WorldWideScience

Sample records for geophysical prospecting

  1. The application actualities and prospects of geophysical methods to uranium prospecting

    International Nuclear Information System (INIS)

    Liu Qingcheng

    2010-01-01

    Basic principles of geophysical methods to uranium prospect are briefly introduced, and the effects as well as problems in using those methods are analysed respectively. Combining with the increasing demand of uranium resources for Chinese nuclear power development and the higher requirements of geophysical techniques, the developing directions and the thoughts of geophysical techniques in uranium prospecting were proposed. A new pattern with producing, teaching and researching together is brought forward to develop advancing uranium prospecting key technologies and to break through technological bottlenecks depending on independent innovation. Integrated geophysical methods for prospecting uranium deposits are suggested. The method includes geophysical techniques as follows: gravity, magnetic, seismic, radioactive, remote sensing, and geochemical method in some proving grounds. Based on the experimental research, new uranium deposits prospecting models with efficient integrated geophysical methods can be established. (authors)

  2. Integrated geophysical-geochemical methods for archaeological prospecting

    OpenAIRE

    Persson, Kjell

    2005-01-01

    A great number of field measurements with different methods and instruments were conducted in attempts to develop a method for an optimal combination of various geochemical and geophysical methods in archaeological prospecting. The research presented in this thesis focuses on a study of how different anthropogenic changes in the ground can be detected by geochemical and geophysical mapping and how the results can be presented. A six-year pilot project, Svealand in Vendel and Viking periods (S...

  3. Application of comprehensive geophysical prospecting method in groundwater exploration

    Science.gov (United States)

    Yang, Fan; Gao, Pengju; Li, Dong; Ma, Hanwen; Cheng, Guoliang

    2018-01-01

    In order to solve the problem of shortage of water resources in northern Shaanxi, we selected rectangular large loop source transient electromagnetic method with high water affinity, and radioactive α measurement method which can delineate the water storage structure, comprehensive geophysical prospecting methods to look for groundwater. Algorithm has established a forward model, and compared all-time apparent resistivity in late-time apparent resistivity is better than late. We can find out the exact location of the groundwater and thus improving wells rate by comparatively using these two kinds of geophysical prospecting method. Hydrogeology drilling confirmed water inflow of a single well can be up to 40 m 3/h, it can fully cover native Domestic and Agricultural water, and provide an important basis for groundwater exploration.

  4. The application of geophysical methods to archaeological prospection

    Energy Technology Data Exchange (ETDEWEB)

    Linford, Neil [Geophysics Team, English Heritage, Fort Cumberland, Eastney, Portsmouth PO4 9LD (United Kingdom)

    2006-07-15

    The aim of this review is to combine the almost universal fascination we share for our past with the comparatively recent, in archaeological terms, application of geophysical prospection methods. For their success, each of these methods relies upon a physical contrast to exist between the buried archaeological feature and the properties of the surrounding subsoil. Understanding the archaeological origin of such physical contrasts, in terms of density, thermal conductivity, electrical resistance, magnetic or dielectric properties, remains fundamental to an appreciation of the discipline. This review provides a broad introduction to the subject area acknowledging the historical development of the discipline and discusses each of the major techniques in turn: earth resistance, magnetic and electromagnetic methods (including ground penetrating radar), together with an appreciation of more esoteric approaches, such as the use of micro-gravity survey to detect buried chambers and voids. The physical principles and field instrumentation involved for the acquisition of data with each method are considered and fully illustrated with case histories of results from the English Heritage archives.

  5. The application of geophysical methods to archaeological prospection

    International Nuclear Information System (INIS)

    Linford, Neil

    2006-01-01

    The aim of this review is to combine the almost universal fascination we share for our past with the comparatively recent, in archaeological terms, application of geophysical prospection methods. For their success, each of these methods relies upon a physical contrast to exist between the buried archaeological feature and the properties of the surrounding subsoil. Understanding the archaeological origin of such physical contrasts, in terms of density, thermal conductivity, electrical resistance, magnetic or dielectric properties, remains fundamental to an appreciation of the discipline. This review provides a broad introduction to the subject area acknowledging the historical development of the discipline and discusses each of the major techniques in turn: earth resistance, magnetic and electromagnetic methods (including ground penetrating radar), together with an appreciation of more esoteric approaches, such as the use of micro-gravity survey to detect buried chambers and voids. The physical principles and field instrumentation involved for the acquisition of data with each method are considered and fully illustrated with case histories of results from the English Heritage archives

  6. Geophysics

    CERN Document Server

    Bolt, Bruce

    1973-01-01

    Methods in Computational Physics, Volume 13: Geophysics is a 10-chapter text that focuses with the theoretical solid-earth geophysics. This volume specifically covers the general topics of terrestrial magnetism and electricity, the Earth's gravity field, tidal deformations, dynamics of global spin, spin processing, and convective models for the deep interior. This volume surveys first the construction of mathematical models, such as the representation of the geomagnetic field by assuming arrangements of multipole sources in the core and the fast computer evaluation of two- and three-dimensiona

  7. Application of comprehensive geophysical methods to prospecting for sandstone-type uranium deposit in Bayanmaodu basin

    International Nuclear Information System (INIS)

    Yao Yifeng; Sun Zexuan; Chen Zhiguo; He Tao; Li Guoxin

    2003-01-01

    By using comprehensive geophysical methods including magnetic survey, resistivity sounding, self potential survey, 210 Po survey etc., the shape and the depth of the basement, the structure of the sedimentary cover, characteristics of prospecting target horizon, the development of interlayer oxidation zone at depth, as well as the information of uranium mineralization have been basically revealed, thus providing a basis for the prospect evaluation of sandstone-type uranium mineralization in the basin

  8. Documenting Bronze Age Akrotiri on Thera Using Laser Scanning, Image-Based Modelling and Geophysical Prospection

    Science.gov (United States)

    Trinks, I.; Wallner, M.; Kucera, M.; Verhoeven, G.; Torrejón Valdelomar, J.; Löcker, K.; Nau, E.; Sevara, C.; Aldrian, L.; Neubauer, E.; Klein, M.

    2017-02-01

    The excavated architecture of the exceptional prehistoric site of Akrotiri on the Greek island of Thera/Santorini is endangered by gradual decay, damage due to accidents, and seismic shocks, being located on an active volcano in an earthquake-prone area. Therefore, in 2013 and 2014 a digital documentation project has been conducted with support of the National Geographic Society in order to generate a detailed digital model of Akrotiri's architecture using terrestrial laser scanning and image-based modeling. Additionally, non-invasive geophysical prospection has been tested in order to investigate its potential to explore and map yet buried archaeological remains. This article describes the project and the generated results.

  9. Recent achievements and trends of research for geophysical prospection of archaeological sites

    International Nuclear Information System (INIS)

    Aubry, L.; Benech, C.; Hesse, A.

    2001-01-01

    Our times are characterized by an increasing need for prospection particularly within the context of rescue archaeology. Geophysics has an important part to play due to its ability to identify some well defined targets as well as to investigate large areas. Several recent surveys, using carefully selected methods chosen in accordance with the type of expected remain or a combination of methods in order to refine or confirm the interpretation, have demonstrated the expertise of several organisations in a wide variety of archaeological contexts. However, important improvements are still to be expected from the laboratories. Our team, working within the framework of three dissertations, is investigating several original subjects, for which the initial results are presented and discussed here: (1) The use of magnetic susceptibility measurements on wide mesh grids in order to survey extensive areas immediately prior to their occupation or destruction by large modern equipment; (2) Experiments to test a new survey device (Slingram - CS150) able to measure the magnetic susceptibility of the ground; (3) Interpretation of a series of geophysical measurements integrated with other types of data into a G.I.S. (author)

  10. Design and Construction of Equipment for Applying the Geophysical Prospecting Method Electric Tomography

    Directory of Open Access Journals (Sweden)

    Fabio Héctor Giraldo Sánchez

    2013-06-01

    Full Text Available Outlines the procedure for the design and construction of electric equipment for geophysical prospecting through electrical tomography method. The team is of average power, ensuring exploration depths quite suitable for applications and commercial and geotechnical studies. The device is essentially a DC voltage source of 500 volts that is able to provide a maximum current of 1 amp. It also contains a small charge current source of electrical currents counteract naturally found in the subsoil and are manifested as a difference in the surface potential. A general explanation of the geophysical method in question, helps to understand the basic principles of operation of the equipment and functions to be fulfilled. After building the team, we conducted a field data acquisition, in area near the town of Gachancipa Cundinamarca. The data from this equipment are processed with specialized software. The images obtained with the software presents the distributions of subsurface resistivity can be associated with the possible structures and geology of the study area.

  11. Development of graph self-generating program of radiation sampling for geophysical prospecting with AutoLISP

    International Nuclear Information System (INIS)

    Zhou Hongsheng

    2009-01-01

    A program of self-generating graph of radiation sampling for geophysical prospecting is developed with AutoLISP, which is developed wholly by the author and can self-generate and explain sampling graphs. The program has largely increased drawing efficiency and can avoid the graph errors due to manual drawing. (authors)

  12. Geophysical prospecting in archaeology: investigations in Santa Venera, south suburb of Poseidonia-Paestum, Campania, southern Italy

    International Nuclear Information System (INIS)

    Loperte, A; Satriani, A; Bavusi, M; Lapenna, V; Del Lungo, S; Gizzi, F T; Sabelli, R

    2011-01-01

    This paper is the result of a joint work between geophysicists and archaeologists in which the authors have used geophysical techniques to investigate the Greek and Roman settlement of Paestum, southern Italy for preventive archaeological research (commonly termed 'rescue archaeology') on an area of the ancient settlement affected by new building work and infrastructure. Starting from a background analysis of the archaeological and geological features of the site, an integrated geophysical approach based on magnetic, GPR and geoelectrical surveys was carried out on the Santa Venera area, a site selected to build a car parking. High-density and high-resolution cross-correlated geophysical surveys were carried out in different parts of the area to better resolve the structures. Systematic excavations confirmed the clues suggested by geophysical prospecting about the presence of archaeological remains such as walls, canals and tombs. By the use of non-destructive geophysical techniques a two-fold aim was reached: to properly plan the building of the infrastructure and preserve the ancient artefacts according to the advanced European guidelines on the protection of archaeological heritage

  13. Global status of and prospects for protection of terrestrial geophysical diversity.

    Science.gov (United States)

    Sanderson, Eric W; Segan, Daniel B; Watson, James E M

    2015-06-01

    Conservation of representative facets of geophysical diversity may help conserve biological diversity as the climate changes. We conducted a global classification of terrestrial geophysical diversity and analyzed how land protection varies across geophysical diversity types. Geophysical diversity was classified in terms of soil type, elevation, and biogeographic realm and then compared to the global distribution of protected areas in 2012. We found that 300 (45%) of 672 broad geophysical diversity types currently meet the Convention on Biological Diversity's Aichi Target 11 of 17% terrestrial areal protection, which suggested that efforts to implement geophysical diversity conservation have a substantive basis on which to build. However, current protected areas were heavily biased toward high elevation and low fertility soils. We assessed 3 scenarios of protected area expansion and found that protection focused on threatened species, if fully implemented, would also protect an additional 29% of geophysical diversity types, ecoregional-focused protection would protect an additional 24%, and a combined scenario would protect an additional 42%. Future efforts need to specifically target low-elevation sites with productive soils for protection and manage for connectivity among geophysical diversity types. These efforts may be hampered by the sheer number of geophysical diversity facets that the world contains, which makes clear target setting and prioritization an important next step. © 2015 Society for Conservation Biology.

  14. Geology, alteration, mineralization, petrogenesis, geochronology, geochemistry and airborne geophysics of Kuh Shah prospecting area, SW Birjand

    Directory of Open Access Journals (Sweden)

    Maryam Abdi

    2012-04-01

    Full Text Available The Kuh Shah prospecting area is located in Tertiary volcano-plutonic belt of the Lut Block. More than seventeen subvolcanic intermediate to acidic intrusive rocks, diorite to syenite in composition, were identified in the study area. The intrusions are related to hydrothermal alteration zones and contain argillic, propylitic, advanced argillic, silicified, quartz-sericite-pyrite, gossan and hydrothermal breccia which overprinted to each other and are accompanied by weathering which made it complicated to distinguish zoning. Mineralization is observed as sulfide (pyrite and rare chalcopyrite, disseminated Fe-oxides and quartz-Fe-oxide stockwork veinlets. Intrusive rocks are metaluminous, calc-alkaline with shoshonitic affinity with high values of magnetic susceptibility. The Kuh Shah intrusive rocks are classified as magnetite-series of oxidant I-type granitoids. Based on zircon U–Pb age dating, the age of these granitoid rocks is 39.7± 0.7 Ma (Middle Eocene. The radioisotope data (initial 87Sr/86Sr and 143Nd/144Nd ratios as well as εNd and geochemical data suggest that the Kuh Shah granitoid rocks formed from depleted mantle in a subduction-related magmatic arc setting. Geochemical anomalies of elements such as Cu, Au, Fe, Pb, Zn, As, Sb, Mo, Bi, Hg and also Mn, Ba, Te and Se, correlated with quartz-sericite-pyrite, gossan-stockwork-hydrothermal breccias, irregular silicified bodies and advanced argillic hydrothermal alteration zones. Geophysical anomalies correlated with hydrothermal alteration and mineralization zones. The interpretation of the results represents complex patterns of sub-circular to ellipsoid shape with north-east to south-west direction. These evidences are similar to the other for known Cu-Au porphyry and Au-epithermal systems in Iran and worldwide.

  15. Large-scale high-resolution non-invasive geophysical archaeological prospection for the investigation of entire archaeological landscapes

    Science.gov (United States)

    Trinks, Immo; Neubauer, Wolfgang; Hinterleitner, Alois; Kucera, Matthias; Löcker, Klaus; Nau, Erich; Wallner, Mario; Gabler, Manuel; Zitz, Thomas

    2014-05-01

    Over the past three years the 2010 in Vienna founded Ludwig Boltzmann Institute for Archaeological Prospection and Virtual Archaeology (http://archpro.lbg.ac.at), in collaboration with its ten European partner organizations, has made considerable progress in the development and application of near-surface geophysical survey technology and methodology mapping square kilometres rather than hectares in unprecedented spatial resolution. The use of multiple novel motorized multichannel GPR and magnetometer systems (both Förster/Fluxgate and Cesium type) in combination with advanced and centimetre precise positioning systems (robotic totalstations and Realtime Kinematic GPS) permitting efficient navigation in open fields have resulted in comprehensive blanket coverage archaeological prospection surveys of important cultural heritage sites, such as the landscape surrounding Stonehenge in the framework of the Stonehenge Hidden Landscape Project, the mapping of the World Cultural Heritage site Birka-Hovgården in Sweden, or the detailed investigation of the Roman urban landscape of Carnuntum near Vienna. Efficient state-of-the-art archaeological prospection survey solutions require adequate fieldwork methodologies and appropriate data processing tools for timely quality control of the data in the field and large-scale data visualisations after arrival back in the office. The processed and optimized visualisations of the geophysical measurement data provide the basis for subsequent archaeological interpretation. Integration of the high-resolution geophysical prospection data with remote sensing data acquired through aerial photography, airborne laser- and hyperspectral-scanning, terrestrial laser-scanning or detailed digital terrain models derived through photogrammetric methods permits improved understanding and spatial analysis as well as the preparation of comprehensible presentations for the stakeholders (scientific community, cultural heritage managers, public). Of

  16. Uranium occurence in nature: Geophysical prospecting, and its occurence in Syria

    International Nuclear Information System (INIS)

    Al-Haj Rasheed, Zaki

    1985-01-01

    A general idea about naturaly occured uranium minerals such as uranite, pechblende, carnotite, coffinit, and bronnerit is given. At the same time, different geophysical methods and detecting devices applied for uranium exploration have been demonstrated. Investigations and studies carried out in Syria point to a uranium content of 100 ppm in the exploited Syrian phosphorite. 1 fig., 1 tab

  17. Prospect of Continuous VLBI Measurement of Earth Rotation in Monitoring Geophysical Fluids

    Science.gov (United States)

    Chao, Benjamin F.; Ma, Chopo; Clark, Thomas

    1998-01-01

    Large-scale mass transports in the geophysical fluids of the Earth system excite Earth's rotational variations in both length-of-day and polar motion. The excitation process is via the conservation of angular momentum. Therefore Earth rotation observations contain information about the integrated angular momentum (consisting of both the mass term and the motion term) of the geophysical fluids, which include atmosphere, hydrosphere, mantle, and the outer and inner cores. Such global information is often important and otherwise unattainable depending on the nature of the mass transport, its magnitude and time scale. The last few years have seen great advances in VLBI measurement of Earth rotation in precision and temporal resolution. These advances have opened new. areas in geophysical fluid studies, such as oceanic tidal angular momentum, atmospheric tides, Earth librations, and rapid atmospheric angular momentum fluctuations. Precision of 10 microseconds in UTI and 200 microarcseconds in polar motion can now be achieved on hourly basis. Building upon this heritage, the multi-network geodetic VLBI project, Continuous Observation of the Rotation of the Earth (CORE), promises to further these studies and to make possible studies on elusive but tell-tale geophysical processes such as oscillatory modes in the core and in the atmosphere. Currently the early phase of CORE is underway. Within a few years into the new mellinnium, the upcoming space gravity missions (such as GRACE) will measure the temporal variations in Earth's gravitational field, thus providing complementary information to that from Earth rotation study for a better understanding of global geophysical fluid processes.

  18. Application of geophysical methods to gold prospecting in Minas de Corrales, Uruguay

    International Nuclear Information System (INIS)

    Costa, Antonio Flavio U.; Dias, Rogerio Aguirre; Barcelos, Andre B.B. de

    1993-01-01

    Geophysical methods were tested in San Gregorio gold mine, Minas de Corrales, north region of Uruguay. The ores are mainly stockworks, sheeted veinlet zones, ore shoot and disseminated sulfides types, situated in a silicated and carbonated shear zone structure, over granitic mylonites, quartz diorites, quartz-feldspathic breccia, basic rocks and quartz veins. Magnetic and radiometric methods were applied . VLF and EM34-3 detected the high resistivity silicated and carbonated zone and IP detected a weak PFE anomaly associated with pyrite/gold zone. (author)

  19. Multi-objective evolutionary optimization for constructing neural networks for virtual reality visual data mining: application to geophysical prospecting.

    Science.gov (United States)

    Valdés, Julio J; Barton, Alan J

    2007-05-01

    A method for the construction of virtual reality spaces for visual data mining using multi-objective optimization with genetic algorithms on nonlinear discriminant (NDA) neural networks is presented. Two neural network layers (the output and the last hidden) are used for the construction of simultaneous solutions for: (i) a supervised classification of data patterns and (ii) an unsupervised similarity structure preservation between the original data matrix and its image in the new space. A set of spaces are constructed from selected solutions along the Pareto front. This strategy represents a conceptual improvement over spaces computed by single-objective optimization. In addition, genetic programming (in particular gene expression programming) is used for finding analytic representations of the complex mappings generating the spaces (a composition of NDA and orthogonal principal components). The presented approach is domain independent and is illustrated via application to the geophysical prospecting of caves.

  20. The research on the buried public monumental complexes of Lupiae (Lecce) by geophysical prospecting

    Science.gov (United States)

    Leucci, Giovanni; De Giorgi, Lara; Di Giacomo, Giacomo; Ditaranto, Imma; Miccoli, Ilaria; Scardozzi, Giuseppe

    2017-10-01

    Ongoing and extensive urbanisation may threaten important archaeological structures that are still buried in urban areas. The ground penetrating radar (GPR) method is the most promising alternative for resolving buried archaeological structures in urban territories. This paper presents a case study that involves a geophysical survey employing the surface three-dimensional (3D) GPR techniques, in order to archaeologically characterise the investigated areas. The site is located in the south-western sector of the historical centre of Lecce (Apulia, Italy), where the modern city overlaps the main public monuments of the Roman municipium of Lupiae, only partially preserved or excavated: the amphitheatre, the theatre, the baths and maybe also the Forum. GPR measurements, integrated with the results of archaeological excavations and the topographical surveys of the preserved remains, were carried out in several areas regarding sectors of the ancient roman city. The GPR data were collected along a dense network of parallel profiles. The GPR sections were processed applying specific filters to the data in order to enhance their information content. The GPR images significantly contributed in reconstructing the complex subsurface properties in these modern urban areas. Strong GPR reflections features were correlated with possible ancient structures and they were integrated in the digital archaeological map of the city.

  1. Geophysical prospecting for the deep geothermal structure of the Zhangzhou basin, Southeast China

    Science.gov (United States)

    Wu, Chaofeng; Liu, Shuang; Hu, Xiangyun; Wang, Guiling; Lin, Wenjing

    2017-04-01

    Zhangzhou basin located at the Southeast margins of Asian plate is one of the largest geothermal fields in Fujian province, Southeast China. High-temperature natural springs and granite rocks are widely distributed in this region and the causes of geothermal are speculated to be involved the large number of magmatic activities from Jurassic to Cretaceous periods. To investigate the deep structure of Zhangzhou basin, magnetotelluric and gravity measurements were carried out and the joint inversion of magnetotelluric and gravity data delineated the faults and the granites distributions. The inversion results also indicated the backgrounds of heat reservoirs, heat fluid paths and whole geothermal system of the Zhangzhou basin. Combining with the surface geological investigation, the geophysical inversion results revealed that the faults activities and magma intrusions are the main reasons for the formation of geothermal resources of the Zhangzhou basin. Upwelling mantle provides enormous heats to the lower crust leading to metamorphic rocks to be partially melt generating voluminous magmas. Then the magmas migration and thermal convection along the faults warm up the upper crust. So finally, the cap rocks, basements and major faults are the three favorable conditions for the formation of geothermal fields of the Zhangzhou basin.

  2. Prospecting for a Blind Geothermal System Utilizing Geologic and Geophysical Data, Seven Troughs Range, Northwestern Nevada

    Science.gov (United States)

    Forson, Corina

    To aid in the discovery and evaluation of blind resources, it is important to utilize geologic, geophysical, and geochemical techniques to find the required elements (e.g., heat source, fluid to transport the heat, and permeability in a reservoir) for geothermal energy production. Based on a regional low resistivity anomaly discovered through a reconnaissance magnetotelluric (MT) survey, detailed geologic mapping, structural analysis, and a 2 m temperature survey were conducted to delineate the most likely areas for blind geothermal activity in the Seven Troughs Range, Nevada. The Seven Troughs Range resides in the northwestern Basin and Range province 190 km northeast of Reno and 50 km northwest of Lovelock in western Nevada. There is no known geothermal system in the area. Mesozoic metasedimentary strata and intrusions dominate the northern and southern parts of the range but are nonconformably overlain by a thick sequence (~ 1.5 km) of Oligocene to Miocene volcanic and volcaniclastic rocks and Quaternary sediments in the central part of the range. The southern part of the range consists of a basement horst block bounded by two major range-front faults, with Holocene fault scarps marking the more prominent fault on the east side of the range. In contrast, several gently to moderately west-tilted fault blocks, with good exposures of the Tertiary volcanic strata and bounded by a series of steeply east-dipping normal faults, characterize the central part of the range. Kinematic analysis of faults in the range and regional relations indicate a west-northwest-trending extension direction. Accordingly, slip and dilation tendency analyses suggest that north-northeast striking faults are the most favorably oriented for reactivation and fluid flow under the current stress field. Two areas in the Seven Troughs Range have a favorable structural setting for generating permeability and channeling geothermal fluids to the near surface: 1) A major right step in the range

  3. Magnetic observations at Geophysical Observatory Paratunka IKIR FEB RAS: tasks, possibilities and future prospects

    Science.gov (United States)

    Khomutov, Sergey Y.

    2017-10-01

    Continuous magnetic measurements at Geophysical Observatory "Paratunka" (PET) of IKIR FEB RAS are performed since 1967. In the new millennium analogue magnetometers were modernized to digital, the technologies of absolute observations were changed, the data processing was completely transferred to computers, and the status of INTERMAGNET observatory was obtained. Currently, the observatory uses the following magnetometers: (a) for absolute observations - DIflux LEMI-203 (theodolite 3T2KP) and Mag-01 (theodolite Wild-T1), Overhauser magnetometers POS-1 and GSM-19W; (b) for variation measurements - fluxgate magnetometers FGE-DTU, FRG-601 and MAGDAS (installed under international agreements of IKIR), vector magnetometers dIdD GSM-19FD and POS-4 with Overhauser sensors and coil systems, scalar magnetometer GSM-90 and induction magnetometer STELAB. During Spring-Autumn season dIdD also is installed at remote station "Karymshina" at distance of 15 km from Observatory. There is monitoring system for monitoring of conditions in which magnetic observations are performed, including the semi-professional weather stations Davis Vantage Pro2 and WS2000 and a network of digital temperature sensors DS19B20 located at various points in magnetic pavilions and outdoor. All measurements are synchronized with the UTC. The results of observations are collected by the IKIR data server from the recorders and loggers, including in real-time. Specialized software was developed (based on MATLAB and Octave packages), which allows automatic and semi-automatic processing of data, the comparison of the results from different magnetometers and presenting final data in formats, defined by international standards, including INTERMAGNET. Significant efforts of observatory staff are direct to archive (raw) magnetic data, a significant part of which has not been entirely processed, is not presented in international data centers and is still not available to the scientific community. Digital images of

  4. Magnetic observations at Geophysical Observatory Paratunka IKIR FEB RAS: tasks, possibilities and future prospects

    Directory of Open Access Journals (Sweden)

    Khomutov Sergey Y.

    2017-01-01

    Full Text Available Continuous magnetic measurements at Geophysical Observatory “Paratunka” (PET of IKIR FEB RAS are performed since 1967. In the new millennium analogue magnetometers were modernized to digital, the technologies of absolute observations were changed, the data processing was completely transferred to computers, and the status of INTERMAGNET observatory was obtained. Currently, the observatory uses the following magnetometers: (a for absolute observations – DIflux LEMI-203 (theodolite 3T2KP and Mag-01 (theodolite Wild-T1, Overhauser magnetometers POS-1 and GSM-19W; (b for variation measurements – fluxgate magnetometers FGE-DTU, FRG-601 and MAGDAS (installed under international agreements of IKIR, vector magnetometers dIdD GSM-19FD and POS-4 with Overhauser sensors and coil systems, scalar magnetometer GSM-90 and induction magnetometer STELAB. During Spring-Autumn season dIdD also is installed at remote station “Karymshina” at distance of 15 km from Observatory. There is monitoring system for monitoring of conditions in which magnetic observations are performed, including the semi-professional weather stations Davis Vantage Pro2 and WS2000 and a network of digital temperature sensors DS19B20 located at various points in magnetic pavilions and outdoor. All measurements are synchronized with the UTC. The results of observations are collected by the IKIR data server from the recorders and loggers, including in real-time. Specialized software was developed (based on MATLAB and Octave packages, which allows automatic and semi-automatic processing of data, the comparison of the results from different magnetometers and presenting final data in formats, defined by international standards, including INTERMAGNET. Significant efforts of observatory staff are direct to archive (raw magnetic data, a significant part of which has not been entirely processed, is not presented in international data centers and is still not available to the scientific

  5. Geophysical prospecting of the landfill near Mydlovary-Zahaji in Southern Bohemia

    International Nuclear Information System (INIS)

    Mares, S.; Dohnal, J.; Jane, Z.; Knez, J.; Zima, L.; Alexeeva, L.; Iliceto, A.

