studies in the humanities. In 1547 he directed a publication of Euclid's work with commentaries, and published several treatises on mathematics, including Arithmetica Practica [1585], Gnomonicae [1581], and Geometrica Practica [1606]. Clavius was also a Copernican and supported his friend Galileo when he announced the discovery of the satellites of Jupiter.

  9. Geophysical lineaments of Arizona

    Energy Technology Data Exchange (ETDEWEB)

    Lepley, L.K.


    Photolineaments seen on satellite images are usually expressions of deep crustal ruptures. However, photolineaments are omnipresent and an independent expression of regional discontinuities is needed to help rank the photolineaments. Published gravity and magnetic contour maps of Arizona were analyzed to produce a single geophysical lineament map to indicate trends of regional basement structures. This map shows that the southwestern quarter of Arizona is dominated by a NNW-ENE orthogonal system whereas the remainder of the state is gridded by a NW-NE system. North-south systems are present throughout the state, as are EW lineaments. Arizona is transected by the WNW Texas Strand, but other shorter systems trending in the Texas direction are found throughout the state south of the Strand. The major lineament systems as seen on Landsat, gravity, and magnetic maps correlate reasonably well with known geothermal manifestations. Many other systems are Precambrian, Paleozoic, and/or Mesozoic in age but appear to control the location of Quaternary volcanic systems.


    African Journals Online (AJOL)


    Nov 3, 2012 ... olokoro lateritic soil, particle size distribution, compaction test, geophysical properties, california bearing ratio. 1. ... e.g. alluvial soil, aeolin soil, glacial soil etc. [2]. .... Garg, S.K. Soil Mechanics and Foundation Engineer- ing.

  11. Planetary Geophysics and Tectonics (United States)

    Zuber, Maria


    The broad objective of this work is to improve understanding of the internal structures and thermal and stress histories of the solid planets by combining results from analytical and computational modeling, and geophysical data analysis of gravity, topography and tectonic surface structures. During the past year we performed two quite independent studies in the attempt to explain the Mariner 10 magnetic observations of Mercury. In the first we revisited the possibility of crustal remanence by studying the conditions under which one could break symmetry inherent in Runcorn's model of a uniformly magnetized shell to produce a remanent signal with a dipolar form. In the second we applied a thin shell dynamo model to evaluate the range of intensity/structure for which such a planetary configuration can produce a dipole field consistent with Mariner 10 results. In the next full proposal cycle we will: (1) develop numerical and analytical and models of thin shell dynamos to address the possible nature of Mercury s present-day magnetic field and the demise of Mars magnetic field; (2) study the effect of degree-1 mantle convection on a core dynamo as relevant to the early magnetic field of Mars; (3) develop models of how the deep mantles of terrestrial planets are perturbed by large impacts and address the consequences for mantle evolution; (4) study the structure, compensation, state of stress, and viscous relaxation of lunar basins, and address implications for the Moon s state of stress and thermal history by modeling and gravity/topography analysis; and (5) use a three-dimensional viscous relaxation model for a planet with generalized vertical viscosity distribution to study the degree-two components of the Moon's topography and gravity fields to constrain the primordial stress state and spatial heterogeneity of the crust and mantle.

  12. Sustainable urban development and geophysics (United States)

    Liu, Lanbo; Chan, L. S.


    The new millennium has seen a fresh wave of world economic development especially in the Asian-Pacific region. This has contributed to further rapid urban expansion, creating shortages of energy and resources, degradation of the environment, and changes to climatic patterns. Large-scale, new urbanization is mostly seen in developing countries but urban sprawl is also a major social problem for developed nations. Urbanization has been accelerating at a tremendous rate. According to data collected by the United Nations [1], 50 years ago less than 30% of the world population lived in cities. Now, more than 50% are living in urban settings which occupy only about 1% of the Earth's surface. During the period from 1950 to 1995, the number of cities with a population higher than one million increased from 83 to 325. By 2025 it is estimated that more than 60% of 8.3 billion people (the projected world population [1]) will be city dwellers. Urbanization and urban sprawl can affect our living quality both positively and negatively. In recent years geophysics has found significant and new applications in highly urbanized settings. Such applications are conducive to the understanding of the changes and impacts on the physical environment and play a role in developing sustainable urban infrastructure systems. We would like to refer to this field of study as 'urban geophysics'. Urban geophysics is not simply the application of geophysical exploration in the cities. Urbanization has brought about major changes to the geophysical fields of cities, including those associated with electricity, magnetism, electromagnetism and heat. An example is the increased use of electromagnetic waves in wireless communication, transportation, office automation, and computer equipment. How such an increased intensity of electromagnetic radiation affects the behaviour of charged particles in the atmosphere, the equilibrium of ecological systems, or human health, are new research frontiers to be

  13. Optimization and geophysical inverse problems

    Energy Technology Data Exchange (ETDEWEB)

    Barhen, J.; Berryman, J.G.; Borcea, L.; Dennis, J.; de Groot-Hedlin, C.; Gilbert, F.; Gill, P.; Heinkenschloss, M.; Johnson, L.; McEvilly, T.; More, J.; Newman, G.; Oldenburg, D.; Parker, P.; Porto, B.; Sen, M.; Torczon, V.; Vasco, D.; Woodward, N.B.


    A fundamental part of geophysics is to make inferences about the interior of the earth on the basis of data collected at or near the surface of the earth. In almost all cases these measured data are only indirectly related to the properties of the earth that are of interest, so an inverse problem must be solved in order to obtain estimates of the physical properties within the earth. In February of 1999 the U.S. Department of Energy sponsored a workshop that was intended to examine the methods currently being used to solve geophysical inverse problems and to consider what new approaches should be explored in the future. The interdisciplinary area between inverse problems in geophysics and optimization methods in mathematics was specifically targeted as one where an interchange of ideas was likely to be fruitful. Thus about half of the participants were actively involved in solving geophysical inverse problems and about half were actively involved in research on general optimization methods. This report presents some of the topics that were explored at the workshop and the conclusions that were reached. In general, the objective of a geophysical inverse problem is to find an earth model, described by a set of physical parameters, that is consistent with the observational data. It is usually assumed that the forward problem, that of calculating simulated data for an earth model, is well enough understood so that reasonably accurate synthetic data can be generated for an arbitrary model. The inverse problem is then posed as an optimization problem, where the function to be optimized is variously called the objective function, misfit function, or fitness function. The objective function is typically some measure of the difference between observational data and synthetic data calculated for a trial model. However, because of incomplete and inaccurate data, the objective function often incorporates some additional form of regularization, such as a measure of smoothness

  14. Fiber Optic Geophysics Sensor Array (United States)

    Grochowski, Lucjan


    The distributed optical sensor arrays are analysed in view of specific needs of 3-D seismic explorations methods. There are compared advantages and disadventages of arrays supported by the sensors which are modulated in intensity and phase. In these systems all-fiber optic structures and their compabilities with digital geophysic formats are discussed. It was shown that the arrays based on TDM systems with the intensity modulated sensors are economically and technically the best matched for geophysic systems supported by a large number of the sensors.


    Institute of Scientific and Technical Information of China (English)


    @@ BGP is one of the world leading onshore geophysical service contractors with a registered capital of 5,100 million Yuan. In 2002, BGP became a liability-limited company after merging other six Chinese geophysical companies.

  16. Geophysical Institute. Biennial report, 1993-1994

    Energy Technology Data Exchange (ETDEWEB)



    The 1993-1994 Geophysical Institute Biennial Report was published in November 1995 by the Geophysical Institute of the University of Alaska Fairbanks. It contains an overview of the Geophysical Institute, the Director`s Note, and research presentations concerning the following subjects: Scientific Predictions, Space Physics, Atmospheric Sciences, Snow, Ice and Permafrost, Tectonics and Sedimentation, Seismology, Volcanology, Remote Sensing, and other projects.

  17. Near-surface applied geophysics

    CERN Document Server

    Everett, Mark E.


    Just a few meters below the Earth's surface lie features of great importance, from geological faults which can produce devastating earthquakes, to lost archaeological treasures! This refreshing, up-to-date book explores the foundations of interpretation theory and the latest developments in near-surface techniques, used to complement traditional geophysical methods for deep-exploration targets. Clear but rigorous, the book explains theory and practice in simple physical terms, supported by intermediate-level mathematics. Techniques covered include magnetics, resistivity, seismic reflection and refraction, surface waves, induced polarization, self-potential, electromagnetic induction, ground-penetrating radar, magnetic resonance, interferometry, seismoelectric and more. Sections on data analysis and inverse theory are provided and chapters are illustrated by case studies, giving students and professionals the tools to plan, conduct and analyze a near-surface geophysical survey. This is an important textbook fo...

  18. New Geophysical Observatory in Uruguay (United States)

    Sanchez Bettucci, L.; Nuñez, P.; Caraballo, R. R.; Ogando, R.


    In 2011 began the installation of the first geophysical observatory in Uruguay, with the aim of developing the Geosciences. The Astronomical and Geophysical Observatory Aiguá (OAGA) is located within the Cerro Catedral Tourist Farm (-34 ° 20 '0 .89 "S/-54 ° 42 '44.72" W, h: 270m). This has the distinction of being located in the center of the South Atlantic Magnetic Anomaly. Geologically is emplaced in a Neoproterozoic basement, in a region with scarce anthropogenic interference. The OAGA has, since 2012, with a GSM-90FD dIdD v7.0 and GSM-90F Overhauser, both of GEM Systems. In addition has a super-SID receiver provided by the Stanford University SOLAR Center, as a complement for educational purposes. Likewise the installation of a seismograph REF TEK-151-120A and VLF antenna is being done since the beginning of 2013.

  19. Geophysical fields of a megalopolis (United States)

    Spivak, A. A.; Loktev, D. N.; Rybnov, Yu. S.; Soloviev, S. P.; Kharlamov, V. A.


    A description of the Center of Geophysical Monitoring for Systematic Investigation of Negative Consequences for the Human Environment and Infrastructure of the City of Moscow Resulting from Natural and Technogenic Factors, which is part of the Institute of Geosphere Dynamics of the Russian Academy of Sciences (IGD RAS), is presented. The results of synchronous observations of the seismic vibrations, electric and acoustic fields, and atmospheric meteoparameters performed at the Center and in the Mikhnevo Geophysical observatory of IGD RAS situated outside of the zone of the Moscow influence are examined. It is shown that the megalopolis influence consists of an increase in the amplitudes of the physical fields, a change in their spectral composition, and the violation of natural periodicities. A technogenic component that has a considerable impact on the natural physical processes in the surface atmosphere is an important factor that characterizes a megalopolis.

  20. Geophysical interpretation using integral equations

    CERN Document Server

    Eskola, L


    Along with the general development of numerical methods in pure and applied to apply integral equations to geophysical modelling has sciences, the ability improved considerably within the last thirty years or so. This is due to the successful derivation of integral equations that are applicable to the modelling of complex structures, and efficient numerical algorithms for their solution. A significant stimulus for this development has been the advent of fast digital computers. The purpose of this book is to give an idea of the principles by which boundary-value problems describing geophysical models can be converted into integral equations. The end results are the integral formulas and integral equations that form the theoretical framework for practical applications. The details of mathematical analysis have been kept to a minimum. Numerical algorithms are discussed only in connection with some illustrative examples involving well-documented numerical modelling results. The reader is assu­ med to have a back...

  1. Geophysical monitoring technology for CO2 sequestration (United States)

    Ma, Jin-Feng; Li, Lin; Wang, Hao-Fan; Tan, Ming-You; Cui, Shi-Ling; Zhang, Yun-Yin; Qu, Zhi-Peng; Jia, Ling-Yun; Zhang, Shu-Hai


    Geophysical techniques play key roles in the measuring, monitoring, and verifying the safety of CO2 sequestration and in identifying the efficiency of CO2-enhanced oil recovery. Although geophysical monitoring techniques for CO2 sequestration have grown out of conventional oil and gas geophysical exploration techniques, it takes a long time to conduct geophysical monitoring, and there are many barriers and challenges. In this paper, with the initial objective of performing CO2 sequestration, we studied the geophysical tasks associated with evaluating geological storage sites and monitoring CO2 sequestration. Based on our review of the scope of geophysical monitoring techniques and our experience in domestic and international carbon capture and sequestration projects, we analyzed the inherent difficulties and our experiences in geophysical monitoring techniques, especially, with respect to 4D seismic acquisition, processing, and interpretation.

  2. Geophysical examination of coal deposits (United States)

    Jackson, L. J.


    Geophysical techniques for the solution of mining problems and as an aid to mine planning are reviewed. Techniques of geophysical borehole logging are discussed. The responses of the coal seams to logging tools are easily recognized on the logging records. Cores for laboratory analysis are cut from selected sections of the borehole. In addition, information about the density and chemical composition of the coal may be obtained. Surface seismic reflection surveys using two dimensional arrays of seismic sources and detectors detect faults with throws as small as 3 m depths of 800 m. In geologically disturbed areas, good results have been obtained from three dimensional surveys. Smaller faults as far as 500 m in advance of the working face may be detected using in seam seismic surveying conducted from a roadway or working face. Small disturbances are detected by pulse radar and continuous wave electromagnetic methods either from within boreholes or from underground. Other geophysical techniques which explicit the electrical, magnetic, gravitational, and geothermal properties of rocks are described.

  3. Rapid Geophysical Surveyor. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Roybal, L.G.; Carpenter, G.S.; Josten, N.E.


    The Rapid Geophysical Surveyor (RGS) is a system designed to rapidly and economically collect closely-spaced geophysical data used for characterization of US Department of Energy waste sites. Geophysical surveys of waste sites are an important first step in the remediation and closure of these sites; especially older sites where historical records are inaccurate and survey benchmarks have changed because of refinements in coordinate controls and datum changes. Closely-spaced data are required to adequately differentiate pits, trenches, and soil vault rows whose edges may be only a few feet from each other. A prototype vehicle designed to collect magnetic field data was built at the Idaho National Engineering Laboratory (INEL) during the summer of 1992. The RGS was funded by the Buried Waste Integrated Demonstration program. This vehicle was demonstrated at the Subsurface Disposal Area (SDA) within the Radioactive Waste Management Complex at the INEL in September 1992. Magnetic data were collected over two areas in the SDA, with a total survey area of about 1.7 acres. Data were collected at a nominal density of 2{1/2} in. along survey lines spaced 1-ft apart. Over 350,000 data points were collected over a 6 day period corresponding to about 185 worker-days using conventional ground survey techniques.

  4. SAGE (Summer of Applied Geophysical Experience): Learning Geophysics by Doing Geophysics (United States)

    Jiracek, G. R.; Baldridge, W. S.; Biehler, S.; Braile, L. W.; Ferguson, J. F.; Gilpin, B. E.; Pellerin, L.


    SAGE, a field-based educational program in applied geophysical methods has been an REU site for 16 years and completed its 23rd year of operation in July 2005. SAGE teaches the major geophysical exploration methods (including seismics, gravity, magnetics, and electromagnetics) and applies them to the solution of specific local and regional geologic problems. These include delineating buried hazardous material; mapping archaeological sites; and studying the structure, tectonics, and water resources of the Rio Grande rift in New Mexico. Nearly 600 graduates, undergraduates, and professionals have attended SAGE since 1983. Since 1990 REU students have numbered 219 coming from dozens of different campuses. There have been 124 underrepresented REU students including 100 women, 14 Hispanics, 7 Native Americans, and 3 African Americans. Tracking of former REU students has revealed that 81% have gone on to graduate school. Keys to the success of SAGE are hands-on immersion in geophysics for one month and a partnership between academia, industry, and a federal laboratory. Successful approaches at SAGE include: 1) application of the latest equipment by all students; 2) continued updating of equipment, computers, and software by organizing universities and industry affiliates; 3) close ties with industry who provide supplemental instruction, furnish new equipment and software, and alert students to the current industry trends and job opportunities; 4) two-team, student data analysis structure that simultaneously addresses specific geophysical techniques and their integration; and 5) oral and written reports patterned after professional meetings and journals. An eight member, 'blue ribbon' advisory panel from academia, industry, and the federal government has been set up to maintain the vitality of SAGE by addressing such issues as funding, new faculty, organization, and vision. SAGE is open to students from any university (or organization) with backgrounds including


    Institute of Scientific and Technical Information of China (English)


    <正>20132231 Chen Li(State Key Laboratory of Marine Geology,Tongji University,Shanghai200092,China);Xue Mei Group Velocity Tomography of Rayleigh Waves in South China Sea and Its Geodynamic Implications(Acta Seismologica Sinica,ISSN0253-3782,CN11-2021/P,34(6),2012,p.754-772,9illus.,46refs.,with English abstract)Key words:Rayleigh waves,velocity structure,South China Sea


    Institute of Scientific and Technical Information of China (English)


    <正>20102191 Du Letian(Beijing Uranium Geology Research Institute,Beijing 100029,China)Mantle Ichor(HACONS Fluids):The Interior Crucial Factor of Geodynamics(Acta Geoscientica Sinica,ISSN1006-3021,CN11-3474/P,30(6),2009,p.739-748,7 illus.,2 tables,36 refs.)Key words:mantle convection,ore-forming fluidsThis paper attempts to summarize the achievements in geodynamic studies as a whole.Five dynamic principles of the Earth are put forward in this paper:1)the introduction of Na and K to any kind of rocks is the key to magma genesis;2)Na-and K-metasomatism is the most fundamental mechanism in whole hydrothermalism;3)geotectonic movement results from mantle-crust asthenospherization,which is stimulated by Na-and K-metasomatism;4)the evolution of the Earth is represented;and 5)Na-and K-fluids(namely,mantle ichors-HACONS)are derived from deep hydrogen(H+,H,H2)flow extraction from the mantle.20102192 Gao Rui(Lithosphere Research Center,Institute of Geology,Chinese Academy of Geological Sciences,Beijing 100037,China)

  7. Studies in geophysics: Active tectonics (United States)


    Active tectonics is defined within the study as tectonic movements that are expected to occur within a future time span of concern to society. Such movements and their associated hazards include earthquakes, volcanic eruptions, and land subsidence and emergence. The entire range of geology, geophysics, and geodesy is, to some extent, pertinent to this topic. The needs for useful forecasts of tectonic activity, so that actions may be taken to mitigate hazards, call for special attention to ongoing tectonic activity. Further progress in understanding active tectonics depends on continued research. Particularly important is improvement in the accuracy of dating techniques for recent geologic materials.


    Directory of Open Access Journals (Sweden)

    A. A. Spivak


    Full Text Available Geophysical fields influenced by tectonics faults were observed, and instrumental observation results are analysed in the article. It is shown that fault zones are characterized by geophysical fields that are more variable than those in midmost segments of crustal blocks, more intense responses to weak external impacts such as lunar and solar tides and atmospheric pressure variations, and intensive relaxation. Transformation of energy between geophysical fields varying in origin takes place mainly in the fault zones.

  9. Institute of Geophysics, Planetary Physics, and Signatures (United States)

    Federal Laboratory Consortium — The Institute of Geophysics, Planetary Physics, and Signatures at Los Alamos National Laboratory is committed to promoting and supporting high quality, cutting-edge...

  10. Lectures on Geophysical Fluid Dynamics (United States)

    Samelson, Roger M.

    The fluid kaleidoscope of the Earth's ocean and atmosphere churns and sparkles with jets, gyres, eddies, waves, streams, and cyclones. These vast circulations, essential elements of the physical environment that support human life, are given a special character by the Earth's rotation and by their confinement to a shallow surficial layer, thin relative to the solid Earth in roughly the same proportion as an apple skin is to an apple. Geophysical fluid dynamics exploits this special character to develop a unified theoretical approach to the physics of the ocean and atmosphere.With Lectures on Geophysical Fluid Dynamics, Rick Salmon has added an insightful and provocative volume to the handful of authoritative texts currently available on the subject. The book is intended for first-year graduate students, but advanced students and researchers also will find it useful. It is divided into seven chapters, the first four of these adapted from course lectures. The book is well written and presents a fresh and stimulating perspective that complements existing texts. It would serve equally well either as the main text for a core graduate curriculum or as a supplementary resource for students and teachers seeking new approaches to both classical and contemporary problems. A lively set of footnotes contains many references to very recent work. The printing is attractive, the binding is of high quality, and typographical errors are few.


    Energy Technology Data Exchange (ETDEWEB)



    This report documents the evolution of the surface geophysical exploration (SGE) program and highlights some of the most recent successes in imaging conductive targets related to past leaks within and around Hanford's tank farms. While it is noted that the SGE program consists of multiple geophysical techniques designed to (1) locate near surface infrastructure that may interfere with (2) subsurface plume mapping, the report will focus primarily on electrical resistivity acquisition and processing for plume mapping. Due to the interferences from the near surface piping network, tanks, fences, wells, etc., the results of the three-dimensional (3D) reconstruction of electrical resistivity was more representative of metal than the high ionic strength plumes. Since the first deployment, the focus of the SGE program has been to acquire and model the best electrical resistivity data that minimizes the influence of buried metal objects. Toward that goal, two significant advances have occurred: (1) using the infrastructure directly in the acquisition campaign and (2) placement of electrodes beneath the infrastructure. The direct use of infrastructure was successfully demonstrated at T farm by using wells as long electrodes (Rucker et al., 2010, 'Electrical-Resistivity Characterization of an Industrial Site Using Long Electrodes'). While the method was capable of finding targets related to past releases, a loss of vertical resolution was the trade-off. The burying of electrodes below the infrastructure helped to increase the vertical resolution, as long as a sufficient number of electrodes are available for the acquisition campaign.

  12. Open Access to Geophysical Data (United States)

    Sergeyeva, Nataliya A.; Zabarinskaya, Ludmila P.


    Russian World Data Centers for Solar-Terrestrial Physics & Solid Earth Physics hosted by the Geophysical Center of the Russian Academy of Sciences are the Regular Members of the ICSU-World Data System. Guided by the principles of the WDS Constitution and WDS Data Sharing Principles, the WDCs provide full and open access to data, long-term data stewardship, compliance with agreed-upon data standards and conventions, and mechanisms to facilitate and improve access to data. Historical and current geophysical data on different media, in the form of digital data sets, analog records, collections of maps, descriptions are stored and collected in the Centers. The WDCs regularly fill up repositories and database with new data, support them up to date. Now the WDCs focus on four new projects, aimed at increase of data available in network by retrospective data collection and digital preservation of data; creation of a modern system of registration and publication of data with digital object identifier (DOI) assignment, and promotion of data citation culture; creation of databases instead of file system for more convenient access to data; participation in the WDS Metadata Catalogue and Data Portal by creating of metadata for information resources of WDCs.

  13. Geophysical characterization of subsurface barriers

    Energy Technology Data Exchange (ETDEWEB)

    Borns, D.J.


    An option for controlling contaminant migration from plumes and buried waste sites is to construct a subsurface barrier of a low-permeability material. The successful application of subsurface barriers requires processes to verify the emplacement and effectiveness of barrier and to monitor the performance of a barrier after emplacement. Non destructive and remote sensing techniques, such as geophysical methods, are possible technologies to address these needs. The changes in mechanical, hydrologic and chemical properties associated with the emplacement of an engineered barrier will affect geophysical properties such a seismic velocity, electrical conductivity, and dielectric constant. Also, the barrier, once emplaced and interacting with the in situ geologic system, may affect the paths along which electrical current flows in the subsurface. These changes in properties and processes facilitate the detection and monitoring of the barrier. The approaches to characterizing and monitoring engineered barriers can be divided between (1) methods that directly image the barrier using the contrasts in physical properties between the barrier and the host soil or rock and (2) methods that reflect flow processes around or through the barrier. For example, seismic methods that delineate the changes in density and stiffness associated with the barrier represents a direct imaging method. Electrical self potential methods and flow probes based on heat flow methods represent techniques that can delineate the flow path or flow processes around and through a barrier.

  14. GIPP: Geophysical Instrument Pool Potsdam

    Directory of Open Access Journals (Sweden)

    Christian Haberland


    Full Text Available The Geophysical Instrument Pool Potsdam (GIPP consists of field instruments, sensors and equipment for temporary seismological studies (both controlled source and earthquake seismology as well as for magnetotelluric (electromagnetic experiments. These instruments are mainly mobile digital recorders, broadband seis­mometers and short period sensors, and they are used to reveal the subsurface structure and to investigate earth­quakes. Sensors for magnetotellurics include induction coil and fluxgate magnetometers and non-polarizing silver / silver-chloride electrodes. It is operated by the Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences. The instru­ment facility is open to all academic applicants, both national and international. Instrument applications are evalu­ated and ranked by an external steering board. Currently, for seismological applications >850 geophysical recorders, >170 broadband seis­mo­meters and >1300 short period geophones are available (among others. Available for magnetotelluric experiments are > 50 real-time data-loggers, >150 induction coils, and >500 electrodes. User guidelines and data policy are in force and data archives are provided (standard exchange formats.

  15. Agricultural Geophysics: Past, present, and future (United States)

    Geophysical methods are becoming an increasingly valuable tool for agricultural applications. Agricultural geophysics investigations are commonly (although certainly not always) focused on delineating small- and/or large-scale objects/features within the soil profile (~ 0 to 2 m depth) over very lar...

  16. Numerical simulation in applied geophysics

    CERN Document Server

    Santos, Juan Enrique


    This book presents the theory of waves propagation in a fluid-saturated porous medium (a Biot medium) and its application in Applied Geophysics. In particular, a derivation of absorbing boundary conditions in viscoelastic and poroelastic media is presented, which later is employed in the applications. The partial differential equations describing the propagation of waves in Biot media are solved using the Finite Element Method (FEM). Waves propagating in a Biot medium suffer attenuation and dispersion effects. In particular the fast compressional and shear waves are converted to slow diffusion-type waves at mesoscopic-scale heterogeneities (on the order of centimeters), effect usually occurring in the seismic range of frequencies. In some cases, a Biot medium presents a dense set of fractures oriented in preference directions. When the average distance between fractures is much smaller than the wavelengths of the travelling fast compressional and shear waves, the medium behaves as an effective viscoelastic an...

  17. Fractals in geology and geophysics (United States)

    Turcotte, Donald L.


    The definition of a fractal distribution is that the number of objects N with a characteristic size greater than r scales with the relation N of about r exp -D. The frequency-size distributions for islands, earthquakes, fragments, ore deposits, and oil fields often satisfy this relation. This application illustrates a fundamental aspect of fractal distributions, scale invariance. The requirement of an object to define a scale in photograhs of many geological features is one indication of the wide applicability of scale invariance to geological problems; scale invariance can lead to fractal clustering. Geophysical spectra can also be related to fractals; these are self-affine fractals rather than self-similar fractals. Examples include the earth's topography and geoid.

  18. Strainmeters and tiltmeters in geophysics (United States)

    Goulty, N. R.


    Several types of sensitive strainmeters and tiltmeters have been developed, and it is now becoming clear which geophysical applications are most suitable for these instruments. In general, strainmeters and tiltmeters are used for observing ground deformation at periods of minutes to days. Small-scale lateral inhomogeneities at the instrument sites distort signals by a few percent, although the effects of large structures can be calculated. In earth tide work these lateral inhomogeneities and unknown ocean loading signals prevent accurate values of the regional tide from being obtained. This limits tidal investigations to looking for temporal variations, possibly associated with pre-earthquake dilatancy, and spatial variations caused by gross elasticity contrasts in the local geological structure. Strainmeters and tiltmeters are well suited for observing long-period seismic waves, seismic slip events on faults and volcano tumescence, where small site-induced distortions in the measured signals are seldom important.

  19. Goddard Geophysical and Astronomical Observatory (United States)

    Figueroa, Ricardo


    This report summarizes the technical parameters and the technical staff of the VLBI system at the fundamental station GGAO. It also gives an overview about the VLBI activities during the report year. The Goddard Geophysical and Astronomical Observatory (GGAO) consists of a 5-meter radio telescope for VLBI, a new 12-meter radio telescope for VLBI2010 development, a 1-meter reference antenna for microwave holography development, an SLR site that includes MOBLAS-7, the NGSLR development system, and a 48" telescope for developmental two-color Satellite Laser Ranging, a GPS timing and development lab, a DORIS system, meteorological sensors, and a hydrogen maser. In addition, we are a fiducial IGS site with several IGS/IGSX receivers. GGAO is located on the east coast of the United States in Maryland. It is approximately 15 miles NNE of Washington, D.C. in Greenbelt, Maryland.

  20. Online Polar Oceans Geophysical Databases (United States)

    Goodwillie, A. M.; O'Hara, S.; Arko, R. A.; Carbotte, S. M.


    With funding from the Office of Polar Programs of the U.S. National Science Foundation, the Antarctic Multibeam Bathymetry Synthesis (AMBS, is an integrated web-accessible bathymetry and geophysical database for the Southern Ocean and Antarctica, serving data from the US research vessels Nathaniel B. Palmer and Laurence M. Gould, amongst others. Interdisciplinary polar data can be downloaded for free through Data Link ( which enables keyword searches by data and instrument type, geographical bounds, scientist, expedition name and dates. The data visualisation tool GeoMapApp ( supports dynamic exploration of a multi-resolutional digital elevation model (DEM) of the global oceans, including the polar regions, allowing users to generate custom grids and maps and import their own data sets and grids. A specialised polar stereographic map projection incorporating multibeam swath bathymetry and the BEDMAP under-ice seaflooor topography is available for the Southern Ocean. To promote inter-operability, we are working with research partners including the Marine Metadata Interoperability (MMI) project and the National Geophysical Data Center to develop standardised metadata and best practices that comply with existing FGDC and ISO standards. For example, the global DEM is served freely as an OGC-compliant Web Map Service map layer and is available for viewing with Google Earth. We are working towards full indexing of the AMBS database holdings at the Antarctic Master Directory.

  1. Agricultural geophysics: Past/present accomplishments and future advancements (United States)

    Geophysical methods have become an increasingly valuable tool for application within a variety of agroecosystems. Agricultural geophysics measurements are obtained at a wide range of scales and often exhibit significant variability both temporally and spatially. The three geophysical methods predomi...

  2. EDITORIAL: The interface between geophysics and engineering (United States)


    Journal of Geophysics and Engineering (JGE) aims to publicize and promote research and developments in geophysics and in related areas of engineering. As stated in the journal scope, JGE is positioned to bridge the gap between earth physics and geo-engineering, where it reflects a growing trend in both industry and academia. JGE covers those aspects of engineering that bear closely on geophysics or on the targets and problems that geophysics addresses. Typically this will be engineering focused on the subsurface, particularly petroleum engineering, rock mechanics, geophysical software engineering, drilling technology, remote sensing, instrumentation and sensor design. There is a trend, visible throughout academia, for rapid expansion in cross-disciplinary, multi-disciplinary and inter-disciplinary working. Many of the most important and exciting problems and advances are being made at the boundaries between traditional subject areas and, increasingly, techniques from one discipline are finding applications in others. There is a corresponding increasing requirement for researchers to be aware of developments in adjacent areas and for papers published in one area to be readily accessible, both in terms of location and language, to those in others. One such area that is expanding rapidly is that at the interface between geophysics and engineering. There are three principal developments. Geophysics, and especially applied geophysics, is increasingly constrained by the limits of technology, particularly computing technology. Consequently, major advances in geophysics are often predicated upon major developments in engineering and many research geophysicists are working in multi-disciplinary teams with engineers. Engineering problems relevant to the sub-surface are increasingly looking to advances in geophysics to provide part of the solution. Engineering systems, for example, for tunnel boring or petroleum reservoir management, are using high-resolution geophysical

  3. Geotechnical applications of geophysics in coal mining

    Energy Technology Data Exchange (ETDEWEB)

    Hatherly, P. [CMTE/CSIRO Exploration and Mining, North Ryde, NSW (Australia)


    In coal mining, geophysical techniques have an established application in determining the location of seam boundaries ahead of the face so that underground mines can be planned to avoid any geological structures that might disrupt production. Geophysics can also be used in geotechnical studies to determine the in situ properties of the rock mass and the response of the rock mass to the mining. The use of geophysical logs and microseismic monitoring in these geotechnical applications are discussed in this paper. 16 refs., 4 figs.

  4. Nonlinear regularization with applications in geophysics

    DEFF Research Database (Denmark)

    Berglund, Eva Ann-Charlotte


    integral equation, as well as for solving the two geophysical inverse problems considered in this thesis. We compare the IRGN method, the Levenberg-Marquardt method, the trust-region method and the inexact Gauss-Newton method for solving the nonlinear Hammerstein integral equation, and for solving two...... geophysical inverse problems: a seismic tomography problem, and a geoelectrical sounding problem. We found that all four methods gave reasonable solutions for the two geophysical problem. However, the inexact Gauss-Newton method converged faster than the others for the seismic tomography problem...

  5. Nonlinear regularization with applications in geophysics

    DEFF Research Database (Denmark)

    Berglund, Eva Ann-Charlotte


    integral equation, as well as for solving the two geophysical inverse problems considered in this thesis. We compare the IRGN method, the Levenberg-Marquardt method, the trust-region method and the inexact Gauss-Newton method for solving the nonlinear Hammerstein integral equation, and for solving two...... geophysical inverse problems: a seismic tomography problem, and a geoelectrical sounding problem. We found that all four methods gave reasonable solutions for the two geophysical problem. However, the inexact Gauss-Newton method converged faster than the others for the seismic tomography problem...

  6. Fundamentals of Geophysical Fluid Dynamics (United States)

    McWilliams, James C.


    Earth's atmosphere and oceans exhibit complex patterns of fluid motion over a vast range of space and time scales. These patterns combine to establish the climate in response to solar radiation that is inhomogeneously absorbed by the materials comprising air, water, and land. Spontaneous, energetic variability arises from instabilities in the planetary-scale circulations, appearing in many different forms such as waves, jets, vortices, boundary layers, and turbulence. Geophysical fluid dynamics (GFD) is the science of all these types of fluid motion. This textbook is a concise and accessible introduction to GFD for intermediate to advanced students of the physics, chemistry, and/or biology of Earth's fluid environment. The book was developed from the author's many years of teaching a first-year graduate course at the University of California, Los Angeles. Readers are expected to be familiar with physics and mathematics at the level of general dynamics (mechanics) and partial differential equations. Covers the essential GFD required for atmospheric science and oceanography courses Mathematically rigorous, concise coverage of basic theory and applications to both oceans and atmospheres Author is a world expert; this book is based on the course he has taught for many years Exercises are included, with solutions available to instructors from

  7. COLLADA Computing for Geophysical Applications Project (United States)

    National Aeronautics and Space Administration — The COLLADATM open industry XML standard for 3D Graphics Exchange is applied for representation, combination and analysis of geophysical information from disparate...

  8. A geological and geophysical data collection system

    Digital Repository Service at National Institute of Oceanography (India)

    Sudhakar, T.; Afzulpurkar, S.

    A geological and geophysical data collection system using a Personal Computer is described below. The system stores data obtained from various survey systems typically installed in a charter vessel and can be used for similar applications on any...

  9. Exploring the oceans- The geophysical way

    Digital Repository Service at National Institute of Oceanography (India)

    Murthy, K.S.R.

    The evolution of the eastern continental margin of India (ECMI), the Bengal Fan and the Central Indian Basin (CIB) is a consequence of the breakup of India from the eastern Gondwanaland in Late Jurassic to Early Cretaceous. Recent marine geophysical...

  10. The Geophysical Database Management System in Taiwan

    Directory of Open Access Journals (Sweden)

    Tzay-Chyn Shin


    Full Text Available The Geophysical Database Management System (GDMS is an integrated and web-based open data service which has been developed by the Central Weather Bureau (CWB, Taiwan, ROC since 2005. This service went online on August 1, 2008. The GDMS provides six types of geophysical data acquired from the Short-period Seismographic System, Broadband Seismographic System, Free-field Strong-motion Station, Strong-motion Building Array, Global Positioning System, and Groundwater Observation System. When utilizing the GDMS website, users can download seismic event data and continuous geophysical data. At present, many researchers have accessed this public platform to obtain geophysical data. Clearly, the establishment of GDMS is a significant improvement in data sorting for interested researchers.

  11. Physicist + Geologist points to Geophysics Course (United States)

    Julian, Glenn M.; Stueber, Alan M.


    A two-quarter introductory course in geophysics at the advanced undergraduate/beginning graduate level is described. An outline of course content is provided, and mechanics of instruction are discussed. (DT)

  12. Air Force Geophysics Laboratory Magnetometer Network (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This file is comprised of the variation one minute values of the geomagnetic components X, Y and Z. These data were calculated by the Air Force Geophysics Laboratory...

  13. A field guide to geophysics in archaeology

    CERN Document Server

    Oswin, John


    Geophysics operations in archaeology have become well known through exposure on television. However, the technique is presented as the action of specialists and something of a mystery, where people walk about with strange contraptions, and results appear from a computer. This is not the case, however. Some scientific knowledge is needed in order to understand how the machines work and what they detect but otherwise it is only necessary to know how to handle the instruments, how to survey a field and how to interpret the computer results. This book provides all the relevant information. It explains geophysics operations in archaeology, describes the science that gives the soil properties to measure and the means by which the instruments make their measurements. Dr John Oswin is in charge of the geophysics operation of the Bath and Camerton Archaeological Society and his work has recently been the subject of a television programme. He has taught many students how to use geophysical equipment.

  14. Tabletop Models for Electrical and Electromagnetic Geophysics. (United States)

    Young, Charles T.


    Details the use of tabletop models that demonstrate concepts in direct current electrical resistivity, self-potential, and electromagnetic geophysical models. Explains how data profiles of the models are obtained. (DDR)

  15. Marine geophysical data management and presentation system

    Digital Repository Service at National Institute of Oceanography (India)

    Kunte, P.D.

    The Geophysical Data Management and Presentation System (GPDMPS) constitutes an integral part of the large Geological Oceanographic Database (GODBASE) which is under development at the Indian National Oceanographic Data Centre (INODC...

  16. The remote sensing needs of Arctic geophysics (United States)

    Campbell, W. J.


    The application of remote sensors for obtaining geophysical information of the Arctic regions is discussed. Two significant requirements are to acquire sequential, synoptic imagery of the Arctic Ocean during all weather and seasons and to measure the strains in the sea ice canopy and the heterogeneous character of the air and water stresses acting on the canopy. The acquisition of geophysical data by side looking radar and microwave sensors in military aircraft is described.

  17. Multiscale geophysical imaging of the critical zone (United States)

    Parsekian, A. D.; Singha, K.; Minsley, B. J.; Holbrook, W. S.; Slater, L.


    Details of Earth's shallow subsurface—a key component of the critical zone (CZ)—are largely obscured because making direct observations with sufficient density to capture natural characteristic spatial variability in physical properties is difficult. Yet this inaccessible region of the CZ is fundamental to processes that support ecosystems, society, and the environment. Geophysical methods provide a means for remotely examining CZ form and function over length scales that span centimeters to kilometers. Here we present a review highlighting the application of geophysical methods to CZ science research questions. In particular, we consider the application of geophysical methods to map the geometry of structural features such as regolith thickness, lithological boundaries, permafrost extent, snow thickness, or shallow root zones. Combined with knowledge of structure, we discuss how geophysical observations are used to understand CZ processes. Fluxes between snow, surface water, and groundwater affect weathering, groundwater resources, and chemical and nutrient exports to rivers. The exchange of gas between soil and the atmosphere have been studied using geophysical methods in wetland areas. Indirect geophysical methods are a natural and necessary complement to direct observations obtained by drilling or field mapping. Direct measurements should be used to calibrate geophysical estimates, which can then be used to extrapolate interpretations over larger areas or to monitor changing processes over time. Advances in geophysical instrumentation and computational approaches for integrating different types of data have great potential to fill gaps in our understanding of the shallow subsurface portion of the CZ and should be integrated where possible in future CZ research.

  18. Brief Introduction of Sichuan Geophysical Company

    Institute of Scientific and Technical Information of China (English)


    @@ Founded in 1956,Sichuan Geophysicai Company (SCGC) is the largest engineering technological service enterprise for petroleum and natural gas seismic exploration in the westem part of China,which is integrated in acquisition,processing and interpretation of seismic data as well as technological deyelopment. Iris also a member of International Asociation of Geophysical Contractors, a member of Association of CNPC Geophysical Contractors and a survey unit with qualification of A level authenticated by China National Survey & Mapping Bureau.

  19. Dictionary of geophysics, astrophysics, and astronomy

    CERN Document Server

    Matzner, Richard A


    The Dictionary of Geophysics, Astrophysics, and Astronomy provides a lexicon of terminology covering fields such as astronomy, astrophysics, cosmology, relativity, geophysics, meteorology, Newtonian physics, and oceanography. Authors and editors often assume - incorrectly - that readers are familiar with all the terms in professional literature. With over 4,000 definitions and 50 contributing authors, this unique comprehensive dictionary helps scientists to use terminology correctly and to understand papers, articles, and books in which physics-related terms appear.

  20. Non-Seismic Geophysical Approaches to Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Hoversten, G.M.; Gasperikova, Erika


    This chapter considers the application of a number of different geophysical techniques for monitoring geologic sequestration of CO2. The relative merits of the seismic, gravity, electromagnetic (EM) and streaming potential (SP) geophysical techniques as monitoring tools are examined. An example of tilt measurements illustrates another potential monitoring technique, although it has not been studied to the extent of other techniques in this chapter. This work does not represent an exhaustive study, but rather demonstrates the capabilities of a number of geophysical techniques on two synthetic modeling scenarios. The first scenario represents combined CO2 enhance oil recovery (EOR) and sequestration in a producing oil field, the Schrader Bluff field on the north slope of Alaska, USA. The second scenario is of a pilot DOE CO2 sequestration experiment scheduled for summer 2004 in the Frio Brine Formation in South Texas, USA. Numerical flow simulations of the CO2 injection process for each case were converted to geophysical models using petrophysical models developed from well log data. These coupled flow simulation geophysical models allow comparrison of the performance of monitoring techniques over time on realistic 3D models by generating simulated responses at different times during the CO2 injection process. These time-lapse measurements are used to produce time-lapse changes in geophysical measurements that can be related to the movement of CO2 within the injection interval.

  1. Geophysical applications for levee assessment (United States)

    Chlaib, Hussein Khalefa

    Levees are important engineering structures that build along the rivers to protect the human lives and shield the communities as well as agriculture lands from the high water level events. Animal burrows, subsurface cavities, and low density (high permeability) zones are weakness features within the levee body that increase its risk of failure. To prevent such failure, continuous monitoring of the structure integrity and early detection of the weakness features must be conducted. Application of Ground Penetrating Radar (GPR) and Capacitively Coupled Resistivity (CCR) methods were found to be very effective in assessing the levees and detect zones of weakness within the levee body. GPR was implemented using multi-frequency antennas (200, 400, and 900 MHz) with survey cart/wheel and survey vehicle. The (CCR) method was applied by using a single transmitter and three receivers. Studying the capability and the effectiveness of these methods in levee monitoring, subsurface weakness feature detection, and studying the structure integrity of levees were the main tasks of this dissertation. A set of laboratory experiments was conducted at the Geophysics Laboratory of the University of Arkansas at Little Rock (UALR) to analyze the polarity change in GPR signals in the presence of subsurface voids and water-filled cavities. Also three full scale field expeditions at the Big Dam Bridge (BDB) Levee, Lollie Levee, and Helena Levee in Arkansas were conducted using the GPR technique. This technique was effective in detecting empty, water, and clay filled cavities as well as small scale animal burrows (small rodents). The geophysical work at BDB and Lollie Levees expressed intensive subsurface anomalies which might decrease their integrity while the Helena Levee shows less subsurface anomalies. The compaction of levee material is a key factor affecting piping phenomenon. The structural integrity of the levee partially depends on the density/compaction of the soil layers. A

  2. Geophysical observations at cavity collapse (United States)

    Jousset, Philippe; Bazargan-Sabet, Behrooz; Lebert, François; Bernardie, Séverine; Gourry, Jean-Christophe


    In Lorraine region (France) salt layers at about 200 meters depth are exploited by Solvay using solution mining methodology which consists in extracting the salt by dissolution, collapsing the cavern overburden during the exploitation phase and finally reclaiming the landscape by creating a water area. In this process, one of the main challenges for the exploiting company is to control the initial 120-m diameter collapse so as to minimize possible damages. In order to detect potential precursors and understand processes associated with such collapses, a wide series of monitoring techniques including micro seismics, broad-band seismology, hydro-acoustic, electromagnetism, gas probing, automatic leveling, continuous GPS, continuous gravity and borehole extensometry was set-up in the frame of an in-situ study carried out by the "Research Group for the Impact and Safety of Underground Works" (GISOS, France). Equipments were set-up well before the final collapse, giving a unique opportunity to analyze a great deal of information prior to and during the collapse process which has been successfully achieved on February the 13th, 2009 by controlling the cavity internal pressure. In this work, we present the results of data recorded by a network of 3 broadband seismometers, 2 accelerometers, 2 tilt-meters and a continuously gravity meter. We relate the variations of the brine pumping rate with the evolutions of the induced geophysical signals and finally we propose a first mechanical model for describing the controlled collapse. Beyond the studied case, extrapolation of the results obtained might contribute to the understanding of uncontrolled cavity collapses, such as pit-craters or calderas at volcanoes.

  3. Geophysics of Small Planetary Bodies (United States)

    Asphaug, Erik I.


    As a SETI Institute PI from 1996-1998, Erik Asphaug studied impact and tidal physics and other geophysical processes associated with small (low-gravity) planetary bodies. This work included: a numerical impact simulation linking basaltic achondrite meteorites to asteroid 4 Vesta (Asphaug 1997), which laid the groundwork for an ongoing study of Martian meteorite ejection; cratering and catastrophic evolution of small bodies (with implications for their internal structure; Asphaug et al. 1996); genesis of grooved and degraded terrains in response to impact; maturation of regolith (Asphaug et al. 1997a); and the variation of crater outcome with impact angle, speed, and target structure. Research of impacts into porous, layered and prefractured targets (Asphaug et al. 1997b, 1998a) showed how shape, rheology and structure dramatically affects sizes and velocities of ejecta, and the survivability and impact-modification of comets and asteroids (Asphaug et al. 1998a). As an affiliate of the Galileo SSI Team, the PI studied problems related to cratering, tectonics, and regolith evolution, including an estimate of the impactor flux around Jupiter and the effect of impact on local and regional tectonics (Asphaug et al. 1998b). Other research included tidal breakup modeling (Asphaug and Benz 1996; Schenk et al. 1996), which is leading to a general understanding of the role of tides in planetesimal evolution. As a Guest Computational Investigator for NASA's BPCC/ESS supercomputer testbed, helped graft SPH3D onto an existing tree code tuned for the massively parallel Cray T3E (Olson and Asphaug, in preparation), obtaining a factor xIO00 speedup in code execution time (on 512 cpus). Runs which once took months are now completed in hours.

  4. Sensitivity analysis and application in exploration geophysics (United States)

    Tang, R.


    In exploration geophysics, the usual way of dealing with geophysical data is to form an Earth model describing underground structure in the area of investigation. The resolved model, however, is based on the inversion of survey data which is unavoidable contaminated by various noises and is sampled in a limited number of observation sites. Furthermore, due to the inherent non-unique weakness of inverse geophysical problem, the result is ambiguous. And it is not clear that which part of model features is well-resolved by the data. Therefore the interpretation of the result is intractable. We applied a sensitivity analysis to address this problem in magnetotelluric(MT). The sensitivity, also named Jacobian matrix or the sensitivity matrix, is comprised of the partial derivatives of the data with respect to the model parameters. In practical inversion, the matrix can be calculated by direct modeling of the theoretical response for the given model perturbation, or by the application of perturbation approach and reciprocity theory. We now acquired visualized sensitivity plot by calculating the sensitivity matrix and the solution is therefore under investigation that the less-resolved part is indicated and should not be considered in interpretation, while the well-resolved parameters can relatively be convincing. The sensitivity analysis is hereby a necessary and helpful tool for increasing the reliability of inverse models. Another main problem of exploration geophysics is about the design strategies of joint geophysical survey, i.e. gravity, magnetic & electromagnetic method. Since geophysical methods are based on the linear or nonlinear relationship between observed data and subsurface parameters, an appropriate design scheme which provides maximum information content within a restricted budget is quite difficult. Here we firstly studied sensitivity of different geophysical methods by mapping the spatial distribution of different survey sensitivity with respect to the

  5. The Environmental Geophysics Web Site and Geophysical Decision Support System (GDSS) (United States)

    This product provides assistance to project managers, remedial project managers, stakeholders, and anyone interested in on-site investigations or environmental geophysics. The APM is the beta version of the new U.S. EPA Environmental Geophysics Web Site which includes the Geophys...

  6. Geophysics: creativity and the archaeological imagination

    Directory of Open Access Journals (Sweden)

    Rose Ferraby


    Full Text Available This paper article explores archaeology as a creative practice by engaging specifically with the processes and visuals of geophysics. An area of archaeology considered highly scientific, a different way of looking reveals geophysics to be a poetic form of landscape study. The processes used to collect, alter, interpret and visualize visualise the data are creative acts that have parallels with more easily recognizable recognisable arts practices such as painting, drawing or photography. The paper article explores the ideas behind ways of seeing, the archaeological imagination, technologies and process. The section that follows explores the different elements of work and the ways of seeing and thinking they inspire. The paper article ends by showcasing how other arts practices can give alternative perspectives on geophysics and how these can in turn influence fine art.

  7. Introduction to Rheology and Application to Geophysics (United States)

    Ancey, C.

    This chapter gives an overview of the major current issues in rheology through a series of different problems of particular relevance to geophysics. For each topic considered here, we will outline the key elements and point the reader to ward the most helpful references and authoritative works. The reader is also referred to available books introducing rheology [1, 2] for a more complete presentation and to the tutorial written by Middleton and Wilcock on mechanical and rheological app lications in geophysics [3]. This chapter will focus on materials encountered by geophysicists (mud, snow, magma, etc.), although in most cases we will consider only suspensions of particles within an interstitial fluid without loss of generality. Other complex fluids such as polymeric liquids are rarely encountered in geophysics.

  8. Integrated Approaches On Archaeo-Geophysical Data (United States)

    Kucukdemirci, M.; Piro, S.; Zamuner, D.; Ozer, E.


    Key words: Ground Penetrating Radar (GPR), Magnetometry, Geophysical Data Integration, Principal Component Analyse (PCA), Aizanoi Archaeological Site An application of geophysical integration methods which often appealed are divided into two classes as qualitative and quantitative approaches. This work focused on the application of quantitative integration approaches, which involve the mathematical and statistical integration techniques, on the archaeo-geophysical data obtained in Aizanoi Archaeological Site,Turkey. Two geophysical methods were applied as Ground Penetrating Radar (GPR) and Magnetometry for archaeological prospection on the selected archaeological site. After basic data processing of each geophysical method, the mathematical approaches of Sums and Products and the statistical approach of Principal Component Analysis (PCA) have been applied for the integration. These integration approches were first tested on synthetic digital images before application to field data. Then the same approaches were applied to 2D magnetic maps and 2D GPR time slices which were obtained on the same unit grids in the archaeological site. Initially, the geophysical data were examined individually by referencing with archeological maps and informations obtained from archaeologists and some important structures as possible walls, roads and relics were determined. The results of all integration approaches provided very important and different details about the anomalies related to archaeological features. By using all those applications, integrated images can provide complementary informations as well about the archaeological relics under the ground. Acknowledgements The authors would like to thanks to Scientific and Technological Research Council of Turkey (TUBITAK), Fellowship for Visiting Scientists Programme for their support, Istanbul University Scientific Research Project Fund, (Project.No:12302) and archaeologist team of Aizanoi Archaeological site for their support

  9. Annals of the International Geophysical Year solar radio emission during the International Geophysical Year

    CERN Document Server

    Smerd, S F


    Annals of the International Geophysical Year, Volume 34: Solar Radio Emission During the International Geophysical Year covers the significant solar radio emission events observed during the International Geophysical Year (IGY). This book is composed of six chapters, and begins with a summary of tabulated quantities describing solar radio emission during the IGY. The tabulated figures illustrate the method of recording the position of radio sources on the sun, the use of symbols in describing the structure of bursts observed at single frequencies, and the different types used in a spectral

  10. Digital geologic and geophysical data of Bangladesh (United States)

    Persits, Feliks M.; Wandrey, C.J.; Milici, R.C.; Manwar, Abdullah


    The data set for these maps includes arcs, polygons, and labels that outline and describe the general geologic age and geophysical fields of Bangladesh. Political boundaries are provided to show the general location of administrative regions and state boundaries. Major base topographic data like cities, rivers, etc. were derived from the same paper map source as the geology.

  11. Geophysical tomography in engineering geology: an overview

    CERN Document Server

    Patella, D


    An overview of the tomographic interpretation method in engineering geophysics is presented, considering the two approaches of the deterministic tomography inversion, developed for rock elasticity analysis, and the probability tomography imaging developed in the domain of potential fields methods. The theoretical basis of both approaches is shortly outlined before showing a laboratory and a field application.

  12. Geophysical data fusion for subsurface imaging (United States)

    Hoekstra, P.; Vandergraft, J.; Blohm, M.; Porter, D.


    A geophysical data fusion methodology is under development to combine data from complementary geophysical sensors and incorporate geophysical understanding to obtain three dimensional images of the subsurface. The research reported here is the first phase of a three phase project. The project focuses on the characterization of thin clay lenses (aquitards) in a highly stratified sand and clay coastal geology to depths of up to 300 feet. The sensor suite used in this work includes time-domain electromagnetic induction (TDEM) and near surface seismic techniques. During this first phase of the project, enhancements to the acquisition and processing of TDEM data were studied, by use of simulated data, to assess improvements for the detection of thin clay layers. Secondly, studies were made of the use of compressional wave and shear wave seismic reflection data by using state-of-the-art high frequency vibrator technology. Finally, a newly developed processing technique, called 'data fusion' was implemented to process the geophysical data, and to incorporate a mathematical model of the subsurface strata. Examples are given of the results when applied to real seismic data collected at Hanford, WA, and for simulated data based on the geology of the Savannah River Site.

  13. Geophysical subsurface imaging for ecological applications. (United States)

    Jayawickreme, Dushmantha H; Jobbágy, Esteban G; Jackson, Robert B


    Ecologists, ecohydrologists, and biogeochemists need detailed insights into belowground properties and processes, including changes in water, salts, and other elements that can influence ecosystem productivity and functioning. Relying on traditional sampling and observation techniques for such insights can be costly, time consuming, and infeasible, especially if the spatial scales involved are large. Geophysical imaging provides an alternative or complement to traditional methods to gather subsurface variables across time and space. In this paper, we review aspects of geophysical imaging, particularly electrical and electromagnetic imaging, that may benefit ecologists seeking clearer understanding of the shallow subsurface. Using electrical resistivity imaging, for example, we have been able to successfully show the effect of land-use conversions to agriculture on salt mobilization and leaching across kilometer-long transects and to depths of tens of meters. Recent advances in ground-penetrating radar and other geophysical imaging methods currently provide opportunities for subsurface imaging with sufficient detail to locate small (≥5 cm diameter) animal burrows and plant roots, observe soil-water and vegetation spatial correlations in small watersheds, estuaries, and marshes, and quantify changes in groundwater storage at local to regional scales using geophysical data from ground- and space-based platforms. Ecologists should benefit from adopting these minimally invasive, scalable imaging technologies to explore the subsurface and advance our collective research.

  14. Predictability of extreme values in geophysical models

    NARCIS (Netherlands)

    Sterk, A.E.; Holland, M.P.; Rabassa, P.; Broer, H.W.; Vitolo, R.


    Extreme value theory in deterministic systems is concerned with unlikely large (or small) values of an observable evaluated along evolutions of the system. In this paper we study the finite-time predictability of extreme values, such as convection, energy, and wind speeds, in three geophysical model

  15. New airborne geophysical data from the Waterberg Coalfield

    CSIR Research Space (South Africa)

    Fourie, CJS


    Full Text Available in 1920, but little exploration has been done since. Coaltech Research Association commissioned an Airborne Geophysical Survey of the area to enhance the structural understanding of the basin. The airborne geophysical survey was a major contribution...

  16. Geophysics applications in critical zone science: emerging topics (United States)

    Geophysical studies have resulted in remarkable advances in characterization of critical zone. The geophysics applications uncover the relationships between structure and function in subsurface as they seek to define subsurface structural units with individual properties of retention and trans...

  17. Geophysical Signitures From Hydrocarbon Contaminated Aquifers (United States)

    Abbas, M.; Jardani, A.


    The task of delineating the contamination plumes as well as studying their impact on the soil and groundwater biogeochemical properties is needed to support the remediation efforts and plans. Geophysical methods including electrical resistivity tomography (ERT), induced polarization (IP), ground penetrating radar (GPR), and self-potential (SP) have been previously used to characterize contaminant plumes and investigate their impact on soil and groundwater properties (Atekwana et al., 2002, 2004; Benson et al., 1997; Campbell et al., 1996; Cassidy et al., 2001; Revil et al., 2003; Werkema et al., 2000). Our objective was to: estimate the hydrocarbon contamination extent in a contaminated site in northern France, and to adverse the effects of the oil spill on the groundwater properties. We aim to find a good combination of non-intrusive and low cost methods which we can use to follow the bio-remediation process, which is planned to proceed next year. We used four geophysical methods including electrical resistivity tomography, IP, GPR, and SP. The geophysical data was compared to geochemical ones obtained from 30 boreholes installed in the site during the geophysical surveys. Our results have shown: low electrical resistivity values; high chargeability values; negative SP anomalies; and attenuated GPR reflections coincident with groundwater contamination. Laboratory and field geochemical measurements have demonstrated increased groundwater electrical conductivity and increased microbial activity associated with hydrocarbon contamination of groundwater. Our study results support the conductive model suggested by studies such as Sauck (2000) and Atekwana et al., (2004), who suggest that biological alterations of hydrocarbon contamination can substantially modify the chemical and physical properties of the subsurface, producing a dramatic shift in the geo-electrical signature from resistive to conductive. The next stage of the research will include time lapse borehole

  18. Geophysical monitoring in a hydrocarbon reservoir (United States)

    Caffagni, Enrico; Bokelmann, Goetz


    Extraction of hydrocarbons from reservoirs demands ever-increasing technological effort, and there is need for geophysical monitoring to better understand phenomena occurring within the reservoir. Significant deformation processes happen when man-made stimulation is performed, in combination with effects deriving from the existing natural conditions such as stress regime in situ or pre-existing fracturing. Keeping track of such changes in the reservoir is important, on one hand for improving recovery of hydrocarbons, and on the other hand to assure a safe and proper mode of operation. Monitoring becomes particularly important when hydraulic-fracturing (HF) is used, especially in the form of the much-discussed "fracking". HF is a sophisticated technique that is widely applied in low-porosity geological formations to enhance the production of natural hydrocarbons. In principle, similar HF techniques have been applied in Europe for a long time in conventional reservoirs, and they will probably be intensified in the near future; this suggests an increasing demand in technological development, also for updating and adapting the existing monitoring techniques in applied geophysics. We review currently available geophysical techniques for reservoir monitoring, which appear in the different fields of analysis in reservoirs. First, the properties of the hydrocarbon reservoir are identified; here we consider geophysical monitoring exclusively. The second step is to define the quantities that can be monitored, associated to the properties. We then describe the geophysical monitoring techniques including the oldest ones, namely those in practical usage from 40-50 years ago, and the most recent developments in technology, within distinct groups, according to the application field of analysis in reservoir. This work is performed as part of the FracRisk consortium (; this project, funded by the Horizon2020 research programme, aims at helping minimize the

  19. Informing groundwater models with near-surface geophysical data

    DEFF Research Database (Denmark)

    Herckenrath, Daan

    of the geophysical data. The CHI-S yielded a geophysical model that could never be obtained with a separate geophysical inversion. Furthermore, we applied a CHI-S to evaluate the potential for time-lapse relative gravimetry (TL-RG) and magnetic resonance sounding (TL-MRS) to improve the estimation of aquifer...

  20. Ninety Years of International Cooperation in Geophysics (United States)

    Ismail-Zadeh, A.; Beer, T.


    Because applicable physical, chemical, and mathematical studies of the Earth system must be both interdisciplinary and international, the International Union of Geodesy and Geophysics (IUGG) was formed in 1919 as an non-governmental, non-profit organization dedicated to advancing, promoting, and communicating knowledge of the Earth system, its space environment, and the dynamical processes causing change. The Union brings together eight International Associations that address different disciplines of Earth sciences. Through these Associations, IUGG promotes and enables studies in the geosciences by providing a framework for collaborative research and information exchange, by organizing international scientific assemblies worldwide, and via research publications. Resolutions passed by assemblies of IUGG and its International Associations set geophysical standards and promote issues of science policy on which national members agree. IUGG has initiated and/or vigorously supported collaborative international efforts that have led to highly productive worldwide interdisciplinary research programs, such as the International Geophysical Year and subsequent International Years (IPY, IYPE, eGY, and IHY), International Lithosphere Programme, World Climate Research Programme, Geosphere-Biosphere Programme, and Integrated Research on Risk Disaster. IUGG is inherently involved in the projects and programs related to climate change, global warming, and related environmental impacts. One major contribution has been the creation, through the International Council for Science (ICSU), of the World Data Centers and the Federation of Astronomical and Geophysical Data Analysis Services. These are being transformed to the ICSU World Data System, from which the data gathered during the major programs and data products will be available to researchers everywhere. IUGG cooperates with UNESCO, WMO, and some other U.N. and non-governmental organizations in the study of natural catastrophes


    Directory of Open Access Journals (Sweden)

    Hakan ALP


    Full Text Available In this study, it was compared Fourier Transformation using widely in analysing of geophysics data and image processing and Wavelet Transformation using in image processing, boundary analysis and recently years in use geophysical data analysis. It was applicated and compared two transformations in the both geophysical data and fundamental functions. Then the results obtained were evaluated. In this study it was compared two transformation using earthquake records and Bouger gravity anomalies map of Hatay region geophysical data. At the end of the our study it was clearly seen that wavelet transform can be used by geophysical data analysing.

  2. Review of geophysical characterization methods used at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    GV Last; DG Horton


    This paper presents a review of geophysical methods used at Hanford in two parts: (1) shallow surface-based geophysical methods and (2) borehole geophysical methods. This review was not intended to be ``all encompassing'' but should represent the vast majority (>90% complete) of geophysical work conducted onsite and aimed at hazardous waste investigations in the vadose zone and/or uppermost groundwater aquifers. This review did not cover geophysical methods aimed at large-scale geologic structures or seismicity and, in particular, did not include those efforts conducted in support of the Basalt Waste Isolation Program. This review focused primarily on the more recent efforts.

  3. The geophysical impact of the Aristoteles mission (United States)

    Anderson, Allen Joel; Klingele, E.; Sabadini, R.; Tinti, S.; Zerbini, Suzanna


    The importance of a precise, high resolution gradiometric and magnetometric mission in some topics of geophysical interest is stressed. Ways in which the planned Aristoteles mission can allow the geophysical community to improve the knowledge and the physical understanding of several important geodynamical processes involving the coupled system consisting of the lithosphere, asthenosphere and upper mantle are discussed. Particular attention is devoted to the inversion of anomalous density structures in collision and subduction zones by means of the joint use of gradiometric and seismic tomographic data. Some modeling efforts accomplished to study the capability of the mission to invert the rheological parameters of the lithosphere and upper mantle through the gravimetric signals of internal and surface density anomalies are described.

  4. Geophysical and atmospheric evolution of habitable planets. (United States)

    Lammer, Helmut; Selsis, Frank; Chassefière, Eric; Breuer, Doris; Griessmeier, Jean-Mathias; Kulikov, Yuri N; Erkaev, Nikolai V; Khodachenko, Maxim L; Biernat, Helfried K; Leblanc, Francois; Kallio, Esa; Lundin, Richard; Westall, Frances; Bauer, Siegfried J; Beichman, Charles; Danchi, William; Eiroa, Carlos; Fridlund, Malcolm; Gröller, Hannes; Hanslmeier, Arnold; Hausleitner, Walter; Henning, Thomas; Herbst, Tom; Kaltenegger, Lisa; Léger, Alain; Leitzinger, Martin; Lichtenegger, Herbert I M; Liseau, René; Lunine, Jonathan; Motschmann, Uwe; Odert, Petra; Paresce, Francesco; Parnell, John; Penny, Alan; Quirrenbach, Andreas; Rauer, Heike; Röttgering, Huub; Schneider, Jean; Spohn, Tilman; Stadelmann, Anja; Stangl, Günter; Stam, Daphne; Tinetti, Giovanna; White, Glenn J


    The evolution of Earth-like habitable planets is a complex process that depends on the geodynamical and geophysical environments. In particular, it is necessary that plate tectonics remain active over billions of years. These geophysically active environments are strongly coupled to a planet's host star parameters, such as mass, luminosity and activity, orbit location of the habitable zone, and the planet's initial water inventory. Depending on the host star's radiation and particle flux evolution, the composition in the thermosphere, and the availability of an active magnetic dynamo, the atmospheres of Earth-like planets within their habitable zones are differently affected due to thermal and nonthermal escape processes. For some planets, strong atmospheric escape could even effect the stability of the atmosphere.

  5. Development of geophysical data management system

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Tai-Sup; Lee, Sang-Kyu; Gu, Sung-Bon [Korea Institute of Geology Mining and Materials, Taejon (KR)] (and others)


    (1) Development of a complete geophysical database system under C/S environment for data management. (2) Development of database system for the general user, who has not special knowledge of database, under the Internet environment. (3) Operation of the Web service for the general user. (4) Development of the stand-alone database system for a small-scale research group such as college and engineering consultant firms. (author). 15 refs.

  6. FY97 Geophysics Technology Area Plan. (United States)


    Under the High-frequency Active Auroral Research drag and to provide accurate winds and composition Program ( HAARP ), research was initiated to assess...Satellite Communications FY Fiscal Year GP Geophysics GPS Global Positioning System HAARP High Frequency Active Auroral Research Program BF High...and Combat Operations 3,14 Global Positioning System (GPS) ii,5,6,8,9,12,17 High Frequency Active Auroral Research Program ( HAARP ) 8,11 Industrial

  7. Geophysical, geological, environmental and technical program guidelines

    Energy Technology Data Exchange (ETDEWEB)



    The Canada-Newfoundland Offshore Petroleum Board has created a set of guidelines which describe the information needed by the Board for authorizations relating to geophysical, geological, environmental or geotechnical programs. The guidelines also describe the review process that will be followed in considering a proponent`s application. Since these guidelines are subordinate to the Canada-Newfoundland Atlantic Accord Implementation Act and the Canada-Newfoundland Atlantic Accord Implementation (Newfoundland) Act, proponents must refer to both in preparing their development applications.

  8. Application of geophysical methods for fracture characterization

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K.H.; Majer, E.L. [Lawrence Berkeley Lab., CA (USA); McEvilly, T.V. [Lawrence Berkeley Lab., CA (USA)]|[California Univ., Berkeley, CA (USA). Dept. of Geology and Geophysics; Morrison, H.F. [Lawrence Berkeley Lab., CA (USA)]|[California Univ., Berkeley, CA (USA). Dept. of Materials Science and Mineral Engineering


    One of the most crucial needs in the design and implementation of an underground waste isolation facility is a reliable method for the detection and characterization of fractures in zones away from boreholes or subsurface workings. Geophysical methods may represent a solution to this problem. If fractures represent anomalies in the elastic properties or conductive properties of the rocks, then the seismic and electrical techniques may be useful in detecting and characterizing fracture properties. 7 refs., 3 figs.

  9. Mass Transport in Global Geophysical Fluids (United States)

    Chao, B. F.


    Mass transports occurring in the atmosphere-hydrosphere-solid Earth-core system (the "global geophysical fluids") are important geophysical phenomena. They occur on all temporal and spatial scales. Examples include air mass and ocean circulations, tides, hydrological water redistribution, mantle processes such as post-glacial rebound, earthquakes and tectonic motions, and core geodynamo activities. With only a few exceptions on the Earth surface, the temporal history and spatial pattern of such mass transport are often not amenable to direct observations. Space geodesy techniques, however, have the capability of monitoring certain direct consequences of the mass transport, including Earth's rotation variations, gravitational field variations, and the geocenter motion. These techniques include the very-long-baseline interferometry, satellite laser ranging and Doppler tracking, and the Global Positioning System, all entail global observational networks. While considerable advances have been made in observing and understanding of the dynamics of Earth's rotation, only the lowest-degree gravitational variations have been observed and limited knowledge of geocenter motion obtained. New space missions, projects and initiatives promise to further improve the measurements and hence our knowledge about the global mass transports. The latter contributes to our understanding and modeling capability of the geophysical processes that produce and regulate the mass transports, as well as the solid Earth's response to such changes in constraining the modeling of Earth's mechanical properties.

  10. Mathematical Methods for Geophysics and Space Physics (United States)

    Newman, William I.


    Graduate students in the natural sciences - including not only geophysics and space physics but also atmospheric and planetary physics, ocean sciences, and astronomy - need a broad-based mathematical toolbox to facilitate their research. In addition, they need to survey a wider array of mathematical methods that, while outside their particular areas of expertise, are important in related ones. While it is unrealistic to expect them to develop an encyclopedic knowledge of all the methods that are out there, they need to know how and where to obtain reliable and effective insights into these broader areas. Here at last is a graduate textbook that provides these students with the mathematical skills they need to succeed in today's highly interdisciplinary research environment. This authoritative and accessible book covers everything from the elements of vector and tensor analysis to ordinary differential equations, special functions, and chaos and fractals. Other topics include integral transforms, complex analysis, and inverse theory; partial differential equations of mathematical geophysics; probability, statistics, and computational methods; and much more. Proven in the classroom, Mathematical Methods for Geophysics and Space Physics features numerous exercises throughout as well as suggestions for further reading. * Provides an authoritative and accessible introduction to the subject * Covers vector and tensor analysis, ordinary differential equations, integrals and approximations, Fourier transforms, diffusion and dispersion, sound waves and perturbation theory, randomness in data, and a host of other topics * Features numerous exercises throughout * Ideal for students and researchers alike * An online illustration package is available to professors

  11. Geophysical fluid dynamics: whence, whither and why? (United States)

    Vallis, Geoffrey K.


    This article discusses the role of geophysical fluid dynamics (GFD) in understanding the natural environment, and in particular the dynamics of atmospheres and oceans on Earth and elsewhere. GFD, as usually understood, is a branch of the geosciences that deals with fluid dynamics and that, by tradition, seeks to extract the bare essence of a phenomenon, omitting detail where possible. The geosciences in general deal with complex interacting systems and in some ways resemble condensed matter physics or aspects of biology, where we seek explanations of phenomena at a higher level than simply directly calculating the interactions of all the constituent parts. That is, we try to develop theories or make simple models of the behaviour of the system as a whole. However, these days in many geophysical systems of interest, we can also obtain information for how the system behaves by almost direct numerical simulation from the governing equations. The numerical model itself then explicitly predicts the emergent phenomena-the Gulf Stream, for example-something that is still usually impossible in biology or condensed matter physics. Such simulations, as manifested, for example, in complicated general circulation models, have in some ways been extremely successful and one may reasonably now ask whether understanding a complex geophysical system is necessary for predicting it. In what follows we discuss such issues and the roles that GFD has played in the past and will play in the future.

  12. Geophysical Hunt for Chromite in Ophiolite

    Directory of Open Access Journals (Sweden)

    Mubarik Ali


    Full Text Available Ophiolite of Oman are famous world over, and are favorite for exploring chromite, which is a source of chromium that is used widely in steel, nichrome, and plating and painting industries. The best known chromite deposits are found in the Bushveld complex of South africa, however countries like Pakistan and Oman are also contributing but less than 2% of the world production. Chromite is found in the mantle rocks such as peridotite and its altered products. Large economic deposits are generally found in stratiform structure and the smaller ones in pod-like or tabular lenses. In Oman the chromite deposits occur in Oman ophiolite (Semile, mainly in the mantle sequence comprising harzburgite and dunite. The mining efforts for chromite in Oman are in progress but not on scientific grounds. On a site called Izki (670 m asl the chromite was expected on the top of a hill in a small area (150x50 m of ophiolite, and mining through pitting procedure was tried over there but remained unsuccessful. Geophysical methods were applied in the same area to search out the possibility of the existence of the ore. Since chromite is denser, more conductive and magnetically less susceptible deposit as compared to the host rocks harzburgite and serpentinite, it is expected that the existence of a shallow sizable ore body would generate favorable gravity, magnetic, and resistivity signals. The integrated geophysical study (gravity, magnetic and resistivity reveals the probability of chromite within 30 m depth. For confirmation the drilling was recommended on a point upto a depth of 35 meters. The drilling could not be continued beyond 12 meters depth due to reasons known to the lease owner. The drilling showed harzburgite up to 8 meters depth, then a chromite layer of 0.7 meter thickness, after that harzburgite started for the next 3 meters depth. This state of affairs confirms not only the presence of chromite but also the revealing power of geophysics.

  13. Applications of geophysical methods to volcano monitoring (United States)

    Wynn, Jeff; Dzurisin, Daniel; Finn, Carol A.; Kauahikaua, James P.; Lahusen, Richard G.


    The array of geophysical technologies used in volcano hazards studies - some developed originally only for volcano monitoring - ranges from satellite remote sensing including InSAR to leveling and EDM surveys, campaign and telemetered GPS networks, electronic tiltmeters and strainmeters, airborne magnetic and electromagnetic surveys, short-period and broadband seismic monitoring, even microphones tuned for infrasound. They include virtually every method used in resource exploration except large-scale seismic reflection. By “geophysical ” we include both active and passive methods as well as geodetic technologies. Volcano monitoring incorporates telemetry to handle high-bandwith cameras and broadband seismometers. Critical geophysical targets include the flux of magma in shallow reservoir and lava-tube systems, changes in active hydrothermal systems, volcanic edifice stability, and lahars. Since the eruption of Mount St. Helens in Washington State in 1980, and the eruption at Pu’u O’o in Hawai’i beginning in 1983 and still continuing, dramatic advances have occurred in monitoring technology such as “crisis GIS” and lahar modeling, InSAR interferograms, as well as gas emission geochemistry sampling, and hazards mapping and eruption predictions. The on-going eruption of Mount St. Helens has led to new monitoring technologies, including advances in broadband Wi-Fi and satellite telemetry as well as new instrumentation. Assessment of the gap between adequate monitoring and threat at the 169 potentially dangerous Holocene volcanoes shows where populations are dangerously exposed to volcanic catastrophes in the United States and its territories . This paper focuses primarily on Hawai’ian volcanoes and the northern Pacific and Cascades volcanoes. The US Geological Survey, the US National Park System, and the University of Utah cooperate in a program to monitor the huge Yellowstone volcanic system, and a separate observatory monitors the restive Long Valley

  14. A fractured rock geophysical toolbox method selection tool (United States)

    Day-Lewis, F. D.; Johnson, C.D.; Slater, L.D.; Robinson, J.L.; Williams, J.H.; Boyden, C.L.; Werkema, D.D.; Lane, J.W.


    Geophysical technologies have the potential to improve site characterization and monitoring in fractured rock, but the appropriate and effective application of geophysics at a particular site strongly depends on project goals (e.g., identifying discrete fractures) and site characteristics (e.g., lithology). No method works at every site or for every goal. New approaches are needed to identify a set of geophysical methods appropriate to specific project goals and site conditions while considering budget constraints. To this end, we present the Excel-based Fractured-Rock Geophysical Toolbox Method Selection Tool (FRGT-MST). We envision the FRGT-MST (1) equipping remediation professionals with a tool to understand what is likely to be realistic and cost-effective when contracting geophysical services, and (2) reducing applications of geophysics with unrealistic objectives or where methods are likely to fail.

  15. The Expanding Marketplace for Applied Geophysics (United States)

    Carlson, N.; Sirles, P.


    While the image of geophysics for the proverbial "layman" often seems limited to volcanoes and earthquakes, and to the geoscientist this image enlarges to include oil or minerals exploration and whole earth studies, there has been a steady increase in the application of geophysics into the realm of "daily life", such as real estate deals, highway infrastructure, and flood protection. This expansion of applications can be attributed to the improved economics from advances in equipment and interpretation. Traditional geophysical methods that at one time often only fit within the budgets of oil, gas, and minerals exploration programs can now be economically applied to much smaller scale needs like contaminant mapping, landfill delineation, and levee investigations. A real-world, economic example of this expanding marketplace is our company, which began very small and was aimed almost exclusively at the minerals exploration market. Most of our growth has been in the last 10 years, when we have expanded to five offices and a staff with almost 40 geoscientist degrees (21 in geophysics); much of this growth has been in the non-oil, non-minerals arenas. While much of our work still includes minerals exploration, other projects this year include wind-farm foundation studies, cavity detection above underground nuclear tests, landfill studies, acid mine drainage problems, and leaks in evaporation ponds. A methodology example of this expanding market is the induced polarization (IP) survey, once primarily used for minerals exploration, particularly large porphyry copper deposits, but now efficient enough to also use in environmental studies. The IP method has been particularly useful in delineating and characterizing old, poorly documented landfills, and recent research suggests it may also be useful in monitoring the accelerated biodegradation processes used in some cases to rehabilitate the sites. Compared to temperature monitoring systems, IP may be more useful in providing

  16. Effect of regularization parameters on geophysical reconstruction

    Institute of Scientific and Technical Information of China (English)

    Zhou Hui; Wang Zhaolei; Qiu Dongling; Li Guofa; Shen Jinsong


    In this paper we discuss the edge-preserving regularization method in the reconstruction of physical parameters from geophysical data such as seismic and ground-penetrating radar data.In the regularization method a potential function of model parameters and its corresponding functions are introduced.This method is stable and able to preserve boundaries, and protect resolution.The effect of regularization depends to a great extent on the suitable choice of regularization parameters.The influence of the edge-preserving parameters on the reconstruction results is investigated and the relationship between the regularization parameters and the error of data is described.

  17. Predictability of extreme values in geophysical models

    Directory of Open Access Journals (Sweden)

    A. E. Sterk


    Full Text Available Extreme value theory in deterministic systems is concerned with unlikely large (or small values of an observable evaluated along evolutions of the system. In this paper we study the finite-time predictability of extreme values, such as convection, energy, and wind speeds, in three geophysical models. We study whether finite-time Lyapunov exponents are larger or smaller for initial conditions leading to extremes. General statements on whether extreme values are better or less predictable are not possible: the predictability of extreme values depends on the observable, the attractor of the system, and the prediction lead time.

  18. Large natural geophysical events: planetary planning

    Energy Technology Data Exchange (ETDEWEB)

    Knox, J.B.; Smith, J.V.


    Geological and geophysical data suggest that during the evolution of the earth and its species, that there have been many mass extinctions due to large impacts from comets and large asteroids, and major volcanic events. Today, technology has developed to the stage where we can begin to consider protective measures for the planet. Evidence of the ecological disruption and frequency of these major events is presented. Surveillance and warning systems are most critical to develop wherein sufficient lead times for warnings exist so that appropriate interventions could be designed. The long term research undergirding these warning systems, implementation, and proof testing is rich in opportunities for collaboration for peace.

  19. Artificial intelligence and dynamic systems for geophysical applications

    CERN Document Server

    Gvishiani, Alexei


    The book presents new clustering schemes, dynamical systems and pattern recognition algorithms in geophysical, geodynamical and natural hazard applications. The original mathematical technique is based on both classical and fuzzy sets models. Geophysical and natural hazard applications are mostly original. However, the artificial intelligence technique described in the book can be applied far beyond the limits of Earth science applications. The book is intended for research scientists, tutors, graduate students, scientists in geophysics and engineers

  20. Minimax approach to inverse problems of geophysics (United States)

    Balk, P. I.; Dolgal, A. S.; Balk, T. V.; Khristenko, L. A.


    A new approach is suggested for solving the inverse problems that arise in the different fields of applied geophysics (gravity, magnetic, and electrical prospecting, geothermy) and require assessing the spatial region occupied by the anomaly-generating masses in the presence of different types of a priori information. The interpretation which provides the maximum guaranteed proximity of the model field sources to the real perturbing object is treated as the best interpretation. In some fields of science (game theory, economics, operations research), the decision-making principle that lies in minimizing the probable losses which cannot be prevented if the situation develops by the worst-case scenario is referred to as minimax. The minimax criterion of choice is interesting as, instead of being confined to the indirect (and sometimes doubtful) signs of the "optimal" solution, it relies on the actual properties of the information in the results of a particular interpretation. In the hierarchy of the approaches to the solution of the inverse problems of geophysics ordered by the volume and quality of the retrieved information about the sources of the field, the minimax approach should take special place.

  1. The Continental Crust: A Geophysical Approach (United States)

    Christensen, Nikolas I.

    Nearly 80 years ago, Yugoslavian seismologist Andrija Mohorovicic recognized, while studying a Balkan earthquake, that velocities of seismic waves increase abruptly at a few tens of kilometers depth , giving rise to the seismological definition of the crust. Since that discovery, many studies concerned with the nature of both the continental and oceanic crusts have appeared in the geophysical literature.Recently, interest in the continental crust has cascaded. This is largely because of an infusion of new data obtained from major reflection programs such as the Consortium for Continental Reflection Profiling (COCORP) and British Institutions Reflection Profiling Syndicate (BIRPS) and increased resolution of refraction studies. In addition, deep continental drilling programs are n ow in fashion. The Continental Crust: A Geophysical Approach is a summary of present knowledge of the continental crust. Meissner has succeeded in writing a book suited to many different readers, from the interested undergraduate to the professional. The book is well documented , with pertinent figures and a complete and up-to-date reference list.

  2. Satellites provide new insights into polar geophysics (United States)

    Laxon, Seymour; McAdoo, David

    A revolution in polar geophysics is under way thanks to altimeter data, which the ERS satellites have been collecting since 1991. Geophysical surveys in the polar regions have long been hampered by inaccessibility, particularly in areas that are covered yearround by sea ice or land ice. As a result the major remaining uncertainties in global tectonic models of the Mesozoic and Cenozoic tend to lie in the Arctic and Antarctic regions. In fact, major tectonic plate boundaries have been hypothesized, but not confirmed, for both regions. In the Arctic, a divergent plate boundary associated with the Mesozoic opening of the Canada Basin has been proposed [e.g., Lawver et al., 1990] while in the Antarctic a divergent boundary, active during the late Cretaceous in the Amundsen Sea, has been hypothesized [Cande et al., 1995; Stock and Molnar, 1987]. Due to the acute sparseness of seafloor surveys in these areas, however, no one has been able to prove that these plate boundaries actually existed, nor has anyone been able to locate extinct remnants of the boundaries. High-resolution marine gravity fields (Figures 1 and 2) derived from satellite altimeter data are now redressing this problem of sparse surveys.

  3. New perspectives on superparameterization for geophysical turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Majda, Andrew J. [Center for Atmosphere Ocean Science, Courant Institute of Mathematical Sciences, New York University, 251 Mercer St., New York, NY 10012 (United States); Center for Prototype Climate Modelling, NYU Abu Dhabi, Abu Dhabi (United Arab Emirates); Grooms, Ian, E-mail: [Center for Atmosphere Ocean Science, Courant Institute of Mathematical Sciences, New York University, 251 Mercer St., New York, NY 10012 (United States)


    This is a research expository paper regarding superparameterization, a class of multi-scale numerical methods designed to cope with the intermittent multi-scale effects of inhomogeneous geophysical turbulence where energy often inverse-cascades from the unresolved scales to the large scales through the effects of waves, jets, vortices, and latent heat release from moist processes. Original as well as sparse space–time superparameterization algorithms are discussed for the important case of moist atmospheric convection including the role of multi-scale asymptotic methods in providing self-consistent constraints on superparameterization algorithms and related deterministic and stochastic multi-cloud parameterizations. Test models for the statistical numerical analysis of superparameterization algorithms are discussed both to elucidate the performance of the basic algorithms and to test their potential role in efficient multi-scale data assimilation. The very recent development of grid-free seamless stochastic superparameterization methods for geophysical turbulence appropriate for “eddy-permitting” mesoscale ocean turbulence is presented here including a general formulation and illustrative applications to two-layer quasigeostrophic turbulence, and another difficult test case involving one-dimensional models of dispersive wave turbulence. This last test case has randomly generated solitons as coherent structures which collapse and radiate wave energy back to the larger scales, resulting in strong direct and inverse turbulent energy cascades.

  4. Geophysical limits to global wind power (United States)

    Marvel, Kate; Kravitz, Ben; Caldeira, Ken


    There is enough power in Earth's winds to be a primary source of near-zero-emission electric power as the global economy continues to grow through the twenty-first century. Historically, wind turbines are placed on Earth's surface, but high-altitude winds are usually steadier and faster than near-surface winds, resulting in higher average power densities. Here, we use a climate model to estimate the amount of power that can be extracted from both surface and high-altitude winds, considering only geophysical limits. We find wind turbines placed on Earth's surface could extract kinetic energy at a rate of at least 400TW, whereas high-altitude wind power could extract more than 1,800TW. At these high rates of extraction, there are pronounced climatic consequences. However, we find that at the level of present global primary power demand (~ 18TW ref. ), uniformly distributed wind turbines are unlikely to substantially affect the Earth's climate. It is likely that wind power growth will be limited by economic or environmental factors, not global geophysical limits.

  5. Direct Statistical Simulation of Geophysical Flows (United States)

    Marston, Brad; Chini, Greg; Tobias, Steve


    Statistics of models of geophysical and astrophysical fluids may be directly accessed by solving the equations of motion for the statistics themselves as proposed by Lorenz nearly 50 years ago. Motivated by the desire to capture seamlessly multiscale physics we introduce a new approach to such Direct Statistical Simulation (DSS) based upon separating eddies by length scale. Discarding triads that involve only small-scale waves, the equations of motion generalize the quasi-linear approximation (GQL) and are able to accurately reproduce the low-order statistics of a stochastically-driven barotropic jet. Furthermore the two-point statistics of high wavenumber modes close and thus generalize second-order cumulant expansions (CE2) that employ zonal averaging. This GCE2 approach is tested on two-layer primitive equations. Comparison to statistics accumulated from numerical simulation finds GCE2 to be quantitatively accurate. DSS thus leads to new insight into important processes in geophysical and astrophysical flows. Supported in part by NSF DMR-1306806 and NSF CCF-1048701.

  6. Spatial and temporal distribution of geophysical disasters

    Directory of Open Access Journals (Sweden)

    Cvetković Vladimir


    Full Text Available Natural disasters of all kinds (meteorological, hydrological, geophysical, climatological and biological are increasingly becoming part of everyday life of modern human. The consequences are often devastating, to the life, health and property of people, as well to the security of states and the entire international regions. In this regard, we noted the need for a comprehensive investigation of the phenomenology of natural disasters. In addition, it is particularly important to pay attention to the different factors that might correlate with each other to indicate more dubious and more original facts about their characteristics. However, as the issue of natural disasters is very wide, the subject of this paper will be forms, consequences, temporal and spatial distribution of geophysical natural disasters, while analysis of other disasters will be the subject of our future research. Using an international database on natural disasters of the centre for research on the epidemiology of disasters (CRED based in Brussels, with the support of the statistical analysis (SPSS, we tried to point out the number, trends, consequences, the spatial and temporal distribution of earthquakes, volcanic eruptions and dry mass movements in the world, from 1900 to 2013.

  7. Digital Underground (Shh. It's really Applied Geophysics!) (United States)

    McAdoo, B. G.


    Digital Underground (Geology/Physics 241) at Vassar College is an applied geophysics course designed for a liberal arts curriculum, and has nothing to do with Shock G and Tupac Shakur. Applied geophysics courses have a history of using geophysical methods on environmental contamination-type applications (underground storage tanks, leach fields, etc.). Inspired in large part by the Keck Geology Consortium project run by Franklin and Marshall College geophysicist (Robert Sternberg) and archaeologist (James Delle) in an old slave village in Jamaica in 1999, this class examines the history of slavery in New York's Hudson Valley region by way of its forgotten African-American graveyards. This multidisciplinary approach to an issue draws students from across the curriculum- we have had our compliments of geologists and physicists, along with students from sociology, environmental studies, history, and Africana studies. The name of the class and content are designed to attract a non-traditional student of geophysics.- The project-based nature of the class appeals to student yearning for an out-of-classroom experience. The uncontrolled nature of the class demonstrates the complications that occur in real-word situations. The class has in the past broken itself into two teams- a surveying team and an archival research team. Archival research is done (usually by the social scientists in the class) to add a human dimension to the geophysical. The surveying equipment used in delineating these forgotten graveyards includes a Total Station surveyor, an electrical resistivity meter, a magnetometer, and a ground penetrating radar. All students must have a rudimentary understanding of the physics behind the equipment (to the level of where they can explain it to the general public), and the methods used by those studying the archives. This is a project-based class, where the instructor acts as a project manager, and the students make the decisions regarding the survey itself. Every

  8. Geophysical subsurface imaging and interface identification.

    Energy Technology Data Exchange (ETDEWEB)

    Pendley, Kevin; Bochev, Pavel Blagoveston; Day, David Minot; Robinson, Allen Conrad; Weiss, Chester Joseph


    Electromagnetic induction is a classic geophysical exploration method designed for subsurface characterization--in particular, sensing the presence of geologic heterogeneities and fluids such as groundwater and hydrocarbons. Several approaches to the computational problems associated with predicting and interpreting electromagnetic phenomena in and around the earth are addressed herein. Publications resulting from the project include [31]. To obtain accurate and physically meaningful numerical simulations of natural phenomena, computational algorithms should operate in discrete settings that reflect the structure of governing mathematical models. In section 2, the extension of algebraic multigrid methods for the time domain eddy current equations to the frequency domain problem is discussed. Software was developed and is available in Trilinos ML package. In section 3 we consider finite element approximations of De Rham's complex. We describe how to develop a family of finite element spaces that forms an exact sequence on hexahedral grids. The ensuing family of non-affine finite elements is called a van Welij complex, after the work [37] of van Welij who first proposed a general method for developing tangentially and normally continuous vector fields on hexahedral elements. The use of this complex is illustrated for the eddy current equations and a conservation law problem. Software was developed and is available in the Ptenos finite element package. The more popular methods of geophysical inversion seek solutions to an unconstrained optimization problem by imposing stabilizing constraints in the form of smoothing operators on some enormous set of model parameters (i.e. ''over-parametrize and regularize''). In contrast we investigate an alternative approach whereby sharp jumps in material properties are preserved in the solution by choosing as model parameters a modest set of variables which describe an interface between adjacent regions in

  9. Interactive Geophysical Mapping on the Web (United States)

    Meertens, C.; Hamburger, M.; Estey, L.; Weingroff, M.; Deardorff, R.; Holt, W.


    We have developed a set of interactive, web-based map utilities that make geophysical results accessible to a large number and variety of users. These tools provide access to pre-determined map regions via a simple Html/JavaScript interface or to user-selectable areas using a Java interface to a Generic Mapping Tools (GMT) engine. Users can access a variety of maps, satellite images, and geophysical data at a range of spatial scales for the earth and other planets of the solar system. Developed initially by UNAVCO for study of global-scale geodynamic processes, users can choose from a variety of base maps (satellite mosaics, global topography, geoid, sea-floor age, strain rate and seismic hazard maps, and others) and can then add a number of geographic and geophysical overlays for example coastlines, political boundaries, rivers and lakes, NEIC earthquake and volcano locations, stress axes, and observed and model plate motion and deformation velocity vectors representing a compilation of 2933 geodetic measurements from around the world. The software design is flexible allowing for construction of special editions for different target audiences. Custom maps been implemented for UNAVCO as the "Jules Verne Voyager" and "Voyager Junior", for the International Lithosphere Project's "Global Strain Rate Map", and for EarthScope Education and Outreach as "EarthScope Voyager Jr.". For the later, a number of EarthScope-specific features have been added, including locations of proposed USArray (seismic), Plate Boundary Observatory (geodetic), and San Andreas Fault Observatory at Depth sites plus detailed maps and geographically referenced examples of EarthScope-related scientific investigations. In addition, we are developing a website that incorporates background materials and curricular activities that encourage users to explore Earth processes. A cluster of map processing computers and nearly a terabyte of disk storage has been assembled to power the generation of

  10. Educational Geophysics at INGV, Rome (Italy) (United States)

    Dida Working Group Ingv,.


    Italy is a country prone to Earth phenomena such as earthquakes, volcanic eruptions, floods and landslides that left a trace in the memory of people. About 60% of the Italian territory is classified in the current seismic hazard maps, and large cities as Neaples and Catania are located close to the two largest active volcanoes of Europe (Mt. Vesuvius and Mt. Etna, respectively). Nevertheless, school programs are often inadequate about the natural hazards of the country. For this reason there are many requests from schoolteachers to visit with their classes the academic Institutions and to attend geophysical talks. The working group for educational activities of the Istituto Nazionale di Geofisica and Vulcanologia promotes and realizes Earth science outreach programs devoted to increase the knowledge of geophysical topics. The educational activity is one of the most important tasks of our Institution together with the research activities and the 24-hours survey of the Italian Seismic Network. The INGV hosts in its headquarter of Rome many visits of primary, secondary and high schools with an increasing demand year by year. Every year about 3,000 students visit our Institute over more than 60 open-days, and we participate to exhibitions and outreach projects organized by several Institutions. We show here what has been done at INGV for the geophysical education, underlining the problems and the successes of these activities. We describe also an educational project developed together with a teacher's team of secondary-school. Aim of this experience was to stimulate the interest of 12-year-old kids to unfamiliar arguments like seismology. The class was introduced to physical topics as waves and wave propagation by means of simple experiments. Then they visited the INGV were the research activities were shown, with emphasis on seismological studies; they were also thought how the Italian Seismic Network monitors earthquakes and how to use the P and S waves for their

  11. 3D geophysical inversion for contact surfaces (United States)

    Lelièvre, Peter; Farquharson, Colin


    Geologists' interpretations about the Earth typically involve distinct rock units with contacts (interfaces) between them. In contrast, standard minimum-structure volumetric inversions (performed on meshes of space-filling cells) recover smooth models inconsistent with such interpretations. There are several approaches through which geophysical inversion can help recover models with the desired characteristics. Some authors have developed iterative strategies in which several volumetric inversions are performed with regularization parameters changing to achieve sharper interfaces at automatically determined locations. Another approach is to redesign the regularization to be consistent with the desired model characteristics, e.g. L1-like norms or compactness measures. A few researchers have taken approaches that limit the recovered values to lie within particular ranges, resulting in sharp discontinuities; these include binary inversion, level set methods and clustering strategies. In most of the approaches mentioned above, the model parameterization considers the physical properties in each of the many space-filling cells within the volume of interest. The exception are level set methods, in which a higher dimensional function is parameterized and the contact surface is determined from the zero-level of that function. However, even level-set methods rely on an underlying volumetric mesh. We are researching a fundamentally different type of inversion that parameterizes the Earth in terms of the contact surfaces between rock units. 3D geological Earth models typically comprise wireframe surfaces of tessellated triangles or other polygonal planar facets. This wireframe representation allows for flexible and efficient generation of complicated geological structures. Therefore, a natural approach for representing a geophysical model in an inversion is to parameterize the wireframe contact surfaces as the coordinates of the nodes (facet vertices). The geological and

  12. Geophysical modelling of 3D electromagnetic diffusion with multigrid

    NARCIS (Netherlands)

    Mulder, W.A.


    The performance of a multigrid solver for time-harmonic electromagnetic problems in geophysical settings was investigated. With the low frequencies used in geophysical surveys for deeper targets, the light-speed waves in the earth can be neglected. Diffusion of induced currents is the dominant physi

  13. Technical Note: Calibration and validation of geophysical observation models

    NARCIS (Netherlands)

    Salama, M.S.; van der Velde, R.; van der Woerd, H.J.; Kromkamp, J.C.; Philippart, C.J.M.; Joseph, A.T.; O'Neill, P.E.; Lang, R.H.; Gish, T.; Werdell, P.J.; Su, Z.


    We present a method to calibrate and validate observational models that interrelate remotely sensed energy fluxes to geophysical variables of land and water surfaces. Coincident sets of remote sensing observation of visible and microwave radiations and geophysical data are assembled and subdivided i

  14. Application of geophysical methods to agriculture: An overview (United States)

    Geophysical methods are becoming an increasingly valuable tool for agricultural applications. Agricultural geophysics investigations are commonly (although certainly not always) focused on delineating small- and/or large-scale objects/features within the soil profile (~ 0 to 2 m depth) over very lar...

  15. Comparison study of selected geophysical and geotechnical parameters

    DEFF Research Database (Denmark)

    Nissen, Randi Warncke; Poulsen, Søren Erbs


    Successful foundation of constructions relies on accurate characterization of the geotechnical properties of the subsurface. By implementing data from geophysical surveys, the placement of geotechnical drillings can be significantly improved, potentially reducing the number of required drillings....... This case study is mainly to compare geophysical investigations (MEP/IP) with existing PACES data and information from geotechnical drillings....

  16. Introduction to the JEEG Agricultural Geophysics special issue (United States)

    Recent advancements such as the availability of personal computers, technologies to store/process large amounts of data, the GPS, and GIS have now made geophysical methods practical for agricultural use. Consequently, there has been a rapid expansion of agricultural geophysics research just over the...

  17. Numerical Inversion of Integral Equations for Medical Imaging and Geophysics (United States)



  18. Geophysical couples” Discuss jobs, marriage (United States)

    Some 90 participants attended an open forum, “Dual Career Couples: Challenges and Opportunities,” on December 9 at the AGU Fall 1991 Meeting in San Francisco. Several couples summarized their experiences in “geophysical marriages” while the audience contributed questions and comments.Being forced to live apart was a common complaint among the married panelists. One couple on the panel—Karen Prestegaard of the University of Maryland and Jim Luhr of the Smithsonian Institution's Department of Mineral Physics—have been able to live together only 2 years out of the last 10. Although employer guidelines do not officially prohibit hiring couples, Prestegaard and Luhr expressed frustration that many institutions not only will not do so, but also will not help the second partner find a job nearby.

  19. Avalanches in functional materials and geophysics

    CERN Document Server

    Saxena, Avadh; Planes, Antoni


    This book provides the state-of-the art of the present understanding of avalanche phenomena in both functional materials and geophysics. The main emphasis of the book is analyzing these apparently different problems within the common perspective of out-of-equilibrium phenomena displaying spatial and temporal complexity that occur in a broad range of scales. Many systems, when subjected to an external force, respond intermittently in the form of avalanches that often span over a wide range of sizes, energies and durations. This is often related to a class of critical behavior characterized by the absence of characteristic scales. Typical examples are magnetization processes, plastic deformation and failure occuring in functional materials. These phenomena share many similarities with seismicity arising from the earth crust failure due to stresses that originate from plate tectonics.

  20. A mixture theory for geophysical fluids

    Directory of Open Access Journals (Sweden)

    A. C. Eringen


    Full Text Available A continuum theory is developed for a geophysical fluid consisting of two species. Balance laws are given for the individual components of the mixture, modeled as micropolar viscous fluids. The continua allow independent rotational degrees of freedom, so that the fluids can exhibit couple stresses and a non-symmetric stress tensor. The second law of thermodynamics is used to develop constitutive equations. Linear constitutive equations are constituted for a heat conducting mixture, each species possessing separate viscosities. Field equations are obtained and boundary and initial conditions are stated. This theory is relevant to an atmospheric mixture consisting of any two species from rain, snow and/or sand. Also, this is a continuum theory for oceanic mixtures, such as water and silt, or water and oil spills, etc.

  1. Cosmic Muon Detection for Geophysical Applications

    Directory of Open Access Journals (Sweden)

    László Oláh


    Full Text Available A portable cosmic muon detector has been developed for environmental, geophysical, or industrial applications. The device is a tracking detector based on the Close Cathode Chamber, an MWPC-like technology, allowing operation in natural underground caves or artificial tunnels, far from laboratory conditions. The compact, low power consumption system with sensitive surface of 0.1 m2 measures the angular distribution of cosmic muons with a resolution of 10 mrad, allowing for a detailed mapping of the rock thickness above the muon detector. Demonstration of applicability of the muon telescope (REGARD Muontomograph for civil engineering and measurements in artificial underground tunnels or caverns are presented.

  2. The geology and geophysics of Mars (United States)

    Saunders, R. S.


    The current state of knowledge concerning the regional geology and geophysics of Mars is summarized. Telescopic observations of the planet are reviewed, pre-Mariner models of its interior are discussed, and progress achieved with the Mariner flybys, especially that of Mariner 9, is noted. A map of the Martian geological provinces is presented to provide a summary of the surface geology and morphology. The contrast between the northern and southern hemispheres is pointed out, and the characteristic features of the surface are described in detail. The global topography of the planet is examined along with its gravitational field, gravity anomalies, and moment of inertia. The general sequence of events in Martian geological history is briefly outlined.

  3. Georadar - high resolution geophysical electromagnetic device

    Directory of Open Access Journals (Sweden)

    Janez Stern


    Full Text Available Georadar is a high resolution geophysical electromagnetic device that was developed in the first part of the 1980's. In Slovenia it was first tested in 1991 on several objects of economicgeological, geotechnical and hydrogeologic nature.Here its usefulness in karst studied is presented. The first part of the paper deals with description of measurement procedure and methodological bases, and the second part with experience and results of case histories. Shown are radargrams from ornamental stone quarry Hotavlje, calcite mine Stahovica, Golobja jama karstcave near Divača and from highway construction site Razdrto-Čebulovica. All measurements were performed with the georadar instrument Pulse EKKO IV with a lOOMHz antenna according to the method of reflection profiling.

  4. Problems of data bases in geophysics (United States)

    Hartmann, G. K.

    Ten problems areas in the design and implementation of geophysical data bases are listed and briefly characterized. The emphasis is on software aspects, which are seen as critical given the current state of hardware technology. Topics examined include data sources and users; the difference between information-ordering schemes for the humanities and for the natural sciences; economic limitations on acquisition, evaluation, and storage of data; private versus public data; centralized, decentralized, and distributed computer systems; and the need for structured, transportable, and adequately documented software. A glossary of data terminology, extensive tables and block diagrams listing types of data and applications and illustrating ordering schemes, estimates of the data-processing and storage requirements of typical missions, and a summary of the CODMAC 1982 recommendations are provided.

  5. Software complex for geophysical data visualization (United States)

    Kryukov, Ilya A.; Tyugin, Dmitry Y.; Kurkin, Andrey A.; Kurkina, Oxana E.


    The effectiveness of current research in geophysics is largely determined by the degree of implementation of the procedure of data processing and visualization with the use of modern information technology. Realistic and informative visualization of the results of three-dimensional modeling of geophysical processes contributes significantly into the naturalness of physical modeling and detailed view of the phenomena. The main difficulty in this case is to interpret the results of the calculations: it is necessary to be able to observe the various parameters of the three-dimensional models, build sections on different planes to evaluate certain characteristics and make a rapid assessment. Programs for interpretation and visualization of simulations are spread all over the world, for example, software systems such as ParaView, Golden Software Surfer, Voxler, Flow Vision and others. However, it is not always possible to solve the problem of visualization with the help of a single software package. Preprocessing, data transfer between the packages and setting up a uniform visualization style can turn into a long and routine work. In addition to this, sometimes special display modes for specific data are required and existing products tend to have more common features and are not always fully applicable to certain special cases. Rendering of dynamic data may require scripting languages that does not relieve the user from writing code. Therefore, the task was to develop a new and original software complex for the visualization of simulation results. Let us briefly list of the primary features that are developed. Software complex is a graphical application with a convenient and simple user interface that displays the results of the simulation. Complex is also able to interactively manage the image, resize the image without loss of quality, apply a two-dimensional and three-dimensional regular grid, set the coordinate axes with data labels and perform slice of data. The

  6. Applied Geophysics Opportunities in the Petroleum Industry (United States)

    Olgaard, D. L.; Tikku, A.; Roberts, J. C.; Martinez, A.


    Meeting the increasing global demand for energy over the next several decades presents daunting challenges to engineers and scientists, including geoscientists of all disciplines. Many opportunities exist for geophysicists to find and produce oil and gas in a safe, environmentally responsible and affordable manner. Successful oil and gas exploration involves a 'Plates to Pores' approach that integrates multi-scale data from satellites, marine and land seismic and non-seismic field surveys, lab experiments, and even electron microscopy. The petroleum industry is at the forefront of using high performance computing to develop innovative methods to process and analyze large volumes of seismic data and perform realistic numerical modeling, such as finite element fluid flow and rock deformation simulations. Challenging and rewarding jobs in exploration, production and research exist for students with BS/BA, MS and PhD degrees. Geophysics students interested in careers in the petroleum industry should have a broad foundation in science, math and fundamental geosciences at the BS/BA level, as well as mastery of the scientific method, usually gained through thesis work at MS and PhD levels. Field geology or geophysics experience is also valuable. Other personal attributes typical for geoscientists to be successful in industry include a passion for solving complex geoscience problems, the flexibility to work on a variety of assignments throughout a career and skills such as teamwork, communication, integration and leadership. In this presentation we will give examples of research, exploration and production opportunities for geophysicists in petroleum companies and compare and contrast careers in academia vs. industry.

  7. Online Geophysical Databases for the Southern Ocean (United States)

    Goodwillie, A.; O'Hara, S.; Arko, R.; Carbotte, S.; Ryan, W.; Melkonian, A.; Ferrini, V.; Weissel, R.; Bonczkowski, J.


    With funding from the U.S. National Science Foundation Office of Polar Programs, the Antarctic Multibeam Bathymetry Synthesis (AMBS, is an integrated web-accessible bathymetry and geophysical database for the Southern Ocean and Antarctica, serving data from the US research vessels Nathaniel B. Palmer and Laurence M. Gould, amongst others. Interdisciplinary polar data can be downloaded for free through the Data Link web browser interface ( which enables keyword searches by data and instrument type, geographical bounds, scientist, expedition name and dates. The free, platform-independent data visualization tool GeoMapApp ( supports dynamic exploration of a wide range of data sets on a Global Multi-Resolution Topography (GMRT) synthesis, including the polar regions, allowing users to generate custom grids and maps and import their own data sets and grids. A specialised polar stereographic map projection incorporating multibeam swath bathymetry and the BEDMAP under-ice seafloor topography is available for the Southern Ocean. The GMRT global digital elevation model is served freely as a Web Map Service layer and is available for viewing with OGC-compliant clients including Google Earth ( To promote interoperability and data sharing, we are working with research partners including the Marine Metadata Interoperability (MMI) project and the National Geophysical Data Center to develop standardised metadata and best practices that comply with existing FGDC and ISO standards. We are also taking on the US Antarctic Data Coordination Center function, assisting NSF-funded investigators in documenting and archiving their data in accordance with the IPY Data Policy.

  8. A New Social Contract for Geophysics (United States)

    Malone, T. F.


    The Golden Age for geophysical research that followed the IGY set the stage for a new era of interaction among science, technology, and society. World population and the average economic productivity of individuals have both continued to grow exponentially during the past 50 years with the result that by the 1980s the demands of the human economy on the finite renewable resources of planet Earth were approximately equal to the natural regenerative capacities of planetary ecosystems. These demands are now "overshooting" those regenerative powers by about 20 per cent (1). The result could be a collapse in the life-supporting capacity of global ecosystems during coming decades, with tragic implications for civilized society. Novel modes of collaboration among all disciplines and all sectors of society are urgently needed to transform a potential catastrophe into the attractive vision that is now within reach as a result of rapidly expanding human knowledge, emerging technologies for sharing that knowledge (2), and the set of ethical principles for sustainable development contained in the Earth Charter (3). This prospect challenges geophysicists and scholars in all disciplines to forge a new and broadly based contract with society (4). 1. Wackernagel M. et al. 2002. "Tracking the ecological overshoot of the human economy." Proc. Natl. Acad. Sci. USA, Vol. 99, Issue 14, 9266-9271, July 9. 2. Malone T. and Yohe G. 2002. "Knowledge partnerships for a sustainable, equitable, and stable society." J. of Knowledge Management, Vol. 6, No. 4, October (in press). 3. 4. Malone T. 1997. "Building on the legacies of the Intenational Geophysical Year." Transactions, AGU, Vol.78, No. 15, pp. 185-191.

  9. Expedited Site Characterization geophysics: Geophysical methods and tools for site characterization

    Energy Technology Data Exchange (ETDEWEB)

    Goldstein, N.E.


    This report covers five classes of geophysical technologies: Magnetics; Electrical/electromagnetic; Seismic reflection; Gamma-ray spectrometry; and Metal-specific spectrometry. Except for radiometry, no other classes of geophysical tedmologies are specific for direct detection of the types of contaminants present at the selected sites. For each of the five classes covered, the report gives a general description of the methodology, its field use, and its general applicability to the ESC Project. In addition, the report gives a sample of the most promising instruments available for each class, including the following information: Hardware/software attributes; Purchase and rental costs; Survey rate and operating costs; and Other applicable information based on case history and field evaluations.

  10. Marine Geology and Geophysics Field Course Offered by The University of Texas Institute for Geophysics (United States)

    Duncan, D.; Davis, M. B.; Allison, M. A.; Gulick, S. P.; Goff, J. A.; Saustrup, S.


    The University of Texas Institute for Geophysics, part of the Jackson School of Geosciences, annually offers an intensive three-week marine geology and geophysics field course during the spring-summer intersession. Now in year six, the course provides hands-on instruction and training for graduate and upper-level undergraduate students in data acquisition, processing, interpretation, and visualization. Techniques covered include high-resolution seismic reflection, CHIRP sub-bottom profiling, multibeam bathymetry, sidescan sonar, several types of sediment coring, grab sampling, and the sedimentology of resulting seabed samples (e.g., core description, grain size analysis, x-radiography, etc.). Students participate in an initial period of classroom instruction designed to communicate geological context of the field area (which changes each year) along with theoretical and technical background on each field method. The class then travels to the Gulf Coast for a week of at-sea field work. Our field sites at Port Aransas and Galveston, Texas, and Grand Isle, Louisiana, have provided ideal locations for students to investigate coastal and sedimentary processes of the Gulf Coast and continental shelf through application of geophysical techniques. In the field, students rotate between two research vessels: one vessel, the 22' aluminum-hulled R/V Lake Itasca, owned and operated by UTIG, is used principally for multibeam bathymetry, sidescan sonar, and sediment sampling; the other, NOAA's R/V Manta or the R/V Acadiana, operated by the Louisiana Universities Marine Consortium, and is used primarily for high-resolution seismic reflection, CHIRP sub-bottom profiling, multibeam bathymetry, gravity coring, and vibrocoring. While at sea, students assist with survey design, learn instrumentation set up, acquisition parameters, data quality control, and safe instrument deployment and retrieval. In teams of three, students work in onshore field labs preparing sediment samples for

  11. Geophysical survey at Tell Barri (Syria) (United States)

    Florio, Giovanni; Cella, Federico; Pierobon, Raffaella; Castaldo, Raffaele; Castiello, Gabriella; Fedi, Maurizio


    A geophysical survey at the archaeological site of Tell Barri (Northeasterm Syria) was carried out. The Tell (Arab word for "hill") is 32 m high with a whole covered area of 37 hectares. The Tell, with its huge dimensions and with a great amount of pottery on the surface, is a precious area to study the regional history from IV mill. BC to Islamic and Medieval period. The geophysical study consisted in magnetic and electromagnetic measurements in the lower town area. The aim of this survey was to provide evidence of the presence of buried archaeological structures around an already excavated area. The wall structures in the Tell Barri are made by backed or crude clay bricks. The instrument used for the magnetic survey was an Overhauser-effect proton magnetometer (Gem GSM-19GF), in gradiometric configuration. The electromagnetic instrument used, Geonics Ltd. EM31, implements a Frequency Domain Electromagnetic Method (FDEM). It was used in vertical coils configuration, and this choice should grant a maximum theoretical investigation depth of about 6 m. Before starting the measurements on a larger scale, we conducted a magnetic and EM test profile on some already excavated, outcropping, baked bricks walls. Results were encouraging, because clear and strong magnetic and EM anomalies were recorded over the outcropping walls. However, in the survey area these structures are covered by 3 to 4 meters of clay material and the increased sensors-structures distance will reduce the anomalies amplitude. Moreover, the cover material is disseminated with bricks, basalt blocks and ceramics, all of which have relevant magnetic properties. After magnetic surveying some 50 m side square areas, we verified that unfortunately their effect resulted to be dominant with respect to the deeper wall structures, degrading too much the signal-to-noise ratio. The processing and analysis of magnetic data is however currently underway and will determine decisions about further use of this method

  12. Redesigning Curricula in Geology and Geophysics (United States)

    Sparks, D. W.; Ewing, R. C.; Fowler, D.; Macik, M.; Marcantonio, F.; Miller, B.; Newman, J.; Olszewski, T.; Reece, R.; Rosser, S.


    In the summer of 2014, the Texas A&M Department of Geology and Geophysics partnered with the Texas A&M Center for Teaching Excellence to implement TAMU's curriculum revision process: a data-informed, faculty-driven, educational-developer-supported rebuilding of our degree programs and course offerings. The current curricula (B.S. and B.A. in Geology, B.S. in Geophysics) were put into place in 1997, following the merger of two separate departments. The needs and capabilities of the Department and the student body have changed significantly since that time: more than 50% turnover of the faculty, a rapidly-changing job climate for geologists and geophysicists, and a nearly five-fold increase in the undergraduate population to over 500 majors in Fall 2015. Surveys of former students, employers and faculty at other universities revealed more reasons to address the curriculum. Some of the most desired skills are also those at which our graduates feel and are perceived to be least prepared: oral communication and the ability to learn software packages (skills that are most challenging to teach with growing class sizes). The challenge facing the Department is to accommodate growing student numbers while maintaining strength in traditional instructor-intensive activities such as microscopy and field mapping, and also improving our graduates' non-geological skills (e.g., communication, software use, teamwork, problem-solving) to insulate them from volatility in the current job market. We formed the Curriculum Study Group, consisting of faculty, graduate students, advisors and curriculum experts, to gather and analyze data and define the knowledge and skill base a graduate of our department must have. In addition to conducting external surveys, this group interviewed current students and faculty to determine the strengths and weaknesses of our program. We developed program learning goals that were further specified into over fifty criteria. For each criteria we defined


    Directory of Open Access Journals (Sweden)

    V. A. Parovyshny


    Full Text Available Results of the experimental long-term monitoring programme are presented. It is aimed at studying natural geophysical fields located above the gas deposit in the zone impacted by the active regional fault, and its objectives are to reveal how such fields are changing with time and to establish a relationship between the temporal changes and seismicity. According to the database it determines several typical indicators of variations in the geophysical fields, which take place only above the gas deposit. It is concluded that periods, when natural geophysical fields located above the gas deposit are unstable, are preceding the final phase of preparation of seismic events.

  14. Geophysical phenomena classification by artificial neural networks (United States)

    Gough, M. P.; Bruckner, J. R.


    Space science information systems involve accessing vast data bases. There is a need for an automatic process by which properties of the whole data set can be assimilated and presented to the user. Where data are in the form of spectrograms, phenomena can be detected by pattern recognition techniques. Presented are the first results obtained by applying unsupervised Artificial Neural Networks (ANN's) to the classification of magnetospheric wave spectra. The networks used here were a simple unsupervised Hamming network run on a PC and a more sophisticated CALM network run on a Sparc workstation. The ANN's were compared in their geophysical data recognition performance. CALM networks offer such qualities as fast learning, superiority in generalizing, the ability to continuously adapt to changes in the pattern set, and the possibility to modularize the network to allow the inter-relation between phenomena and data sets. This work is the first step toward an information system interface being developed at Sussex, the Whole Information System Expert (WISE). Phenomena in the data are automatically identified and provided to the user in the form of a data occurrence morphology, the Whole Information System Data Occurrence Morphology (WISDOM), along with relationships to other parameters and phenomena.


    Institute of Scientific and Technical Information of China (English)

    CHEN Chao; LIU Jian-ping; XU Shun-fang; XIA Jiang-hai


    Geophysical technologies are very effective in environmental, engineering and groundwater applications. Parameters of delineating nature of near-surface materials such as compressional-wave velocity, shear-wave velocity can be obtained using shallow seismic methods. Electric methods are primary approaches for investigating groundwater and detecting leakage. Both of the methods are applied to detect embankment in hope of obtaining evidence of the strength and moisture inside the body. A technological experiment has been done for detecting and discovering the hidden troubles in the embankment of Yangtze River,Songzi, Hubei, China in 2003. Surface-wave and DC multi-channel array resistivity sounding techniques were used to detect hidden trouble inside and under dike like pipe-seeps. This paper discusses the exploration strategy and the effect of geological characteristics. A practical approach of combining seismic and electric resistivity measurements was applied to locate potential pipe-seeps in embankment in the experiment. The method presents a potential leak factor based on the shear-wave velocity and the resistivity of the medium to evaluate anomalies. An anomaly found in a segment of embankment detected was verified, where occurred a pipe-seep during the 98′ flooding.

  16. Understanding biogeobatteries: Where geophysics meets microbiology (United States)

    Revil, A.; MendonçA, C. A.; Atekwana, E. A.; Kulessa, B.; Hubbard, S. S.; Bohlen, K. J.


    Although recent research suggests that contaminant plumes behave as geobatteries that produce an electrical current in the ground, no associated model exists that honors both geophysical and biogeochemical constraints. Here, we develop such a model to explain the two main electrochemical contributions to self-potential signals in contaminated areas. Both contributions are associated with the gradient of the activity of two types of charge carriers, ions and electrons. In the case of electrons, bacteria act as catalysts for reducing the activation energy needed to exchange the electrons between electron donors and electron acceptors. Possible mechanisms that facilitate electron migration include iron oxides, clays, and conductive biological materials, such as bacterial conductive pili or other conductive extracellular polymeric substances. Because we explicitly consider the role of biotic processes in the geobattery model, we coined the term "biogeobattery." After theoretical development of the biogeobattery model, we compare model predictions with self-potential responses associated with laboratory and field scale investigations conducted in contaminated environments. We demonstrate that the amplitude and polarity of large (>100 mV) self-potential signatures requires the presence of an electronic conductor to serve as a bridge between electron donors and acceptors. Small self-potential anomalies imply that electron donors and electron acceptors are not directly interconnected, but instead result simply from the gradient of the activity of the ionic species that are present in the system.

  17. Advanced geophysical underground coal gasification monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Mellors, Robert; Yang, X.; White, J. A.; Ramirez, A.; Wagoner, J.; Camp, D. W.


    Underground Coal Gasification (UCG) produces less surface impact, atmospheric pollutants and greenhouse gas than traditional surface mining and combustion. Therefore, it may be useful in mitigating global change caused by anthropogenic activities. Careful monitoring of the UCG process is essential in minimizing environmental impact. Here we first summarize monitoring methods that have been used in previous UCG field trials. We then discuss in more detail a number of promising advanced geophysical techniques. These methods – seismic, electromagnetic, and remote sensing techniques – may provide improved and cost-effective ways to image both the subsurface cavity growth and surface subsidence effects. Active and passive seismic data have the promise to monitor the burn front, cavity growth, and observe cavity collapse events. Electrical resistance tomography (ERT) produces near real time tomographic images autonomously, monitors the burn front and images the cavity using low-cost sensors, typically running within boreholes. Interferometric synthetic aperture radar (InSAR) is a remote sensing technique that has the capability to monitor surface subsidence over the wide area of a commercial-scale UCG operation at a low cost. It may be possible to infer cavity geometry from InSAR (or other surface topography) data using geomechanical modeling. The expected signals from these monitoring methods are described along with interpretive modeling for typical UCG cavities. They are illustrated using field results from UCG trials and other relevant subsurface operations.

  18. Magnetotellurics as a multiscale geophysical exploration method (United States)

    Carbonari, Rolando; D'Auria, Luca; Di Maio, Rosa; Petrillo, Zaccaria


    Magnetotellurics (MT) is a geophysical method based on the use of natural electromagnetic signals to define subsurface electrical resistivity structure through electromagnetic induction. MT waves are generated in the Earth's atmosphere and magnetosphere by a range of physical processes, such as magnetic storms, micropulsations, lightning activity. Since the underground MT wave propagation is of diffusive type, the longer is the wavelength (i.e. the lower the wave frequency) the deeper will be the propagation depth. Considering the frequency band commonly used in MT prospecting (10-4 Hz to 104 Hz), the investigation depth ranges from few hundred meters to hundreds of kilometers. This means that magnetotellurics is inherently a multiscale method and, thus, appropriate for applications at different scale ranging from aquifer system characterization to petroleum and geothermal research. In this perspective, the application of the Wavelet transform to the MT data analysis could represent an excellent tool to emphasize characteristics of the MT signal at different scales. In this note, the potentiality of such an approach is studied. In particular, we show that the use of a Discrete Wavelet (DW) decomposition of measured MT time-series data allows to retrieve robust information about the subsoil resistivity over a wide range of spatial (depth) scales, spanning up to 5 orders of magnitude. Furthermore, the application of DWs to MT data analysis has proven to be a flexible tool for advanced data processing (e.g. non-linear filtering, denoising and clustering).

  19. Understanding biogeobatteries: Where geophysics meets microbiology

    Energy Technology Data Exchange (ETDEWEB)

    Revil, A.; Mendonca, C.A.; Atekwana, E.A.; Kulessa, B.; Hubbard, S.S.; Bohlen, K.