    2000-01-01

    Geoelectric methods of measurement are well suited for inorganic contaminants (salt, acid, lye) that affect the groundwater resistance. There are many publications on the interdependence between rock resistance and groundwater resistance. The so-called formation factor, i.e. the ratio between these two parameters, was defined by Archie already in 1942. Further research was done on the influence of clay and coarse clay on the formation factor. It was found that (especially at higher electrolyte concentrations) the dependence of rock resistance on groundwater resistance is always valid and is used in practice for assessing the groundwater resistance in petroleum prospecting. This is the theoretical basis for the use of geoelectric resistance method in the detection and mapping of soil pollution. Abandoned mining areas are quite often contaminated with residues of inorganic chemicals left over from metal extraction. Former industrial sites are often sources of groundwater contamination. The contribution presents an example from Southern Bohemia [de

  6. Verification study on technology for preliminary investigation for HLW geological disposal. Part 2. Verification of surface geophysical prospecting through establishing site descriptive models

    International Nuclear Information System (INIS)

    Kondo, Hirofumi; Suzuki, Koichi; Hasegawa, Takuma; Goto, Keiichiro; Yoshimura, Kimitaka; Muramoto, Shigenori

    2012-01-01

    The Yokosuka demonstration and validation project using Yokosuka CRIEPI site has been conducted since FY 2006 as a cooperative research between NUMO (Nuclear Waste Management Organization of Japan) and CRIEPI. The objectives of this project are to examine and to refine the basic methodology of the investigation and assessment of properties of geological environment in the stage of Preliminary Investigation for HLW geological disposal. Within Preliminary Investigation technologies, surface geophysical prospecting is an important means of obtaining information from deep geological environment for planning borehole surveys. In FY 2010, both seismic prospecting (seismic reflection and vertical seismic profiling methods) for obtaining information about geological structure and electromagnetic prospecting (magneto-telluric and time domain electromagnetic methods) for obtaining information about resistivity structure reflecting the distribution of salt water/fresh water boundary to a depth of over several hundred meters were conducted in the Yokosuka CRIEPI site. Through these surveys, the contribution of geophysical prospecting methods in the surface survey stage to improving the reliability of site descriptive models was confirmed. (author)

  7. Investigating the Surface and Subsurface in Karstic Regions – Terrestrial Laser Scanning versus Low-Altitude Airborne Imaging and the Combination with Geophysical Prospecting

    Directory of Open Access Journals (Sweden)

    Nora Tilly

    2017-08-01

    Full Text Available Combining measurements of the surface and subsurface is a promising approach to understand the origin and current changes of karstic forms since subterraneous processes are often the initial driving force. A karst depression in south-west Germany was investigated in a comprehensive campaign with remote sensing and geophysical prospecting. This contribution has two objectives: firstly, comparing terrestrial laser scanning (TLS and low-altitude airborne imaging from an unmanned aerial vehicle (UAV regarding their performance in capturing the surface. Secondly, establishing a suitable way of combining this 3D surface data with data from the subsurface, derived by geophysical prospecting. Both remote sensing approaches performed satisfying and the established digital elevation models (DEMs differ only slightly. These minor discrepancies result essentially from the different viewing geometries and post-processing concepts, for example whether the vegetation was removed or not. Validation analyses against high-accurate DGPS-derived point data sets revealed slightly better results for the DEMTLS with a mean absolute difference of 0.03 m to 0.05 m and a standard deviation of 0.03 m to 0.07 m (DEMUAV: mean absolute difference: 0.11 m to 0.13 m; standard deviation: 0.09 m to 0.11 m. The 3D surface data and 2D image of the vertical cross section through the subsurface along a geophysical profile were combined in block diagrams. The data sets fit very well and give a first impression of the connection between surface and subsurface structures. Since capturing the subsurface with this method is limited to 2D and the data acquisition is quite time consuming, further investigations are necessary for reliable statements about subterraneous structures, how these may induce surface changes, and the origin of this karst depression. Moreover, geophysical prospecting can only produce a suspected image of the subsurface since the apparent resistivity is measured

  8. Identification of shallow volcanic structures in Timanfaya National Park (Lanzarote, Canary Islands) through combined geophysical prospecting techniques

    Science.gov (United States)

    Gomez-Ortiz, David; Montesinos, Fuensanta G.; Martin-Crespo, Tomas; Solla, Mercedes; Arnoso, Jose; Velez, Emilio

    2014-05-01

    The Timanfaya National Park is a volcanic area, which occupies a surface area of about 51 sq. km in the southwest of Lanzarote Island (Canary Archipelago, Spain). The 1730-1736 eruption gave rise to this volcanic landscape with more than 30 volcanic cones formed in different phases of basaltic type eruptions. It was one of the most important volcanic events occurred in the Canary Archipelago over the last 500 years. Several canyons ("jameos") are crossing this landscape in all directions, being created while the surface of the lava cooled off, and broke into pieces, falling down into the several tubes. Its location and identification is important to prevent hazards or to achieve a good exploitation from a visitor viewpoint in a restricted touristic area as the Timanfaya National Park. The use of prospective techniques to investigate the near subsurface structure of the park is very complicated, and only some regional study through gravity, magnetism and seismicity have been undertaken to attempt to model the deeper crustal structure of Lanzarote Island. This work presents a new study about the location of recent lava tubes at the volcanic area of Timanfaya National Park by the analysis and joint interpretation of high-resolution gravity, ground penetrating radar (GPR), and electromagnetic induction (EMI) data obtained over areas which had not been surveyed up to date. The studied lava flows are located at the Calderas Quemadas zone. The processed GPR radargram displays a complex pattern of reflections along the whole profile up to ~9 m depth. The strongest reflections can be grouped in four different areas defined by several hyperbolic reflections. Direct visual inspections carried out in the field allow confirming the occurrence of lava tubes at two of the locations where hyperbolic reflections are defined. Then, the strong reflections observed have been interpreted as the effect of the roof and bottom interfaces of several lava tubes. A microgravity survey along

  9. Geophysical and geochemical techniques for exploration of hydrocarbons and minerals

    International Nuclear Information System (INIS)

    Sittig, M.

    1980-01-01

    The detailed descriptive information in this book is based on 389 US patents that deal with geophysical and geochemical techniques useful for the exploration of hydrocarbons and minerals. Where it was necessary to round out the complete technological picture, a few paragraphs from cited government reports have been included. These techniques are used in prospecting for oil, coal, oil shale, tar sand and minerals. The patents are grouped under the following chapters: geochemical prospecting; geobiological prospecting; geophysical exploration; magnetic geophysical prospecting; gravitational geophysical prospecting; electrical geophysical prospecting; nuclear geophysical prospecting; seismic geophysical prospecting; and exploratory well drilling. This book serves a double purpose in that it supplies detailed technical information and can be used as a guide to the US patent literature in this field. By indicating all the information that is significant, and eliminating legal jargon and juristic phraseology, this book presents an advanced, industrially oriented review of modern methods of geophysical and geochemical exploration techniques

  10. Shallow Depth Geophysical Investigation Through the Application of Magnetic and Electric Resistance Techniques: AN Evaluation Study of the Responses of Magnetic and Electric Resistance Techniques to Archaeogeophysical Prospection Surveys in Greece and Cyprus

    Science.gov (United States)

    Sarris, Apostolos

    The response characteristics of total intensity and vertical gradient magnetic techniques have been investigated in detail and compared with electric resistivity and other geophysical techniques. Four case studies from archaeological sites of Greece and Cyprus have been used as the experimental basis of this research project. Data from shallow depth geophysical investigations in these sites were collected over a period of four years. Interpretation of the geophysical results was based on the integration of the various prospecting methods. The results of the comparative study between the different techniques showed a strong correlation among all methods allowing the detection of certain features and the determination of their dimensions. The application of a large range of geophysical prospecting techniques in the surveyed archaeological sites has been able to detect the approximate position of the subsurface remains and to compare the different techniques in terms of the information that they reveal. Each one of these techniques has been used to examine the characteristic response of each method to the geophysical anomalies associated with the surveyed sites. Magnetic susceptibility measurements at two frequencies have identified areas and levels of intense human activity. A number of processing techniques such as low, high and band pass filtering in the spatial and frequency domain, computation of the residuals and fast Fourier transformation (FFT) of the magnetic potential data have been applied to the geophysical measurements. The subsequent convolution with filters representing apparent susceptibility, reduction to pole and equator, Gaussian and Butterworth regional and residual distributions, and inverse filtering in terms of spiking deconvolution have revealed a wealth of information necessary to obtain a more accurate picture of the concealed features. Inverse modelling of isolated magnetic anomalies has further enriched the information database of the

  11. Combined Geophysical Prospecting in Andalusia (Spain): Geomagnetics, GPR and IP Geoelectrics in Munigua, Montes de San Benito and Alcorrín.

    Science.gov (United States)

    Meyer, C.; Ullrich, B.

    2007-05-01

    According to the special tasks of archaeologists of the German Archaeological Institute (Madrid department) geophysical investigation campaigns were realized at several sites in Andalusia during the last five years. In Munigua (Province of Seville) - a Roman municipium and centre of metal production - building structures like the city wall and production sites extra muro were investigated by means of GPR measurements. A new method permitting virtual or physical reconstructions of archaeological features in the ground is presented using the original geophysical data and avoiding the speculative aspect of previous reconstruction techniques. In addition the Roman archaeo-metallurgical remains were surveyed in order to investigate the economic base of the Roman town and its environs. Geoelectrical measurements were realized recording the complex resistivity. The extension and depth of slag heaps are estimated using 2D and 3D images of resistivity ρ and phase angle φ. The slag heaps are well-defined by IP effects from the bedrock. The results allow estimating the amount of processed metal in Munigua for the first time. The main focus of the survey in Montes de San Benito (Province of Huelva) was the investigation of the structure of a Celtiberic settlement closely connected to iron production as well. Geomagnetic mapping and GPR measurements were applied in order to detect the buried building structures and the street system. Several single buildings, the main axes and remains of furnaces were localized. A similar procedure was chosen prospecting the fortified hill of Alcorrìn (Province of Malaga), a Phoenician settlement nearby the Mediterranean coast. The both spectacular and rarely researched site is surrounded by an up to 5 m thick wall. Main goal of the two survey campaigns was the internal structure of the hill fort. Using geomagnetic mapping and GPR a second fortification system could be identified. Inside the second ring wall building structures made of mud

  12. Identification of shallow geothermal anomalies in the Timanfaya National Park (Lanzarote, Canary Islands) through combined geophysical prospecting techniques

    Science.gov (United States)

    Gómez-Ortiz, David; Blanco-Montenegro, Isabel; Martín-Crespo, Tomás; Arnoso, José; Solla, Mercedes; Montesinos, Fuensanta G.; Vélez, Emilio; Calvo-Rathert, Manuel; Sánchez, Nieves; Lorenzo, Henrique; Soler, Vicente

    2017-04-01

    The Timanfaya National Park is a volcanic area in the southwest of Lanzarote Island (Canary Archipelago, Spain) resulting from the 1730-1736 eruption period. Several active geothermal anomalies have been identified from 1970's. Their location is important to prevent hazards in this restricted touristic area of the park. Presently, only some regional geophysical studies based on gravity, magnetic and seismic data have been undertaken to model the crustal structure of Lanzarote Island. This work presents a new study about the geothermal anomalies in the Timanfaya National Park by the analysis and joint interpretation of electrical resistivity tomography (ERT), magnetic anomalies and electromagnetic induction data (EMI). All analyzed data have been obtained over areas which had not been surveyed before. The studied geothermal field is located at the Islote de Hilario visitor's centre. One 50m-long GPR profile was carried out in May 2012 along the location of a known geothermal anomaly developed over pyroclastic deposits. The two main characteristics are: a) no continuous subhorizontal reflections are displayed up to 12 m depth and, b) the intensity of the reflections varies laterally in good agreement with the location of the geothermal anomalies (the higher the ground temperature, the greater the intensity of the GPR signal). Thus, an outline of the subsurface area with higher temperatures can be observed, indicating that the heat source is deeper at the beginning of the profile and extends laterally and progressively shallower towards the end. Temporal variation of the shallow temperature distribution was also investigated by repeating the same GPR profile in April 2015. Although both profiles look quite similar, subtle variations of the GPR signal intensity suggest a certain temporal variation of the ground temperature. In November 2012 a land magnetic survey was carried out in Timanfaya. In the Islote de Hilario area, total field magnetic data were acquired with

  13. Inside the polygonal walls of Amelia (Central Italy): A multidisciplinary data integration, encompassing geodetic monitoring and geophysical prospections

    Science.gov (United States)

    Ercoli, M.; Brigante, R.; Radicioni, F.; Pauselli, C.; Mazzocca, M.; Centi, G.; Stoppini, A.

    2016-04-01

    We investigate a portion of the ancient (VI and IV centuries BC) polygonal walls of Amelia, in Central Italy. After the collapse of a portion of the walls which occurred in January 2006, a wide project started in order to monitor their external facade and inspect the characteristics of the internal structure, currently not clearly known. In this specific case, the preservation of such an important cultural heritage was mandatory, therefore invasive methods like drilling or archaeological essays cannot be used. For this purpose, a multidisciplinary approach represents an innovative way to shed light on their inner structure. We combine several non-invasive techniques such as Ground Penetrating Radar (GPR) and Electrical Resistivity Tomography (ERT), specifically adapted for this study, Laser Scanning and Digital Terrestrial Photogrammetry, integrated with other geomatic measures provided by a Total Station and Global Navigation Satellite Systems (GNSS). After collecting some historical information, we gather the whole datasets exploring for their integration an interpretation approach borrowed from the reflection seismic (attribute analysis and three dimensional visualization). The results give rise for the first time to the internal imaging of this ancient walls, highlighting features associable to different building styles related to different historical periods. Among the result, we define a max wall thickness of about 3.5 m for the cyclopic sector, we show details of the internal block organization and we detect low resistivity values interpretable with high water content behind the basal part of the walls. Then, quantitative analyses to assess their reliable geotechnical stability are done, integrating new geometrical constrains provided by the geophysics and geo-technical ground parameters available in literature. From this analysis, we highlight how the Amelia walls are interested, in the investigated sector, by a critical pseudo-static equilibrium.

  14. Surface geochemical data evaluation and integration with geophysical observations for hydrocarbon prospecting, Tapti graben, Deccan Syneclise, India

    Directory of Open Access Journals (Sweden)

    T. Satish Kumar

    2014-05-01

    Full Text Available The Deccan Syneclise is considered to have significant hydrocarbon potential. However, significant hydrocarbon discoveries, particularly for Mesozoic sequences, have not been established through conventional exploration due to the thick basalt cover over Mesozoic sedimentary rocks. In this study, near-surface geochemical data are used to understand the petroleum system and also investigate type of source for hydrocarbons generation of the study area. Soil samples were collected from favorable areas identified by integrated geophysical studies. The compositional and isotopic signatures of adsorbed gaseous hydrocarbons (methane through butane were used as surface indicators of petroleum micro-seepages. An analysis of 75 near-surface soil-gas samples was carried out for light hydrocarbons (C1–C4 and their carbon isotopes from the western part of Tapti graben, Deccan Syneclise, India. The geochemical results reveal sites or clusters of sites containing anomalously high concentrations of light hydrocarbon gases. High concentrations of adsorbed thermogenic methane (C1 = 518 ppb and ethane plus higher hydrocarbons (ΣC2+ = 977 ppb were observed. Statistical analysis shows that samples from 13% of the samples contain anomalously high concentrations of light hydrocarbons in the soil-gas constituents. This seepage suggests largest magnitude of soil gas anomalies might be generated/source from Mesozoic sedimentary rocks, beneath Deccan Traps. The carbon isotopic composition of methane, ethane and propane ranges are from −22.5‰ to −30.2‰ PDB, −18.0‰ to 27.1‰ PDB and 16.9‰–32.1‰ PDB respectively, which are in thermogenic source. Surface soil sample represents the intersection of a migration conduit from the deep subsurface to the surface connected to sub-trappean Mesozoic sedimentary rocks. Prominent hydrocarbon concentrations were associated with dykes, lineaments and presented on thinner basaltic cover in the study area

  15. Petroleum geophysics

    Energy Technology Data Exchange (ETDEWEB)

    2010-07-01

    The book is compiled from a series of e-learning modules. GeoCLASS is an e-learning system with contents from petroleum geophysics. It is the result of collaboration between professors at the University of Bergen and the University of Oslo, and its material has been used as curriculum in master program courses at these universities for several years. Using a unique feature to GeoCLASS, these advanced scientific topics are presented on multiple levels. The introductions open the door to this vast pool of knowledge, accessible even for high school students. Enter the door, and you enter the modules. Various levels of content are presented, and the more advanced levels can be shielded from the regular user, and only accessed by those with particular interest. The chapters in the book are: Elastic waves; Survey planning; Seismic acquisition; Basic seismic signal theory and processing; Seismic imaging; Seismic attributes; Rock physics; Reservoir monitoring. (AG)

  16. Mobile geophysics for searching and exploration of Domanic hydrocarbon deposits

    Science.gov (United States)

    Borovsky, M. Ya; Uspensky, B. V.; Valeeva, S. E.; Borisov, A. S.

    2018-05-01

    There are noted features of shale hydrocarbons occurrence. It is shown the role of geophysical prospecting in the geological prospecting process for non-traditional sources of hydrocarbon. There are considered the possibilities of non-seismic methods for forecasting, prospecting, exploration and preparation of Domanikovian hydrocarbons accumulations for exploration. It is emphasized the need for geophysical studies of tectonic disturbances. Modern aerogeophysical instrumentation and methodological support allows to combine high-precision magneto-prospecting with gravimetric and gamma spectrometry. This combination of geophysical methods contributes to the diagnosis of active and latent faults.

  17. Geophysical methods in uranium mining

    International Nuclear Information System (INIS)

    Koehler, K.

    1989-01-01

    In uranium prospecting, exploration, milling, and mining there is an urgent need to have information on the concentration of uranium at all steps of handling uranium containing materials. To gain this information in an effective way modern geophysical methods have to be applied. Publications of the IAEA and NEA in this field are reviewed in order to characterize the state of the art of these methods. 55 refs

  18. Summary and evaluation of existing geological and geophysical data near prospective surface facilities in Midway Valley, Yucca Mountain Project, Nye County, Nevada

    International Nuclear Information System (INIS)

    Gibson, J.D.; Swan, F.H.; Wesling, J.R.; Bullard, T.F.; Perman, R.C.; Angell, M.M.; DiSilvestro, L.A.

    1992-01-01

    Midway Valley, located at the eastern base of the Yucca Mountain in southwestern Nevada, is the preferred location of the surface facilities for the potential high-level nuclear waste repository at Yucca Mountain. One goal in siting these surface facilities is to avoid faults that could produce relative displacements in excess of 5 cm in the foundations of the waste-handling buildings. This study reviews existing geologic and geophysical data that can be used to assess the potential for surface fault rupture within Midway Valley. Dominant tectonic features in Midway Valley are north-trending, westward-dipping normal faults along the margins of the valley: the Bow Ridge fault to the west and the Paintbrush Canyon fault to the east. Published estimates of average Quaternary slip rates for these faults are very low but the age of most recent displacement and the amount of displacement per event are largely unknown. Surface mapping and interpretive cross sections, based on limited drillhole and geophysical data, suggest that additional normal faults, including the postulated Midway Valley fault, may exist beneath the Quaternary/Tertiary fill within the valley. Existing data, however, are inadequate to determine the location, recency, and geometry of this faulting. To confidently assess the potential for significant Quaternary faulting in Midway Valley, additional data are needed that define the stratigraphy and structure of the strata beneath the valley, characterize the Quaternary soils and surfaces, and establish the age of faulting. The use of new and improved geophysical techniques, combined with a drilling program, offers the greatest potential for resolving subsurface structure in the valley. Mapping of surficial geologic units and logging of soil pits and trenches within these units must be completed, using accepted state-of-the-art practices supported by multiple quantitative numerical and relative age-dating techniques

  19. Complex nuclear geophysical methods and apparatus to increase the efficiency of prospecting extracting and processing nonradioactive minerals as examplified by tin ores

    International Nuclear Information System (INIS)

    Baldin, S.A.; Voloshchuk, S.N.; Egiazarov, B.G.; Zernov, L.V.; Luchin, I.A.; Matveev, V.V.; Pukhal'skij, L.Ch.; Chesnokov, N.I.

    1979-01-01

    Described is the complex of nuclear geophysical methods and apparatus, with the help of which the problem of the industrial control at all stages of ore concentrating industry are being solved. γ resonance and X-ray radiometric methods and apparatus providing express and not less accurate determination of general tin and tin in the form of cassiterite are used in the complex. The devices developed on the base of semiconductor spectrometers and used both under industrial conditions and in production regimes are used for the first time in the practice of ore concentrating industry. The essential positive effect of the complex on technical economical indices of the industry is found out; it allows to use more effective methods of extracting and processing technology. The similar complexes may be developed for other kinds of nonradioactive minerals

  20. Application of nuclear-geophysical methods to reserves estimation

    International Nuclear Information System (INIS)

    Bessonova, T.B.; Karpenko, I.A.

    1980-01-01

    On the basis of the analysis of reports dealing with calculations of mineral reserves considered are shortcomings in using nuclear-geophysical methods and in assessment of the reliability of geophysical sampling. For increasing efficiency of nuclear-geophysical investigations while prospecting ore deposits, it is advisable to introduce them widely instead of traditional geological sampling methods. For this purpose it is necessary to increase sensitivity and accuracy of radioactivity logging methods, to provide determination of certain elements in ores by these methods

  1. Case study of geostructural prospect of a tunnel by using geophysical methods; Butsuri tansa ni yoru tunnel chisan yosoku to jissai

    Energy Technology Data Exchange (ETDEWEB)

    Ueda, H [Japan Railway Construction Public Corp., Tokyo (Japan); Kawakami, J [Taisei Construction Corp., Tokyo (Japan); Nagasue, I; Hiwatashi, S; Wakuno, M [Oyo Corp., Tokyo (Japan)

    1997-05-27

    A preliminary survey was carried out by combining elastic wave exploration (using a refraction method) and electrical exploration (using a resistivity imaging method) on a long tunnel planned in a granite distributed area. This paper describes a case of verifying geological condition in the area by using a trial survey well and horizontal boring. This tunnel goes through the Seburi mountainous area on the border of Fukuoka Prefecture and Saga Prefecture for a total distance of 12 km. The refraction method and the resistivity imaging method were selected from the necessity of identifying the weathering condition in natural ground, and distributions of fault crush zones and underground water in a section extending 560 m from the well entrance. As a result of comparing the natural ground condition interpreted from the geophysical survey results with the construction records, the fault was detected as a cracked or deformed section in the part where the resistivity value changes abruptly or where the resistivity is low. The tunnel natural ground classification showed a good correspondence with the elastic wave velocities. The largest flooding section showed a good agreement with the section where the resistivity changes suddenly to a lateral direction. Thus, the geological information interpreted from both surveys presented a good correspondence with the construction records, leading to a judgment that the prediction is possible. 3 refs., 4 figs., 5 tabs.

  2. Rožňava ore field - geophysical works

    Directory of Open Access Journals (Sweden)

    Géczy Július

    1998-12-01

    Full Text Available The article prowides a review of geophysical works in the ore field Rožňava conducted up to date. Magnetometric and geoelectric methods and gravimetric measurements have been used. Geophysical works were focused to the solving regional problems whose contribution to the prospecting of vein deposits is not essential.

  3. An application of neural network in geophysical prospecting. Electrical resistivity at Las Virgenes geothermal field, Baja California Sur, Mexico; Una aplicacion de las redes neuronales a la prospeccion geofisica. Resistividad electrica en las Tres Virgenes, Baja California Sur, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Palma Guzman, Sergio Hugo [Comision Federal de Electricidad, Morelia, Michoacan (Mexico)

    2000-12-01

    The technology of the neural network is presented with geophysical focus in the Las Virgenes geothermal field, Baja California Sur, Mexico. The results obtained when extrapolating the associative data of the prospecting magnetoteluria and Vertical Electric Sounding, on the area of the geothermal wells to the rest of the area, allows to classify zones of interest for the geothermal exploitation. Also, the use of these associative parameters with the information of the stabilized temperature of the wells, they allow to predict temperatures for the rest of the area. [Spanish] Se presenta una aplicacion de la tecnologia de las redes neuronales con enfoque geofisico en el campo geotermico de Las Virgenes, Baja California Sur, Mexico. Los resultados obtenidos al extrapolar los datos asociativos de las prospecciones geoelectricas de magnetoteluria y sondeos electricos verticales, en la zona de los pozos geotermicos al resto del area, permiten clasificar zonas de interes para la explotacion geotermica. Tambien, la utilizacion de estos parametros asociativos con la informacion de la temperatura estabilizada de los pozos, permiten predecir temperaturas para la misma area.

  4. Advances in geophysics

    CERN Document Server

    Sato, Haruo

    2013-01-01

    The critically acclaimed serialized review journal for over 50 years, Advances in Geophysics is a highly respected publication in the field of geophysics. Since 1952, each volume has been eagerly awaited, frequently consulted, and praised by researchers and reviewers alike. Now in its 54th volume, it contains much material still relevant today--truly an essential publication for researchers in all fields of geophysics.Key features: * Contributions from leading authorities * Informs and updates on all the latest developments in the field

  5. Geophysical images of basement rocks. Geophysical images in the Guianese basement. Airborne geophysical campaign in French Guiana - 1996

    International Nuclear Information System (INIS)

    Delor, C.; Perrin, J.; Truffert, C.; Asfirane, F.; Rossi, Ph.; Bonjoly, D.; Dubreuihl, J.; Chardon, D.

    1998-01-01

    The French Office for Geological and Mining Research (BRGM) has carried out a high sensitivity airborne geophysical survey of northern French Guiana during the second half of 1996. The aim was to realize a high resolution magnetic and gamma spectrometric mapping for future prospecting, land use and environment management. This paper describes in details the geophysical campaign, the material used, the navigation techniques, the processing of magnetic data, the gamma radiation sources used, the spectrometric calibrations and the geologic interpretation of the results. (J.S.)

  6. Geophysical Field Theory

    International Nuclear Information System (INIS)

    Eloranta, E.

    2003-11-01

    The geophysical field theory includes the basic principles of electromagnetism, continuum mechanics, and potential theory upon which the computational modelling of geophysical phenomena is based on. Vector analysis is the main mathematical tool in the field analyses. Electrostatics, stationary electric current, magnetostatics, and electrodynamics form a central part of electromagnetism in geophysical field theory. Potential theory concerns especially gravity, but also electrostatics and magnetostatics. Solid state mechanics and fluid mechanics are central parts in continuum mechanics. Also the theories of elastic waves and rock mechanics belong to geophysical solid state mechanics. The theories of geohydrology and mass transport form one central field theory in geophysical fluid mechanics. Also heat transfer is included in continuum mechanics. (orig.)

  7. Fundamentals of Geophysics

    Science.gov (United States)

    Lowrie, William

    1997-10-01

    This unique textbook presents a comprehensive overview of the fundamental principles of geophysics. Unlike most geophysics textbooks, it combines both the applied and theoretical aspects to the subject. The author explains complex geophysical concepts using abundant diagrams, a simplified mathematical treatment, and easy-to-follow equations. After placing the Earth in the context of the solar system, he describes each major branch of geophysics: gravitation, seismology, dating, thermal and electrical properties, geomagnetism, paleomagnetism and geodynamics. Each chapter begins with a summary of the basic physical principles, and a brief account of each topic's historical evolution. The book will satisfy the needs of intermediate-level earth science students from a variety of backgrounds, while at the same time preparing geophysics majors for continued study at a higher level.

  8. Radioactivity and geophysics

    International Nuclear Information System (INIS)

    Radvanyi, P.

    1992-01-01

    The paper recalls a few steps of the introduction of radioactivity in geophysics and astrophysics: contribution of radioelements to energy balance of the Earth, age of the Earth based on radioactive disintegration and the discovery of cosmic radiations

  9. Geophysical Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Geophysical Research Facility (GRF) is a 60 ft long × 22 ft wide × 7 ft deep concrete basin at CRREL for fresh or saltwater investigations and can be temperature...

  10. Geophysical borehole logging

    International Nuclear Information System (INIS)

    McCann, D.; Barton, K.J.; Hearn, K.

    1981-08-01

    Most of the available literature on geophysical borehole logging refers to studies carried out in sedimentary rocks. It is only in recent years that any great interest has been shown in geophysical logging in boreholes in metamorphic and igneous rocks following the development of research programmes associated with geothermal energy and nuclear waste disposal. This report is concerned with the programme of geophysical logging carried out on the three deep boreholes at Altnabreac, Caithness, to examine the effectiveness of these methods in crystalline rock. Of particular importance is the assessment of the performance of the various geophysical sondes run in the boreholes in relation to the rock mass properties. The geophysical data can be used to provide additional in-situ information on the geological, hydrogeological and engineering properties of the rock mass. Fracturing and weathering in the rock mass have a considerable effect on both the design parameters for an engineering structure and the flow of water through the rock mass; hence, the relation between the geophysical properties and the degree of fracturing and weathering is examined in some detail. (author)

  11. Report of the Cerro Chato ultrabasic geophysical studies

    International Nuclear Information System (INIS)

    Cicalese, H.; Mari, C.; Lema, F.; Valverde, C.; Haut, R.

    1987-01-01

    This report refers to the obtained results of geophysical practiced during the year 1985 in the area of the ultrabasic of Cerro Chato, located in the area called Puntas del Malbajar in Durazno province. The aim was rehearsed an answer of an ultrabasic behaviour of the geophysical prospecting methods.They were carried out studies in magnetometry, induced polarization, electromagnetism and resistivity measurements in electric vertical sound. As well conclusions as recommendations express that applied geophysical methods allow to make ultrabasic charts or maps.

  12. Predictive geophysics: geochemical simulations to geophysical targets

    Science.gov (United States)

    Chopping, R. G.; Cleverley, J.

    2017-12-01

    With an increasing focus on deep exploration for covered targets, new methods are required to target mineral systems under cover. Geophysical responses are driven by physical property contrasts; for example, density contrasts provide a gravity signal, acoustic impedance contrasts provide a seismic reflection signal. In turn, the physical properties for basement, crystalline rocks which host the vast majority of mineral systems are determined almost wholly by the mineralogy of the rocks in question. Mineral systems, through the transport of heat and reactive fluids, will serve to modify the physical properties of country rock as they chemically alter the hosting strata. To understand these changes, we have performed 2D reactive transport modelling that simulates the formation of Archean gold deposits of the Yilgarn Craton, Western Australia. From this, we derive a model of mineralogy that we can use to predict the density, magnetic susceptibility and seismic reflection changes associated with ore formation. It is then possible to predict the gravity, magnetic and seismic reflection responses associated with these deposits. Scenario mapping, such as testing the ability to resolve buried ore bodies or the geophysical survey spacing required to resolve the mineral system, can be performed to produce geophysical targets from these geochemical simulations. We find that there is a gravity response of around 9% of the unaltered response for deposits even buried by 1km of cover, and there is a magnetic spike associated with proximal alteration of the ore system. Finally, seismic reflection response is mostly characterised by additional reflections along faults that plumb the alteration system.

  13. Inverse problems of geophysics

    International Nuclear Information System (INIS)

    Yanovskaya, T.B.

    2003-07-01

    This report gives an overview and the mathematical formulation of geophysical inverse problems. General principles of statistical estimation are explained. The maximum likelihood and least square fit methods, the Backus-Gilbert method and general approaches for solving inverse problems are discussed. General formulations of linearized inverse problems, singular value decomposition and properties of pseudo-inverse solutions are given

  14. Application of the geophysical and geochemical methods to the research for uranium

    International Nuclear Information System (INIS)

    Gangloff, A.M.; Collin, C.R.; Grimbert, A.; Sanselme, H.

    1958-01-01

    Since 1954, at the Commissariat a l'energie atomique, geophysics and geochemistry have been added to routine geological surveying and radiometric observations. Geophysical prospecting reveals the tectonic structures linked with French uranium deposits and gives an idea of favorable zones. Geochemistry adds to the geophysical indirect methods further details on the distribution of uranium traces in the soils. This method is direct and specific. Uranium assay in waters and alluvial deposits find its use in preliminary exploration. (author) [fr

  15. Geophysical Anomalies and Earthquake Prediction

    Science.gov (United States)

    Jackson, D. D.

    2008-12-01

    some understanding of their sources and the physical properties of the crust, which also vary from place to place and time to time. Anomalies are not necessarily due to stress or earthquake preparation, and separating the extraneous ones is a problem as daunting as understanding earthquake behavior itself. Fourth, the associations presented between anomalies and earthquakes are generally based on selected data. Validating a proposed association requires complete data on the earthquake record and the geophysical measurements over a large area and time, followed by prospective testing which allows no adjustment of parameters, criteria, etc. The Collaboratory for Study of Earthquake Predictability (CSEP) is dedicated to providing such prospective testing. Any serious proposal for prediction research should deal with the problems above, and anticipate the huge investment in time required to test hypotheses.

  16. Fundamentals of Geophysics

    Science.gov (United States)

    Frohlich, Cliff

    Choosing an intermediate-level geophysics text is always problematic: What should we teach students after they have had introductory courses in geology, math, and physics, but little else? Fundamentals of Geophysics is aimed specifically at these intermediate-level students, and the author's stated approach is to construct a text “using abundant diagrams, a simplified mathematical treatment, and equations in which the student can follow each derivation step-by-step.” Moreover, for Lowrie, the Earth is round, not flat—the “fundamentals of geophysics” here are the essential properties of our Earth the planet, rather than useful techniques for finding oil and minerals. Thus this book is comparable in both level and approach to C. M. R. Fowler's The Solid Earth (Cambridge University Press, 1990).

  17. Geophysical investigations in Jordan

    Science.gov (United States)

    Kovach, R.L.; Andreasen, G.E.; Gettings, M.E.; El-Kaysi, K.

    1990-01-01

    A number of geophysical investigations have been undertaken in the Hashemite Kingdom of Jordan to provide data for understanding the tectonic framework, the pattern of seismicity, earthquake hazards and geothermal resources of the country. Both the historical seismic record and the observed recent seismicity point to the dominance of the Dead Sea Rift as the main locus of seismic activity but significant branching trends and gaps in the seismicity pattern are also seen. A wide variety of focal plane solutions are observed emphasizing the complex pattern of fault activity in the vicinity of the rift zone. Geophysical investigations directed towards the geothermal assessment of the prominent thermal springs of Zerga Ma'in and Zara are not supportive of the presence of a crustal magmatic source. ?? 1990.

  18. Rapid Geophysical Surveyor

    International Nuclear Information System (INIS)

    Roybal, L.G.; Carpenter, G.S.; Josten, N.E.

    1993-01-01

    The Rapid Geophysical Surveyor (RGS) is a system designed to rapidly and economically collect closely-spaced geophysical data used for characterization of US Department of Energy waste sites. Geophysical surveys of waste sites are an important first step in the remediation and closure of these sites; especially older sites where historical records are inaccurate and survey benchmarks have changed because of refinements in coordinate controls and datum changes. Closely-spaced data are required to adequately differentiate pits, trenches, and soil vault rows whose edges may be only a few feet from each other. A prototype vehicle designed to collect magnetic field data was built at the Idaho National Engineering Laboratory (INEL) during the summer of 1992. The RGS was funded by the Buried Waste Integrated Demonstration program. This vehicle was demonstrated at the Subsurface Disposal Area (SDA) within the Radioactive Waste Management Complex at the INEL in September 1992. Magnetic data were collected over two areas in the SDA, with a total survey area of about 1.7 acres. Data were collected at a nominal density of 2 1/2 in. along survey lines spaced 1-ft apart. Over 350,000 data points were collected over a 6 day period corresponding to about 185 worker-days using conventional ground survey techniques

  19. Technical development of seismic imaging prospecting

    International Nuclear Information System (INIS)

    Xu Guilai

    2006-01-01

    Geophysical methods and apparatus for shallow engineering geophysical prospecting and mining related in-roadway geophysical prospecting are important research fields which has been studied for long time, unfortunately, little significant advancement has been made compared with the demand of engineering geology. The seismic imaging method and its corresponding equipment are viewed as the most hopeful choice for 0-50 m depth and are studied in this research systematically. The recording equipment CSA is made and the related in-situ data processing software is also developed. Field application experiment for shallow seismic prospecting has been finished, the results show that the CSA seismic imaging and its application technology are effective and practical for the engineering geophysical prospecting of 0-50 m depth, and can meet the demand of engineering geology investigation. Hence, the geophysical method and equipment, which can meet the demand for 0-50 m depth engineering geology investigation have been formed through this research. (authors)

  20. Geophysical Study of Lithologies Attributes At Isihor Village, Edo ...

    African Journals Online (AJOL)

    These attributes include depth, thickness of lithologies or rock types beneath the sea level or earth's surface. Geophysical prospect of lithologies in this studied area is vital for many economic and environmental reasons for examples a large portion of the world's fossil fuels such as oil, gas and coal are found in stratified ...

  1. Rapid geophysical surveyor

    International Nuclear Information System (INIS)

    Roybal, L.G.; Carpenter, G.S.; Josten, N.E.

    1993-01-01

    The Rapid Geophysical Surveyor (RGS) is a system designed to rapidly and economically collect closely-spaced geophysical data used for characterization of Department of Energy (DOE) waste sites. Geophysical surveys of waste sites are an important first step in the remediation and closure of these sites; especially older sties where historical records are inaccurate and survey benchmarks have changed due to refinements in coordinate controls and datum changes. Closely-spaced data are required to adequately differentiate pits, trenches, and soil vault rows whose edges may be only a few feet from each other. A prototype vehicle designed to collect magnetic field data was built at the Idaho national Engineering Laboratory (INEL) during the summer of 1992. The RGS was one of several projects funded by the Buried Waste Integrated Demonstration (BWID) program. This vehicle was demonstrated at the Subsurface Disposal Area (SDA) within the Radioactive Waste Management Complex (RWMC) on the INEL in September of 1992. Magnetic data were collected over two areas in the SDA, with a total survey area of about 1.7 acres. Data were collected at a nominal density of 2 1/2 inches along survey lines spaced 1 foot apart. Over 350,000 data points were collected over a 6 day period corresponding to about 185 man-days using conventional ground survey techniques. This report documents the design and demonstration of the RGS concept including the presentation of magnetic data collected at the SDA. The surveys were able to show pit and trench boundaries and determine details of their spatial orientation never before achieved

  2. Geophysical considerations of geothermics

    Energy Technology Data Exchange (ETDEWEB)

    Hayakawa, M

    1967-01-01

    The development and utilization of geothermal energy is described from the standpoint of geophysics. The internal temperature of the Earth and the history and composition of magmas are described. Methods of exploration such as gravity, magnetic, thermal and electrical surveys are discussed, as are geochemical and infrared photogrammetric techniques. Examples are provided of how these techniques have been used in Italy and at the Matsukawa geothermal field in Japan. Drilling considerations such as muds, casings and cementing materials are discussed. Solutions are proposed for problems of environmental pollution and plant expansion.

  3. HMF-Geophysics - An Update

    Science.gov (United States)

    Crook, N.; Knight, R.; Robinson, D.

    2007-12-01

    There is growing recognition of the challenges we face, in many parts of the world, in finding and maintaining clean sources of water for human consumption and agricultural use, while balancing the needs of the natural world. Advancements in hydrologic sciences are needed in order to develop an improved understanding of the controls on the quantity, movement, and quality of water, thus enhancing our ability to better protect and manage our water resources. Geophysical methods can play a central role in these investigations. CUAHSI (Consortium of Universities for the Advancement of Hydrologic Sciences) is developing, with the support of the National Science Foundation, a Hydrologic Measurement Facility (HMF), which contains a Geophysics module, referred to as HMF-Geophysics. The Geophysics module will support and advance the use of geophysics for hydrologic applications. Currently in second year of a 3 year pilot study, the main aim of HMF-Geophysics is to develop the infrastructure necessary to provide geophysical techniques and the expertise to apply them correctly for the hydrological community. The current working model consists of a central HMF-Geophysics facility and a number of volunteer nodes. The latter consists of individuals at universities who have volunteered to be part of HMF-Geophysics by using their equipment, and/or software, and expertise, in research partnerships with hydrologists. In response to an inquiry the central facility takes on the evaluation of the potential of geophysics to the area of research/watershed. The central facility can then undertake a feasibility study to determine how/if geophysical methods could be of use, and to evaluate the "value-added" by geophysics to the science. Once it is clear that the geophysics can contribute in a significant way to addressing the science questions the central facility works with the hydrologist to set up the next step. Our assumption is that at this point, the hydrologist (perhaps with a

  4. Geophysical fluid dynamics

    CERN Document Server

    Pedlosky, Joseph

    1982-01-01

    The content of this book is based, largely, on the core curriculum in geophys­ ical fluid dynamics which land my colleagues in the Department of Geophysical Sciences at The University of Chicago have taught for the past decade. Our purpose in developing a core curriculum was to provide to advanced undergraduates and entering graduate students a coherent and systematic introduction to the theory of geophysical fluid dynamics. The curriculum and the outline of this book were devised to form a sequence of courses of roughly one and a half academic years (five academic quarters) in length. The goal of the sequence is to help the student rapidly advance to the point where independent study and research are practical expectations. It quickly became apparent that several topics (e. g. , some aspects of potential theory) usually thought of as forming the foundations of a fluid-dynamics curriculum were merely classical rather than essential and could be, however sadly, dispensed with for our purposes. At the same tim...

  5. Geophysical fluid dynamics

    CERN Document Server

    Pedlosky, Joseph

    1979-01-01

    The content of this book is based, largely, on the core curriculum in geophys­ ical fluid dynamics which I and my colleagues in the Department of Geophysical Sciences at The University of Chicago have taught for the past decade. Our purpose in developing a core curriculum was to provide to advanced undergraduates and entering graduate students a coherent and systematic introduction to the theory of geophysical fluid dynamics. The curriculum and the outline of this book were devised to form a sequence of courses of roughly one and a half academic years (five academic quarters) in length. The goal of the sequence is to help the student rapidly advance to the point where independent study and research are practical expectations. It quickly became apparent that several topics (e. g. , some aspects of potential theory) usually thought of as forming the foundations of a fluid-dynamics curriculum were merely classical rather than essential and could be, however sadly, dispensed with for our purposes. At the same ti...

  6. Developments in geophysical exploration methods

    CERN Document Server

    1982-01-01

    One of the themes in current geophysical development is the bringing together of the results of observations made on the surface and those made in the subsurface. Several benefits result from this association. The detailed geological knowledge obtained in the subsurface can be extrapolated for short distances with more confidence when the geologi­ cal detail has been related to well-integrated subsurface and surface geophysical data. This is of value when assessing the characteristics of a partially developed petroleum reservoir. Interpretation of geophysical data is generally improved by the experience of seeing the surface and subsurface geophysical expression of a known geological configuration. On the theoretical side, the understanding of the geophysical processes themselves is furthered by the study of the phenomena in depth. As an example, the study of the progress of seismic wave trains downwards and upwards within the earth has proved most instructive. This set of original papers deals with some of ...

  7. Serious games for Geophysics

    Science.gov (United States)

    Lombardo, Valerio; Rubbia, Giuliana

    2015-04-01

    Childhood stage is indispensable in the education of human beings and especially critical to arise scientific interest in children. We discuss the participatory design of a didactic videogame, i.e. a "serious" game to teach geophysics and Earth sciences to high and low-school students. Geophysics is the application of the laws and techniques of physics to uncover knowledge about the earth's dynamic processes and subsurface structure. It explores phenomena such as earthquakes, volcanoes, tsunamis to improve our understanding of the earth's physical processes and our ability to predict reoccurrences. Effective mitigation of risks from catastrophic geologic hazards requires knowledge and understanding of local geology and geologic processes. Scientific outreach can be defined as discourse activity, whose main objective is to communicate some knowledge previously produced in scientific contexts to a non-expert massive audience. One of the difficulties science educators need to overcome is to explain specific concepts from a given discipline in a language simple and understandable for their audience. Digital games today play a large role in young people's lives. Games are directly connected to the life of today's adolescents. Therefore, digital games should be included and broached as a subject in the classroom. The ardor and enthusiasm that digital games evoke in teenagers has indeed brought many researchers, school leaders and teachers to the question "how video games" can be used to engage young people and support their learning inside the classroom. Additionally, studies have shown that digital games can enhance various skills such as the ability to concentrate, stamina, tactical aptness, anticipatory thinking, orientation in virtual spaces, and deductive reasoning. Thus, videogames become an effective didactic mechanism and should have a place in the classroom. The project aims to explore the potentials of entertainment technologies in educational processes

  8. Sustainable Geophysical Observatory Networks

    Science.gov (United States)

    Willemann, R. J.; Lerner-Lam, A.; Aster, R.; Beck, S.; Ekstrom, G.; Nyblade, A.; Sandvol, E.

    2007-05-01

    Geophysical networks are defined not only by their technical specifications, but also by the characteristics and needs of the communities that use them. Growing populations supported by more elaborate urban infrastructure with its fine-grained socio-economic interdependencies and relying on global and regional connections for sustainability make new demands for natural hazard risk management. Taking advantage of advances in the underlying science to provide society with accurate risk assessments often requires higher fidelity measurements, entirely new types of observations, and an evolutionary sense of data products and information management. Engineering a high-tech system to address stakeholder needs is difficult, and designing for unpredictable developments requires an emphasis on adaptation. Thus, it is essential to promote formation of organizations or communities that can support evolution of a technological system, imagine new uses, and develop the societal relationships that sustain operations and provide capital for improvement. The owners must have a deep understanding of why the system works in particular ways and how to manage data products for the benefits of stakeholders. To be effective, community promotion must be sustained over a longer period of time than required to build a network and should be aimed at integrating the community into worldwide partnerships. Practices that can promote community formation if they are sustained include repeated training and scientific exchange workshops, extended visits by experts and staff at all levels to and from countries where networks are installed, mechanisms that make timely upgrades realistically possible, and routine exchange and wide dissemination of data in all directions. The combination of international research and educational collaborations, supported by open data exchange, with regionalized and specific assessments of local stakeholder needs and concerns, provides a sustainable model for

  9. Development of nuclear physics and its connections to borehole geophysics

    International Nuclear Information System (INIS)

    Loetzsch, W.

    1990-01-01

    Starting from the discovery of radioactivity, the development of nuclear physics and its close connections to geoscience, especially to borehole geophysics, are outlined. The discovery of a nuclear physical phenomenon is always followed by an examination for its applications in nuclear geophysics, which since about 1960 has developed into a special discipline of applied geophysics. As an example for this development in the GDR the application of neutron capture γ-ray spectroscopy for iron ore exploration is described. A table listing important present-day nuclear well logging techniques with detectable elements and their detection limits is presented. Examples of measurements with some of these logging techniques reveal their particularities and show their element-specific character and the nuclear physical mechanisms involved. Finally the state of art of nuclear well logging and prospects in this field are outlined. (author)

  10. ANNALS OF GEOPHYSICS: AD MAJORA

    Directory of Open Access Journals (Sweden)

    Fabio Florindo

    2014-03-01

    Full Text Available Annals of Geophysics is a bimonthly international journal, which publishes scientific papers in the field of geophysics sensu lato. It derives from Annali di Geofisica, which commenced publication in January 1948 as a quarterly periodical devoted to general geophysics, seismology, earth magnetism, and atmospheric studies. The journal was published regularly for a quarter of a century until 1982 when it merged with the French journal Annales de Géophysique to become Annales Geophysicae under the aegis of the European Geophysical Society. In 1981, this journal ceased publication of the section on solid earth geophysics, ending the legacy of Annali di Geofisica. In 1993, the Istituto Nazionale di Geofisica (ING, founder of the journal, decided to resume publication of its own journal under the same name, Annali di Geofisica. To ensure continuity, the first volume of the new series was assigned the volume number XXXVI (following the last issue published in 1982. In 2002, with volume XLV, the name of the journal was translated into English to become Annals of Geophysics and in consequence the journal impact factor counter was restarted. Starting in 2010, in order to improve its status and better serve the science community, Annals of Geophysics has instituted a number of editorial changes including full electronic open access, freely accessible online, the possibility to comment on and discuss papers online, and a board of editors representing Asia and the Americas as well as Europe. [...

  11. Mineralization and geophysical exploration by IP/RS and ground magnetic survey in MA-I and surrounding area, Maherabad porphyry Cu-Au prospect area, east of Iran

    OpenAIRE

    Azadeh Malekzadeh Shafaroudi; Mohammad Reza Hidarian Shahri; Mohammad Hassan Karimpour

    2009-01-01

    Maherabad prospect area, which is studied in detail, is the first porphyry Cu-Au mineralization in the east of Iran. Based on relation of mineralization with subvolcanic intrusive bodies mostly monzonitic with porphyry texture, extent and types of alteration including potassic, sericitic- potassic, quartz- sericite- carbonate- pyrite, quartz- carbonate- pyrite, silicification- propylitic, propylitic, stockwork mineralization, assemblages hypogene mineralization including pyrite, chalcopyrite,...

  12. An Integral, Multidisciplinary and Global Geophysical Field Experience for Undergraduates

    Science.gov (United States)

    Vázquez, O.; Carrillo, D. J.; Pérez-Campos, X.

    2007-05-01

    The udergraduate program of Geophysical Engineering at the School of Engineering, of the Univesidad Nacional Autónoma de México (UNAM), went through an update process that concluded in 2006. As part of the program, the student takes three geophysical prospecting courses (gravity and magnetics, electric, electromagnetics, and seismic methods). The older program required a three-week field experience for each course in order to gradute. The new program considers only one extended field experience. This work stresses the importance of international academic exchange, where undergraduate students could participate, such as the Summer of Applied Geophysical Experience (SAGE), and interaction with research programs, such as the MesoAmerican Subduction Experiment (MASE). Also, we propose a scheeme for this activity based on those examples; both of them have in common real geophysical problems, from which students could benefit. Our proposal covers academic and logistic aspects to be taken into account, enhancing the relevance of interaction between other academic institutions, industry, and UNAM, in order to obtain a broader view of geophysics.

  13. A ''model'' geophysics program

    International Nuclear Information System (INIS)

    Nyquist, J.E.

    1994-01-01

    In 1993, I tested a radio-controlled airplane designed by Jim Walker of Brigham Young University for low-elevation aerial photography. Model-air photography retains most of the advantages of standard aerial photography --- the photographs can be used to detect lineaments, to map roads and buildings, and to construct stereo pairs to measure topography --- and it is far less expensive. Proven applications on the Oak Ridge Reservation include: updating older aerial records to document new construction; using repeated overflights of the same area to capture seasonal changes in vegetation and the effects of major storms; and detecting waste trench boundaries from the color and character of the overlying grass. Aerial photography is only one of many possible applications of radio-controlled aircraft. Currently, I am funded by the Department of Energy's Office of Technology Development to review the state of the art in microavionics, both military and civilian, to determine ways this emerging technology can be used for environmental site characterization. Being particularly interested in geophysical applications, I am also collaborating with electrical engineers at Oak Ridge National Laboratory to design a model plane that will carry a 3-component flux-gate magnetometer and a global positioning system, which I hope to test in the spring of 1994

  14. GEOPHYSICAL PROPERTIES OF SOILS

    KAUST Repository

    Santamarina, Carlos

    2016-12-01

    Low energy perturbations used in geophysical methods provide insightful information about constant-fabric soil properties and their spatial variability. There are causal links between soil type, index properties, elastic wave velocity, electromagnetic wave parameters and thermal properties. Soil type relates to the stress-dependent S-wave velocity, thermal and electrical conductivity and permittivity. The small strain stiffness reflects the state of stress, the extent of diagenetic cementation and/or freezing. Pore fluid chemistry, fluid phase and changes in either fluid chemistry or phase manifest through electromagnetic measurements. The volumetric water content measured with electromagnetic techniques is the best predictor of porosity if the water saturation is 100%. Changes in water saturation alter the P-wave velocity when Srà100%, the S-wave velocity at intermediate saturations, and the thermal conductivity when the saturation is low Srà0%. Finally, tabulated values suffice to estimate heat capacity and latent heat for engineering design, however thermal conductivity requires measurements under proper field conditions.

  15. Karoo airborne geophysical survey

    International Nuclear Information System (INIS)

    Cole, D.J.; Stettler, E.H.

    1984-01-01

    Thirty four uranium anomalies were selected for ground follow-up from the analogue spectrometer records of Block 4 of the Karoo Airborne Geophysical Survey. The anomalies were plotted on 1:50 000 scale topographic maps and to 1:250 000 scale maps which are included in this report. The anomaly co-ordinates are tabulated together with the farms on which they occur. Results of the ground follow-up of the aerial anomalies are described. Twenty two anomalies are related to uranium mineralisation of which seventeen occur over baked mudstone adjacent to a dolerite intrusion. Five are located over fluvial channel sandstone of the Beaufort Group and subsurface mineralised sandstone may be present. The other twelve anomalies are spurious. Of the anomalies located over baked mudstone, fifteen emanate from ferruginous mudstone of the Whitehill Formation west of longitude 21 degrees 15 minutes. One of the two remaining anomalies over baked mudstone occurs over the Prince Albert Formation and the other anomaly is over baked mudstone and calcareous nodules of the Beaufort Group. The general low uranium values (less than 355 ppm eU3O8) render the occurrences uneconomic

  16. Jesuit Geophysical Observatories

    Science.gov (United States)

    Udias, Agustin; Stauder, William

    Jesuits have had ah interest in observing and explaining geophysical phenomena since this religious order, the Society of Jesus, was founded by Ignatius of Loyola in 1540. Three principal factors contributed to this interest: their educational work in colleges and universities, their missionary endeavors to remote lands where they observed interesting and often as yet undocumented natural phenomena, and a network of communication that brought research of other Jesuits readily to their awareness.One of the first and most important Jesuit colleges was the Roman College (today the Gregorian University) founded in 1551 in Rome, which served as a model for many other universities throughout the world. By 1572, Christopher Clavius (1537-1612), professor of mathematics at the Roman College, had already initiated an important tradition of Jesuit research by emphasizing applied mathematics and insisting on the need of serious study of mathematics in the program of studies in the humanities. In 1547 he directed a publication of Euclid's work with commentaries, and published several treatises on mathematics, including Arithmetica Practica [1585], Gnomonicae [1581], and Geometrica Practica [1606]. Clavius was also a Copernican and supported his friend Galileo when he announced the discovery of the satellites of Jupiter.

  17. A review of nuclear geophysics

    International Nuclear Information System (INIS)

    Clayton, C.G.; Schweitzer, J.S.

    1992-01-01

    This paper summarizes the development of nuclear geophysics in scientific and technological content and in range from its beginnings early in this century to the present day. We note that the early work in nuclear geophysics was originally referred to under the umbrella of open-quotes isotope applicationsclose quotes and the origin of the term open-quotes nuclear geophysicsclose quotes (which is seen to clarify and to focus work in this area) is exposed in this paper. The current expansion of nuclear geophysics front its original concern with oil well logging is an important trend because much of the underlying science, technology, and instrumentation is common ground. A review of nuclear geophysics would be a barren document without reference to long-term and, in some cases, short-term commercial and economic as well as to technological considerations, since these factors are the principal motivation for further development

  18. Integrated prospecting model in Jinguanchong uranium deposit

    International Nuclear Information System (INIS)

    Xie Yongjian

    2006-01-01

    Jinguanchong uranium deposit is large in scale, which brings difficulties to prospecting and researches. Based on conditions of mineral-formation, geophysics and geochemistry, this paper summarizes a few geophysical and geochemical prospecting methods applied to this deposit. The principles, characteristics, application condition and exploration phases of these prospecting methods are discussed and some prospecting examples are also given in the prospecting for Jinguanchong uranium deposit. Based on summarizing the practice and effects of different methods such as gamma and electromagnetic method, soil emanation prospecting, track etch technique and polonium method used in uranium prospecting, the author finally puts forward a primary uranium prospecting model for the further prospecting in Jinguanchong uranium deposit through combining the author's experience with practice. (authors)

  19. Sustainable urban development and geophysics

    Science.gov (United States)

    Liu, Lanbo; Chan, L. S.

    2007-09-01

    The new millennium has seen a fresh wave of world economic development especially in the Asian-Pacific region. This has contributed to further rapid urban expansion, creating shortages of energy and resources, degradation of the environment, and changes to climatic patterns. Large-scale, new urbanization is mostly seen in developing countries but urban sprawl is also a major social problem for developed nations. Urbanization has been accelerating at a tremendous rate. According to data collected by the United Nations [1], 50 years ago less than 30% of the world population lived in cities. Now, more than 50% are living in urban settings which occupy only about 1% of the Earth's surface. During the period from 1950 to 1995, the number of cities with a population higher than one million increased from 83 to 325. By 2025 it is estimated that more than 60% of 8.3 billion people (the projected world population [1]) will be city dwellers. Urbanization and urban sprawl can affect our living quality both positively and negatively. In recent years geophysics has found significant and new applications in highly urbanized settings. Such applications are conducive to the understanding of the changes and impacts on the physical environment and play a role in developing sustainable urban infrastructure systems. We would like to refer to this field of study as 'urban geophysics'. Urban geophysics is not simply the application of geophysical exploration in the cities. Urbanization has brought about major changes to the geophysical fields of cities, including those associated with electricity, magnetism, electromagnetism and heat. An example is the increased use of electromagnetic waves in wireless communication, transportation, office automation, and computer equipment. How such an increased intensity of electromagnetic radiation affects the behaviour of charged particles in the atmosphere, the equilibrium of ecological systems, or human health, are new research frontiers to be

  20. Geophysical survey at archaeological sites in northeastern Syria

    OpenAIRE

    Mateiciucová, Inna; Milo, Peter; Tencer, Tomáš; Vlach, Marek

    2011-01-01

    From August 25 to September 4, 2008, geophysical surveys were carried out at the Neolithic, Chalcolithic, Bronze and Iron Age tell- and non-tell settlements in the Khabur region in Northeastern Syria (Syrian-Polish-Czech expedition) (Fig. 1). Four sites were prospected: Tell Arbid Abyad, Tell Arbid (West-hill), Khirbet Shane, Khirbet Bezi. The Scintrex Navmag SM-5 – Caesium Magnetometer was used for the measurement of the vertical gradient of the local magnetic field. The measurement resoluti...

  1. Geophysical exploration of the Kalahari Suture Zone

    Science.gov (United States)

    Brett, J. S.; Mason, R.; Smith, P. H.

    2000-04-01

    Fancamp Resources Limited of Montreal, Canada, commenced exploration of the Kalahari Suture Zone in southwest Botswana in 1996, following the interpretation of airborne magnetic surveys covering 400 km of strike along the Kalahari Suture Zone. Initial focus was on mafic/ultramafic intrusions associated with the Tshane Complex as potential targets for CuNiPGM mineralization, but these targets are now considered to be too deeply buried (> 700 m) to be of economic significance at this time. The exploration focus has been redirected to several prospective large coincident magnetic/gravity anomalies. These are considered prospective targets for Olympic Dam-type CuCo mineralisation associated with alkaline intrusive complexes, and/or NiCuCoPGM mineralisation associated with basic intrusive complexes. The two most important and prospective targets are the so-called 'Great Red Spot' and Tsetseng Complex. Additional ground geophysical surveys and deep drilling are planned for the next phase of exploration. These large targets are of high priority and represent tremendous potential for mineral development in the sparsely populated area of western Botswana.

  2. Mineralization and geophysical exploration by IP/RS and ground magnetic survey in MA-I and surrounding area, Maherabad porphyry Cu-Au prospect area, east of Iran

    Directory of Open Access Journals (Sweden)

    Azadeh Malekzadeh Shafaroudi

    2009-10-01

    Full Text Available Maherabad prospect area, which is studied in detail, is the first porphyry Cu-Au mineralization in the east of Iran. Based on relation of mineralization with subvolcanic intrusive bodies mostly monzonitic with porphyry texture, extent and types of alteration including potassic, sericitic- potassic, quartz- sericite- carbonate- pyrite, quartz- carbonate- pyrite, silicification- propylitic, propylitic, stockwork mineralization, assemblages hypogene mineralization including pyrite, chalcopyrite, bornite and magnetite and high anomalies of Cu and Au, Mineralization is porphyry Cu-Au-type. MA-I area, which is covered by regolith from its surrounding is the most important section of mineralization in the region because of intensive of quartz-sericite-carbonate-pyrite alteration and very high dense quartz-sulfide veinlets. IP/RS and ground magnetic surveys were conducted in the MA-I prospect area and its surrounding plain. Drilling on the IP suede section anomaly resulted to the recognition of sulfide mineralization in on extensive area under the regolith. Surface and underground detailed studies of geology, alteration, mineralization and geochemistry confirm the extension of covered mineralization to the south and west of the area. Based on the ground magnetic anomaly, the center of mineralization system, potassic zone, to the southwest of the area was recognized. Quartz0sericite-carbonate-pyrite alteration zone, which is located around the potassic zone, has very low magnetic response. IP/RS and ground magnetic surveys in a broader area than before are strongly recommended.

  3. Basic elements of nuclear geophysics

    International Nuclear Information System (INIS)

    Nordemann, D.J.R.; Pereira, E.B.

    1984-01-01

    Nuclear Geophysics applies the nuclear radiation detection methodology to the geosciences, specially to study the dynamical processes of the lithosphere, the hydrosphere and the atmosphere as well as some aspects of planetology and astrophysics. Here the main methods are described: alpha-ray and gamma-ray spectrometry, the interaction of alpha and gamma radiation with matter and the detectors used (grid chambers, surface barrier silicon detector for alpha radiation; and sodium iodide thallium activated phosphors, hyperpure and lithium drifted germanium semiconductor detectors for gamma radiation). The principal applications of Nuclear Geophysics are given as examples to ilustrate the use of the methods described. (AUthor) [pt

  4. Nuclear geophysics in prospecting for ore and coal deposits; Geophysique nucleaire et prospection des gisements de charbon et autres mineraux; Yadernaya geofizika pri razvedke rudnykh i ugol'nykh mestorozhdenij; Geofisica nuclear u prospeccion de yacimientos de carbon y otros minerales

    Energy Technology Data Exchange (ETDEWEB)

    Bulashevich, Yu P; Voskobojnikov, G M; Muzyukin, L V

    1962-01-15

    eliminated by inverse probes. These neutron methods, and similarly neutron-activation logging, have also been applied at deposits of copper, manganese, aluminium and various other ores. Continuous-activation logging is appropriate where the occurring radioisotope has a suitable half-life. It is then possible to determine the optimum logging conditions (rate, length of probe, etc.) theoretically. Neutron recording during photo-neutron logging makes it possible to distinguish ore bodies containing beryllium, and to estimate the beryllium content from 0.001% upwards. Experience is confirming the effectiveness and economic expediency of nuclear geophysical methods in prospecting for ore and coal deposits. (author) [French] Les methodes de geophysique nucleaire s'emploient surtout pour l'exploration des gisements de charbon et autres mineraux par radiosondage. Dans le cas des gisements de charbon et d'autres mineraux de l'Union sovietique, les types suivants de prospection par sondage radioactif ou nucleaire (SR) trouvent une large application pratique : determination de la densite ou sondage gamma-gamma (S.G.G.) avec le {sup 60}cO comme source de rayonnements, sondage gamma-gamma selectif (S.G.G.S.) avec une source de rayonnements mous du type {sup 75}Se, sondage neutronsneutrons (S.N.N.) et sondage gamma-neutrons (S.G.N.) avec une source de neutrons Po-Be, sondage par activation - surtout par activation continue - avec emploi de la meme source, et sondage photo-neutronique avec l'emetteur gamma {sup 124}Sb. L'objet essentiel du S.R., dans les gisements de minerais, est de reconnaitre les differentes couches de minerais que l'on rencontre dans le trou de sonde, ce qui reduit le temps d'analyse, ainsi que d'evaluer approximativement, sur place, la teneur en elements utiles. Dans les gisements de charbon, le S.R. permet de determiner la profondeur, l'importance et la structure des veines. Les methodes dites S.G.G. et S.G.G.S. sont fondees sur l'enregistrement du rayonnement gamma

  5. Marine geophysical data management and presentation system

    Digital Repository Service at National Institute of Oceanography (India)

    Kunte, P.D.