    Although recent research suggests that contaminant plumes behave as geobatteries that produce an electrical current in the ground, no associated model exists that honors both geophysical and biogeochemical constraints. Here, we develop such a model to explain the two main electrochemical contributions to self-potential signals in contaminated areas. Both contributions are associated with the gradient of the activity of two types of charge carriers, ions and electrons. In the case of electrons, bacteria act as catalysts for reducing the activation energy needed to exchange the electrons between electron donor and electron acceptor. Possible mechanisms that facilitate electron migration include iron oxides, clays, and conductive biological materials, such as bacterial conductive pili or other conductive extracellular polymeric substances. Because we explicitly consider the role of biotic processes in the geobattery model, we coined the term 'biogeobattery'. After theoretical development of the biogeobattery model, we compare model predictions with self-potential responses associated with laboratory and field-scale conducted in contaminated environments. We demonstrate that the amplitude and polarity of large (>100 mV) self-potential signatures requires the presence of an electronic conductor to serve as a bridge between electron donors and acceptors. Small self-potential anomalies imply that electron donors and electron acceptors are not directly interconnected, but instead result simply from the gradient of the activity of the ionic species that are present in the system.

  20. Satellite gravity gradient grids for geophysics. (United States)

    Bouman, Johannes; Ebbing, Jörg; Fuchs, Martin; Sebera, Josef; Lieb, Verena; Szwillus, Wolfgang; Haagmans, Roger; Novak, Pavel


    The Gravity field and steady-state Ocean Circulation Explorer (GOCE) satellite aimed at determining the Earth's mean gravity field. GOCE delivered gravity gradients containing directional information, which are complicated to use because of their error characteristics and because they are given in a rotating instrument frame indirectly related to the Earth. We compute gravity gradients in grids at 225 km and 255 km altitude above the reference ellipsoid corresponding to the GOCE nominal and lower orbit phases respectively, and find that the grids may contain additional high-frequency content compared with GOCE-based global models. We discuss the gradient sensitivity for crustal depth slices using a 3D lithospheric model of the North-East Atlantic region, which shows that the depth sensitivity differs from gradient to gradient. In addition, the relative signal power for the individual gradient component changes comparing the 225 km and 255 km grids, implying that using all components at different heights reduces parameter uncertainties in geophysical modelling. Furthermore, since gravity gradients contain complementary information to gravity, we foresee the use of the grids in a wide range of applications from lithospheric modelling to studies on dynamic topography, and glacial isostatic adjustment, to bedrock geometry determination under ice sheets.

  1. Geophysical Surveys Over a Terminal Moraine (United States)

    Bentley, L. R.; Langston, G.; Hayashi, M.


    Alpine watersheds represent the headwaters of many major rivers in western Canada. Consequently, understanding the hydrological cycle within these watersheds is critical for modeling the effects of climate change on water resources in western Canada and for developing informed water management strategies. Terminal moraines represent a significant hydrological response unit within many alpine watersheds in western Canada. Recent studies suggest that these features may provide sites for water storage. The preliminary results of a geophysical survey of a terminal moraine exhibiting geomorphological characteristics suggesting an ice-core will be presented. It is hypothesized that bedrock topography and the presence of ice creates barriers and channels groudwater flow. The focus of the survey was to delineate the hydrologically significant features within the moraine using electrical resistivity imaging (ERI), seismic refraction, and ground penetrating radar (GPR). Buried ice was easily detected using ERI due to high resistivity of over 1 MOhm-m. However, it was not as extensive as expected. Seismic refraction proved to be most useful in detecting the underlying bedrock. GPR images showed many reflection fragments but were noisy and difficult to interpret. Regions of relatively high electrical conductivity suggest some degree of channelization of groundwater in the vicinity of a tarn.

  2. Unified Geophysical Cloud Platform (UGCP) for Seismic Monitoring and other Geophysical Applications. (United States)

    Synytsky, R.; Starovoit, Y. O.; Henadiy, S.; Lobzakov, V.; Kolesnikov, L.


    We present Unified Geophysical Cloud Platform (UGCP) or UniGeoCloud as an innovative approach for geophysical data processing in the Cloud environment with the ability to run any type of data processing software in isolated environment within the single Cloud platform. We've developed a simple and quick method of several open-source widely known software seismic packages (SeisComp3, Earthworm, Geotool, MSNoise) installation which does not require knowledge of system administration, configuration, OS compatibility issues etc. and other often annoying details preventing time wasting for system configuration work. Installation process is simplified as "mouse click" on selected software package from the Cloud market place. The main objective of the developed capability was the software tools conception with which users are able to design and install quickly their own highly reliable and highly available virtual IT-infrastructure for the organization of seismic (and in future other geophysical) data processing for either research or monitoring purposes. These tools provide access to any seismic station data available in open IP configuration from the different networks affiliated with different Institutions and Organizations. It allows also setting up your own network as you desire by selecting either regionally deployed stations or the worldwide global network based on stations selection form the global map. The processing software and products and research results could be easily monitored from everywhere using variety of user's devices form desk top computers to IT gadgets. Currents efforts of the development team are directed to achieve Scalability, Reliability and Sustainability (SRS) of proposed solutions allowing any user to run their applications with the confidence of no data loss and no failure of the monitoring or research software components. The system is suitable for quick rollout of NDC-in-Box software package developed for State Signatories and aimed for

  3. The University of Texas Institute for Geophysics Marine Geology and Geophysics Field Course (United States)

    Duncan, D.; Davis, M. B.; Goff, J. A.; Gulick, S. P. S.; McIntosh, K. D.; Saustrup, S., Sr.


    The University of Texas Institute for Geophysics, part of the Jackson School of Geosciences, annually offers a three-week marine geology and geophysics field course during the spring-summer intersession. The course provides hands-on instruction and training for graduate and upper-level undergraduate students in high-resolution seismic reflection, CHIRP sub-bottom profiling, multibeam bathymetry, sidescan sonar, several types of sediment coring, grab sampling, and the sedimentology of resulting seabed samples. Students participate in an initial three days of classroom instruction designed to communicate geological context of the field area along with theoretical and technical background on each field method. The class then travels to the Gulf Coast for a week of at-sea field work. Our field sites at Port Aransas, and Galveston, TX, and Grand Isle, LA, provide ideal locations for students to investigate coastal processes of the Gulf Coast and continental shelf through application of geophysical techniques in an exploratory mode. At sea, students assist with survey design and instrumentation set up while learning about acquisition parameters, data quality control, trouble-shooting, and safe instrument deployment and retrieval. In teams of four, students work in onshore field labs preparing sediment samples for particle size analysis and data processing. During the course's final week, teams return to the classroom where they integrate, interpret, and visualize data in a final project using industry-standard software such as Echos, Landmark, Caris, and Fledermaus. The course concludes with a series of final presentations and discussions in which students examine geologic history and/or sedimentary processes represented by the Gulf Coast continental shelf with academic and industry supporters. Students report a greater understanding of marine geology and geophysics through the course's intensive, hands-on, team approach and low instructor to student ratio (sixteen

  4. A portable marine geophysical data access and management system

    Digital Repository Service at National Institute of Oceanography (India)

    Kunte, P.D.; Narvekar, P.

    data and includes different marine geophysical parameters like bathymetry (corrected depths), magnetic (total magnetic field and magnetic anomaly) and gravity (observed gravity, Eotvos correction, free-air, Bouger anomalies, etc.). For the purpose...

  5. BGP Better Positioned to Compete with Geophysical Giants Worldwide

    Institute of Scientific and Technical Information of China (English)


    @@ Bureau of Geophysical Prospecting (GGP), a subsidiary under CNPC, has seen satisfactory results in development of international exploration market in the first three quarters of this year with the success rate of international bidding reaching 61 percent.

  6. Common interests bind AGU and geophysical groups around the globe (United States)

    McEntee, Christine


    In continuation of our work to strengthen alliances with key organizations in the Earth and space science community, AGU president Michael McPhaden, president-elect Carol Finn, and I held a series of meetings with leaders from other science societies during the 2011 Fall Meeting. Over the course of 2 days we met with leaders from the Geophysical Society of America, European Geosciences Union, Japan Geosciences Union, Ethiopian Geophysical Union, Asia Oceania Geosciences Society, Chinese Geophysical Society, and Asociación Latinoamericana de Geofísica Espacial. This gave us a valued opportunity to discuss the common interests and challenges we all face and to learn from each other's experience. The meetings allowed AGU to strengthen existing cooperative agreements and reach new levels of understanding between us and other societies. Additionally, we met with representatives from the Korean Ocean Research and Development Institute to discuss their intention to establish a geophysical union modeled after AGU.

  7. Solar Geophysical Data (SGD) Reports (1955-2009) (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Solar-Geophysical Data (SGD) reports were a comprehensive compilation of many different kinds of observational data of the sun's activity and its effects on the...

  8. Geophysics applications in critical zone science: emerging topics. (United States)

    Pachepsky, Y. A.; Martinez, G.; Guber, A.; Walthall, C. L.; Vereecken, H.


    Geophysical studies have resulted in remarkable advances in characterization of critical zone. The geophysics applications uncover the relationships between structure and function in subsurface as they seek to define subsurface structural units with individual properties of retention and transmission of water, energy, solutes, electrical charge, etc. Several focal points of the research have emerged as the knowledge base of the critical zone geophysics grows. Time-lapse or multiple geophysical surveys admittedly improve the subsurface characterization. One of intriguing possibilities here is to use the temporal variation in geophysical parameters among time-lapse surveys directly to model spatial variation in soil properties affecting soil-water contents. Because critical phenomena causing erratic routing have been recently discovered in hillslope subsurface flow networks, it remains to be seen whether the time-lapse imagery depicts the same flow network if weather conditions are seemingly similar. High-frequency network observations usually reveal the temporal stability patterns in soil variables, including water contents, CO2 fluxes, etc. It becomes clear that these patterns can be described with spatiotemporal geostatistics models, and the opportunity arises to infer the spatial correlation structure of soil parameters from temporal variations of soil dynamic variables. There are indications that the spatial correlation structures of the geophysical parameters and soil/plant variables can be similar even though the correlations between these parameters are low. This may open additional avenues for mapping sparsely measured soil and plant variables. Fallacies of scale in geophysical depicting subsurface structural units and patterns are far from being understood. Soil state variables affect geophysical retrieval in nonlinear ways, and therefore scale effects in retrievals are warranted. For this reason, the strength and type of dependencies between geophysical

  9. Development of Geophysical Ideas and Institutions in Ottoman Empire (United States)

    Ozcep, Ferhat; Ozcep, Tazegul


    In Anatolia, the history of geophysical sciences may go back to antiquity (600 BC), namely the period when Thales lived in Magnesia (Asia Minor). In the modern sense, geophysics started with geomagnetic works in the 1600s. The period between 1600 and 1800 includes the measurement of magnetic declination, inclination and magnetic field strength. Before these years, there is a little information, such as how to use a compass, in the Kitab-i Bahriye (the Book of Navigation) of Piri Reis, who is one of the most important mariners of the Ottoman Empire. However, this may not mean that magnetic declination was generally understood. The first scientific book relating to geophysics is the book Fuyuzat-i Miknatissiye that was translated by Ibrahim Müteferrika and printed in 1731. The subject of this book is earth's magnetism. There is also information concerning geophysics in the book Cihannuma (Universal Geography) that was written by Katip Celebi and in the book Marifetname written by Ibrahim Hakki Erzurumlu, but these books are only partly geophysical books. In Istanbul the year 1868 is one of the most important for geophysical sciences because an observatory called Rasathane-i Amire was installed in the Pera region of this city. At this observatory the first systematic geophysical observations such as meteorological, seismological and even gravimetrical were made. There have been meteorological records in Anatolia since 1839. These are records of atmospheric temperature, pressure and humidity. In the Ottoman Empire, the science of geophysics is considered as one of the natural sciences along with astronomy, mineralogy, geology, etc., and these sciences are included as a part of physics and chemistry.

  10. Notes on the history of geophysics in the Ottoman Empire (United States)

    Ozcep, F.; Ozcep, T.


    In Anatolia, the history of geophysical sciences may go back to antiquity (600 BC), namely the period when Thales lived in Magnesia (Asia Minor). In the modern sense, geophysics started with geomagnetic works in the 1600s. The period between 1600 and 1800 includes the measurement of magnetic declination, inclination and magnetic field strength. Before these years, there is a little information, such as how to use a compass, in the Kitab-i Bahriye (the Book of Navigation) of Piri Reis, who is one of the most important mariners of the Ottoman Empire. However, this may not mean that magnetic declination was generally understood. The first scientific book relating to geophysics is the book Fuyuzat-i Miknatissiye that was translated by Ibrahim Müteferrika and printed in 1731. The subject of this book is earth's magnetism. There is also information concerning geophysics in the book Cihannuma (Universal Geography) that was written by Katip Celebi and in the book Marifetname written by Ibrahim Hakki Erzurumlu, but these books are only partly geophysical books. In Istanbul the year 1868 is one of the most important for geophysical sciences because an observatory called Rasathane-i Amire was installed in the Pera region of this city. At this observatory the first systematic geophysical observations such as meteorological, seismological and even gravimetrical were made. There have been meteorological records in Anatolia since 1839. These are records of atmospheric temperature, pressure and humidity. In the Ottoman Empire, the science of geophysics is considered as one of the natural sciences along with astronomy, mineralogy, geology, etc., and these sciences are included as a part of physics and chemistry.

  11. Quantitative geophysical log interpretation for rock mass characterisation

    Energy Technology Data Exchange (ETDEWEB)

    Peter Hatherly; Renate Sliwa; Roland Turner; Terry Medhurst


    Geophysical borehole logging is routinely employed as part of exploration drilling in open pit and underground mining operations. Analysis of results is often empirical or based on theoretical considerations that need not relate to the actual properties of the rocks under consideration. The objectives of this project are to develop techniques for quantitative geophysical log interpretation techniques to enable: better estimation of coal and rock properties such as strength and permeability; better lithological interpretation and strata correlation between boreholes; a rock mass rating scheme for mine design purposes which is based on geophysical logging. This study has placed the techniques for quantitative geophysical log assessment on a firm footing. The authors have demonstrated an approach for log assessment that can be routinely applied. Many of the mineralogical and physical rock properties that impact on the assessments have been investigated and discussed. They have also demonstrated the benefits of quantitative geophysical log assessment. The major recommendation made is that geologists and engineers in the coal mining industry take the time to study this report and begin to put the approach described into practice. The collective understanding that this experience will provide can only help fuel the drive to take the benefits of geophysical logging to greater levels.

  12. HydroImage: A New Software for HydroGeophysical and BioGeophysical Data Integration (United States)

    Suribhatla, R. M.; Mok, C. M.; Kaback, D.; Chen, J.; Hubbard, S. S.


    Hydrogeophysical and biogeophysical data integration have recently emerged as cost-effective and rapid techniques for improving subsurface characterization and monitoring. In a Bayesian framework for integration, borehole based data provide prior distribution and geophysical information serve as data to update the prior through likelihood functions obtained from petrophysical models between borehole and cross-well data. We present the application of a Windows-based software called HydroImage that uses this Bayesian framework for data integration and visualization. HydroImage can be used for geostatistical estimation, geophysical tomographic inversion, petrophysical model development, and Bayesian integration. We demonstrate HydroImage using three different field datasets to estimate different subsurface states or parameters. The first example combines wellbore flowmeter test data and crosshole seismic and ground penetrating radar (GPR) data to estimate hydraulic conductivity at the DOE Bacterial Transport Site in Oyster, Virginia. The second example focuses on using time-lapse radar data to estimate moisture content dynamics associated with a desiccation test performed to remediate the deep vadose zone in Hanford, Washington. The third example demonstrates the use of spectral induced polarization data to estimate the spatial and temporal distribution of geochemical parameters that are indicative of the redox state of a contaminated aquifer.

  13. Quality control for quantitative geophysical logging

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Kyu; Hwang, Se Ho; Hwang, Hak Soo; Park, In Hwa [Korea Institute of Geology Mining and Materials, Taejon (Korea)


    Despite the great availability of geophysical data obtained from boreholes, the interpretation is subject to significant uncertainties. More accurate data with less statistical uncertainties should require an employment of more quantitative techniques in log acquisition and interpretation technique. The long-term objective of this project is the development of techniques in both quality control of log measurement and the quantitative interpretation. In the first year, the goals of the project will include establishing the procedure of log acquisition using various tests, analysing the effect of logging velocity change on the logging data, examining the repeatability and reproducibility, analyzing of filtering effect on the log measurements, and finally the zonation and the correlation of single-and inter-well log data. For the establishment of logging procedure, we have tested the multiple factors affecting the accuracy in depth. The factors are divided into two parts: human and mechanical. These factors include the zero setting of depth, the calculation of offset for the sonde, the stretching effect of cable, and measuring wheel accuracy. We conclude that the error in depth setting results primarily from human factor, and also in part from the stretching of cable. The statistical fluctuation of log measurements increases according to increasing the logging speed for the zone of lower natural gamma. Thus, the problem related with logging speed is a trifling matter in case of the application of resources exploration, the logging speed should run more slowly to reduce the statistical fluctuation of natural gamma with lithologic correlation in mind. The repeatability and reproducibility of logging measurements are tested. The results of repeatability test for the natural gamma sonde are qualitatively acceptable in the reproducibility test, the errors occurs in logging data between two operators and successive trials. We conclude that the errors result from the

  14. Unleashing Geophysics Data with Modern Formats and Services (United States)

    Ip, Alex; Brodie, Ross C.; Druken, Kelsey; Bastrakova, Irina; Evans, Ben; Kemp, Carina; Richardson, Murray; Trenham, Claire; Wang, Jingbo; Wyborn, Lesley


    Geoscience Australia (GA) is the national steward of large volumes of geophysical data extending over the entire Australasian region and spanning many decades. The volume and variety of data which must be managed, coupled with the increasing need to support machine-to-machine data access, mean that the old "click-and-ship" model delivering data as downloadable files for local analysis is rapidly becoming unviable - a "big data" problem not unique to geophysics. The Australian Government, through the Research Data Services (RDS) Project, recently funded the Australian National Computational Infrastructure (NCI) to organize a wide range of Earth Systems data from diverse collections including geoscience, geophysics, environment, climate, weather, and water resources onto a single High Performance Data (HPD) Node. This platform, which now contains over 10 petabytes of data, is called the National Environmental Research Data Interoperability Platform (NERDIP), and is designed to facilitate broad user access, maximise reuse, and enable integration. GA has contributed several hundred terabytes of geophysical data to the NERDIP. Historically, geophysical datasets have been stored in a range of formats, with metadata of varying quality and accessibility, and without standardised vocabularies. This has made it extremely difficult to aggregate original data from multiple surveys (particularly un-gridded geophysics point/line data) into standard formats suited to High Performance Computing (HPC) environments. To address this, it was decided to use the NERDIP-preferred Hierarchical Data Format (HDF) 5, which is a proven, standard, open, self-describing and high-performance format supported by extensive software tools, libraries and data services. The Network Common Data Form (NetCDF) 4 API facilitates the use of data in HDF5, whilst the NetCDF Climate & Forecasting conventions (NetCDF-CF) further constrain NetCDF4/HDF5 data so as to provide greater inherent interoperability

  15. Integrating Geophysics, Geology, and Hydrology for Enhanced Hydrogeological Modeling (United States)

    Auken, E.


    Geophysical measurements are important for providing information on the geological structure to hydrological models. Regional scale surveys, where several watersheds are mapped at the same time using helicopter borne transient electromagnetic, results in a geophysical model with a very high lateral and vertical resolution of the geological layers. However, there is a bottleneck when it comes to integrating the information from the geophysical models into the hydrological model. This transformation is difficult, because there is not a simple relationship between the hydraulic conductivity needed for the hydrological model and the electrical conductivity measured by the geophysics. In 2012 the Danish Council for Strategic Research has funded a large research project focusing on the problem of integrating geophysical models into hydrological models. The project involves a number of Danish research institutions, consulting companies, a water supply company, as well as foreign partners, USGS (USA), TNO (Holland) and CSIRO (Australia). In the project we will: 1. Use statistical methods to describe the spatial correlation between the geophysical and the lithological/hydrological data; 2. Develop semi-automatic or automatic methods for transforming spatially sampled geophysical data into geological- and/or groundwater-model parameter fields; 3. Develop an inversion method for large-scale geophysical surveys in which the model space is concordant with the hydrological model space 4. Demonstrate the benefits of spatially distributed geophysical data for informing and updating groundwater models and increasing the predictive power of management scenarios. 5. Develop a new receiver system for Magnetic Resonance Sounding data and further enhance the resolution capability of data from the SkyTEM system. 6. In test areas in Denmark, Holland, USA and Australia we will use data from existing airborne geophysical data, hydrological and geological data and also collect new airborne

  16. The University of Texas Institute for Geophysics Marine Geology and Geophysics Field Course (United States)

    Davis, M. B.; Gulick, S. P.; Allison, M. A.; Goff, J. A.; Duncan, D. D.; Saustrup, S.


    The University of Texas Institute for Geophysics, part of the Jackson School of Geosciences, annually offers an intensive three-week marine geology and geophysics field course during the spring-summer intersession. Now in year five, the course provides hands-on instruction and training for graduate and upper-level undergraduate students in data acquisition, processing, interpretation, and visualization. Techniques covered include high-resolution seismic reflection, CHIRP sub-bottom profiling, multibeam bathymetry, sidescan sonar, several types of sediment coring, grab sampling, and the sedimentology of resulting seabed samples (e.g., core description, grain size analysis, x-radiography, etc.). Students seek to understand coastal and sedimentary processes of the Gulf Coast and continental shelf through application of these techniques in an exploratory mode. Students participate in an initial three days of classroom instruction designed to communicate geological context of the field area (which changes each year) along with theoretical and technical background on each field method. The class then travels to the Gulf Coast for a week of at-sea field work. In the field, students rotate between two small research vessels: one vessel, the 22' aluminum-hulled R/V Lake Itasca, owned and operated by UTIG, is used principally for multibeam bathymetry, sidescan sonar, and sediment sampling; the other, NOAA's R/V Manta or the R/V Acadiana, operated by the Louisiana Universities Marine Consortium, is used primarily for high-resolution seismic reflection, CHIRP sub-bottom profiling, multibeam bathymetry, gravity coring, and vibracoring. While at sea, students assist with survey design, learn instrumentation set up, acquisition parameters, data quality control, and safe instrument deployment and retrieval. In teams of three, students work in onshore field labs preparing sediment samples for particle size analysis and initial data processing. During the course's final week, teams

  17. PREFACE: Padjadjaran Earth Dialogues: International Symposium on Geophysical Issues, PEDISGI (United States)

    Rosandi, Y.; Urbassek, H. M.; Yamanaka, H.


    This issue of IOP Conference Series: Earth and Environmental Science contains selected papers presented at the Padjadjaran Earth Dialogues: International Symposium on Geophysical Issues, PEDISGI. The meeting was held from June 8 to 10, 2015, at the Bale-Sawala of Universitas Padjadjaran in Jatinangor, Indonesia. The PEDISGI is a symposium to accommodate communication between researchers, in particular geophysicists and related scientists, and to enable sharing of knowledge and research findings concerning local and global geophysical issues. The symposium was attended by 126 participants and 64 contributors from Indonesian universities and the neighbouring countries in four categories, viz. Theoretical and Computational Geophysics, Environmental Geophysics, Geophysical Explorations, and Geophysical Instrumentations and Methods. The symposium was accompanied by a dialog, discussing a chosen topic regarding environmental and geological problems of relevance for the Indonesian archipelago and the surrounding regions. For this first event the topic was ''The formation of Bandung-Basin between myths and facts: Exemplary cultural, geological and geophysical study on the evolution of the earth surface'', presented by invited speakers and local experts. This activity was aimed at extending our knowledge on this particular subject, which may have global impact. This topic was augmented by theoretical background lectures on the earth's surface formation, presented by the invited speakers of the symposium. The meeting would not have been successful without the assistance of the local organizing committee. We want to specially thank Irwan A. Dharmawan for managing the programme, Anggie Susilawati and Mia U. Hasanah for the conference administration, and Dini Fitriani for financial management. We also thank the National Geographic Indonesia for its support via the Business to Business Collaboration Program. The conference photograph can be viewed in the PDF.

  18. Erosion of a model geophysical fluid (United States)

    Luu, Li-Hua; Philippe, Pierre; Chambon, Guillaume


    A specificity of natural flows such as debris flows, landslides or snow avalanches is that, mostly, the material forming the static bed has mechanical properties similar to those of the flowing material (mud/mud, snow/snow). To explore the bed erosion phenomenon induced by such geophysical flows, we consider the geomaterial as a continuum by performing experiments in laboratory on a model fluid that can behaves as a solid or as a liquid, depending on the conditions. Indeed, we propose an experimental study where a yield-stress fluid is implemented to model both the eroding flow and the eroded bed. Our approach is to capture the process of erosion in terms of solid-liquid transition. The studied hydrodynamics consists of a pipe-flow disturbed by the presence of an obstacle. We use a polymer micro-gel Carbopol that exhibits a Hershel-Bulkley (HB) rheology. By taking advantage of the fluid transparency, the flow is monitoring by Particle Image Velocimetry (PIV) internal visualization technique. Upstream of the obstacle, a solid-liquid-like interface between a flow zone and a dead zone appears in the fluid. In this study, we aim to investigate the dominant physical mechanism underlying the formation of the static domain, by combining the rheological characterization of the yield-stress fluid (using a rheometer), with the observation of the morphological evolution of the system substratum / flow and the local measurement of related hydrodynamic parameters. Our first result shows that the flow above the dead zone behaves as a classical plug flow, whose velocity profile can successfully be described by a Hagen-Poiseuille equation including a HB rheology, but except in a thin zone (compared to the whole flow zone) at the close vicinity of the solid-liquid interface. Thanks to a high PIV measurement resolution, we then properly examine the typical feature lying at the tail of the velocity profile. The numerical derivation of the profile shows that the shear rate in this

  19. The Unconventional Revolution in Exploration Geophysics (United States)

    House, N. J.


    how to develop them. MicroSeismic mapping has made completion more efficient and safe. While the geophysics involved in unconventional resource development may not be the first thought in the board room, thier data has become an accepted early development tool of successful oil and gas companies.

  20. Experiment Prevails Over Observation in Geophysical Science (United States)

    Galvin, C.


    , but during that career, Popper painted himself into a philosophical corner by disallowing observation as contaminated with psychological problems and by advocating an aggressive deductive application of crucial experiments. As a result, in a 1974 review of what he really meant, Popper at least twice remembered ""Eddington's famous eclipse experiments of 1919."" The Web in 2006 lists NASA and NOAA acronyms for recent and ongoing research programs with geophysical content. A significant subset of these acronyms end in E or in EX, meaning experiment, but the scientific work done in the associated programs is actually observation. Experiment stands for actual Observation. This reversal in meaning recognizes the higher status of Experiment compared to Observation in the competition for government grants.

  1. Ceres' Geophysical Evolution Inferred from Dawn Data (United States)

    Castillo-Rogez, Julie; Bowling, Timothy; Ermakov, Anton I.; Fu, Roger; Park, Ryan; Raymond, Carol; De Sanctis, Maria Cristina; Ammannito, Eleonora; Ruesch, Ottaviano; Prettyman, Thomas H.; Y McSween, Harry; Toplis, Michael J.; Russell, Christopher T.; Dawn Team


    If Ceres formed as an ice-rich body, as suggested by its low density and the detection of ammoniated phyllosilicates [1], then it should have differentiated an ice-dominated shell, analogous to large icy satellites [2]. Instead, Dawn observations revealed an enrichment of Ceres' shell in strong materials, either a rocky component and/or salts and gas hydrates [3, 4, 5, 6]. We have explored several scenarios for the emplacement of Ceres' surface. Endogenic processes cannot account for its overall homogeneity. Instead we suggest that Ceres differentiated an icy shell upon freezing of its early ocean that was removed as a consequence of frequent exposure by impacting after the dwarf planet migrated from a cold accretional environment to the warmer outer main belt (or when the solar nebula dissipated, if Ceres formed in situ). This scenario implies that Ceres' current surface represents the interface between the original ice shell and the top of the frozen ocean, a region that is extremely rich chemistry-wise, as illustrated by the mineralogical observations returned by Dawn [7]. Thermal modeling shows that the shell could remain warm over the long term and offer a setting for the generation of brines that may be responsible for the emplacement of Ahuna Mons [8] and Occator's bright spots [7] on an otherwise homogeneous surface [9]. An important implication is that Ceres' surface offers an analog for better understanding the deep interior and chemical evolution of large ice-rich bodies.References: [1] De Sanctis et al., Nature, 2015; [2] McCord and Sotin, Journal of Geophysical Research, 2005; [3] Park et al., Nature, 2016 (in press); [4] Hiesinger et al., Science (submitted); [5] Bland et al., Nature Geoscience, 2016 (in press); [6] Fu et al., AGU Fall Meeting, 2015 [7] De Sanctis et al., Nature, 2016 (in press); [8] Ruesch et al., Science, in revision; [9] Ammannito et al., Science, 2016 (accepted).Acknowledgements: Part of this work is being carried out at the Jet

  2. Field Geophysics at SAGE: Strategies for Effective Education (United States)

    Braile, L. W.; Baldridge, W. S.; Jiracek, G. R.; Biehler, S.; Ferguson, J. F.; Pellerin, L.; McPhee, D. K.; Bedrosian, P. A.; Snelson, C. M.; Hasterok, D. P.


    SAGE (Summer of Applied Geophysical Experience) is a unique program of education and research in geophysical field methods for undergraduate and graduate students from any university and for professionals. The core program is held for 4 weeks each summer in New Mexico and for an additional week in the following academic year in San Diego for U.S. undergraduates supported by the NSF Research Experience for Undergraduates (REU) program. Since SAGE was initiated in 1983, 730 students have participated in the program. NSF REU funding for SAGE began in 1990 and 319 REU students have completed SAGE through 2011. The primary objectives of SAGE are to teach the major geophysical exploration methods (seismic, gravity, magnetics, electromagnetics); apply these methods to the solution of specific problems (environmental, archaeological, hydrologic, geologic structure and stratigraphy); gain experience in processing, modeling and interpretation of geophysical data; and integrate the geophysical models and interpretations with geology. Additional objectives of SAGE include conducting research on the Rio Grande rift of northern New Mexico, and providing information on geophysics careers and professional development experiences to SAGE participants. Successful education, field and research strategies that we have implemented over the years include: 1. learn by doing; 2. mix lecture/discussion, field work, data processing and analysis, modeling and interpretation, and presentation of results; 3. a two-tier team approach - method/technique oriented teams and interpretation/integration teams (where each team includes persons representing different methods), provides focus, in-depth study, opportunity for innovation, and promotes teamwork and a multi-disciplinary approach; 4. emphasis on presentations/reports - each team (and all team members) make presentation, each student completes a written report; 5. experiment design discussion - students help design field program and consider

  3. The teaching of geophysics in Latin America: An updated assessment (United States)

    Valencio, Daniel A.; Schneider, Otto

    The situation of geophysics in developing countries has been the subject of discussions and analysis by diverse international organizations. It was also discussed in some articles in Eos [e.g., Lomnitz, 1982; Urrutia Fucugauchi, 1982; Bolt, 1982]. We have been requested to contribute a current evaluation of the problem, with particular reference to geophysical education in Latin America.In the following report on specialized training of geophysicists in Latin American countries, we consider the “exact earth sciences” in the broader sense, i.e., the mathematical and physical (and, to a certain extent, chemical) aspects of the planet earth as a whole, including its fluid portions, as opposed to the more restricted concept of just solid earth geophysics. In other words, our inquiry follows the scope of both AGU and the International Union of Geodesy and Geophysics (IUGG), so geodesy, although not explicitly covered, will still be mentioned occasionally. We will also consider the applied branches, especially exploration geophysics, since these areas furnish powerful motivation for fostering our sciences, both in the governmental circles of developing countries and among the young people looking for a promising professional future.

  4. Exploring the geophysical signatures of microbial processes in the earth

    Energy Technology Data Exchange (ETDEWEB)

    Slater, L.; Atekwana, E.; Brantley, S.; Gorby, Y.; Hubbard, S. S.; Knight, R.; Morgan, D.; Revil, A.; Rossbach, S.; Yee, N.


    AGU Chapman Conference on Biogeophysics; Portland, Maine, 13-16 October 2008; Geophysical methods have the potential to detect and characterize microbial growth and activity in subsurface environments over different spatial and temporal scales. Recognition of this potential has resulted in the development of a new subdiscipline in geophysics called 'biogeophysics,' a rapidly evolving Earth science discipline that integrates environmental microbiology, geomicrobiology, biogeochemistry, and geophysics to investigate interactions that occur between the biosphere (microorganisms and their products) and the geosphere. Biogeophysics research performed over the past decade has confirmed the potential for geophysical techniques to detect microbes, microbial growth/biofilm formation, and microbe-mineral interactions. The unique characteristics of geophysical data sets (e.g., noninvasive data acquisition, spatially continuous properties retrieved) present opportunities to explore geomicrobial processes outside of the laboratory, at unique spatial scales unachievable with microbiological techniques, and possibly in remote environments such as the deep ocean. In response to this opportunity, AGU hosted a Chapman Conference with a mission to bring together geophysicists, biophysicists, geochemists, geomicrobiologists, and environmental microbiologists conducting multidisciplinary research with potential impact on biogeophysics in order to define the current state of the science, identify the critical questions facing the community, and generate a road map for establishing biogeophysics as a critical subdiscipline of Earth science research. For more information on the conference, see

  5. Exploring the geophysical signatures of microbial processes in the earth

    Energy Technology Data Exchange (ETDEWEB)

    Slater, L.; Atekwana, E.; Brantley, S.; Gorby, Y.; Hubbard, S. S.; Knight, R.; Morgan, D.; Revil, A.; Rossbach, S.; Yee, N.


    AGU Chapman Conference on Biogeophysics; Portland, Maine, 13-16 October 2008; Geophysical methods have the potential to detect and characterize microbial growth and activity in subsurface environments over different spatial and temporal scales. Recognition of this potential has resulted in the development of a new subdiscipline in geophysics called 'biogeophysics,' a rapidly evolving Earth science discipline that integrates environmental microbiology, geomicrobiology, biogeochemistry, and geophysics to investigate interactions that occur between the biosphere (microorganisms and their products) and the geosphere. Biogeophysics research performed over the past decade has confirmed the potential for geophysical techniques to detect microbes, microbial growth/biofilm formation, and microbe-mineral interactions. The unique characteristics of geophysical data sets (e.g., noninvasive data acquisition, spatially continuous properties retrieved) present opportunities to explore geomicrobial processes outside of the laboratory, at unique spatial scales unachievable with microbiological techniques, and possibly in remote environments such as the deep ocean. In response to this opportunity, AGU hosted a Chapman Conference with a mission to bring together geophysicists, biophysicists, geochemists, geomicrobiologists, and environmental microbiologists conducting multidisciplinary research with potential impact on biogeophysics in order to define the current state of the science, identify the critical questions facing the community, and generate a road map for establishing biogeophysics as a critical subdiscipline of Earth science research. For more information on the conference, see

  6. An Integral, Multidisciplinary and Global Geophysical Field Experience for Undergraduates (United States)

    Vázquez, O.; Carrillo, D. J.; Pérez-Campos, X.


    The udergraduate program of Geophysical Engineering at the School of Engineering, of the Univesidad Nacional Autónoma de México (UNAM), went through an update process that concluded in 2006. As part of the program, the student takes three geophysical prospecting courses (gravity and magnetics, electric, electromagnetics, and seismic methods). The older program required a three-week field experience for each course in order to gradute. The new program considers only one extended field experience. This work stresses the importance of international academic exchange, where undergraduate students could participate, such as the Summer of Applied Geophysical Experience (SAGE), and interaction with research programs, such as the MesoAmerican Subduction Experiment (MASE). Also, we propose a scheeme for this activity based on those examples; both of them have in common real geophysical problems, from which students could benefit. Our proposal covers academic and logistic aspects to be taken into account, enhancing the relevance of interaction between other academic institutions, industry, and UNAM, in order to obtain a broader view of geophysics.

  7. Geophysical methods for locating abandoned wells (United States)

    Frischknecht, Frank C.; Muth, L.; Grette, R.; Buckley, T.; Kornegay, B.


    A preliminary study of the feasibility of using geophysical exploration methods to locate abandoned wells containing steel casing indicated that magnetic methods promise to be effective and that some electrical techniques might be useful as auxiliary methods. Ground magnetic measurements made in the vicinity of several known cased wells yielded total field anomalies with peak values ranging from about 1,500 to 6,000 gammas. The anomalies measured on the ground are very narrow and, considering noise due to other cultural and geologic sources, a line spacing on the order of 50 feet (15.2 m) would be necessary to locate all casings in the test area. The mathematical model used to represent a casing was a set of magnetic pole pairs. By use of a non-linear least squares curve fitting (inversion) program, model parameters which characterize each test casing were determined. The position and strength of the uppermost pole was usually well resolved. The parameters of lower poles were not as well resolved but it appears that the results are adequate for predicting the anomalies which would be observed at aircraft altitudes. Modeling based on the parameters determined from the ground data indicates that all of the test casings could be detected by airborne measurements made at heights of 150 to 200 feet (45.7-61.0 m) above the ground, provided lines spaced as closely as 330 feet (100 m) were used and provided noise due to other cultural and geologic sources is not very large. Given the noise levels of currently available equipment and assuming very low magnetic gradients due to geologic sources, the detection range for total field measurements is greater than that for measurements of the horizontal or vertical gradient of the total intensity. Electrical self-potential anomalies were found to be associated with most of the casings where measurements were made. However, the anomalies tend to be very narrow and, in several cases, they are comparable in magnitude to other small

  8. Geophysical Constraints on Sediment Dispersal Systems (United States)

    Johnstone, Elizabeth Anne Carruthers

    Geophysical and geological approaches were employed to understand sediment dispersal systems and their response to various forcing functions (i.e., sea level fluctuations, tectonic deformation, sediment supply, and climate change). Two end member marine environments were studied; one with high precipitation and sediment discharge (Gulf of Papua, Papua New Guinea) and the other with low precipitation and sediment discharge (Oceanside Littoral Cell). The high-sedimentation rate in the Gulf of Papua (GoP) yields high-fidelity records of Earth history. As part of the NSF Margins Source-to-Sink (S2S) program, we acquired CHIRP and core data across the GoP continental shelf that complemented onshore and offshore research in the region. CHIRP seismic data imaged three Holocene sedimentary lobes. The older Central lobe is downlapped by two younger lobes to the north and south. Sediment analysis showed that the older Central lobe has an elemental signature similar to the younger Northern lobe with both sourced from the Purari River watershed and lobe migration appears to be climatically controlled. The Southern lobe has elemental signatures more consistent with the Fly River watershed. Our results suggest the northern rivers began depositing sediments on the shelf during the Holocene sea level rise in the central region of the GoP and migrated abruptly north at ~2 kybp. Conversely, during the early Holocene transgression, sediments in the Fly drainage system were sequestered onshore infilling accommodation created in the large low-relief coastal plain during the sea level rise. Upon infilling the onshore accommodation, the Fly River delivered sediment to the ocean and formed the Southern lobe. Such differences in onshore storage capacity may introduce a lag between low-gradient rivers (Type I) with a large coastal plain versus high-gradient river systems (Type II) with small coastal plains. The second study site is in the sediment-starved Oceanside Littoral Cell (OCL) of

  9. Geophysical logging for groundwater investigations in Southern Thailand

    Directory of Open Access Journals (Sweden)

    Phongpiyah Klinmanee


    Full Text Available In Thailand the Department of Groundwater Resources is drilling to find vital aquifers. Sometimes groundwater formations cannot be identified clearly during drilling; therefore, geophysical logging was applied after drilling and before casing.The tool used here is measuring nine parameters in one run, natural gamma ray, spontaneous potential, single point resistance, normal resistivity (AM 8’’, 16’’, 32’’, and 64’’, mud temperature and resistivity. Cutting was used to support the geophysical interpretations. In many cases the groundwater bearing zones could be clearly identified. The combination of andthe possibility choosing from nine parameters measured provided the necessary data base to identify groundwater bearingzones in different environments. It has been demonstrated that in different wells different tools are favorable than others.Based on the conclusions of this study geophysical logging in groundwater exploration is recommended as a normalstandard technique that should be applied in every new well drilled.

  10. Joint geophysical data analysis for geothermal energy exploration (United States)

    Wamalwa, Antony Munika

    Geophysical data modelling often yields non-unique results and hence the interpretation of the resulting models in terms of underlying geological units and structures is not a straightforward problem. However, if multiple datasets are available for a region of study, an integrated interpretation of models for each of the geophysical data may results to a more realistic geological description. This study not only demonstrates the strength of resistivity analysis for geothermal fields but also the gains from interpreting resistivity data together with other geophysical data such as gravity and seismic data. Various geothermal fields have been examined in this study which includes Silali and Menengai geothermal fields in Kenya and Coso geothermal field in California, USA.

  11. Spatial analysis of oil reservoirs using DFA of geophysical data

    Directory of Open Access Journals (Sweden)

    R. A. Ribeiro


    Full Text Available We employ Detrended Fluctuation Analysis (DFA technique to investigate spatial properties of an oil reservoir. This reservoir is situated at Bacia de Namorados, RJ, Brazil. The data corresponds to well logs of the following geophysical quantities: sonic, gamma ray, density, porosity and electrical resistivity, measured in 56 wells. We tested the hypothesis of constructing spatial models using data from fluctuation analysis over well logs. To verify this hypothesis we compare the matrix of distances among well logs with the differences among DFA-exponents of geophysical quantities using spatial correlation function and Mantel test. Our data analysis suggests that sonic profile is a good candidate to represent spatial structures. Then, we apply the clustering analysis technique to the sonic profile to identify these spatial patterns. In addition we use the Mantel test to search for correlation among DFA-exponents of geophysical quantities.

  12. Comparing plume characteristics inferred from cross-borehole geophysical data

    DEFF Research Database (Denmark)

    Haarder, Eline Bojsen; Binley, Andrew; Zibar, Majken Caroline Looms


    Three cross-borehole geophysical methods are used to image water migration in the unsaturated zone after a point injection of water. Mass balance calculations and moment analysis highlight the differences in resolution between the methods. The choice of moisture content threshold value significan......Three cross-borehole geophysical methods are used to image water migration in the unsaturated zone after a point injection of water. Mass balance calculations and moment analysis highlight the differences in resolution between the methods. The choice of moisture content threshold value...... significantly influences results of the moment analysis. We compare results of three cross-borehole geophysical approaches for imaging tracer migration arising from a point injection of water in the unsaturated zone: three-dimensional electrical resistivity tomography (ERT), two-dimensional ground...

  13. Learning about hydrothermal volcanic activity by modeling induced geophysical changes (United States)

    Currenti, Gilda M.; Napoli, Rosalba


    Motivated by ongoing efforts to understand the nature and the energy potential of geothermal resources, we devise a coupled numerical model (hydrological, thermal, mechanical), which may help in the characterization and monitoring of hydrothermal systems through computational experiments. Hydrothermal areas in volcanic regions arise from a unique combination of geological and hydrological features which regulate the movement of fluids in the vicinity of magmatic sources capable of generating large quantities of steam and hot water. Numerical simulations help in understanding and characterizing rock-fluid interaction processes and the geophysical observations associated with them. Our aim is the quantification of the response of different geophysical observables (i.e. deformation, gravity and magnetic field) to hydrothermal activity on the basis of a sound geological framework (e.g. distribution and pathways of the flows, the presence of fractured zones, caprock). A detailed comprehension and quantification of the evolution and dynamics of the geothermal systems and the definition of their internal state through a geophysical modeling approach are essential to identify the key parameters for which the geothermal system may fulfill the requirements to be exploited as a source of energy. For the sake of illustration only, the numerical computations are focused on a conceptual model of the hydrothermal system of Vulcano Island by simulating a generic 1-year unrest and estimating different geophysical changes. We solved (i) the mass and energy balance equations of flow in porous media for temperature, pressure and density changes, (ii) the elastostatic equation for the deformation field and (iii) the Poisson’s equations for gravity and magnetic potential fields. Under the model assumptions, a generic unrest of 1-year engenders on the ground surface low amplitude changes in the investigated geophysical observables, that are, however, above the accuracies of the modern

  14. Teaching Computational Geophysics Classes using Active Learning Techniques (United States)

    Keers, H.; Rondenay, S.; Harlap, Y.; Nordmo, I.


    We give an overview of our experience in teaching two computational geophysics classes at the undergraduate level. In particular we describe The first class is for most students the first programming class and assumes that the students have had an introductory course in geophysics. In this class the students are introduced to basic Matlab skills: use of variables, basic array and matrix definition and manipulation, basic statistics, 1D integration, plotting of lines and surfaces, making of .m files and basic debugging techniques. All of these concepts are applied to elementary but important concepts in earthquake and exploration geophysics (including epicentre location, computation of travel time curves for simple layered media plotting of 1D and 2D velocity models etc.). It is important to integrate the geophysics with the programming concepts: we found that this enhances students' understanding. Moreover, as this is a 3 year Bachelor program, and this class is taught in the 2nd semester, there is little time for a class that focusses on only programming. In the second class, which is optional and can be taken in the 4th or 6th semester, but often is also taken by Master students we extend the Matlab programming to include signal processing and ordinary and partial differential equations, again with emphasis on geophysics (such as ray tracing and solving the acoustic wave equation). This class also contains a project in which the students have to write a brief paper on a topic in computational geophysics, preferably with programming examples. When teaching these classes it was found that active learning techniques, in which the students actively participate in the class, either individually, in pairs or in groups, are indispensable. We give a brief overview of the various activities that we have developed when teaching theses classes.

  15. Compatible finite element spaces for geophysical fluid dynamics

    CERN Document Server

    Natale, Andrea


    Compatible finite elements provide a framework for preserving important structures in equations of geophysical fluid dynamics, and are becoming important in their use for building atmosphere and ocean models. We survey the application of compatible finite element spaces to geophysical fluid dynamics, including the application to the nonlinear rotating shallow water equations, and the three-dimensional compressible Euler equations. We summarise analytic results about dispersion relations and conservation properties, and present new results on approximation properties in three dimensions on the sphere, and on hydrostatic balance properties.

  16. Annals of the international geophysical year ionospheric drift observations

    CERN Document Server

    Rawer, K; Beloussov, V V; Beynon, W J G


    Annals of the International Geophysical Year, Volume 33: Results of Ionospheric Drift Observations describes the systematic changes in individual ionospheric observations during the International Geophysical Year (IGY). This book is composed of four chapters, and begins with a presentation of the general data on stations and the lists of publications concerning drift work during IGY/IGC. The next chapter contains the results obtained mainly by intercomparison of the time shift between fadings observed on three antenna separated by a distance of roughly a wavelength. These data are followed by

  17. 3D stochastic geophysical inversion for contact surface geometry (United States)

    Lelièvre, Peter; Farquharson, Colin; Bijani, Rodrigo


    Geologists' interpretations about the Earth typically involve distinct rock units with contacts (interfaces) between them. As such, 3D geological Earth models typically comprise wireframe contact surfaces of tessellated triangles or other polygonal planar facets. In contrast, standard minimum-structure geophysical inversions are performed on meshes of space-filling cells (typically prisms or tetrahedra) and recover smoothly varying physical property distributions that are inconsistent with typical geological interpretations. There are several approaches through which mesh-based geophysical inversion can help recover models with some of the desired characteristics. However, a more effective strategy is to consider a fundamentally different type of inversion that works directly with models that comprise surfaces representing contacts between rock units. We are researching such an approach, our goal being to perform geophysical forward and inverse modelling directly with 3D geological models of any complexity. Geological and geophysical models should be specified using the same parameterization such that they are, in essence, the same Earth model. We parameterize the wireframe contact surfaces in a 3D model as the coordinates of the nodes (facet vertices). The physical properties of each rock unit in a model remain fixed while the geophysical inversion controls the position of the contact surfaces via the control nodes, perturbing the surfaces as required to fit the geophysical data responses. This is essentially a "geometry inversion", which can be used to recover the unknown geometry of a target body or to investigate the viability of a proposed Earth model. We apply global optimization strategies to solve the inverse problem, including stochastic sampling to obtain statistical information regarding the likelihood of particular features in the model, helping to assess the viability of a proposed model. Jointly inverting multiple types of geophysical data is simple

  18. Geophysical and geochemical characterisation of groundwater resources in Western Zambia

    DEFF Research Database (Denmark)

    Chongo, Mkhuzo; Banda, Kawawa Eddy; Bauer-Gottwein, Peter

    both ground-based and airborne geophysical methods as well as extensive water quality sampling. The occurrence of saline groundwater follows a clear spatial pattern and appears to be related to the palaeo Lake Makgadikgadi, whose northernmost extension reached into the Machile area. Because the lake...... precipitation has formed limited freshwater reservoirs in a generally saline area, which need to be sustainably managed. We will present initial results from the geophysical and geochemical surveys conducted over the past few years. We will interpret these findings in terms of the geologic history of Southern...

  19. HMF-Geophysics: A Model for Collaborative Research in Hydrogeophysics (United States)

    Knight, R.; Crook, N.; Bales, R.; Moore, J.; Papanicolaou, T.; Welty, C.


    CUAHSI is developing, with the support of the NSF, a Hydrologic Measurement Facility (HMF). HMF-Geophysics is the near-surface geophysics module of HMF. Over the three years of the NSF grant (2005-08) we will determine, through broad community consultation, how best to utilize geophysical instrumentation and engage geophysical expertise in addressing key challenges in the hydrologic sciences. Our goal is to put in place the infrastructure needed to develop and maintain partnerships between the hydrologic and geophysical communities so that geophysical methods are used in a way that represents the state-of-the-science. Our current model consists of a central "node" that conducts feasibility studies to determine how/if geophysical methods could be of use in a hydrologic research project. In addition to the central node we have developed a system of affiliated nodes, individuals at 14 institutions who have committed to support HMF-Geophysics activities by offering equipment, software, and expertise. Once a feasibility study has shown the value of geophysics at a particular site, we match the hydrology PI with one of the nodes to develop the full-scale research project. We have conducted feasibility studies at 6 sites: Reynolds Creek Watershed, the H.J. Andrews Experimental Forest, and four WATERS test- beds, the latter are described below. The objective of the Baltimore test-bed is to quantify the urban water cycle, with an emphasis on groundwater, using the Gwynns Falls watershed as a pilot study area. Electrical resistivity imaging, ground penetrating radar, and seismic refraction were assessed as a means of determining depth to bedrock or to the water table within the riparian zone of urbanized streams. A regional time-lapse microgravity survey was conducted at the 200 sq- km watershed scale to infer the storage change in the underlying aquifers. Research in the Crown of the Continent test-bed in Montana is focused on understanding the interactions between the

  20. Hydro-biogeochemical Controls on Geophysical Signatures (Invited) (United States)

    Atekwana, E. A.


    Geophysical techniques such as seismic, magnetic and electrical techniques have historically played a major role in oil exploration. Their main use has been for delineation basin geometry, structures and hydrocarbon traps and for understanding the subsurface stratigraphy. Their use for investigating microbial processes has only recently been recognized over the last decade resulting in the development of biogeophysics as a frontier research area which bridges the fields of environmental microbiology, biogeochemistry, geomicrobiology. Recent biogeophysical studies have demonstrated the potential of geophysical technologies to (1) probe the presence of microbial cells and biofilms in subsurface geologic media, (2) investigate the interactions between microorganisms and subsurface geologic media, (3) assess biogeochemical transformations, biomineralization, and biogeochemical reaction rates, and (4) investigate the alteration of physical properties of subsurface geologic media induced by microorganisms. The unique properties of geophysical datasets (e.g. non-invasive data acquisition, spatially continuous properties retrieved) make them attractive for probing microbial processes affecting fate and transport of contaminants. This presentation will provide an updated understanding of major controls on geophysical signatures by highlighting some of the important advancements in biogeophysical studies at hydrocarbon contaminated environments. Important challenges that provide an opportunity for further research in this new field will also be examined.

  1. Hydrogeological-Geophysical Methods for Subsurface Site Characterization - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Rubin, Yoram


    The goal of this research project is to increase water savings and show better ecological control of natural vegetation by developing hydrogeological-geophysical methods for characterizing the permeability and content of water in soil. The ground penetrating radar (GPR) tool was developed and used as the surface geophysical method for monitoring water content. Initial results using the tool suggest that surface GPR is a viable technique for obtaining precision volumetric water content profile estimates, and that laboratory-derived petrophysical relationships could be applied to field-scale GPR data. A field-scale bacterial transport study was conducted within an uncontaminated sandy Pleistocene aquifer to evaluate the importance of heterogeneity in controlling the transport of bacteria. Geochemical, hydrological, geological, and geophysical data were collected to characterize the site prior to and after chemical and bacterial injection experiments. Study results shows that, even within the fairly uniform shallow marine deposits of the narrow channel focus area, heterogeneity existed that influenced the chemical tracer transport over lateral distances of a few meters and vertical distances of less than a half meter. The interpretation of data suggest that the incorporation of geophysical data with limited hydrological data may provide valuable information about the stratigraphy, log conductivity values, and the spatial correlation structure of log conductivity, which have traditionally been obtainable only by performing extensive and intrusive hydrological sampling.

  2. Geophysical investigations with TOPEX/Poseidon altimetry data (United States)

    Cazenave, Anny; Balmino, G.; Dominh, K.; Lago, B.; Rabinowicz, M.; Biancale, R.; Houry, S.; Okal, E. B.; Diament, M.; Parsons, B.


    In the proposed research, TOPEX/POSEIDON altimeter data will be used with Geosat and European Remote Sensing satellite (ERS-1) data to compute global, region, and local oceanic geoid surfaces. These observations will then be analyzed to conduct geophysical studies relative to the structure of the oceanic lithosphere and mantle.

  3. Imaging of Ground Ice with Surface-Based Geophysics (United States)


    transects; therefore, lengths were not the same for all transects. We flagged each transect every 10 m for fiducial markings to be used by the geophysics...July, Zurich, Switzerland , ed. M. Phillips, S. M. Springman, and L. U. Arenson, 2:1289–1294. Rotterdam, Netherlands: A.A. Balkema Publishers

  4. Geophysical Evaluation for Wadi Rayan Field, Western Desert, Egypt

    Directory of Open Access Journals (Sweden)

    Adel Othman


    There are two intervals of producing sandstone which not only vary from one well to another but also not deposited in some wells. For these reasons, it is important to integrate all available geological and geophysical data to come up with a model for ARG reservoir.

  5. Development of Geophysical Prospecting for Oil Onland in China

    Institute of Scientific and Technical Information of China (English)

    Lu Banggan


    @@ China is Developing Geopysical Market CNPC, as a state petroleum corporation onland oil industry,owns 260 seismic crews and 24non-seismic geophysical and geochemical crews. About one third of the seismic crews use 240 and more channel recorders,imported and home-made.

  6. Synchronization of Stochastic Two-Layer Geophysical Flows

    Institute of Scientific and Technical Information of China (English)

    HAN Yongqian


    In this paper, the two-layer quasigeostrophic flow model under stochastic wind forcing is considered. It is shown that when the layer depth or density difference across the layers tends to zero, the dynamics on both layers synchronizes to an averaged geophysical flow model.

  7. Addressing the difficulty of changing fields in geophysics (United States)

    Civilini, F.; Savage, M. K.


    Geophysics is a wonderfully diverse field of study, encompassing a variety of disciplines greatly different from one other. Even within the same discipline, various branches of study can have drastically different vocabulary and methodologies. The difficulty of breaking this "jargon" barrier is also an important reminder for scientists of how critical it is to clearly and concisely convey information. This presentation will focus on strategies that students can focus on to ease a transition between fields in geophysics. I believe that a student changing disciplines should proceed in the following steps: [1] Do a cursory literature review to find a review paper of the desired topic and work backwards through the details until a level of understanding or recognition is reached, [2] Obtain a clear physical understanding of the data and methods of the proposed study, and [3] Establish a support network through the research group or elsewhere which will recognize the areas in which the student is behind and offer remedies in a supportive and productive manner. These strategies are based on my own personal experience changing from music to geophysics in my undergrad and working on projects spanning various subdisciplines of geophysics during my Masters and PhD. It is worthwhile for research groups to spend the time to mentor students switching from other disciplines because those students will in time be able to observe the research in a different way than their peers, and easily adapt to changes of direction within the research.

  8. The Role of Geophysics in the New Global Tectonics (United States)

    Rudman, Albert J.


    Summarizes the developments in geophysics that have led to the concept of the new global tectonics, which attempts to explain such worldwide features as oceanic ridges and trenches, island arcs and young mountain chains, while it develops processes that cause earthquakes, volcanoes and major faulting. Evidence for the hypotheses of continental…

  9. Directory of research projects, 1991. Planetary geology and geophysics program (United States)

    Maxwell, Ted A. (Editor)


    Information is provided about currently funded scientific research within the Planetary Geology and Geophysics Program. The directory consists of the proposal summary sheet from each proposal funded by the program during fiscal year 1991. Information is provided on the research topic, principal investigator, institution, summary of research objectives, past accomplishments, and proposed investigators.

  10. Directory of research projects: Planetary geology and geophysics program (United States)

    Holt, Henry (Editor)


    Information about currently funded scientific research within the Planetary Geology and Geophysics Program is provided. The directory consists of the proposal summary sheet from each proposal funded under the program during Fiscal Year 1992. The sheets provide information about the research project, including title, principal investigator, institution, summary of research objectives, past accomplishments, and proposed new investigations.

  11. Geophysical Monitoring of Two types of Subsurface Injection (United States)

    Nano-scale particles of zero-valent iron (ZVI) were injected into the subsurface at the 100-D area of the DOE Hanford facility. The intent of this iron injection was to repair a gap in the existing in-situ redox manipulation barrier located at the site. A number of geophysical me...

  12. Evaluation of ground stiffness parameters using continuous surface wave geophysics

    DEFF Research Database (Denmark)

    Gordon, Anne; Foged, Niels


    -small-strain stiffness of the ground Gmax. Continuous surface wave geophysics offers a quick, non-intrusive and economical way of making such measurements. This paper reviews the continuous surface wave techniques and evaluates, in engineering terms, the applicability of the method to the site investigation industry....

  13. Geophysics of an Oceanic Ice Shell on Snowball Earth (United States)

    Gaidos, E. J.


    Kirschvink proposed Precambrian low-latitude glaciation could result in an albedo-driven catastrophic runaway to a "Snowball Earth" state in which pack ice up to 1 km thick covered the world ocean. The geophysical state of an ice crust on a Snowball Earth is examined.

  14. Helheim 2006: Integrated Geophysical Observations of Glacier Flow

    DEFF Research Database (Denmark)

    Nettles, M.; Ahlstrøm, A.; Elosegui, P.

    During the summer field season, 2006, we undertook a pilot geophysical experiment at Helheim Glacier, East Greenland, in which we deployed a network of GPS instruments on and around the glacier to measure the ice deformation field as a function of time. The experiment was motivated by the discovery...

  15. A physicist in the world of geophysics and space

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, J.A. [Univ. of Chicago, IL (United States)


    The author discusses his early work after WW II in the study of cosmic rays, and geophysical issues and space physics. His early work was on the proton primary cosmic ray spectrum, looking at neutron spectra. These studies were incorporated into the IGY work, and hence expanded. Experimental investigation of the Forbush effect is discussed.

  16. Geophysical data fusion for subsurface imaging. Phase 1

    Energy Technology Data Exchange (ETDEWEB)

    Hoekstra, P.; Vandergraft, J.; Blohm, M.; Porter, D.


    A geophysical data fusion methodology is under development to combine data from complementary geophysical sensors and incorporate geophysical understanding to obtain three dimensional images of the subsurface. The research reported here is the first phase of a three phase project. The project focuses on the characterization of thin clay lenses (aquitards) in a highly stratified sand and clay coastal geology to depths of up to 300 feet. The sensor suite used in this work includes time-domain electromagnetic induction (TDEM) and near surface seismic techniques. During this first phase of the project, enhancements to the acquisition and processing of TDEM data were studied, by use of simulated data, to assess improvements for the detection of thin clay layers. Secondly, studies were made of the use of compressional wave and shear wave seismic reflection data by using state-of-the-art high frequency vibrator technology. Finally, a newly developed processing technique, called ``data fusion,`` was implemented to process the geophysical data, and to incorporate a mathematical model of the subsurface strata. Examples are given of the results when applied to real seismic data collected at Hanford, WA, and for simulated data based on the geology of the Savannah River Site.

  17. Geophysical monitoring at the Cerro Prieto geothermal field (United States)

    Wilt, M.; Zelwer, R.; Majer, E. L.


    A program of reservoir monitoring at the Cerro Prieto geothermal field using surface geophysical methods with the objective of observing changes resulting from production is described. The three methods used, dipole-dipole resistivity, precision gravity, and passive seismic monitoring, are discussed.

  18. The impact of approximations and arbitrary choices on geophysical images

    NARCIS (Netherlands)

    Valentine, A.P.; Trampert, J.A.


    Whenever a geophysical image is to be constructed, a variety of choices must be made. Some, such as those governing data selection and processing, or model parametrization, are somewhat arbitrary: there may be little reason to prefer one choice over another. Others, such as defining the theoretical

  19. Evaluation of ground stiffness parameters using continuous surface wave geophysics

    DEFF Research Database (Denmark)

    Gordon, Anne; Foged, Niels


    -small-strain stiffness of the ground Gmax. Continuous surface wave geophysics offers a quick, non-intrusive and economical way of making such measurements. This paper reviews the continuous surface wave techniques and evaluates, in engineering terms, the applicability of the method to the site investigation industry....