    ) of the National Institute of Oceanography, Goa, India. GPDMPS is designed for the computerized storage retrieval and presentation of marine geophysical data and information. For the systematic management of geophysical data and information, GPDMPS is subdivided...

  6. Borehole geophysics for delineating the geological structure in the Sakonishi prospect, the Hida area, Japan; Hida chiiki Sako nishi chiku ni okeru boring ko riyo butsuri tansa ni yoru chishitsu kozo kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Katayama, H.; Hishida, H.; Yoshioka, K. [Metal Mining Agency of Japan, Tokyo (Japan)

    1997-05-27

    In order to discuss effectiveness of physical exploration in the Sakonishi prospect in the Hida area, physical exploration was carried out by utilizing bored wells. This area contains the Kamioka mine, one of the major base metal mines in Japan, where electrical exploration has been attempted several times in the past. No effective results have been obtained, however, because specific resistance contrast between mine beds and base rocks is too small, and the topography is too steep making site workability inferior. As part of the investigations on geological structures over wide areas, electrical logging (specific resistance and natural potential) was performed in fiscal 1995 and 1996 by utilizing the boreholes. Induced polarization logging was also conducted on the same boreholes. A traverse line on the ground with a length of 600 m and boreholes were used to execute specific resistance tomography. Clear extraction was possible on a fault structure which is thought related with limestone distribution and mine bed creation. However, it was not possible to identify upward continuity of zinc ores expected in the exploration. Because of not large a specific resistance contrast between zinc ores and base rocks, it is difficult to find mine bed locations only from the information on the specific resistance. 5 refs., 5 figs., 1 tab.

  7. Conceptual Design of Geophysical Microsatellite

    Directory of Open Access Journals (Sweden)

    Matviyenko, S.A.

    2014-10-01

    Full Text Available The article covers the issue of Earth gravitational field (EGF parameters measurement from space. The radiophysical method of measurement of gravitational frequency shift of electromagnetic radiation using existent GNSS and its two variants are developed by the author. The designlayout drawing of geophysical microsatellite, which implements the radiophysical method of EGF measurement and provides Earth plasmasphere and magnetosphere monitoring, is offered.

  8. BROADBAND DIGITAL GEOPHYSICAL TELEMETRY SYSTEM.

    Science.gov (United States)

    Seeley, Robert L.; Daniels, Jeffrey J.

    1984-01-01

    A system has been developed to simultaneously sample and transmit digital data from five remote geophysical data receiver stations to a control station that processes, displays, and stores the data. A microprocessor in each remote station receives commands from the control station over a single telemetry channel.

  9. Geophysical Institute. Biennial report, 1993-1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-01-01

    The 1993-1994 Geophysical Institute Biennial Report was published in November 1995 by the Geophysical Institute of the University of Alaska Fairbanks. It contains an overview of the Geophysical Institute, the Director`s Note, and research presentations concerning the following subjects: Scientific Predictions, Space Physics, Atmospheric Sciences, Snow, Ice and Permafrost, Tectonics and Sedimentation, Seismology, Volcanology, Remote Sensing, and other projects.

  10. A New Social Contract for Geophysics

    Science.gov (United States)

    Malone, T. F.

    2002-12-01

    The Golden Age for geophysical research that followed the IGY set the stage for a new era of interaction among science, technology, and society. World population and the average economic productivity of individuals have both continued to grow exponentially during the past 50 years with the result that by the 1980s the demands of the human economy on the finite renewable resources of planet Earth were approximately equal to the natural regenerative capacities of planetary ecosystems. These demands are now "overshooting" those regenerative powers by about 20 per cent (1). The result could be a collapse in the life-supporting capacity of global ecosystems during coming decades, with tragic implications for civilized society. Novel modes of collaboration among all disciplines and all sectors of society are urgently needed to transform a potential catastrophe into the attractive vision that is now within reach as a result of rapidly expanding human knowledge, emerging technologies for sharing that knowledge (2), and the set of ethical principles for sustainable development contained in the Earth Charter (3). This prospect challenges geophysicists and scholars in all disciplines to forge a new and broadly based contract with society (4). 1. Wackernagel M. et al. 2002. "Tracking the ecological overshoot of the human economy." Proc. Natl. Acad. Sci. USA, Vol. 99, Issue 14, 9266-9271, July 9. 2. Malone T. and Yohe G. 2002. "Knowledge partnerships for a sustainable, equitable, and stable society." J. of Knowledge Management, Vol. 6, No. 4, October (in press). 3. www.earthcharter.org 4. Malone T. 1997. "Building on the legacies of the Intenational Geophysical Year." Transactions, AGU, Vol.78, No. 15, pp. 185-191.

  11. Geophysical interpretation using integral equations

    CERN Document Server

    Eskola, L

    1992-01-01

    Along with the general development of numerical methods in pure and applied to apply integral equations to geophysical modelling has sciences, the ability improved considerably within the last thirty years or so. This is due to the successful derivation of integral equations that are applicable to the modelling of complex structures, and efficient numerical algorithms for their solution. A significant stimulus for this development has been the advent of fast digital computers. The purpose of this book is to give an idea of the principles by which boundary-value problems describing geophysical models can be converted into integral equations. The end results are the integral formulas and integral equations that form the theoretical framework for practical applications. The details of mathematical analysis have been kept to a minimum. Numerical algorithms are discussed only in connection with some illustrative examples involving well-documented numerical modelling results. The reader is assu­ med to have a back...

  12. Geophysical and solar activity indices

    Science.gov (United States)

    Bossy, L.; Lemaire, J.

    1984-04-01

    A large number of geophysicists try to correlate their observations with one or even a series of different geophysical or solar activity indices. Yet the right choice of the most appropriate index with which to correlate depends mainly on our understanding of the physical cause-effect relationship between the new set of observations and the index chosen. This best choice will therefore depend on our good understanding of the methods of measurement and derivation of the adopted index in such correlative studies. It relies also on our awareness of the range of applicability of the indices presently available as well as on our understanding of their limitations. It was to achieve these goals that a series of general lectures on geophysical and solar activity indices was organized by L. Bossy and J. Lemaire (Institut d'Aeronomie Spatiale de Belgique (IASB), Brussels), March 26-29, 1984 at Han-sur-Lesse, Belgium.

  13. Mathematics applied to nuclear geophysics

    International Nuclear Information System (INIS)

    Pereira, E.B.; Nordemann, D.J.R.

    1987-01-01

    One of the powerful auxiliary to nuclear geophysics is the obtention and interpretation of the alpha and gamma radiation spectra. This work discuss, qualitative and quantitative, the lost information problem, motivated by the noise in the process of information codification. The decodification process must be suppield by the appropriate mathematical model on the measure system to recovery the information from nuclear source. (C.D.G.) [pt

  14. SAGE (Summer of Applied Geophysical Experience): Learning Geophysics by Doing Geophysics

    Science.gov (United States)

    Jiracek, G. R.; Baldridge, W. S.; Biehler, S.; Braile, L. W.; Ferguson, J. F.; Gilpin, B. E.; Pellerin, L.

    2005-12-01

    SAGE, a field-based educational program in applied geophysical methods has been an REU site for 16 years and completed its 23rd year of operation in July 2005. SAGE teaches the major geophysical exploration methods (including seismics, gravity, magnetics, and electromagnetics) and applies them to the solution of specific local and regional geologic problems. These include delineating buried hazardous material; mapping archaeological sites; and studying the structure, tectonics, and water resources of the Rio Grande rift in New Mexico. Nearly 600 graduates, undergraduates, and professionals have attended SAGE since 1983. Since 1990 REU students have numbered 219 coming from dozens of different campuses. There have been 124 underrepresented REU students including 100 women, 14 Hispanics, 7 Native Americans, and 3 African Americans. Tracking of former REU students has revealed that 81% have gone on to graduate school. Keys to the success of SAGE are hands-on immersion in geophysics for one month and a partnership between academia, industry, and a federal laboratory. Successful approaches at SAGE include: 1) application of the latest equipment by all students; 2) continued updating of equipment, computers, and software by organizing universities and industry affiliates; 3) close ties with industry who provide supplemental instruction, furnish new equipment and software, and alert students to the current industry trends and job opportunities; 4) two-team, student data analysis structure that simultaneously addresses specific geophysical techniques and their integration; and 5) oral and written reports patterned after professional meetings and journals. An eight member, 'blue ribbon' advisory panel from academia, industry, and the federal government has been set up to maintain the vitality of SAGE by addressing such issues as funding, new faculty, organization, and vision. SAGE is open to students from any university (or organization) with backgrounds including

  15. Synthesis of the works of geophysical (electrical soundings) carried out in the region of the anomalies of Yerba Sola (Cerro Largo) Uruguay

    International Nuclear Information System (INIS)

    Perrin, J.

    1983-01-01

    In this report has been studied geographical localization, geology, geophysics prospection, equipment and methods used and their results in Yerba Sola anomalies Province Cerro Largo and Fraile Muerto formation

  16. The Monte Carlo method in mining nuclear geophysics: Pt. 1

    International Nuclear Information System (INIS)

    Burmistenko, Yu.N.; Lukhminsky, B.E.

    1990-01-01

    Prospects for using a new generation of neutron generators in mining geophysics are discussed. For their evaluation we use Monte Carlo computational methods with a special package of FORTRAN programs code-named MOK. Among the methods of pulsed neutron logging we discuss the method of time-dependent slowing down for the measurement of resonance neutron absorbers (mercury, tungsten, silver, gold, gadolinium, etc.) and time dependent spectral analysis of capture γ-rays (mercury). Among the neutron activation methods, we discuss the two source methods ( 252 Cf + neutron generator) and the method of spectral activation ratio for bauxites ( 27 Al/ 27 Mg or 27 Al/ 24m Na). (author)

  17. Determination of the Geothermal Potential by Geophysical Investigations in the Karbinci-Tarinci Area, in the Vicinity of Shtip

    International Nuclear Information System (INIS)

    Petrov, Goshe; Panovska, Sanja; Delipetrov, Marjan; Dimov, Gjorgji; Jovanovski, Vlatko

    2005-01-01

    Geophysical methods used in the determination of geothermal potential by geophysical investigations in the Karbinci-Tarinci area included as follows: detailed reflective seismic scanning, geomagnetic profiling, geo electric probe and electromagnetic VLF prospecting. The site investigated consists of rocks of Precambrian, Mesozoic (Jurassic), Tertiary (Paleogene Neogene) and Quaternary age. From earlier investigations carried out in the wider vicinity and from investigations carried out by the present authors, one can expect occurrence geothermal water in the area. (Author)

  18. Radiation Geophysics - Putting theory into practice

    International Nuclear Information System (INIS)

    2014-01-01

    Gamma spectroscopy (SGA) is used in geo-physics to get information on the spatial distribution of K, U and Th. SGA is used on board of aircraft for geological survey, prospecting and contamination detection. On a typical SGA spectrum we get peaks corresponding to Bi 214 (609, 1120 and 1760 keV); Tl 208 (908 and 2615 keV) and K 40 (1460 keV). SGA gives information only on the top layer of the soil, the interpretation of the data requires information on the nature of the soil and on the relationship between surface elements and the underneath rock layers. Unlike a camera lens, a gamma-ray spectrometer does not have a fixed field of view: a highly radioactive point source may be detected even when it is outside the field of view. The gamma flux decreases exponentially with distance from the source. SGA can be combined with magnetic or electromagnetic measurements to get more accurate results. (A.C.)

  19. Geophysical and geochemical regional evaluation and geophysical model for uranium exploration in the western part of Yanliao region

    International Nuclear Information System (INIS)

    Liu Tengyao; Cui Huanmin; Chen Guoliang; Zhai Yugui

    1992-01-01

    The western part of Yanliao region is an important uranium metallogenic region. This paper summarizes the regional geophysical model for uranium exploration composed of prediction model for favourable area of mineralization and evaluation model for anomalies on the basis of aeromagnetic and aeroradiometric data interpretation and analysis of the data from carborane and ground gamma spectrometric survey, high accurate magnetic survey, VLF survey and α-collected film survey in mult-displiary research work. The prospective prediction for uranium metallogenesis in this region was also conducted

  20. Evaluation of geophysical borehole studies

    International Nuclear Information System (INIS)

    Brotzen, O.; Duran, O.; Magnusson, K.Aa.

    Four studies concerning geophysical investigations and TV inspection in boreholes in connection with KBS studies at Finnsjoe, Karlshamn, Kraakemaala and Stripa and PRAV's studies at Studsvik have been evaluated. This has led to proposals concerning the choice of instruments and methods for future studies and a review of future work required. The evaluation has shown that the following borehole measurements are of primary interest in the continued work: Determinations of temperature and resistivity of the borehole liquid, resistance and resistivity measurements, SP, Sonic, Caliper and VLF. TV inspection, IP and gamma-gamma should also be included in the arsenal of available test methods.(author)

  1. Stochastic resonance for exploration geophysics

    OpenAIRE

    Omerbashich, Mensur

    2008-01-01

    Stochastic resonance (SR) is a phenomenon in which signal to noise (SN) ratio gets improved by noise addition rather than removal as envisaged classically. SR was first claimed in climatology a few decades ago and then in other disciplines as well. The same as it is observed in natural systems, SR is used also for allowable SN enhancements at will. Here I report a proof of principle that SR can be useful in exploration geophysics. For this I perform high frequency GaussVanicek variance spectr...

  2. Institute of Geophysics, Planetary Physics, and Signatures

    Data.gov (United States)

    Federal Laboratory Consortium — The Institute of Geophysics, Planetary Physics, and Signatures at Los Alamos National Laboratory is committed to promoting and supporting high quality, cutting-edge...

  3. Geophysical Prospecting Of Clay Deposits in Abudu Area of Edo ...

    African Journals Online (AJOL)

    Its resistivities varied from about 1.0 ohm - m to 500 ohm-m. Area of probable clay formation and their thicknesses have been identified especially for future mining of industries foundation, operations and drilling. Journal of the Nigerian Association of Mathematical Physics, Volume 19 (November, 2011), pp 335 – 342 ...

  4. Surface Geophysical Exploration - Compendium Document

    International Nuclear Information System (INIS)

    Rucker, D.F.; Myers, D.A.

    2011-01-01

    This report documents the evolution of the surface geophysical exploration (SGE) program and highlights some of the most recent successes in imaging conductive targets related to past leaks within and around Hanford's tank farms. While it is noted that the SGE program consists of multiple geophysical techniques designed to (1) locate near surface infrastructure that may interfere with (2) subsurface plume mapping, the report will focus primarily on electrical resistivity acquisition and processing for plume mapping. Due to the interferences from the near surface piping network, tanks, fences, wells, etc., the results of the three-dimensional (3D) reconstruction of electrical resistivity was more representative of metal than the high ionic strength plumes. Since the first deployment, the focus of the SGE program has been to acquire and model the best electrical resistivity data that minimizes the influence of buried metal objects. Toward that goal, two significant advances have occurred: (1) using the infrastructure directly in the acquisition campaign and (2) placement of electrodes beneath the infrastructure. The direct use of infrastructure was successfully demonstrated at T farm by using wells as long electrodes (Rucker et al., 2010, 'Electrical-Resistivity Characterization of an Industrial Site Using Long Electrodes'). While the method was capable of finding targets related to past releases, a loss of vertical resolution was the trade-off. The burying of electrodes below the infrastructure helped to increase the vertical resolution, as long as a sufficient number of electrodes are available for the acquisition campaign.

  5. Geophysical characterization of subsurface barriers

    International Nuclear Information System (INIS)

    Borns, D.J.

    1995-08-01

    An option for controlling contaminant migration from plumes and buried waste sites is to construct a subsurface barrier of a low-permeability material. The successful application of subsurface barriers requires processes to verify the emplacement and effectiveness of barrier and to monitor the performance of a barrier after emplacement. Non destructive and remote sensing techniques, such as geophysical methods, are possible technologies to address these needs. The changes in mechanical, hydrologic and chemical properties associated with the emplacement of an engineered barrier will affect geophysical properties such a seismic velocity, electrical conductivity, and dielectric constant. Also, the barrier, once emplaced and interacting with the in situ geologic system, may affect the paths along which electrical current flows in the subsurface. These changes in properties and processes facilitate the detection and monitoring of the barrier. The approaches to characterizing and monitoring engineered barriers can be divided between (1) methods that directly image the barrier using the contrasts in physical properties between the barrier and the host soil or rock and (2) methods that reflect flow processes around or through the barrier. For example, seismic methods that delineate the changes in density and stiffness associated with the barrier represents a direct imaging method. Electrical self potential methods and flow probes based on heat flow methods represent techniques that can delineate the flow path or flow processes around and through a barrier

  6. SURFACE GEOPHYSICAL EXPLORATION - COMPENDIUM DOCUMENT

    Energy Technology Data Exchange (ETDEWEB)

    RUCKER DF; MYERS DA

    2011-10-04

    This report documents the evolution of the surface geophysical exploration (SGE) program and highlights some of the most recent successes in imaging conductive targets related to past leaks within and around Hanford's tank farms. While it is noted that the SGE program consists of multiple geophysical techniques designed to (1) locate near surface infrastructure that may interfere with (2) subsurface plume mapping, the report will focus primarily on electrical resistivity acquisition and processing for plume mapping. Due to the interferences from the near surface piping network, tanks, fences, wells, etc., the results of the three-dimensional (3D) reconstruction of electrical resistivity was more representative of metal than the high ionic strength plumes. Since the first deployment, the focus of the SGE program has been to acquire and model the best electrical resistivity data that minimizes the influence of buried metal objects. Toward that goal, two significant advances have occurred: (1) using the infrastructure directly in the acquisition campaign and (2) placement of electrodes beneath the infrastructure. The direct use of infrastructure was successfully demonstrated at T farm by using wells as long electrodes (Rucker et al., 2010, 'Electrical-Resistivity Characterization of an Industrial Site Using Long Electrodes'). While the method was capable of finding targets related to past releases, a loss of vertical resolution was the trade-off. The burying of electrodes below the infrastructure helped to increase the vertical resolution, as long as a sufficient number of electrodes are available for the acquisition campaign.

  7. Application of electrical geophysics to the release of water resources, case of Ain Leuh (Morocco)

    Science.gov (United States)

    Zitouni, A.; Boukdir, A.; El Fjiji, H.; Baite, W.; Ekouele Mbaki, V. R.; Ben Said, H.; Echakraoui, Z.; Elissami, A.; El Maslouhi, M. R.

    2018-05-01

    Being seen needs in increasing waters in our contry for fine domestics, manufactures and agricultural, the prospecting of subterranean waters by geologic and hydrogeologic classic method remains inaplicable in the cases of the regions where one does not arrange drillings or polls (soundings) of gratitude (recongnition) in very sufficient (self-important) number. In that case of figure, the method of prospecting geophysics such as the method of nuclear magnetic resonance (NMR) and the method of the geophysics radar are usually used most usually because they showed, worldwide, results very desive in the projects of prospecting and evaluation of the resources in subterranean waters. In the present work, which concerns only the methodology of the electric resistivity, we treat the adopted methodological approach and the study of the case of application in the tray of Ajdir Ain Leuh.

  8. Connections between borehole geophysical parameters of the quality of cement raw materials

    International Nuclear Information System (INIS)

    Szabo, L.; Illes, A.

    1978-01-01

    The raw materials for the cement industry are prospected - according to the recommendations of national authorities - by geophysical methods, too. These include not the determination of the deposit boundary, but also an estimation of the quality of limestone and clay from the point of cement manufacture. No forerunners of such tests exist, so new methods were elaborated. After 12 years of site tests it was found that the correlation between laboratory quality tests and certain geophysical parameters of clay deposits is fair but less close in case of limestone deposits. (author)

  9. Responsibilities, opportunities and challenges in geophysical exploration

    International Nuclear Information System (INIS)

    Rytle, R.J.

    1982-01-01

    Geophysical exploration for engineering purposes is conducted to decrease the risk in encountering site uncertainties in construction of underground facilities. Current responsibilities, opportunities and challenges for those with geophysical expertise are defined. These include: replacing the squiggly line format, developing verification sites for method evaluations, applying knowledge engineering and assuming responsibility for crucial national problems involving rock mechanics expertise

  10. Some problems on remote sensing geology for uranium prospecting

    International Nuclear Information System (INIS)

    Yang Tinghuai.

    1988-01-01

    Remote sensing is a kind of very effective method which can be used in all stages of geological prospecting. Geological prospecting with remote sensing method must be based on different genetic models of ore deposits, characteristics of geology-landscape and comprehensive analysis for geophysical and geochemical data, that is, by way of conceptual model prospecting. The prospecting results based on remote sensing geology should be assessed from three aspects such as direct, indirect and potential ones

  11. Numerical simulation in applied geophysics

    CERN Document Server

    Santos, Juan Enrique

    2016-01-01

    This book presents the theory of waves propagation in a fluid-saturated porous medium (a Biot medium) and its application in Applied Geophysics. In particular, a derivation of absorbing boundary conditions in viscoelastic and poroelastic media is presented, which later is employed in the applications. The partial differential equations describing the propagation of waves in Biot media are solved using the Finite Element Method (FEM). Waves propagating in a Biot medium suffer attenuation and dispersion effects. In particular the fast compressional and shear waves are converted to slow diffusion-type waves at mesoscopic-scale heterogeneities (on the order of centimeters), effect usually occurring in the seismic range of frequencies. In some cases, a Biot medium presents a dense set of fractures oriented in preference directions. When the average distance between fractures is much smaller than the wavelengths of the travelling fast compressional and shear waves, the medium behaves as an effective viscoelastic an...

  12. Archaeological Feedback as a Research Methodology in Near-Surface Geophysics

    Science.gov (United States)

    Maillol, J.; Ortega-Ramírez, J.; Berard, B.

    2005-05-01

    A unique characteristic of archaeological geophysics is to present the researchers in applied geophysics with the opportunity to verify their interpretation of geophysical data through the direct observation of often extremely detailed excavations. This is usually known as archaeological feedback. Archaeological materials have been slowly buried over periods ranging from several hundreds to several thousands of years, undergoing natural sedimentary and soil-forming processes. Once excavated, archaeological features therefore constitute more realistic test subjects than the targets artifically buried in common geophysical test sites. We are presenting the outcome of several such verification tests aimed at clarifying issues in geometry and spatial resolution of ground penetrating radar (GPR) images. On the site of a Roman villa in SE Portugal 500 Mhz GPR images are shown to depict very accurately the position and geometry of partially excavated remains. In the Maya city of Palenque, Mexico, 900 Mhz data allows the depth of tombs and natural cavities to be determined with cm accuracy. The predicted lateral extent of the cavities is more difficult to match with the reality due to the cluttering caused by high frequency. In the rainforest of Western Africa, 500 MHz GPR was used to prospect for stone tool sites. When very careful positioning and high density data sampling is achieved, stones can be accurately located and retrieved at depths exceeding 1 m with maximum positioning errors of 12cm horizontally and 2 cm vertically. In more difficult data collection conditions however, errors in positioning are shown to actually largely exceed the predictions based on quantitative theoretical resolution considerations. Geophysics has long been recognized as a powerful tool for prospecting and characterizing archaeological sites. Reciprocally, these results show that archaeology is an unparalleled test environment for the assesment and development of high resolution

  13. Calibration and Confirmation in Geophysical Models

    Science.gov (United States)

    Werndl, Charlotte

    2016-04-01

    For policy decisions the best geophysical models are needed. To evaluate geophysical models, it is essential that the best available methods for confirmation are used. A hotly debated issue on confirmation in climate science (as well as in philosophy) is the requirement of use-novelty (i.e. that data can only confirm models if they have not already been used before. This talk investigates the issue of use-novelty and double-counting for geophysical models. We will see that the conclusions depend on the framework of confirmation and that it is not clear that use-novelty is a valid requirement and that double-counting is illegitimate.

  14. Uranium prospection methods illustrated with examples

    International Nuclear Information System (INIS)

    Valsardieu, C.

    1985-01-01

    Uranium exploration methods are briefly reviewed: aerial (radiometric, spectrometric), surface (mapping, radiometric, geophysical, geochemical), sub-surface (well logging, boring) and mining methods in the different steps of a mine project: preliminary studies, general prospecting, detailed prospecting deposit area and deposit estimation. Choice of methods depends strongly on geographic and geologic environment. Three examples are given concerning: an intragranitic deposit Limousin (France), a deposit spatially related to a discordance Athabasca (Canada) and a sedimentary deposit Manyingee (Western Australia) [fr

  15. Training course on radiometric prospecting techniques

    International Nuclear Information System (INIS)

    1979-01-01

    A training course on radiometric prospecting techniques was presented by the Atomic Energy Board in collaboration with the South African Geophysical Association and the Geological Society of South Africa. Various aspects related to uranium prospecting were discussed e.g. the uranium supply and demand position, the basic physics of radioactivity, uranium geochemistry, mineralogy and mobility, the instrumentation and techniques used in uranium exploration, for example, borehole logging, radon emanometry and airborne radiometric surveys and also data processing and interpretation methods

  16. Applied geophysics for civil engineering and mining engineering. 2. rev. and enlarged ed.

    International Nuclear Information System (INIS)

    Militzer, H.; Schoen, J.; Stoetzner, U.

    1986-01-01

    In the process of geological and geotechnical prospecting for the exploration and exploitation of deposits, as well as for engineering structures, the knowledge contributed by geophysics is of significance in order to ensure an objective assessment of geological and geotechnical conditions of a given site, and to promote economic efficiency in the field of civil engineering and mining. For this reason, engineering and mining geophysics has become an important special subject field. The present second edition of the textbook offers enhanced information about practical applications of available methods and measuring techniques, and about the information to be obtained by civil and mining engineers from the geophysical science. The material has been arranged with a view to practice, facilitating an overview over potential applications and efficiencies as well as limits of geophysical methods. The methods are also explained in terms of suitability for the various steps of civil engineering or mining geological activities and studies. A major extension of the first edition's material consists of the chapter on basic principles and aspects of well geophysics for shallow well drilling. (orig./HP) [de

  17. Geophysical Investigations in the Caucasus (1925 - 2012): Initial, Basic and Modern Stages

    Science.gov (United States)

    Eppelbaum, L. V.

    2012-04-01

    The Caucasian Mountains occupy an area of about 440,000 km2. A number of important mineral resources are concentrated there. Geophysical data on the geological structure of Caucasus can shed light on the basic principles of evolution of the Earth, the distribution of minerals and seismic activity. However, geophysical surveys under complex conditions are generally riddled by poor accessibility to certain mountainous regions, the unevenness of observation surfaces, as well as by a great variety and frequent changes of tectonic structures and geological bodies with variable physical properties. These factors either restrict geophysical surveys in difficult environments or confine the scope of useful information drawn from the results obtained. This has led to the development of special techniques in geophysical surveys, data processing and interpretation that draws heavily on the experience accumulated in the specific conditions of these mountainous regions. First applied geophysical observations in the Caucasus region - thermal measurements in boreholes - were carried out by Bazevich (1881) in the Absheron Peninsula. At the same time, start of the initial stage is usually referred to as the mid 20-s of the XX century, when the rare, but systematic geophysical observations (mainly gravity and magnetic) were begun in some Caucasian areas. Somewhat later began to apply the resistivity method. Mid 30-s is characterized by the beginning of application of borehole geophysics and seismic prospecting. The marine seismics firstly in the former Soviet Union was tested in the Caspian Sea. In general, the initial stage is characterized by slow, but steady rise (except during World War II) lasted until 1960. A basic stage (1960-1991) is characterized by very intensive employment of geophysical methods (apparently, any possible geophysical methods were tested in this region). At this time the Caucasus region is considered in the former Soviet Union as a geophysical polygon for

  18. Fundamentals of Geophysical Fluid Dynamics

    Science.gov (United States)

    McWilliams, James C.

    2006-07-01

    Earth's atmosphere and oceans exhibit complex patterns of fluid motion over a vast range of space and time scales. These patterns combine to establish the climate in response to solar radiation that is inhomogeneously absorbed by the materials comprising air, water, and land. Spontaneous, energetic variability arises from instabilities in the planetary-scale circulations, appearing in many different forms such as waves, jets, vortices, boundary layers, and turbulence. Geophysical fluid dynamics (GFD) is the science of all these types of fluid motion. This textbook is a concise and accessible introduction to GFD for intermediate to advanced students of the physics, chemistry, and/or biology of Earth's fluid environment. The book was developed from the author's many years of teaching a first-year graduate course at the University of California, Los Angeles. Readers are expected to be familiar with physics and mathematics at the level of general dynamics (mechanics) and partial differential equations. Covers the essential GFD required for atmospheric science and oceanography courses Mathematically rigorous, concise coverage of basic theory and applications to both oceans and atmospheres Author is a world expert; this book is based on the course he has taught for many years Exercises are included, with solutions available to instructors from solutions@cambridge.org

  19. Airborne geophysical radon hazard mapping

    International Nuclear Information System (INIS)

    Walker, P.

    1993-01-01

    Shales containing uranium pose a radon health hazard even when covered by several meters of overburden. Such an alum shale in southern Norway has been mapped with a joint helicopter borne electromagnetic (HEM) and radiometric survey. Results are compared with ground spectrometer, radon emanometer and radon gas measurements in dwellings, and a model to predict radon gas concentrations from the airborne data is developed. Since the shale is conductive, combining the HEM data with the radiometric channel allows the shale to be mapped with greater reliability than if the radiometric channel were used alone. Radiometrically more active areas which do not pose a radon gas hazard can thus be separated from the shales which do. The ground follow-up work consisted of spectrometer and radon emanometer measurements over a uranium anomaly coinciding with a conductor. The correlation between the airborne uranium channel, the ground uranium channel and emanometry is extremely good, indicating that airborne geophysics can, in this case, be used to predict areas having a high radon potential. Contingency tables comparing both radon exhalation and concentration in dwellings with the airborne uranium data show a strong relationship exists between exhalation and the airborne data and while a relationship between concentration and the airborne data is present, but weaker

  20. Tabletop Models for Electrical and Electromagnetic Geophysics.

    Science.gov (United States)

    Young, Charles T.

    2002-01-01

    Details the use of tabletop models that demonstrate concepts in direct current electrical resistivity, self-potential, and electromagnetic geophysical models. Explains how data profiles of the models are obtained. (DDR)

  1. rights reserved Geophysical Identification of Hydrothermally Altered

    African Journals Online (AJOL)

    ADOWIE PERE

    Geophysical Identification of Hydrothermally Altered Structures That Favour .... aircraft. Total line kilometers of 36,500 were covered in the survey. Magnetic ... tie lines occur at about 2000 metres interval in the ... visual inspection of the map.

  2. Exploring the oceans- The geophysical way

    Digital Repository Service at National Institute of Oceanography (India)

    Murthy, K.S.R.

    The evolution of the eastern continental margin of India (ECMI), the Bengal Fan and the Central Indian Basin (CIB) is a consequence of the breakup of India from the eastern Gondwanaland in Late Jurassic to Early Cretaceous. Recent marine geophysical...

  3. A geological and geophysical data collection system

    Digital Repository Service at National Institute of Oceanography (India)

    Sudhakar, T.; Afzulpurkar, S.

    A geological and geophysical data collection system using a Personal Computer is described below. The system stores data obtained from various survey systems typically installed in a charter vessel and can be used for similar applications on any...

  4. Geophysical investigations in the Kivetty area, Finland

    International Nuclear Information System (INIS)

    Heikkinen, E.; Paananen, M.; Oehberg, A.; Front, K.; Okko, O.; Pitkaenen, P.

    1992-09-01

    Investigations were carried out at Kivetty site in Konginkangas, in central Finland, by geological, geophysical, geohydrological and geochemical methods in 1987-1991 to determine the suitability of the bedrock for the final disposal of spent nuclear fuel. Airborne, ground and borehole geophysical methods were used to study the rock type distribution, fracturing and hydraulic conductivity of the bedrock to a depth of one kilometre

  5. Geophysical investigations in the Syyry area, Finland

    International Nuclear Information System (INIS)

    Heikkinen, E.; Kurimo, M.

    1992-12-01

    Investigations were carried out at the Syyry site at Sievi using geological, geophysical, geohydrological and geochemical methods in 1987-1991 to determine the suitability of the bedrock for the final disposal of spent nuclear fuel. In this survey airborne, ground and borehole geophysical methods were used to study the rock type distribution, fracturing and hydraulic conductivity of the bedrock to a depth of one kilometre

  6. Geophysical investigations in the Olkiluoto area, Finland

    International Nuclear Information System (INIS)

    Heikkinen, E.; Paananen, M.

    1992-12-01

    Investigations were carried out at the Olkiluoto site at Eurajoki using geological, geophysical, geohydrological and geochemical methods in 1987-1992 to determine the suitability of the bedrock for the final disposal of spent nuclear fuel. In this survey airborne, ground and borehole geophysical methods were used to study the rock type distribution, fracturing and hydraulic conductivity of the bedrock to a depth of one kilometre

  7. Multiscale geophysical imaging of the critical zone

    Science.gov (United States)

    Parsekian, Andy; Singha, Kamini; Minsley, Burke J.; Holbrook, W. Steven; Slater, Lee

    2015-01-01

    Details of Earth's shallow subsurface—a key component of the critical zone (CZ)—are largely obscured because making direct observations with sufficient density to capture natural characteristic spatial variability in physical properties is difficult. Yet this inaccessible region of the CZ is fundamental to processes that support ecosystems, society, and the environment. Geophysical methods provide a means for remotely examining CZ form and function over length scales that span centimeters to kilometers. Here we present a review highlighting the application of geophysical methods to CZ science research questions. In particular, we consider the application of geophysical methods to map the geometry of structural features such as regolith thickness, lithological boundaries, permafrost extent, snow thickness, or shallow root zones. Combined with knowledge of structure, we discuss how geophysical observations are used to understand CZ processes. Fluxes between snow, surface water, and groundwater affect weathering, groundwater resources, and chemical and nutrient exports to rivers. The exchange of gas between soil and the atmosphere have been studied using geophysical methods in wetland areas. Indirect geophysical methods are a natural and necessary complement to direct observations obtained by drilling or field mapping. Direct measurements should be used to calibrate geophysical estimates, which can then be used to extrapolate interpretations over larger areas or to monitor changing processes over time. Advances in geophysical instrumentation and computational approaches for integrating different types of data have great potential to fill gaps in our understanding of the shallow subsurface portion of the CZ and should be integrated where possible in future CZ research.

  8. uranium and thorium exploration by geophysical methods

    International Nuclear Information System (INIS)

    Yueksel, F.A.; Kanli, A.I.

    1997-01-01

    Radioactivity is often measured from the ground in mineral exploration. If large areas have to be investigated, it is often unsuitable to carry out the measurements with ground-bound expeditions. A geophysical method of gamma-ray spectrometry is generally applied for uranium exploration. Exploration of uranium surveys were stopped after the year of 1990 in Turkey. Therefore the real potential of uranium in Turkey have to be investigated by using the geophysical techniques

  9. Development of data processing system for regional geophysical and geochemical exploration of sandstone-hosted uranium deposits based on ArcGIS Engine

    International Nuclear Information System (INIS)

    Han Shaoyang; Ke Dan; Hou Huiqun; Hu Shuiqing

    2010-01-01

    According to the data processing need of geophysical and geochemical exploration of sandstone-hosted uranium deposits, the function design of the regional geophysical and geochemical data processing system is completed in the paper. The geophysical and geochemical data processing software with powerful functions is also developed based on ArcGIS Engine which remedies the shortage of GIS software for performing the geophysical and geochemical data processing. The development technique route of system software and key techniques are introduced, and the development processes of system software are showed through some development examples. Application practices indicate that the interface of developed system software with friendly interface and utility functions, may quickly perform the data processing of regional geophysical and geochemical exploration and provide the helpful deep information for predicting metallogenic prospective areas of sandstone-hosted uranium deposits. The system software is of a great application foreground. (authors)

  10. Archaeological Geophysics in Israel: Past, Present and Future

    Science.gov (United States)

    Eppelbaum, L. V.

    2009-04-01

    . Application of multifocusing seismic processing to the GPR data analysis. Proceed. of the Symp. on the Application of Geophysics to Engineering and Environmental Problems, Hyatt Regency Crystal City, Arlington, USA, 597-606. Borradaile, G. J., 2003. Viscous magnetization, archaeology and Bayesian statistics of small samples from Israel and England. Geophysical Research Letters, 30 (10), 1528, doi:10.1029/2003GL016977. Boyce, J.I., Reinhardt, E.G., Raban, A., and Pozza, M.R., 2004. The utility of marine magnetic surveying for mapping buried hydraulic concrete harbour structures: Marine Magnetic Survey of a Submerged Roman Harbour, Caesarea Maritima, Israel. The International Journal of Nautical Archaeology, 33, 1, 122-136. Bruins, H.J., van der Plicht, J., and Mazar, A., 2003. 14C dates from Tel-Rehov: Iron-age chronology, Pharaohs and Hebrew kings. Science, 300, 315-318. Daniels, J., Blumberg, D.J., Vulfson, L.D., Kotlyar, A.L., Freiliker, V., Ronen, G., and Ben-Asher, J., 2003. Microwave remote sensing of physically buried objects in the Negev Desert: implications for environmental research. Remote Sensing of Environment, 86, 243-256, 2003. Dolphin, L.T., 1981. Geophysical methods for archaeological surveys in Israel. Stanford Research International, Menlo Park, Calif., USA, 7 pp. Ellenblum, R., Marco, M., Agnon, A., Rockwell, T., and Boas, A., 1998. Crusader castle torn apart by earthquake at dawn, 20 May 1202. Geology, 26, No. 4, 303-306. Eppelbaum, L.V., 1999. Quantitative interpretation of resistivity anomalies using advanced methods developed in magnetic prospecting. Trans. of the XXIV General Assembly of the Europ. Geoph. Soc., Strasburg 1 (1), p.166. Eppelbaum, L.V., 2000a. Detailed geophysical investigations at archaeological sites. In: (Ed. A. Nissenbaum), Relation between archaeology and other scientific disciplines, Collection of Papers, Weitzman Inst., Rehovot, Israel, No.8, 39-54 (in Hebrew). Eppelbaum, L.V., 2000b. Applicability of geophysical methods for

  11. Drill site selection process using geophysical (seismic, EM, magnetic) and regional geochemical uranium deposit vectors in the Athabasca Basin

    International Nuclear Information System (INIS)

    Hajnal, Z.; Takacs, E.; Pandit, B.

    2014-01-01

    Conclusions: • High resolution reflection technique, in correlation with other indicative vectors, provides primary structural and alteration information, within the Keefe L. prospect. • Several primary integrated attributes are indicative of mineralization within the SW. • The anomalous zones are more accurately defined in depths than any other geophysical technique, reduce drilling cost significantly.

  12. Geophysical observations at cavity collapse

    Science.gov (United States)

    Jousset, Philippe; Bazargan-Sabet, Behrooz; Lebert, François; Bernardie, Séverine; Gourry, Jean-Christophe

    2010-05-01

    In Lorraine region (France) salt layers at about 200 meters depth are exploited by Solvay using solution mining methodology which consists in extracting the salt by dissolution, collapsing the cavern overburden during the exploitation phase and finally reclaiming the landscape by creating a water area. In this process, one of the main challenges for the exploiting company is to control the initial 120-m diameter collapse so as to minimize possible damages. In order to detect potential precursors and understand processes associated with such collapses, a wide series of monitoring techniques including micro seismics, broad-band seismology, hydro-acoustic, electromagnetism, gas probing, automatic leveling, continuous GPS, continuous gravity and borehole extensometry was set-up in the frame of an in-situ study carried out by the "Research Group for the Impact and Safety of Underground Works" (GISOS, France). Equipments were set-up well before the final collapse, giving a unique opportunity to analyze a great deal of information prior to and during the collapse process which has been successfully achieved on February the 13th, 2009 by controlling the cavity internal pressure. In this work, we present the results of data recorded by a network of 3 broadband seismometers, 2 accelerometers, 2 tilt-meters and a continuously gravity meter. We relate the variations of the brine pumping rate with the evolutions of the induced geophysical signals and finally we propose a first mechanical model for describing the controlled collapse. Beyond the studied case, extrapolation of the results obtained might contribute to the understanding of uncontrolled cavity collapses, such as pit-craters or calderas at volcanoes.

  13. The concept of geothermal exploration in west Java based on geophysical data

    Science.gov (United States)

    Gaffar, Eddy Z.

    2018-02-01

    Indonesia has the largest geothermal prospects in the world and most of them are concentrated in Java and Sumatera. The ones on Sumatra island are generally controlled by Sumatra Fault, either the main fault or the second and the third order fault. Geothermal in Java is still influenced by the subduction of oceanic plates from the south of Java island that forms the southern mountains extending from West Java to East Java. From a geophysical point of view, there is still no clue or concept that accelerates the process of geothermal exploration. The concept is that geothermal is located around the volcano (referred to the volcano as a host) and around the fault (fault as a host). There is another method from remote sensing analysis that often shows circular feature. In a study conducted by LIPI, we proposed a new concept for geothermal exploration which is from gravity analysis using Bouguer anomaly data from Java Island, which also show circular feature. The feature is supposed to be an "ancient crater" or a hidden caldera. Therefore, with this hypothesis, LIPI Geophysics team will try to prove whether this symptom can help accelerate the process of geothermal exploration on the island of West Java. Geophysical methods might simplify the exploration of geothermal prospect in West Java. Around the small circular feature, there are some large geothermal prospect areas such as Guntur, Kamojang, Drajat, Papandayan, Karaha Bodas, Patuha. The concept proposed by our team will try be applied to explore geothermal in Java Island for future work.

  14. Methodological Developments in Geophysical Assimilation Modeling

    Science.gov (United States)

    Christakos, George

    2005-06-01

    This work presents recent methodological developments in geophysical assimilation research. We revisit the meaning of the term "solution" of a mathematical model representing a geophysical system, and we examine its operational formulations. We argue that an assimilation solution based on epistemic cognition (which assumes that the model describes incomplete knowledge about nature and focuses on conceptual mechanisms of scientific thinking) could lead to more realistic representations of the geophysical situation than a conventional ontologic assimilation solution (which assumes that the model describes nature as is and focuses on form manipulations). Conceptually, the two approaches are fundamentally different. Unlike the reasoning structure of conventional assimilation modeling that is based mainly on ad hoc technical schemes, the epistemic cognition approach is based on teleologic criteria and stochastic adaptation principles. In this way some key ideas are introduced that could open new areas of geophysical assimilation to detailed understanding in an integrated manner. A knowledge synthesis framework can provide the rational means for assimilating a variety of knowledge bases (general and site specific) that are relevant to the geophysical system of interest. Epistemic cognition-based assimilation techniques can produce a realistic representation of the geophysical system, provide a rigorous assessment of the uncertainty sources, and generate informative predictions across space-time. The mathematics of epistemic assimilation involves a powerful and versatile spatiotemporal random field theory that imposes no restriction on the shape of the probability distributions or the form of the predictors (non-Gaussian distributions, multiple-point statistics, and nonlinear models are automatically incorporated) and accounts rigorously for the uncertainty features of the geophysical system. In the epistemic cognition context the assimilation concept may be used to

  15. Quantitative Analysis of Piezoelectric and Seismoelectric Anomalies in Subsurface Geophysics

    Science.gov (United States)

    Eppelbaum, Lev

    2017-04-01

    , apatite-nepheline, essentially sphalerite, and ore-quartz deposits of gold, tin, tungsten, molybdenum, zinc, crystal, and other raw materials. This method also enables differentiation of rocks such as bauxites, kimberlites, etc., from the host rocks, by their electrokinetic properties. Classification of some rocks, ores, and minerals by their piezoactivity is given in Table 1. These objects (targets) transform wave elastic oscillations into electromagnetic ones. It should be taken into account that anomalous bodies may be detected not only by positive, but also by negative anomalies, if low-piezoactive body occurs in the higher piezoactive medium. The piezoelectric method is an example of successful application of piezoelectric and seismo-electrokinetic phenomena in exploration and environmental geophysics and designed for delineation of targets differing from the host media by piezoelectric properties (Neishtadt et al., 2006, Neishtadt and Eppelbaum, 2012). This method is employed in surface, downhole, and underground modes. Recent testing of piezeoelectric effects of archaeological samples composed from fired clay have shown values of 2.0 - 3.0 ṡ 10-14 C/N. However, absence of reliable procedures for solving the direct and inverse problems of piezoelectric anomalies (PEA), drastically hampers further progression of the method. Therefore, it was suggested to adapt the tomography procedure, widely used in the seismic prospecting, to the PEA modeling. Diffraction of seismic waves has been computed for models of circular cylinder, thin inclined bed and thick bed (Alperovich et al., 1997). As a result, spatial-time distribution of the electromagnetic field caused by the seismic wave has been found. The computations have shown that effectiveness and reliability of PEA analysis may be critically enhanced by considering total electro- and magnetograms as differentiated from the conventional approaches. Distribution of the electromagnetic field obtained by solving the direct

  16. Chaos theory in geophysics: past, present and future

    International Nuclear Information System (INIS)

    Sivakumar, B.

    2004-01-01

    The past two decades of research on chaos theory in geophysics has brought about a significant shift in the way we view geophysical phenomena. Research on chaos theory in geophysics continues to grow at a much faster pace, with applications to a wide variety of geophysical phenomena and geophysical problems. In spite of our success in understanding geophysical phenomena also from a different (i.e. chaotic) perspective, there still seems to be lingering suspicions on the scope of chaos theory in geophysics. The goal of this paper is to present a comprehensive account of the achievements and status of chaos theory in geophysics, and to disseminate the hope and scope for the future. A systematic review of chaos theory in geophysics, covering a wide spectrum of geophysical phenomena studied (e.g. rainfall, river flow, sediment transport, temperature, pressure, tree ring series, etc.), is presented to narrate our past achievements not only in understanding and predicting geophysical phenomena but also in improving the chaos identification and prediction techniques. The present state of chaos research in geophysics (in terms of geophysical phenomena, problems, and chaos methods) and potential for future improvements (in terms of where, why and possibly how) are also highlighted. Our popular views of nature (i.e. stochastic and deterministic), and of geophysical phenomena in particular, are discussed, and the usefulness of chaos theory as a bridge between such views is also put forth

  17. The lithospheric structure beneath Ireland and surrounding areas from integrated geophysical-petrological modelling of magnetic and other geophysical data

    Science.gov (United States)

    Baykiev, E.; Guerri, M.; Fullea, J.

    2017-12-01

    The availability of unprecedented resolution aeromagnetic data in Ireland (Tellus project, http://www.tellus.ie/) in conjunction with new satellite magnetic data (e.g., ESÁs Swarm mission) has opened the possibility of detailed modelling of the Irish subsurface magnetic structure. A detailed knowledge of the magnetic characteristics (susceptibility, magnetite content) of the crust is relevant for a number of purposes, including geological mapping and mineral and geothermal energy prospection. In this work we model the magnetic structure of Ireland and surrounding areas using primarily aeromagnetic and satellite observations but also other geophysical data sets. To this aim we use a geophysical-petrological modelling tool (LitMod) in which key properties of rocks (i.e., density, electrical conductivity and seismic velocities) that can be inferred from geophysical data (gravity, seismic, EM) are self consistently determined based on the thermochemical conditions (using the software Perple_X). In contrast to the mantle, where thermodynamic equilibrium is prevalent, in the crust metastable conditions are dominant, i.e. rock properties may not be representative of the current, in situ, temperature and pressure conditions. Instead, the rock properties inferred from geophysical data may be reflecting the mineralogy stable at rock formation conditions. In addition, temperature plays a major role in the distribution of the long wavelength crustal magnetic anomalies. Magnetite retains its magnetic properties below its Curie temperature (585 ºC) and the depth of Curie's isotherm provides an estimate of the thickness of the magnetic crust. Hence, a precise knowledge of the crustal geotherm is required to consistently model crustal magnetic anomalies. In this work LitMod has been modified to account for metastable crustal lithology, to predict susceptibility in the areas below Curie's temperature, and to compute magnetic anomalies based on a magnetic tesseroid approach. The

  18. Looking Forward to the electronic Geophysical Year

    Science.gov (United States)

    Kamide, Y.; Baker, D. N.; Thompson, B.; Barton, C.; Kihn, E.

    2004-12-01

    During the International Geophysical Year (1957-1958), member countries established many new capabilities pursuing the major IGY objectives of collecting geophysical data as widely as possible and providing free access to these data for all scientists around the globe. A key achievement of the IGY was the establishment of a worldwide system of data centers and physical observatories. The worldwide scientific community has now endorsed and is promoting an electronic Geophysical Year (eGY) initiative. The proposed eGY concept would both commemorate the 50th anniversary of the IGY in 2007-2008 and would provide a forward impetus to geophysics in the 21st century, similar to that provide by the IGY fifty years ago. The eGY concept advocates the establishment of a series of virtual geophysical observatories now being deployed in cyberspace. We discuss plans to aggregate measurements into a readily accessible database along with analysis, visualization, and display tools that will make information available and useful to the scientific community, to the user community, and to the general public. We are examining the possibilities for near-realtime acquisition of data and utilization of forecast tools in order to provide users with advanced space weather capabilities. This program will provide powerful tools for education and public outreach concerning the connected Sun-Earth System.

  19. Increasing diversity in the geosciences through the AfricaArray geophysics field course

    Science.gov (United States)

    Vallejo, G.; Emry, E.; Galindo, B. L.; Carranza, V.; Gomez, C. D.; Ortiz, K.; Castro, J. G.; Guandique, J.; Falzone, C.; Webb, S. J.; Manzi, M.; Mngadi, S. B.; Stephens, K.; Chinamora, B.; Whitehead, R.; de Villiers, D. P.; Tshitlho, K.; Delhaye, R. P.; Smith, J. A.; Nyblade, A.

    2014-12-01

    For the past nine years, the AfricaArray diversity program, sponsored by industry, the National Science Foundation, and several partnering universities have supported outstanding U.S. STEM underrepresented minority undergraduates to gain field experience in near-surface geophysical techniques during an 8-week summer program at Penn State University and the University of Witwatersrand (Wits). The AfricaArray geophysics field school, which is run by Wits, has been teaching field-based geophysics to African students for over a decade. In the first 2-3 weeks of the program, the U.S. students are given basic instruction in near-surface geophysics, South African geology, and South African history and culture. The students then join the Wits AfricaArray geophysics field school - working alongside Wits students and students from several other African universities to map the shallow subsurface in prospective areas of South Africa for platinum mining. In addition to the primary goals of collecting and interpreting gravity, magnetic, resistivity, seismic refraction, seismic reflection, and EM data, students spend time mapping geologic units and gathering information on the physical properties of the rocks in the region (i.e. seismic velocity, density, and magnetic susceptibility). Subsurface targets include mafic dikes, faults, the water table, and overburden thickness. Upon returning to the U.S., students spend 2-3 weeks finalizing their project reports and presentations. The program has been effective at not only providing students with fundamental skills in applied geophysics, but also in fostering multicultural relationships, preparing students for graduate work in the geosciences, and attracting STEM students into the geosciences. Student presenters will discuss their experiences gained through the field school and give their impressions about how the program works towards the goal of increasing diversity in the geosciences in the U.S.

  20. Analysis and interpretation of geophysical surveys in archaeological sites employing different integrated approach.

    Science.gov (United States)

    Piro, Salvatore; Papale, Enrico; Kucukdemirci, Melda; Zamuner, Daniela

    2017-04-01

    Non-destructive ground surface geophysical prospecting methods are frequently used for the investigation of archaeological sites, where a detailed physical and geometrical reconstructions of hidden volumes is required prior to any excavation work. All methods measure the variations of single physical parameters, therefore if these are used singularly, they could not permit a complete location and characterization of anomalous bodies. The probability of a successful result rapidly increases if a multhimethodological approach is adopted, according to the logic of objective complementarity of information and of global convergence toward a high quality multiparametric imaging of the buried structures. The representation of the static configuration of the bodies in the subsoil and of the space-time evolution of the interaction processes between targets and hosting materials have to be actually considered fundamental elements of primary knowledge in archaeological prospecting. The main effort in geophysical prospecting for archaeology is therefore the integration of different, absolutely non-invasive techniques, especially if managed in view of a ultra-high resolution three-dimensional (3D) tomographic representation mode. Following the above outlined approach, we have integrated geophysical methods which measure the variations of potential field (gradiometric methods) with active methods which measure the variations of physical properties due to the body's geometry and volume (GPR and ERT). In this work, the results obtained during the surveys of three archaeological sites, employing Ground Penetrating Radar (GPR), Electrical Resistivity Tomography (ERT) and Fluxgate Differential Magnetic (FDM) to obtain precise and detailed maps of subsurface bodies, are presented and discussed. The first site, situated in a suburban area between Itri and Fondi, in the Aurunci Natural Regional Park (Central Italy), is characterized by the presence of remains of past human activity

  1. Brief overview of geophysical probing technology

    International Nuclear Information System (INIS)

    Ramirez, A.L.; Lytle, R.J.

    1982-01-01

    An evaluation of high-resolution geophysical techniques which can be used to characterize a nulcear waste disposal site is being conducted by the Lawrence Livermore National Laboratory (LLNL) at the request of the US Nuclear Regulatory Commisson (NRC). LLNL is involved in research work aimed at evaluating the current capabilities and limitations of geophysical methods used for site selection. This report provides a brief overview of the capabilities and limitations associated with this technology and explains how our work addresses some of the present limitations. We are examining both seismic and electromagnetic techniques to obtain high-resolution information. We are also assessing the usefulness of geotomography in mapping fracture zones remotely. Finally, we are collecting core samples from a site in an effort to assess the capability of correlating such geophysical data with parameters of interest such as fracture continuity, orientation, and fracture density

  2. Geophysical experiments at Mariano Lake uranium orebody

    International Nuclear Information System (INIS)

    Thompson, D.T.

    1980-01-01

    Several geophysical experiments were performed over the Mariano Lake orebody before mining. Surface self-potential methods, surface-to-hole induced-polarization methods, and reflection-seismic methods were used. These geophysical techniques provided data which relate to the conceptual model of this orebody. Currents generated in the productive formation by oxidation-reduction reactions do not generate measurable potential anomalies at the surface. Surface-to-hole induced-polarization measurements apparently can detect an oxidation-reduction front in the vicinity of an exploration borehole. Reflection-seismic techniques can provide information concening the paleostructure of the area

  3. Geophysical characterization from Itu intrusive suite

    International Nuclear Information System (INIS)

    Pascholati, M.E.

    1989-01-01

    The integrated use of geophysical, geological, geochemical, petrographical and remote sensing data resulted in a substantial increase in the knowledge of the Itu Intrusive Suite. The main geophysical method was gamma-ray spectrometry together with fluorimetry and autoradiography. Three methods were used for calculation of laboratory gamma-ray spectrometry data. For U, the regression method was the best one. For K and Th, equations system and absolute calibration presented the best results. Surface gamma-ray spectrometry allowed comparison with laboratory data and permitted important contribution to the study of environmental radiation. (author)

  4. Geophysical methods for evaluation of plutonic rocks

    International Nuclear Information System (INIS)

    Gibb, R.A.; Scott, J.S.

    1986-04-01

    Geophysical methods are systematically described according to the physical principle and operational mode of each method, the type of information produced, limitations of a technical and/or economic nature, and the applicability of the method to rock-mass evaluation at Research Areas of the Nuclear Fuel Waste Management Program. The geophysical methods fall into three categories: (1) airborne and other reconnaissance surveys, (2) detailed or surface (ground) surveys, and (3) borehole or subsurface surveys. The possible roles of each method in the site-screening and site-evaluation processes of disposal vault site selection are summarized

  5. Annals of the International Geophysical Year solar radio emission during the International Geophysical Year

    CERN Document Server

    Smerd, S F

    1969-01-01

    Annals of the International Geophysical Year, Volume 34: Solar Radio Emission During the International Geophysical Year covers the significant solar radio emission events observed during the International Geophysical Year (IGY). This book is composed of six chapters, and begins with a summary of tabulated quantities describing solar radio emission during the IGY. The tabulated figures illustrate the method of recording the position of radio sources on the sun, the use of symbols in describing the structure of bursts observed at single frequencies, and the different types used in a spectral

  6. A portable marine geophysical data access and management system

    Digital Repository Service at National Institute of Oceanography (India)

    Kunte, P.D.; Narvekar, P.

    Geophysical Oracle Database Management System (GPODMS) that is residing on UNIX True 64 Compaq Alpha server. GPODMS is a stable Oracle database system for longterm storage and systematic management of geophysical data and information of various disciplines...

  7. Overview of Effective Geophysical Methods Used in the Study of ...

    African Journals Online (AJOL)

    Abstract. The Application of various Geophysical Techniques for the assessment of the extent of ... ineffective Geophysical Method may not give true picture of the overall level of pollution in the .... stations shut down or maintenance which halt ...

  8. Evaluation of some Geophysical and Physicochemical ...

    African Journals Online (AJOL)

    PROF HORSFALL

    2018-04-18

    Apr 18, 2018 ... spill point parallel to the pipeline right of way. A research work carried ... of soils has been known to affect soil physio-chemical properties, which in .... The results of the geophysical analysis from the study area are presented ...

  9. Hydro geophysical Investigation for Groundwater Development at ...

    African Journals Online (AJOL)

    ADOWIE PERE

    Environ. Manage. May. 2017. Vol. 21 (3) 527-535. Full-text Available Online at ... is of equal importance with the air we breathe in ... numerical modeling solutions. The electrical geophysical survey method is the .... VES data at twelve (12) sounding points as shown in figure 2; five along traverse one; two along traverse two,.

  10. Geophysical data fusion for subsurface imaging

    International Nuclear Information System (INIS)

    Hoekstra, P.; Vandergraft, J.; Blohm, M.; Porter, D.

    1993-08-01

    A geophysical data fusion methodology is under development to combine data from complementary geophysical sensors and incorporate geophysical understanding to obtain three dimensional images of the subsurface. The research reported here is the first phase of a three phase project. The project focuses on the characterization of thin clay lenses (aquitards) in a highly stratified sand and clay coastal geology to depths of up to 300 feet. The sensor suite used in this work includes time-domain electromagnetic induction (TDEM) and near surface seismic techniques. During this first phase of the project, enhancements to the acquisition and processing of TDEM data were studied, by use of simulated data, to assess improvements for the detection of thin clay layers. Secondly, studies were made of the use of compressional wave and shear wave seismic reflection data by using state-of-the-art high frequency vibrator technology. Finally, a newly developed processing technique, called ''data fusion,'' was implemented to process the geophysical data, and to incorporate a mathematical model of the subsurface strata. Examples are given of the results when applied to real seismic data collected at Hanford, WA, and for simulated data based on the geology of the Savannah River Site

  11. geophysical and geochemical characterization of zango abattoir

    African Journals Online (AJOL)

    Dr A.B.Ahmed

    disposal of hazardous materials, fresh groundwater supplies ... in the groundwater flow system may change considerably the conductivity of the polluted zone; hence the Geo-electric and. Electromagnetic (EM) geophysical methods could effectively be ... this field strength and phase displacement around a fracture zone.