  20. About well-posed definition of geophysical fields' (United States)

    Ermokhine, Konstantin; Zhdanova, Ludmila; Litvinova, Tamara


    We introduce a new approach to the downward continuation of geophysical fields based on approximation of observed data by continued fractions. Key Words: downward continuation, continued fraction, Viskovatov's algorithm. Many papers in geophysics are devoted to the downward continuation of geophysical fields from the earth surface to the lower halfspace. Known obstacle for the method practical use is a field's breaking-down phenomenon near the pole closest to the earth surface. It is explained by the discrepancy of the studied fields' mathematical description: linear presentation of the field in the polynomial form, Taylor or Fourier series, leads to essential and unremovable instability of the inverse problem since the field with specific features in the form of poles in the lower halfspace principally can't be adequately described by the linear construction. Field description by the rational fractions is closer to reality. In this case the presence of function's poles in the lower halfspace corresponds adequately to the denominator zeros. Method proposed below is based on the continued fractions. Let's consider the function measured along the profile and represented it in the form of the Tchebishev series (preliminary reducing the argument to the interval [-1, 1]): There are many variants of power series' presentation by continued fractions. The areas of series and corresponding continued fraction's convergence may differ essentially. As investigations have shown, the most suitable mathematical construction for geophysical fields' continuation is so called general C-fraction: where ( , z designates the depth) For construction of C-fraction corresponding to power series exists a rather effective and stable Viskovatov's algorithm (Viskovatov B. "De la methode generale pour reduire toutes sortes des quantitees en fraction continues". Memoires de l' Academie Imperiale des Sciences de St. Petersburg, 1, 1805). A fundamentally new algorithm for Downward Continuation

  1. COTHERM: Geophysical Modeling of High Enthalpy Geothermal Systems (United States)

    Grab, Melchior; Maurer, Hansruedi; Greenhalgh, Stewart


    In recent years geothermal heating and electricity generation have become an attractive alternative energy resource, especially natural high enthalpy geothermal systems such as in Iceland. However, the financial risk of installing and operating geothermal power plants is still high and more needs to be known about the geothermal processes and state of the reservoir in the subsurface. A powerful tool for probing the underground system structure is provided by geophysical techniques, which are able to detect flow paths and fracture systems without drilling. It has been amply demonstrated that small-scale features can be well imaged at shallow depths, but only gross structures can be delineated for depths of several kilometers, where most high enthalpy systems are located. Therefore a major goal of our study is to improve geophysical mapping strategies by multi-method geophysical simulations and synthetic data inversions, to better resolve structures at greater depth, characterize the reservoir and monitor any changes within it. The investigation forms part of project COTHERM - COmbined hydrological, geochemical and geophysical modeling of geoTHERMal systems - in which a holistic and synergistic approach is being adopted to achieve multidisciplinary cooperation and mutual benefit. The geophysical simulations are being performed in combination with hydrothermal fluid flow modeling and chemical fluid rock interaction modeling, to provide realistic constraints on lithology, pressure, temperature and fluid conditions of the subsurface. Two sites in Iceland have been selected for the study, Krafla and Reykjanes. As a starting point for the geophysical modeling, we seek to establish petrophysical relations, connecting rock properties and reservoir conditions with geophysical parameters such as seismic wave speed, attenuation, electrical conductivity and magnetic susceptibility with a main focus on seismic properties. Therefore, we follow a comprehensive approach involving

  2. Geophysical Methods for Investigating Ground-Water Recharge (United States)

    Ferre, Ty P.A.; Binley, Andrew M.; Blasch, Kyle W.; Callegary, James B.; Crawford, Steven M.; Fink, James B.; Flint, Alan L.; Flint, Lorraine E.; Hoffmann, John P.; Izbicki, John A.; Levitt, Marc T.; Pool, Donald R.; Scanlon, Bridget R.


    While numerical modeling has revolutionized our understanding of basin-scale hydrologic processes, such models rely almost exclusively on traditional measurements?rainfall, streamflow, and water-table elevations?for calibration and testing. Model calibration provides initial estimates of ground-water recharge. Calibrated models are important yet crude tools for addressing questions about the spatial and temporal distribution of recharge. An inverse approach to recharge estimation is taken of necessity, due to inherent difficulties in making direct measurements of flow across the water table. Difficulties arise because recharging fluxes are typically small, even in humid regions, and because the location of the water table changes with time. Deep water tables in arid and semiarid regions make recharge monitoring especially difficult. Nevertheless, recharge monitoring must advance in order to improve assessments of ground-water recharge. Improved characterization of basin-scale recharge is critical for informed water-resources management. Difficulties in directly measuring recharge have prompted many efforts to develop indirect methods. The mass-balance approach of estimating recharge as the residual of generally much larger terms has persisted despite the use of increasing complex and finely gridded large-scale hydrologic models. Geophysical data pertaining to recharge rates, timing, and patterns have the potential to substantially improve modeling efforts by providing information on boundary conditions, by constraining model inputs, by testing simplifying assumptions, and by identifying the spatial and temporal resolutions needed to predict recharge to a specified tolerance in space and in time. Moreover, under certain conditions, geophysical measurements can yield direct estimates of recharge rates or changes in water storage, largely eliminating the need for indirect measures of recharge. This appendix presents an overview of physically based, geophysical methods

  3. Activities and Plan of the Center for Geophysics (Beijing) from WDC to WDS


    Peng, Fenglin; Ma, Maining; Peng, Le; Zhang, Jian; Chen, Gengxiong; Li, Yufang; Sun, Bo; Zhang, Yunfei


    In this report we introduce the development of the WDC for Geophysics, Beijing included our activities in the electronic Geophysical Year (eGY) and in the transition period from WDC to WDS. We also present our future plans. We have engaged in the development of geophysical informatics and related data science. We began the data visualization of geomagnetic fields in the GIS system. Our database has been expanded from geomagnetic data to the data of solid geophysics, including geothermal data,...

  4. Integrating geophysics and hydrology for reducing the uncertainty of groundwater model predictions and improved prediction performance

    DEFF Research Database (Denmark)

    Christensen, Nikolaj Kruse; Christensen, Steen; Ferre, Ty

    constructed from geological and hydrological data. However, geophysical data are increasingly used to inform hydrogeologic models because they are collected at lower cost and much higher density than geological and hydrological data. Despite increased use of geophysics, it is still unclear whether......, ‘true’, hydrogeological and geophysical systems. The two types of ‘true’ systems can be used together with corresponding forward codes to generate hydrological and geophysical datasets, respectively. These synthetic datasets can be interpreted using any hydrogeophysical inversion scheme...

  5. A Research of the Application Geophysical Methods to the Polluted Site and the river bottom mud in Geophysical Methods (United States)

    Cheng, S.; Liu, H. C.


    Many site investigations have found that DNAPL is able to penetrate the low permeable layer such as clay or silt-caly layer in subsurface environment. The cumulated DNAPL within the low permeable Layer will gradually diffuse to the high permeable layer to affect he accuracy of investigation and remedial design. As to the deeper zone affected by the penetration of DNAPL, the conventional sampling design investigating only the first unconfined aquifer is no longer suitable for DNAPL investigation. Precisely define the boundary and the distribution of high and low permeable layer is the key to conduct a successful DNAPL investigation. Point information derived from the conventional bore-hole sampling is difficult to be used for locating the DNAPL pollution due to the uncertainty of DNAPL migration and the soluble-phase distribution of the DNAPL partitioned into ground water between the low and high permeable layer. Recently, non-invaded technologies such as geophysical technology have been introduced to provide the plane and space information of pollution in subsurface by integrating few bore-hole dates. The most common used geophysical technologies are ground-penetrating radar method (GPR) and electrical resistivity tomography (ERT). Both methods have their limitations on the pollution investigation when there are interferences exist such as building structure or heavy pavement. A new geophysical technology, geophysical well logging has been developed to overcome above limitations. The information of multi-wells logging could be used to interpret the permeability of subsurface, the dominate flow path and the hot-spot for evaluating the distribution of pollution and the efficiency of remediation in different time sequences. This study would first discuss how DNAPL and its soluble-phase components invade into the low permeable layer based on the field observation. Then, the importance of geophysical technology is introduced with comparing to the limitations of bore

  6. Optimized Enhanced Bioremediation Through 4D Geophysical Monitoring and Autonomous Data Collection, Processing and Analysis (United States)


    ER-200717) Optimized Enhanced Bioremediation Through 4D Geophysical Monitoring and Autonomous Data Collection, Processing and Analysis...N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE Optimized Enhanced Bioremediation Through 4D Geophysical Monitoring and Autonomous Data...8 2.1.2 The Geophysical Signatures of Bioremediation ......................................... 8 2.2 PRIOR

  7. The University of Texas Institute for Geophysics' Marine Geology and Geophysics Field Course: A Hand-On Education Approach to Applied Geophysics (United States)

    Davis, M. B.; Goff, J.; Gulick, S. P. S.; Fernandez, R.; Duncan, D.; Saustrup, S.


    The University of Texas Institute for Geophysics, Jackson School of Geosciences, offers a 3-week marine geology and geophysics field course. The course provides hands-on instruction and training for graduate and upper-level undergraduate students in high-resolution seismic reflection, CHIRP sub-bottom profiling, multibeam bathymetry, sidescan sonar, and sediment sampling and analysis. Students first participate in 3 days of classroom instruction designed to communicate geological context of the field area along with theoretical and technical background on each field method. The class then travels to the Gulf Coast for a week of at-sea field work at locations that provide an opportunity to investigate coastal and continental shelf processes. Teams of students rotate between UTIG's 26' R/V Scott Petty and NOAA's 82' R/V Manta. They assist with survey design, instrumentation set up, and learn about acquisition, quality control, and safe instrument deployment. Teams also process data and analyze samples in onshore field labs. During the final week teams integrate, interpret, and visualize data in a final project using industry-standard software. The course concludes with team presentations on their interpretations with academic and industry supporters. Students report a greater understanding of marine geology and geophysics through the course's intensive, hands-on, team approach and high instructor/student ratio (sixteen students, three faculty, and three teaching assistants). Post-class, students may incorporate course data in senior honors or graduate thesis and are encouraged to publish and present results at national meetings. This course (to our knowledge) remains the only one of its kind, satisfies field experience requirements for some degree programs, and provides an alternative to land-based field courses. Alumni note the course's applicability to energy, environmental, and geotechnical industries as well as coastal restoration/management fields.

  8. Geophysical data fusion for subsurface imaging. Final report

    Energy Technology Data Exchange (ETDEWEB)



    This report contains the results of a three year, three-phase project whose long-range goal has been to create a means for the more detailed and accurate definition of the near-surface (0--300 ft) geology beneath a site that had been subjected to environmental pollution. The two major areas of research and development have been: improved geophysical field data acquisition techniques; and analytical tools for providing the total integration (fusion) of all site data. The long-range goal of this project has been to mathematically, integrate the geophysical data that could be derived from multiple sensors with site geologic information and any other type of available site data, to provide a detailed characterization of thin clay layers and geological discontinuities at hazardous waste sites.

  9. NATO Advanced Study Institute on Buoyant Convection in Geophysical Flows

    CERN Document Server

    Fedorovich, E; Viegas, D; Wyngaard, J


    Studies of convection in geophysical flows constitute an advanced and rapidly developing area of research that is relevant to problems of the natural environment. During the last decade, significant progress has been achieved in the field as a result of both experimental studies and numerical modelling. This led to the principal revision of the widely held view on buoyancy-driven turbulent flows comprising an organised mean component with superimposed chaotic turbulence. An intermediate type of motion, represented by coherent structures, has been found to play a key role in geophysical boundary layers and in larger scale atmospheric and hydrospheric circulations driven by buoyant forcing. New aspects of the interaction between convective motions and rotation have recently been discovered and investigated. Extensive experimental data have also been collected on the role of convection in cloud dynamics and microphysics. New theoretical concepts and approaches have been outlined regarding scaling and parameteriz...

  10. Relationship of Worldwide Rocket Launch Crashes with Geophysical Parameters

    Directory of Open Access Journals (Sweden)

    N. Romanova


    Full Text Available A statistical comparison of launch crashes at different worldwide space ports with geophysical factors has been performed. A comprehensive database has been compiled, which includes 50 years of information from the beginning of the space age in 1957 about launch crashes occurring world-wide. Special attention has been paid to statistics concerning launches at the largest space ports: Plesetsk, Baikonur, Cape Canaveral, and Vandenberg. In search of a possible influence of geophysical factors on launch failures, such parameters as the vehicle type, local time, season, sunspot number, high-energy electron fluxes, and solar proton events have been examined. Also, we have analyzed correlations with the geomagnetic indices as indirect indicators of the space weather condition. Regularities found in this study suggest that further detailed studies of space weather effects on launcher systems, especially in the high-latitude regions, should be performed.

  11. SIAM conference on inverse problems: Geophysical applications. Final technical report

    Energy Technology Data Exchange (ETDEWEB)



    This conference was the second in a series devoted to a particular area of inverse problems. The theme of this series is to discuss problems of major scientific importance in a specific area from a mathematical perspective. The theme of this symposium was geophysical applications. In putting together the program we tried to include a wide range of mathematical scientists and to interpret geophysics in as broad a sense as possible. Our speaker came from industry, government laboratories, and diverse departments in academia. We managed to attract a geographically diverse audience with participation from five continents. There were talks devoted to seismology, hydrology, determination of the earth`s interior on a global scale as well as oceanographic and atmospheric inverse problems.

  12. Integrated software framework for processing of geophysical data (United States)

    Chubak, Glenn; Morozov, Igor


    We present an integrated software framework for geophysical data processing, based on an updated seismic data processing program package originally developed at the Program for Crustal Studies at the University of Wyoming. Unlike other systems, this processing monitor supports structured multi-component seismic data streams, multi-dimensional data traces, and employs a unique backpropagation execution logic. This results in an unusual flexibility of processing, allowing the system to handle nearly any geophysical data. A modern and feature-rich graphical user interface (GUI) was developed for the system, allowing editing and submission of processing flows and interaction with running jobs. Multiple jobs can be executed in a distributed multi-processor networks and controlled from the same GUI. Jobs, in their turn, can also be parallelized to take advantage of parallel processing environments, such as local area networks and Beowulf clusters.

  13. Simulated geophysical monitoring of radioactive waste repository barriers (United States)

    Biryukov, Anton

    Estimation of attenuation of the elastic waves in clays and high clay-content rocks is important for the quality of geophysical methods relying on processing the recorded waveforms. Time-lapse imaging is planned to be employed for monitoring of the condition of high-radioactive waste repositories. Engineers can analyze and optimize configuration of the monitoring system using numerical modelling tools. The reliability of modeling requires proper calibration. The purpose of this thesis is threefold: (i) propose a calibration methodology for the wave propagation tools based on the experimental data, (ii) estimate the attenuation in bentonite as a function of temperature and water content, and (iii) investigate the feasibility of active sonic monitoring of the engineered barriers. The results suggest that pronounced inelastic behavior of bentonite has to be taken into account in geophysical modeling and analysis. The repository--scale models confirm that active sonic monitoring is capable of depicting physical changes in the bentonite barrier.

  14. Relations of PC indices to further geophysical activity parameters. (United States)

    Stauning, P.


    The Polar Cap (PC) indices, PCN for the index values derived from Thule magnetic data and PCS derived from Vostok data, relate to the polar cap ionospheric plasma convection driven mainly by the interaction of the solar wind with the magnetosphere. Thus, the PC indices serve to monitor the input power from the solar wind which drives a range of geophysical disturbances such as magnetic storms and substorms, energization of the plasma trapped in the Earth's near space, auroral activity, and heating of the upper atmosphere. The presentation will demonstrate the relations between the PC indices and further parameters and indices used to describe geophysical activity such as polar cap potentials, auroral electrojet activity, Joule and particle heating of the upper atmosphere, mid-latitude magnetic variations, and ring current indices Dst, SYM-H and ASY-H.

  15. A spectral-geophysical approach for detecting pipeline leakage (United States)

    van der Meijde, M.; van der Werff, H. M. A.; Jansma, P. F.; van der Meer, F. D.; Groothuis, G. J.


    Leakage of hydrocarbon has a large economic and environmental impact. Traditional methods for investigating leakage and resulting pollution, such as drilling, are destructive, time consuming and expensive. Remote sensing is an alternative that is non-destructive and has been been tested extensively for exploration of onshore hydrocarbon reservoirs and detection of hydrocarbons at the Earth's surface. In this research, a leaking pipeline is investigated through field reflectance spectrometry and the findings are validated with traditional drilling and geophysical measurements. The measurements show a significant increase of vegetation anomalies on the pipeline with respect to areas further away. The observed anomalies are positively related to hydrocarbon pollution through chemical analysis of drillings. Subsurface geophysical measurements show a large correlation with observed surface vegetation stress, enhancing the identification of hydrocarbon-related vegetation stress through spectroscopy.

  16. Dunlop receives European Geophysical Society's Néel Medal (United States)

    Tauxe, Lisa

    David J. Dunlop of the Physics Department and Erindale College at the University of Toronto has been awarded the 1999 Louis Néel Medal of the European Geophysical Society (EGS) for “authoritative contributions to rock magnetism, setting the standards for future decades.” The medal will be presented to Dunlop in April in a special ceremony at the Nederlands Congresbebouw in The Hague, The Netherlands, during the 24th General Assembly of the EGS.The Néel Medal is awarded by the Solid Earth Geophysics section of EGS in recognition of the scientific achievements of Louis Néel, who shared the 1970 Nobel Prize in Physics for his fundamental discoveries in magnetism.The medal is awarded “for outstanding achievements in the fertilization of the Earth Sciences by the transfer and application of fundamental theory and/or experimental techniques of solid state physics, defined in its broadest sense.”

  17. Geology and Geophysics of new boreholes at the FEBEX site

    Energy Technology Data Exchange (ETDEWEB)

    Carbonell, R.; Perez-Estaun, A. [Inst. Jaume Almera, CSIC (Spain); Missana, T.; Buil, B.; Garralon, A.; Gomez, J. [CIEMAT (Spain); Suso, J.; Carretero, G.; Bueno, J.; Martinez, L. [AITEMIN (Spain); Hernan, P. [ENRESA (Spain)


    Geophysical data has been acquired to characterized the fracture network of the surrounding volume within the FEBEX gallery. The geophysic data include new borehole logging such as Natural Gamma and Borehole Ground Penetrating radar and cross hole ultrasonic tomography. The preliminary processing and integration of these different data sets indicates that the GPR record can provide images of the fractures, specially if they are fluid filled. The GPR is specially sensitive to the water content as it directly affects the electrical conductivity and the dielectric permittivity Therefore it is adequate for mapping water conductive fractures of the crystalline rock. The correlation of the anomalies measured by the natural gamma can be correlated with the 'diffractions' in the GPR and the fractures imaged by the borehole televiewer. The cross hole ultrasonic tomography data is under processing and no interpretations have been attempted yet.

  18. Geophysical study in waste landfill localized above fractured rocks

    Directory of Open Access Journals (Sweden)

    Ariveltom Cosme da Silva


    Full Text Available Geophysical survey is an important method for investigation of contaminated areas used in the characterization of contrasting physical properties in the presence of pollutants. This work applied the geophysical methods of Electrical Resistivity and Self Potential in waste landfill, located in Caçapava do Sul city, RS. The landfill is located over fractured metamorphic rocks. Eight lines of electrical profiling with 288 measures of self potential were done. In addition, 83 measurements of direction and dip of fractures were taken. The application of spontaneous potential method permitted to detect the direction of groundwater flow. The electrical resistivity measurements allowed the identification of low-intensity anomalies associated with the presence of leachate. There is a relationship between anomalous zones and the directions of fractures.

  19. Structure-coupled multiphysics imaging in geophysical sciences (United States)

    Gallardo, Luis A.; Meju, Max A.


    Multiphysics imaging or data inversion is of growing importance in many branches of science and engineering. In geophysical sciences, there is a need for combining information from multiple images acquired using different imaging devices and/or modalities because of the potential for accurate predictions. The major challenges are how to combine disparate data from unrelated physical phenomena, taking into account the different spatial scales of the measurement devices, model complexities, and how to quantify the associated uncertainties. This review paper summarizes the role played by the structural gradients-based approach for coupling fundamentally different physical fields in (mainly) geophysical inversion, develops further understanding of this approach to guide newcomers to the field, and defines the main challenges and directions for future research that may be useful in other fields of science and engineering.

  20. Swarm intelligence optimization and its application in geophysical data inversion

    Institute of Scientific and Technical Information of China (English)

    Yuan Sanyi; Wang Shangxu; Tian Nan


    The inversions of complex geophysical data always solve multi-parameter, nonlinear, and multimodal optimization problems. Searching for the optimal inversion solutions is similar to the social behavior observed in swarms such as birds and ants when searching for food. In this article, first the particle swarm optimization algorithm was described in detail, and ant colony algorithm improved. Then the methods were applied to three different kinds of geophysical inversion problems: (1) a linear problem which is sensitive to noise, (2) a synchronous inversion of linear and nonlinear problems, and (3) a nonlinear problem. The results validate their feasibility and efficiency. Compared with the conventional genetic algorithm and simulated annealing, they have the advantages of higher convergence speed and accuracy. Compared with the quasi-Newton method and Levenberg-Marquardt method, they work better with the ability to overcome the locally optimal solutions.

  1. Mobile NMR for geophysical analysis and materials testing

    Institute of Scientific and Technical Information of China (English)

    BLUMICH Bernhard; MAULER Jǒrg; HABER Agnes; PERLO Juan; DANIELI Ernesto; CASANOVA Federico


    Initiated by well logging NMR, portable NMR instruments are being developed for a variety of novel applications in materials testing, process analysis and control, which provides new opportunities for geophysical investigations. Small-diameter cylindrical sensors can probe short distances into the walls of slim-line logging holes, and single-sided sensors enable non-destructive testing of large objects. Both sensors are characterized by small sensitive volumes. Barrel-shaped magnets that accommodate the sample in their center have higher sensitivity due to a larger sensitive volume but can accommodate only samples like drill cores, which fit in size to the diameter of the magnet bore. Both types of magnets can be scaled down to the size of a coffee mug to arrive at sub-compact NMR equipment. Portable NMR magnets are reviewed in the context of applications related to geophysics.

  2. Investigation on a Novel Capacitive Electrode for Geophysical Surveys

    Directory of Open Access Journals (Sweden)

    Zhiyu Wang


    Full Text Available Nonpolarizable electrodes are applied widely in the electric field measurement for geophysical surveys. However, there are two major problems: (1 systematic errors caused by poor electrical contact in the high resistive terrains and (2 environmental damage associated with using nonpolarizable electrodes. A new alternative structure of capacitive electrode, which is capable of sensing surface potential through weak capacitive coupling, is presented to solve the above problems. A technique is introduced to neutralize distributed capacitance and input capacitance of the detection circuit. With the capacitance neutralization technique, the transmission coefficient of capacitive electrode remains stable when environmental conditions change. The simulation and field test results indicate that the new capacitive electrode has an operating bandwidth range from 0.1 Hz to 1 kHz. The capacitive electrodes have a good prospect of the applications in geophysical prospecting, especially in resistive terrains.

  3. MPDATA: A positive definite solver for geophysical flows

    Energy Technology Data Exchange (ETDEWEB)

    Smolarkiewicz, P.K.; Margolin, L.G. [Los Alamos National Lab., NM (United States)


    This paper is a review of MPDATA, a class of methods for the numerical simulation of advection based on the sign-preserving properties of upstream differencing. MPDATA was designed originally as an inexpensive alternative to flux-limited schemes for evaluating the transport of nonnegative thermodynamic variables (such as liquid water or water vapor) in atmospheric models. During the last decade, MPDATA has evolved from a simple advection scheme to a general approach for integrating the conservation laws of geophysical fluids on micro-to-planetary scales. The purpose of this paper is to summarize the basic concepts leading to a family of MPDATA schemes, review the existing MPDATA options, as well as to demonstrate the efficacy of the approach using diverse examples of complex geophysical flows.

  4. Spectral analysis and filter theory in applied geophysics

    CERN Document Server

    Buttkus, Burkhard


    This book is intended to be an introduction to the fundamentals and methods of spectral analysis and filter theory and their appli­ cations in geophysics. The principles and theoretical basis of the various methods are described, their efficiency and effectiveness eval­ uated, and instructions provided for their practical application. Be­ sides the conventional methods, newer methods arediscussed, such as the spectral analysis ofrandom processes by fitting models to the ob­ served data, maximum-entropy spectral analysis and maximum-like­ lihood spectral analysis, the Wiener and Kalman filtering methods, homomorphic deconvolution, and adaptive methods for nonstation­ ary processes. Multidimensional spectral analysis and filtering, as well as multichannel filters, are given extensive treatment. The book provides a survey of the state-of-the-art of spectral analysis and fil­ ter theory. The importance and possibilities ofspectral analysis and filter theory in geophysics for data acquisition, processing an...

  5. Gas dynamics an introduction with examples from astrophysics and geophysics

    CERN Document Server

    Achterberg, Abraham


    This book lays the foundations of gas- and fluid dynamics. The basic equations are developed from first principles, building on the (assumed) knowledge of Classical Mechanics. This leads to the discussion of the mathematical properties of flows, conservation laws, perturbation analysis, waves and shocks. Most of the discussion centers on ideal (frictionless) fluids and gases. Viscous flows are discussed when considering flows around obstacles and shocks. Many of the examples used to illustrate various processes come from astrophysics and geophysical phenomena.

  6. The innovative application of surface geophysical techniques for remedial investigations

    Energy Technology Data Exchange (ETDEWEB)

    Saunders, W.R. [OYO Geospace, Fort Myers, FL (United States); Smith, S. [ICF Kaiser Engineers, Boston, MA (United States); Gilmore, P. [Fishbeck, Thomson, Carr and Huber, Aida, MI (United States); Cox, S. [Blasland, Bouck, and Lee, Edison, NJ (United States)


    When researchers are investigating potential subsurface contamination at hazardous waste landfills, the surface geophysical techniques they may use are often limited. Many geophysical surveys are concerned with areas next to and not directly within the landfill units. The highly variable properties of the materials within the landfill may result in geophysical data that are either difficult or impossible to interpret. Therefore, contamination at these sites may not be detected until substantial lateral migration away from the unit has occurred. In addition, because of the poor resolution of some techniques, the landfill as a whole must be considered as a source, where discrete disposal areas within landfill units may be the actual point sources of contaminants. In theory, if specific sources within the landfill are identified and isolated, then reduced time, effort, and expenditures will be required for remediation activities. In the summer of 1989, the Idaho National Engineering Laboratory (INEL) investigated a small potentially hazardous waste landfill to determine if contaminant hot spots could be identified within the landfill and to determine if significant vertical and lateral migration of contaminants was occurring away from these locations. Based on the present hydrogeologic conditions, researchers anticipated that subsurface flow would be primarily vertical, with the zone of saturation at a depth greater than 150 meters. This necessitated that the survey be performed, for the most part, directly on the capped portion of the landfill. Focused geophysical surveys conducted off the landfill would not have provided useful information concerning conditions directly beneath the landfill. This paper discusses the planning, application, and analysis of four combined sensing methods: two methods of electromagnetic induction [low induction (Em) and time domain (TEM)], ground penetrating radar (GPR), and soil gas.

  7. United States Air Force Geophysics Scholar Program, 1982-1983. (United States)


    gold surface with < 0.1 eV of kinectic energy . The beam direction will be maintained at low energies by using a set of Helmholtz coils surrounding the...NATIONAL BUREAU Of STANDARDS 1963 A t II 1982-1983 LSAF/SCEEE AIR FORCE GEOPHYSICS SCHOLAR PROGRAM conducted by Southeastern Center for Electrical ...Bolling Air Force Base Washington D.C. by Southeastern Center for Electrical Engineering Education March 1984 IL ’a’ [ .1 Ai UNCLASSIFIED SECURITY

  8. Application of Huang-Hilbert Transforms to Geophysical Datasets (United States)

    Duffy, Dean G.


    The Huang-Hilbert transform is a promising new method for analyzing nonstationary and nonlinear datasets. In this talk I will apply this technique to several important geophysical datasets. To understand the strengths and weaknesses of this method, multi- year, hourly datasets of the sea level heights and solar radiation will be analyzed. Then we will apply this transform to the analysis of gravity waves observed in a mesoscale observational net.

  9. Geophysics-based method of locating a stationary earth object (United States)

    Daily, Michael R.; Rohde, Steven B.; Novak, James L.


    A geophysics-based method for determining the position of a stationary earth object uses the periodic changes in the gravity vector of the earth caused by the sun- and moon-orbits. Because the local gravity field is highly irregular over a global scale, a model of local tidal accelerations can be compared to actual accelerometer measurements to determine the latitude and longitude of the stationary object.

  10. Space Geodesy Monitoring Mass Transport in Global Geophysical Fluids (United States)

    Chao, Benjamin F.


    Mass transports occurring in the atmosphere-hydrosphere-cryosphere-solid Earth-core system (the 'global geophysical fluids') are important geophysical phenomena. They occur on all temporal and spatial scales. Examples include air mass and ocean circulations, oceanic and solid tides, hydrological water and idsnow redistribution, mantle processes such as post-glacial rebound, earthquakes and tectonic motions, and core geodynamo activities. The temporal history and spatial pattern of such mass transport are often not amenable to direct observations. Space geodesy techniques, however, have proven to be an effective tool in monitorihg certain direct consequences of the mass transport, including Earth's rotation variations, gravitational field variations, and the geocenter motion. Considerable advances have been made in recent years in observing and understanding of these geodynamic effects. This paper will use several prominent examples to illustrate the triumphs in research over the past years under a 'Moore's law' in space geodesy. New space missions and projects promise to further advance our knowledge about the global mass transports. The latter contributes to our understanding of the geophysical processes that produce and regulate the mass transports, as well as of the solid Earth's response to such changes in terms of Earth's mechanical properties.

  11. Integrated geophysical investigations of Main Barton Springs, Austin, Texas, USA (United States)

    Saribudak, By Mustafa; Hauwert, Nico M.


    Barton Springs is a major discharge site for the Barton Springs Segment of the Edwards Aquifer and is located in Zilker Park, Austin, Texas. Barton Springs actually consists of at least four springs. The Main Barton Springs discharges into the Barton Springs pool from the Barton Springs fault and several outlets along a fault, from a cave, several fissures, and gravel-filled solution cavities on the floor of the pool west of the fault. Surface geophysical surveys [resistivity imaging, induced polarization (IP), self-potential (SP), seismic refraction, and ground penetrating radar (GPR)] were performed across the Barton Springs fault and at the vicinity of the Main Barton Springs in south Zilker Park. The purpose of the surveys was two-fold: 1) locate the precise location of submerged conduits (caves, voids) carrying flow to Main Barton Springs; and 2) characterize the geophysical signatures of the fault crossing Barton Springs pool. Geophysical results indicate significant anomalies to the south of the Barton Springs pool. A majority of these anomalies indicate a fault-like pattern, in front of the south entrance to the swimming pool. In addition, resistivity and SP results, in particular, suggest the presence of a large conduit in the southern part of Barton Springs pool. The groundwater flow-path to the Main Barton Springs could follow the locations of those resistivity and SP anomalies along the newly discovered fault, instead of along the Barton Springs fault, as previously thought.

  12. ROMY: A 4-component large ring laser for geophysics (United States)

    Igel, H.; Schreiber, K. U.; Gebauer, A.; Wassermann, J. M.; Lin, C. J.; Bernauer, F.; Simonelli, A.; Wells, J. P. R.


    Observatory-based ring lasers are currently the most sensitive technology for measurements of rotational ground motions (seismology) and variations of Earth's rotation rate. Ring laser have so far been limited to single components only (e.g., the horizontal G-ring in Wettzell, Germany, measuring the rotation around a vertical axis). Within the ROMY project ( funded by the European Research Council we designed and constructed the first multi-component ring laser system for geophysics. The 4-component, tetrahedral-shaped, top-down ring laser sits on a connected concrete structure embedded underground 2m below the surface at the Geophysical Observatory Fürstenfeldbruck, Germany. The 4 independent equilateral triangular-shaped He-Ne ring lasers with 12 m side length are expected to resolve rotational motions below 12 prad/s/sqrt(Hz). We will report on the design and construction process of this first-of-its-kind ring laser system, with completion expected in August 2016 by which time the optical systems are beginning to be assembled. The four rotational components are combined to the complete 3-component vector of Earth's rotation, perturbed by other geophysical signals such as earthquake induced ground motions, ocean-generated noise, Earth's free oscillations, interactions between atmosphere and solid Earth and other signals. First applications are expected in the field of seismology. We report on future plans to stabilize the ring geometry providing long-term stability for geodetic applications.

  13. Sensitivity of airborne geophysical data to sublacustrine permafrost thaw

    Directory of Open Access Journals (Sweden)

    B. J. Minsley


    Full Text Available A coupled hydrogeophysical forward and inverse modeling approach is developed to illustrate the ability of frequency-domain airborne electromagnetic (AEM data to characterize subsurface physical properties associated with sublacustrine permafrost thaw during lake talik formation. Several scenarios are evaluated that consider the response to variable hydrologic forcing from different lake depths and hydrologic gradients. The model includes a physical property relationship that connects the dynamic distribution of subsurface electrical resistivity based on lithology as well as ice-saturation and temperature outputs from the SUTRA groundwater simulator with freeze/thaw physics. Electrical resistivity models are used to simulate AEM data in order to explore the sensitivity of geophysical observations to permafrost thaw. Simulations of sublacustrine talik formation over a 1000 year period modeled after conditions found in the Yukon Flats, Alaska, are evaluated. Synthetic geophysical data are analyzed with a Bayesian Markov chain Monte Carlo algorithm that provides a probabilistic assessment of geophysical model uncertainty and resolution. Major lithological and permafrost features are well resolved in the examples considered. The subtle geometry of partial ice-saturation beneath lakes during talik formation cannot be resolved using AEM data, but the gross characteristics of sub-lake resistivity models reflect bulk changes in ice content and can be used to determine the presence of a talik. A final example compares AEM and ground-based electromagnetic responses for their ability to resolve shallow permafrost and thaw features in the upper 1–2 m below ground.

  14. Geological and geophysical methods for monitoring of heritage structures (United States)

    Kulynych, Anna


    Using the analysis of geological and geophysical survey of the soil conditions of the site where the architectural landmarks of Kyiv are concentrated the research proposes to develop an optimal set of geological and geophysical studies aimed at monitoring and evaluating the impact of underflooding, risk of landslide and increase of seismic magnitude on the upper portion of geological cross-section. The research offers suggestions concerning the establishment of a monitoring system for the principal sites where the architectural heritage is located. As the earthquake origins are not scattered randomly but located within the relatively narrow zones of active faults, that is, the places most exposed to rapid geodynamic shifts, active faults and blocks they form are one of the main signs for identifying potential seismogenic areas. From the point of view of the present geodynamic instability the morphostructural neotectonic points characterized by the high degree of tectonic fragmentation, including within the upper portion of the sedimentary cover, the high values of relief energy and activation of exogenous processes deserve special attention. The research develops the comparison of areas with increased seismic impacts allocated according to geophysical data with neotectonic structural plan, allows to conclude about their suitability for morphostructural neotectonic points and some sections of active faults exactly that is important to consider when constructing new buildings and protecting the existing ones.

  15. Bringing 3D Printing to Geophysical Science Education (United States)

    Boghosian, A.; Turrin, M.; Porter, D. F.


    3D printing technology has been embraced by many technical fields, and is rapidly making its way into peoples' homes and schools. While there is a growing educational and hobbyist community engaged in the STEM focused technical and intellectual challenges associated with 3D printing, there is unrealized potential for the earth science community to use 3D printing to communicate scientific research to the public. Moreover, 3D printing offers scientists the opportunity to connect students and the public with novel visualizations of real data. As opposed to introducing terrestrial measurements through the use of colormaps and gradients, scientists can represent 3D concepts with 3D models, offering a more intuitive education tool. Furthermore, the tactile aspect of models make geophysical concepts accessible to a wide range of learning styles like kinesthetic or tactile, and learners including both visually impaired and color-blind students.We present a workflow whereby scientists, students, and the general public will be able to 3D print their own versions of geophysical datasets, even adding time through layering to include a 4th dimension, for a "4D" print. This will enable scientists with unique and expert insights into the data to easily create the tools they need to communicate their research. It will allow educators to quickly produce teaching aids for their students. Most importantly, it will enable the students themselves to translate the 2D representation of geophysical data into a 3D representation of that same data, reinforcing spatial reasoning.

  16. Virtual Geophysics Laboratory: Exploiting the Cloud and Empowering Geophysicsts (United States)

    Fraser, Ryan; Vote, Josh; Goh, Richard; Cox, Simon


    Over the last five decades geoscientists from Australian state and federal agencies have collected and assembled around 3 Petabytes of geoscience data sets under public funding. As a consequence of technological progress, data is now being acquired at exponential rates and in higher resolution than ever before. Effective use of these big data sets challenges the storage and computational infrastructure of most organizations. The Virtual Geophysics Laboratory (VGL) is a scientific workflow portal addresses some of the resulting issues by providing Australian geophysicists with access to a Web 2.0 or Rich Internet Application (RIA) based integrated environment that exploits eResearch tools and Cloud computing technology, and promotes collaboration between the user community. VGL simplifies and automates large portions of what were previously manually intensive scientific workflow processes, allowing scientists to focus on the natural science problems, rather than computer science and IT. A number of geophysical processing codes are incorporated to support multiple workflows. For example a gravity inversion can be performed by combining the Escript/Finley codes (from the University of Queensland) with the gravity data registered in VGL. Likewise, tectonic processes can also be modeled by combining the Underworld code (from Monash University) with one of the various 3D models available to VGL. Cloud services provide scalable and cost effective compute resources. VGL is built on top of mature standards-compliant information services, many deployed using the Spatial Information Services Stack (SISS), which provides direct access to geophysical data. A large number of data sets from Geoscience Australia assist users in data discovery. GeoNetwork provides a metadata catalog to store workflow results for future use, discovery and provenance tracking. VGL has been developed in collaboration with the research community using incremental software development practices and open

  17. Geophysical techniques in the study of Hydrocarbon contamination: lab experiments (United States)

    Giampaolo, Valeria; Rizzo, Enzo; Straface, Salvatore; Votta, Mario; Lapenna, Vincenzo


    Remediation of sites contaminated by hydrocarbon, due to blow out, leakage from tank or pipe and oil spill, is an environmental problem because infiltrated oil can persist in the ground for a long time and the actual method are invasive and expansive . In the last years there was a growing interest in the use of geophysical methods for environmental monitoring (Greenhouse et al., 1993; Daily and Ramirez, 1995; Lendvay et al., 1998; Atekwana et al., 2000; Chambers et al., 2004; Song et al., 2005; French et al., 2009), and there have been several recent study that relate self-potential measurements to subsurface contaminants (Perry et al., 1996; Naudet et al., 2003; Naudet et al., 2004). Infact, this method is a valid tool for site characterization and monitoring because it is sensitive to contaminant chemistry and redox processes generated by bacteria during the biodegradation phase (Atekwana et al., 2004; Naudet and Revil, 2005). Therefore the goal of this investigation is to characterize underground contaminant distributions using minimally invasive geophysical methods (electrical resistivity tomography and self-potential), in combination with hydrochemical measurements, and to develop fundamental constitutive relations between soil physical and degradation activity parameters and geophysically measurable parameters, in order to improve site remediation efficiency. These tests have been realized at a PVC pool situated in the Hydrogeosite Laboratory of CNR-IMAA. The pool is completely filled with ~ 0.80 m3 of an homogeneous medium (quartz-rich sand with a medium-high hydraulic conductivity in the order of 10-5 m/s), to simulate the space and time dynamics of an artificial aquifer; besides it has been endowed of a sensors network at surface and in borehole, to measure self-potential and electrical resistivity. The experiments consist in geophysical measurements to monitor a simulated oil spill into sand-box following by water rain. The experiment was able to obtain

  18. Critical zone architecture and processes: a geophysical perspective (United States)

    Holbrook, W. S.


    The "critical zone (CZ)," Earth's near-surface layer that reaches from treetop to bedrock, sustains terrestrial life by storing water and producing nutrients. Despite is central importance, however, the CZ remains poorly understood, due in part to the complexity of interacting biogeochemical and physical processes that take place there, and in part due to the difficulty of measuring CZ properties and processes at depth. Major outstanding questions include: What is the architecture of the CZ? How does that architecture vary across scales and across gradients in climate, lithology, topography, biology and regional states of stress? What processes control the architecture of the CZ? At what depth does weathering initiate, and what controls the rates at which it proceeds? Based on recent geophysical campaigns at seven Critical Zone Observatory (CZO) sites and several other locations, a geophysical perspective on CZ architecture and processes is emerging. CZ architecture can be usefully divided into four layers, each of which has distinct geophysical properties: soil, saprolite, weathered bedrock and protolith. The distribution of those layers across landscapes varies depending on protolith composition and internal structure, topography, climate (P/T) and the regional state of stress. Combined observations from deep CZ drilling, geophysics and geochemistry demonstrate that chemical weathering initiates deep in the CZ, in concert with mechanical weathering (fracturing), as chemical weathering appears concentrated along fractures in borehole walls. At the Calhoun CZO, the plagioclase weathering front occurs at nearly 40 m depth, at the base of a 25-m-thick layer of weathered bedrock. The principal boundary in porosity, however, occurs at the saprolite/weathered bedrock boundary: porosity decreases over an order of magnitude, from 50% to 5% over an 8-m-thick zone at the base of saprolite. Porosity in weathered bedrock is between 2-5%. Future progress will depend on (1

  19. AfricaArray International Geophysics Field School: Applications of Near Surface Geophysics to challenges encountered in mine planning (United States)

    Webb, S. J.; Jones, M. Q.; Durrheim, R. J.; Nyblade, A.; Snyman, Q.


    Hard rock exploration and mining presents many opportunities for the effective use of near surface geophysics. For over 10 years the AfricaArray international geophysics field school has been hosted at a variety of mines in South Africa. While the main objective of the field school is practical training for the next generation of geophysicists, being hosted at a mine has allowed us to investigate applications of near surface geophysics in the early stages of mine planning and development as geophysics is often cheaper and faster than drilling. Several applications include: detailed delineation of dykes and stringer dykes, physical property measurements on drill core for modeling and marker horizons, determination of overburden thickness, locations of water and faults. Dolerite dykes are usually magnetic and are associated with loss of ground (i.e. where the dyke replaces the ore and thus reduces the amount of ore available) and safety/stability concerns. Thus the accurate mapping of dykes and narrow stringers that are associated with them are crucial to the safe planning of a mine. We have acquired several case studies where ground magnetic surveys have greatly improved on the resolution and detail of airborne magnetic surveys in regions of complicated dyke swarms. In many cases, thin stringer dykes of less than 5 cm have been detected. Physical property measurements of these dykes can be used to distinguish between different ages of dykes. It is important to accurately determine overburden thickness when planning an open pit mine as this directly affects the cost of development. Depending on the nature of the overburden, both refraction seismic and or DC resistivity can provide continuous profiling in the area of interest that fills in gaps between boreholes. DC resistivity is also effective for determining water associated with dykes and structures that may affect mine planning. The field school mainly addresses the training of a variety of students. The core

  20. Archaeological Geophysics in Israel: Past, Present and Future (United States)

    Eppelbaum, L. V.


    Israel is a country with diverse and rapidly changeable environments where is localized a giant number of archaeological objects of various age, origin and size. The archaeological remains occur in a complex (multi-layered and variable) geological-archaeological media. It is obvious that direct archaeological excavations cannot be employed at all localized and supposed sites taking into account the financial, organizational, ecological and other reasons. Therefore, for delineation of buried archaeological objects, determination their physical-geometrical characteristics and classification, different geophysical methods are widely applied. The number of employed geophysical methodologies is constantly increasing and now Israeli territory may be considered as a peculiar polygon for various geophysical methods testing. The geophysical investigations at archaeological sites in Israel could be tentatively divided on three stages: (1) past [- 1990] (e.g., Batey, 1987; Ben-Menahem, 1979; Dolphin, 1981; Ginzburg and Levanon, 1977; Karcz et al., 1977; Karcz and Kafri, 1978; Tanzi et al., 1983; Shalem, 1949; Willis, 1928), (2) present [1991 - 2008] (e.g., Bauman et al., 2005; Ben-Dor et al., 1999; Ben-Yosef et al., 2008; Berkovitch et al., 2000; Borradaile, 2003; Boyce et al., 2004; Bruins et al., 2003; Daniels et al., 2003; Ellenblum et al., 1998; Eppelbaum, 1999, 2000a, 2000b, 2005, 2007a, 2007b, 2008b; Eppelbaum and Ben-Avraham, 2002; Eppelbaum and Itkis, 2000, 2001; 2003, 2009; Eppelbaum et al., 2000a, 2000b, 2001a, 2001b, 2003a, 2003b, 2004a, 2004b; 2005, 2006a, 2006b, 2006c, 2006d, 2007, 2009a, 2009b; Ezersky et al., 2000; Frumkin et al., 2003; Itkis and Eppelbaum, 1998; Itkis, 2003; Itkis et al., 2002, 2003, 2008; Jol et al., 2003, 2008; Kamai and Hatzor, 2007; Khesin et al., 1996; Korjenkov and Mazor, 1999; Laukin et al., 2001; McDermott et al., 1993; Marco, 2008; Marco et al., 2003; Nahas et al., 2006; Neishtadt et al., 2006; Nur and Ron, 1997; Paparo, 1991; Porat

  1. HVDC Ground Electrodes - a Source of Geophysical Data (United States)

    Freire, P. F.; Pereira, S. Y.


    The HVDC electrode is a component of a High Voltage Direct Current energy transmission system, and is designed to inject into the ground continuous currents up to 3500 A. The typical HVDC ground electrode is a ring of vertical conductors, 1 km wide, buried a few tens of meters.The design of a HVDC electrode is based on extensive geological, geotechnical and geophysical surveys. Geophysical data are usually electrical (VES) and electromagnetic (TEM/MT) acquisitions, for the modeling of the shallow, near-surface and deep layers of the crust. This survey aims, first, the electrode site selection, and then, at the selected site, this data is combined into a single apparent resistivity curve, which is inverted, allowing for the determination of the layered geoelectric crust model. The injection of electrical continuous current in the electrode is then simulated, with the geoelectric crust model, for the determination of the soil surface potential profile (which is usually asymmetric for different directions, due to non-1D geoelectric models).For the commissioning of a HVDC electrode, field measurements are done, such as electrode grounding resistance, soil surface potentials and metal-to-soil potentials at specific structures (buried pipelines, for instance).The geophysical data acquired during the design phase is a set of data completely independent from the electrical data acquired during the electrode commissioning phase, and both are correlated by the geoelectric model. It happens, therefore, that the geoelectric model can be calibrated based on the electrical data, with the correction of static shifts and other adjustments.This paper suggests that the commissioning of HVDC systems should be associated to a research & development program, with a university or foundation. The idea is to enjoy the opportunity of a more complete field survey, with the acquisition of a wide set of data for a better geological characterization of the area where the electrode was built.

  2. Site Characterization of Deep Bedrock with Integrated Geophysical Survey (United States)

    Son, J.; Kim, C.; Eun, S. B.


    In order to utilize the deep underground storage facility stable for a long time, precise site characterization is required before its construction. Various kinds of geophysical survey as well as drilling and geological survey should be used to know the status of deep bedrock. A research had been conducted to make the site characterization of deep bedrock for several years, and to achieve its purpose, integrated geophysical survey were applied to the test area which had gneiss bedrock. DC resistivity survey for six surficial profiles was conducted to find the appropriate location of drilling survey. Cross-hole/surface-to-hole resistivity tomography survey and borehole reflection radar survey were applied to the drill holes after its installation completed. Three bore holes of which length was 500 meter were drilled to investigate the status of deep bedrock, and cross-hole tomography survey was applied between two boreholes among these. Also borehole reflection radar survey was conducted to another two boreholes. Deep seated fracture zones which were not identified with the surficial geological and resistivity survey were found through the analysis of tomography section. Fracture zones were consisted of steep slope fault and these were also identified with the result of borehole radar section. After the basic survey was completed, one of three holes was extended to the depth of 1 km. Radar reflection survey which was only available to the deep drill-hole was applied. Because steel casing was installed to the depth of 750 m to stabilize the extended drill-hole, resistivity method was not available and borehole radar reflection method was only available among the geophysical method used in this research. Through results of radar reflection survey, several fracture zones were identified for the newly extended section of drill hole and some of those facture has relatively large size and passed through the bore hole.

  3. Improving Discoverability of Geophysical Data using Location Based Services (United States)

    Morrison, D.; Barnes, R. J.; Potter, M.; Nylund, S. R.; Patrone, D.; Weiss, M.; Talaat, E. R.; Sarris, T. E.; Smith, D.


    The great promise of Virtual Observatories is the ability to perform complex search operations across the metadata of a large variety of different data sets. This allows the researcher to isolate and select the relevant measurements for their topic of study. The Virtual ITM Observatory (VITMO) has many diverse geophysical datasets that cover a large temporal and spatial range that present a unique search problem. VITMO provides many methods by which the user can search for and select data of interest including restricting selections based on geophysical conditions (solar wind speed, Kp, etc) as well as finding those datasets that overlap in time. One of the key challenges in improving discoverability is the ability to identify portions of datasets that overlap in time and in location. The difficulty is that location data is not contained in the metadata for datasets produced by satellites and would be extremely large in volume if it were available, making searching for overlapping data very time consuming. To solve this problem we have developed a series of light-weight web services that can provide a new data search capability for VITMO and others. The services consist of a database of spacecraft ephemerides and instrument fields of view; an overlap calculator to find times when the fields of view of different instruments intersect; and a magnetic field line tracing service that maps in situ and ground based measurements to the equatorial plane in magnetic coordinates for a number of field models and geophysical conditions. These services run in real-time when the user queries for data. They will allow the non-specialist user to select data that they were previously unable to locate, opening up analysis opportunities beyond the instrument teams and specialists, making it easier for future students who come into the field.

  4. Estimating climate resilience for conservation across geophysical settings. (United States)

    Anderson, Mark G; Clark, Melissa; Sheldon, Arlene Olivero


    Conservationists need methods to conserve biological diversity while allowing species and communities to rearrange in response to a changing climate. We developed and tested such a method for northeastern North America that we based on physical features associated with ecological diversity and site resilience to climate change. We comprehensively mapped 30 distinct geophysical settings based on geology and elevation. Within each geophysical setting, we identified sites that were both connected by natural cover and that had relatively more microclimates indicated by diverse topography and elevation gradients. We did this by scoring every 405 ha hexagon in the region for these two characteristics and selecting those that scored >SD 0.5 above the mean combined score for each setting. We hypothesized that these high-scoring sites had the greatest resilience to climate change, and we compared them with sites selected by The Nature Conservancy for their high-quality rare species populations and natural community occurrences. High-scoring sites captured significantly more of the biodiversity sites than expected by chance (p < 0.0001): 75% of the 414 target species, 49% of the 4592 target species locations, and 53% of the 2170 target community locations. Calcareous bedrock, coarse sand, and fine silt settings scored markedly lower for estimated resilience and had low levels of permanent land protection (average 7%). Because our method identifies-for every geophysical setting-sites that are the most likely to retain species and functions longer under a changing climate, it reveals natural strongholds for future conservation that would also capture substantial existing biodiversity and correct the bias in current secured lands. © 2014 The Authors. Conservation Biology published by Wiley Periodicals, Inc., on behalf of the Society for Conservation Biology.

  5. Geophysical characterization of Hydrogeological processes at the catchment scale (United States)

    Flores Orozco, Adrian; Gallistl, Jakob; Schlögel, Ingrid; Chwatal, Werner; Oismüller, Markus; Blöschl, Günter


    The characterization of hydrogeological properties in the subsurface with high resolution across space and time scales is critical to improve our understanding of water flow and transport processes. However, to date, hydrogeological investigations are mainly performed through well-tests or the analysis of samples, thus, limiting the spatial resolution of the investigation. To properly capture heterogeneities in the subsurface controlling surface-groundwater interactions, modern hydrogeological studies require the development of innovative investigation techniques that permit to gain continuous information about subsurface state with high spatial and temporal resolution at different scales: from the pore-space all the way to the catchment. To achieve this, we propose the conduction of geophysical surveys, in particular field-scale Spectral Induced Polarization (SIP) imaging measurements. SIP images provide information about the complex electrical conductivity (CEC), which is controlled by important hydrogeological parameters, such as porosity, water content and the chemical properties of the pore-water. Here, we present imaging results collected at the catchment scale (approximately 66 ha), which permitted to gain detailed information about the spatial variability of hydrogeological parameters at different scales. The heterogeneities observed in the geophysical images revealed consistency with independent information collected at the study area. In addition to this, and taking into account that different geophysical methods yield information about different properties and at diverse scales, interpretation of the SIP images was improved by incorporation of complementary measurements, such as: ElectroMagnetic Induction (EMI), Ground Penetrating Radar (GPR), Multichannel Analysis of Surface-Waves (MASW) and Seismic Refraction-Reflection (SRR).

  6. Airborne geophysical prospecting for ultramafite associated talc, Altermark, northern Norway (United States)

    Karlsen, Tor Arne; Olesen, Odleiv


    Talc-rich rocks in Altermark occur as rims around magnetite bearing serpentinite lenses which are up to about 1 km wide. The content of magnetite in the serpentinite makes magnetic measurements possible as a method for talc-prospecting. In 1991 a helicopter-borne geophysical survey combined with geological and petrophysical mapping was carried out in the Altermark area. Several positive magnetic anomalies were detected. Positive magnetic anomalies with oval shapes, well defined boundaries and smooth anomaly curves were interpreted to be caused by serpentinite lenses. Laboratory measurements revealed susceptibilities for the serpentinites between 0.006-0.36 SI and a Q-value of approximately 0.3. Magnetic modelling of the Nakkan anomaly and subsequent drilling revealed that it was indeed a serpentinite body surrounded by talc rocks which was the cause of the anomaly. The shallowest part was located about 150 m below surface. The geophysical exploration led to the discovery of a talc-carbonate deposit with an anticipated in situ tonnage of more than 1 million tons. The present study consequently proved to be a classical case study where we were able to locate and establish the three-dimensional form of serpentinite bodies associated with talc deposits. We conclude that helicopter-borne geophysical surveying is an effective tool in the exploration of serpentinite cored talc bearing rocks in complex geological areas where exposures are poor or absent and accessibility difficult. The rough topography and dense vegetation in the Altermark area make this type of survey very cost effective.

  7. Geophysical techniques for low enthalpy geothermal exploration in New Zealand (United States)

    Soengkono, Supri; Bromley, Chris; Reeves, Robert; Bennie, Stewart; Graham, Duncan


    Shallow warm water resources associated with low enthalpy geothermal systems are often difficult to explore using geophysical techniques, mainly because the warm water creates an insufficient physical change from the host rocks to be easily detectable. In addition, often the system also has a limited or narrow size. However, appropriate use of geophysical techniques can still help the exploration and further investigation of low enthalpy geothermal resources. We present case studies on the use of geophysical techniques for shallow warm water explorations over a variety of settings in New Zealand (mostly in the North Island) with variable degrees of success. A simple and direct method for the exploration of warm water systems is shallow temperature measurements. In some New Zealand examples, measurements of near surface temperatures helped to trace the extent of deeper thermal water. The gravity method was utilised as a structural technique for the exploration of some warm water systems in New Zealand. Our case studies show the technique can be useful in identifying basement depths and tracing fault systems associated with the occurrence of hot springs. Direct current (DC) ground resistivity measurements using a variety of electrode arrays have been the most common method for the exploration of low enthalpy geothermal resources in New Zealand. The technique can be used to detect the extent of shallow warm waters that are more electrically conductive than the surrounding cold groundwater. Ground resistivity investigations using the electromagnetic (EM) techniques of audio magnetotellurics (AMT or shallow MT), controlled source audio magnetotellurics (CSAMT) and transient electromagnetic (TEM) methods have also been used. Highly conductive clays of thermal or sedimentary origin often limit the penetration depth of the resistivity techniques and can create some interpretation difficulties. Interpretation of resistivity anomalies needs to be treated in a site specific

  8. Geophysical Methods for Non-Destructive Testing in Civil Engineering (United States)

    Niederleithinger, E.


    Many non-destructive testing (NDT) methods for civil engineering (e. g. ultrasonics, radar) are similar to geophysical techniques. They just differ in scale, material under investigation and vocabulary used. In spite of the fact that the same principles of physics and mathematics apply to both fields, exchange has been limited in the past. But since a few years more and more geophysical knowledge is used in civil engineering. One of the focal points in research is to improve ultrasonic testing of concrete to be able to image the inside even of large, complex structures and to detect any deterioration as early as possible. One of the main issues is the heterogeneity of concrete, including aggregates, reinforcement, cracks and many other features. Our current research focuses on three points. One is the application of state of the art geophysical migration techniques as Reverse Time Migration (RTM) to image vertical faces or the backside of voids and ducts in thick concrete structures, which isn't possible with conventional techniques used in NDT. Second, we have started to use seismic interferometric techniques to interpolate ultrasonic traces, which can't be measured directly for technical reasons. Third, we are using coda wave interferometry to detect concrete degradation due to load, fatigue, temperature or other influences as early as possible. Practical examples of the application of these techniques are given and potential future research directions will be discussed. It will be shown, how a subset of these techniques can be used for innovative monitoring systems for civil infrastructure. Imaging the interior of a concrete body by ultrasonics and reverse time migration(simulated data).

  9. Geophysical and geological investigations of the Boda area

    Energy Technology Data Exchange (ETDEWEB)

    Waenstedt, S. [Geosigma AB, Uppsala (Sweden)


    The studies conducted in the Boda area exhibit the presence of a severely fractured rock mass with occasional caves. The Boda area appears to be intersected by a few significant zones, obvious from a study of the topography but do appear in some of the geophysical investigations as well. The structures in the area have quite efficiently isolated the rock plint where the caves are located. It is not possible from these investigations, however, to draw far-reaching conclusions about the age and genesis of the zones or about their continuation towards depth. The geological investigation shows, apart from the caves, no unusual features. The rock types in the investigated area correspond with rock types found elsewhere in the region. The area is highly unsuitable for geophysical surface investigations. Part of the area consists of scattered and quite large blocks that constitute obstacles when making measurements in the area. Since there is little or no soil between the blocks some measurements (e.g. resistivity) are not possible to carry out. Furthermore, the scattered blocks cause unwanted reflections and other difficulties that deteriorate the quality of the geophysical data. The radar measurements with two different frequencies show an interesting result of importance not only to this investigation. The lower frequency appears to penetrate through the rocky overburden and is able to detect the soil-rock interface. The higher frequency is severely disturbed by the overburden but caves show much more clearly in this data. The fractured rock around Boda appears to be a shallow feature, since the radar measurements show a quite significant feature throughout most of the profiles, which appears to be the upper boundary of the bedrock. There are, however, some occasional strong reflectors below the interface between fractured and competent rock.

  10. Assessment of highway condition using combined geophysical surveys (United States)

    Dera, Abdallah Alhadi

    Four pavement sections were investigated using ground penetrating radar (GPR) and Ultrasonic Surface Wave (USW). The objective of this research was to compare the effectiveness of two non-destructive geophysical tools, GPR and the PSPA, in assessing the condition of the pavements, composed of different construction materials. The GPR data were acquired using a 1.5 GHz antenna along five traverses spaced at two ft. intervals approximately 1000 ft. long. On the other hand, the PSPA data were acquired at the stations spaced at 1000 ft. along the five GPR traverses. Core samples were collected at each site to constrain the interpretation of the acquired geophysical data. The sites include section US 63 about three miles north of Rolla, US 54 in Camdenton County, MO 179 in Jefferson City, and HWY U in Dent County. The types of pavement in these sites were, asphalt concrete overlaying portland cement concrete (AC/PCC), and full-depth asphalt concrete (AC) pavements or full depth bituminous mix (BM). Based on the acquired and analyzed data of the GPR and PSPA, the data of both tools correlated reasonably well. The PSPA technique successfully measured the elastic modulus and the thickness of pavement and detected horizontal flaws (e.g. debonding and delaminations). Similarly, the GPR technique successfully measured the thickness of pavement and detected horizontal flaws (e.g. debonding and delaminations) within the pavement. The research demonstrated that both non-destructive geophysical tools (GPR and PSPA) are effective in assessing the condition of different types of pavement.