  12. Early geophysical maps published by A. Petermann

    Czech Academy of Sciences Publication Activity Database

    Kozák, Jan; Vaněk, Jiří

    2012-01-01

    Roč. 56, č. 4 (2012), s. 1109-1122 ISSN 0039-3169 Institutional research plan: CEZ:AV0Z30120515 Keywords : August Petermann * Geographische Mitteilungen * geophysical maps Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 0.975, year: 2012

  13. 36 CFR 902.59 - Geological and geophysical information.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Geological and geophysical information. 902.59 Section 902.59 Parks, Forests, and Public Property PENNSYLVANIA AVENUE DEVELOPMENT... Geological and geophysical information. Any geological or geophysical information and data (including maps...

  14. 25 CFR 211.56 - Geological and geophysical permits.

    Science.gov (United States)

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Geological and geophysical permits. 211.56 Section 211.56... FOR MINERAL DEVELOPMENT Rents, Royalties, Cancellations and Appeals § 211.56 Geological and geophysical permits. Permits to conduct geological and geophysical operations on Indian lands which do not...

  15. 25 CFR 212.56 - Geological and geophysical permits.

    Science.gov (United States)

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Geological and geophysical permits. 212.56 Section 212.56... FOR MINERAL DEVELOPMENT Rents, Royalties, Cancellations, and Appeals § 212.56 Geological and geophysical permits. (a) Permits to conduct geological and geophysical operations on Indian lands which do not...

  16. Geophysical Signitures From Hydrocarbon Contaminated Aquifers

    Science.gov (United States)

    Abbas, M.; Jardani, A.

    2015-12-01

    The task of delineating the contamination plumes as well as studying their impact on the soil and groundwater biogeochemical properties is needed to support the remediation efforts and plans. Geophysical methods including electrical resistivity tomography (ERT), induced polarization (IP), ground penetrating radar (GPR), and self-potential (SP) have been previously used to characterize contaminant plumes and investigate their impact on soil and groundwater properties (Atekwana et al., 2002, 2004; Benson et al., 1997; Campbell et al., 1996; Cassidy et al., 2001; Revil et al., 2003; Werkema et al., 2000). Our objective was to: estimate the hydrocarbon contamination extent in a contaminated site in northern France, and to adverse the effects of the oil spill on the groundwater properties. We aim to find a good combination of non-intrusive and low cost methods which we can use to follow the bio-remediation process, which is planned to proceed next year. We used four geophysical methods including electrical resistivity tomography, IP, GPR, and SP. The geophysical data was compared to geochemical ones obtained from 30 boreholes installed in the site during the geophysical surveys. Our results have shown: low electrical resistivity values; high chargeability values; negative SP anomalies; and attenuated GPR reflections coincident with groundwater contamination. Laboratory and field geochemical measurements have demonstrated increased groundwater electrical conductivity and increased microbial activity associated with hydrocarbon contamination of groundwater. Our study results support the conductive model suggested by studies such as Sauck (2000) and Atekwana et al., (2004), who suggest that biological alterations of hydrocarbon contamination can substantially modify the chemical and physical properties of the subsurface, producing a dramatic shift in the geo-electrical signature from resistive to conductive. The next stage of the research will include time lapse borehole

  17. Geophysical monitoring in a hydrocarbon reservoir

    Science.gov (United States)

    Caffagni, Enrico; Bokelmann, Goetz

    2016-04-01

    Extraction of hydrocarbons from reservoirs demands ever-increasing technological effort, and there is need for geophysical monitoring to better understand phenomena occurring within the reservoir. Significant deformation processes happen when man-made stimulation is performed, in combination with effects deriving from the existing natural conditions such as stress regime in situ or pre-existing fracturing. Keeping track of such changes in the reservoir is important, on one hand for improving recovery of hydrocarbons, and on the other hand to assure a safe and proper mode of operation. Monitoring becomes particularly important when hydraulic-fracturing (HF) is used, especially in the form of the much-discussed "fracking". HF is a sophisticated technique that is widely applied in low-porosity geological formations to enhance the production of natural hydrocarbons. In principle, similar HF techniques have been applied in Europe for a long time in conventional reservoirs, and they will probably be intensified in the near future; this suggests an increasing demand in technological development, also for updating and adapting the existing monitoring techniques in applied geophysics. We review currently available geophysical techniques for reservoir monitoring, which appear in the different fields of analysis in reservoirs. First, the properties of the hydrocarbon reservoir are identified; here we consider geophysical monitoring exclusively. The second step is to define the quantities that can be monitored, associated to the properties. We then describe the geophysical monitoring techniques including the oldest ones, namely those in practical usage from 40-50 years ago, and the most recent developments in technology, within distinct groups, according to the application field of analysis in reservoir. This work is performed as part of the FracRisk consortium (www.fracrisk.eu); this project, funded by the Horizon2020 research programme, aims at helping minimize the

  18. Geophysical studies of ilmenite and monazite placers in Itaparica island - Bahia State

    International Nuclear Information System (INIS)

    Cerqueira Neto, J.X.

    1976-01-01

    A ground scintillometric survey along the southern shores of the island of Itaparica, Bahia, Brazil, discovered numerous anomalies. Detailed geophysical and sedimentological studies proved that the major anomaly is due to an ilmenite placer deposit. A comparison of the field geophysical measurements (ground scintillometry, magnetics and induced polarization) with the laboratory samples suggests the following: i) Ground scintillometry is suitable for locating and delineating such placer deposits. ii) Induced polarization is useful to investigate the deposit at depth. iii) Magnetic surveys were not particularly useful in spite of the high ilmenite concentration, thus they do not appear to be a helpful survey tool in this case. A more extensive prospecting program in the Brazilian coastal areas particularly in the State of Bahia are also proposed. (author)

  19. Geological and geophysical characterization of the Rio das Velhas greenstone belt

    International Nuclear Information System (INIS)

    Araujo Vieira, Marcelo de; Silva, Sergio Lima da

    1995-01-01

    In order to obtain larger information about the high potentiality of the Greenstone belt Rio das Velhas, it has been, nowadays, the object of various geological research works, among then, the Detailed Geophysical Airborne Survey of the Rio das Velhas Project (DNPM/Mining Companies Partnership) and the Geological Mapping in the scale of 1:25.000 (DNPM/CPRM). Such initiatives have brought, by themselves, valuable contributions for better knowledge of the region. In this context, this study shows a proposal of integration of geological and geophysical data, as much quantitative as qualitative, with the aim at the maximum advantage of the obtained data for the next prospecting and geological mapping works. (author). 6 refs., 2 figs., 1 tab

  20. Review of geophysical characterization methods used at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    GV Last; DG Horton

    2000-03-23

    This paper presents a review of geophysical methods used at Hanford in two parts: (1) shallow surface-based geophysical methods and (2) borehole geophysical methods. This review was not intended to be ``all encompassing'' but should represent the vast majority (>90% complete) of geophysical work conducted onsite and aimed at hazardous waste investigations in the vadose zone and/or uppermost groundwater aquifers. This review did not cover geophysical methods aimed at large-scale geologic structures or seismicity and, in particular, did not include those efforts conducted in support of the Basalt Waste Isolation Program. This review focused primarily on the more recent efforts.

  1. Review of geophysical characterization methods used at the Hanford Site

    International Nuclear Information System (INIS)

    GV Last; DG Horton

    2000-01-01

    This paper presents a review of geophysical methods used at Hanford in two parts: (1) shallow surface-based geophysical methods and (2) borehole geophysical methods. This review was not intended to be ''all encompassing'' but should represent the vast majority (>90% complete) of geophysical work conducted onsite and aimed at hazardous waste investigations in the vadose zone and/or uppermost groundwater aquifers. This review did not cover geophysical methods aimed at large-scale geologic structures or seismicity and, in particular, did not include those efforts conducted in support of the Basalt Waste Isolation Program. This review focused primarily on the more recent efforts

  2. Geoarchaeological prospection of a Medieval manor in the Dutch polders using an electromagnetic induction sensor in combination with soil augerings

    NARCIS (Netherlands)

    Simpson, D.; Lehouck, A.; Meirvenne, M.; Bourgeois, J.; Thoen, E.; Vervloet, J.

    2008-01-01

    In archaeological prospection, geophysical sensors are increasingly being used to locate buried remains within their natural context. To cover a large area in sufficient detail, an electromagnetic induction sensor can be very useful, measuring simultaneously the electrical conductivity and the

  3. Introduction to the JEEG Agricultural Geophysics Special Issue

    Science.gov (United States)

    Allred, Barry J.; Smith, Bruce D.

    2010-01-01

    Near-surface geophysical methods have become increasingly important tools in applied agricultural practices and studies. The great advantage of geophysical methods is their potential rapidity, low cost, and spatial continuity when compared to more traditional methods of assessing agricultural land, such as sample collection and laboratory analysis. Agricultural geophysics investigations commonly focus on obtaining information within the soil profile, which generally does not extend much beyond 2 meters beneath the ground surface. Although the depth of interest oftentimes is rather shallow, the area covered by an agricultural geophysics survey can vary widely in scale, from experimental plots (10 s to 100 s of square meters), to farm fields (10 s to 100 s of hectares), up to the size of watersheds (10 s to 100 s of square kilometers). To date, three predominant methods—resistivity, electromagnetic induction (EMI), and ground-penetrating radar (GPR)—have been used to obtain surface-based geophysical measurements within agricultural settings. However, a recent conference on agricultural geophysics (Bouyoucos Conference on Agricultural Geophysics, September 8–10, 2009, Albuquerque, New Mexico; www.ag-geophysics.org) illustrated that other geophysical methods are being applied or developed. These include airborne electromagnetic induction, magnetometry, seismic, and self-potential methods. Agricultural geophysical studies are also being linked to ground water studies that utilize deeper penetrating geophysical methods than normally used.

  4. Geophysical Exploration. New site exploration method

    Energy Technology Data Exchange (ETDEWEB)

    Imai, Tsuneo; Otomo, Hideo; Sakayama, Toshihiko

    1988-07-25

    Geophysical exploration is used for geologic survey to serve purposes in civil engineering. New methods are being developed inside and outside Japan and are used to serve various purposes. This paper discusses recently developed techniques based on the measurement of seismic waves and electric potential. It also explains seismic tomography, radar tomography, and resistivity tomography which are included in the category of geotomography. At present, effort is being made to apply geophysical exploration technology to problems which were considered to be unsuitable for conventional exploration techniques. When such effort proceeds successfully, it is necessary to develop technology for presenting results quickly and exploration equipment which can work in various conditions. (10 figs, 15 refs)

  5. Geophysical contribution for Folha Patos (PI, Brazil)

    International Nuclear Information System (INIS)

    Rodrigues, J.C.; Mota, A.C.; Metelo, M.J.; Vasconcelos, R.M. de

    1990-01-01

    As a part of PLGB (Brazilian Geologic reconnaissance program), executed in 1986-1989 period by Companhia de Pesquisa de Recursos Minerais - CPRM to the Departamento Nacional da Producao Mineral - DNPM, geophysical studies were carried out in the Patos Quadrangle (SB. 24-Y-C-V). Gravimetric, magnetometric and scintillometric methods were performed over selected profiles, and the interpretation of aerial gamma-spectrometric maps (total, potassium, uranium and thorium channels) were integrated with geologic data. Computer programs Magpoly and Gravpoly were utilized in modelling geophysical surface data. Results of theses studies were auxiliary to the geological mapping of that area, specially in localizing lithological contacts and differentiations, tectonic structures, and revealed the structural compartimentation among crustal segments with distinct metamorphic grades. (author)

  6. Geophysical and atmospheric evolution of habitable planets.

    Science.gov (United States)

    Lammer, Helmut; Selsis, Frank; Chassefière, Eric; Breuer, Doris; Griessmeier, Jean-Mathias; Kulikov, Yuri N; Erkaev, Nikolai V; Khodachenko, Maxim L; Biernat, Helfried K; Leblanc, Francois; Kallio, Esa; Lundin, Richard; Westall, Frances; Bauer, Siegfried J; Beichman, Charles; Danchi, William; Eiroa, Carlos; Fridlund, Malcolm; Gröller, Hannes; Hanslmeier, Arnold; Hausleitner, Walter; Henning, Thomas; Herbst, Tom; Kaltenegger, Lisa; Léger, Alain; Leitzinger, Martin; Lichtenegger, Herbert I M; Liseau, René; Lunine, Jonathan; Motschmann, Uwe; Odert, Petra; Paresce, Francesco; Parnell, John; Penny, Alan; Quirrenbach, Andreas; Rauer, Heike; Röttgering, Huub; Schneider, Jean; Spohn, Tilman; Stadelmann, Anja; Stangl, Günter; Stam, Daphne; Tinetti, Giovanna; White, Glenn J

    2010-01-01

    The evolution of Earth-like habitable planets is a complex process that depends on the geodynamical and geophysical environments. In particular, it is necessary that plate tectonics remain active over billions of years. These geophysically active environments are strongly coupled to a planet's host star parameters, such as mass, luminosity and activity, orbit location of the habitable zone, and the planet's initial water inventory. Depending on the host star's radiation and particle flux evolution, the composition in the thermosphere, and the availability of an active magnetic dynamo, the atmospheres of Earth-like planets within their habitable zones are differently affected due to thermal and nonthermal escape processes. For some planets, strong atmospheric escape could even effect the stability of the atmosphere.

  7. Geophysical investigation, Salmon Site, Lamar County, Mississippi

    International Nuclear Information System (INIS)

    1995-02-01

    Geophysical surveys were conducted in 1992 and 1993 on 21 sites at the Salmon Site (SS) located in Lamar County, Mississippi. The studies are part of the Remedial Investigation/Feasibility Study (RI/FS) being conducted by IT Corporation for the U.S. Department of Energy (DOE). During the 1960s, two nuclear devices and two chemical tests were detonated 826 meters (in) (2710 feet [ft]) below the ground surface in the salt dome underlying the SS. These tests were part of the Vela Uniform Program conducted to improve the United States capability to detect, identify, and locate underground nuclear detonations. The RI/FS is being conducted to determine if any contamination is migrating from the underground shot cavity in the salt dome and if there is any residual contamination in the near surface mud and debris disposal pits used during the testing activities. The objective of the surface geophysical surveys was to locate buried debris, disposal pits, and abandoned mud pits that may be present at the site. This information will then be used to identify the locations for test pits, cone penetrometer tests, and drill hole/monitor well installation. The disposal pits were used during the operation of the test site in the 1960s. Vertical magnetic gradient (magnetic gradient), electromagnetic (EM) conductivity, and ground-penetrating radar (GPR) surveys were used to accomplish these objectives. A description of the equipment used and a theoretical discussion of the geophysical methods are presented Appendix A. Because of the large number of figures relative to the number of pages of text, the geophysical grid-location maps, the contour maps of the magnetic-gradient data, the contour maps of the EM conductivity data, and the GPR traverse location maps are located in Appendix B, Tabs I through 22. In addition, selected GPR records are located in Appendix C

  8. Monitoring Global Geophysical Fluids by Space Geodesy

    Science.gov (United States)

    Chao, Benjamin F.; Dehant, V.; Gross, R. S.; Ray, R. D.; Salstein, D. A.; Watkins, M.

    1999-01-01

    Since its establishment on 1/1/1998 by the International Earth Rotation Service, the Coordinating Center for Monitoring Global Geophysical Fluids (MGGF) and its seven Special Bureaus have engaged in an effort to support and facilitate the understanding of the geophysical fluids in global geodynamics research. Mass transports in the atmosphere-hydrosphere-solid Earth-core system (the "global geophysical fluids") will cause the following geodynamic effects on a broad time scale: (1) variations in the solid Earth's rotation (in length-of-day and polar motion/nutation) via the conservation of angular momentum and effected by torques at the fluid-solid Earth interface; (2) changes in the global gravitational field according to Newton's gravitational law; and (3) motion in the center of mass of the solid Earth relative to that of the whole Earth ("geocenter") via the conservation of linear momentum. These minute signals have become observable by space geodetic techniques, primarily VLBI, SLR, GPS, and DORIS, with ever increasing precision/accuracy and temporal/spatial resolution. Each of the seven Special Bureaus within MGGF is responsible for calculations related to a specific Earth component or aspect -- Atmosphere, Ocean, Hydrology, Ocean Tides, Mantle, Core, and Gravity/Geocenter. Angular momenta and torques, gravitational coefficients, and geocenter shift will be computed for geophysical fluids based on global observational data, and from state-of-the-art models, some of which assimilate such data. The computed quantities, algorithm and data formats are standardized. The results are archived and made available to the scientific research community. This paper reports the status of the MGGF activities and current results.

  9. Development of geophysical data management system

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Tai-Sup; Lee, Sang-Kyu; Gu, Sung-Bon [Korea Institute of Geology Mining and Materials, Taejon (KR)] (and others)

    1999-12-01

    (1) Development of a complete geophysical database system under C/S environment for data management. (2) Development of database system for the general user, who has not special knowledge of database, under the Internet environment. (3) Operation of the Web service for the general user. (4) Development of the stand-alone database system for a small-scale research group such as college and engineering consultant firms. (author). 15 refs.

  10. Application of geophysical methods for fracture characterization

    International Nuclear Information System (INIS)

    Lee, K.H.; Majer, E.L.; McEvilly, T.V.; California Univ., Berkeley, CA; Morrison, H.F.; California Univ., Berkeley, CA

    1990-01-01

    One of the most crucial needs in the design and implementation of an underground waste isolation facility is a reliable method for the detection and characterization of fractures in zones away from boreholes or subsurface workings. Geophysical methods may represent a solution to this problem. If fractures represent anomalies in the elastic properties or conductive properties of the rocks, then the seismic and electrical techniques may be useful in detecting and characterizing fracture properties. 7 refs., 3 figs

  11. The Legacy of Benoit Mandelbrot in Geophysics

    Science.gov (United States)

    Turcotte, D. L.

    2001-12-01

    The concept of fractals (fractional dimension) was introduced by Benoit Mandelbrot in his famous 1967 Science paper. The initial application was to the length of the coastline of Britain. A milestone in the appreciation of the fractal concept by geophysicists was the Union session of the AGU on fractals led off by Benoit in 1986. Although fractals have found important applications in almost every branch of the physical, biological, and social sciences, fractals have been particularly useful in geophysics. Drainage networks are fractal. The frequency-magnitude distribution of earthquakes is fractal. The scale invariance of landscapes and many other geological processes is due to the applicability of power-law (fractal) distributions. Clouds are often fractal. Porosity distributions are fractal. In an almost independent line of research, Benoit in collaboration with James Wallace and others developed the concept of self-affine fractals. The original applications were primarily to time series in hydrology and built on the foundation laid by Henry Hurst. Fractional Gaussian noises and fractional Brownian motions are ubiquitous in geophysics. These are expressed in terms of the power-law relation between the power-spectral density S and frequency f, S ~ f{ β }, examples are β = 0 (white noise), β = 1 (1/f noise), β = 2 (Brownian motion). Of particular importance in geophysics are fractional noises with β = 0.5, these are stationary but have long-range persistent and have a Hurst exponent H = 0.7. Examples include river flows, tree rings, sunspots, varves, etc. Two of Benoit Mandelbrot's major contributions in geophysics as in other fields are: (1) an appreciation of the importance of fat-tail, power-law (fractal) distributions and (2) an appreciation of the importance of self-similar long-range persistence in both stationary time series (noises) and nonstationary time series (walks).

  12. Airborne geophysics in Australia: the government contribution

    International Nuclear Information System (INIS)

    Denham, D.

    1997-01-01

    Airborne geophysical data sets provide important cost-effective information for resource exploration and land management. Improved techniques, developed recently, now enable high-resolution aeromagnetic and gamma-ray surveys to be used extensively by the resource industries to improve the cost effectiveness of exploration and by governments to encourage resource development and sustainable management of natural resources. Although airborne geophysical techniques have been used extensively and are now used almost routinely by mineral explorers, it is only in the last few years that governments have been involved as major players in the acquisition of data. The exploration industry pioneered the imaging of high-resolution airborne geophysical data sets in the early 1980s and, at the same time, the Northern Territory Government started a modest program of flying the Northern Territory, at 500 m flight-line spacing, to attract mineral exploration. After the start of the National Geoscience Mapping Accord in 1990, the then BMR and its State/Territory counterparts used the new high-resolution data as an essential ingredient to underpin mapping programs. These new data sets proved so valuable that, starting in 1992/93, the annual expenditure by the Commonwealth and States/Northern Territory increased from roughly $2 million per year to a massive $10 million per year. These investments by governments, although unlikely to be permanently sustainable, have been made to encourage and expand exploration activity by providing new high-quality data sets in industry at very low cost. There are now approximately 11 million line-km of airborne geophysical data available in databases held by the Commonwealth, States and Northern Territory. The results so far have seen a significant increase in exploration activity in States that have embarked on this course (e.g. South Australia and Victoria), and the information provided from these surveys is proving crucial to understanding the

  13. Geophysical logging of the Harwell boreholes

    International Nuclear Information System (INIS)

    Brightman, M.A.

    1983-08-01

    A comprehensive geophysical borehole logging survey was carried out on each of three deep boreholes drilled at the Harwell research site. KOALA and PETRA computer programs were used to analyse and interpret the logs to obtain continuous quantitative estimates of the geological and hydrogeological properties of the sequences penetrated at the Harwell site. Quantitative estimates of the mineral composition and porosity of the cores samples were made. (UK)

  14. Borehole geophysics in nuclear power plant siting

    International Nuclear Information System (INIS)

    Crosby, J.W.; Scott, J.D.

    1979-01-01

    Miniaturized borehole geophysical equipment designed for use in ground-water investigations can be adapted to investigations of nuclear power plant sites. This equipment has proved to be of value in preliminary and comprehensive studies of interior basins where thick sequences of Quaternary clastic sediment, occasionally with associated volcanic rocks, pose problems of stratigraphic correlation. The unconsolidated nature of the deposits generally requires that exploratory holes be cased, which ordinarily restricts the borehole geophysical studies to the radiation functions--natural gamma, gamma-gamma, neutron-gamma, and neutron-epithermal neutron logs. Although a single log response may be dominant in a given area, correlations derive from consideration of all log responses as a composite group. Because major correlations usually are based upon subtle differences in the physical properties of the penetrated sediment, high-resolution logging procedures are employed with some sacrifice of the quantitative perameters important to petroleum technology. All geophysical field data are recorded as hard copy and as digital information on punched paper tape

  15. Borehole geophysics in nuclear power plant siting

    International Nuclear Information System (INIS)

    Crosby, J.W.; Scott, J.D.

    1979-01-01

    Miniaturized borehole geophysical equipment designed for use in ground-water investigations can be adapted to investigations of nuclear power plant sites. This equipment has proved to be of value in preliminary and comprehensive studies of interior basins where thick sequences of Quaternary clastic sediment, occasionally with associated volcanic rocks, pose problems of stratigraphic correlation. The unconsolidated nature of the deposits generally requires that exploratory holes be cased, which ordinarily restricts the borehole geophysical studies to the radiation functions--natural gamma, gamma-gamma, neutron-gamma, and neutron-epithermal neutron logs. Although a single log response may be dominant in a given area, correlations derive from consideration of all log responses as a composite group. Because major correlations usually are based upon subtle differences in the physical properties of the penetrated sediment, high-resolution logging procedures are employed with some sacrifice of the quantitative parameters important to petroleum technology. All geophysical field data are recorded as hard copy and as digital information on punched paper tape. Digital data are subsequently computer processed and plotted to scales that enhance the stratigraphic data being correlated. Retention of the data in analog format permits rapid review, whereas computer plotting allows playback and detailed examination of log sections and sequences that may be attenuated on hard copy because of the logarithmic nature of the response to the physical property being examined

  16. Optimal geophysical complex and methods for investigation of peleogene and upper cretaceous deposits in search and exploratory wells in the northern areas of Tumen region

    International Nuclear Information System (INIS)

    Nelepchenko, O.M.; Akhiyarov, V.Kh.

    1975-01-01

    A number of geophysical studies of the Paleogene and upper Cretaceous deposits in prospecting and exploration boreholes in the northern part of the Tyumen field are described. The studies include, besides the essential ones, neutron logging with thermal neutrons (NKT-50), infrared logging, and lateral logging

  17. Comparison study to the use of geophysical methods at archaeological sites observed by various remote sensing techniques in the Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Křivánek, Roman

    2017-01-01

    Roč. 7, č. 3 (2017), č. článku 81. ISSN 2076-3263 Grant - others:AV ČR(CZ) R300021421 Institutional support: RVO:67985912 Keywords : archaeological prospection * remote sensing * non-destructive archaeology * geophysical survey Subject RIV: AC - Archeology, Anthropology, Ethnology OBOR OECD: Archaeology http://www.mdpi.com/2076-3263/7/3/81/pdf

  18. Methodology of Detailed Geophysical Examination of the Areas of World Recognized Religious and Cultural Artifacts

    Science.gov (United States)

    Eppelbaum, Lev

    2010-05-01

    the low altitudes (3-5 meters) will help geophysical cover all the studied area with a regular observation step (Eppelbaum, 2008). At the final step all these measurements (including results of the previous works) could be compiled to 4D models of different geophysical parameters (Eppelbaum and Ben-Avraham, 2002; Eppelbaum et al., 2010). Analysis of temperature field in the boreholes drilled in the vicinity of the studied site will permit to estimate the temperature (e.g., Eppelbaum et al., 2006c) in the historical period when this artifact was constructed and, correspondingly, utilize this characteristic for investigation of mechanical and other properties of the ancient building material. Studying of temporal variations of magnetic (e.g., Finkelstein and Eppelbaum) and VLF fields can be also used for determination of nature of some buried ancient remains. The geophysical investigations must be combined with geochemical, paleostructural, paleobiogeographical, paleomorphological and other methods (Eppelbaum et al., 2010). Application of informational parameters (Khesin et al., 1996; Eppelbaum et al., 2003b) will permit to present all available data by the use of integral convolution units. REFERENCES Eppelbaum, L.V., 1999. Quantitative interpretation of resistivity anomalies using advanced methods developed in magnetic prospecting. Trans. of the XXIV General Assembly of the Europ. Geoph. Soc., Strasburg 1 (1), p.166. Eppelbaum, L.V., 2000. Applicability of geophysical methods for localization of archaeological targets: An introduction. Geoinformatics, 11, No.1, 19-28. Eppelbaum, L.V., 2005. Multilevel observations of magnetic field at archaeological sites as additional interpreting tool. Proceed. of the 6th Conference of Archaeological Prospection, Roma, Italy, 4 pp. Eppelbaum, L.V., 2008. Remote operated vehicle geophysical survey using magnetic and VLF methods: proposed schemes for data processing and interpretation. Proceed. of the Symp. on the Application of

  19. Description of geophysical data in the SKB database GEOTAB

    International Nuclear Information System (INIS)

    Sehlstedt, S.

    1988-02-01

    For the storage of different types of data collected by SKB a database called Geotab has been created. The following data are stored in the database: Background data, geological data, geophysical data, hydrogeological data, hydrochemical data. This report describes the data flow for different types of geophysical measurements. The descriptions start with measurements and end with the storage of data in Geotab. Each process and the resulting data volume is presented separately. The geophysical measurements have been divided into the following subjects: Geophysical ground surface measurements, profile measurements; geophysical ground surface measurements, grid net measurements; geophysical borehole logging; petrophysical measurements. Each group of measurements is described in an individual chapter. In each chapter several measuring techniques are described and each method has a data table and a flyleaf table in Geotab. (orig.)

  20. Informing groundwater models with near-surface geophysical data

    DEFF Research Database (Denmark)

    Herckenrath, Daan

    Over the past decade geophysical methods have gained an increased popularity due to their ability to map hydrologic properties. Such data sets can provide valuable information to improve hydrologic models. Instead of using the measured geophysical and hydrologic data simultaneously in one inversion...... approach, many of the previous studies apply a Sequential Hydrogeophysical Inversion (SHI) in which inverted geophysical models provide information for hydrologic models. In order to fully exploit the information contained in geophysical datasets for hydrological purposes, a coupled hydrogeophysical...... inversion was introduced (CHI), in which a hydrologic model is part of the geophysical inversion. Current CHI-research has been focussing on the translation of simulated state variables of hydrologic models to geophysical model parameters. We refer to this methodology as CHI-S (State). In this thesis a new...

  1. A fractured rock geophysical toolbox method selection tool

    Science.gov (United States)

    Day-Lewis, F. D.; Johnson, C.D.; Slater, L.D.; Robinson, J.L.; Williams, J.H.; Boyden, C.L.; Werkema, D.D.; Lane, J.W.

    2016-01-01

    Geophysical technologies have the potential to improve site characterization and monitoring in fractured rock, but the appropriate and effective application of geophysics at a particular site strongly depends on project goals (e.g., identifying discrete fractures) and site characteristics (e.g., lithology). No method works at every site or for every goal. New approaches are needed to identify a set of geophysical methods appropriate to specific project goals and site conditions while considering budget constraints. To this end, we present the Excel-based Fractured-Rock Geophysical Toolbox Method Selection Tool (FRGT-MST). We envision the FRGT-MST (1) equipping remediation professionals with a tool to understand what is likely to be realistic and cost-effective when contracting geophysical services, and (2) reducing applications of geophysics with unrealistic objectives or where methods are likely to fail.

  2. Artificial intelligence and dynamic systems for geophysical applications

    CERN Document Server

    Gvishiani, Alexei

    2002-01-01

    The book presents new clustering schemes, dynamical systems and pattern recognition algorithms in geophysical, geodynamical and natural hazard applications. The original mathematical technique is based on both classical and fuzzy sets models. Geophysical and natural hazard applications are mostly original. However, the artificial intelligence technique described in the book can be applied far beyond the limits of Earth science applications. The book is intended for research scientists, tutors, graduate students, scientists in geophysics and engineers

  3. ''Radon-emanometry'' applied to internal geophysics

    International Nuclear Information System (INIS)

    Seidel, J.L.

    1982-02-01

    An experimental set-up for in ground radon 222 measurements has been realised with solid state track detectors (cellulose nitrates CN85 and LR115). A preliminary study of radon activity variations has been conducted over various sites expecting using radon as one of forerunner geophysical parameters of volcanic eruptions and earthquakes predictions. The first data obtained in the field are presented: Etna (Sicily), Krafla (Iceland), Poas and Arenal (Costa Rica), Colima and Paricutin (Mexico) for active volcanoes, Ech Cheliff (Algeria) and Alsace (France) for sismotectonic areas [fr

  4. Surface exploration geophysics applied to the moon

    International Nuclear Information System (INIS)

    Ander, M.E.

    1984-01-01

    With the advent of a permanent lunar base, the desire to explore the lunar near-surface for both scientific and economic purposes will arise. Applications of exploration geophysical methods to the earth's subsurface are highly developed. This paper briefly addresses some aspects of applying this technology to near surface lunar exploration. It is noted that both the manner of application of some techniques, as well as their traditional hierarchy as assigned on earth, should be altered for lunar exploration. In particular, electromagnetic techniques may replace seismic techniques as the primary tool for evaluating near-surface structure

  5. Geophysical techniques used in uranium exploration

    International Nuclear Information System (INIS)

    Meyer, P.A.

    1977-01-01

    The impetus in uranium exploration has been generated by the increase in price to about $40.00 a pound or $2.50 an ounce, a price that approaches a precious metal. Not only has the search increased in the traditional sandstone areas, but also in the igneous and metamorphic environments. Because uranium is one of the elements along with thorium and potassium that radiate alpha, beta and gamma rays; direct methods have been developed and improved upon to measure this radiation while indirect traditional geophysical methods have been used to assist in locating associated favorable structural and ''stratigraphic'' zones

  6. The Expanding Marketplace for Applied Geophysics

    Science.gov (United States)

    Carlson, N.; Sirles, P.

    2012-12-01

    While the image of geophysics for the proverbial "layman" often seems limited to volcanoes and earthquakes, and to the geoscientist this image enlarges to include oil or minerals exploration and whole earth studies, there has been a steady increase in the application of geophysics into the realm of "daily life", such as real estate deals, highway infrastructure, and flood protection. This expansion of applications can be attributed to the improved economics from advances in equipment and interpretation. Traditional geophysical methods that at one time often only fit within the budgets of oil, gas, and minerals exploration programs can now be economically applied to much smaller scale needs like contaminant mapping, landfill delineation, and levee investigations. A real-world, economic example of this expanding marketplace is our company, which began very small and was aimed almost exclusively at the minerals exploration market. Most of our growth has been in the last 10 years, when we have expanded to five offices and a staff with almost 40 geoscientist degrees (21 in geophysics); much of this growth has been in the non-oil, non-minerals arenas. While much of our work still includes minerals exploration, other projects this year include wind-farm foundation studies, cavity detection above underground nuclear tests, landfill studies, acid mine drainage problems, and leaks in evaporation ponds. A methodology example of this expanding market is the induced polarization (IP) survey, once primarily used for minerals exploration, particularly large porphyry copper deposits, but now efficient enough to also use in environmental studies. The IP method has been particularly useful in delineating and characterizing old, poorly documented landfills, and recent research suggests it may also be useful in monitoring the accelerated biodegradation processes used in some cases to rehabilitate the sites. Compared to temperature monitoring systems, IP may be more useful in providing

  7. Geophysical borehole logging test procedure: Final draft

    International Nuclear Information System (INIS)

    1986-09-01

    The purpose of geophysical borehole logging from the At-Depth Facility (ADF) is to provide information which will assist in characterizing the site geologic conditions and in classifying the engineering characteristics of the rock mass in the vicinity of the ADF. The direct goals of borehole logging include identification of lithologic units and their correlation from hole to hole, identification of fractured or otherwise porous or permeable zones, quantitative or semi-quantitative estimation of various formation properties, and evaluation of factors such as the borehole diameter and orientation. 11 figs., 4 tabs

  8. Large natural geophysical events: planetary planning

    International Nuclear Information System (INIS)

    Knox, J.B.; Smith, J.V.

    1984-09-01

    Geological and geophysical data suggest that during the evolution of the earth and its species, that there have been many mass extinctions due to large impacts from comets and large asteroids, and major volcanic events. Today, technology has developed to the stage where we can begin to consider protective measures for the planet. Evidence of the ecological disruption and frequency of these major events is presented. Surveillance and warning systems are most critical to develop wherein sufficient lead times for warnings exist so that appropriate interventions could be designed. The long term research undergirding these warning systems, implementation, and proof testing is rich in opportunities for collaboration for peace

  9. Geophysical excitation of the chandler wobble revisited

    OpenAIRE

    A. Brzezinski; Henryk Dobslaw; Robert Dill; Maik Thomas

    2012-01-01

    The 14-month Chandler wobble is a free motion of the pole excited by geophysical processes. Several recent studies demonstrated that the combination of atmospheric and oceanic excitations contains enough power at the Chandler frequency and is significantly coherent with the observed free wobble. This paper is an extension of earlier studies by Brzeziński and Nastula (Adv Space Res 30:195–200, 2002), Brzeziński et al. (Oceanic excitation of the Chandler wobble using a 50-year time series of oc...

  10. Using Geophysical Data in the Texas High School Course, Geology, Meteorology, and Oceanography

    Science.gov (United States)

    Ellins, K.; Olson, H.; Pulliam, J.; Schott, M. J.

    2002-12-01

    construct a petroleum prospect for a small oil and gas company. TEXTEAMS GMO Leadership Training uses mentoring of teachers by fellow teachers to implement effective teaching strategies and rigorous science curricula. More than 75 GMO teachers participated in the institutes and they in turn have trained about 2,250 other teachers. The number of students reached is about 67,500. The success of the GMO institutes have led to new partnerships between scientists and educators, and allowed UTIG to secure additional funds to promote K-12 Earth science education in Texas. They can serve as a template for other programs that are relevant to local communities and which utilize geophysical data and science.

  11. Geophysical characterization of Range-Front Faults, Snake Valley, Nevada

    Science.gov (United States)

    Asch, Theodore H.; Sweetkind, Donald S.

    2010-01-01

    In September 2009, the U.S. Geological Survey, in cooperation with the National Park Service, collected audiomagnetotelluric (AMT) data along two profiles on the eastern flank of the Snake Range near Great Basin National Park to refine understanding of the subsurface geology. Line 1 was collected along Baker Creek, was approximately 6.7-km long, and recorded subsurface geologic conditions to approximately 800-m deep. Line 2, collected farther to the southeast in the vicinity of Kious Spring, was 2.8-km long, and imaged to depths of approximately 600 m. The two AMT lines are similar in their electrical response and are interpreted to show generally similar subsurface geologic conditions. The geophysical response seen on both lines may be described by three general domains of electrical response: (1) a shallow (mostly less than 100-200-m deep) domain of highly variable resistivity, (2) a deep domain characterized by generally high resistivity that gradually declines eastward to lower resistivity with a steeply dipping grain or fabric, and (3) an eastern domain in which the resistivity character changes abruptly at all depths from that in the western domain. The shallow, highly variable domain is interpreted to be the result of a heterogeneous assemblage of Miocene conglomerate and incorporated megabreccia blocks overlying a shallowly eastward-dipping southern Snake Range detachment fault. The deep domain of generally higher resistivity is interpreted as Paleozoic sedimentary rocks (Pole Canyon limestone and Prospect Mountain Quartzite) and Mesozoic and Cenozoic plutonic rocks occurring beneath the detachment surface. The range of resistivity values within this deep domain may result from fracturing adjacent to the detachment, the presence of Paleozoic rock units of variable resistivities that do not crop out in the vicinity of the lines, or both. The eastern geophysical domain is interpreted to be a section of Miocene strata at depth, overlain by Quaternary alluvial

  12. Geophysical Analysis of BP`s Luva Discovery: 6707/10-1

    Energy Technology Data Exchange (ETDEWEB)

    Marten, Robert F.

    1998-12-31

    The Nyk High area of the Norwegian Sea is seen as a significant hydrocarbon opportunity. The area is situated in the Voering Basin I area, and lies in a water depth of 1200-1500 m. A 900 km{sup 2} 3-D seismic survey was acquired in 1996 and made the basis for the subsequent license and prospect evaluation.The 3-D confirmed the presence of a pronounced flat-spot in the main prospect which was named Luva. This presentation relates to the work which will present a comprehensive examination of both pre and post-drill geophysical analysis, with particular attention given to fluid phase prediction and the forward program. 6 figs.

  13. New perspectives on superparameterization for geophysical turbulence

    International Nuclear Information System (INIS)

    Majda, Andrew J.; Grooms, Ian

    2014-01-01

    This is a research expository paper regarding superparameterization, a class of multi-scale numerical methods designed to cope with the intermittent multi-scale effects of inhomogeneous geophysical turbulence where energy often inverse-cascades from the unresolved scales to the large scales through the effects of waves, jets, vortices, and latent heat release from moist processes. Original as well as sparse space–time superparameterization algorithms are discussed for the important case of moist atmospheric convection including the role of multi-scale asymptotic methods in providing self-consistent constraints on superparameterization algorithms and related deterministic and stochastic multi-cloud parameterizations. Test models for the statistical numerical analysis of superparameterization algorithms are discussed both to elucidate the performance of the basic algorithms and to test their potential role in efficient multi-scale data assimilation. The very recent development of grid-free seamless stochastic superparameterization methods for geophysical turbulence appropriate for “eddy-permitting” mesoscale ocean turbulence is presented here including a general formulation and illustrative applications to two-layer quasigeostrophic turbulence, and another difficult test case involving one-dimensional models of dispersive wave turbulence. This last test case has randomly generated solitons as coherent structures which collapse and radiate wave energy back to the larger scales, resulting in strong direct and inverse turbulent energy cascades

  14. Geophysical investigations of the Romuvaara area, Finland

    International Nuclear Information System (INIS)

    Saksa, P.; Paananen, M.

    1991-06-01

    In the study area of Romuvaara, investigations have been carried out during 1987 - 90 with the aim of finding out whether the polyphasically deformed Precambrian gneiss complex is suitable for the final disposal of spent nuclear fuel. The bedrock has been studied by geological, geophysical, geohydrological and geochemical methods. Airborne, ground and borehole geophysical surveys were used in studying the rock type distribution, fracturing and hydraulic conductivity of the bedrock to a depth of one kilometre. Airborne surveys (magnetic, radiometric and two electromagnetic methods) and ground surveys (VLF and VLF-R, magnetic and soil radar methods) were useful in distinguishing the metadiabases, amphibolites and granodiorites from the less magnetized migmatites. The electromagnetic and seismic refraction surveys were used in locating crushed and fractured zones. The rock type distribution was studied by single-hole logging of susceptibility, natural γ radiation and radiometric γ-γ -density. Electrical and acoustic logging served the mapping of fractures and the interpretation of water injection tests. The flow conditions in the boreholes were studied by fluid logging and tube-wave sounding. The rock volume surrounding the boreholes was mapped by borehole radar with a frequency of 22 MHz. The upper parts of the boreholes were also studied by vertical radar profiling (VRP). Larger volumes of rock were mapped by vertical seismic profiling (VSP) using 4 - 5 transmitter shotholes per borehole

  15. Applications of geophysics to LLRW sites

    International Nuclear Information System (INIS)

    Olhoeft, G.R.

    1984-01-01

    There are many geophysical techniques which noninvasively acquire information about hazardous waste sites. Waste buried in metal drums can be located using magnetic and electromagnetic methods. Ground penetrating radar can provide detailed cross-sectional imagery of the ground to locate metallic and nonmetallic objects, and to delineate water tables and geologic structure. Complex resistivity can locate clay horizons or clay liners and detect organic reactions that may increase the permeability of the clay. Seismic refraction and reflection techniques can detail hydrology and stratigraphy. Microgravity techniques can find local density anomalies that may indicate voids or future subsidence problems. Radiometric techniques can directly detect near-surface radioisotope migration. Nothing works all the time, however. Magnetics cannot detect a badly corroded drum. Complex resistivity cannot detect clay-organic reactions if there are no clays. Ground penetrating radar cannot penetrate high conductivity or high clay content soils. Seismic cannot penetrate loose fill. Each technique has advantages and disadvantages inherent to the method and equipment as well as limitations imposed by the geohydrology at the site of application. Examples from both the Radioactive Waste and Hazardous Chemical Waste programs illustrate the advantages and disadvantages of geophysical methods

  16. Geophysical investigation and characterization with USRADS

    International Nuclear Information System (INIS)

    Flynn, C.R.; Blair, M.S.; Nyquist, J.E.

    1992-01-01

    This paper describes two recent case histories in which commercially available geophysical instruments were used with an innovative tracking and mapping system called USRADS (UltraSonic Ranging And Data System) that automates data location and collection. USRADS uses ultrasonics to provide real-time surveyor positioning and radio links to transmit the surveyor data to an on-site computer for storage and real-time display. USRADS uses a standard 386 computer for data collection and includes real-time color display of the findings. It also includes numerous analysis and display formats for on-site, as well as utilities to facilitate post-process analysis of the findings. The objective of one project was to locate several suspect waste disposal trenches and to map their boundaries. The second was to locate and map the presence of subsurface unexploded ordinance (UXO) at a suspect artillery impact area. A Geonics EM31 terrain conductivity meter interfaced to USRADS was used to map the suspect trenches. A Schonstedt GA-52C magnetometer interfaced to USRADS was used to map the subsurface UXO. Correlation of findings to known site features and additional knowledge about the sites indicates that these efforts did locate and map the geophysical features including the suspect waste trenches and the subsurface UXO. Images of the findings generated on-site and during post-processing are included

  17. Spatial and temporal distribution of geophysical disasters

    Directory of Open Access Journals (Sweden)

    Cvetković Vladimir

    2013-01-01

    Full Text Available Natural disasters of all kinds (meteorological, hydrological, geophysical, climatological and biological are increasingly becoming part of everyday life of modern human. The consequences are often devastating, to the life, health and property of people, as well to the security of states and the entire international regions. In this regard, we noted the need for a comprehensive investigation of the phenomenology of natural disasters. In addition, it is particularly important to pay attention to the different factors that might correlate with each other to indicate more dubious and more original facts about their characteristics. However, as the issue of natural disasters is very wide, the subject of this paper will be forms, consequences, temporal and spatial distribution of geophysical natural disasters, while analysis of other disasters will be the subject of our future research. Using an international database on natural disasters of the centre for research on the epidemiology of disasters (CRED based in Brussels, with the support of the statistical analysis (SPSS, we tried to point out the number, trends, consequences, the spatial and temporal distribution of earthquakes, volcanic eruptions and dry mass movements in the world, from 1900 to 2013.

  18. Geophysical logging for mineral exploration and development

    International Nuclear Information System (INIS)

    Plouffe, R.D.

    1981-01-01

    It is possible to retrieve from small-diameter holes geophysical data for qualitative interpretation in exploration and quantitative interpretation in the development of orebodies. The primary objectives in the exploration stage are to identify where, within a hole, economic minerals are, and to help in lithological interpretations. Other aspects, which are more quantitative, are the interpretation of downhole logs for parameters which can be used in surface geophysical methods (i.e. density for gravity surveys, acoustic velocities for seismic surveys, and magnetic susceptibility for airborne and ground magnetic surveys). Recent advances in equipment design, portability and durability have made downhole logging in exploration more inexpensive and reliable. This new equipment is being used to generate very precise quantitative results. This is especially true on uranium development projects. The interpretation of gamma logs for eU 3 O 8 values has finally become precise enough that they have begun to replace chemical values in reserve calculations. Another part of development data is density and equilibrium information, which, with today's technology, is being derived from downhole probing. In the years to come, the trends for many metals are toward neutron activation techniques, or in-situ assaying, and the use of multiple logs for better lithological and physical rock property determinations. (auth)

  19. Geophysical methods for monitoring soil stabilization processes

    Science.gov (United States)

    Saneiyan, Sina; Ntarlagiannis, Dimitrios; Werkema, D. Dale; Ustra, Andréa

    2018-01-01

    Soil stabilization involves methods used to turn unconsolidated and unstable soil into a stiffer, consolidated medium that could support engineered structures, alter permeability, change subsurface flow, or immobilize contamination through mineral precipitation. Among the variety of available methods carbonate precipitation is a very promising one, especially when it is being induced through common soil borne microbes (MICP - microbial induced carbonate precipitation). Such microbial mediated precipitation has the added benefit of not harming the environment as other methods can be environmentally detrimental. Carbonate precipitation, typically in the form of calcite, is a naturally occurring process that can be manipulated to deliver the expected soil strengthening results or permeability changes. This study investigates the ability of spectral induced polarization and shear-wave velocity for monitoring calcite driven soil strengthening processes. The results support the use of these geophysical methods as soil strengthening characterization and long term monitoring tools, which is a requirement for viable soil stabilization projects. Both tested methods are sensitive to calcite precipitation, with SIP offering additional information related to long term stability of precipitated carbonate. Carbonate precipitation has been confirmed with direct methods, such as direct sampling and scanning electron microscopy (SEM). This study advances our understanding of soil strengthening processes and permeability alterations, and is a crucial step for the use of geophysical methods as monitoring tools in microbial induced soil alterations through carbonate precipitation.

  20. SIGKit: Software for Introductory Geophysics Toolkit

    Science.gov (United States)

    Kruse, S.; Bank, C. G.; Esmaeili, S.; Jazayeri, S.; Liu, S.; Stoikopoulos, N.

    2017-12-01

    The Software for Introductory Geophysics Toolkit (SIGKit) affords students the opportunity to create model data and perform simple processing of field data for various geophysical methods. SIGkit provides a graphical user interface built with the MATLAB programming language, but can run even without a MATLAB installation. At this time SIGkit allows students to pick first arrivals and match a two-layer model to seismic refraction data; grid total-field magnetic data, extract a profile, and compare this to a synthetic profile; and perform simple processing steps (subtraction of a mean trace, hyperbola fit) to ground-penetrating radar data. We also have preliminary tools for gravity, resistivity, and EM data representation and analysis. SIGkit is being built by students for students, and the intent of the toolkit is to provide an intuitive interface for simple data analysis and understanding of the methods, and act as an entrance to more sophisticated software. The toolkit has been used in introductory courses as well as field courses. First reactions from students are positive. Think-aloud observations of students using the toolkit have helped identify problems and helped shape it. We are planning to compare the learning outcomes of students who have used the toolkit in a field course to students in a previous course to test its effectiveness.

  1. Reply to the comment by B. Ghobadipour and B. Mojarradi "M. Abedi, S.A. Torabi, G.-H. Norouzi and M. Hamzeh; ELECTRE III: A knowledge-driven method for integration of geophysical data with geological and geochemical data in mineral prospectivity mapping"

    Science.gov (United States)

    Abedi, Maysam

    2015-06-01

    This reply discusses the results of two previously developed approaches in mineral prospectivity/potential mapping (MPM), i.e., ELECTRE III and PROMETHEE II as well-known methods in multi-criteria decision-making (MCDM) problems. Various geo-data sets are integrated to prepare MPM in which generated maps have acceptable matching with the drilled boreholes. Equal performance of the applied methods is indicated in the studied case. Complementary information of these methods is also provided in order to help interested readers to implement them in MPM process.

  2. Digital Underground (Shh. It's really Applied Geophysics!)

    Science.gov (United States)

    McAdoo, B. G.

    2003-12-01

    Digital Underground (Geology/Physics 241) at Vassar College is an applied geophysics course designed for a liberal arts curriculum, and has nothing to do with Shock G and Tupac Shakur. Applied geophysics courses have a history of using geophysical methods on environmental contamination-type applications (underground storage tanks, leach fields, etc.). Inspired in large part by the Keck Geology Consortium project run by Franklin and Marshall College geophysicist (Robert Sternberg) and archaeologist (James Delle) in an old slave village in Jamaica in 1999, this class examines the history of slavery in New York's Hudson Valley region by way of its forgotten African-American graveyards. This multidisciplinary approach to an issue draws students from across the curriculum- we have had our compliments of geologists and physicists, along with students from sociology, environmental studies, history, and Africana studies. The name of the class and content are designed to attract a non-traditional student of geophysics.- The project-based nature of the class appeals to student yearning for an out-of-classroom experience. The uncontrolled nature of the class demonstrates the complications that occur in real-word situations. The class has in the past broken itself into two teams- a surveying team and an archival research team. Archival research is done (usually by the social scientists in the class) to add a human dimension to the geophysical. The surveying equipment used in delineating these forgotten graveyards includes a Total Station surveyor, an electrical resistivity meter, a magnetometer, and a ground penetrating radar. All students must have a rudimentary understanding of the physics behind the equipment (to the level of where they can explain it to the general public), and the methods used by those studying the archives. This is a project-based class, where the instructor acts as a project manager, and the students make the decisions regarding the survey itself. Every

  3. Self-Organizing Maps: A Data Mining Tool for the Analysis of Airborne Geophysical Data Collected over the Brazilian Amazon

    Science.gov (United States)

    Carneiro, C.; Fraser, S. J.; Crosta, A. P.; Silva, A.; Barros, C.

    2011-12-01

    Regional airborne geophysical data sets are being collected worldwide to promote mineral exploration and resource development. These data sets often are collected over highly prospective terranes, where access is limited or there are environmental concerns. Such regional surveys typically consist of two or more sensor packages being flown in an aircraft over the survey area and vast amounts of near-continuous data can be acquired in a relatively short time. Increasingly, there is also a need to process such data in a timely fashion to demonstrate the data's value and indicate the potential return or value of the survey to the funding agency. To assist in the timely analysis of such regional data sets, we have used an exploratory data mining approach: the Self Organizing Map (SOM). Because SOM is based on vector quantization and measures of vector similarity, it is an ideal tool to analyze a data set consisting of disparate geophysical input parameters to look for relationships and trends. We report on our use of SOM to analyze part of a regional airborne geophysical survey collected over the prospective Anapu-Tuere region of the Brazilian Amazon. Magnetic and spectrometric gamma ray data were used as input to our SOM analysis, and the results used to discriminate and identify various rock types and produce a "pseudo" geological map over the study area. The ability of SOM to define discrete domains of rock-types with similar properties allowed us to expand upon existing geological knowledge of the area for mapping purposes; and, often it was the combination of the magnetic and radiometric responses that identified a lithology's unique response. One particular unit was identified that had an association with known gold mineralization, which consequently highlighted the prospectivity of that unit elsewhere in the survey area. Our results indicate that SOM can be used for the semi-automatic analysis of regional airborne geophysical data to assist in geological mapping

  4. Cogema's world-wide experience in prospecting and surveying uranium deposits

    International Nuclear Information System (INIS)

    Berville, M.; Faure, D.

    1985-01-01

    Having briefly outlined the history of uranium prospection in France, the authors describe COGEMA's prospection operations at home and abroad and analyse the methods applied according to different contexts (granitic and metamorphic rocks, ''sub-discordant'' deposits, sedimentary deposits, prospection in detail of a qualified zone); at the same time they show how technology has developed, particularly in the fields of geophysics and radiometry [fr

  5. Reconstructing former urban environments by combining geophysical electrical methods and geotechnical investigations—an example from Chania, Greece

    International Nuclear Information System (INIS)

    Soupios, P M; Vallianatos, F; Loupasakis, C

    2008-01-01

    Nowadays, geophysical prospecting is implemented in order to resolve a diversity of geological, hydrogeological, environmental and geotechnical problems. Although plenty of applications and a lot of research have been conducted in the countryside, only a few cases have been reported in the literature concerning urban areas, mainly due to high levels of noise present that aggravate most of the geophysical methods or due to spatial limitations that hinder normal method implementation. Among all geophysical methods, electrical resistivity tomography has proven to be a rapid technique and the most robust with regard to urban noise. This work presents a case study in the urban area of Chania (Crete Island, Greece), where electrical resistivity tomography (ERT) has been applied for the detection and identification of possible buried ancient ruins or other man-made structures, prior to the construction of a building. The results of the detailed geophysical survey indicated eight areas of interest providing resistivity anomalies. Those anomalies were analysed and interpreted combining the resistivity readings with the geotechnical borehole data and the historical bibliographic reports—referring to the 1940s (Xalkiadakis 1997 Industrial Archaeology in Chania Territory pp 51–62). The collected ERT-data were processed by applying advanced algorithms in order to obtain a 3D-model of the study area that depicts the interesting subsurface structures more clearly and accurately

  6. Solar Wind Monitor--A School Geophysics Project

    Science.gov (United States)

    Robinson, Ian

    2018-01-01

    Described is an established geophysics project to construct a solar wind monitor based on a nT resolution fluxgate magnetometer. Low-cost and appropriate from school to university level it incorporates elements of astrophysics, geophysics, electronics, programming, computer networking and signal processing. The system monitors the earth's field in…

  7. Technical Note: Calibration and validation of geophysical observation models

    NARCIS (Netherlands)

    Salama, M.S.; van der Velde, R.; van der Woerd, H.J.; Kromkamp, J.C.; Philippart, C.J.M.; Joseph, A.T.; O'Neill, P.E.; Lang, R.H.; Gish, T.; Werdell, P.J.; Su, Z.

    2012-01-01

    We present a method to calibrate and validate observational models that interrelate remotely sensed energy fluxes to geophysical variables of land and water surfaces. Coincident sets of remote sensing observation of visible and microwave radiations and geophysical data are assembled and subdivided

  8. Comparison study of selected geophysical and geotechnical parameters

    DEFF Research Database (Denmark)

    Nissen, Randi Warncke; Poulsen, Søren Erbs

    Successful foundation of constructions relies on accurate characterization of the geotechnical properties of the subsurface. By implementing data from geophysical surveys, the placement of geotechnical drillings can be significantly improved, potentially reducing the number of required drillings....... This case study is mainly to compare geophysical investigations (MEP/IP) with existing PACES data and information from geotechnical drillings....

  9. 3D geophysical inversion for contact surfaces

    Science.gov (United States)

    Lelièvre, Peter; Farquharson, Colin

    2014-05-01

    Geologists' interpretations about the Earth typically involve distinct rock units with contacts (interfaces) between them. In contrast, standard minimum-structure volumetric inversions (performed on meshes of space-filling cells) recover smooth models inconsistent with such interpretations. There are several approaches through which geophysical inversion can help recover models with the desired characteristics. Some authors have developed iterative strategies in which several volumetric inversions are performed with regularization parameters changing to achieve sharper interfaces at automatically determined locations. Another approach is to redesign the regularization to be consistent with the desired model characteristics, e.g. L1-like norms or compactness measures. A few researchers have taken approaches that limit the recovered values to lie within particular ranges, resulting in sharp discontinuities; these include binary inversion, level set methods and clustering strategies. In most of the approaches mentioned above, the model parameterization considers the physical properties in each of the many space-filling cells within the volume of interest. The exception are level set methods, in which a higher dimensional function is parameterized and the contact surface is determined from the zero-level of that function. However, even level-set methods rely on an underlying volumetric mesh. We are researching a fundamentally different type of inversion that parameterizes the Earth in terms of the contact surfaces between rock units. 3D geological Earth models typically comprise wireframe surfaces of tessellated triangles or other polygonal planar facets. This wireframe representation allows for flexible and efficient generation of complicated geological structures. Therefore, a natural approach for representing a geophysical model in an inversion is to parameterize the wireframe contact surfaces as the coordinates of the nodes (facet vertices). The geological and

  10. Geophysical subsurface imaging and interface identification.

    Energy Technology Data Exchange (ETDEWEB)

    Pendley, Kevin; Bochev, Pavel Blagoveston; Day, David Minot; Robinson, Allen Conrad; Weiss, Chester Joseph

    2005-09-01

    Electromagnetic induction is a classic geophysical exploration method designed for subsurface characterization--in particular, sensing the presence of geologic heterogeneities and fluids such as groundwater and hydrocarbons. Several approaches to the computational problems associated with predicting and interpreting electromagnetic phenomena in and around the earth are addressed herein. Publications resulting from the project include [31]. To obtain accurate and physically meaningful numerical simulations of natural phenomena, computational algorithms should operate in discrete settings that reflect the structure of governing mathematical models. In section 2, the extension of algebraic multigrid methods for the time domain eddy current equations to the frequency domain problem is discussed. Software was developed and is available in Trilinos ML package. In section 3 we consider finite element approximations of De Rham's complex. We describe how to develop a family of finite element spaces that forms an exact sequence on hexahedral grids. The ensuing family of non-affine finite elements is called a van Welij complex, after the work [37] of van Welij who first proposed a general method for developing tangentially and normally continuous vector fields on hexahedral elements. The use of this complex is illustrated for the eddy current equations and a conservation law problem. Software was developed and is available in the Ptenos finite element package. The more popular methods of geophysical inversion seek solutions to an unconstrained optimization problem by imposing stabilizing constraints in the form of smoothing operators on some enormous set of model parameters (i.e. ''over-parametrize and regularize''). In contrast we investigate an alternative approach whereby sharp jumps in material properties are preserved in the solution by choosing as model parameters a modest set of variables which describe an interface between adjacent regions in

  11. Earth Rotation Dynamics: Review and Prospects

    Science.gov (United States)

    Chao, Benjamin F.

    2004-01-01

    Modem space geodetic measurement of Earth rotation variations, particularly by means of the VLBI technique, has over the years allowed studies of Earth rotation dynamics to advance in ever-increasing precision, accuracy, and temporal resolution. A review will be presented on our understanding of the geophysical and climatic causes, or "excitations", for length-of-day change, polar motion, and nutations. These excitations sources come from mass transports that constantly take place in the Earth system comprised of the atmosphere, hydrosphere, cryosphere, lithosphere, mantle, and the cores. In this sense, together with other space geodetic measurements of time-variable gravity and geocenter motion, Earth rotation variations become a remote-sensing tool for the integral of all mass transports, providing valuable information about the latter on a wide range of spatial and temporal scales. Future prospects with respect to geophysical studies with even higher accuracy and resolution will be discussed.

  12. Multigroup neutron data base for nuclear geophysics

    International Nuclear Information System (INIS)

    Dworak, D.; Loskiewicz, J.