  11. Activities and Plan of the Center for Geophysics (Beijing from WDC to WDS

    Directory of Open Access Journals (Sweden)

    Fenglin Peng


    Full Text Available In this report we introduce the development of the WDC for Geophysics, Beijing included our activities in the electronic Geophysical Year (eGY and in the transition period from WDC to WDS. We also present our future plans. We have engaged in the development of geophysical informatics and related data science. We began the data visualization of geomagnetic fields in the GIS system. Our database has been expanded from geomagnetic data to the data of solid geophysics, including geothermal data, gravity data, and the records of aurora sightings in ancient China. We also joined the study of the history of the development of geophysics in China organized by the Chinese Geophysical Society (CGS.

  12. Improved extraction of hydrologic information from geophysical data through coupled hydrogeophysical inversion

    Energy Technology Data Exchange (ETDEWEB)

    Hinnell, A.C.; Ferre, T.P.A.; Vrugt, J.A.; Huisman, J.A.; Moysey, S.; Rings, J.; Kowalsky, M.B.


    There is increasing interest in the use of multiple measurement types, including indirect (geophysical) methods, to constrain hydrologic interpretations. To date, most examples integrating geophysical measurements in hydrology have followed a three-step, uncoupled inverse approach. This approach begins with independent geophysical inversion to infer the spatial and/or temporal distribution of a geophysical property (e.g. electrical conductivity). The geophysical property is then converted to a hydrologic property (e.g. water content) through a petrophysical relation. The inferred hydrologic property is then used either independently or together with direct hydrologic observations to constrain a hydrologic inversion. We present an alternative approach, coupled inversion, which relies on direct coupling of hydrologic models and geophysical models during inversion. We compare the abilities of coupled and uncoupled inversion using a synthetic example where surface-based electrical conductivity surveys are used to monitor one-dimensional infiltration and redistribution.

  13. Geophysical Imaging of Root Architecture and Root-soil Interaction (United States)

    Wu, Y.; Dafflon, B.; Hubbard, S. S.


    Roots play a critical role in controlling water and nutrient uptake, soil biogeochemical processes, as well as the physical anchorage for plants. While important processes, such as root hydraulic redistribution for optimal growth and survival have been recognized, representation of roots in climate models, e.g. its carbon storage, carbon resilience, root biomass, and role in regulating water and carbon fluxes across the rhizosphere and atmosphere interface is still challenging. Such a challenge is exacerbated because of the large variations of root architecture and function across species and locations due to both genetic and environmental controls and the lack of methods for quantifying root mass, distribution, dynamics and interaction with soils at field scales. The scale, complexity and the dynamic nature of plant roots call for minimally invasive methods capable of providing quantitative estimation of root architecture, dynamics over time and interactions with the soils. We present a study on root architecture and root-soil interactions using geophysical methods. Parameters and processes of interests include (1) moisture dynamics around root zone and its interaction with plant transpiration and environmental controls and (2) estimation of root structure and properties based on geophysical signals. Both pot and field scale studies were conducted. The pot scale experiments were conducted under controlled conditions and were monitored with cross-well electrical resistivity tomography (ERT), TDR moisture sensors and temperature probes. Pots with and without a tree were compared and the moisture conditions were controlled via a self regulated pumping system. Geophysical monitoring revealed interactions between roots and soils under dynamic soil moisture conditions and the role of roots in regulating the response of the soil system to changes of environmental conditions, e.g. drought and precipitation events. Field scale studies were conducted on natural trees using

  14. Lattice-Boltzmann Method for Geophysical Plastic Flows

    CERN Document Server

    Leonardi, Alessandro; Mendoza, Miller; Herrmann, Hans J


    We explore possible applications of the Lattice-Boltzmann Method for the simulation of geophysical flows. This fluid solver, while successful in other fields, is still rarely used for geotechnical applications. We show how the standard method can be modified to represent free-surface realization of mudflows, debris flows, and in general any plastic flow, through the implementation of a Bingham constitutive model. The chapter is completed by an example of a full-scale simulation of a plastic fluid flowing down an inclined channel and depositing on a flat surface. An application is given, where the fluid interacts with a vertical obstacle in the channel.

  15. Combination of Geophysical Methods to Support Urban Geological Mapping (United States)

    Gabàs, A.; Macau, A.; Benjumea, B.; Bellmunt, F.; Figueras, S.; Vilà, M.


    Urban geological mapping is a key to assist management of new developed areas, conversion of current urban areas or assessment of urban geological hazards. Geophysics can have a pivotal role to yield subsurface information in urban areas provided that geophysical methods are capable of dealing with challenges related to these scenarios (e.g., low signal-to-noise ratio or special logistical arrangements). With this principal aim, a specific methodology is developed to characterize lithological changes, to image fault zones and to delineate basin geometry in the urban areas. The process uses the combination of passive and active techniques as complementary data: controlled source audio-magnetotelluric method (CSAMT), magnetotelluric method (MT), microtremor H/V analysis and ambient noise array measurements to overcome the limitations of traditional geophysical methodology. This study is focused in Girona and Salt surrounding areas (NE of Spain) where some uncertainties in subsurface knowledge (maps of bedrock depth and the isopach maps of thickness of quaternary sediments) need to be resolved to carry out the 1:5000 urban geological mapping. These parameters can be estimated using this proposed methodology. (1) Acoustic impedance contrast between Neogene sediments and Paleogene or Paleozoic bedrock is detected with microtremor H/V analysis that provides the soil resonance frequency. The minimum value obtained is 0.4 Hz in Salt city, and the maximum value is the 9.5 Hz in Girona city. The result of this first method is a fast scanner of the geometry of basement. (2) Ambient noise array constrains the bedrock depth using the measurements of shear-wave velocity of soft soil. (3) Finally, the electrical resistivity models contribute with a good description of lithological changes and fault imaging. The conductive materials (1-100 Ωm) are associated with Neogene Basin composed by unconsolidated detrital sediments; medium resistive materials (100-400 Ωm) correspond to

  16. Lunar science. [geophysics, mineralogy and evolution of moon (United States)

    Brett, R.


    A review of the recent developments in lunar science summarizing the most important lunar findings and the known restraints on the theories of lunar evolution is presented. Lunar geophysics is discussed in sections dealing with the figure of the moon, mascons, and the lunar thermal regime; recent seismic studies and magnetic results are reported. The chemical data on materials taken from lunar orbit are analyzed, and the lunar geology is discussed. Special attention is accorded the subject of minerology, reflecting the information obtained from lunar samples of both mare and nonmare origin. A tentative timetable of lunar events is proposed, and the problem of the moon's origin is briefly treated.

  17. Geophysical survey of the Burnum archaeological site (Croatia) (United States)

    Boschi, Federica; Campedelli, Alessandro; Giorgi, Enrico; Lepore, Giuseppe; de Maria, Sandro


    A multidisciplinary geophysical investigation has been carried out at the site of Burnum (Krka Valley, Croatia) by the University of Bologna, in the context of an international agreement between the University of Zadar, the Civic Museum of Drniš, and the Centre for the Study of the Adriatic Sea Archaeology (Ravenna). The Burnum Project aims at improving our knowledge and preserve the important roman castrum, transformed in a municipium at the beginning of the 2nd century AD. Since 2005, different geophysical techniques have been applied to the site, such as magnetometry, electrical resistivity studies and ground penetrating radar, making the investigated area an interesting case history of a multidisciplinary approach applied to archaeology. After different field works, the geophysical mapping of the southern part of the castrum is almost complete, whereas the northern one will be completed during next planned campaigns. Magnetic data have been collected with the gradient technique, using an Overhauser system and an optically-pumped Potassium magnetometer-gradiometer, configured with a vertical sensor distance of 1.50 m. The resistivity method has been applied using the ARP© (Automatic Resistivity Profiling) and the OhM Mapper systems. GPR surveys have been carried out testing different systems and antennas. During 2009, a special emphasis was given to the acquisition, processing and interpretation of the optically-pumped Potassium magnetometer-gradiometer data. As a result, a clear image of the settlement configuration was obtained, improving our knowledge of the forum-basilica complex and possibly discovering a second auxiliary castrum. Direct exploration by archaeological excavations of selected areas has correctly confirmed the geophysical results and the archaeological interpretation proposed. The features of the building materials, brought to the light and analysed after the excavations, were coherent with the instrumental responses of all the applied

  18. Mine hydrogeologic conditions prospected by comprehensive geophysical exploration

    Energy Technology Data Exchange (ETDEWEB)

    Xing, X.; Pu, C. [Feicheng Coal Mining Bureau (China)


    Mine water gushing is one of the difficult problems puzzling mine safety. The investigation of the hydrogeological condition of the working face is a prerequisite to control effectively the water hazard and guarantee safe mining. The production practice in Feicheng Mining Bureau proved that the comprehensive geophysical survey in which the DC electrical survey, Rayleigh wave method and transient electromagnetic method are the main means, is a simple, high-speed and effective tool to detect the geological structure, water abundance of aquifer and concealed water flowing structure at the working face and the front of driving end. 1 ref., 3 figs.

  19. The magnetic universe geophysical and astrophysical dynamo theory

    CERN Document Server

    Rüdiger, Günther


    Magnetism is one of the most pervasive features of the Universe, with planets, stars and entire galaxies all having associated magnetic fields. All of these fields are generated by the motion of electrically conducting fluids, the so-called dynamo effect. The precise details of what drives the motion, and indeed what the fluid consists of, differ widely though. In this work the authors draw upon their expertise in geophysical and astrophysical MHD to explore some of these phenomena, and describe the similarities and differences between different magnetized objects. They also explain why magn

  20. Geophysics and nutritional science: toward a novel, unified paradigm. (United States)

    Eshel, Gidon; Martin, Pamela A


    This article discusses a few basic geophysical processes, which collectively indicate that several nutritionally adverse elements of current Western diets also yield environmentally harmful food consumption patterns. We address oceanic dead zones, which are at the confluence of oceanography, aquatic chemistry, and agronomy and which are a clear environmental problem, and agriculture's effects on the surface heat budget. These exemplify the unknown, complex, and sometimes unexpected large-scale environmental effects of agriculture. We delineate the significant alignment in purpose between nutritional and environmental sciences. We identify red meat, and to a lesser extent the broader animal-based portion of the diet, as having the greatest environmental effect, with clear nutritional parallels.

  1. Atmospheric and Geophysical Sciences Division Program Report, 1988--1989

    Energy Technology Data Exchange (ETDEWEB)


    In 1990, the Atmospheric and Geophysical Sciences Division begins its 17th year as a division. As the Division has grown over the years, its modeling capabilities have expanded to include a broad range of time and space scales ranging from hours to decades and from local to global. Our modeling is now reaching out from its atmospheric focus to treat linkages with the oceans and the land. In this report, we describe the Division's goal and organizational structure. We also provide tables and appendices describing the Division's budget, personnel, models, and publications. 2 figs., 1 tab.

  2. NGDC Marine Geophysical Data Systems: Past, Present, and Future (United States)

    Sharman, G. F.; Divins, D. L.; Metzger, D. R.; Campagnoli, J. G.


    For the past quarter century, the National Geophysical Data Center (NGDC) has disseminated marine geophysical data previously submitted to the national archive which NGDC maintains for the scientific community. Beginning in 1977, with a conference of users to establish an exchange format, GEODAS(GEOphysical DAta System) has been a tool for describing, distributing, and exchanging marine geophysical data. In the last decade CD-ROM technology permitted distribution of entire databases along with GEODAS software. Described in Sharman, et al., Surveying and Land Information Systems, 58,3(1998)pp.141-146, GEODAS is an integrated, home-grown system developed to address a particular class of data in the absence of Commercial Off-The-Shelf (COTS) solutions. GEODAS has evolved to index the location and quality of multibeam data as well as providing a 1-minute, vertical beam derivative for those who did not wish to deal with the full array of data. NGDC's Coastal Relief Model (CRM) and Global Relief (ETOPO2) are also delivered with the GEODAS software as the primary management tool. The CRM represents a new evolution of NGDC data practice, delivering a gridded data product derived from, rather than, the primary data. Customer-demand for data easily imported into increasingly popular Geographic Information Systems(GIS) drove this change. Our delivery of the CRM includes "canned" graphic images with a web-structured CD-ROM delivery accessed by Web browsers, thus allowing COTS solutions for multi-platform access. GEODAS software permits resampling, joining, and otherwise reformatting the data for export. Future developments include two proposals to deliver high volume data sets (e.g. multibeam, and acoustic imagery/side scan) and data in a spatially enabled format via the Web. Both will begin using COTS solutions that accommodate the needs of a specialized MGG community and their data. Future directions include increasing use of COTS packages, when applicable, to manage and

  3. Borehole Geophysical Logging Program: Incorporating New and Existing Techniques in Hydrologic Studies (United States)

    Wacker, Michael A.; Cunningham, Kevin J.


    The borehole geophysical logging program at the U.S. Geological Survey (USGS)-Florida Integrated Science Center (FISC) provides subsurface information needed to resolve geologic, hydrologic, and environmental issues in Florida. The program includes the acquisition, processing, display, interpretation, and archiving of borehole geophysical logs. The borehole geophysical logging program is a critical component of many FISC investigations, including hydrogeologic framework studies, aquifer flow-zone characterization, and freshwater-saltwater interface delineation.

  4. Genetic algorithms and smoothing filters in solving the geophysical inversion problem

    Directory of Open Access Journals (Sweden)

    Šešum Vesna


    Full Text Available The combination of genetic algorithms, smoothing filters and geophysical tomography is used in solving the geophysical inversion problem. This hybrid technique is developed to improve the results obtained by using genetic algorithm sonly. The application of smoothing filters can improve the performance of GA implementation for solving the geophysical inversion problem. Some test-examples and the obtained comparative results are presented.

  5. Simultaneous Estimation of Geophysical Parameters with Microwave Radiometer Data based on Accelerated Simulated Annealing: SA

    Directory of Open Access Journals (Sweden)

    Kohei Arai


    Full Text Available Method for geophysical parameter estimations with microwave radiometer data based on Simulated Annealing: SA is proposed. Geophysical parameters which are estimated with microwave radiometer data are closely related each other. Therefore simultaneous estimation makes constraints in accordance with the relations. On the other hand, SA requires huge computer resources for convergence. In order to accelerate convergence process, oscillated decreasing function is proposed for cool down function. Experimental results show that remarkable improvements are observed for geophysical parameter estimations.

  6. Integrated Geophysical Methods Applied to Geotechnical and Geohazard Engineering: From Qualitative to Quantitative Analysis and Interpretation (United States)

    Hayashi, K.


    The Near-Surface is a region of day-to-day human activity on the earth. It is exposed to the natural phenomena which sometimes cause disasters. This presentation covers a broad spectrum of the geotechnical and geohazard ways of mitigating disaster and conserving the natural environment using geophysical methods and emphasizes the contribution of geophysics to such issues. The presentation focusses on the usefulness of geophysical surveys in providing information to mitigate disasters, rather than the theoretical details of a particular technique. Several techniques are introduced at the level of concept and application. Topics include various geohazard and geoenvironmental applications, such as for earthquake disaster mitigation, preventing floods triggered by tremendous rain, for environmental conservation and studying the effect of global warming. Among the geophysical techniques, the active and passive surface wave, refraction and resistivity methods are mainly highlighted. Together with the geophysical techniques, several related issues, such as performance-based design, standardization or regularization, internet access and databases are also discussed. The presentation discusses the application of geophysical methods to engineering investigations from non-uniqueness point of view and introduces the concepts of integrated and quantitative. Most geophysical analyses are essentially non-unique and it is very difficult to obtain unique and reliable engineering solutions from only one geophysical method (Fig. 1). The only practical way to improve the reliability of investigation is the joint use of several geophysical and geotechnical investigation methods, an integrated approach to geophysics. The result of a geophysical method is generally vague, here is a high-velocity layer, it may be bed rock, this low resistivity section may contain clayey soils. Such vague, qualitative and subjective interpretation is not worthwhile on general engineering design works

  7. Comprehensive geophysics and lithosphenc structure in the western Xizang (Tibet) Plateau

    Institute of Scientific and Technical Information of China (English)

    孔祥儒; 王谦身; 熊绍柏


    Comprehensive investigations along the Gyirong-Lugu-Sangehu geophysical profile in the western Xizang Plateau are presented. Analysis and interpretation of the lithospheric structure resulted in setting up of the geophysical methods and marks for the division of tectonic units in the lithospheric structure. Comprehensive geophysical survey in the remote west of Xizang is reported and some reliable geophysical evidence for deep structure division in the study region is provided. These lay a solid basis for probing into the mechanism of the Xizang Plateau uplift and geodynamics.

  8. Global status of and prospects for protection of terrestrial geophysical diversity. (United States)

    Sanderson, Eric W; Segan, Daniel B; Watson, James E M


    Conservation of representative facets of geophysical diversity may help conserve biological diversity as the climate changes. We conducted a global classification of terrestrial geophysical diversity and analyzed how land protection varies across geophysical diversity types. Geophysical diversity was classified in terms of soil type, elevation, and biogeographic realm and then compared to the global distribution of protected areas in 2012. We found that 300 (45%) of 672 broad geophysical diversity types currently meet the Convention on Biological Diversity's Aichi Target 11 of 17% terrestrial areal protection, which suggested that efforts to implement geophysical diversity conservation have a substantive basis on which to build. However, current protected areas were heavily biased toward high elevation and low fertility soils. We assessed 3 scenarios of protected area expansion and found that protection focused on threatened species, if fully implemented, would also protect an additional 29% of geophysical diversity types, ecoregional-focused protection would protect an additional 24%, and a combined scenario would protect an additional 42%. Future efforts need to specifically target low-elevation sites with productive soils for protection and manage for connectivity among geophysical diversity types. These efforts may be hampered by the sheer number of geophysical diversity facets that the world contains, which makes clear target setting and prioritization an important next step.

  9. Coal quality estimation using geophysical logging without radioactive sources

    Energy Technology Data Exchange (ETDEWEB)

    Beretta, F.; De Souza, V.C.G.; Salvadoretti, P.; Costa, J.F.C.L.; Koppe, J.C. [Univ. Federal do Rio Grando do Sul, Rio Grando do Sul (Brazil). Dept. of Mining Engineering; Bastiani, G.A.; Carvalho, J.A.Jr. [Copelmi Mineracao, Rio Grando do Sul (Brazil)


    Drill hole logging is widely used in mining and mineral exploration to determine the physical and chemical properties of ore. Geophysical probes are used to delineate coal seams and measure coal seam density. Gamma-gamma logging of the seams is used to determine correlations in ash content and coal density. This study evaluated the accuracy of geophysical logging techniques in predicting coal quality. Seventeen holes in the study were drilled in an irregular grid with spaces ranging from 200 to 600 m. The average recorded values of natural gamma and the resistivity from the logs were obtained. Differences between the coal seams in the deposit were analyzed statistically. The study showed a strong correlation between natural gamma and ash content in the deposit. Relative errors were approximately 10 per cent for a confidence interval of 99.99 per cent. It was concluded that natural gamma logging can be used to accurately measure the ash content in coal seams. 19 refs., 2 tabs., 3 figs.

  10. Palaeomagnetism principles and applications in geology, geophysics and archaeology

    CERN Document Server

    Tarling, D H


    Palaeomagnetism and archaeomagnetism are fascinating specialized studies because they are applicable to such a wide range of problems in geology, archaeology and geophysics. They can also be undertaken cheaply, when compared with most other geophysical techniques, and, at first sight, simply. In fact, real comprehension of the magnetic processes that have occurred in rocks and other types of material over several thousands or many millions of years is still extremely difficult to assess and measure. On this basis, this book cannot explain all such features, nor can it attempt to cover all the actual and potential applications of the method. All that can be attempted is to give an impression of the ways in which such techniques can be used in a wide variety of fields, and how these techniques are usually applied. The magnetization of rocks is, in fact, one of the earliest of the true sciences, but we are still not in a position to answer many of the problems posed. Consequently some of the examples given of ap...

  11. From Geophysics to Microgeophysics for Engineering and Cultural Heritage

    Directory of Open Access Journals (Sweden)

    P. L. Cosentino


    Full Text Available The methodologies of microgeophysics have been derived from the geophysical ones, for the sake of solving specific diagnostic and/or monitoring problems regarding civil engineering and cultural heritage studies. Generally, the investigations are carried out using different 2D and 3D tomographic approaches as well as different energy sources: sonic and ultrasonic waves, electromagnetic (inductive and impulsive sources, electric potential fields, and infrared emission. Many efforts have been made to modify instruments and procedures in order to improve the resolution of the surveys as well as to significantly reduce the time of the measurements without any loss of information. This last point has been achieved by using multichannel systems. Finally, some applications are presented, and the results seem to be very promising and promote this new branch of geophysics. Therefore, these methodologies can be used even more to diagnose, monitor, and safeguard not only engineering buildings and/or large structures, but also ancient monuments and cultural artifacts, such as pottery, statues, and so forth.

  12. Integrated geophysical surveys on railroads in permafrost areas

    Institute of Scientific and Technical Information of China (English)

    A Ivanov; S Klepikova; M Shirobokov; A Urusova; A Savin


    The zones of thawed ground in the permafrost area are most dangerous from engineer-geologist effect point of view. Detection of such zones, as making forecast of their movement is the main task of engineer-geologist survey been held in railway industry. This paper presents general issues concerning railway construction and operation in permafrost areas. Comprehensive geophysical methods to monitor the development of thawed soils are considered in detail. The main physical parameters which help define permafrost and thawed soil patches are described. Author of current paper pointed out main factors, allowing predicting potential areas of development of thawed grounds. They offered set non-destructive methods:GPR investigations, seismic survey and elec-tric exploration. Whole sets of geophysical data:electric resistivity, velocity of S-wave and P-wave (and their correlation), allow us with high confidence specify characteristics and state of soil either under the line of road, or near it. At the same time the meth-od allows to predict direction of further development of thawed ground area.

  13. Using airborne geophysical surveys to improve groundwater resource management models (United States)

    Abraham, Jared D.; Cannia, James C.; Peterson, Steven M.; Smith, Bruce D.; Minsley, Burke J.; Bedrosian, Paul A.


    Increasingly, groundwater management requires more accurate hydrogeologic frameworks for groundwater models. These complex issues have created the demand for innovative approaches to data collection. In complicated terrains, groundwater modelers benefit from continuous high‐resolution geologic maps and their related hydrogeologic‐parameter estimates. The USGS and its partners have collaborated to use airborne geophysical surveys for near‐continuous coverage of areas of the North Platte River valley in western Nebraska. The survey objectives were to map the aquifers and bedrock topography of the area to help improve the understanding of groundwater‐surface‐water relationships, leading to improved water management decisions. Frequency‐domain heliborne electromagnetic surveys were completed, using a unique survey design to collect resistivity data that can be related to lithologic information to refine groundwater model inputs. To render the geophysical data useful to multidimensional groundwater models, numerical inversion is necessary to convert the measured data into a depth‐dependent subsurface resistivity model. This inverted model, in conjunction with sensitivity analysis, geological ground truth (boreholes and surface geology maps), and geological interpretation, is used to characterize hydrogeologic features. Interpreted two‐ and three‐dimensional data coverage provides the groundwater modeler with a high‐resolution hydrogeologic framework and a quantitative estimate of framework uncertainty. This method of creating hydrogeologic frameworks improved the understanding of flow path orientation by redefining the location of the paleochannels and associated bedrock highs. The improved models reflect actual hydrogeology at a level of accuracy not achievable using previous data sets.

  14. Geophysical Techniques for Monitoring CO2 Movement During Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Erika Gasperikova; G. Michael Hoversten


    The relative merits of the seismic, gravity, and electromagnetic (EM) geophysical techniques are examined as monitoring tools for geologic sequestration of carbon dioxide (CO{sub 2}). This work does not represent an exhaustive study, but rather demonstrates the capabilities of a number of geophysical techniques for two synthetic modeling scenarios. The first scenario represents combined CO{sub 2} enhanced oil recovery (EOR) and sequestration in a producing oil field, the Schrader Bluff field on the north slope of Alaska, USA. EOR/sequestration projects in general and Schrader Bluff in particular represent relatively thin injection intervals with multiple fluid components (oil, hydrocarbon gas, brine, and CO{sub 2}). This model represents the most difficult end member of a complex spectrum of possible sequestration scenarios. The time-lapse performance of seismic, gravity, and EM techniques are considered for the Schrader Bluff model. The second scenario is a gas field that in general resembles conditions of Rio Vista reservoir in the Sacramento Basin of California. Surface gravity, and seismic measurements are considered for this model.

  15. Chronology of petroleum geophysics; Sekiyu butsuri tansa nenpyo

    Energy Technology Data Exchange (ETDEWEB)

    Kametani, T.


    A table, chronology of petroleum geophysics in overseas and in Japan, has been prepared for the convenience of checking events, which are thought to be important as notable affairs in application, success, and technical innovation. In overseas, successes in the 1920s were remarkable, when the US modern geophysical exploration made a start. Successes in determining the position of exploratory drilling by means of the gravity torsion balance, fan shooting seismic refraction method, and seismic reflection method occurred one after another. The USA has kept its situation stably as the number one by the seismic reflection method occurred most lately, and its life has been further elongated by adopting digital techniques. The CDP technique which became to be used simultaneously, and the seismic sources without using explosives, such as vibro-seismic source and air gun, extended the success of digital techniques drastically. In the future, the progress of 3-D exploration technology is expected. In Japan, about 18 years lag in the seismic reflection method is observed when compared with the USA. Japan has provided leading techniques in the shallow layer seismic reflection method and S-wave exploration. 40 refs., 1 tab.

  16. Geophysical investigation of a mineral groundwater resource in Turkey (United States)

    Boiero, Daniele; Godio, Alberto; Naldi, Mario; Yigit, Ercan


    The hydrogeological conditions in Uludag (Nilufer River catchment, Bursa, Turkey) were assessed, using time-domain electromagnetic soundings, electrical resistivity and induced polarisation tomography, to detect the most promising zones for new water-well siting, in order to increase the quantity of water for bottling. The hydrogeological model is quite complex: deep mineral and thermal water rises from a main vertical fault which separates two lithological complexes. The highly mineralised (deep) water is naturally mixed with low mineralised water at a shallow depth, 30-40 m; the mixed mineral water is found in some surface springs and shallow wells, while the highly mineralised water is found at depth in some unused deep wells located close to the main fault. All the water points (springs and wells) are located inside a “mineral water belt” on the north side of the Nilufer River. The geophysical survey confirmed the hydrogeological model and highlighted four promising zones for well siting (zones with very low electrical resistivity and high induced polarisation anomalies, corresponding to the main water-bearing faults). One of the geophysical anomalies, the furthest from the exploited sources, was verified by means of a test well; the drilling results have confirmed the water mixing model.

  17. Space, geophysical research related to Latin America - Part 2 (United States)

    Mendoza, Blanca; Shea, M. A.


    For the last 25 years, every two to three years the Conferencia Latinoamericana de Geofísica Espacial (COLAGE) is held in one of the Latin American countries for the purpose of promoting scientific exchange among scientists of the region and to encourage continued research that is unique to this area of the world. At the more recent conference, the community realized that many individuals both within and outside Latin America have contributed greatly to the understanding of the space sciences in this area of the world. It was therefore decided to assemble a Special Issue Space and Geophysical Physics related to Latin America, presenting recent results and where submissions would be accepted from the world wide community of scientists involved in research appropriate to Latin America. Because of the large number of submissions, these papers have been printed in two separate issues. The first issue was published in Advances in Space Research, Vol. 57, number 6 and contained 15 papers. This is the second issue and contains 25 additional papers. These papers show the wide variety of research, both theoretical and applied, that is currently being developed or related to space and geophysical sciences in the Sub-Continent.

  18. Shallow geophysical investigations at the Akhmim archaeological site, Suhag, Egypt (United States)

    Hafez, Mahfooz A.; Atya, Magdy A.; Hassan, Azza M.; Sato, Motoyuki; Wonik, Thomas; El-Kenawy, Abeer A.


    Ground penetrating radar, electromagnetic terrain conductivity, and electric tomography have proven to be effective tools if they are combined together to investigate archeological sites. We have conducted a geophysical survey at the Akhmim archaeological site, the main objective of our survey is to locate additional buried structures for further excavation. Geophysical data were acquired in the area using the GEM-300 multi-frequency terrain conductivity profiler, the SIR 2000 ground penetrating radar, and the Syscal R2 resistivity meter systems. The results of the integrated interpretation show a number of buried features and a strong linear zone about 1 m wide that coincides with the suspected trend of a buried wall. There appears to be two parallel ridges of strong reflections on either side, indicating two parallel walls extended East-West and a room is identified at the bottom left corner of the site. Moreover, the interpretation results of some selected GPR and dipoledipole resistivity profiles adjacent to the open-air museum suggest the existence of a second statue of Ramses II to the right of the previously discovered statue which could still be buried in the sand.

  19. Geophysics and the search of freshwater bodies: a review. (United States)

    Parker, Rachael; Ruffell, Alastair; Hughes, David; Pringle, Jamie


    Geophysics may assist scent dogs and divers in the search of water bodies for human and animal remains, contraband, weapons and explosives by surveying large areas rapidly and identifying targets or environmental hazards. The most commonly applied methods are described and evaluated for forensic searches. Seismic reflection or refraction and CHIRPS are useful for deep, open water bodies and identifying large targets, yet limited in streams and ponds. The use of ground penetrating radar (GPR) on water (WPR) is of limited use in deep waters (over 20 m) but is advantageous in the search for non-metallic targets in small ditches and ponds. Large metal or metal-bearing targets can be successfully imaged in deep waters by using towfish magnetometers: in shallow waters such a towfish cannot be used, so a non-metalliferous boat can carry a terrestrial magnetometer. Each device has its uses, depending on the target and location: unknown target make-up (e.g. a homicide victim with or without a metal object) may be best located using a range of methods (the multi-proxy approach), depending on water depth. Geophysics may not definitively find the target, but can provide areas for elimination and detailed search by dogs and divers, saving time and effort.

  20. Environmental geophysics, offshore Bush River Peninsula, Aberdeen Proving Ground, Maryland

    Energy Technology Data Exchange (ETDEWEB)

    Miller, S.F.; Kuecher, G.J.; Davies, B.E. [and others


    Geophysical studies in shallow waters adjacent to the Bush River Peninsula, Edgewood Area of Aberdeen Proving Ground, Maryland, have delineated the extent of waste disposal sites and established a hydrogeologic framework, which may control contaminant transport offshore. These studies indicate that during the Pleistocene Epoch, alternating stands of high and low sea levels resulted in a complex pattern of shallow channel-fill deposits around the Bush River Peninsula. Ground-penetrating radar studies reveal paleochannels greater than 50 ft deep. Some of the paleochannels are also imaged with marine seismic reflection. Conductivity highs measured with the EM-31 are also indicative of paleochannels. This paleochannel depositional system is environmentally significant because it may control the shallow groundwater flow regime beneath the peninsula. Magnetic, conductivity, and side-scan sonar anomalies outline anthropogenic anomalies in the study area. On the basis of geophysical data, underwater anthropogenic materials do exist in some isolated areas, but large-scale offshore dumping has not occurred in the area studied.

  1. High-resolution Geophysical Mapping of Submarine Glacial Landforms (United States)

    Jakobsson, M.; Dowdeswell, J. A.; Canals, M.; Todd, B. J.; Dowdeswell, E. K.; Hogan, K. A.; Mayer, L. A.


    Glacial landforms are generated from the activity of glaciers and display spatial dimensions ranging from below one meter up to tens of kilometers. Glacial landforms are used as diagnostic features of past activity of ice sheets and glaciers; they are specifically important in the field of palaeoglaciology. Mapping of submarine glacial landforms is largely dependent on geophysical survey methods capable of imaging the seafloor and sub-bottom through the water column. Full "global" seafloor mapping coverage, equivalent to what exists for land elevation, is to-date only achieved by the powerful method of deriving bathymetry from altimeters on satellites like GEOSAT and ERS-1. The lateral resolution of satellite derived bathymetry is, however, limited by the footprint of the satellite and the need to average out local wave and wind effects resulting in values of around 15 km. Consequently, mapping submarine glacial landforms requires for the most part higher resolution than is achievable by satellite derived bathymetry. The most widely-used methods for mapping submarine glacial landforms are based on echo-sounding principles. This presentation shows how the evolution of marine geophysical mapping techniques, in particular the advent of side-scan and multibeam bathymetric sonars, has made it possible to study submarine glacial landforms in unprecedented detail. Examples are shown from the Atlas of Submarine Glacial Landforms: Modern, Quaternary and Ancient, which will be published in late 2015 in the Memoir Series of the Geological Society of London.

  2. Beyond multifractional Brownian motion: new stochastic models for geophysical modelling

    Directory of Open Access Journals (Sweden)

    J. Lévy Véhel


    Full Text Available Multifractional Brownian motion (mBm has proved to be a useful tool in various areas of geophysical modelling. Although a versatile model, mBm is of course not always an adequate one. We present in this work several other stochastic processes which could potentially be useful in geophysics. The first alternative type is that of self-regulating processes: these are models where the local regularity is a function of the amplitude, in contrast to mBm where it is tuned exogenously. We demonstrate the relevance of such models for digital elevation maps and for temperature records. We also briefly describe two other types of alternative processes, which are the counterparts of mBm and of self-regulating processes when the intensity of local jumps is considered in lieu of local regularity: multistable processes allow one to prescribe the local intensity of jumps in space/time, while this intensity is governed by the amplitude for self-stabilizing processes.

  3. Quantitative Analysis of Piezoelectric and Seismoelectric Anomalies in Subsurface Geophysics (United States)

    Eppelbaum, Lev


    The piezoelectric and seismo-electrokinetic phenomena are manifested by electrical and electromagnetic processes that occur in rocks under the influence of elastic oscillations triggered by shots or mechanical impacts (hits) (e.g., Neishtadt and Osipov, 1958; Neishtadt, 1961; Parkhomenko, 1971; Neishtadt et al., 1986; Maxwell et al., 1992; Butler et al., 1994; Kepic et al., 1995; Neishtadt et al., 1996; Mikhalov et al., 1997; Boulytchov, 2000; Dupuis et al., 2009; Schakel et al., 2011; Neishtadt and Eppelbaum, 2012; Jouniaux and Zyserman, 2016). The developed classification divides the above phenomena into the following types: (1) the seismo-electrokinetic (electrokinetic) phenomenon E, which occurs in polyphase media due to the mutual displacement of the solid and liquid phases; (2) the piezoelectric phenomenon, which occurs in rocks that contain piezoactive minerals; (3) the shot-triggered phenomenon, which is observed in rocks in the vicinity of a shot or hit point; (4) the seismoelectric phenomenon I, manifested by the change of the electric current passing through rocks, and (5) high-frequency impulse electromagnetic radiation, which is generated by massive base-metal bodies. This paper describes the above phenomena in detail, describing their nature, manifestation patterns, and registration techniques. Because the manifestation patterns of the above phenomena are different in different rocks, these phenomena can be used as a basis for geophysical exploration techniques. The piezoelectric method is an example of a successful application of piezoelectric and seismo-electrokinetic phenomena in exploration geophysics. It has been successfully applied in mineral exploration and environmental features research in Russia, USA, Canada, Australia, Belorussia, Azerbaijan, Georgia, Israel and other countries. This method uses comparatively new geophysical parameter - piezoelectric activity of rocks, ores, and minerals. It enables direct exploration for pegmatite

  4. Geophysical characterisation of a rockslide in an alpine region (United States)

    Godio, A.; de Bacco, G.; Strobbia, C.


    The rock slope stability analysis requires the geomechanical characterisation of the different geological units that may be affected by the instability, and hence the required investigation depth depends on the mechanism of the movement and on its scale. A joint application of laboratory test and in situ extensive geophysical investigation has been used for the geological and geotechnical characterisation of a site with heavy slope and interested by recent events of landslide in the overburden and rockslide. An existing road is going to be substituted by a tunnel, and so both the shallow detritical overburden and the rock mass has to be investigated. The geophysical survey has been planned taking into account the difficult logistical condition of the area; the accessibility also conditioned the positioning of the boreholes. Two horizontal boreholes, each 50 m long, were drilled along the designed tunnel line, and two vertical boreholes, 30m of depth, were realised in order to take samples to test for the estimate of the mechanical properties of the rock mass. They also provided direct punctual information on the thickness of the overburden and allowed to calibrate the geophysical results. The horizontal ones have been used for borehole seismic and for ultrasonic logging; in the vertical ones inclinometers have been installed to monitor the movements. The stratigraphic evidence showed the presence of shallow layer of low-consolidated materials and a hard gneissic bedrock around 20 m deep. Laboratory measurements on samples allowed the determination of the high-strain mechanical behaviour and the dynamic low-strain elastic moduli (P and S wave ultrasonic pulse test). These data are compared with the results of the in situ characterisation: the geophysical investigation had to answer a series of questions about the geometry and the properties of the detritical overburden, the inhomogeneities and the fracture distribution of the rock mass, the eventual presence of

  5. Joint Inversion Modelling of Geophysical Data From Lough Neagh Basin (United States)

    Vozar, J.; Moorkamp, M.; Jones, A. G.; Rath, V.; Muller, M. R.


    Multi-dimensional modelling of geophysical data collected in the Lough Neagh Basin is presented in the frame of the IRETHERM project. The Permo-Triassic Lough Neagh Basin, situated in the southeastern part of Northern Ireland, exhibits elevated geothermal gradient (~30 °C/km) in the exploratory drilled boreholes. This is taken to indicate good geothermal exploitation potential in the Sherwood Sandstone aquifer for heating, and possibly even electricity production, purposes. We have used a 3-D joint inversion framework for modelling the magnetotelluric (MT) and gravity data collected to the north of the Lough Neagh to derive robust subsurface geological models. Comprehensive supporting geophysical and geological data (e.g. borehole logs and reflection seismic images) have been used in order to analyze and model the MT and gravity data. The geophysical data sets were provided by the Geological Survey of Northern Ireland (GSNI). Considering correct objective function weighting in favor of noise-free MT response functions is particularly important in joint inversion. There is no simple way how to correct distortion effects the 3-D responses as can be done in 1-D or 2-D case. We have used the Tellus Project airborne EM data to constrain magnetotelluric data and correct them for near surface effects. The shallow models from airborne data are used to constrain the uppermost part of 3-D inversion model. Preliminary 3-D joint inversion modeling reveals that the Sherwood Sandstone Group and the Permian Sandstone Formation are imaged as a conductive zone at the depth range of 500 m to 2000 m with laterally varying thickness, depth, and conductance. The conductive target sediments become shallower and thinner to the north and they are laterally continuous. To obtain better characterization of thermal transport properties of investigated area we used porosity and resistivity data from the Annaghmore and Ballymacilroy boreholes to estimate the relations between porosity

  6. The application of geophysics in South African coal mining and exploration

    CSIR Research Space (South Africa)

    Van Schoor, Abraham M


    Full Text Available in-house geophysicists. Consequently, the Coaltech Research Organisation’s Geology and Geophysics working group forum compiled a textbook aimed at addressing this need: to produce a guide for applying geophysics to coal mining problems in South Africa...

  7. Development of methods of ore geophysics and a solution to the problems of geological prospecting

    Energy Technology Data Exchange (ETDEWEB)

    Badalian, S.V.; Gamoian, V.B.; Gazarian, G.O.; Gevorkian, M.G.; Gevorkian, V.M.; Kazarian, S.S.; Ovsepian, R.V.


    The development of scientific research in the field of ore geophysics along the stages conducted at the academy of Sciences of the Armenian SSR between 1961 and 1980 is given. A short description of separate scientific developments (theoretical methodological and equipment) and results from introducing geophysical methods into geological prospecting procedures in the Armenian SSR are given.

  8. Marine Magnetic Data Holdings of World Data Center-a for Marine Geology and Geophysics (United States)

    Sharman, George F.; Metzger, Dan


    The World Data Center-A for Marine Geology and Geophysics is co-located with the Marine Geology & Geophysical Data Center, Boulder, CO. Fifteen million digital marine magnetic trackline measurements are managed within the GEOphysical DAta System (GEODAS). The bulk of these data were collected with proton precision magnetometers under Transit Satellite navigational control. Along-track sampling averages about 1 sample per kilometer, while spatial density, a function of ship's track and survey pattern, range from 4 to 0.02 data points/sq. km. In the near future, the entire geophysical data set will be available on CD-ROM. The Marine Geology and Geophysics Division (World Data Center-A for MGG), of the National Geophysical Data Center, handles a broad spectrum of marine geophysical data, including measurements of bathymetry, magnetics, gravity, seismic reflection subbottom profiles, and side-scan images acquired by ships throughout the world's oceans. Digital data encompass the first three, while the latter two are in analog form, recorded on 35mm microfilm. The marine geophysical digital trackline data are contained in the GEODAS data base which includes 11.6 million nautical miles of cruise trackline coverage contributed by more than 70 organizations worldwide. The inventory includes data from 3206 cruises with 33 million digital records and indexing to 5.3 million track miles of analog data on microfilm.

  9. High resolution land surface geophysical parameters estimation from ALOS PALSAR data (United States)

    High resolution land surface geophysical products, such as soil moisture, surface roughness and vegetation water content, are essential for a variety of applications ranging from water management to regional climate predictions. In India high resolution geophysical products, in particular soil moist...

  10. Geophysical survey of 105-DR Pluto Crib, 116-DR-4, 100-D Area

    Energy Technology Data Exchange (ETDEWEB)

    Bergstrom, K.A.


    The objective of this Geophysical Survey was to verify the location of the 105-DR Pluto Crib, 116-DR-4. A surface monument currently marks its location. The crib is 10 feet by 10 feet and 15 feet deep. Ground-Penetrating Radar was the geophysical method selected to conduct the investigation.

  11. Geophysics: The Earth in Space. A Guide for High School Students. (United States)

    American Geophysical Union, Washington, DC.

    Geophysics is the application of physics, chemistry, and mathematics to the problems and processes of the earth, from its innermost core to its outermost environs in space. Fields within geophysics include the atmospheric sciences; geodesy; geomagnetism and paleomagnetism; hydrology; oceanography; planetology; seismology; solar-planetary…

  12. 15 CFR 950.5 - National Geophysical and Solar-Terrestrial Data Center (NGSDC). (United States)


    ... COMMERCE GENERAL REGULATIONS OF THE ENVIRONMENTAL DATA SERVICE ENVIRONMENTAL DATA AND INFORMATION § 950.5...-A (Solid-Earth Geophysics, Solar Terrestrial Physics, and Glaciology). (a) Geophysical and solar... geological data, including data on heat flow, cores, samples, and sediments. (2) Solar-Terrestrial physics...

  13. Protoplanetary Earth Formation: Further Evidence and Geophysical Implications

    CERN Document Server

    Herndon, J M


    Recently, I showed that the "standard model" of solar system formation is wrong,yielding the contradiction of terrestrial planets having insufficiently massive cores, and showed instead the consistency of Eucken's 1944 concept of planets raining out in the central regions of hot, gaseous protoplanets. Planets generally consist of concentric shells of matter, but there has been no adequate geophysical explanation to account for the Earth's non-contiguous crustal continental rock layer, except by assuming that the Earth in the distant past was smaller and subsequently expanded. Here, I show that formation of Earth, from within a Jupiter-like protoplanet, will account for the compression of the rocky Earth to about 64 percent of its current radius, yielding a closed, contiguous continental shell with concomitant Earth expansion commencing upon the subsequent removal of its protoplanetary gaseous shell. I now propose that Earth expansion progresses, not from spreading at mid-oceanic ridges as usually assumed, but...

  14. The Dynamics of Flat Surface Internal Geophysical Waves with Currents (United States)

    Compelli, Alan; Ivanov, Rossen I.


    A two-dimensional water wave system is examined consisting of two discrete incompressible fluid domains separated by a free common interface. In a geophysical context this is a model of an internal wave, formed at a pycnocline or thermocline in the ocean. The system is considered as being bounded at the bottom and top by a flatbed and wave-free surface respectively. A current profile with depth-dependent currents in each domain is considered. The Hamiltonian of the system is determined and expressed in terms of canonical wave-related variables. Limiting behaviour is examined and compared to that of other known models. The linearised equations as well as long-wave approximations are presented.

  15. Geophysical Investigations for Groundwater in Outita, Morroco, using ERT Method

    Directory of Open Access Journals (Sweden)

    Latifa Ouadif


    Full Text Available Morocco is a country in semi-arid to arid climate. Rainfall is irregular in time and space. Surface water undergoes very large fluctuations due to the hydraulicity of the year. Hence, the use of groundwater resources that play a very important role in supplying water to rural populations and irrigation. In this context a geophysical survey was carried out in Outita. The interpretation of ERT profiles oriented West-East showed a horst and graben structure and revealed the existence of water-bearing formations at depths of around 300m. To determine the lateral extent of these formations, two ERT profiles oriented in the North-South direction were carried out.

  16. Mathematical model of MMR inversion for geophysical data

    Directory of Open Access Journals (Sweden)

    Suabsagun Yooyuanyong


    Full Text Available In this paper, we present an analysis of the solution to a number of geophysical inverse problems which are generally non-unique. The mathematical inverse problem that arises is commonly ill-posed in the sense that small changes in the data lead to large changes in the solution. We conduct the inversion algorithm to explore the conductivity for the ground structure. The algorithm uses the data in the form of magnetic field measurements for magnetometric resistivity (MMR. The inversion example is performed to investigate the conductivity ground profile that best fits the observed data. The result is compared with the true model and discussed to show the efficiency of the method. The model for the inversion example with the apparent conductivity and the true conductivity are plotted to show the convergence of the algorithm.

  17. Experimental analysis of the levees safety based on geophysical monitoring (United States)

    Rizzo, Enzo; Valeria, Giampaolo; Mario, Votta; Lapenna, Vincenzo; Moramarco, Tommaso; Aricò, Costanza; Camici, S.; Morbidelli, Renato; Sinagra, M.; Tucciarelli, T.


    Several flood events brought river levees into the focus of attention for some disasters due to their collapse. This phenomena is quite complex to investigate, because of different factors that can affect the stability of levees, among them the non uniformity of material properties, which influencing the permeability of the embankment, might induce high percolation velocity of flux thus triggering the unstability. Thus, to apply a fast and integrate investigation methods with a non-destructive characteristics should have a large interest, if they are able to furnish ready and usable information necessary to hydrogeological models. In order to achieve this goal, the University of Perugia (Department of Civil and Environmental Engineering) and the National Research Council (IRPI and IMAA research institutes) developed a collaborating project on the study of the internal structure of the river embankment by carrying out experiments in laboratory. The purpose of this study is to show the preliminary results of the experimental investigation. The laboratory embankment was built using material coming from a real levee and gathered inside a 1.5m x 1.2m plexiglas box. The box has two compartments: a water reservoir at one hand where a constant water head was reached after some time and a soil simulating the presence of levee. We perform a geoelectrical multichannel acquisition system with three parallel profiles characterized by 16 mini-electrodes connected to georesistivimeter Syscal Pro. An automatic acquisition protocol has been performed to obtain time slice electrical tomographies during the experiments. The geophysical results show the effect of the water table inside the embankment during the wetting and emptying. In order to assess the capability of the geophysical monitoring for addressing the soil parameters estimate, the resistivity results are investigated by using two analytical and one hydraulic numerical models. The analytical models represent a linear

  18. Proposed geologic model based on geophysical well logs

    Energy Technology Data Exchange (ETDEWEB)

    Diaz C, S.; Puente C, I.; de la Pena L, A.


    An investigation of the subsurface based on a qualitative interpretation of well logs was carried out at Cerro Prieto to obtain information on the distribution of the different lithofacies that make up a deltaic depositional system. The sedimentological interpretation derived from the resistivity and spontaneous potential are shown in several cross-sections of the field. In addition to the sedimentological interpretation, a map of the structural geology of the region based on well logs and available geophysical information was prepared, including the results of gravity and seismic refraction surveys. The depth to the zone of hydrothermal alteration described by Elders (1980) was found by means of temperature, electrical, and radioactive logs. Two maps showing the configuration of the top of this anomaly show a clear correlation with the gravity anomalies found in the area.

  19. Wavelet correlations to reveal multiscale coupling in geophysical systems

    CERN Document Server

    Casagrande, Erik; Miralles, Diego; Entekhabi, Dara; Molini, Annalisa


    The interactions between climate and the environment are highly complex. Due to this complexity, process-based models are often preferred to estimate the net magnitude and directionality of interactions in the Earth System. However, these models are based on simplifications of our understanding of nature, thus are unavoidably imperfect. Conversely, observation-based data of climatic and environmental variables are becoming increasingly accessible over large scales due to the progress of space-borne sensing technologies and data-assimilation techniques. Albeit uncertain, these data enable the possibility to start unraveling complex multivariable, multiscale relationships if the appropriate statistical methods are applied. Here, we investigate the potential of the wavelet cross-correlation method as a tool for identifying multiscale interactions, feedback and regime shifts in geophysical systems. The ability of wavelet cross-correlation to resolve the fast and slow components of coupled systems is tested on syn...

  20. Geophysical constraints on geodynamical processes at convergent margins

    DEFF Research Database (Denmark)

    Artemieva, Irina; Thybo, Hans; Shulgin, Alexey


    Convergent margins, being the boundaries between colliding lithospheric plates, form the most disastrous areas in the world due to intensive, strong seismicity and volcanism. We review global geophysical data in order to illustrate the effects of the plate tectonic processes at convergent margins...... on the crustal and upper mantle structure, seismicity, and geometry of subducting slab. We present global maps of free-air and Bouguer gravity anomalies, heat flow, seismicity, seismic Vs anomalies in the upper mantle, and plate convergence rate, as well as 20 profiles across different convergent margins....... A global analysis of these data for three types of convergent margins, formed by ocean-ocean, ocean-continent, and continent-continent collisions, allows us to recognize the following patterns. (1) Plate convergence rate depends on the type of convergent margins and it is significantly larger when...

  1. Atmospheric and Geophysical Sciences Division: Program report, FY 1987

    Energy Technology Data Exchange (ETDEWEB)


    In 1988 the Atmospheric and Geophysical Sciences Division began its 15th year as a division. As the Division has grown over the years, its modeling capabilities have expanded to include a broad range of time and space scales ranging from hours to years, and from kilometers to global, respectively. For this report, we have chosen to show a subset of results from several projects to illustrate the breadth, depth, and diversity of the modeling activities that are a major part of the Division's research, development, and application efforts. In addition, the recent reorganization of the Division, including the merger of another group with the Division, is described, and the budget, personnel, models, and publications are reviewed. 95 refs., 26 figs., 2 tabs.

  2. Statistical mechanics of two-dimensional and geophysical flows

    CERN Document Server

    Bouchet, Freddy


    The theoretical study of the self-organization of two-dimensional and geophysical turbulent flows is addressed based on statistical mechanics methods. This review is a self-contained presentation of classical and recent works on this subject; from the statistical mechanics basis of the theory up to applications to Jupiter's troposphere and ocean vortices and jets. Emphasize has been placed on examples with available analytical treatment in order to favor better understanding of the physics and dynamics. The equilibrium microcanonical measure is built from the Liouville theorem. On this theoretical basis, we predict the output of the long time evolution of complex turbulent flows as statistical equilibria. This is applied to make quantitative models of two-dimensional turbulence, the Great Red Spot and other Jovian vortices, ocean jets like the Gulf-Stream, and ocean vortices. We also present recent results for non-equilibrium situations, for the studies of either the relaxation towards equilibrium or non-equi...

  3. High-resolution geophysical characterization of shallow-water wetlands

    DEFF Research Database (Denmark)

    Mansoor, N; Slater, L; Artigas, F


    We describe a procedure for rapid characterization ofshallow-water, contaminated wetlands. Terrain-conductivityTC, vertical-magnetic-gradiometry, and surface-waterchemistrydata were obtained from a shallow-draft paddleboatoperable in as little as 0.3 m of water. Measurementswere taken every 2 s......, with data-acquisition rates exceeding10 km of line 12 000 data points per 8-hr field day.We applied this procedure to an urban wetland that is affectedby point and nonpoint sources of pollution.We used aone-dimensional, laterally constrained inversion algorithmto invert the apparent-conductivity data set...... as lithologiclogs from across the wetland, to constrain interpretation ofthe geophysical data. The inverted sediment conductivity describesa pattern of contamination probably attributable toleachates from adjacent landfills and/or to saltwater ingressfrom a partial tidal connection that is not obvious...

  4. The Earth's heterogeneous mantle a geophysical, geodynamical, and geochemical perspective

    CERN Document Server

    Khan, Amir


    This book highlights and discusses recent developments that have contributed to an improved understanding of observed mantle heterogeneities and their relation to the thermo-chemical state of Earth's mantle, which ultimately holds the key to unlocking the secrets of the evolution of our planet. This series of topical reviews and original contributions address 4 themes. Theme 1 covers topics in geophysics, including global and regional seismic tomography, electrical conductivity and seismic imaging of mantle discontinuities and heterogeneities in the upper mantle, transition zone and lower mantle. Theme 2 addresses geochemical views of the mantle including lithospheric evolution from analysis of mantle xenoliths, composition of the deep Earth and the effect of water on subduction-zone processes. Theme 3 discusses geodynamical perspectives on the global thermo-chemical structure of the deep mantle. Theme 4 covers application of mineral physics data and phase equilibrium computations to infer the regional-scale ...

  5. Coastal geophysical data collected in 2016 nearshore Cape Canaveral, Florida (United States)

    Buster, Noreen A.; Miselis, Jennifer L.; Okano, Shinobu; Gayes, Paul T.; Hill, Jenna C.


    Geophysical data including multibeam bathymetry and backscatter, side scan sonar, and chirp subbottom were collected by Coastal Carolina University (CCU) Center for Marine and Wetland Studies (CMWS), Conway, South Carolina, in June 2016 in collaboration with the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) in the nearshore environment of Cape Canaveral, Florida. The goal of the effort was to broadly characterize the geology of the shelf to identify spatial linkages with previously measured coastal change and bathymetric variability ( This USGS Data Release includes the: 1) processed elevation point data (xyz) and digital elevation model (DEM), 2) processed images of backscatter and side scan sonar (SSS), and 3) chirp subbottom profile data (segy and jpg). For further information regarding data collection and/or processing please see the metadata associated with this data release.

  6. The Dynamics of Flat Surface Internal Geophysical Waves with Currents

    CERN Document Server

    Compelli, Alan


    A two-dimensional water wave system is examined consisting of two discrete incompressible fluid domains separated by a free common interface. In a geophysical context this is a model of an internal wave, formed at a pycnocline or thermocline in the ocean. The system is considered as being bounded at the bottom and top by a flatbed and wave-free surface respectively. A current profile with depth-dependent currents in each domain is considered. The Hamiltonian of the system is determined and expressed in terms of canonical wave-related variables. Limiting behaviour is examined and compared to that of other known models. The linearised equations as well as long-wave approximations are presented.

  7. Geophysical Aspects of Non-Newtonian Fluid Mechanics (United States)

    Balmforth, N. J.; Craster, R. V.

    Non-Newtonian fluid mechanics is a vast subject that has several journals partly, or primarily, dedicated to its investigation (Journal of Non-Newtonian Fluid Mechanics, Rheologica Acta, Journal of Fluid Mechanics, Journal of Rheology, amongst others). It is an area of active research, both for industrial fluid problems and for applications elsewhere, notably geophysically motivated issues such as the flow of lava and ice, mud slides, snow avalanches and debris flows. The main motivati on for this research activity is that, apart from some annoyingly common fluids such as air and water, virtually no fluid is actually Newtonian (that is, having a simple linear relation between stress and strain-rate characterized by a constant viscosity). Several textbooks are useful sources of information; for example, [1-3] are standard texts giving mathematical and engineering perspectives upon the subject. In these lecture notes, Ancey's chapter on rheology (Chap. 3) gives further introduction.

  8. Deterministic treatment of model error in geophysical data assimilation

    CERN Document Server

    Carrassi, Alberto


    This chapter describes a novel approach for the treatment of model error in geophysical data assimilation. In this method, model error is treated as a deterministic process fully correlated in time. This allows for the derivation of the evolution equations for the relevant moments of the model error statistics required in data assimilation procedures, along with an approximation suitable for application to large numerical models typical of environmental science. In this contribution we first derive the equations for the model error dynamics in the general case, and then for the particular situation of parametric error. We show how this deterministic description of the model error can be incorporated in sequential and variational data assimilation procedures. A numerical comparison with standard methods is given using low-order dynamical systems, prototypes of atmospheric circulation, and a realistic soil model. The deterministic approach proves to be very competitive with only minor additional computational c...

  9. Recent Advances Concerning Certain Class of Geophysical Flows

    CERN Document Server

    Li, Jinkai


    This paper is devoted to reviewing several recent developments concerning certain class of geophysical models, including the primitive equations (PEs) of atmospheric and oceanic dynamics and a tropical atmosphere model. The PEs for large-scale oceanic and atmospheric dynamics are derived from the Navier-Stokes equations coupled to the heat convection by adopting the Boussinesq and hydrostatic approximations, while the tropical atmosphere model considered here is a nonlinear interaction system between the barotropic mode and the first baroclinic mode of the tropical atmosphere with moisture. We are mainly concerned with the global well-posedness of strong solutions to these systems, with full or partial viscosity, as well as certain singular perturbation small parameter limits related to these systems, including the small aspect ratio limit from the Navier-Stokes equations to the PEs, and a small relaxation-parameter in the tropical atmosphere model. These limits provide a rigorous justification to the hydrost...

  10. Press conference bring excitement of geophysical research to the public (United States)

    Leifert, Harvey

    “A Flare to Remember.” “Starbucks for Starfish.” “Earth's Rotation Slows for El Niño.” What do these catchy headlines have in common? They all resulted from presentations at AGU's Spring Meeting in Boston, Mass. Yes, geophysical science can be big news when presented in a way that is interesting to general audiences.Proof? Well, the “Flare to Remember” headline (in the Dallas Morning News) reported the discovery, via the SOHO spacecraft, that a solar flare had produced, deep inside the Sun, seismic disturbances of a magnitude never experienced on Earth. Researchers Valentina Zharkova of Glasgow University and Alexander Kosovichev of Stanford gave media representatives a preview of their session, supported by visual aids, in the AGU press briefing room.

  11. Flow networks: A characterization of geophysical fluid transport

    CERN Document Server

    Ser-Giacomi, Enrico; Lopez, Cristobal; Hernandez-Garcia, Emilio


    We represent transport between different regions of a fluid domain by flow networks, constructed from the discrete representation of the Perron-Frobenius or transfer operator associated to the fluid advection dynamics. The procedure is useful to analyze fluid dynamics in geophysical contexts, as illustrated by the construction of a flow network associated to the surface circulation in the Mediterranean sea. We use network-theory tools to analyze the flow network and gain insights into transport processes. In particular we quantitatively relate dispersion and mixing characteristics, classically quantified by Lyapunov exponents, to the degree of the network nodes. A family of network entropies is defined from the network adjacency matrix, and related to the statistics of stretching in the fluid, in particular to the Lyapunov exponent field. Finally we use a network community detection algorithm, Infomap, to partition the Mediterranean network into coherent regions, i.e. areas internally well mixed, but with lit...

  12. Modulational Instability in Basic Plasma and Geophysical Models

    CERN Document Server

    Quinn, Brenda; Connaughton, Colm; Gallagher, Steven; Hnat, Bogdan


    This is a review of the theory of the modulational instability in idealised fluid models of strongly magnetised plasmas and reduced models of geophysical fluid dynamics, particularly the role it plays in the formation of zonal flows. The discussion focusses on the Charney-Hasegawa-Mima and Hasegawa-Wakatani models. Particular attention is paid to the wave turbulence - zonal flow feedback loop whereby large scale zonal flows which are initially generated by modulational instability of small-scale drift/Rossby waves tend to subsequently suppress these small scale waves by their shearing action. This negative feedback can result in a dynamic equilibrium in which large scale zonal flows grow by drawing energy from small scale turbulence but suppress the small scale turbulence in the process until a balance is reached. In this regime, the level of small scale turbulence is greatly reduced compared to the level one would observe in the absence of the zonal flows.

  13. Inverse problems basics, theory and applications in geophysics

    CERN Document Server

    Richter, Mathias


    The overall goal of the book is to provide access to the regularized solution of inverse problems relevant in geophysics without requiring more mathematical knowledge than is taught in undergraduate math courses for scientists and engineers. From abstract analysis only the concept of functions as vectors is needed. Function spaces are introduced informally in the course of the text, when needed. Additionally, a more detailed, but still condensed introduction is given in Appendix B. A second goal is to elaborate the single steps to be taken when solving an inverse problem: discretization, regularization and practical solution of the regularized optimization problem. These steps are shown in detail for model problems from the fields of inverse gravimetry and seismic tomography. The intended audience is mathematicians, physicists and engineers having a good working knowledge of linear algebra and analysis at the upper undergraduate level.

  14. Geophysical imaging of shallow degassing in a Yellowstone hydrothermal system (United States)

    Pasquet, S.; Holbrook, W. S.; Carr, B. J.; Sims, K. W. W.


    The Yellowstone Plateau Volcanic Field, which hosts over 10,000 thermal features, is the world's largest active continental hydrothermal system, yet very little is known about the shallow "plumbing" system connecting hydrothermal reservoirs to surface features. Here we present the results of geophysical investigations of shallow hydrothermal degassing in Yellowstone. We measured electrical resistivity, compressional-wave velocity from refraction data, and shear wave velocity from surface-wave analysis to image shallow hydrothermal degassing to depths of 15-30 m. We find that resistivity helps identify fluid pathways and that Poisson's ratio shows good sensitivity to saturation variations, highlighting gas-saturated areas and the local water table. Porosity and saturation predicted from rock physics modeling provide critical insight to estimate the fluid phase separation depth and understand the structure of hydrothermal systems. Finally, our results show that Poisson's ratio can effectively discriminate gas- from water-saturated zones in hydrothermal systems.

  15. Efficient Multigrid Preconditioners for Anisotropic Problems in Geophysical Modelling

    CERN Document Server

    Dedner, Andreas; Scheichl, Robert


    Many problems in geophysical modelling require the efficient solution of highly anisotropic elliptic partial differential equations (PDEs) in "flat" domains. For example, in numerical weather- and climate-prediction an elliptic PDE for the pressure correction has to be solved at every time step in a thin spherical shell representing the global atmosphere. This elliptic solve can be one of the computationally most demanding components in semi-implicit semi-Lagrangian time stepping methods which are very popular as they allow for larger model time steps and better overall performance. With increasing model resolution, algorithmically efficient and scalable algorithms are essential to run the code under tight operational time constraints. We discuss the theory and practical application of bespoke geometric multigrid preconditioners for equations of this type. The algorithms deal with the strong anisotropy in the vertical direction by using the tensor-product approach originally analysed by B\\"{o}rm and Hiptmair ...

  16. Geology, geophysics and engineering: a case for synergism

    Energy Technology Data Exchange (ETDEWEB)

    Gretener, P.E.


    This article uses the example of artificial well fracturing to show how geologists, geophysicists and engineers can benefit from establishing an interdisciplinary dialogue. The term ''Ultimate Recovery'' is shown to be equally applicable to oil production and hard rock mining. While geology and geophysics schools gear their curricula toward the exploration for natural resources, engineers consider exploitation as their exclusive domain. It is proposed that geologists and geophysicists close ranks with the engineers and abolish the current state of separation which is being perpetuated by both sides. It is shown how geological considerations have helped to unravel the process of artificial well stimulation, while well stimulation in turn has provided valuable insights into the present stress conditions in various geological provinces.

  17. Parameterization of geophysical inversion model using particle clustering

    CERN Document Server

    Yang, Dikun


    This paper presents a new method of constructing physical models in a geophysical inverse problem, when there are only a few possible physical property values in the model and they are reasonably known but the geometry of the target is sought. The model consists of a fixed background and many small "particles" as building blocks that float around in the background to resemble the target by clustering. This approach contrasts the conventional geometric inversions requiring the target to be regularly shaped bodies, since here the geometry of the target can be arbitrary and does not need to be known beforehand. Because of the lack of resolution in the data, the particles may not necessarily cluster when recovering compact targets. A model norm, called distribution norm, is introduced to quantify the spread of particles and incorporated into the objective function to encourage further clustering of the particles. As proof of concept, 1D magnetotelluric inversion is used as example. My experiments reveal that the ...

  18. Surface Geophysical Measurements for Locating and Mapping Ice-Wedges

    DEFF Research Database (Denmark)

    Ingeman-Nielsen, Thomas; Tomaskovicova, Sonia; Larsen, S.H.


    With the presently observed trend of permafrost warming and degradation, the development and availability of effective tools to locate and map ice-rich soils and massive ground ice is of increasing importance. This paper presents a geophysical study of an area with polygonal landforms in order...... to test the applicability of DC electrical resistivity tomography (ERT) and Ground Penetrating Radar (GPR) to identifying and mapping ice-wedge occurrences. The site is located in Central West Greenland, and the ice-wedges are found in a permafrozen peat soil with an active layer of about 30 cm. ERT...... and GPR measurements give a coherent interpretation of possible ice-wedge locations, and active layer probing show a tendency for larger thaw depth in the major trench systems consistent with a significant temperature (at 10 cm depth) increase in these trenches identified by thermal profiling. Three...

  19. Circular structures of Bajada del Diablo (Argentina): geophysical signatures (United States)

    Prezzi, C. B.; Orgeira, M. J.; Martinez, O.; Acevedo, R. D.; Ponce, F.; Goldmann, G.; Magneres, I.; Rabassa, J.


    Bajada del Diablo is located in the Northern Patagonian Massif, Chubut, Argentina. The study area includes several circular structures found in Miocene olivine basalts of the Quiñelaf Eruptive Complex and in the Late Pliocene/Early Pleistocene Pampa Sastre conglomerates. An impact origin has been proposed for these circular structures. With the aim of further investigate the proposed impact origin, topographic, gravimetric, magnetic, resistivity, palaeomagnetic and electromagnetic surveys in two circular structures (`8' and `G') located in Pampa Sastre conglomerates and in basalts of the Quiñelaf Eruptive Complex were carried out. The new geophysical results support the hypothesis of an impact origin. However, the confirmation of such an origin through the findings of shock metamorphism evidences and/or the recovery of meteorites remains elusive.

  20. Particle-laden flow from geophysical to Kolmogorov scales

    CERN Document Server

    Clercx, Herman; Uijttewaal, Wim


    The dispersion of particles in a flow is of central importance in various geophysical and environmental problems. The spreading of aerosols and soot in the air, the growth and dispersion of plankton blooms in seas and oceans, or the transport of sediment in rivers, estuaries and coastal regions are striking examples. These problems are characterized by strong nonlinear coupling between several dynamical mechanisms. As a result, processes on widely different length and time scales are simultaneously of importance. The multiscale nature of this challenging field motivated the EUROMECH colloquium on particle-laden flow that was held at the University of Twente in 2006. This book contains a selection of the papers that were presented.

  1. New tool developed for visualizing and manipulating geophysical data (United States)

    Zhou, Shaohua

    Free new software for geophysical data handling and visualization has been released. The software, called the extended Visu, is a public domain program for UNIX machines. It is designed for the visualization and interactive manipulation of two-dimensional gridded scientific data. This software was developed on top of the previously released free software, Visu-2.0, by Pierre-Louis Bossart of the Lawrence Livermore National Laboratory, who wrote the original program that performs all the data formatting, color allocation, and display work. The current version of the extended Visu is a Tk extension of the scripting language Tcl/Tk, one of the most powerful software developing languages for writing graphical user interface (GUI) programs.

  2. Human responses to the geophysical daily, annual and lunar cycles. (United States)

    Foster, Russell G; Roenneberg, Till


    Collectively the daily, seasonal, lunar and tidal geophysical cycles regulate much of the temporal biology of life on Earth. The increasing isolation of human societies from these geophysical cycles, as a result of improved living conditions, high-quality nutrition and 24/7 working practices, have led many to believe that human biology functions independently of them. Yet recent studies have highlighted the dominant role that our circadian clock plays in the organisation of 24 hour patterns of behaviour and physiology. Preferred wake and sleep times are to a large extent driven by an endogenous temporal program that uses sunlight as an entraining cue. The alarm clock can drive human activity rhythms but has little direct effect on our endogenous 24 hour physiology. In many situations, our biology and our society appear to be in serious opposition, and the damaging consequences to our health under these circumstances are increasingly recognised. The seasons dominate the lives of non-equatorial species, and until recently, they also had a marked influence on much of human biology. Despite human isolation from seasonal changes in temperature, food and photoperiod in the industrialised nations, the seasons still appear to have a small, but significant, impact upon when individuals are born and many aspects of health. The seasonal changes that modulate our biology, and how these factors might interact with the social and metabolic status of the individual to drive seasonal effects, are still poorly understood. Lunar cycles had, and continue to have, an influence upon human culture, though despite a persistent belief that our mental health and other behaviours are modulated by the phase of the moon, there is no solid evidence that human biology is in any way regulated by the lunar cycle.

  3. Estimating Climate Resilience for Conservation across Geophysical Settings (United States)



    Conservationists need methods to conserve biological diversity while allowing species and communities to rearrange in response to a changing climate. We developed and tested such a method for northeastern North America that we based on physical features associated with ecological diversity and site resilience to climate change. We comprehensively mapped 30 distinct geophysical settings based on geology and elevation. Within each geophysical setting, we identified sites that were both connected by natural cover and that had relatively more microclimates indicated by diverse topography and elevation gradients. We did this by scoring every 405 ha hexagon in the region for these two characteristics and selecting those that scored >SD 0.5 above the mean combined score for each setting. We hypothesized that these high-scoring sites had the greatest resilience to climate change, and we compared them with sites selected by The Nature Conservancy for their high-quality rare species populations and natural community occurrences. High-scoring sites captured significantly more of the biodiversity sites than expected by chance (p SD 0.5 por encima del puntaje combinado promedio para cada escenario. Nuestra hipótesis fue que estos sitios con altas puntuaciones tuvieron la mayor capacidad de recuperación. Los comparamos con los sitios seleccionados por The Nature Conservancy por sus poblaciones de alta calidad de especies raras y sus ocurrencias de comunidades naturales. Los sitios con altos puntajes capturaron significativamente más de los sitios de biodiversidad de lo que se esperaba por casualidad (p funciones más tiempo bajo un clima cambiante, revela baluartes naturales para la conservación futura que también capturaría biodiversidad existente sustancial y corregiría el sesgo en tierras que actualmente están aseguradas. PMID:24673543

  4. Geophysical study of the Monroe-Red Hill geothermal system

    Energy Technology Data Exchange (ETDEWEB)

    Mase, C.W.; Chapman, D.S.; Ward, S.H.


    A detailed geophysical study consisting of heat flow, dipole-dipole resistivity, ground magnetics and gravity was conducted in the vicinity of Monroe, Utah to assess the resource potential of an identified hydrothermal system. The detailed study covered a 40 km/sup 2/ area along the Sevier fault near the Monroe-Red Hill hot springs. Fourteen 100m dipole-dipole resistivity profiles across the system were used to construct a first separation apparent resistivity contour map. The map effectively outlines the trace of the Sevier fault and reveals an elongate zone of low resistivity (< 10 ..cap omega..-m) associated with the hydrothermal system. Similar features are evident on the total magnetic intensity anomaly map. Gravity modeling across the system indicates that the Sevier fault is comprised of three or more nearly vertical en echelon faults. On the basis of geological mapping and surface geophysical surveys a series of eleven shallow boreholes (40 to 90m was drilled on two profiles across the system. Surface geothermal gradients vary from 240/sup 0/C km/sup -1/ to over 1000/sup 0/C km/sup -1/ along the profiles. Heat flow values vary smoothly from 550 mW m/sup -2/ to over 3000 mW m/sup -2/, a significant enhancement over background Basin and Range heat flow of 80 mW m/sup -2/. Heat budget calculations based on conductive heat loss and enthalpy of the discharge waters indicae a net power loss of 7.8 MW.

  5. Integrated Geophysical Analysis at a Legacy Test Site (United States)

    Yang, X.; Mellors, R. J.; Sweeney, J. J.; Sussman, A. J.


    We integrate magnetic, electromagnetic (EM), gravity, and seismic data to develop a unified and consistent model of the subsurface at the U20ak site on Pahute Mesa at the Nevada National Nuclear Security Site (NNSS). The 1985 test, conducted in tuff at a depth of approximately 600 m did not collapse to the surface or produce a crater. The purpose of the geophysical measurements is to characterize the subsurface above and around the presumed explosion cavity. The magnetic data are used to locate steel borehole casings and pipes and are correlated with surface observations. The EM data show variation in lithology at depth and clear signatures from borehole casings and surface cables. The gravity survey detects a clear gravity low in the area of the explosion. The seismic data indicates shallow low velocity zone and indications of a deeper low velocity zones. In this study, we conduct 2D inversion of EM data for better characterization of site geology and use a common 3D density model to jointly interpret both the seismic and gravity data along with constraints on lithology boundaries from the EM. The integration of disparate geophysical datasets allows improved understanding of the non-prompt physical signatures of an underground nuclear explosion (UNE). LLNL Release Number: LLNL-ABS-675677. The authors express their gratitude to the National Nuclear Security Administration, Defense Nuclear Nonproliferation Research and Development, and the Comprehensive Inspection Technologies and UNESE working group, a multi-institutional and interdisciplinary group of scientists and engineers. This work was performed by Lawrence Livermore National Laboratory and Los Alamos National Laboratory under award number DE-AC52-06NA25946.

  6. Temporal associations of life with solar and geophysical activity

    Directory of Open Access Journals (Sweden)

    T. K. Breus

    Full Text Available In biology, circadian rhythms with a period of one cycle in 20–28 h are known to be ubiquitous and partly endogenous. Rhythms with a frequency lower than one cycle per day are called 'infradian rhythms'. Among them are components with one cycle in about 3.5, 7, 14 and 28 days, the multiseptans, which, like the circadians, must be regarded as a general characteristic of life: they characterize unicells as well as much more differentiated organisms. We hypothesize that heliogeophysical factors other than the solar visible light, held responsible for the evolution of circadian periodicity, underlie the infradian rhythms of biosystems. The periodicities in the solar wind and variations in the interplanetary magnetic field (IMF which are associated with the solar rotation are very similar in length to the biological periodicities. We investigate the temporal relations of variations in solar activity and in biological systems to test associations between events in the IMF, in geomagnetic disturbance, in myocardial infarction and in physiology. By cross-spectral analysis, we also find relations at certain frequencies between changes in human physiology on the one hand, and (1 the vertical component of the induction vector of the IMF, Bz, and (2 a global index of geomagnetic disturbance, Kp, on the other hand. We wish to stimulate interest in these periodicities of both biological systems and geophysical endpoints among physicists and biologists alike, so that problems relevant to clinicians and other biologists, including evolutionists, are eventually solved by their cooperation with the geophysical community.

  7. Geophysical and geochemical signatures of Gulf of Mexico seafloor brines

    Directory of Open Access Journals (Sweden)

    S. B. Joye


    Full Text Available Geophysical, temperature, and discrete depth-stratified geochemical data illustrate differences between an actively venting mud volcano and a relatively quiescent brine pool in the Gulf of Mexico along the continental slope. Geophysical data, including laser-line scan mosaics and sub-bottom profiles, document the dynamic nature of both environments. Temperature profiles, obtained by lowering a CTD into the brine fluid, show that the venting brine was at least 10°C warmer than the bottom water. At the brine pool, two thermoclines were observed, one directly below the brine-seawater interface and a second about one meter below the first. At the mud volcano, substantial temperature variability was observed, with the core brine temperature being either slightly (~2°C in 1997 or substantially (19°C in 1998 elevated above bottom water temperature. Geochemical samples were obtained using a device called the "brine trapper" and concentrations of dissolved gases, major ions and nutrients were determined using standard techniques. Both brines contained about four times as much salt as seawater and steep concentration gradients of dissolved ions and nutrients versus brine depth were apparent. Differences in the concentrations of calcium, magnesium and potassium between the two brine fluids suggests that the fluids are derived from different sources or that brine-sediment reactions are more important at the mud volcano than the brine pool. Substantial concentrations of methane and ammonium were observed in both brines, suggesting that fluids expelled from deep ocean brines are important sources of methane and dissolved inorganic nitrogen to the surrounding environment.

  8. High Resolution Geophysical Characterization of Fractures within a Granitic Pluton (United States)

    Pérez-Estaún, A.; Carbonell, R.


    The FEBEX underground gallery was excavated in the Aar Granite (Switzerland), a heterogeneous granite containing from very leucocratic facies to granodiorites. The geology of the gallery shows the existence of various sets of fractures with different attributes: geometry, kinematics, fracture infilling, etc. The study of the structural data, new observations on the FEBEX gallery itself and borehole televiewer data acquired in the newly drilled boreholes, have allowed to identify four sets of fractures. The first group of fractures has a typical distribution and characteristics of en echelon tension fractures and were formed in late magmatic stages, according with the paragenesis of the minerals that filled the craks. The main strike is around 300 (280-300). These fractures are deformed and displaced by the other group of faults. The second group corresponds to the lamprophyre dikes, of mantelic origin, with an orientation oblique to the tunnel, and slightly oblique to the first group of fractures (strike, 310-330). They were formed during an extension event well evidenced by their irregular margins and flame structures into the granite. The margins of these dikes show several reactivations as strike slip faults. Geophysical data has been acquired to characterized the fracture network of the surrounding volume within the FEBEX gallery. The geophysic data include new borehole logging such as Natural Gamma and Borehole Ground Penetrating radar. The processing and integration of these different data sets indicates that the GPR record can provide images of a third set of fractures, which are probably fluid filled. This set of fractures a subparallel to the tunnel axis and appear to intersect older boreholes which are nearly perpendicular to the axis of the FEBEX gallery.

  9. Geophysical Investigations at Hidden Dam, Raymond, California Flow Simulations (United States)

    Minsley, Burke J.; Ikard, Scott


    Numerical flow modeling and analysis of observation-well data at Hidden Dam are carried out to supplement recent geophysical field investigations at the site (Minsley and others, 2010). This work also is complementary to earlier seepage-related studies at Hidden Dam documented by Cedergren (1980a, b). Known seepage areas on the northwest right abutment area of the downstream side of the dam was documented by Cedergren (1980a, b). Subsequent to the 1980 seepage study, a drainage blanket with a sub-drain system was installed to mitigate downstream seepage. Flow net analysis provided by Cedergren (1980a, b) suggests that the primary seepage mechanism involves flow through the dam foundation due to normal reservoir pool elevations, which results in upflow that intersects the ground surface in several areas on the downstream side of the dam. In addition to the reservoir pool elevations and downstream surface topography, flow is also controlled by the existing foundation geology as well as the presence or absence of a horizontal drain in the downstream portion of the dam. The current modeling study is aimed at quantifying how variability in dam and foundation hydrologic properties influences seepage as a function of reservoir stage. Flow modeling is implemented using the COMSOL Multiphysics software package, which solves the partially saturated flow equations in a two-dimensional (2D) cross-section of Hidden Dam that also incorporates true downstream topography. Use of the COMSOL software package provides a more quantitative approach than the flow net analysis by Cedergren (1980a, b), and allows for rapid evaluation of the influence of various parameters such as reservoir level, dam structure and geometry, and hydrogeologic properties of the dam and foundation materials. Historical observation-well data are used to help validate the flow simulations by comparing observed and predicted water levels for a range of reservoir elevations. The flow models are guided by, and

  10. Field Geophysics Class at Volcán Tungurahua, Ecuador (United States)

    Johnson, Jeffrey; Ruiz, Mario


    Ecuador's erupting Volcán Tungurahua was the recent site of a 3-week graduate-level geophysical course on volcanoes, hosted by Ecuador's Instituto Geofisico of the Escuela Politecnica Nacional (IG-EPN) and the Department of Earth Science at the New Mexico Institute of Mining and Technology (NMT). Sixteen students from 12 universities and four countries participated in the intensive course, which entailed broadband seismometer and infrasound sensor deployment followed by subsequent data processing, analysis, interpretation, and result synthesis. Hardware for the course was provided by the Incorporated Research Institutes for Seismology (IRIS) through the Program for Array Seismic Studies of the Continental Lithosphere (PASSCAL) as well as the IG-EPN and NMT geophysics programs. Since the start of its most recent eruptive period (in 1999), Tungurahua has proved itself a reliable source of both seismicity and infrasound radiating from its typically open vent. As such, Tungurahua provides the ultimate outdoor teaching laboratory where students can deploy instruments for just a few days and then collect earthquake and explosion data. Tungurahua's activity in June 2009 did not disappoint class participants: Frequent earthquakes included long-period and volcano tectonic events, various types of tremor events, and explosion earthquakes manifested by booming “cannon-shot” blasts. Some of the explosion shock waves were recorded 10 kilometers from the vent with excess pressure amplitudes greater than 50 pascals in the infrasonic band. Had these intense sounds been audible, their sound pressure levels at 10 kilometers would have been in excess of about 130 decibels!

  11. Water-Energy-Food Nexus: Compelling Issues for Geophysical Research (United States)

    Akhbari, M.; Grigg, N. S.; Waskom, R.


    The joint security of water, food, and energy systems is an urgent issue everywhere, and strong drivers of development and land use change, exacerbated by climate change, require new knowledge to achieve integrated solution using a nexus-based approach to assess inter-dependencies. Effective research-based decision support tools are essential to identify the major issues and interconnections to help in implementation of the nexus approach. The major needs are models and data to clearly and unambiguously present decision scenarios to local cooperative groups of farmers, electric energy generators and water officials for joint decisions. These can be developed by integrated models to link hydrology, land use, energy use, cropping simulation, and optimization with economic objectives and socio-physical constraints. The first step in modeling is to have a good conceptual model and then to get data. As the linking of models increases uncertainties, each one should be supplied with adequate data at suitable spatial and temporal resolutions. Most models are supplied with data by geophysical scientists, such as hydrologists, geologists, atmospheric scientists, soil scientists, and climatologists, among others. Outcomes of a recently-completed project to study the water-energy-food nexus will be explained to illuminate the model and data needs to inform future management actions across the nexus. The project included a workshop of experts from government, business, academia, and the non-profit sector who met to define and explain nexus interactions and needs. An example of the findings is that data inconsistencies among sectors create barriers to integrated planning. A nexus-based systems model is needed to outline sectoral inter-dependencies and identify data demands and gaps. Geophysical scientists can help to create this model and take leadership on designing data systems to facilitate sharing and enable integrated management.

  12. Inverse spatial principal component analysis for geophysical survey data interpolation (United States)

    Li, Qingmou; Dehler, Sonya A.


    The starting point for data processing, visualization, and overlay with other data sources in geological applications often involves building a regular grid by interpolation of geophysical measurements. Typically, the sampling interval along survey lines is much higher than the spacing between survey lines because the geophysical recording system is able to operate with a high sampling rate, while the costs and slower speeds associated with operational platforms limit line spacing. However, currently available interpolating methods often smooth data observed with higher sampling rate along a survey line to accommodate the lower spacing across lines, and much of the higher resolution information is not captured in the interpolation process. In this approach, a method termed as the inverse spatial principal component analysis (isPCA) is developed to address this problem. In the isPCA method, a whole profile observation as well as its line position is handled as an entity and a survey collection of line entities is analyzed for interpolation. To test its performance, the developed isPCA method is used to process a simulated airborne magnetic survey from an existing magnetic grid offshore the Atlantic coast of Canada. The interpolation results using the isPCA method and other methods are compared with the original survey grid. It is demonstrated that the isPCA method outperforms the Inverse Distance Weighting (IDW), Kriging (Geostatistical), and MINimum Curvature (MINC) interpolation methods in retaining detailed anomaly structures and restoring original values. In a second test, a high resolution magnetic survey offshore Cape Breton, Nova Scotia, Canada, was processed and the results are compared with other geological information. This example demonstrates the effective performance of the isPCA method in basin structure identification.

  13. Geophysical and geochemical signatures of Gulf of Mexico seafloor brines

    Directory of Open Access Journals (Sweden)

    S. B. Joye


    Full Text Available Geophysical, temperature, and discrete depth-stratified geochemical data illustrate differences between an actively venting mud volcano and a relatively quiescent brine pool in the Gulf of Mexico along the continental slope. Geophysical data, including laser-line scan mosaics and sub-bottom profiles, document the dynamic nature of both environments. Temperature profiles, obtained by lowering a CTD into the brine fluid, show that the venting brine was at least 10°C warmer than the bottom water. At the brine pool, thermal stratification was observed and only small differences in stratification were documented between three sampling times (1991, 1997 and 1998. In contrast, at the mud volcano, substantial temperature variability was observed, with the core brine temperature being slightly higher than bottom water (by 2°C in 1997 but substantially higher than bottom water (by 19°C in 1998. Detailed geochemical samples were obtained in 2002 using a device called the 'brine trapper' and concentrations of dissolved gases, major ions and nutrients were determined. Both brines contained about four times as much salt as seawater and steep concentration gradients of dissolved ions and nutrients versus brine depth were apparent. Differences in the concentrations of calcium, magnesium and potassium between the two brine fluids suggest that the fluids are derived from different sources, have different dilution/mixing histories, or that brine-sediment reactions are more important at the mud volcano. Substantial concentrations of methane, ammonium, and silicate were observed in both brines, suggesting that fluids expelled from deep ocean brines are important sources of these constituents to the surrounding environment.

  14. Investigation of a playa lake bed using geophysical electrical methods (United States)

    Herrmenn, M.; Gurrola, H.; William, R.; Montalvo, R.; Horton, S.; Homberg, J.; Allen, T.; Bribiesca, E.; Lindsey, C.; Anderson, H.; Seshadri, S.; Manns, S.; Hassan, A.; Loren, C.


    The 2005 undergraduate applied geophysical class of Texas Tech University conducted a geophysical survey of a playa lake approximately 10 miles northwest of Lubbock Texas. The playa lake is primarily used as grazing land for two llamas and a hand full of sheep, and has been recently used as a dump for broken down sheds and barrels. Our goal was to model the subsurface of the transition from the playa to plains geology and investigate the possible contamination, of the soil and the data, by the metal dumped at the surface. We conducted our survey with and EM31 and homemade D.C. resistivity and SP equipment that allowed students to grasp the theories more clearly. SP readings were collected using clay pots constructed from terracotta pots and copper tubing purchased at the local hardware store and voltage measurements collected with handle held multi-meters. D.C. resistivity data were collected in a dipole-dipole array using 20 nine volt batteries connected in series with a large enough variable resistor and amp meter to regulate steady current flow. A multi meter was used to collect voltage readings. Wenner array data were collected using a home-made multi-filament cable connected switch box to allow a central user to regulate current and take voltage reading. A map of conductivity produced from a 10 m of EM31 reading show that conductivity anomalies mirror topography. The SP profiles show high values in the playa lake that drop off as we move from the clay rich lake bed to normal grassland. Analysis of both the Dipole-Dipole and Wenner array data support a model with 3 flat layers increasing in resistivity with depth. It appears that these remain flat passing beneath the playa and the playa is eroded into these layers.

  15. GEOFIM: A WebGIS application for integrated geophysical modeling in active volcanic regions (United States)

    Currenti, Gilda; Napoli, Rosalba; Sicali, Antonino; Greco, Filippo; Negro, Ciro Del


    We present GEOFIM (GEOphysical Forward/Inverse Modeling), a WebGIS application for integrated interpretation of multiparametric geophysical observations. It has been developed to jointly interpret scalar and vector magnetic data, gravity data, as well as geodetic data, from GPS, tiltmeter, strainmeter and InSAR observations, recorded in active volcanic areas. GEOFIM gathers a library of analytical solutions, which provides an estimate of the geophysical signals due to perturbations in the thermal and stress state of the volcano. The integrated geophysical modeling can be performed by a simple trial and errors forward modeling or by an inversion procedure based on NSGA-II algorithm. The software capability was tested on the multiparametric data set recorded during the 2008-2009 Etna flank eruption onset. The results encourage to exploit this approach to develop a near-real-time warning system for a quantitative model-based assessment of geophysical observations in areas where different parameters are routinely monitored.

  16. Immersive, hands-on, team-based geophysical education at the University of Texas Marine Geology and Geophysics Field Course (United States)

    Saustrup, S.; Gulick, S. P.; Goff, J. A.; Davis, M. B.; Duncan, D.; Reece, R.


    The University of Texas Institute for Geophysics (UTIG), part of the Jackson School of Geosciences, annually offers a unique and intensive three-week marine geology and geophysics field course during the spring/summer semester intersession. Now entering its seventh year, the course transitions students from a classroom environment through real-world, hands-on field acquisition, on to team-oriented data interpretation, culminating in a professional presentation before academic and industry employer representatives. The course is available to graduate students and select upper-division undergraduates, preparing them for direct entry into the geoscience workforce or for further academic study. Geophysical techniques used include high-resolution multichannel seismic reflection, CHIRP sub-bottom profiling, multibeam bathymetry, sidescan sonar, sediment coring, grab sampling, data processing, and laboratory analysis of sediments. Industry-standard equipment, methods, software packages, and visualization techniques are used throughout the course, putting students ahead of many of their peers in this respect. The course begins with a 3-day classroom introduction to the field area geology, geophysical methods, and computing resources used. The class then travels to the Gulf Coast for a week of hands-on field and lab work aboard two research vessels: UTIG's 22-foot, aluminum hulled Lake Itasca; and NOAA's 82-foot high-speed catamaran R/V Manta. The smaller vessel handles primarily shallow, inshore targets using multibeam bathymetry, sidescan sonar, and grab sampling. The larger vessel is used both inshore and offshore for multichannel seismic, CHIRP profiling, multibeam bathymetry, gravity coring, and vibracoring. Field areas to date have included Galveston and Port Aransas, Texas, and Grand Isle, Louisiana, with further work in Grand Isle scheduled for 2014. In the field, students work in teams of three, participating in survey design, instrument set-up, field deployment

  17. Numerical modeling of geophysical granular flows: 1. A comprehensive approach to granular rheologies and geophysical multiphase flows (United States)

    Dartevelle, SéBastien


    Geophysical granular materials display a wide variety of behaviors and features. Typically, granular flows (1) are multiphase flows, (2) are very dissipative over many different scales, (3) display a wide range of grain concentrations, and (4), as a final result of these previous features, display complex nonlinear, nonuniform, and unsteady rheologies. Therefore the objectives of this manuscript are twofold: (1) setting up a hydrodynamic model which acknowledges the multiphase nature of granular flows and (2) defining a comprehensive rheological model which accounts for all the different forms of viscous dissipations within granular flows at any concentration. Hence three important regimes within granular flows must be acknowledged: kinetic (pure free flights of grain), kinetic-collisional, and frictional. The momentum and energy transfer will be different according to the granular regimes, i.e., strain rate dependent in the kinetic and kinetic-collisional cases and strain rate independent in the frictional case. A "universal" granular rheological model requires a comprehensive unified stress tensor able to adequately describe viscous stress within the flow for any of these regimes, and without imposing a priori what regime will dominate over the others. The kinetic-collisional viscous regime is defined from a modified Boltzmann's kinetic theory of dense gas. The frictional viscous regime is defined from the plastic potential and the critical state theories which account for compressibility of granular matter (e.g., dilatancy, consolidation, and critical state). In the companion paper [, 2004] we will introduce a multiphase computer code, (G)MFIX, which accounts for all the granular regimes and rheology and present typical simulations of diluted (e.g., plinian clouds) and concentrated geophysical granular flows (i.e., pyroclastic flows and surges).

  18. Demonstration of Advanced Geophysics and Classification Methods on Munitions Response Sites: Closed Castner Range Fort Bliss, TX (United States)


    classification . The project purpose is to locate and interrogate anomalies with the Time-domain Electromagnetic Multi-sensor Towed Array Detection System ...contained in Geophysical System Verification (GSV): A Physics -Based Alternative to Geophysical Prove Outs for Munitions Response (ESTCP 2009). The IVS...January 2007 (April 2007 revised). ESTCP. 2009. “Geophysical System Verification (GSV): A Physics -Based Alternative to Geophysical Prove-Outs for

  19. Demonstration of Advanced Geophysics and Classification Methods on Munitions Response Sites - East Fork Valley Range Complex, Former Camp Hale (United States)


    ESTCP to test the effectiveness of advanced geophysical sensors and physics -based data analysis tools for anomaly classification . The project purpose is...the project data. 50 10.0 REFERENCES ESTCP. 2009. “Geophysical System Verification (GSV): A Physics -Based Alternative to Geophysical Prove-Outs for...Technical Report Demonstration of Advanced Geophysics and Classification Methods on Munitions Response Sites - East Fork Valley

  20. 30 CFR 251.12 - Submission, inspection, and selection of geophysical data and information collected under a... (United States)


    ... geophysical data and information collected under a permit and processed by permittees or third parties. 251.12..., and selection of geophysical data and information collected under a permit and processed by permittees or third parties. (a) Availability of geophysical data and information collected under a permit....

  1. 30 CFR 280.51 - What types of geophysical data and information must I submit to MMS? (United States)


    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false What types of geophysical data and information... CONTINENTAL SHELF Data Requirements Geophysical Data and Information § 280.51 What types of geophysical data... navigational data and final location maps; (b) All seismic data collected under a permit presented in a...

  2. Applied Geophysics in the world of tomorrow - Microfabrication arrives (United States)

    Johnson, R. M.


    Instrument manufacturers have a unique perspective on the design and use of geophysical equipment. The field instrument must provide reliable and repeatable performance in every climate condition and environmental extreme. The gear must be easy to use and more importantly easy to understand for non-native English speakers. I have traveled the world installing, repairing, commissioning and demonstrating geophysical survey systems. Everywhere I have traveled there is one unassailable fact - our geophysicist compatriots in developed and developing countries are hungry for information and hungry for technology. They want more and better systems to help improve their understanding of the subsurface. And they want to serve their countries by helping to exploit natural resources. I hold up for your review the first highly successful portable magnetometer, the G-856. Designed in 1981 with over 5000 sold, it is still produced in record numbers today for use all over the world. How could it be that a rather simple device could be so long lived, and make such an impact in exploration programs for 32 years? The answer is in producing reliable and easy to use equipment that is affordable. One might compare it to the iPad or Android device of today. The innovative and no-frills interface has attracted users from all markets including mining, oil/gas, archaeology, environmental, UXO/military and forensics. Powerful ancillary software to process the data has always been included at no charge, offering geoscientists a solution rather than a black box. Many of our technologies are poised for dramatic breakthroughs in miniaturization and interconnectivity. I point specifically to the micro-fabrication of the cesium vapor magnetometer. Initiated 5 years ago in conjunction with NIST, Geometrics has embarked on a high stakes game of minimizing size, weight, power consumption and price while eliminating dead zones and maintaining or increasing sensitivity and sample speed. These new

  3. Lithosphere types in North China: Evidence from geology and geophysics

    Institute of Scientific and Technical Information of China (English)

    QIU; Ruizhao; DENG; Jinfu; ZHOU; Su; LI; Jinfa; XIAO; Qingh


    On the basis of the characteristics of geology and geophysics in North China, three types of lithosphere, namely, the cratonic, the orogenic and the rift lithospheres can be classified. In terms of petrological method (based on the information from Precambrian rock assemblages, igneous activities, deep-seated enclaves, etc.) and the relationship between seismic velocity and rock compositions, the crust-mantle petrological and chemical structure models can be set up. Researching results indicate that the geology and geophysics of North China platform bears the similar characteristics in comparison with those of the global typical cratons. The Eerduosi(Ordos) block located in the west of the North China Platform is a remnant of cratonic lithosphere after the North China platform had undergone "activation" in Mesozoic and "reconstruction" in Cenozoic times. The continental crust consists mainly of TTG rock assemblage while the subcontinental lithosphere mantle mainly consists of strongly depleted harzburgite. The craton was finally formed in late Archaean and early Proterozoic, and has been kept in stability up to present; its crustal-mantle petrological structures of lithosphere can be set up as a reference for the study of North China craton and even Sino-Korean craton. In the Mesozoic period, the middle and east areas of North China platform were activated in the Yanshanian orogenic process, the continental crust was reformed by material and heat-transfer of convective mantle and the original crustal TTG component was reconstructed to be granitic crust, and the subcontinental lithosphere mantle was replaced by the Yanshanian harzburgite-lherzolite. The Yanshan-Taihang Mountains were the remnants of orogenic lithosphere after the rifting in eastern North China in Cenozoic. The present thickness of continental crust and lithosphere in the Yanshan-Taihang Mountains is not equal to their thickness during the Yanshanian orogenic movement because they had undergone the

  4. Investigation of subrosion processes using an integrated geophysical approach (United States)

    Miensopust, Marion; Hupfer, Sarah; Kobe, Martin; Schneider-Löbens, Christiane; Wadas, Sonja


    Subrosion, i.e., leaching of readily soluble rocks, is usually of natural origin but can be enhanced by anthropogenic interferences. In recent years, public awareness of subrosion processes in terms of the in parts catastrophic implications and incidences increased. Especially the sinkholes in Schmalkalden, Tiefenort and Nordhausen (Germany) are three dramatic examples. They show that the knowledge of those processes and therefore, the predictability of such events is insufficient. The complexity of subrosion processes requires an integrated geophysical approach, which investigates the interlinking of structure, hydraulics, leaching, and mechanics. This contributes to a better understanding of the processes by reliable imaging and characterisation of subrosion structures. At LIAG an inter-sectional group is engaged in geophysical investigation of subrosion processes. The focus is application, enhancement and combination of various geophysical methods both at surface and in boreholes. This includes the monitoring of surface deformation and the application of time-lapse gravity as well as seismic, geoelectric and electromagnetic methods. Petrophysical investigations (with focus on Spectral Induced Polarisation - SIP) are conducted to characterise the processes on pore scale. Numerical studies are applied to advance the understanding of void forming processes and the mechanical consequences in the dynamic interaction. Since March 2014, quarterly campaigns are conducted to monitor changes in gravity acceleration at 15 stations in the urban area of Bad Frankenhausen. The standard deviations of the adjusted gravity differences are in the single-digit µGal range. The gravity acceleration changes in the range of 0 to 15 µGal over a timespan of three years and the accompanying levelling locally shows continuous subsidence in the mm/year-range. Sixteen SH-wave and four P-wave reflection seismic profiles together with three VSṔs were surveyed in the city of Bad

  5. An Integrated Geophysical Strategy to "Follow the Water" on Mars. (United States)

    Clifford, S. M.; George, J. A.; Stoker, C. R.


    The abundance and distribution of subsurface water on Mars has important implications for understanding the geologic, hydrologic, and climatic evolution of the planet; the potential origin and continued survival of life; and the accessibility of a critical in situ resource for sustaining future human explorers. For this reason, a principal goal of the international Mars exploration program is to determine the 3-D distribution and state of subsurface H2O, at a resolution sufficient to permit reaching any desired volatile target by drilling. The highest priority targets include: groundwater (both shallow and deep), massive deposits of segregated ground ice (associated with the frozen discharge of the outlfow channels or the relic of a former ocean), and the polar layered deposits. Unfortunately, our ignorance about the heterogeneous nature and thermal evolution of the Martian crust effectively precludes geomorphic or theoretical attempts to quantitatively assess the current geographic and subsurface vertical distribution of ground ice and groundwater. As a result, any exploration activity (such as drilling) whose success is contingent on the presence of subsurface water, must be preceded by a comprehensive high-resolution geophysical survey capable of assessing whether local reservoirs of water and ice actually exist. Terrestrial experience has demonstrated that the accurate identification of such targets is likely to require the application of multiple geophysical techniques. Here we propose a two-phase approach to "following the water" on Mars - the first phase consisting of global reconnaissance missions dedicated to identifying and prioritizing potential volatile targets, followed by a second phase of high-resolution investigations of the most promising sites. Currently, the two missions that appear best suited for conducting a global survey are: (i). a 2nd-Generation Orbital Radar Sounder (optimized to sound both the shallow- and deep-subsurface). The potential

  6. Geophysical investigation of subrosion processes - an integrated approach (United States)

    Miensopust, Marion; Hupfer, Sarah; Kobe, Martin; Schneider-Löbens, Christiane; Wadas, Sonja; Krawczyk, Charlotte


    Subrosion, i.e., leaching of readily soluble rocks mostly due to groundwater, is usually of natural origin but can be enhanced by anthropogenic interferences. In recent years, public awareness of subrosion processes in terms of the in parts catastrophic implications and incidences increased. Especially the sinkholes in Schmalkalden and Tiefenort (Germany) are - based on unforeseen collapse events and associated damage in 2010 - two dramatic examples. They illustrate that to date the knowledge of those processes and therefore the predictability of such events is insufficient. The complexity of the processes requires an integrated geophysical approach which investigates the interlinking of structure, hydraulics, solution processes, and mechanics. This finally contributes to a better understanding of the processes by reliable imaging and characterisation of subrosion structures. At LIAG an inter-sectional group is engaged in geophysical investigation of subrosion processes. The focus is application, enhancement and combination of various geophysical methods both at surface and in boreholes. This includes monitoring of (surface) deformation and variation of gravity as well as seismic, geoelectric and electromagnetic methods. Petrophysical investigations (with focus on spectral induced polarisation - SIP) are conducted to characterise the processes on pore scale. Numerical studies are applied to advance the understanding of void forming processes and the mechanical consequences in the dynamic interaction. Since March 2014, quarterly campaigns are conducted to monitor time-lapse gravity changes at 12 stations in the urban area of Bad Frankenhausen. The standard deviations of the gravity differences between the survey points are low and the accompanying levelling locally shows continuous subsidence in the mm/year-range. Eight shear-wave reflection seismic profiles were surveyed in Bad Frankenhausen using a landstreamer and an electro-dynamic vibrator. This method is

  7. Geophysical images of basement rocks. Geophysical images in the Guianese basement. Airborne geophysical campaign in French Guiana - 1996; Images geophysiques de socles. Images geophysiques dans le socle guyanais. Campagne de geophysique aeroportee en Guyane francaise - 1996

    Energy Technology Data Exchange (ETDEWEB)

    Delor, C.; Perrin, J.; Truffert, C.; Asfirane, F.; Rossi, Ph.; Bonjoly, D.; Dubreuihl, J. [Bureau de Recherches Geologiques et Minieres (BRGM), 45 - Orleans (France); Chardon, D


    The French Office for Geological and Mining Research (BRGM) has carried out a high sensitivity airborne geophysical survey of northern French Guiana during the second half of 1996. The aim was to realize a high resolution magnetic and gamma spectrometric mapping for future prospecting, land use and environment management. This paper describes in details the geophysical campaign, the material used, the navigation techniques, the processing of magnetic data, the gamma radiation sources used, the spectrometric calibrations and the geologic interpretation of the results. (J.S.)

  8. Near surface geophysical techniques on subsoil contamination: laboratory experiments (United States)

    Capozzoli, Luigi; Giampaolo, Valeria; Rizzo, Enzo


    Hydrocarbons contamination of soil and groundwater has become a serious environmental problem, because of the increasing number of accidental spills caused by human activities. The starting point of any studies is the reconstruction of the conceptual site model. To make valid predictions about the flow pathways following by hydrocarbons compound is necessary to make a correct reconstruction of their characteristics and the environment in which they move. Near-surface geophysical methods, based on the study of electrical and electromagnetic properties, are proved to be very useful in mapping spatial distribution of the organic contaminants in the subsurface. It is well known, in fact, that electrical properties of the porous media are significantly influenced by hydrocarbons because, when contaminants enter the rock matrix, surface reaction occur between the contaminant and the soil grain surface. The main aim of this work is to investigate the capability of near-surface geophysical methods in mapping and monitoring spatial distribution of contaminants in a controlled setting. A laboratory experiment has been performed at the Hydrogeosite Laboratory of CNR-IMAA (Marsico Nuovo, PZ) where a box-sand has been contaminated by diesel. The used contaminant is a LNAPL, added to the sand through a drilled pipe. Contaminant behaviour and its migration paths have been monitored for one year by Electrical Resistivity measurements. In details, a Cross Borehole Electrical Resistivity Tomography techniques were used to characterize the contamination dynamics after a controlled hydrocarbon spillage occurring in the vadose zone. The approach with cross-borehole resistivity imaging provide a great advantage compared to more conventional surface electrical resistivity tomography, due to the high resolution at high depth (obviously depending on the depth of the well instrumented for the acquisition). This method has been shown to provide good information on the distribution of

  9. Genetic algorithms and their use in Geophysical Problems

    Energy Technology Data Exchange (ETDEWEB)

    Parker, Paul B. [Univ. of California, Berkeley, CA (United States)


    Genetic algorithms (GAs), global optimization methods that mimic Darwinian evolution are well suited to the nonlinear inverse problems of geophysics. A standard genetic algorithm selects the best or ''fittest'' models from a ''population'' and then applies operators such as crossover and mutation in order to combine the most successful characteristics of each model and produce fitter models. More sophisticated operators have been developed, but the standard GA usually provides a robust and efficient search. Although the choice of parameter settings such as crossover and mutation rate may depend largely on the type of problem being solved, numerous results show that certain parameter settings produce optimal performance for a wide range of problems and difficulties. In particular, a low (about half of the inverse of the population size) mutation rate is crucial for optimal results, but the choice of crossover method and rate do not seem to affect performance appreciably. Optimal efficiency is usually achieved with smaller (< 50) populations. Lastly, tournament selection appears to be the best choice of selection methods due to its simplicity and its autoscaling properties. However, if a proportional selection method is used such as roulette wheel selection, fitness scaling is a necessity, and a high scaling factor (> 2.0) should be used for the best performance. Three case studies are presented in which genetic algorithms are used to invert for crustal parameters. The first is an inversion for basement depth at Yucca mountain using gravity data, the second an inversion for velocity structure in the crust of the south island of New Zealand using receiver functions derived from teleseismic events, and the third is a similar receiver function inversion for crustal velocities beneath the Mendocino Triple Junction region of Northern California. The inversions demonstrate that genetic algorithms are effective in solving problems

  10. Distinct Element modeling of geophysical signatures during sinkhole collapse (United States)

    Al-Halbouni, Djamil; Holohan, Eoghan P.; Taheri, Abbas; Dahm, Torsten


    A sinkhole forms due to the collapse of rocks or soil near the Earth's surface into an underground cavity. Such cavities represent large secondary pore spaces derived by dissolution and subrosion in the underground. By changing the stress field in the surrounding material, the growth of cavities can lead to a positive feedback, in which expansion and mechanical instability in the surrounding material increases or generates new secondary pore space (e.g. by fracturing), which in turn increases the cavity size, etc. A sinkhole forms due to the eventual subsidence or collapse of the overburden that becomes destabilized and fails all the way to the Earth's surface. Both natural processes like (sub)surface water movement and earthquakes, and human activities, such as mining, construction and groundwater extraction, intensify such feedbacks. The development of models for the mechanical interaction of a growing cavity and fracturing of its surrounding material, thus capturing related precursory geophysical signatures, has been limited, however. Here we report on the advances of a general, simplified approach to simulating cavity growth and sinkhole formation by using 2D Distinct Element Modeling (DEM) PFC5.0 software and thereby constraining pre-, syn- and post-collapse geophysical and geodetic signatures. This physically realistic approach allows for spontaneous cavity development and dislocation of rock mass to be simulated by bonded particle formulation of DEM. First, we present calibration and validation of our model. Surface subsidence above an instantaneously excavated circular cavity is tracked and compared with an incrementally increasing dissolution zone both for purely elastic and non-elastic material.This validation is important for the optimal choice of model dimensions and particles size with respect to simulation time. Second, a cavity growth approach is presented and compared to a well-documented case study, the deliberately intensified sinkhole collapse at

  11. Geophysical Characterization of Range-Front Faults, Snake Valley, Nevada (United States)

    Asch, Theodore H.; Sweetkind, Donald S.


    In September 2009, the U.S. Geological Survey, in cooperation with the National Park Service, collected audiomagnetotelluric (AMT) data along two profiles on the eastern flank of the Snake Range near Great Basin National Park to refine understanding of the subsurface geology. Line 1 was collected along Baker Creek, was approximately 6.7-km long, and recorded subsurface geologic conditions to approximately 800-m deep. Line 2, collected farther to the southeast in the vicinity of Kious Spring, was 2.8-km long, and imaged to depths of approximately 600 m. The two AMT lines are similar in their electrical response and are interpreted to show generally similar subsurface geologic conditions. The geophysical response seen on both lines may be described by three general domains of electrical response: (1) a shallow (mostly less than 100-200-m deep) domain of highly variable resistivity, (2) a deep domain characterized by generally high resistivity that gradually declines eastward to lower resistivity with a steeply dipping grain or fabric, and (3) an eastern domain in which the resistivity character changes abruptly at all depths from that in the western domain. The shallow, highly variable domain is interpreted to be the result of a heterogeneous assemblage of Miocene conglomerate and incorporated megabreccia blocks overlying a shallowly eastward-dipping southern Snake Range detachment fault. The deep domain of generally higher resistivity is interpreted as Paleozoic sedimentary rocks (Pole Canyon limestone and Prospect Mountain Quartzite) and Mesozoic and Cenozoic plutonic rocks occurring beneath the detachment surface. The range of resistivity values within this deep domain may result from fracturing adjacent to the detachment, the presence of Paleozoic rock units of variable resistivities that do not crop out in the vicinity of the lines, or both. The eastern geophysical domain is interpreted to be a section of Miocene strata at depth, overlain by Quaternary alluvial

  12. Geophysical evaluation of the Success Dam foundation, Porterville, California (United States)

    Hunter, L.E.; Powers, M.H.; Haines, S.; Asch, T.; Burton, B.L.; Serafini, D.C.


    Success Dam is a zonedearth fill embankment located near Porterville, CA. Studies of Success Dam by the recent Dam Safety Assurance Program (DSAP) have demonstrated the potential for seismic instability and large deformation of the dam due to relatively low levels of earthquake shaking. The U.S. Army Corps of Engineers conducted several phases of investigations to determine the properties of the dam and its underlying foundation. Detailed engineering studies have been applied using a large number of analytical techniques to estimate the response of the dam and foundation system when subjected to earthquake loading. Although a large amount of data have been acquired, most are 'point' data from borings and results have to be extrapolated between the borings. Geophysical techniques were applied to image the subsurface to provide a better understanding of the spatial distribution of key units that potentially impact the stability. Geophysical investigations employing seismic refraction tomography, direct current (DC) resistivity, audio magnetotellurics (AMT) and self-potential (SP) were conducted across the location of the foundation of a new dam proposed to replace the existing one. Depth to bedrock and the occurrence of beds potentially susceptible to liquefaction were the focus of the investigations. Seismic refraction tomography offers a deep investigation of the foundation region and looks at compressional and shear properties of the material. Whereas resistivity surveys determines conductivity relationships in the shallow subsurface and can produce a relatively high-resolution image of geological units with different electrical properties. AMT was applied because it has the potential to look considerably deeper than the other methods, is useful for confirming depth to bedrock, and can be useful in identifying deep seated faults. SP is a passive electrical method that measures the electrical streaming potential in the subsurface that responds to the movement of

  13. Geophysical Characterization of the Salna Sinking Zone, Garhwal Himalaya, India (United States)

    Sastry, Rambhatla G.; Mondal, Suman K.


    Infrastructure and communication facilities are repeatedly affected by ground deformation in Gharwal Himalaya, India; for effective remediation measures, a thorough understanding of the real reasons for these movements is needed. In this regard, we undertook an integrated geophysical and geotechnical study of the Salna sinking zone close to the Main Central Thrust in Garhwal Himalaya. Our geophysical data include eight combined electrical resistivity tomography (ERT) and induced polarization imaging (IPI) profiles spanning 144-600 m, with 3-10 m electrode separation in the Wenner-Schlumberger configuration, and five micro-gravity profiles with 10-30 m station spacing covering the study region. The ERT sections clearly outline the heterogeneity in the subsurface lithology. Further, the ERT, IPI, and shaliness (shaleyness) sections infer the absence of clayey horizons and slip surfaces at depth. However, the Bouguer gravity analysis has revealed the existence of several faults in the subsurface, much beyond the reach of the majority of ERT sections. These inferred vertical to subvertical faults run parallel to the existing major lineaments and tectonic elements of the study region. The crisscross network of inferred faults has divided the entire study region into several blocks in the subsurface. Our studies stress that the sinking of the Salna village area is presently taking place along these inferred vertical to subvertical faults. The Chamoli earthquake in March 1999 probably triggered seismically induced ground movements in this region. The absence of few gravity-inferred faults in shallow ERT sections may hint at blind faults, which could serve as future source(s) for geohazards in the study region. Soil samples at two sites of study region were studied in a geotechnical laboratory. These, along with stability studies along four slope sections, have indicated the critical state of the study region. Thus, our integrated studies emphasize the crucial role of

  14. On structure-based priors in Bayesian geophysical inversion (United States)

    de Pasquale, G.; Linde, N.


    Bayesian methods are extensively used to analyse geophysical data sets. A critical and somewhat overlooked component of high-dimensional Bayesian inversion is the definition of the prior probability density function that describes the joint probability of model parameters before considering available data sets. If insufficient prior information is available about model parameter correlations, then it is tempting to assume that model parameters are uncorrelated. When working with a spatially gridded model representation, this overparametrization leads to posterior realizations with far too much variability to be deemed realistic from a geological perspective. In this study, we introduce a new approach for structure-based prior sampling with Markov chain Monte Carlo that is suitable when only limited prior information is available. We evaluate our method using model structure measures related to standard roughness and damping metrics for l1- and l2-norms. We show that our structure-based prior approach is able to adequately sample the chosen prior distribution of model structure. The usefulness and applicability of the methodology is demonstrated on synthetic and field-based crosshole ground penetrating radar data. We find that our method provides posterior model realizations and statistics that are significantly more satisfactory than those based on underlying assumptions of uncorrelated model parameters or on explicit penalties on model structure within an empirical Bayes framework.

  15. Integrated Geophysical Techniques for Exploring Deep Volcanic Rock Reservoir

    Institute of Scientific and Technical Information of China (English)

    LiuXuejun; UDechun; ZhangChangjiang; RanXuefeng


    The Carboniferous and Pre-Carboniferous formations in Ludong, Zhungar basin, contain favorable oil/gas reservoirs. The Carboniferous formations, however, are complex in structure and exhibit lateral variations in lithology. Seismic reflections from Pre-Triassic formations are poor and the volcanic reservoirs are very difficult to identify. The analysis of physical properties concluded that the major targets in this region, i.e., the top of the Jurassic and Carboniferous formations, provide distinct density interfaces. The basic, intermediate and acid volcanic rocks were also different in density,resulting in distinguishable gravity anomalies. The differences in magnetism in this region existed not only between the volcanic rocks and clastic sedimentary rocks but also among volcanic rocks with different compositions. All formations and volcanic rocks of different lithologies presented high and low resistance interbeds, which are characterized by regional trends.The modeling study demonstrated that non-seismic integrated geophysical techniques should be feasible in this region, especiaUy the high-precision gravity/magnetic methods combined with long offset transient electromagnetic sounding.

  16. Modern Radar Techniques for Geophysical Applications: Two Examples (United States)

    Arokiasamy, B. J.; Bianchi, C.; Sciacca, U.; Tutone, G.; Zirizzotti, A.; Zuccheretti, E.


    The last decade of the evolution of radar was heavily influenced by the rapid increase in the information processing capabilities. Advances in solid state radio HF devices, digital technology, computing architectures and software offered the designers to develop very efficient radars. In designing modern radars the emphasis goes towards the simplification of the system hardware, reduction of overall power, which is compensated by coding and real time signal processing techniques. Radars are commonly employed in geophysical radio soundings like probing the ionosphere; stratosphere-mesosphere measurement, weather forecast, GPR and radio-glaciology etc. In the laboratorio di Geofisica Ambientale of the Istituto Nazionale di Geofisica e Vulcanologia (INGV), Rome, Italy, we developed two pulse compression radars. The first is a HF radar called AIS-INGV; Advanced Ionospheric Sounder designed both for the purpose of research and for routine service of the HF radio wave propagation forecast. The second is a VHF radar called GLACIORADAR, which will be substituting the high power envelope radar used by the Italian Glaciological group. This will be employed in studying the sub glacial structures of Antarctica, giving information about layering, the bed rock and sub glacial lakes if present. These are low power radars, which heavily rely on advanced hardware and powerful real time signal processing. Additional information is included in the original extended abstract.

  17. Evaluating petrophysical relationships in fractured rock using geophysical measurements (United States)

    Robinson, J.; Slater, L. D.; Keating, K.; Parker, B. L.; Rose, C.; Meyer, J. R.; Johnson, C. D.; Robinson, T.; Pehme, P.; Chapman, S.; Day-Lewis, F. D.


    Quantification of the pore geometric properties controlling mass transfer rates in fractured rock aquifers is a challenging characterization problem, especially given the scales of heterogeneity. The efficiency of in-situ remediation efforts that target hydraulically connected and dead-end fracture zones is limited, in part, due to the diffusion of aqueous phase contaminants into and out of the less-mobile pore spaces in the matrix surrounding fractures. Two geophysical technologies, complex resistivity (CR) and nuclear magnetic resonance (NMR) are sensitive to pore geometry and may provide key information on transport parameters where diffusion can be a limiting factor in and around boreholes. We present laboratory CR and NMR data from cores collected from field sites with variable lithologies and examine the sensitivity of these measurements to less-mobile versus mobile porosity. Supporting data include surface area measurements using the Brunauer-Emmett-Teller (BET) method, pore size distributions from mercury porosimetry, gravimetric measurements of matrix total porosity and gas permeability. We examine the predictive capability of CR and NMR to determine these pore scale properties as a function of geological setting. The petrophysical relationships illustrate the potential for use of new borehole logging tools to determine the spatial variability of physical properties controlling mass transfer close to fractures. The correlations of measurements to rock-type specific relations indicate that minimal core measurements might be needed to calibrate the results to a specific site.

  18. Performance analysis of wireless sensor networks in geophysical sensing applications (United States)

    Uligere Narasimhamurthy, Adithya

    Performance is an important criteria to consider before switching from a wired network to a wireless sensing network. Performance is especially important in geophysical sensing where the quality of the sensing system is measured by the precision of the acquired signal. Can a wireless sensing network maintain the same reliability and quality metrics that a wired system provides? Our work focuses on evaluating the wireless GeoMote sensor motes that were developed by previous computer science graduate students at Mines. Specifically, we conducted a set of experiments, namely WalkAway and Linear Array experiments, to characterize the performance of the wireless motes. The motes were also equipped with the Sticking Heartbeat Aperture Resynchronization Protocol (SHARP), a time synchronization protocol developed by a previous computer science graduate student at Mines. This protocol should automatically synchronize the mote's internal clocks and reduce time synchronization errors. We also collected passive data to evaluate the response of GeoMotes to various frequency components associated with the seismic waves. With the data collected from these experiments, we evaluated the performance of the SHARP protocol and compared the performance of our GeoMote wireless system against the industry standard wired seismograph system (Geometric-Geode). Using arrival time analysis and seismic velocity calculations, we set out to answer the following question. Can our wireless sensing system (GeoMotes) perform similarly to a traditional wired system in a realistic scenario?

  19. Preliminary Definition of Geophysical Regions in Western Eurasia

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharyya, J.; Walter, W.R.; Flanagan, M.P,; O' Boyle, J.; Pasyanos, M.E.


    The authors present a regionalized crustal model of Western Eurasia, WEA. The model is constructed using results from published studies and maps of geological and geophysical parameters in this region, and was developed in conjunction with the updated regionalization of Middle East and North Africa by Walter et al.[2000]. As this is the first realization of the Eurasian modeling effort, they have limited themselves to only twelve broad regions. Particular attention has been given to identifying the boundaries for each region. The main use of this model will be to assist in monitoring the Comprehensive Nuclear Test Ban Treaty (CTBT). Specifically, this model will help them to calibrate and predict the travel time and amplitudes of various regional seismic phases and to locate events accurately. The model based approach allows them to readily calibrate both the seismic and the aseismic parts of western Eurasia. Each region is specified by an one-dimensional model of compressional and shear velocities, densities and layer thicknesses. Further improvements to this model will involve, but not be limited to, increasing the spatial coverage toward the east and west of Eurasia, identify sub-regions based on their distinct physical properties and the use of new and improved body wave and surface wave datasets. In the future, they expect to use this model and its successors to be the baseline model for calibration techniques, e.g., kriging, to improve their capability to detect, locate and discriminate different seismic events in Eurasia.

  20. Using geophysical techniques to control in situ thermal remediation

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, S.; Daily, W.; Ramirez, A.; Wilt, M. [Lawrence Livermore National Lab., CA (United States); Goldman, R.; Kayes, D.; Kenneally, K.; Udell, K. [California Univ., Berkeley, CA (United States); Hunter, R. [Infraseismic, Inc., Bakersfield, CA (United States)


    Monitoring the thermal and hydrologic processes that occur during thermal environmental remediation programs in near real-time provides essential information for controlling the process. Geophysical techniques played a crucial role in process control as well as for characterization during the recent Dynamic Underground Stripping Project demonstration in which several thousand gallons of gasoline were removed from heterogeneous soils both above and below the water table. Dynamic Underground Stripping combines steam injection and electrical heating for thermal enhancement with ground water pumping and vacuum extraction for contaminant removal. These processes produce rapid changes in the subsurface properties including changes in temperature fluid saturation, pressure and chemistry. Subsurface imaging methods are used to map the heated zones and control the thermal process. Temperature measurements made in wells throughout the field reveal details of the complex heating phenomena. Electrical resistance tomography (ERT) provides near real-time detailed images of the heated zones between boreholes both during electrical heating and steam injection. Borehole induction logs show close correlation with lithostratigraphy and, by identifying the more permeable gravel zones, can be used to predict steam movement. They are also useful in understanding the physical changes in the field and in interpreting the ERT images. Tiltmeters provide additional information regarding the shape of the steamed zones in plan view. They were used to track the growth of the steam front from individual injectors.

  1. Geophysical investigation of seepage beneath an earthen dam. (United States)

    Ikard, S J; Rittgers, J; Revil, A; Mooney, M A


    A hydrogeophysical survey is performed at small earthen dam that overlies a confined aquifer. The structure of the dam has not shown evidence of anomalous seepage internally or through the foundation prior to the survey. However, the surface topography is mounded in a localized zone 150 m downstream, and groundwater discharges from this zone periodically when the reservoir storage is maximum. We use self-potential and electrical resistivity tomography surveys with seismic refraction tomography to (1) determine what underlying hydrogeologic factors, if any, have contributed to the successful long-term operation of the dam without apparent indicators of anomalous seepage through its core and foundation; and (2) investigate the hydraulic connection between the reservoir and the seepage zone to determine whether there exists a potential for this success to be undermined. Geophysical data are informed by hydraulic and geotechnical borehole data. Seismic refraction tomography is performed to determine the geometry of the phreatic surface. The hydro-stratigraphy is mapped with the resistivity data and groundwater flow patterns are determined with self-potential data. A self-potential model is constructed to represent a perpendicular profile extending out from the maximum cross-section of the dam, and self-potential data are inverted to recover the groundwater velocity field. The groundwater flow pattern through the aquifer is controlled by the bedrock topography and a preferential flow pathway exists beneath the dam. It corresponds to a sandy-gravel layer connecting the reservoir to the downstream seepage zone.

  2. Jose de Acosta (1539”1600): A pioneer of geophysics (United States)

    Udías, Agustín

    One of the first books written about the American continent was by Father José de Acosta. Entitled Historia Natural y Moral de las Indias (i.e., Natural and Moral History of the Indias), it was published in Seville, Spain, in 1590 (Figure 1). The rapid printing of four editions in Spain in less than 20 yr and the translation of the book into French, Italian, German, Dutch, and Latin less than 15 yr after the first Spanish edition are signs of the rapid popularity that was achieved by this book in Europe.José de Acosta was born in 1539 in Medina del Campo, Spain. He joined the Jesuit Order in 1553 and travelled to America in 1572. He remained there for 15 yr, travelling frequently and visiting the territories that today belong to Peru, Bolivia, Chile, and Mexico. During his journeys, he took note of his observations of natural phenomena, many of them related to the geophysical sciences, such as the aspect of the skies, distribution of temperature, rain, and winds, volcanic activity, earthquakes, and a variety of new minerals, plants, and animals, as well as on the social behavior of the inhabitants of those lands.

  3. Delimitation of the Paranapanema Proterozoic block: A geophysical contribution

    Institute of Scientific and Technical Information of China (English)

    Mantovani,M.S.M; Quintas,M.C.L.; Shukowsky,W; BritoNeves,B.B.


    This study focuses on the basement structure of the Paraná Basin in South America, based on geological and geophysical data. It is a large intracratonic basin formed from the Late Ordovician until the Cretaceous,when a sequence of continentalflood basalts eruptions covered the entire basin, preceding the break-up of Western Gondwana. Isostatic modeling was applied to large gravity surveys comprising more than 12,000 gravity stations. The residual Bouguer anomaly pattern,representing the crustal contribution of the crystalline basement, as well as the sedimentary and volcanic layers of the basin, reveals similarities between the basement gravity signature and the exposed rock. The stress patterns of the Late Ordovician and Cretaceous tectonic events present a geographically coincident maximum,and the correlation between gravity highs and the main attenuation (beta factor) suggests the presence of some preexistent suture zones. The resultant mosaic of gravity blocks and the location of major faults give support to the presence of an important Proterozoic cratonic feature, here referred to as Paranapanema block.

  4. A micromachined angular-acceleration sensor for geophysical applications (United States)

    Liu, Huafeng; Pike, W. T.


    This paper presents an angular-acceleration sensor that works as either an angular accelerometer or a gravity gradiometer and is based on the micro electromechanical system (MEMS) technology. The changes in the angle of the sensor mass are sensed by a rotational capacitive array transducer that is formed by electrodes on both the stator and rotor dies of the flip-chip-bonded MEMS chip (21 mm × 12.5 mm × 1 mm). The prototype was characterized, demonstrating a fundamental frequency of 27 Hz, a quality factor of 230 in air, and a sensitivity of 6 mV/(rad/s2). The demonstrated noise floor was less than 0.003 rad/s2/ √{ Hz } within a bandwidth of 0.1 Hz to 10 Hz, which is comparable with the conventional angular accelerometer and is better than the other reported MEMS sensors in low-frequency ranges. The features of small size and low cost suggest that this MEMS angular-acceleration sensor could be mounted on a drone, a satellite or even a Mars rover, and it is promising to be used for monitoring angular accelerations, aiding seismic recording, mapping gravity anomalies, and other geophysical applications for large-scale terrestrial and space deployments.

  5. Geophysical constraints on mirror matter within the Earth

    CERN Document Server

    Ignatiev, A Yu


    We have performed a detailed investigation of geophysical constraints on the possible admixture of mirror matter inside the Earth. On the basis of the Preliminary Reference Earth Model (PREM) -- the `Standard Model' of the Earth's interior -- we have developed a method which allows one to compute changes in various quantities characterising the Earth (mass, moment of inertia, normal mode frequencies etc.)due to the presence of mirror matter. As a result we have been able to obtain for the first time the direct upper bounds on the possible concentration of the mirror matter in the Earth. In terms of the ratio of the mirror mass to the Earth mass a conservative upper bound is $3.8\\times 10^{-3}$. We then analysed possible mechanisms (such as lunar and solar tidal forces, meteorite impacts and earthquakes) of exciting mirror matter oscillations around the Earth centre. Such oscillations could manifest themselves through global variations of the gravitational acceleration at the Earth's surface. We conclude that ...

  6. Does Geophysics Need "A new kind of Science"? (United States)

    Turcotte, D. L.; Rundle, J. B.


    Stephen Wolfram's book "A New Kind of Science" has received a great deal of attention in the last six months, both positive and negative. The theme of the book is that "cellular automata", which arise from spatial and temporal coarse-graining of equations of motion, provide the foundations for a new nonlinear science of "complexity". The old science is the science of partial differential equations. Some of the major contributions of this old science have been in geophysics, i.e. gravity, magnetics, seismic waves, heat flow. The basis of the new science is the use of massive computing and numerical simulations. The new science is motivated by the observations that many physical systems display a vast multiplicity of space and time scales, and have hidden dynamics that in many cases are impossible to directly observe. An example would be molecular dynamics. Statistical physics derives continuum equations from the discrete interactions between atoms and molecules, in the modern world the continuum equations are then discretized using finite differences, finite elements, etc. in order to obtain numerical solutions. Examples of widely used cellular automata models include diffusion limited aggregation and site percolation. Also the class of models that are said to exhibit self-organized criticality, the sand-pile model, the slider-block model, the forest-fire model. Applications of these models include drainage networks, seismicity, distributions of minerals,and the evolution of landforms and coastlines. Simple cellular automata models generate deterministic chaos, i.e. the logistic map.

  7. Geophysical Hazards and Preventive Disaster Management of Extreme Natural Events (United States)

    Ismail-Zadeh, A.; Takeuchi, K.


    Geophysical hazard is potentially damaging natural event and/or phenomenon, which may cause the loss of life or injury, property damage, social and economic disruption, or environmental degradation. Extreme natural hazards are a key manifestation of the complex hierarchical nonlinear Earth system. An understanding, accurate modeling and forecasting of the extreme hazards are most important scientific challenges. Several recent extreme natural events (e.g., 2004 Great Indian Ocean Earthquake and Tsunami and the 2005 violent Katrina hurricane) demonstrated strong coupling between solid Earth and ocean, and ocean and atmosphere. These events resulted in great humanitarian tragedies because of a weak preventive disaster management. The less often natural events occur (and the extreme events are rare by definition), the more often the disaster managers postpone the preparedness to the events. The tendency to reduce the funding for preventive disaster management of natural catastrophes is seldom follows the rules of responsible stewardship for future generations neither in developing countries nor in highly developed economies where it must be considered next to malfeasance. Protecting human life and property against earthquake disasters requires an uninterrupted chain of tasks: from (i) understanding of physics of the events, analysis and monitoring, through (ii) interpretation, modeling, hazard assessment, and prediction, to (iii) public awareness, preparedness, and preventive disaster management.

  8. Global Bathymetric Prediction For Ocean Modeling and Marine Geophysics (United States)

    Sandwell, David T.; Smith, Walter H. F.; Sichoix, Lydie; Frey, Herbert V. (Technical Monitor)


    We proposed to construct a complete bathymetric map of the oceans at a 3-10 km resolution by combining all of the available depth soundings collected over the past 30 years with high resolution marine gravity information provided by the Geosat, ERS-1/2, and Topex/Poseidon altimeters. Detailed bathymetry is essential for understanding physical oceanography and marine geophysics. Currents and tides are controlled by the overall shapes of the ocean basins as well as the smaller sharp ocean ridges and seamounts. Because erosion rates are low in the deep oceans, detailed bathymetry reveals the mantle convection patterns, the plate boundaries, the cooling/subsidence of the oceanic lithosphere, the oceanic plateaus, and the distribution of off-ridge volcanoes. We proposed to: (1) Accumulate all available depth soundings collected over the past 30 years; (2) Use the short wavelength (< 160 km) satellite gravity information to interpolate between sparse ship soundings; (3) Improve the resolution of the marine gravity field using enhanced estimates along repeat altimeter profiles together with the dense altimeter measurements; (4) Refine/improve bathymetric predictions using the improved resolution gravity field and also by investigating computer-intensive methods for bathymetric prediction such as inverse theory; and (5) Produce a 'Globe of the Earth' similar to the globe of Venus prepared by the NASA Magellan investigation. This will also include the best available digital land data.

  9. Inverse geophysical and potential scattering on a small body

    Energy Technology Data Exchange (ETDEWEB)

    Katsevich, A.I.; Ramm, A.G.


    Simple and numerically stable approaches to approximate solution of inverse geophysical and potential scattering problems are described. The method we propose consists of two steps. Let {nu}(z) be the inhomogeneity (potential), and let D be its support, First, we find approximations to the zeroth moment (total intensity){integral}{sub D}{nu}(z)dz and the first moment (center of gravity) {integral}{sub D}z{nu}(z)/{integral}{sub D}{nu}(z)dz of the function {nu}(z). We call this step ``inhomogeneity localization``, because in many cases the center of gravity lies inside D or is located close to it. Second, we refine the above moments and find the tensor of the second central moments of {nu}(z). Using this information, we find an ellipsoid D and a real constant {nu}, such that the inhomogeneity (potential){nu}(z) = {nu}, z {epsilon} D, and {nu}(z) = 0, z {epsilon} D, fits best the scattering data and has the same zeroth, first, and second moments. We call this step ``approximate inversion``. The proposed method does not require any intensive computations, it is very simple to implement and it is relatively stable towards noise in the data.

  10. FY 1987 Federal Budget Proposal: Mixed outlook for geophysics (United States)

    Katzoff, Judith A.

    A new emphasis on “global geosciences” and a new start for the Ocean Topography Experiment (TOPEX) were among the highlights for geophysics in the federal budget for fiscal year (FY) 1987 that the Reagan administration submitted to Congress on February 5, 1986. Budget increases planned for the National Science Foundation (NSF) and the National Aeronautics and Space Administration (NASA), however, contrasted with cuts planned for the National Oceanic and Atmospheric Administration (NOAA) and the U.S. Geological Survey (USGS).Under the proposed budget, funding for research and development (R&D) would increase significantly in FY 1987, rising 16.9% over the funding that will remain in the FY 1986 budget after March 1, 1986. On that date, cuts in the FY 1986 budget will take effect under the Balanced Budget and Emergency Deficit Control Act of 1985, better known as Gramm-Rudman-Hollings (Eos, January 28, 1986, p. 41). Although that law was recently found unconstitutional by a special federal judicial panel, their ruling will not go into effect unless and until it is upheld by the Supreme Court, so the March 1 cuts are expected to go forward as planned. (If the Supreme Court hears the appeal, they will probably rule before early July, according to The Washington Post.) Under Gramm-Rudman-Hollings, the FY 1986 budgets of non-defense programs not protected in the law's provisions will be cut by 4.3%. Unprotected defense programs will be cut by close to 5%.

  11. On the Hamiltonian approach: Applications to geophysical flows

    Directory of Open Access Journals (Sweden)

    V. Goncharov


    Full Text Available This paper presents developments of the Harniltonian Approach to problems of fluid dynamics, and also considers some specific applications of the general method to hydrodynamical models. Nonlinear gauge transformations are found to result in a reduction to a minimum number of degrees of freedom, i.e. the number of pairs of canonically conjugated variables used in a given hydrodynamical system. It is shown that any conservative hydrodynamic model with additional fields which are in involution may be always reduced to the canonical Hamiltonian system with three degrees of freedom only. These gauge transformations are associated with the law of helicity conservation. Constraints imposed on the corresponding Clebsch representation are determined for some particular cases, such as, for example. when fluid motions develop in the absence of helicity. For a long time the process of the introduction of canonical variables into hydrodynamics has remained more of an intuitive foresight than a logical finding. The special attention is allocated to the problem of the elaboration of the corresponding regular procedure. The Harniltonian Approach is applied to geophysical models including incompressible (3D and 2D fluid motion models in curvilinear and lagrangian coordinates. The problems of the canonical description of the Rossby waves on a rotating sphere and of the evolution of a system consisting of N singular vortices are investigated.

  12. Disperse two-phase flows, with applications to geophysical problems

    CERN Document Server

    Berselli, Luigi Carlo; Iliescu, Traian


    In this paper we study the motion of a fluid with several dispersed particles whose concentration is very small (smaller than $10^{-3}$), with possible applications to problems coming from geophysics, meteorology, and oceanography. We consider a very dilute suspension of heavy particles in a quasi-incompressible fluid (low Mach number). In our case the Stokes number is small and --as pointed out in the theory of multiphase turbulence-- we can use an Eulerian model instead of a Lagrangian one. The assumption of low concentration allows us to disregard particle--particle interactions, but we take into account the effect of particles on the fluid (two-way coupling). In this way we can study the physical effect of particle inertia (and not only passive tracers), with a model similar to the Boussinesq equations. The resulting model is used in both direct numerical simulations and large eddy simulations of a dam-break (lock-exchange) problem, which is a well-known academic test case. Keywords: Dilute suspensions, E...

  13. Evaluation of gas content of coalbed methane reservoirs with the aid of geophysical logging technology

    Energy Technology Data Exchange (ETDEWEB)

    Xuehai Fu; Yong Qin; Geoff G.X. Wang; Victor Rudolph [China University of Mining and Technology, Xuzhou (China). School of Mineral Resources and Geosciences


    The geophysical logging technology has been employed in connection with field and laboratory tests for coal reservoir evaluation in Huainan and Huaibei coalfields, China. The relationships between coalbed gas content of coal reservoir and characteristics of geophysical logs have been investigated by means of the combined analyses of experimental and geophysical logging data. Coalbed gas content of drilling core samples from coal seams was determined experimentally. The results, together with the log data obtained from geophysical logging technology, have been analyzed by using geological statistics, permitting correlation of the coalbed gas content to the log responses. The correlation developed in this study provides better understanding of the coal reservoir for coalbed methane exploration in given coalfields by an improved prediction of the coalbed gas content. 30 refs., 6 figs., 4 tabs.

  14. International Geophysical Year, 1957-1958: Drifting Station Alpha Documentary Film (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This film documents the activities that occurred on Drifting Station Alpha in the Arctic Ocean during the International Geophysical Year, 1957 to 1958. The film is...

  15. 2012 Alaska Division of Geological and Geophysical Surveys (DGGS) Lidar: Whittier, Alaska (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In support of geologic mapping and hazards evaluation in and near Whittier, Alaska, the Division of Geological and Geophysical Surveys (DGGS) acquired, and is making...

  16. Karst characterization in a semi-arid region using gravity, seismic, and resistivity geophysical techniques.

    Energy Technology Data Exchange (ETDEWEB)

    Barnhart, Kevin Scott


    We proposed to customize emerging in situ geophysical monitoring technology to generate time-series data during sporadic rain events in a semi-arid region. Electrodes were to be connected to wireless \

  17. Temporal Geophysical Investigations of the FT-2-Plume at the Wurtsmith Air Force Base, Oscoda, Michigan (United States)

    The decommissioned Wurtsmith Air Force Base former Fire Training Cell (FT-02) facility has been the focus of several geophysical investigations. After several decades of fire training exercises, significant amounts of hydrocarbons and some solvents seeped into the subsurface cont...

  18. Geophysical investigations in the 100 Areas: Fiscal year 1991 through December 1993

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, T.H.


    The geophysical investigations identified in this document were conducted by the Westinghouse Hanford Company (WHC) Surface Geophysics Team, Geophysics Group, between October, 1991 and December, 1993. The investigations supported 100-Area activities for the Resource Conservation and Recovery Act of 1976 (RCRA) and the Comprehensive Environmental Response, Compensations and Liability Act of 1980 (CERCLA). The primary intent of this document is to provide a general map location and the associated document number for investigations that have been conducted as of December, 1993. The results of the individual investigations are not included here. The results of all of these investigations have been previously reported individually in WHC supporting documents. The investigations conducted during Fiscal Year (FY) 1992 are summarized in a single WHC document, WHC-SD-EN-TI-204, Rev. O. A brief summary of some of the successful applications of geophysics in the 100-Areas is included.

  19. Some case studies of geophysical exploration of archaeological sites in Yugoslavia (United States)

    Komatina, Snezana; Timotijevic, Zoran


    One of the youngest branches of environmental geophysics application is the preservation of national heritage. Numerous digital techniques developed for exploration directed to urban planning can also be applied to investigations of historic buildings. In identifying near-surface layers containing objects of previous civilizations, various sophisticated geophysical methods are used. In the paper, application of geophysics in quantification of possible problems necessary to be carried out in order to get an archaeological map of some locality is discussed [Komatina, S., 1996]. Sophisticated geophysical methods in the preservation of national heritage. Proc. of Int. Conf. Architecture and Urbanism at the turn of the Millenium, Beograd, pp. 39-44. Finally, several examples of archaeogeophysical exploration at Divostin, Bedem and Kalenic monastery localities (Serbia, Yugoslavia) are presented.

  20. Reconciling Impact Evidence and Meteorite Strewnfield in Agoudal (Morocco): Field, Geomorphology and Geophysical Evidences (United States)

    Rochette, P.; Chennaoui Aoudjehane, H.; El Kerni, H.; Quesnel, Y.; Uehara, M.; Aboulharis, M.; Hutzler, A.; Bourles, D.


    We present a synthesis of the field observations, magnetic and electromagnetic geophysical prospection, and ongoing measurements to discuss the likelyhood that the Agoudal impact and meteorite strewnfield are the same event, dated within Pleistocene.

  1. 78 FR 57877 - National Cooperative Geologic Mapping Program (NCGMP) and National Geological and Geophysical... (United States)


    ... FURTHER INFORMATION CONTACT: For the phone number and access code, please contact Michael Marketti, U.S... Geophysical Data Preservation Program Advisory Committee are open to the Public. Kevin T. Gallagher,...


    Directory of Open Access Journals (Sweden)

    Züheyr KAMACI


    Full Text Available Geothermal energy which is one of the reuseable energy resources, can save as much as 77 million barrels of petroleum equivalent annually when used in the production of electricity and heating-environment. Geophysical exploration methods plays in important role in the fields of geothermal exploration, development and observational studies. Thermal and geoelectrical methods are the most effective methods which shows the temperature variation anomalies and mechanical drilling places. But, when the other methods of gravity, magnetic, radiometric, well geophysics and well logs can be used in conjunction with seismic tomography, apart from the mentioned geophysical exploration method, better results could be obtained. From the above mentioned facts various case history reports are given from our country and worldwide to determine geothermal energy resources by using geophysical exploration technique application. From these results of studies a 55 °C hot water artessian aquifer is found in the Uşak-Banaz geothermal field by applying geoelectrical methods.

  3. Quantitative geological modeling based on probabilistic integration of geological and geophysical data

    DEFF Research Database (Denmark)

    Gulbrandsen, Mats Lundh

    In order to obtain an adequate geological model of any kind, proper integration of geophysical data, borehole logs and geological expert knowledge is important. Geophysical data provide indirect information about geology, borehole logs provide sparse point wise direct information about geology......, and the geologist’s job is to combine these sources of information with his or her own knowledge about lithology and geological structures and develop geological models. Large and data-rich geophysical surveys make this job extremely difficult. With a manual interpretation approach it is extremely time demanding...... models. The work is manifested in two main directions. One direction focuses on how to fast and reliably be able to map geological boundary layers that uses all available geophysical data, treat all data consistently and at the same time treasure geological knowledge. For this purpose a methodology...

  4. 2012 Alaska Division of Geological and Geophysical Surveys (DGGS) Lidar: Whittier, Alaska (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In support of geologic mapping and hazards evaluation in and near Whittier, Alaska, the Division of Geological and Geophysical Surveys (DGGS) acquired, and is...

  5. Geodetic and geophysical observations in Antarctica an overview in the IPY perspective

    CERN Document Server

    Capra, Alessandro


    This book is a collection of papers on various aspects of the geodetic and geophysical investigation and observation techniques. It includes material from the Arctic and Antarctica, as well as covering work from both temporary and permanent observatories.

  6. Identifying Fossil Shell Resources via Geophysical Surveys: Chesapeake Bay Region, Virginia (United States)


    ER D C/ CH L TR -1 6- 4 Chesapeake Fossil Shell Survey Identifying Fossil Shell Resources via Geophysical Surveys: Chesapeake Bay Region...other technical reports published by ERDC, visit the ERDC online library at Chesapeake Fossil Shell...Survey ERDC/CHL TR-16-4 May 2016 Identifying Fossil Shell Resources via Geophysical Surveys: Chesapeake Bay Region, Virginia Heidi M. Wadman and Jesse

  7. Optimized Enhanced Bioremediation Through 4D Geophysical Monitoring and Autonomous Data Collection, Processing and Analysis (United States)


    monitoring of primary production of turbidite reservoirs at South Timbalier Block 295, offshore Louisiana, Gulf of Mexico ." Geophysics 65(2): 351-367...Geoelectrical Effects Associated With the Presence of Bacteria in Contaminated Groundwater. EOS Trans. AGU, 85(47), Fall Meet. Suppl, Abstract (2005). Web Based Autonomous Geophysical/Hydrological Monitoring of the Gilt Edge Mine Site: Implementation and Results. Eos Trans. AGU, 86(18

  8. Geophysical Surveys for Detecting Anomalous Conditions, Algiers Canal Levees, New Orleans, Louisiana (United States)


    ER D C/ G SL T R- 14 -3 3 Geophysical Surveys for Detecting Anomalous Conditions, Algiers Canal Levees, New Orleans, Louisiana G eo te...Geophysical Surveys for Detecting Anomalous Conditions, Algiers Canal Levees, New Orleans, Louisiana José L. Llopis and Joseph B. Dunbar Geotechnical...the west side of Algiers Canal approximately 5 miles south of downtown New Orleans, LA. The levees are located adjacent to industrial and metal

  9. Geophysical research methods for hydrogeology and engineering geology. Geofizicheskie metody issledovaniy v gidrogeologii i inzhenernoy geologii

    Energy Technology Data Exchange (ETDEWEB)

    Gribanov, B.I.


    This collection, prepared and published by GIDROINGED (Institute of and Engineering (Tashkent)), contains new methodologies developed by the Institute's hydrogeological service. These methods are geared toward increasing the geological and economic effectiveness of geophysical methods used during complex hydrogeological research. These articles examine ways to increase the volume of beneficial information obtained while providing monetary savings in the areas of surface and bore hole geophysics. Examples are given of the practical use of such methods.

  10. Review of Geophysical Techniques to Define the Spatial Distribution of Subsurface Properties or Contaminants

    Energy Technology Data Exchange (ETDEWEB)

    Murray, Christopher J.; Last, George V.; Truex, Michael J.


    This is a letter report to Fluor Hanford, Inc. The purpose of this report is to summarize state-of-the-art, minimally intrusive geophysical techniques that can be used to clarify subsurface geology, structure, moisture, and chemical composition. The technology review focused on geophysical characterization techniques that provide two- or three-dimensional information about the spatial distribution of subsurface properties and/or contaminants.

  11. A comparative integrated geophysical study of Horseshoe Chimney Cave, Colorado Bend State Park, Texas

    Directory of Open Access Journals (Sweden)

    Brown Wesley A.


    Full Text Available An integrated geophysical study was performed over a known cave in Colorado Bend State Park (CBSP, Texas, where shallow karst features are common within the Ellenberger Limestone. Geophysical survey such as microgravity, ground penetrating radar (GPR, direct current (DC resistivity, capacitively coupled (CC resistivity, induced polarization (IP and ground conductivity (GC measurements were performed in an effort to distinguish which geophysical method worked most effectively and efficiently in detecting the presence of subsurface voids, caves and collapsed features. Horseshoe Chimney Cave (HCC, which is part of a larger network of cave systems, provides a good control environment for this research. A 50 x 50 meter grid, with 5 m spaced traverses was positioned around the entrance to HCC. Geophysical techniques listed above were used to collect geophysical data which were processed with the aid of commercial software packages. A traditional cave survey was conducted after geophysical data collection, to avoid any bias in initial data collection. The survey of the cave also provided ground truthing. Results indicate the microgravity followed by CC resistivity techniques worked most efficiently and were most cost effective, while the other methods showed varying levels of effectiveness.

  12. Integrated Geophysical Exploration Program at the Rye Patch Geothermal Field, Pershing County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    W. Teplow


    The purpose of the geophysical exploration program was to use an integrated suite of detailed geophysical surveys to locate and map commercially productive zones in the Rye Patch geothermal field. The focus of the surveys was the production zone in Well 44-28 located at a depth of 3400' below surface. The primary goal of the program was to map the extension of the specific producing feature in 44-28 so that step-out wells could be targeted accurately. The second goal of the program was to identify additional production drilling targets that may be hydrologically independent from the 44-28 zone. The geophysical program was designed to measure a range of physical rock characteristics including magnetic, electrical, density, and sonic properties. This was done to help overcome the limitations and ambiguities inherent to any particular geophysical method. The studies and methodologies employed in the Rye Patch geophysical program are discussed. This report presents the results and a discussion of those results from each of the surveys and studies performed. Correlations among the data sets and between the data sets and the known producing zones are discussed, and drilling targets are presented as the end product of the correlations observed in the geophysical and geologic data.

  13. Attenuated geophysical signatures associated with ongoing remediation efforts at Wurtsmith Air Force Base, Oscoda, Michigan (United States)

    Che-Alota, V.; Atekwana, E. A.; Sauck, W. A.; Nolan, J. T.; Slater, L. D.


    Previous geophysical investigations (1996, 1997, 2003, and 2004) conducted at the decommissioned Wurtsmith Air Force Base former Fire Training Cell (FT-02) showed a clearly defined high conductivity anomaly associated with hydrocarbon contaminants in the vadose zone and ground water near the source area. The source of the geophysical anomalies was attributed to biogeochemical modifications of the contaminated zone resulting from intrinsic bioremediation. During these previous surveys, ground penetrating radar (GPR) data showed a zone of attenuated GPR reflections extending from the vadose zone to below the water table. Self potential data (SP) data defined a positive anomaly coincident with the hydrochemically defined plume, while electrical resistivity data showed anomalously high conductivity within the zone of impact. In 2007, another integrated geophysical study of the site was conducted. GPR, SP, electrical resistivity, and induced polarization surveys were conducted with expectations of achieving similar results as the past surveys. However, preliminary assessment of the data shows a marked decrease in electrical conductivity and SP response over the plume. GPR data still showed the attenuated signals, but the zone of attenuation was only observed below the water table. We attribute the attenuation of the observed geophysical anomalies to ongoing soil vapor extraction initiated in 2003. Significant removal of the contaminant mass by the vapor extraction system has altered the subsurface biogeochemical conditions and these changes were documented by the 2007 geophysical and geochemical data. The results of this study show that the attenuation of the contaminant plume is detectable with geophysical methods.

  14. Geophysical characterization of buried active faults: the Concud Fault (Iberian Chain, NE Spain) (United States)

    Pueyo Anchuela, Óscar; Lafuente, Paloma; Arlegui, Luis; Liesa, Carlos L.; Simón, José L.


    The Concud Fault is a 14-km-long active fault that extends close to Teruel, a city with about 35,000 inhabitants in the Iberian Range (NE Spain). It shows evidence of recurrent activity during Late Pleistocene time, posing a significant seismic hazard in an area of moderate-to-low tectonic rates. A geophysical survey was carried out along the mapped trace of the southern branch of the Concud Fault to evaluate the geophysical signature from the fault and the location of paleoseismic trenches. The survey identified a lineation of inverse magnetic dipoles at residual and vertical magnetic gradient, a local increase in apparent conductivity, and interruptions of the underground sediment structure along GPR profiles. The origin of these anomalies is due to lateral contrast between both fault blocks and the geophysical signature of Quaternary materials located above and directly south of the fault. The spatial distribution of anomalies was successfully used to locate suitable trench sites and to map non-exposed segments of the fault. The geophysical anomalies are related to the sedimentological characteristics and permeability differences of the deposits and to deformation related to fault activity. The results illustrate the usefulness of geophysics to detect and map non-exposed faults in areas of moderate-to-low tectonic activity where faults are often covered by recent pediments that obscure geological evidence of the most recent earthquakes. The results also highlight the importance of applying multiple geophysical techniques in defining the location of buried faults.

  15. Adaptive filtering for deformation parameter estimation in consideration of geometrical measurements and geophysical models

    Institute of Scientific and Technical Information of China (English)


    There are two kinds of methods in researching the crust deformation: geophysical method and geometrical (or observational) method. Considerable differences usually exist between the two kinds of results, because of the datum differences, geophysical model errors, observational model errors, and so on. Thus, it is reasonable to combine the two kinds of information to collect the crust deformation information. To use the reliable geometrical and geophysical information, we have to control the observational and geophysical model error influences on the estimated deformation parameters, and to balance their contributions to the evaluated parameters. A hybrid estimation strategy is proposed here for evaluating the deformation parameters employing an adaptively robust filtering. The effects of measurement outliers on the estimated parameters are controlled by robust equivalent weights. Adaptive factors are introduced to balance the contribution of the geophysical model information and the geometrical measurements to the model parameters. The datum for the local deformation analysis is mainly determined by the highly accurate IGS station velocities. The hybrid estimation strategy is applied in an actual GPS monitoring network. It is shown that the hybrid technique employs locally repeated geometrical displacements to reduce the displacement errors caused by the mis-modeling of geophysical technique, and thus improves the precision of the estimated crust deformation parameters.

  16. Application of borehole geophysics to fracture identification and characterization in low porosity limestones and dolostones

    Energy Technology Data Exchange (ETDEWEB)

    Haase, C.S.; King, H.L.


    Geophysical logging was conducted in exploratory core holes drilled for geohydrological investigations at three sites used for waste disposal on the US Department of Energy's Oak Ridge Reservation. Geophysical log response was calibrated to borehole geology using the drill core. Subsequently, the logs were used to identify fractures and fractured zones and to characterize the hydrologic activity of such zones. Results of the study were used to identify zones of ground water movement and to select targets for subsequent piezometer and monitoring well installation. Neutron porosity, long- and short-normal resistivity, and density logs exhibit anomalies only adjacent to pervasively fractured zones and rarely exhibit anomalies adjacent to individual fractures, suggesting that such logs have insufficient resolution to detect individual fractures. Spontaneous potential, single point resistance, acoustic velocity, and acoustic variable density logs, however, typically exhibit anomalies adjacent to both individual fractures and fracture zones. Correlation is excellent between fracture density logs prepared from the examination of drill core and fractures identified by the analysis of a suite of geophysical logs that have differing spatial resolution characteristics. Results of the study demonstrate the importance of (1) calibrating geophysical log response to drill core from a site, and (2) running a comprehensive suite of geophysical logs that can evaluate both large- and small-scale rock features. Once geophysical log responses to site-specific geological features have been established, logs provide a means of identifying fracture zones and discriminating between hydrologically active and inactive fracture zones. 9 figs.

  17. Pitfalls and Limitations in the Interpretation of Geophysical Images for Hydrologic Properties and Processes (United States)

    Day-Lewis, F. D.


    Geophysical imaging (e.g., electrical, radar, seismic) can provide valuable information for the characterization of hydrologic properties and monitoring of hydrologic processes, as evidenced in the rapid growth of literature on the subject. Geophysical imaging has been used for monitoring tracer migration and infiltration, mapping zones of focused groundwater/surface-water exchange, and verifying emplacement of amendments for bioremediation. Despite the enormous potential for extraction of hydrologic information from geophysical images, there also is potential for misinterpretation and over-interpretation. These concerns are particularly relevant when geophysical results are used within quantitative frameworks, e.g., conversion to hydrologic properties through petrophysical relations, geostatistical estimation and simulation conditioned to geophysical inversions, and joint inversion. We review pitfalls to interpretation associated with limited image resolution, spatially variable image resolution, incorrect data weighting, errors in the timing of measurements, temporal smearing resulting from changes during data acquisition, support-volume/scale effects, and incorrect assumptions or approximations involved in modeling geophysical or other jointly inverted data. A series of numerical and field-based examples illustrate these potential problems. Our goal in this talk is to raise awareness of common pitfalls and present strategies for recognizing and avoiding them.

  18. The Role of Geophysics/Geology in the Environmental Discourse (United States)

    Pfannkuch, H. O.


    Environmental problems are created by interaction between the Anthroposphere and Geosphere. Principles and laws governing behavior and interaction between them have to be fully understood to properly address environmental problems. A particular problem arises by inadequate communication between practitioners and/or decision makers in each sphere. A perfect analysis or solution in the Geosphere based solely on geophysical, geochemical principles will go nowhere if institutional, socio economic principles are ignored, or vice versa: no matter how well socio-economic relations are used in the Anthroposphere if they violate basic laws of physics . Two conceptual representations of the environment system are: Nöosphere with three domains: Physical, Institutional, Symbolic and their interactions. It is where environmental problems arise, decisions are made and implemented. The Physical Domain comprises physical, chemical, biological, geopsphere realities. Problems are treated by the scientific method. The Institutional Domain with economy, sociology, administration and political institutions, solves by negotiation (vote, ballot). The elements of the Symbolic Domain. spiritual, moral, religious, esthetic principles are revealed. All are intimately connected and interdependent. Activity in one affects the state of the others. A particularly strong and effective interactive relation exists between the Physical and the Institutional domains with regards to environmental problem definition, analysis and resolution. Hierarchic structure of interaction pyramid. Geosphere, Biosphere and Anthroposphere are open systems and are organized in successive levels forming a pyramid shape or aspect. The Geosphere forms the bottom level, the Anthroposphere the top. One fundamental attribute is that level (n) is limited by the restrictions obtaining in level (n-1), and conversely, level (n) represents the restrictions and limitations for level (n+1). In the environmental discourse this

  19. Active Geophysical Monitoring in Oil and Gas Industry (United States)

    Bakulin, A.; Calvert, R.


    Effective reservoir management is a Holy Grail of the oil and gas industry. Quest for new technologies is never ending but most often they increase effectiveness and decrease the costs. None of the newcomers proved to be a silver bullet in such a key metric of the industry as average oil recovery factor. This factor is still around 30 %, meaning that 70 % of hydrocarbon reserves are left in the ground in places where we already have expensive infrastructure (platforms, wells) to extract them. Main reason for this inefficiency is our inability to address realistic reservoir complexity. Most of the time we fail to properly characterize our reservoirs before production. As a matter of fact, one of the most important parameters -- permeability -- can not be mapped from remote geophysical methods. Therefore we always start production blind even though reservoir state before production is the simplest one. Once first oil is produced, we greatly complicate the things and quickly become unable to estimate the state and condition of the reservoir (fluid, pressures, faults etc) or oilfield hardware (wells, platforms, pumps) to make a sound next decision in the chain of reservoir management. Our modeling capabilities are such that if we know true state of the things - we can make incredibly accurate predictions and make extremely efficient decisions. Thus the bottleneck is our inability to properly describe the state of the reservoirs in real time. Industry is starting to recognize active monitoring as an answer to this critical issue. We will highlight industry strides in active geophysical monitoring from well to reservoir scale. It is worth noting that when one says ``monitoring" production technologists think of measuring pressures at the wellhead or at the pump, reservoir engineers think of measuring extracted volumes and pressures, while geophysicist may think of change in elastic properties. We prefer to think of monitoring as to measuring those parameters of the

  20. Nature, theory and modelling of geophysical convective planetary boundary layers (United States)

    Zilitinkevich, Sergej


    Geophysical convective planetary boundary layers (CPBLs) are still poorly reproduced in oceanographic, hydrological and meteorological models. Besides the mean flow and usual shear-generated turbulence, CPBLs involve two types of motion disregarded in conventional theories: 'anarchy turbulence' comprised of the buoyancy-driven plumes, merging to form larger plumes instead of breaking down, as postulated in conventional theory (Zilitinkevich, 1973), large-scale organised structures fed by the potential energy of unstable stratification through inverse energy transfer in convective turbulence (and performing non-local transports irrespective of mean gradients of transporting properties). C-PBLs are strongly mixed and go on growing as long as the boundary layer remains unstable. Penetration of the mixed layer into the weakly turbulent, stably stratified free flow causes turbulent transports through the CPBL outer boundary. The proposed theory, taking into account the above listed features of CPBL, is based on the following recent developments: prognostic CPBL-depth equation in combination with diagnostic algorithm for turbulence fluxes at the CPBL inner and outer boundaries (Zilitinkevich, 1991, 2012, 2013; Zilitinkevich et al., 2006, 2012), deterministic model of self-organised convective structures combined with statistical turbulence-closure model of turbulence in the CPBL core (Zilitinkevich, 2013). It is demonstrated that the overall vertical transports are performed mostly by turbulence in the surface layer and entrainment layer (at the CPBL inner and outer boundaries) and mostly by organised structures in the CPBL core (Hellsten and Zilitinkevich, 2013). Principal difference between structural and turbulent mixing plays an important role in a number of practical problems: transport and dispersion of admixtures, microphysics of fogs and clouds, etc. The surface-layer turbulence in atmospheric and marine CPBLs is strongly enhanced by the velocity shears in

  1. Surface Packages for Geophysical Exploration of Small Bodies (United States)

    Scheeres, D. J.


    The geophysical exploration of small rubble pile bodies is fundamentally important for understanding the mechanics of gravitationally bound aggregates. The mechanical and geotechnical properties of these bodies are not understood from an experimental perspective, and have only been studied theoretically and using numerical simulations. To carry out experiments in this environment requires the development and deployment of surface packages to the body surface to enable physical interactions and measurements. This talk will discuss how such experiments can be developed and used in the small body environment. It will particularly focuse on one approach that uses a combination of surface seismic sources and probes to measure the seismic properties of a rubble pile. The small body dynamical environment is particularly well suited for the deployment of such surface packages for exploration and scientific measurement purposes. This is mainly due to their meager gravity fields, which allow the delivery of complex instruments to the surface with impact speeds that are at most a meter per second — equivalent to dropping an object from less than a 5 cm height on Earth. Despite this seeming advantage, the delivery and mobility of such packages on the surface of a small body remains a challenging endeavor, and to date the delivery of surface packages to small bodies has had a mixed success rate. Issues that must be accounted for include the delivery trajectories for probes to the surface, motion on the surface of a small body, and interactions between a probe and a small body surface. Studies of all of these issues both theoretically and experimentally will be presented, along with proposed applications to achieve scientific goals on the surfaces of small bodies.

  2. A multidisciplinary database for geophysical time series management (United States)

    Montalto, P.; Aliotta, M.; Cassisi, C.; Prestifilippo, M.; Cannata, A.


    The variables collected by a sensor network constitute a heterogeneous data source that needs to be properly organized in order to be used in research and geophysical monitoring. With the time series term we refer to a set of observations of a given phenomenon acquired sequentially in time. When the time intervals are equally spaced one speaks of period or sampling frequency. Our work describes in detail a possible methodology for storage and management of time series using a specific data structure. We designed a framework, hereinafter called TSDSystem (Time Series Database System), in order to acquire time series from different data sources and standardize them within a relational database. The operation of standardization provides the ability to perform operations, such as query and visualization, of many measures synchronizing them using a common time scale. The proposed architecture follows a multiple layer paradigm (Loaders layer, Database layer and Business Logic layer). Each layer is specialized in performing particular operations for the reorganization and archiving of data from different sources such as ASCII, Excel, ODBC (Open DataBase Connectivity), file accessible from the Internet (web pages, XML). In particular, the loader layer performs a security check of the working status of each running software through an heartbeat system, in order to automate the discovery of acquisition issues and other warning conditions. Although our system has to manage huge amounts of data, performance is guaranteed by using a smart partitioning table strategy, that keeps balanced the percentage of data stored in each database table. TSDSystem also contains modules for the visualization of acquired data, that provide the possibility to query different time series on a specified time range, or follow the realtime signal acquisition, according to a data access policy from the users.

  3. Geophysical mapping of contaminant leachate around a reclaimed open dumpsite

    Directory of Open Access Journals (Sweden)

    W.O. Raji


    Full Text Available Very low frequency electromagnetic (VLF-EM, 2D Electrical Resistivity Profiling (2D ERP and Vertical Electrical Sounding (VES methods of geophysics were deployed to map the extent of leachate contamination in near-surface rocks around a popular reclaimed dumpsite in north central Nigeria. Two years after abandon and waste excavation; the dumpsite was converted to a residential area with over 80 houses under construction. Prior to waste dumping operation, clay-seal was installed at 2 m depth around the dumpsite to prevent leachate from the waste material flowing to the adjoining area. Results from VLF, 2D ERP, and VES show presence of leachate contamination in rocks and soil of the reclaimed dumpsite. Leachate has spread laterally up to a distance of about 1 km on the northern and southern parts of the dumpsite centre, and up to a depth of about 20 m. Compared to the results of similar survey in an area outside the dumpsite, leachate infiltration raised the conductivity signature of the rocks around the dumpsite by about 200%: from 7% to 22%. Both VLF-EM and 2D ERP show the presence of approximate north – south oriented structures/fracture characterised by high conductivity. VES results show the presence of four – five geo-electric layers. Important conclusions from the study are that (i leachate is still present in the rocks and soil of the reclaimed dumpsite two years after the abandonment and excavation of the waste materials, and (ii the clay seal installed around the dumpsite could not prevent leachate migration to the adjoining areas.

  4. DART: New Research Using Ensemble Data Assimilation in Geophysical Models (United States)

    Anderson, Jeffrey; Raeder, Kevin; Hoar, Tim; Collins, Nancy; Romine, Glen; Barre, Jerome; Gaubert, Benjamin; Arellano, Ave; Wuerth, Stephanie


    The Data Assimilation Research Testbed (DART) is a community facility for ensemble data assimilation developed and supported by the National Center for Atmospheric Research. DART provides a comprehensive suite of software, documentation, examples and tutorials that can be used for ensemble data assimilation research, operations, and education. Scientists and software engineers from the Data Assimilation Research Section at NCAR are available to actively support DART users who want to use existing DART products or develop their own new applications. Current DART users range from university professors teaching data assimilation, to individual graduate students working with simple models, through national laboratories doing operational prediction with large state-of-the-art models. DART runs efficiently on many computational platforms ranging from laptops through thousands of cores on the newest supercomputers. This poster focuses on several recent research activities using DART with geophysical models: 1). Using CAM/DART to understand whether OCO-2 Total Precipitable Water observations can be useful in numerical weather prediction. 2). Impacts of the synergistic use of Infra-red CO retrievals (MOPITT, IASI) in CAMCHEM/DART assimilations. 3). Assimilation and Analysis of Observations of Amazonian Biomass Burning Emissions by MOPITT (aerosol optical depth), MODIS (carbon monoxide) and MISR (plume height). 4). Long term evaluation of the chemical response of MOPITT-CO assimilation in CAM-CHEM/DART OSSEs for satellite planning and emission inversion capabilities. 5). Improved forward observation operators for land models that have multiple land use/land cover segments in a single grid cell, enabling studies of the inherent variability in a single gridcell. Future enhancements are also discussed: 1). The CICE component of the Community Earth System Model will be added to the existing suite of components, which can be used for data assimilation. 2). Fully coupled

  5. The limiting form of symmetric instability in geophysical flows (United States)

    Griffiths, Stephen


    The stability of parallel flow with vertical shear, density stratification and background rotation is of fundamental importance in geophysical fluid dynamics. For a flow with vertical shear Uz and buoyancy frequency N, the dominant instability is typically a symmetric instability (sometimes known as slantwise convection) when 1/4 linear stability problem has been well studied for the case of constant Uz and N, and has some interesting mathematical properties (e.g., non-separable governing PDE, an absence of normal mode solutions in rectangular domains). Here, for the first time, a general theory of symmetric instability is given when Ri varies smoothly with height, thinking of the more realistic case where an unstable layer with Ri 1. The mathematical theory is developed for horizontally periodic disturbances to a basic state with arbitrary smooth N(z), but constant Uz. An asymptotic analysis is used to derive expressions for the most unstable mode, which occurs in the limit of large cross-isentropic wavenumber and takes the form of solutions trapped within the unstable layer; the same result is derived using an interesting generalised parcel dynamics argument, which explicitly shows how the trapping is linked to vertical variations of the potential vorticity. A separate asymptotic analysis is given for the small wavenumber limit, where only one such trapped mode may exist, as expected from the spectral theory of the Schrödinger equation. These two limiting results are shown to be consistent with an exact solution of the linear stability problem that can be obtained for a special choice of N(z). The asymptotic analysis can be extended to allow for weak diffusion at arbitrary Prandtl number, yielding an explicit diffusive scale selection at large wavenumber. Numerical simulations show that these weakly diffusive modes dominate the early stages of the nonlinear evolution of the symmetric instability.

  6. The structure of the Amazonian craton: Available geophysical evidence (United States)

    Rosa, João Willy Corrêa; Rosa, José Wilson Corrêa; Fuck, Reinhardt A.


    The Amazonian craton, which covers a large area of South America, and is thought to have been stable since the end of the Mesoproterozoic, has recently benefited from a series of regional geophysical surveys. The Amazonian craton comprises the northern Guyana shield and the southern Central Brazil shield. It has become the main subject of seismological studies aiming to determine crustal thickness. Moho thickness maps that cover a large part of the South American continent summarize these studies. Receiver function studies, aided by surface wave dispersion tomography, were also useful tools applied in the region over the past decade. These have been improved by the addition of temporary and permanent regional seismological arrays and stations. An interesting NNW-SSE Moho depth anomaly, pointing to crustal thickening of up to 60 km in the central Guyana shield and a 50 km thick anomaly of the southern Central Brazil shield were recently identified. Areas with crustal thickening correspond to Paleoproterozoic magmatic arcs. The upper mantle seismic anisotropy in part of the region has been determined from SKS splitting studies. The currently available seismic anisotropy information shows that the orientation of the determined anisotropic axis is related to the frozen in anisotropy hypothesis for the Amazonian craton. The orientation of the anisotropic axis shows no relation to the current South American plate motion in the Amazonian craton. Most recently, detailed information for the two shields has benefited from a series of high-resolution, regional aerogeophysical surveys, made available by CPRM, the Brazilian Geological Survey. In addition to the mentioned contribution from seismology for imaging deeper crustal structures, regional gravity surveys have been expanded, adding to previous Bouguer anomaly maps, and deep drilling information from early exploration efforts have been compiled for the Amazon basin, which covers the Amazonian craton separating the Guyana

  7. Dynamical approach to study and interpret geodynamical and geophysical effects (United States)

    Ferronsky, V.


    It was proved by satellite and terrestrial observation that the hydrostatics, which operates by the outer forces, is not able to ensure correct description and interpretation of geodynamical and geophysical effects. In order to find solution of the problem, we applied to dynamics. For this purpose the outer force field of the Earth was replaced by its inner (volumetric) force pressure. Doing so we introduced new physical basis for study dynamics of the planet in its own force field. The analytics for that is as follows. The body is considered as a system of n elementary particles (n → ∞) of masses mi and many degrees of freedom. The volumetric moment of a particle pi is written as pi = midri/dt. Then the moment of momentum M of the system is found to be derivative from the moment of inertia I in the form: M = ∑piri = ∑miridri/dt = d/dt(∑½ miri2) = ½ dI/dt. Then derivative on time from M gives the energy of the system as second derivative from I: M' = ∑pidri/dt + ∑ridpi/dt = ½I" where ∑pidri/dt = 2T is the kinetic energy and ∑ridpi/dt = U is the potential energy of the oscillating moment of inertia (interacting particles). So, equation of dynamical equilibrium (equation of state) of a body, where the interacted particles are presented by nonlinear oscillators, is ½I" = 2T + U. We used this for study and interpretation of oscillation and rotation parameters of the Earth. Note that the center of mass of the Earth is presented here by a surface of asymmetric spheroid. For more information see our works: Ferronsky V.I. and S.V.Ferronsky (2007). Dynamics of the Earth, Scientific World, Moscow; Ferronsky V.I. (2008) Non-averaged virial theorem for natural systems:

  8. Integrated Geophysical Studies in the East-Indian Geothermal Province (United States)

    Baranwal, V. C.; Sharma, S. P.


    Integrated geophysical surveys using vertical electrical sounding (VES), very low frequency (VLF) EM, radiation counting, total magnetic field and self-potential (SP) measurements are carried out to characterize the geothermal area around a hot spring in the Nayagarh district, Orissa, India that lies in the East Indian geothermal province. The study was performed to delineate the fracture pattern, contaminated groundwater movement and possible heating source. VES interpretations suggest a three- to four-layer structure in the area. Resistivity survey near the hot spring suggests that weathered and fractured formations constitute the main aquifer system and extend to 60 m depth. Current flow measured at various electrode separations normalized by the applied voltage suggests that fractures extend to a greater depth. Detailed VLF study shows that fractures extend beyond 70 m depth. VLF anomaly has also very good correlation with the total magnetic field measured along the same profiles. Study results suggest that a gridded pattern of VLF survey could map the underground conductive fracture zones that can identify the movement of contaminated groundwater flow. Therefore, precautionary measures can be taken to check further contamination by delineating subsurface conducting structures. Self potential (SP) measured over the hot spring does not show a large anomaly in favor of the presence of a sulphide mineral body. A small positive (5 15mV) SP anomaly is measured which may be streaming potential due to subsurface fluid flow. A high radiation is measured about four kilometers from the hot spring, suggesting possible radiogenic heating. However, the exact nature of the heating source and its depth is not known in the area. Deep resistivity followed by a magneto-telluric survey could reveal the deeper structures.

  9. Introducing seismic metamaterials and their potential geophysical applications. (United States)

    Colombi, Andrea; Roux, Philippe; Craster, Richard; Guenneau, Sebastien


    What if in the future the propagation of seismic surface waves in urban environments could be shaped at will? Until a few years ago, this question would have sounded rather provocative to the seismological community: Today, thanks to seismic metamaterials, this is no longer the case. This talk reviews the recent developments that have brought metamaterials, introduced in the 90's to mould the flow of electromagnetic waves at micro- or nano-scales, to be promising in the control the propagation of seismic waves in the ground. The idea behind a seismic metamaterial is tomodify the local properties of the ground through the insertion of inclusions of a different material at a sub-wavelength scale. The different types of inclusions, resonant or non-resonant, determine the property and the performance of the metamaterial. After a brief overview on some seminal acoustic experiments, we introduce three types of seismic metamaterials: The first is based on a cluster of closely spaced sub-wavelength resonators attached to the ground realising a metasurface that can stop the propagation of Rayleigh waves. A geophysical experiment has demonstrated that forest trees can act like this metamaterial for frequencyies between 30 and 100 Hz. The second type is derived from the previous, but now the subwavelength resonators realising the cluster are graded (i.e. of decreasing height) such that they allow Rayleigh waves to be converted into shear waves. Finally, in the last example, we present a metamaterial that uses soft soil inclusions in the ground to create a lens for rerouting seismic surface waves around an obstacle. Since most of the results shown here come from numerical simulations, this talk will be of interest also for numerical modelers concerned with scattering from deeply subwavelength (resonant) inclusions.

  10. Geophysical Implications of Macro Variations in Enceladan Eruptions (United States)

    Hurford, Terry; Hedman, Matthew M.; Spitale, Joseph N.; Rhoden, Alyssa R.


    Models of the evolution of Saturn's E ring have shown that Enceladus is the likely source of its particles [1]. Particles within this ring are quickly destroyed and must be constantly replenished [2,3]. Until recently the Enceladan source for these particles had been debated, but Cassini observations have tied their source to eruptions from a large fracture system in the south polar region. Cassini observations of the south pole of Enceladus revealed large rifts in the crust, informally called “tiger stripes”, which exhibit higher temperatures than the surrounding terrain and are likely sources of the observed plumes [4,5]. Diurnal tides due to Enceladus' orbital eccentricity were predicted to control the timing of eruptions as tidal stress varied across active faults on an orbital timescale [6]. These tidal stresses are periodic, driving motion along the rifts throughout Enceladus' orbit, influencing the timing and location of eruption as well as the formation and evolution of the E ring. Moreover, recent work has shown that Cassini has detected changes in the plume on orbital timescales [7], confirming the prediction of tidal control. Macro variations in eruptive plumes can be used to probe the conditions under which the eruptions occur [8]. We explore further the links between tidal control of eruptions and their geophysical implications.[1] M. Horanyi, et al., Icarus 97, 248 (1992). [2] P. K. Haff, et al., Icarus 56, 426 (1983). [3] S. Jurac, et al., Icarus 149, 384 (2001). [4] J. R. Spencer, et al., Science 311, 1401 (2006).[5] C. C. Porco, et al., Science 311, 1393 (2006).[6] T.A. Hurford, et al., Nature 447, 292 (2007).[7] M. Hedman, et al., Nature 500, 182 (2013).[8] T.A. Hurford, et al., Icarus 203, 541 (2009).

  11. Particle Methods for Geophysical Flow on the Sphere (United States)

    Bosler, Peter A.

    We present a Lagrangian Particle-Panel Method (LPPM) for geophysical fluid flow on a rotating sphere motivated by problems in atmosphere and ocean dynamics. We focus here on the barotropic vorticity equation and 2D passive scalar advection, as a step towards the development of a new dynamical core for global circulation models. The LPPM method employs the Lagrangian form of the equations of motion. The flow map is discretized as a set of Lagrangian particles and panels. Particle velocity is computed by applying a midpoint rule/point vortex approximation to the Biot-Savart integral with quadrature weights determined by the panel areas. We consider several discretizations of the sphere including the cubed sphere mesh, icosahedral triangles, and spherical Voronoi tesselations. The ordinary differential equations for particle motion are integrated by the fourth order Runge-Kutta method. Mesh distortion is addressed using a combination of adaptive mesh refinement (AMR) and a new Lagrangian remeshing procedure. In contrast with Eulerian schemes, the LPPM method avoids explicit discretization of the advective derivative. In the case of passive scalar advection, LPPM preserves tracer ranges and both linear and nonlinear tracer correlations exactly. We present results for the barotropic vorticity equation applied to several test cases including solid body rotation, Rossby-Haurwitz waves, Gaussian vortices, jet streams, and a model for the breakdown of the polar vortex during sudden stratospheric warming events. The combination of AMR and remeshing enables the LPPM scheme to efficiently resolve thin fronts and filaments that develop in the vorticity distribution. We validate the accuracy of LPPM by comparing with results obtained using the Eulerian based Lin-Rood advection scheme. We examine how energy and enstrophy conservation in the LPPM scheme are affected by the time step and spatial discretization. We conclude with a discussion of how the method may be extended to the

  12. Analysis of the geophysical data using a posteriori algorithms (United States)

    Voskoboynikova, Gyulnara; Khairetdinov, Marat


    The problems of monitoring, prediction and prevention of extraordinary natural and technogenic events are priority of modern problems. These events include earthquakes, volcanic eruptions, the lunar-solar tides, landslides, falling celestial bodies, explosions utilized stockpiles of ammunition, numerous quarry explosion in open coal mines, provoking technogenic earthquakes. Monitoring is based on a number of successive stages, which include remote registration of the events responses, measurement of the main parameters as arrival times of seismic waves or the original waveforms. At the final stage the inverse problems associated with determining the geographic location and time of the registration event are solving. Therefore, improving the accuracy of the parameters estimation of the original records in the high noise is an important problem. As is known, the main measurement errors arise due to the influence of external noise, the difference between the real and model structures of the medium, imprecision of the time definition in the events epicenter, the instrumental errors. Therefore, posteriori algorithms more accurate in comparison with known algorithms are proposed and investigated. They are based on a combination of discrete optimization method and fractal approach for joint detection and estimation of the arrival times in the quasi-periodic waveforms sequence in problems of geophysical monitoring with improved accuracy. Existing today, alternative approaches to solving these problems does not provide the given accuracy. The proposed algorithms are considered for the tasks of vibration sounding of the Earth in times of lunar and solar tides, and for the problem of monitoring of the borehole seismic source location in trade drilling.


    Directory of Open Access Journals (Sweden)

    Vlasov Alexander Nikolaevich


    Full Text Available In the article, the authors consider some classes of problems of geomechanics that are resolved through the application of SIMULIA ABAQUS software. The tasks associated with the assessment of the zone of influence of structures produced on surrounding buildings and structures in the dense urban environment, as well as the tectonic and physical simulation of rifts with the purpose of identification of deformations of the Earth surface and other defects of lithospheric plates. These seemingly different types of tasks can be grouped together on the basis of common characteristics due to the complexity of numerical modeling problems of geomechanics and geophysics. Non-linearity of physical processes, complexity of the geological structure and variable thickness of layers, bed thinning layers, lenses, as well as singular elements, make it hard to consolidate different elements (for example, engineering and geological elements and associated structures of buildings in a single model. In this regard, software SIMULIA ABAQUS looks attractive, since it provides a highly advanced finite-element modeling technique, including a convenient hexahedral mesh generator, a wide range of models of elastic and plastic strain of materials, and the ability to work with certain geometric areas that interrelate through the mechanism of contacting surface pairs that have restrictions. It is noteworthy that the research also facilitates development of personal analytical methods designated for the assessment of physical and mechanical properties of heterogeneous materials as well as new solutions applicable in the vicinity of singular elements of the area that may be used in modeling together with ABAQUS software.

  14. The impact of approximations and arbitrary choices on geophysical images (United States)

    Valentine, Andrew P.; Trampert, Jeannot


    Whenever a geophysical image is to be constructed, a variety of choices must be made. Some, such as those governing data selection and processing, or model parametrization, are somewhat arbitrary: there may be little reason to prefer one choice over another. Others, such as defining the theoretical framework within which the data are to be explained, may be more straightforward: typically, an `exact' theory exists, but various approximations may need to be adopted in order to make the imaging problem computationally tractable. Differences between any two images of the same system can be explained in terms of differences between these choices. Understanding the impact of each particular decision is essential if images are to be interpreted properly-but little progress has been made towards a quantitative treatment of this effect. In this paper, we consider a general linearized inverse problem, applicable to a wide range of imaging situations. We write down an expression for the difference between two images produced using similar inversion strategies, but where different choices have been made. This provides a framework within which inversion algorithms may be analysed, and allows us to consider how image effects may arise. In this paper, we take a general view, and do not specialize our discussion to any specific imaging problem or setup (beyond the restrictions implied by the use of linearized inversion techniques). In particular, we look at the concept of `hybrid inversion', in which highly accurate synthetic data (typically the result of an expensive numerical simulation) is combined with an inverse operator constructed based on theoretical approximations. It is generally supposed that this offers the benefits of using the more complete theory, without the full computational costs. We argue that the inverse operator is as important as the forward calculation in determining the accuracy of results. We illustrate this using a simple example, based on imaging the

  15. New geophysical electromagnetic method of archeological object research in Egypt (United States)

    Hachay, O. A.; Khachay, O. Yu.; Attia, Magdi.


    The demand to the enhanced geophysical technique and device, in addition to the precise interpretation of the geophysical data, is the resolution of the geophysical complex research, especially by the absence of priory information about the researched place. Therefore, an approach to use the planshet method of electromagnetic induction in the frequency geometry was developed by Hachay. et al., 1997a, 1997b, 1999, 2000, 2002, and 2005. The method was adapted to map and monitor the high complicated geological mediums, to determine the structural factors and criteria of the rock massif in the mine subsurface. The field observation and the way of interpretation make the new technology differ from other known earlier methods of field raying or tomography (Hachay et al., 1997c, 1999, and 2000).The 3D geoelectrical medium research is based on the concept of three staged interpreting of the alternating electromagnetic field in a frame of the block-layered isotropic medium with inclusion (Hachay 1997a, and 2002); in the first stage, the geoelectrical parameters of the horizontal block-layered medium, which includes the heterogeneities, are defined. In the second stage a geometrical model of the different local heterogeneities or groups inside the block-layered medium is constructed based on the local geoelectrical heterogeneities produced from the first stage after filtering the anomalous fields plunged in the medium. While in the third stage, the surfaces of the searched heterogeneities could be calculated in account of the physical parameters of the anomalous objects.For practical realization of that conception the system of observation for alternating electromagnetic field with use of vertical magnetic dipole was elaborated. Such local source of excitation and regular net of observations allows realizing overlapping by different angles of observation directions. As incoming data for interpretation, three components of modules of three components of magnetic field are

  16. Geophysical, petrological and mineral physics constraints on Earth's surface topography (United States)

    Guerri, Mattia; Cammarano, Fabio; Tackley, Paul J.


    Earth's surface topography is controlled by isostatically compensated density variations within the lithosphere, but dynamic topography - i.e. the topography due to adjustment of surface to mantle convection - is an important component, specially at a global scale. In order to separate these two components it is fundamental to estimate crustal and mantle density structure and rheological properties. Usually, crustal density is constrained from interpretation of available seismic data (mostly VP profiles) based on empirical relationships such those in Brocher [2005]. Mantle density structure is inferred from seismic tomography models. Constant coefficients are used to interpret seismic velocity anomalies in density anomalies. These simplified methods are unable to model the effects that pressure and temperature variations have on mineralogical assemblage and physical properties. Our approach is based on a multidisciplinary method that involves geophysical observables, mineral physics constraints, and petrological data. Mantle density is based on the thermal interpretation of global seismic tomography models assuming various compositional structures, as in Cammarano et al. [2011]. We further constrain the top 150 km by including heat-flow data and considering the thermal evolution of the oceanic lithosphere. Crustal density is calculated as in Guerri and Cammarano [2015] performing thermodynamic modeling of various average chemical compositions proposed for the crust. The modeling, performed with the code PerpleX [Connolly, 2005], relies on the thermodynamic dataset from Holland and Powell [1998]. Compressional waves velocity and crustal layers thickness from the model CRUST 1.0 [Laske et al., 2013] offer additional constrains. The resulting lithospheric density models are tested against gravity (GOCE) data. Various crustal and mantle density models have been tested in order to ascertain the effects that uncertainties in the estimate of those features have on the

  17. Under the pile. Understanding subsurface dynamics of historical cities trough geophysical models interpretation (United States)

    Bernardes, Paulo; Pereira, Bruno; Alves, Mafalda; Fontes, Luís; Sousa, Andreia; Martins, Manuela; Magalhães, Fernanda; Pimenta, Mário


    Braga is one of the oldest cities of the Iberian NW and as of so, the research team's studying the city's historical core for the past 40 years is often confronted with the unpredictability factor laying beneath an urban site with such a long construction history. In fact, Braga keeps redesigning its urban structure over itself on for the past 2000 years, leaving us with a research object filled with an impressive set of construction footprints from the various planning decisions that were taken in the city along its historical path. Aiming for a predicting understanding of the subsoil, we have used near surface geophysics as an effort of minimizing the areas of intervention for traditional archaeological survey techniques. The Seminário de Santiago integrated geophysical survey is an example of the difficulties of interpreting geophysical models in very complex subsurface scenarios. This geophysical survey was planned in order to aid the requalification project being designed for this set of historical buildings, that are estimated to date back to the 16h century, and that were built over one of the main urban arteries of both roman and medieval layers of Braga. We have used both GPR as well as ERT methods for the geophysical survey, but for the purpose of this article, we will focus in the use of the ERT alone. For the interpretation of the geophysical models we've cross-referenced the dense knowledge existing over the building's construction phases with the complex geophysical data collected, using mathematical processing and volume-based visualization techniques, resorting to the use of Res2Inv©, Paraview© and Voxler® software's. At the same time we tried to pinpoint the noise caused by the past 30 year's infrastructural interventions regarding the replacement of the building's water and sanitation systems and for which we had no design plants, regardless of its recent occurring. The deep impact of this replacement actions revealed by the archaeological

  18. Geophysics Education and Research in India and Role of International Collaboration (United States)

    Rajaram, M.


    Some possible avenues for strengthening Geophysics education in India will be examined and possible ways of making the system more dynamic and responsive to the needs will be suggested. Out of the few hundred Universities in India under the University Grants Commission, only around a dozen offer post-graduate degree courses in Geophysics. Over the last decade the demand for Geophysicists has increased tremendously, with the country having opened its gates to foreign companies to invest in India; as a consequence, Geophysics is soon becoming the favored subject for the best students undertaking Post Graduate Courses in Science. Geophysics as a subject is independent of national and international borders and it would prove very useful for students to have international exposure. We have in India, the example of the internationally renowned, Indian Institute of Technology. These Institutes were started with foreign collaboration that included Professors from the collaborating countries taking up selected under-graduate courses. For Geophysics courses it would prove very helpful if students could spend several months at a participating foreign Institution and undertake a project there, as a part of the Geophysics curriculum. India provides the unique settings of having rock types from the Archean to the Present and should attract Geophysicists globally. On an exchange basis foreign students could visit India for their project work. National Science Departments / Universities / Scientific Societies could help provide financial assistance to facilitate this exchange; existing bilateral cooperation could also be used to finance geophysics education. Also oil companies could sponsor geophysics students. Further, due to the high costs of Geophysics Journal, very few Indian Universities are able to subscribe to them. On the Research Arena, there are several areas that by their very nature invoke global interest; for example Research on Antarctica. Currently several countries

  19. Geophysical Summer Field Camp: Answering questions about the subsurface for the local community (United States)

    van Wijk, K.; Batzle, M.; Liberty, L.; Raynolds, R.


    Summer Geophysics Field Camp is part of the core requirement for undergraduate Geophysics majors at Boise State University (CSM), as well as at Colorado School of Mines (CSM). We have found it to be most effectively taught when the target of the camp involves answering questions, which impact society. For example, currently the CSM/BSU geophysics summer camp focuses on ground water resources and geothermal potential in the Upper Arkansas River Basin, a part of the Rio Grande Rift system in Chaffee County, Colorado. A prime goal is to train students how to combine diverse sources of information into a unified interpretation: Students examine lithologies and structures on the periphery of the basin. Cross sections are constructed to predict the geophysical signature. Geophysical tools then are used to ascertain the gross structure and examine subsurface conditions in greater detail. These tools include surveying, regional gravity, deep and shallow seismic surveys, magnetics, DC resistivity, Ground Penetrating Radar, electromagnetics, hydrochemistry, and karaoke. While BSU and CSM own a considerable amount of geophysical hardware, our field camps are only possible because of extensive support by corporations and governmental agencies. In addition, the Society of Exploration Geohysics (SEG) Foundation provides financial support, Chaffee County assists with housing costs, and local land owners provide open access. In turn, the field camp results aid the community of Chaffee County in assessing their water resources for long term growth planning, as well as understanding the geothermal potential for hydroelectric power generation. BSU is currently exploring with the SEG Foundation under the Geophysicists Without Borders program to apply this model of combined education and social outreach in the form a geophysics camp for Southeast Asia, where we propose to study geohazards,geoarcheology and groundwater issues.

  20. Multifractal Geophysical Extremes: Nonstationarity and Long Range Correlations (United States)

    Tchiguirinskaia, I.; Schertzer, D.; Lovejoy, S.


    Throughout the world, extremes in environmental sciences are of prime importance. They are key variables not only for risk assessments and engineering designs (e.g. of dams and bridges), but also for resource management (e.g. water and energy) and for land use. A better understanding of them is more and more indispensable in settling the debate on their possible climatological evolution. Whereas it took decades before a uniform technique for estimating flow frequencies within a stationary framework, it is often claimed that « stationarity is dead ! ». The fact that geophysical and environmental fields are variable over a wider range of scales than previously thought require to go beyond the limits of the (classical) Extreme Value Theory (EVT). Indeed, long-range correlations are beyond the scope of the classical EVT theory. We show that multifractal concepts and techniques are particularly appealing because they can effectively deal with a cascade of interactions concentrating for instance energy, liquid water, etc. into smaller and smaller space-time domains. Furthermore, a general outcome of these cascade processes -which surprisingly was realized only rather recently- is that rather independently of their details they yield probability distributions with power-law fall-offs, often called (asymptotic) Pareto or Zipf laws. We discuss the corresponding probability distributions of their maxima and its relationship with the Frechet law. We use these multifractal techniques to investigate the possibility of using very short or incomplete data records for reliable statistical predictions of the extremes. In particular we assess the multifractal parameter uncertainty with the help of long synthetic multifractal series and their sub-samples, in particular to obtain an approximation of confidence intervals that would be particularly important for the predictions of multifractal extremes. We finally illustrate the efficiency of this approach with its application to

  1. Early Career Investigator Opportunities in Geophysics with IRIS (United States)

    Colella, H.; Sumy, D. F.; Schutt, D.


    Early career geoscientists face many challenges as they transition from senior level graduate students into postdoctoral researchers, tenure-track faculty positions, or the vast array of employment opportunities outside of academia. However, few receive adequate mentoring or guidance on how to successfully make the leap from graduate school to a fulfilling career. In recognition of these hurdles and challenges, the Incorporated Research Institutions for Seismology (IRIS) created an early-career investigator (ECI) program in 2011 to help reduce barriers for newly minted scientists, researchers, and educators on their path to success. The core mission of the ECI program is to organize practical resources and professional development opportunities for ECIs. The initiative has encouraged and supported collaboration between ECIs and senior scientists through colloquium lectureships and visiting scientist collaborations, which aimed to increase the visibility of ECIs and their research and to promote interaction between junior and senior scientists outside of their home institutions. Additionally, ECI-centric events are held at various national meetings to showcase the range of career paths available in geophysics, openly discuss the challenges ECIs face (e.g., work-life balance, job search difficulties, teaching challenges), expose participants to the ECI program's initiatives and resources, and better inform IRIS about the needs of the community. Post-workshop evaluations reveal ECIs are eager to have exposure to a variety of workforce options and a forum in which to ask difficult questions. Of note, there is a variety of cultural knowledge and expectations assumed in both the academic and professional worlds that is often not formally disseminated. The ECI program aims to better understand and facilitate transfer of this knowledge and reduce barriers to success for ECIs from both traditional and non-traditional backgrounds. The program also features webinars focused

  2. The need for geophysical analytics to support climate forced governance (United States)

    Park, J. C.; Obeysekera, J.; Enfield, D.


    Water resource governance is among the most fundamental societal undertakings. The hydrological cycle is obviously climate forced, yet there does not exist mature linkage between analytical climate products and decision-support information needed by water resource agencies, particularly in view of expected changes in future climate. For example, how do decadal and multi-decadal atmospheric cycles relate to precipitation and evapotranspiration on subregional scales, and how should such findings be incorporated into water resource management? The need to develop such linkages has been recognized for some time (National Academies 1999) and recent research attention has focused in that direction (National Science Foundation 2010). To exemplify such an effort we present a model for coastal storm surge exceedence distributions created by synthesis of a probabilistic expression of phase changes of the Atlantic multidecadal oscillation (AMO) (Enfield and Cid-Serrano 1996) with AMO-dependent extreme value distributions of storm surge at Key West and Pensacola Florida. The result provides AMO-dependent projections of storm surge which can be used to inform decision makers on the likelihood of surge conditions. Although the results are novel, and the method simple, it would not be possible unless the AMO transition probabilities were available. Therefore, in addition to exposition of the model synthesis presented here, we feel it is imperative and a societal responsibility for the geophysical community to develop decision support analytics addressing the needs of local and regional governing agencies. National Academies (1999), Hydrologic Science Priorities for the U.S. Global Change Research Program: An Initial Assessment, ISBN-13: 978-0-309-06648-8, National Science Foundation (2010), Water Sustainability and Climate, NSF Program Solicitation 10-524, Enfield D.B. and Cid

  3. Geophysical Inversion With Multi-Objective Global Optimization Methods (United States)

    Lelièvre, Peter; Bijani, Rodrigo; Farquharson, Colin


    We are investigating the use of Pareto multi-objective global optimization (PMOGO) methods to solve numerically complicated geophysical inverse problems. PMOGO methods can be applied to highly nonlinear inverse problems, to those where derivatives are discontinuous or simply not obtainable, and to those were multiple minima exist in the problem space. PMOGO methods generate a suite of solutions that minimize multiple objectives (e.g. data misfits and regularization terms) in a Pareto-optimal sense. This allows a more complete assessment of the possibilities and provides opportunities to calculate statistics regarding the likelihood of particular model features. We are applying PMOGO methods to four classes of inverse problems. The first are discrete-body problems where the inversion determines values of several parameters that define the location, orientation, size and physical properties of an anomalous body represented by a simple shape, for example a sphere, ellipsoid, cylinder or cuboid. A PMOGO approach can determine not only the optimal shape parameters for the anomalous body but also the optimal shape itself. Furthermore, when one expects several anomalous bodies in the subsurface, a PMOGO inversion approach can determine an optimal number of parameterized bodies. The second class of inverse problems are standard mesh-based problems where the physical property values in each cell are treated as continuous variables. The third class of problems are lithological inversions, which are also mesh-based but cells can only take discrete physical property values corresponding to known or assumed rock units. In the fourth class, surface geometry inversions, we consider a fundamentally different type of problem in which a model comprises wireframe surfaces representing contacts between rock units. The physical properties of each rock unit remain fixed while the inversion controls the position of the contact surfaces via control nodes. Surface geometry inversion can be

  4. Results from a geophysical investigation of Lake Superior's ring structures (United States)

    Wattrus, N. J.; Gustafson, D.


    Ring shaped depressions are widely developed on the lake floor of Lake Superior. They have not been widely reported elsewhere. The rings are typically between 200 and 300 m across and up to 5 m deep. The width of the depression ranges between 10 to 30 m. They often occur in closely spaced groups or networks but can also occur as isolated features. Several mechanisms have been proposed to explain the formation of these features; they include syneresis of the fine-grained lake floor sediments, polygonal faulting and dewatering of the lake floor sediments. High resolution bathymetric surveying with a multibeam sonar has revealed that they are comprised of pockmarks arranged in irregular polygonal patterns. Sidescan sonar images of the pockmarks often exhibit increased backscatter about the pock which could be interpreted as evidence of a lag-surface. High-resolution CHIRP sub-bottom profiling across the pocks occasionally reveal chimney-like structures below the lake floor pock. This evidence suggests that the rings were produced by the expulsion of fluid from the lake floor. This appears to have been a basin-wide event. The timing, duration and origin of this are not well known. Neither is the structure of the subsurface plumbing below these features. Here we present results from a geophysical survey conducted in northwestern Lake Superior off the western coast of Isle Royale where both isolated and grouped lake floor rings are well developed. The objectives of the survey were to define the geometry of the sub-surface plumbing below the rings and to possibly gain some insight into how these systems develop. The data collected included two high-resolution pseudo-3D single-channel seismic reflection datasets, one acquired with a small airgun and a second acquired with a CHIRP profiler. Multibeam and sidescan sonar data were also acquired as part of the survey. A 9 m piston core was collected in close proximity to a ring feature. This is used to determine the physical

  5. Negotiating geophysical hazards in Nepal: An interdisciplinary approach (United States)

    Oven, Katie; Petley, Dave; Rosser, Nick; Dunn, Chris; Rigg, Jonathan


    It is widely accepted that the impact of natural hazards reflects not only the nature of geophysical processes but also the social conditions that prevail. The need for collaborative research to address these complex interactions between the natural and human systems is well recognised, however moving from theory to practice presents a number of significant challenges. How researchers frame problems; develop their research questions; select the methodologies to explore these questions; and privilege certain knowledges over others, can be seen to vary between physical and social science. Drawing on a case study examining the vulnerability of rural communities to landslides in the Upper Bhote Koshi Valley, Central Nepal, this paper explores how these barriers can be overcome and the benefits of undertaking interdisciplinary research within the natural hazards field. This research investigates the different framings of landslide risk and vulnerability from different stakeholder and disciplinary perspectives. Specifically, we ask: 1. Who is vulnerable to landslide hazard? 2. Why do people occupy landslide prone areas? 3. How do ‘at risk' rural communities perceive and respond to landslide hazard and risk? The findings, based on a series of participatory methodologies, challenge a number of assumptions made regarding landslide vulnerability in mountain communities. Within the Upper Bhote Koshi Valley clear transitions in settlement patterns, rural livelihoods and thus the occupation of landslide prone areas have been seen over time. For the majority of households, their decision to occupy these areas is driven by the economic and social benefits associated with the Arniko Highway which runs through the valley, linking Nepal with Tibet. Landslide vulnerability therefore emerges not just from societal marginalisation but also from situations of relative prosperity. The findings suggest that occupants of landslide prone areas have a good understanding of landslide hazard

  6. Future Operations of HAARP with the UAF's Geophysical Institute (United States)

    McCoy, R. P.


    The High frequency Active Aurora Research Program (HAARP) in Gakona Alaska is the world's premier facility for active experimentation in the ionosphere and upper atmosphere. The ionosphere affects communication, navigation, radar and a variety of other systems depending on, or affected by, radio propagation through this region. The primary component of HAARP, the Ionospheric Research Instrument (IRI), is a phased array of 180 HF antennas spread across 33 acres and capable of radiating 3.6 MW into the upper atmosphere and ionosphere. The array is fed by five 2500 kW generators, each driven by a 3600 hp diesel engine (4 + 1 spare). Transmit frequencies are selectable in the range 2.8 to 10 MHz and complex configurations of rapidly slewed single or multiple beams are possible. HAARP was owned by the Air Force Research Laboratory (AFRL/RV) in Albuquerque, NM but recently was transferred to the Geophysical Institute of the University of Alaska Fairbanks (UAF/GI). The transfer of ownership of the facility is being implemented in stages involving a Cooperative Research and Development Agreement (CRADA) and an Educational Partnership Agreement (EPA) which are complete, and future agreements to transfer ownership of the facility land. The UAF/GI plans to operate the facility for continued ionospheric and upper atmospheric experimentation in a pay-per-use model. In their 2013 "Decadal Survey in Solar and Space Physics" the National Research Council (NRC) made the recommendation to "Fully realize the potential of ionospheric modification…" and in their 2013 Workshop Report: "Opportunities for High-Power, High-Frequency Transmitters to Advance Ionospheric/Thermospheric Research" the NRC outlined the broad range of future ionospheric, thermospheric and magnetospheric experiments that could be performed with HAARP. HAARP is contains a variety of RF and optical ionospheric diagnostic instruments to measure the effects of the heater in real time. The UAF/GI encourages the

  7. Passive Remote Sensing of Oceanic Whitecaps: Updated Geophysical Model Function (United States)

    Anguelova, M. D.; Bettenhausen, M. H.; Johnston, W.; Gaiser, P. W.


    Many air-sea interaction processes are quantified in terms of whitecap fraction W because oceanic whitecaps are the most visible and direct way of observing breaking of wind waves in the open ocean. Enhanced by breaking waves, surface fluxes of momentum, heat, and mass are critical for ocean-atmosphere coupling and thus affect the accuracy of models used to forecast weather, predict storm intensification, and study climate change. Whitecap fraction has been traditionally measured from photographs or video images collected from towers, ships, and aircrafts. Satellite-based passive remote sensing of whitecap fraction is a recent development that allows long term, consistent observations of whitecapping on a global scale. The method relies on changes of ocean surface emissivity at microwave frequencies (e.g., 6 to 37 GHz) due to presence of sea foam on a rough sea surface. These changes at the ocean surface are observed from the satellite as brightness temperature TB. A year-long W database built with this algorithm has proven useful in analyzing and quantifying the variability of W, as well as estimating fluxes of CO2 and sea spray production. The algorithm to obtain W from satellite observations of TB was developed at the Naval Research Laboratory within the framework of WindSat mission. The W(TB) algorithm estimates W by minimizing the differences between measured and modeled TB data. A geophysical model function (GMF) calculates TB at the top of the atmosphere as contributions from the atmosphere and the ocean surface. The ocean surface emissivity combines the emissivity of rough sea surface and the emissivity of areas covered with foam. Wind speed and direction, sea surface temperature, water vapor, and cloud liquid water are inputs to the atmospheric, roughness and foam models comprising the GMF. The W(TB) algorithm has been recently updated to use new sources and products for the input variables. We present new version of the W(TB) algorithm that uses updated

  8. Marine Geophysical Surveying Along the Hubbard Glacier Terminus, Southeast Alaska (United States)

    Goff, J. A.; Davis, M.; Gulick, S. P.; Lawson, D. E.; Willems, B. A.


    Tidewater glaciers are a challenging environment for marine investigations, owing to the dangers associated with calving and restrictions on operations due to dense floating ice. We report here on recent efforts to conduct marine geophysical surveys proximal to the ice face of Hubbard Glacier, in Disenchantment Bay, Alaska. Hubbard is an advancing tidewater glacier that has twice recently (1986 and 2002) impinged on Gilbert Point, which separates Russell Fiord from Disenchantment Bay, thereby temporarily creating a glacially-dammed Russell Lake. Continued advance will likely form a more permanent dam, rerouting brackish outflow waters into the Situk River, near Yakutat, Alaska. Our primary interest is in studying the development and motion of the morainal bank which, for an advancing tidewater glacier, stabilizes it against rapid retreat. For survey work, we operated with a small, fast, aluminum-hulled vessel and a captain experienced in operating in ice-bound conditions, providing a high margin of safety and maneuverability. Differencing of multibeam bathymetric data acquired in different years can identify and quantify areas of deposition and erosion on the morainal bank front and in Disenchantment Bay proper, where accumulation rates are typically > 1 m/yr within 1 km of the glacier terminus. The advance or retreat rate of the morainal bank can be determined by changes in the bed elevation through time; we document advance rates that average > 30 m/yr in Disenchantment Bay, but which vary substantially over different time periods and at different positions along the ice face. Georeferencing of available satellite imagery allows us to directly compare the position of the glacial terminus with the position of the morainal bank. From 1978 to 1999, and then to 2006, the advances in terminus and morainal bank positions were closely synchronized along the length of the glacier face. In the shallower Russell Fiord side of the terminus, a sediment ridge was mapped both

  9. Geophysical remote sensing of water reservoirs suitable for desalinization.

    Energy Technology Data Exchange (ETDEWEB)

    Aldridge, David Franklin; Bartel, Lewis Clark; Bonal, Nedra; Engler, Bruce Phillip


    In many parts of the United States, as well as other regions of the world, competing demands for fresh water or water suitable for desalination are outstripping sustainable supplies. In these areas, new water supplies are necessary to sustain economic development and agricultural uses, as well as support expanding populations, particularly in the Southwestern United States. Increasing the supply of water will more than likely come through desalinization of water reservoirs that are not suitable for present use. Surface-deployed seismic and electromagnetic (EM) methods have the potential for addressing these critical issues within large volumes of an aquifer at a lower cost than drilling and sampling. However, for detailed analysis of the water quality, some sampling utilizing boreholes would be required with geophysical methods being employed to extrapolate these sampled results to non-sampled regions of the aquifer. The research in this report addresses using seismic and EM methods in two complimentary ways to aid in the identification of water reservoirs that are suitable for desalinization. The first method uses the seismic data to constrain the earth structure so that detailed EM modeling can estimate the pore water conductivity, and hence the salinity. The second method utilizes the coupling of seismic and EM waves through the seismo-electric (conversion of seismic energy to electrical energy) and the electro-seismic (conversion of electrical energy to seismic energy) to estimate the salinity of the target aquifer. Analytic 1D solutions to coupled pressure and electric wave propagation demonstrate the types of waves one expects when using a seismic or electric source. A 2D seismo-electric/electro-seismic is developed to demonstrate the coupled seismic and EM system. For finite-difference modeling, the seismic and EM wave propagation algorithms are on different spatial and temporal scales. We present a method to solve multiple, finite-difference physics

  10. Handling geophysical flows: Numerical modelling using Graphical Processing Units (United States)

    Garcia-Navarro, Pilar; Lacasta, Asier; Juez, Carmelo; Morales-Hernandez, Mario


    et al.(2015)] Lacasta, A., Morales-Hernndez, M., Murillo, J., & Garca-Navarro, P. (2015) An efficient solution for hazardous geophysical flows simulation using GPUs Computers & Geosciences. 78 63-72.

  11. Geophysics of Volcanic Landslide Hazards: The Inside Story (United States)

    Finn, C.; Deszcz-Pan, M.; Bedrosian, P. A.


    Flank collapses of volcanoes pose significant potential hazards, including triggering lahars, eruptions, and tsunamis. Significant controls on the stability of volcanoes are the distribution of hydrothermal alteration and the location of groundwater. Groundwater position, abundance, and flow rates within a volcano affect the transmission of fluid pressure and the transport of mass and heat. Interaction of groundwater with acid magmatic gases can lead to hydrothermal alteration that mechanically weakens rocks and makes them prone to failure and flank collapse. Therefore, detecting the presence and volume of hydrothermally altered rocks and shallow ground water is critical for evaluating landslide hazards. High-resolution helicopter magnetic and electromagnetic (HEM) data collected over the rugged, ice-covered Mount Adams, Mount Baker, Mount Rainier, Mount St. Helens (Washington) and Mount Iliamna (Alaska) volcanoes, reveal the distribution of alteration, water and ice thickness essential to evaluating volcanic landslide hazards. These data, combined with geological mapping, other geophysical data and rock property measurements, indicate the presence of appreciable thicknesses (>500 m) of water-saturated hydrothermally altered rock west of the modern summit of Mount Rainier in the Sunset Amphitheater region and in the central core of Mount Adams north of the summit. Water-saturated alteration at Mount Baker is restricted to thinner (glaciers on Mount Iliamna. Removal of ice and snow during eruptions and landslide can result in lahars and floods. Ice thickness measurements critical for flood and mudflow hazards studies are very sparse on most volcanoes. The HEM data are used to estimate ice thickness over portions of Mount Baker and Mount Adams volcanoes. The best estimates for ice thickness are obtained over relatively low resistivity (<600 ohm-m) ground for the main ice cap on Mount Adams and over most of the summit of Mount Baker. The modeled distribution of

  12. Iapetus' Geophysics: Rotation Rate, Shape, and Equatorial Ridge (United States)

    Castillo-Rogez, J. C.; Matson, D. L.; Sotin, C.; Johnson, T. V.; Lunine, J. I.; Thomas, P. C.


    Iapetus has preserved evidence that constrains the modeling of its geophysical history from the time of its accretion until now. The evidence is (a) its present 79.33-day rotation or spin rate, (b) its shape that corresponds to the equilibrium figure for a hydrostatic body rotating with a period of approximately 16 h, and (c) its high, equatorial ridge, which is unique in the Solar System. This paper reports the results of an investigation into the coupling between Iapetus' thermal and orbital evolution for a wide range of conditions including the spatial distributions with time of composition, porosity, short-lived radioactive isotopes (SLRI), and temperature. The thermal model uses conductive heat transfer with temperature-dependent conductivity. Only models with a thick lithosphere and an interior viscosity in the range of about the water ice melting point can explain the observed shape. Short-lived radioactive isotopes provide the heat needed to decrease porosity in Iapetus? early history. This increases thermal conductivity and allows the development of the strong lithosphere that is required to preserve the 16-h rotational shape and the high vertical relief of the topography. Long-lived radioactive isotopes and SLRI raise internal temperatures high enough that significant tidal dissipation can start, and despin Iapetus to synchronous rotation. This occurred several hundred million years after Iapetus formed. The models also constrain the time when Iapetus formed because the successful models are critically dependent upon having just the right amount of heat added by SLRI decay in this early period. The amount of heat available from short-lived radioactivity is not a free parameter but is fixed by the time when Iapetus accreted, by the canonical concentration of Al-26, and, to a lesser extent, by the concentration of Fe-60. The needed amount of heat is available only if Iapetus accreted between 2.5 and 5.0Myr after the formation of the calcium aluminum

  13. Linking geodynamics and geophysical inversion with multiobservable probabilistic tomography (United States)

    Afonso, Juan Carlos; Rawlinson, Nicholas; Yang, Yingjie; Zlotnik, Sergio; Ortega, Olga


    Our recent work (Afonso et al., 2013a,b; 2016) has demonstrated that multiobservable probabilistic tomography offers a sound method to characterize the thermochemical structure of the lithosphere and upper mantle and opens exiting new opportunities for deep-Earth imaging. In this method, all physical and chemical parameters defining an Earth model are linked together by fundamental thermodynamic relations, rather than by ad hoc empirical assumptions. This allows us to directly invert for the fundamental variables defining the physical state of the Earth's interior, namely, temperature, pressure, and major-element composition using a multitude of data sets with complementary strengths: body wave teleseismic data, surface wave phase dispersion data, gravity anomalies, long-wavelength gravity gradients, geoid height, receiver functions, absolute elevation, and surface heat flow data. In this probabilistic inversion scheme, traditional tomographic images of physical parameters such as 3-D seismic velocity become a "free" by-product. However, our tomographic images are, by design, also thermodynamically compatible with all the other inverted observables instead of satisfying one type of data set only. This is important, as any model deemed representative of the real physical state of the Earth's interior should pass the test of explaining other geophysical data sets as well. Inverting for "geodynamic" parameters such as viscosity or convection-related topography in 3D within this multiobservable probabilistic inverse framework is a major challenge, mainly due to the computational cost of solving the Stokes equations; we are not aware of previous attempts to do so with a probabilistic approach. However, recent advances on Reduced Order Modelling and Proper Generalized Decompositions have allowed us to overcome the traditional difficulties and create a probabilistic inversion framework that not only inverts for the physical state of the mantle but also for dynamic

  14. Geophysical investigations of the Olonium Roman site (Northern Como Lake) (United States)

    Arlsan, Ermanno; Biella, Giancarlo; Boniolo, Graziano; Caporusso, Donatella; de Franco, Roberto; Lozej, Alfredo; Veronese, Luigi


    The study area is located at S. Agata (Gera Lario), a small center at the northern end of Como Lake, near the junction of Valchiavenna and Valtellina Valleys. This site played a strategic role since ancient times, providing the control on the communications routes to both the Como Lake and the Spluga and Septimer alpine passes. Since the end of the last century archaeological findings are reported in literature, also supported, from the early XI century, by archival documents confirming the existence of the `Olonium' settlement, an administrative and fiscal center of primary importance, as well as a parish amongst the most influential in the Como Lake area. Within an area of 45,000 m 2 an electrical survey has been carried out in conjunction with magnetic and GPR investigations. These studies have indicated the presence of a number of sub-areas characterized by significant anomalies defined by the overlapping of the results obtained from two or more geophysical methods. In two of such sub-areas, excavation tests have been conducted, which have brought to light a number of archaeological findings of interest. In one of the two sub-areas, which is characterized by the superimposition of electrical and radar anomalies, a deposit of large pebbles has been found. The origin of this deposit has not been ascertained, whether it is of fluvial origin, related to the deviation of the Adda river in the Pian di Spagna region in Roman times, or it is part of reclamation works, still of Roman times, of paleolacustrine marshes. The overlapping stratigraphy, however, suggests the development of fluvial channels between Roman and Low-Medieval times. In the other sub-area, excavations were carried out on sites defined by electrical and radar anomalies, and confirmed by the results from magnetic survey. The excavations brought to light, below the fluvial deposits, a large medieval edifice, which could be identified as the S. Stefano church abandoned in 1444. The church is built on

  15. High-resolution DEM Effects on Geophysical Flow Models (United States)

    Williams, M. R.; Bursik, M. I.; Stefanescu, R. E. R.; Patra, A. K.


    Geophysical mass flow models are numerical models that approximate pyroclastic flow events and can be used to assess the volcanic hazards certain areas may face. One such model, TITAN2D, approximates granular-flow physics based on a depth-averaged analytical model using inputs of basal and internal friction, material volume at a coordinate point, and a GIS in the form of a digital elevation model (DEM). The volume of modeled material propagates over the DEM in a way that is governed by the slope and curvature of the DEM surface and the basal and internal friction angles. Results from TITAN2D are highly dependent upon the inputs to the model. Here we focus on a single input: the DEM, which can vary in resolution. High resolution DEMs are advantageous in that they contain more surface details than lower-resolution models, presumably allowing modeled flows to propagate in a way more true to the real surface. However, very high resolution DEMs can create undesirable artifacts in the slope and curvature that corrupt flow calculations. With high-resolution DEMs becoming more widely available and preferable for use, determining the point at which high resolution data is less advantageous compared to lower resolution data becomes important. We find that in cases of high resolution, integer-valued DEMs, very high-resolution is detrimental to good model outputs when moderate-to-low (<10-15°) slope angles are involved. At these slope angles, multiple adjacent DEM cell elevation values are equal due to the need for the DEM to approximate the low slope with a limited set of integer values for elevation. The first derivative of the elevation surface thus becomes zero. In these cases, flow propagation is inhibited by these spurious zero-slope conditions. Here we present evidence for this "terracing effect" from 1) a mathematically defined simulated elevation model, to demonstrate the terracing effects of integer valued data, and 2) a real-world DEM where terracing must be

  16. A new data logger for integrated geophysical monitoring (United States)

    Orazi, Massimo; Peluso, Rosario; Caputo, Antonio; Giudicepietro, Flora; Martini, Marcello


    GILDA digital recorder is a data logger developed at Osservatorio Vesuviano (INGV). It provides excellent data quality with low power consumption and low production cost. It is widely used in the multi-parametric monitoring networks of Neapolitan volcanoes and Stromboli volcano. We have improved the characteristics of GILDA recorder to realize a robust user-oriented acquisition system for integrated geophysical monitoring. We have designed and implemented new capabilities concerning the use of the low rate channels to get data of environmental parameters of the station. We also improved the stand-alone version of the data logger. This version can be particularly useful for scientific experiments and to rapidly upgrade permanent monitoring networks. Furthermore, the local storage can be used as back-up for the monitoring systems in continuous transmission, in case of failure of the transmission system. Some firmware changes have been made in order to improve the performance of the instrument. In particular, the low rate acquisition channels were conditioned to acquire internal parameters of the recorder such as the temperature and voltage. A prototype of the new version of the logger is currently installed at Campi Flegrei for a experimental application. Our experiment is aimed at testing the new version of GILDA data logger in multi-board configuration for multiparametric acquisitions. A second objective of the experiment is the comparison of the recorded data with geochemical data acquired by a multiparametric geochemical station to investigate possible correlations between seismic and geochemical parameters. The target site of the experiment is "Bocca Grande" fumarole in Solfatara volcano. By exploiting the modularity of GILDA, for the experiment has been realized an acquisition system based on three dataloggers for a total of 12 available channels. One of GILDA recorders is the Master and the other two are Slaves. The Master is responsible for the initial

  17. A Resolution Analysis of Two Geophysical Imaging Methods For Characterizing and Monitoring Hydrologic Conditions in the Vadose Zone

    Energy Technology Data Exchange (ETDEWEB)

    Alumbaugh, D. [Univ. of Wisconsin, Madison, WI (United States). Geological Engineering Program; LaBreque, D. [Multi-Phase Technologies, LLC, Sparks, NV (United States); Brainard, J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hammond, G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)


    The objective of this research project was to analyze the resolution of two geophysical imaging techniques: electrical resistivity tomography (ERT) and cross-borehole ground penetrating radar (XBGPR) for monitoring subsurface flow and transport processes within the vadose zone. This was accomplished through a coupled approach involving very fine-scale unsaturated flow forward modeling, conversion of the resultant flow and solute fields to geophysical property models, forward geophysical modeling using the property model obtained from the last step to obtain synthetic geophysical data, and finally inversion of this synthetic data. These geophysical property models were then compared to those derived from the conversion of the hydrologic forward modeling to provide an understanding of the resolution and limitations of the geophysical techniques.

  18. Geophysical monitoring of hydrological and biogeochemical transformations associated with Cr(VI) bioremediation. (United States)

    Hubbard, Susan S; Williams, Ken; Conrad, Mark E; Faybishenko, Boris; Peterson, John; Chen, Jinsong; Long, Phil; Hazent, Terry


    Understanding how hydrological and biogeochemical properties change over space and time in response to remedial treatments is hindered by our ability to monitor these processes with sufficient resolution and over field relevant scales. Here, we explored the use of geophysical approaches for monitoring the spatiotemporal distribution of hydrological and biogeochemical transformations associated with a Cr(VI) bioremediation experiment performed at Hanford, WA. We first integrated hydrological wellbore and geophysical tomographic data sets to estimate hydrological zonation at the study site. Using results from laboratory biogeophysical experiments and constraints provided by field geochemical data sets, we then interpreted time-lapse seismic and radar tomographic data sets, collected during thirteen acquisition campaigns over a three year experimental period, in terms of hydrological and biogeochemical transformations. The geophysical monitoring data sets were used to infer: the spatial distribution of injected electron donor; the evolution of gas bubbles; variations in total dissolved solids (nitrate and sulfate) as a function of pumping activity; the formation of precipitates and dissolution of calcites; and concomitant changes in porosity. Although qualitative in nature, the integrated interpretation illustrates how geophysical techniques have the potential to provide a wealth of information about coupled hydrobiogeochemical responses to remedial treatments in high spatial resolution and in a minimally invasive manner. Particularly novel aspects of our study include the use of multiple lines of evidence to constrain the interpretation of a long-term, field-scale geophysical monitoring data set and the interpretation of the transformations as a function of hydrological heterogeneity and pumping activity.

  19. Toward Optimized Bioclogging and Biocementation Through Combining Advanced Geophysical Monitoring and Reactive Transport Modeling Approaches (United States)

    Hubbard, C. G.; Hubbard, S. S.; Wu, Y.; Surasani, V.; Ajo Franklin, J. B.; Commer, M.; Dou, S.; Kwon, T.; Li, L.; Fouke, B. W.; Coates, J. D.


    Bioclogging and biocementation offer exciting opportunities for solutions to diverse problems ranging from soil stabilization to microbially enhanced hydrocarbon recovery. The effectiveness of bioclogging and biocementation strategies is governed by processes and properties ranging from microbial metabolism at the submicron scale, to changes in pore geometry at the pore scale, to geological heterogeneities at the field scale. Optimization of these strategies requires advances in mechanistic reactive transport modeling and geophysical monitoring methodologies. Our research focuses on (i) performing laboratory experiments to refine understanding of reaction networks and to quantify changes in hydrological properties (e.g. permeability), the evolution of biominerals and geophysical responses (focusing on seismic and electrical techniques); (ii) developing and using a reactive transport simulator capable of predicting the induced metabolic processes to numerically explore how to optimize the desired effect; and (iii) using loosely coupled reactive transport and geophysical simulators to explore detectability and resolvability of induced bioclogging and biocementation processes at the field scale using time-lapse geophysical methods. Here we present examples of our research focused on three different microbially-mediated methods to enhance hydrocarbon recovery through selective clogging of reservior thief zones, including: (a) biopolymer clogging through dextran production; (b) biomineral clogging through iron oxide precipitation; and (c) biomineral clogging through carbonate precipitation. We will compare the utility of these approaches for enhancing hydrocarbon recovery and will describe the utility of geophysical methods to remotely monitor associated field treatments.

  20. Buoyed by geophysics : geophysics, just-in-time procurement help save millions on Ekwan pipeline buoyancy control

    Energy Technology Data Exchange (ETDEWEB)

    Roche, P.


    Large-diameter natural gas pipelines buried in wet muskeg have the potential to rise to the surface due to buoyancy. Until recently, the most reliable method to prevent this was to attach specially manufactured bolt-on concrete weights at closely spaced intervals. However, these weights significantly increase capital budgets by millions of dollars because each weight weighs 2,540 kg and costs $1,000. A less costly alternative for buoyancy control in shallow muskeg is for the contractor to simply dig a deeper ditch. Another option is to hold down the pipeline by polyester straps attached to screw anchors. The challenge of applying these less costly options is that heavy equipment cannot be brought to the site to determine ground conditions until after all procurement, assessment and design is completed. Engineers must therefore select a buoyancy control measure based only on air photos and possibly a few drill holes. However, air photos do not indicate the depth of muskeg. Although some muskeg areas may turn out to be thick enough to avoid buoyancy control altogether, once construction is underway, it is too late to opt for cheaper alternatives. EnCana Corporation's 24-inch Ekwan pipeline was recently constructed through a remote area of British Columbia to connect the Greater Sierra natural gas discovery to a tie-in point on Nova Gas Transmission's northwest mainline. Air photos indicated that half of the route was through muskeg. AMEC E and C Services Inc. was responsible for the engineering and management of the project. The company used a combination of geophysical techniques to learn about the ground conditions. Toboggan mounted portable equipment was hauled by snowmobiles along trails made earlier by the survey crews. Ground penetrating radar assessed the muskeg thickness. Fixed frequency electromagnetic surveys also enhanced the results of the ground penetrating radar. The number of bolt-on weights was reduced from 9,000 to 3,700, a savings of $3

  1. 3D geophysical insights into the Ciomadu volcano (United States)

    Besutiu, Lucian; Zlagnean, Luminita


    RATIONALE Located at the south easternmost end of the Neogene to Quaternary volcanic chain of East Carpathians, the Ciomadu volcano (last erupted approx 30 ka ago) seems to represent the latest volcanic manifestation within the Carpatho-Pannonian region. Based on the interpretation of some large-scale electromagnetic and seismological surveys, the hypothesis of the in depth (8 -15 km) existence of a magma reservoir raises the volcanic hazard in the region. The close neighbourhood of the Vrancea active geodynamic zone, where intermediate-depth seismicity occurs within full intra-continental environment makes the study of the Ciomadu volcano of higher interest. METHOD During the time numerous geological investigations have been conducted in the area, but except for the previously mentioned large-scale electromagnetic and seismological approaches geophysical tools have been less employed. Relatively recent, within the frame of the INSTEC project, funded through a CNCS-UEFISCDI (Romanian Science Foundation) grant, the area has been subject to an integrated gravity and geomagnetic survey accompanied by outcrops sampling and lab determinations on rock physics. Field data have been highly processed and models of their sources have been constructed through 3D inversion techniques. RESULTS Overall, the potential fields have revealed a large gravity low covering the whole volcano area associating a residual geomagnetic anomaly with local effects mainly bordering the gravity anomaly. 3D inversion of the gravity data provided an intriguing image on the mass distribution within the volcanic structure, with underground densities much bellow the figures provided by the lab determinations on rock samples collected at the surface. The geometry of the revealed gravity source clearly suggests an andesitic/dacitic intrusion acceding to the surface along a deep fault that seems to belong to the alpine overthrust system of East Carpathians. Attempts to interpret the low value densities

  2. Evaluation of coal structure and permeability with the aid of geophysical logging technology

    Energy Technology Data Exchange (ETDEWEB)

    Xuehai Fu; Yong Qin; Geoff G.X. Wang; Victor Rudolph [China University of Mining and Technology, Xuzhou (China)


    Coal structures and the associated permeability were studied by a combined investigation of geophysical logging data and well tests from coal reservoirs of Huainan and Huaibei coalfields in China. A large amount of the site observations on coal sections of mining faces and the macroscopic investigations on textures of drilling coal cores were carried out, providing experimental information for classification of coal structures. Geophysical log was implemented in 600 boreholes for exploration of coal and coalbed methane (CBM) resources, including 10 CBM wells which were used for permeability tests. The permeability tests were conducted by using injection/fall-off method. The results, together with the log data obtained from geophysical log technologies, have been analysed by using geological statistics, permitting correlation of the permeability of coal seams to the log responses. The correlation developed in this study provides better evaluation of coal reservoir permeability, resulting in an improved CBM exploration in the given coalfields. 17 refs., 6 figs., 4 tabs.

  3. The general indications of an impact crater using integrated geophysical methods (United States)

    Kiu, Y. C.; Rosli, S.; Azwin, I. N.; Mokhtar, S.


    The study area located at the tropical region which may induced a deeply eroded structure over a complex subsurface. Therefore, the geophysical methods were applied to estimate crater dimension and study the signature of an impact crater. Commonly, an impact crater is characterized with the aid of potential field method which can cover larger area and cost effective. The application of seismic measurements is to complement the potential fields' method for better data interpretation. This study emphasized on utilizing integrated study of geophysical methods which include potential field method (ground magnetic) and seismic for bedrock delineation on impact crater structure characterization. The results induced a positive signs of impact crater which associate with a few indications on crater type and its structures. The integration of ground magnetic and seismic refraction reveal the Bukit Bunuh impact crater is a complex crater. Both of the geophysical methods agreed with the notable size impact crater of 5 km with central uplift at the Bukit Bunuh area.

  4. Investigations into near-real-time surveying for geophysical data collection using an autonomous ground vehicle (United States)

    Phelps, Geoffrey A.; Ippolito, C.; Lee, R.; Spritzer, R.; Yeh, Y.


    The U.S. Geological Survey and the National Aeronautics and Space Administration are cooperatively investigating the utility of unmanned vehicles for near-real-time autonomous surveys of geophysical data collection. Initially focused on unmanned ground vehicle collection of magnetic data, this cooperative effort has brought unmanned surveying, precision guidance, near-real-time communication, on-the-fly data processing, and near-real-time data interpretation into the realm of ground geophysical surveying, all of which offer advantages over current methods of manned collection of ground magnetic data. An unmanned ground vehicle mission has demonstrated that these vehicles can successfully complete missions to collect geophysical data, and add advantages in data collection, processing, and interpretation. We view the current experiment as an initial phase in further unmanned vehicle data-collection missions, including aerial surveying.

  5. Quantitative geological modeling based on probabilistic integration of geological and geophysical data

    DEFF Research Database (Denmark)

    Gulbrandsen, Mats Lundh

    In order to obtain an adequate geological model of any kind, proper integration of geophysical data, borehole logs and geological expert knowledge is important. Geophysical data provide indirect information about geology, borehole logs provide sparse point wise direct information about geology......, and the geologist’s job is to combine these sources of information with his or her own knowledge about lithology and geological structures and develop geological models. Large and data-rich geophysical surveys make this job extremely difficult. With a manual interpretation approach it is extremely time demanding...... and practically impossible to develop geological models that are consistent with all available data in an objective fashion. This thesis addresses these issues, and presents new methodologies and workflows, which are developed to assist the geologists in their work on developing plausible and reliable geological...

  6. Geophysical technique for mineral exploration and discrimination based on electromagnetic methods and associated systems (United States)

    Zhdanov; Michael S.


    Mineral exploration needs a reliable method to distinguish between uneconomic mineral deposits and economic mineralization. A method and system includes a geophysical technique for subsurface material characterization, mineral exploration and mineral discrimination. The technique introduced in this invention detects induced polarization effects in electromagnetic data and uses remote geophysical observations to determine the parameters of an effective conductivity relaxation model using a composite analytical multi-phase model of the rock formations. The conductivity relaxation model and analytical model can be used to determine parameters related by analytical expressions to the physical characteristics of the microstructure of the rocks and minerals. These parameters are ultimately used for the discrimination of different components in underground formations, and in this way provide an ability to distinguish between uneconomic mineral deposits and zones of economic mineralization using geophysical remote sensing technology.

  7. Status of data, major results, and plans for geophysical activities, Yucca Mountain Project

    Energy Technology Data Exchange (ETDEWEB)

    Oliver, H.W. [Geological Survey, Menlo Park, CA (USA); Hardin, E.L. [Science Applications International Corp., Las Vegas, NV (USA); Nelson, P.H. [Geological Survey, Denver, CO (USA)] [eds.


    This report describes past and planned geophysical activities associated with the Yucca Mountain Project and is intended to serve as a starting point for integration of geophysical activities. This report relates past results to site characterization plans, as presented in the Yucca Mountain Site Characterization Plan (SCP). This report discusses seismic exploration, potential field methods, geoelectrical methods, teleseismic data collection and velocity structural modeling, and remote sensing. This report discusses surface-based, airborne, borehole, surface-to-borehole, crosshole, and Exploratory Shaft Facility-related activities. The data described in this paper, and the publications discussed, have been selected based on several considerations; location with respect to Yucca Mountain, whether the success or failure of geophysical data is important to future activities, elucidation of features of interest, and judgment as to the likelihood that the method will produce information that is important for site characterization. 65 refs., 19 figs., 12 tabs.

  8. Object-Oriented Programming When Developing Software in Geology and Geophysics (United States)

    Ahmadulin, R. K.; Bakanovskaya, L. N.


    The paper reviews the role of object-oriented programming when developing software in geology and geophysics. Main stages have been identified at which it is worthwhile to apply principles of object-oriented programming when developing software in geology and geophysics. The research was based on a number of problems solved in Geology and Petroleum Production Institute. Distinctive features of these problems are given and areas of application of the object-oriented approach are identified. Developing applications in the sphere of geology and geophysics has shown that the process of creating such products is simplified due to the use of object-oriented programming, firstly when designing structures for data storage and graphical user interfaces.


    Directory of Open Access Journals (Sweden)

    Gómez Londoño Ernesto


    Full Text Available A tectonostratigraphic study of the Camaquã Basin, formed by Neoproterozoic to Eopaleozoic volcano-sedimentary units, is herein presented. Based on lineaments obtained through LANDSAT
    TM images and geophysical methods, four structural domains were recognized. The depositional and deformational sequences of the Guaritas and the Bom Jardim Formations were identified on
    well logs, where the fluvial deltaic system and brittle to brittle-ductile tectonic evidence is preserved. Differential compaction of sedimentary rocks was recognized using geophysical information (electrical (well log and potential methods (gravimetry. The sedimentary package presents variable thickness, increasing to the NE portion of the basin, and a compartmentalization in echelon subbasins, delimited by NW-trending structures is observed. A 3D schematic model of the Camaquã Basin was built based on the geophysical and satellite image data integrated to the Digital Terrane Model.

  10. Testing how geophysics can reduce the uncertainty of groundwater model predictions

    DEFF Research Database (Denmark)

    Christensen, Nikolaj Kruse; Christensen, Steen; Ferre, Ty


    information contained in the data. Previous researchers have shown examples for which joint or coupled hydrogeophysical inversion leads to improved use of geophysical and hydrological data. However, to date there are no clear guidelines for when sequential, joint, or coupled inversion should be used. We...... present a modeling platform that can be used to examine the conditions that support the use of each inversion approach for efficient and effective use of all data to constrain hydrologic models. We have developed a synthetic “test-bench environment” to test the advantages and limitations of alternative......, respectively. There is also complete flexibility in the choice of relationships between hydraulic and geophysical properties. Noise can be added to the synthetic hydrologic and geophysical datasets and these exhaustive data sets can be down sampled to represent realistic data sets of varying measurement...

  11. Interim progress report addendun - environmental geophysics: Building E5032 decommissioning, Aberdeen Proving Ground, January 1994 resurvey

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, M.D.; McGinnis, L.D.; Benson, M.A.; Borden, H.M.; Padar, C.A.


    Geophysical surveying around Building E5032 using three new continuously recording geophysical instruments - two types of electromagnetic induction instruments and a cesium vapor magnetometer that were unavailable at the time of the original survey - has provided additional information for defining the location of buried debris, vaults, tanks, and the drainage/sump system near the building. The dominant geophysical signature around Building E5032 consists of a complex pattern of linear magnetic, electrical-conductivity, and electromagnetic field anomalies that appear to be associated with drainage/sewer systems, ditches, past railway activity, the location for Building T5033 (old number 99A), and the probable location of Building 91. Integrated analysis of data acquired using the three techniques, plus a review of the existing ground-penetrating-radar data, allow a more thorough definition of the sources for the observed anomalies.

  12. Introduction to the geologic and geophysical studies of Fort Irwin, California: Chapter A in Geology and geophysics applied to groundwater hydrology at Fort Irwin, California (United States)

    Buesch, David C.


    Geologic and geophysical investigations in the vicinity of Fort Irwin National Training Center, California, have been completed in support of groundwater investigations, and are presented in eight chapters of this report. A generalized surficial geologic map along with field and borehole investigations conducted during 2010–11 provide a lithostratigraphic and structural framework for the area during the Cenozoic. Electromagnetic properties of resistivity were measured in the laboratory on hand and core samples, and compared to borehole geophysical resistivity data. These data were used in conjunction with ground-based time-domain and airborne data and interpretations to provide a framework for the shallow lithologic units and structure. Gravity and aeromagnetic maps cover areas ~4 to 5 times that of Fort Irwin. Each chapter includes hydrogeologic applications of the data or model results.

  13. Practices to enable the geophysical research spectrum: from fundamentals to applications (United States)

    Kang, S.; Cockett, R.; Heagy, L. J.; Oldenburg, D.


    In a geophysical survey, a source injects energy into the earth and a response is measured. These physical systems are governed by partial differential equations and their numerical solutions are obtained by discretizing the earth. Geophysical simulations and inversions are tools for understanding physical responses and constructing models of the subsurface given a finite amount of data. SimPEG ( is our effort to synthesize geophysical forward and inverse methodologies into a consistent framework. The primary focus of our initial development has been on the electromagnetics (EM) package, with recent extensions to magnetotelluric, direct current (DC), and induced polarization. Across these methods, and applied geophysics in general, we require tools to explore and build an understanding of the physics (behaviour of fields, fluxes), and work with data to produce models through reproducible inversions. If we consider DC or EM experiments, with the aim of understanding responses from subsurface conductors, we require resources that provide multiple "entry points" into the geophysical problem. To understand the physical responses and measured data, we must simulate the physical system and visualize electric fields, currents, and charges. Performing an inversion requires that many moving pieces be brought together: simulation, physics, linear algebra, data processing, optimization, etc. Each component must be trusted, accessible to interrogation and manipulation, and readily combined in order to enable investigation into inversion methodologies. To support such research, we not only require "entry points" into the software, but also extensibility to new situations. In our development of SimPEG, we have sought to use leading practices in software development with the aim of supporting and promoting collaborations across a spectrum of geophysical research: from fundamentals to applications. Designing software to enable this spectrum puts unique

  14. Hydrogeological characterization of the South Oyster bacterial transport site using geophysical data (United States)

    Hubbard, Susan S.; Chen, Jinsong; Peterson, John; Majer, Ernest L.; Williams, Kenneth H.; Swift, Donald J.; Mailloux, Brian; Rubin, Yoram


    A multidisciplinary research team has conducted a field-scale bacterial transport study within an uncontaminated sandy Pleistocene aquifer near Oyster, Virginia. The overall goal of the project was to evaluate the importance of heterogeneities in controlling the field-scale transport of bacteria that are injected into the ground for remediation purposes. Geochemical, hydrological, geological, and geophysical data were collected to characterize the site prior to conducting chemical and bacterial injection experiments. In this paper we focus on results of a hydrogeological characterization effort using geophysical data collected across a range of spatial scales. The geophysical data employed include surface ground-penetrating radar, radar cross-hole tomography, seismic cross-hole tomography, cone penetrometer, and borehole electromagnetic flowmeter. These data were used to interpret the subregional and local stratigraphy, to provide high-resolution hydraulic conductivity estimates, and to provide information about the log conductivity spatial correlation function. The information from geophysical data was used to guide and assist the field operations and to constrain the numerical bacterial transport model. Although more field work of this nature is necessary to validate the usefulness and cost-effectiveness of including geophysical data in the characterization effort, qualitative and quantitative comparisons between tomographically obtained flow and transport parameter estimates with hydraulic well bore and bromide breakthrough measurements suggest that geophysical data can provide valuable, high-resolution information. This information, traditionally only partially obtainable by performing extensive and intrusive well bore sampling, may help to reduce the ambiguity associated with hydrogeological heterogeneity that is often encountered when interpreting field-scale bacterial transport data.

  15. From Mathematical Monsters to Generalized Scale Invariance in Geophysics: Highlights of the Multifractal Saga (United States)

    Schertzer, D. J.; Tchiguirinskaia, I.; Lovejoy, S.


    Fractals and multifractals are very illustrative of the profound synergies between mathematics and geophysics. The book ';Fractal Geometry of Nature' (Mandelbrot, 1982) brilliantly demonstrated the genericity in geophysics of geometric forms like Cantor set, Peano curve and Koch snowflake, which were once considered as mathematical monsters. However, to tame the geophysical monsters (e.g. extreme weather, floods, earthquakes), it was required to go beyond geometry and a unique fractal dimension. The concept of multifractal was coined in the course of rather theoretical debates on intermittency in hydrodynamic turbulence, sometimes with direct links to atmospheric dynamics. The latter required a generalized notion of scale in order to deal both with scale symmetries and strong anisotropies (e.g. time vs. space, vertical vs. horizontal). It was thus possible to show that the consequences of intermittency are of first order, not just 'corrections' with respect to the classical non-intermittent modeling. This was in fact a radical paradigm shift for geophysics: the extreme variability of geophysical fields over wide ranges of scale, which had long been so often acknowledged and deplored, suddenly became handy. Recent illustrations are the possibility to track down in large date sets the Higgs boson of intermittence, i.e. a first order multifractal phase transition leading to self-organized criticality, and to simulate intermittent vector fields with the help of Lie cascades, based for instance on random Clifford algebra. It is rather significant that this revolution is no longer limited to fundamental and theoretical problems of geophysics, but now touches many applications including environmental management, in particular for urban management and resilience. These applications are particularly stimulating when taken in their full complexity.

  16. Archaeological Feedback as a Research Methodology in Near-Surface Geophysics (United States)

    Maillol, J.; Ortega-Ramírez, J.; Berard, B.


    A unique characteristic of archaeological geophysics is to present the researchers in applied geophysics with the opportunity to verify their interpretation of geophysical data through the direct observation of often extremely detailed excavations. This is usually known as archaeological feedback. Archaeological materials have been slowly buried over periods ranging from several hundreds to several thousands of years, undergoing natural sedimentary and soil-forming processes. Once excavated, archaeological features therefore constitute more realistic test subjects than the targets artifically buried in common geophysical test sites. We are presenting the outcome of several such verification tests aimed at clarifying issues in geometry and spatial resolution of ground penetrating radar (GPR) images. On the site of a Roman villa in SE Portugal 500 Mhz GPR images are shown to depict very accurately the position and geometry of partially excavated remains. In the Maya city of Palenque, Mexico, 900 Mhz data allows the depth of tombs and natural cavities to be determined with cm accuracy. The predicted lateral extent of the cavities is more difficult to match with the reality due to the cluttering caused by high frequency. In the rainforest of Western Africa, 500 MHz GPR was used to prospect for stone tool sites. When very careful positioning and high density data sampling is achieved, stones can be accurately located and retrieved at depths exceeding 1 m with maximum positioning errors of 12cm horizontally and 2 cm vertically. In more difficult data collection conditions however, errors in positioning are shown to actually largely exceed the predictions based on quantitative theoretical resolution considerations. Geophysics has long been recognized as a powerful tool for prospecting and characterizing archaeological sites. Reciprocally, these results show that archaeology is an unparalleled test environment for the assesment and development of high resolution

  17. Envision: An interactive system for the management and visualization of large geophysical data sets (United States)

    Searight, K. R.; Wojtowicz, D. P.; Walsh, J. E.; Pathi, S.; Bowman, K. P.; Wilhelmson, R. B.


    Envision is a software project at the University of Illinois and Texas A&M, funded by NASA's Applied Information Systems Research Project. It provides researchers in the geophysical sciences convenient ways to manage, browse, and visualize large observed or model data sets. Envision integrates data management, analysis, and visualization of geophysical data in an interactive environment. It employs commonly used standards in data formats, operating systems, networking, and graphics. It also attempts, wherever possible, to integrate with existing scientific visualization and analysis software. Envision has an easy-to-use graphical interface, distributed process components, and an extensible design. It is a public domain package, freely available to the scientific community.

  18. Geophysical Surveys of a Known Karst Feature, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, P.J.; Carr, B.J.; Doll, W.E.; Kaufmann, R.D.; Nyquist, J.E.


    Geophysical data were acquired at a site on the Oak Ridge Reservation, Tennessee to determine the characteristics of a mud-filled void and to evaluate the effectiveness of a suite of geophysical methods at the site. Methods that were used included microgravity, electrical resistivity, and seismic refraction. Both microgravity and resistivity were able to detect the void as well as overlying structural features. The seismic data provide bedrock depth control for the other two methods, and show other effects that are caused by the void.

  19. Exotic geophysical phenomena observed in an environmental neutron flux study using EAS PRISMA detectors

    Directory of Open Access Journals (Sweden)

    Alekseenko Victor


    Full Text Available Some exotic geophysical events are observed by a global net of electron-neutron detectors (en-detectors developed in the framework of the PRISMA EAS project. Our en-detectors running both on the Earth's surface and underground are continuously measuring the environmental thermal neutron flux. Thermal neutrons are in equilibrium with media and are therefore sensitive to many geophysical phenomena, which are exotic for people studying ultra high-energy cosmic rays or carrying out low background experiments deep underground.

  20. Landslides analysis using geological, geotechnical and geophysical data from experimental measurements in Prahova County

    Directory of Open Access Journals (Sweden)

    Marius Stoica


    Full Text Available The landslide that is the subject of this paper occurred inPrahova County. The present work was carried out to study the spatialinfluence of geological and morphological factors upon landslideoccurrence on a local scale by using geotechnical and geophysical methods in order to determine local trigger parameters. The input data for the slopestability analysis were collected from topographic investigations, geological mapping. In addition, soil geotechnical parameters were collated from a series of in situ tests. A geophysical survey was applied by using vertical electrical soundings in order to detect the existence and continuity of a potential sliding surface.