    1989-01-01

    The average group constants for the total, elastic, inelastic and capture cross sections as well as the average cosine of the scattering angle for elastic scattering and the average logarithmic energy decrement for elastic scattering have been obtained at two temperatures (300 and 400 deg K), using the ENDF/B-4 data and the IAEA-NDS pre-processing codes. The extended Abagyan group structure and the weighting spectrum of type 1/E were applied in course of the calculations. Self-shielding effect was not taken into account. All cross sections were Doppler broadened for both, 300 and 400 deg K temperatures. Under above assumptions, the average group constants were obtained for exactly 22 ENDF materials, which are of special importance for nuclear geophysics applications. 10 refs., 15 figs., 44 tabs. (author)

  13. Geophysical examinations of deposits and old sites

    International Nuclear Information System (INIS)

    1991-01-01

    Geomagnetic total field measurements by proton magnetometers with memories form the systematic exploration of suspected surfaces of old sites and old sites of an important, flexible and reasonably priced geophysical process. From experience, there are two important main applications. These are firstly the detailed work on location problems jointly with and supplementing multi-temporal evaluations of the air picture and secondly to locate iron in deposits. The particular advantage of geo-magnetics is that even in the most difficult measurement conditions, with the aid of the suitable analytical method evaluation, clear results and practically usable information can be obtained. In comparison with this, other high resolution methods of measurement, such as electromagnetic charting, for example (problem of integral anomaly pictures which cannot be evaluated) and geo-radar (loam covering, trickled water saturation) are limited to a considerably narrower measurement and evaluation spectrum in practical applications. (orig.) [de

  14. Avalanches in functional materials and geophysics

    CERN Document Server

    Saxena, Avadh; Planes, Antoni

    2017-01-01

    This book provides the state-of-the art of the present understanding of avalanche phenomena in both functional materials and geophysics. The main emphasis of the book is analyzing these apparently different problems within the common perspective of out-of-equilibrium phenomena displaying spatial and temporal complexity that occur in a broad range of scales. Many systems, when subjected to an external force, respond intermittently in the form of avalanches that often span over a wide range of sizes, energies and durations. This is often related to a class of critical behavior characterized by the absence of characteristic scales. Typical examples are magnetization processes, plastic deformation and failure occuring in functional materials. These phenomena share many similarities with seismicity arising from the earth crust failure due to stresses that originate from plate tectonics.

  15. Geophysical characterization of contaminated muddy sediments

    International Nuclear Information System (INIS)

    McDermott, I. R.; English, G. E.

    1997-01-01

    A non-intrusive, seismic subbottom profile survey of pond sediments was conducted on a former U.S.Naval Facility at Argentia, Newfoundland, to characterize the nature and extent of contamination. An IKB Seistec boomer was used in conjunction with C-CORE's HI-DAPT digital data acquisition and processing system and differential GPS system. The survey was successful in locating regions of soft muddy sediments and in determining the thickness of these deposits. Subsurface buried objects, which are potential sources of pollution, were also identified. Intrusive profiling of the sediment was done with a new tool, the Soil Stiffness Probe, which combines two geophysical measurement systems to determine bulk density and shear stiffness. The muddy sediments were found to be highly 'fluidized', indicating that they could be easily removed with a suction dredge. 4 refs., 5 figs

  16. Cosmic Muon Detection for Geophysical Applications

    Directory of Open Access Journals (Sweden)

    László Oláh

    2013-01-01

    Full Text Available A portable cosmic muon detector has been developed for environmental, geophysical, or industrial applications. The device is a tracking detector based on the Close Cathode Chamber, an MWPC-like technology, allowing operation in natural underground caves or artificial tunnels, far from laboratory conditions. The compact, low power consumption system with sensitive surface of 0.1 m2 measures the angular distribution of cosmic muons with a resolution of 10 mrad, allowing for a detailed mapping of the rock thickness above the muon detector. Demonstration of applicability of the muon telescope (REGARD Muontomograph for civil engineering and measurements in artificial underground tunnels or caverns are presented.

  17. Software complex for geophysical data visualization

    Science.gov (United States)

    Kryukov, Ilya A.; Tyugin, Dmitry Y.; Kurkin, Andrey A.; Kurkina, Oxana E.

    2013-04-01

    The effectiveness of current research in geophysics is largely determined by the degree of implementation of the procedure of data processing and visualization with the use of modern information technology. Realistic and informative visualization of the results of three-dimensional modeling of geophysical processes contributes significantly into the naturalness of physical modeling and detailed view of the phenomena. The main difficulty in this case is to interpret the results of the calculations: it is necessary to be able to observe the various parameters of the three-dimensional models, build sections on different planes to evaluate certain characteristics and make a rapid assessment. Programs for interpretation and visualization of simulations are spread all over the world, for example, software systems such as ParaView, Golden Software Surfer, Voxler, Flow Vision and others. However, it is not always possible to solve the problem of visualization with the help of a single software package. Preprocessing, data transfer between the packages and setting up a uniform visualization style can turn into a long and routine work. In addition to this, sometimes special display modes for specific data are required and existing products tend to have more common features and are not always fully applicable to certain special cases. Rendering of dynamic data may require scripting languages that does not relieve the user from writing code. Therefore, the task was to develop a new and original software complex for the visualization of simulation results. Let us briefly list of the primary features that are developed. Software complex is a graphical application with a convenient and simple user interface that displays the results of the simulation. Complex is also able to interactively manage the image, resize the image without loss of quality, apply a two-dimensional and three-dimensional regular grid, set the coordinate axes with data labels and perform slice of data. The

  18. Environmental Geophysical Study of the Groundwater Mineralization in a Plot of the Cotonou Littoral Zone (South Benin

    Directory of Open Access Journals (Sweden)

    Yalo Nicaise

    2012-01-01

    Full Text Available Geophysical investigations comprising electrical resistivity and electromagnetic conductivities methods were deployed in a 350 m2 sector, strewn with 11 wells. Within the framework of an environmental study on a small scale in the south of Benin, the water conductivity of these wells was measured to determine in a direct way mineralization of the coastal water table in the littoral zone. This environmental study aimed to prospect by the geophysical methods the space extension of the water table mineralization obtained by direct measurements of water conductivity in the well and the depth of the fresh water/salted water interface in the coastal aquifer. Electromagnetic measurements of conductivities made it possible to chart a gradient of mineralization in the northwest direction. The logs of vertical electric soundings showed a deepening of the fresh water/salted water interface in the southern part and its rupture in the northern part. The electrical resistivities of the interface are sensitive to the degree of its mineralization. It has been observed that the geophysical methods in electrical and electromagnetic prospection are a great contribution to the environmental study of the water table mineralization in the littoral zone for a sustainable management of the water resource.

  19. Applied Geophysics Opportunities in the Petroleum Industry

    Science.gov (United States)

    Olgaard, D. L.; Tikku, A.; Roberts, J. C.; Martinez, A.

    2012-12-01

    Meeting the increasing global demand for energy over the next several decades presents daunting challenges to engineers and scientists, including geoscientists of all disciplines. Many opportunities exist for geophysicists to find and produce oil and gas in a safe, environmentally responsible and affordable manner. Successful oil and gas exploration involves a 'Plates to Pores' approach that integrates multi-scale data from satellites, marine and land seismic and non-seismic field surveys, lab experiments, and even electron microscopy. The petroleum industry is at the forefront of using high performance computing to develop innovative methods to process and analyze large volumes of seismic data and perform realistic numerical modeling, such as finite element fluid flow and rock deformation simulations. Challenging and rewarding jobs in exploration, production and research exist for students with BS/BA, MS and PhD degrees. Geophysics students interested in careers in the petroleum industry should have a broad foundation in science, math and fundamental geosciences at the BS/BA level, as well as mastery of the scientific method, usually gained through thesis work at MS and PhD levels. Field geology or geophysics experience is also valuable. Other personal attributes typical for geoscientists to be successful in industry include a passion for solving complex geoscience problems, the flexibility to work on a variety of assignments throughout a career and skills such as teamwork, communication, integration and leadership. In this presentation we will give examples of research, exploration and production opportunities for geophysicists in petroleum companies and compare and contrast careers in academia vs. industry.

  20. Marine Geology and Geophysics Field Course Offered by The University of Texas Institute for Geophysics

    Science.gov (United States)

    Duncan, D.; Davis, M. B.; Allison, M. A.; Gulick, S. P.; Goff, J. A.; Saustrup, S.

    2012-12-01

    The University of Texas Institute for Geophysics, part of the Jackson School of Geosciences, annually offers an intensive three-week marine geology and geophysics field course during the spring-summer intersession. Now in year six, the course provides hands-on instruction and training for graduate and upper-level undergraduate students in data acquisition, processing, interpretation, and visualization. Techniques covered include high-resolution seismic reflection, CHIRP sub-bottom profiling, multibeam bathymetry, sidescan sonar, several types of sediment coring, grab sampling, and the sedimentology of resulting seabed samples (e.g., core description, grain size analysis, x-radiography, etc.). Students participate in an initial period of classroom instruction designed to communicate geological context of the field area (which changes each year) along with theoretical and technical background on each field method. The class then travels to the Gulf Coast for a week of at-sea field work. Our field sites at Port Aransas and Galveston, Texas, and Grand Isle, Louisiana, have provided ideal locations for students to investigate coastal and sedimentary processes of the Gulf Coast and continental shelf through application of geophysical techniques. In the field, students rotate between two research vessels: one vessel, the 22' aluminum-hulled R/V Lake Itasca, owned and operated by UTIG, is used principally for multibeam bathymetry, sidescan sonar, and sediment sampling; the other, NOAA's R/V Manta or the R/V Acadiana, operated by the Louisiana Universities Marine Consortium, and is used primarily for high-resolution seismic reflection, CHIRP sub-bottom profiling, multibeam bathymetry, gravity coring, and vibrocoring. While at sea, students assist with survey design, learn instrumentation set up, acquisition parameters, data quality control, and safe instrument deployment and retrieval. In teams of three, students work in onshore field labs preparing sediment samples for

  1. Application of the geophysical and geochemical methods to the research for uranium; Application a la recherche de l'uranium des methodes geophysiques et geochimiques

    Energy Technology Data Exchange (ETDEWEB)

    Gangloff, A M; Collin, C R; Grimbert, A; Sanselme, H [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    Since 1954, at the Commissariat a l'energie atomique, geophysics and geochemistry have been added to routine geological surveying and radiometric observations. Geophysical prospecting reveals the tectonic structures linked with French uranium deposits and gives an idea of favorable zones. Geochemistry adds to the geophysical indirect methods further details on the distribution of uranium traces in the soils. This method is direct and specific. Uranium assay in waters and alluvial deposits find its use in preliminary exploration. (author) [French] Depuis 1954, au CEA, a l'observation geologique directe et aux mesures radiometriques, sont venues s'ajouter des methodes relevant de la geophysique et de la geochimie. La prospection geophysique apporte des precisions sur les structures tectoniques auxquelles sont lies les gisements d'uranium fran is et sur la notion de zones favorables. Aux methodes indirectes de la geophysique, la prospection geochimique ajoute des precisions sur la repartition de l'uranium en traces dans les sols, cette methode est directe et specifique. Le dosage de l'uranium dans les eaux et les alluvions trouve son application dans la prospection de reconnaissance. (auteur)

  2. Modeling geophysical complexity: a case for geometric determinism

    Directory of Open Access Journals (Sweden)

    C. E. Puente

    2007-01-01

    Full Text Available It has been customary in the last few decades to employ stochastic models to represent complex data sets encountered in geophysics, particularly in hydrology. This article reviews a deterministic geometric procedure to data modeling, one that represents whole data sets as derived distributions of simple multifractal measures via fractal functions. It is shown how such a procedure may lead to faithful holistic representations of existing geophysical data sets that, while complementing existing representations via stochastic methods, may also provide a compact language for geophysical complexity. The implications of these ideas, both scientific and philosophical, are stressed.

  3. Geophysical survey at Tell Barri (Syria)

    Science.gov (United States)

    Florio, Giovanni; Cella, Federico; Pierobon, Raffaella; Castaldo, Raffaele; Castiello, Gabriella; Fedi, Maurizio

    2010-05-01

    A geophysical survey at the archaeological site of Tell Barri (Northeasterm Syria) was carried out. The Tell (Arab word for "hill") is 32 m high with a whole covered area of 37 hectares. The Tell, with its huge dimensions and with a great amount of pottery on the surface, is a precious area to study the regional history from IV mill. BC to Islamic and Medieval period. The geophysical study consisted in magnetic and electromagnetic measurements in the lower town area. The aim of this survey was to provide evidence of the presence of buried archaeological structures around an already excavated area. The wall structures in the Tell Barri are made by backed or crude clay bricks. The instrument used for the magnetic survey was an Overhauser-effect proton magnetometer (Gem GSM-19GF), in gradiometric configuration. The electromagnetic instrument used, Geonics Ltd. EM31, implements a Frequency Domain Electromagnetic Method (FDEM). It was used in vertical coils configuration, and this choice should grant a maximum theoretical investigation depth of about 6 m. Before starting the measurements on a larger scale, we conducted a magnetic and EM test profile on some already excavated, outcropping, baked bricks walls. Results were encouraging, because clear and strong magnetic and EM anomalies were recorded over the outcropping walls. However, in the survey area these structures are covered by 3 to 4 meters of clay material and the increased sensors-structures distance will reduce the anomalies amplitude. Moreover, the cover material is disseminated with bricks, basalt blocks and ceramics, all of which have relevant magnetic properties. After magnetic surveying some 50 m side square areas, we verified that unfortunately their effect resulted to be dominant with respect to the deeper wall structures, degrading too much the signal-to-noise ratio. The processing and analysis of magnetic data is however currently underway and will determine decisions about further use of this method

  4. Detecting Buried Archaeological Remains by the Use of Geophysical Data Processing with 'Diffusion Maps' Methodology

    Science.gov (United States)

    Eppelbaum, Lev

    2015-04-01

    observe that as a result of the above operations we embedded the original data into 3-dimensional space where data related to the AT subsurface are well separated from the N data. This 3D set of the data representatives can be used as a reference set for the classification of newly arriving data. Geophysically it means a reliable division of the studied areas for the AT-containing and not containing (N) these objects. Testing this methodology for delineation of archaeological cavities by magnetic and gravity data analysis displayed an effectiveness of this approach. References Alperovich, L., Eppelbaum, L., Zheludev, V., Dumoulin, J., Soldovieri, F., Proto, M., Bavusi, M. and Loperte, A., 2013. A new combined wavelet methodology applied to GPR and ERT data in the Montagnole experiment (French Alps). Journal of Geophysics and Engineering, 10, No. 2, 025017, 1-17. Averbuch, A., Hochman, K., Rabin, N., Schclar, A. and Zheludev, V., 2010. A diffusion frame-work for detection of moving vehicles. Digital Signal Processing, 20, No.1, 111-122. Averbuch A.Z., Neittaanmäki, P., and Zheludev, V.A., 2014. Spline and Spline Wavelet Methods with Applications to Signal and Image Processing. Volume I: Periodic Splines. Springer. Coifman, R.R. and Lafon, S., 2006. Diffusion maps, Applied and Computational Harmonic Analysis. Special issue on Diffusion Maps and Wavelets, 21, No. 7, 5-30. Eppelbaum, L.V., 2011. Study of magnetic anomalies over archaeological targets in urban conditions. Physics and Chemistry of the Earth, 36, No. 16, 1318-1330. Eppelbaum, L.V., 2014a. Geophysical observations at archaeological sites: Estimating informational content. Archaeological Prospection, 21, No. 2, 25-38. Eppelbaum, L.V. 2014b. Four Color Theorem and Applied Geophysics. Applied Mathematics, 5, 358-366. Eppelbaum, L.V., Alperovich, L., Zheludev, V. and Pechersky, A., 2011. Application of informational and wavelet approaches for integrated processing of geophysical data in complex environments. Proceed

  5. Depth study of insular shelf electric sounding Adelaida anomaly (Rivera)[Geochemical prospection of Uranium in Uruguay]; Estudio de la profundidad del zocalo por sondeos electricos Anomalia Adelaida (Rivera)

    Energy Technology Data Exchange (ETDEWEB)

    Cicalese, H

    1983-07-01

    In the framework of the Uranium prospecting programme, the DINAMIGE geophysical equipment have made a study. It was about the depth of insular shelf electric sounding on the anomalies zone of Adelaida. This equipment carried out a study of the following subjects: geographical location, geologic framework, geophysical intervention, developed works, methods and material and results.

  6. Depth study of insular shelf electric sounding in the Puntas de Abrojal anomaly[Study of Uranium geochemical prospection in Uruguay]; Estudio de la profundidad del zocalo por sondeos electricos en la Anomalia Puntas de Abrojal

    Energy Technology Data Exchange (ETDEWEB)

    Cicalese, H

    1983-07-01

    In the framework of the Uranium prospecting Programme, a geophysics team composed by BRGM and DINAMIGE workers were carried out an study about of insular shelf electric sounding on the Puntas de Abrojal area.A geographical location, geologic framework, geophysical survey and methods, materials and results were given.

  7. National Geophysical Data Center Tsunami Data Archive

    Science.gov (United States)

    Stroker, K. J.; Dunbar, P. K.; Brocko, R.

    2008-12-01

    NOAA's National Geophysical Data Center (NGDC) and co-located World Data Center for Geophysics and Marine Geology long-term tsunami data archive provides data and derived products essential for tsunami hazard assessment, forecast and warning, inundation modeling, preparedness, mitigation, education, and research. As a result of NOAA's efforts to strengthen its tsunami activities, the long-term tsunami data archive has grown from less than 5 gigabyte in 2004 to more than 2 terabytes in 2008. The types of data archived for tsunami research and operation activities have also expanded in fulfillment of the P.L. 109-424. The archive now consists of: global historical tsunami, significant earthquake and significant volcanic eruptions database; global tsunami deposits and proxies database; reference database; damage photos; coastal water-level data (i.e. digital tide gauge data and marigrams on microfiche); bottom pressure recorder (BPR) data as collected by Deep-ocean Assessment and Reporting of Tsunamis (DART) buoys. The tsunami data archive comes from a wide variety of data providers and sources. These include the NOAA Tsunami Warning Centers, NOAA National Data Buoy Center, NOAA National Ocean Service, IOC/NOAA International Tsunami Information Center, NOAA Pacific Marine Environmental Laboratory, U.S. Geological Survey, tsunami catalogs, reconnaissance reports, journal articles, newspaper articles, internet web pages, and email. NGDC has been active in the management of some of these data for more than 50 years while other data management efforts are more recent. These data are openly available, either directly on-line or by contacting NGDC. All of the NGDC tsunami and related databases are stored in a relational database management system. These data are accessible over the Web as tables, reports, and interactive maps. The maps provide integrated web-based GIS access to individual GIS layers including tsunami sources, tsunami effects, significant earthquakes

  8. Redesigning Curricula in Geology and Geophysics

    Science.gov (United States)

    Sparks, D. W.; Ewing, R. C.; Fowler, D.; Macik, M.; Marcantonio, F.; Miller, B.; Newman, J.; Olszewski, T.; Reece, R.; Rosser, S.

    2015-12-01

    In the summer of 2014, the Texas A&M Department of Geology and Geophysics partnered with the Texas A&M Center for Teaching Excellence to implement TAMU's curriculum revision process: a data-informed, faculty-driven, educational-developer-supported rebuilding of our degree programs and course offerings. The current curricula (B.S. and B.A. in Geology, B.S. in Geophysics) were put into place in 1997, following the merger of two separate departments. The needs and capabilities of the Department and the student body have changed significantly since that time: more than 50% turnover of the faculty, a rapidly-changing job climate for geologists and geophysicists, and a nearly five-fold increase in the undergraduate population to over 500 majors in Fall 2015. Surveys of former students, employers and faculty at other universities revealed more reasons to address the curriculum. Some of the most desired skills are also those at which our graduates feel and are perceived to be least prepared: oral communication and the ability to learn software packages (skills that are most challenging to teach with growing class sizes). The challenge facing the Department is to accommodate growing student numbers while maintaining strength in traditional instructor-intensive activities such as microscopy and field mapping, and also improving our graduates' non-geological skills (e.g., communication, software use, teamwork, problem-solving) to insulate them from volatility in the current job market. We formed the Curriculum Study Group, consisting of faculty, graduate students, advisors and curriculum experts, to gather and analyze data and define the knowledge and skill base a graduate of our department must have. In addition to conducting external surveys, this group interviewed current students and faculty to determine the strengths and weaknesses of our program. We developed program learning goals that were further specified into over fifty criteria. For each criteria we defined

  9. Unified Geophysical Cloud Platform (UGCP) for Seismic Monitoring and other Geophysical Applications.

    Science.gov (United States)

    Synytsky, R.; Starovoit, Y. O.; Henadiy, S.; Lobzakov, V.; Kolesnikov, L.

    2016-12-01

    We present Unified Geophysical Cloud Platform (UGCP) or UniGeoCloud as an innovative approach for geophysical data processing in the Cloud environment with the ability to run any type of data processing software in isolated environment within the single Cloud platform. We've developed a simple and quick method of several open-source widely known software seismic packages (SeisComp3, Earthworm, Geotool, MSNoise) installation which does not require knowledge of system administration, configuration, OS compatibility issues etc. and other often annoying details preventing time wasting for system configuration work. Installation process is simplified as "mouse click" on selected software package from the Cloud market place. The main objective of the developed capability was the software tools conception with which users are able to design and install quickly their own highly reliable and highly available virtual IT-infrastructure for the organization of seismic (and in future other geophysical) data processing for either research or monitoring purposes. These tools provide access to any seismic station data available in open IP configuration from the different networks affiliated with different Institutions and Organizations. It allows also setting up your own network as you desire by selecting either regionally deployed stations or the worldwide global network based on stations selection form the global map. The processing software and products and research results could be easily monitored from everywhere using variety of user's devices form desk top computers to IT gadgets. Currents efforts of the development team are directed to achieve Scalability, Reliability and Sustainability (SRS) of proposed solutions allowing any user to run their applications with the confidence of no data loss and no failure of the monitoring or research software components. The system is suitable for quick rollout of NDC-in-Box software package developed for State Signatories and aimed for

  10. Automatic differentiation in geophysical inverse problems

    Science.gov (United States)

    Sambridge, M.; Rickwood, P.; Rawlinson, N.; Sommacal, S.

    2007-07-01

    Automatic differentiation (AD) is the technique whereby output variables of a computer code evaluating any complicated function (e.g. the solution to a differential equation) can be differentiated with respect to the input variables. Often AD tools take the form of source to source translators and produce computer code without the need for deriving and hand coding of explicit mathematical formulae by the user. The power of AD lies in the fact that it combines the generality of finite difference techniques and the accuracy and efficiency of analytical derivatives, while at the same time eliminating `human' coding errors. It also provides the possibility of accurate, efficient derivative calculation from complex `forward' codes where no analytical derivatives are possible and finite difference techniques are too cumbersome. AD is already having a major impact in areas such as optimization, meteorology and oceanography. Similarly it has considerable potential for use in non-linear inverse problems in geophysics where linearization is desirable, or for sensitivity analysis of large numerical simulation codes, for example, wave propagation and geodynamic modelling. At present, however, AD tools appear to be little used in the geosciences. Here we report on experiments using a state of the art AD tool to perform source to source code translation in a range of geoscience problems. These include calculating derivatives for Gibbs free energy minimization, seismic receiver function inversion, and seismic ray tracing. Issues of accuracy and efficiency are discussed.

  11. Understanding biogeobatteries: Where geophysics meets microbiology

    Energy Technology Data Exchange (ETDEWEB)

    Revil, A.; Mendonca, C.A.; Atekwana, E.A.; Kulessa, B.; Hubbard, S.S.; Bohlen, K.

    2009-08-15

    Although recent research suggests that contaminant plumes behave as geobatteries that produce an electrical current in the ground, no associated model exists that honors both geophysical and biogeochemical constraints. Here, we develop such a model to explain the two main electrochemical contributions to self-potential signals in contaminated areas. Both contributions are associated with the gradient of the activity of two types of charge carriers, ions and electrons. In the case of electrons, bacteria act as catalysts for reducing the activation energy needed to exchange the electrons between electron donor and electron acceptor. Possible mechanisms that facilitate electron migration include iron oxides, clays, and conductive biological materials, such as bacterial conductive pili or other conductive extracellular polymeric substances. Because we explicitly consider the role of biotic processes in the geobattery model, we coined the term 'biogeobattery'. After theoretical development of the biogeobattery model, we compare model predictions with self-potential responses associated with laboratory and field-scale conducted in contaminated environments. We demonstrate that the amplitude and polarity of large (>100 mV) self-potential signatures requires the presence of an electronic conductor to serve as a bridge between electron donors and acceptors. Small self-potential anomalies imply that electron donors and electron acceptors are not directly interconnected, but instead result simply from the gradient of the activity of the ionic species that are present in the system.

  12. Geophysical considerations in the fifth force controversy

    International Nuclear Information System (INIS)

    Stacey, F.D.; Tuck, G.J.; Moore, G.I.

    1988-01-01

    If there are non-Newtonian components of gravity, now popularly dubbed the ''fifth force,'' as several observations indicate, then the favored representation is in terms of Yukawa potentials with ranges that make them accessible to geophysical observation. We must now consider at least two Yukawa terms of opposite signs, so that the observed effects may be subtle. Measurements in different crustal structures (continental mines and boreholes, ocean and ice sheets) could help to resolve the details, but it is possible for fortuitous cancellations to invite misleading conclusions where measurements are made in a layer that is underlain by a much denser layer. However, with currently favored parameters of a pair of Yukawa terms both ice and ocean measurements should give effects of the sign expected from mine measurements, but with amplitudes reduced by partial cancellation due to the layered structures. We also reexamine conventional interpretations of the mine gravity anomalies and reassert that uncertainties in density estimates must be discounted. A new inversion of the broad scale gravity anomalies in the area of the north Queensland mines that we have used confirms the earlier conclusion that the mine gradient anomaly is not a consequence of a regional free-air gradient anomaly, although this conclusion is not as secure as the dismissal of density error

  13. Solar Geophysical Data (SGD) Reports (1955-2009)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Solar-Geophysical Data (SGD) reports were a comprehensive compilation of many different kinds of observational data of the sun's activity and its effects on the...

  14. The influence of geophysical processes on the Earth's rotation

    International Nuclear Information System (INIS)

    Nastula, J.

    1985-01-01

    The problem of the influence of geophysical processes on the Earth's rotation is presented. The role of these processes in the variations of the length of day is described in this part. 27 refs., 19 figs. (author)

  15. The geology and geophysics of the Oslo rift

    Science.gov (United States)

    Ruder, M. E.

    1981-01-01

    The regional geology and geophysical characteristics of the Oslo graben are reviewed. The graben is part of a Permian age failed continental rift. Alkali olivine, tholefitic, and monzonitic intrusives as well as basaltic lavas outline the extent of the graben. Geophysical evidence indicates that rifting activity covered a much greater area in Skagerrak Sea as well as the Paleozoic time, possibly including the northern Skagerrak Sea as well as the Oslo graben itself. Much of the surficial geologic characteristics in the southern part of the rift have since been eroded or covered by sedimentation. Geophysical data reveal a gravity maximum along the strike of the Oslo graben, local emplacements of magnetic material throughout the Skagerrak and the graben, and a slight mantle upward beneath the rift zone. Petrologic and geophysical maps which depict regional structure are included in the text. An extensive bibliography of pertinent literature published in English between 1960 and 1980 is also provided.

  16. Airborne Geophysical/Geological Mineral Inventory CIP Program

    National Research Council Canada - National Science Library

    1999-01-01

    The Airborne-Geophysical/Geological Mineral Inventory project is a special multi-year investment to expand the knowledge base of Alaska's mineral resources and catalyze private-sector mineral development...

  17. Geophysical Surveys in Archaeology: Guidance for Surveyors and Sponsors

    National Research Council Canada - National Science Library

    Somers, Lewis

    2003-01-01

    The last few years have seen a significant increase in the use of geophysical techniques by archaeologists in the United States working in both academic settings and Cultural Resources Management (CRM). Since 1995...

  18. Application of surface geophysics to ground-water investigations

    Science.gov (United States)

    Zohdy, Adel A.R.; Eaton, Gordon P.; Mabey, Don R.

    1974-01-01

    This manual reviews the standard methods of surface geophysics applicable to ground-water investigations. It covers electrical methods, seismic and gravity methods, and magnetic methods. The general physical principles underlying each method and its capabilities and limitations are described. Possibilities for non-uniqueness of interpretation of geophysical results are noted. Examples of actual use of the methods are given to illustrate applications and interpretation in selected geohydrologic environments. The objective of the manual is to provide the hydrogeologist with a sufficient understanding of the capabilities, imitations, and relative cost of geophysical methods to make sound decisions as to when to use of these methods is desirable. The manual also provides enough information for the hydrogeologist to work with a geophysicist in designing geophysical surveys that differentiate significant hydrogeologic changes.

  19. Geophysical investigations at ORNL solid waste storage area 3

    International Nuclear Information System (INIS)

    Rothschild, E.R.; Switek, J.; Llopis, J.L.; Farmer, C.D.

    1985-07-01

    Geophysical investigations at ORNL solid waste storage area 3 have been carried out. The investigations included very-low-frequency-electromagnetic resistivity (VLF-EM), electrical resistivity, and seismic refraction surveys. The surveys resulted in the measurement of basic geophysical rock properties, as well as information on the depth of weathering and the configuration of the bedrock surface beneath the study area. Survey results also indicate that a number of geophysical anomalies occur in the shallow subsurface at the site. In particular, a linear feature running across the geologic strike in the western half of the waste disposal facility has been identified. This feature may conduct water in the subsurface. The geophysical investigations are part of an ongoing effort to characterize the site's hydrogeology, and the data presented will be valuable in directing future drilling and investigations at the site. 10 refs., 6 figs

  20. Site characterization and validation - geophysical single hole logging

    International Nuclear Information System (INIS)

    Andersson, Per

    1989-05-01

    A total of 15 boreholes have been drilled for preliminary characterization of a previously unexplored site at the 360 and 385 m level in the Stripa mine. To adequately described the rock mass in the vicinity of these boreholes, a comprehensive program utilizing a large number of geophysical borehole methods has been carried out in 10 of these boreholes. The specific geophysical character of the rock mass and the major deformed units distinguished in the vicinity of the boreholes are recognized, and in certain cases also correlated between the boreholes. A general conclusion based on the geophysical logging results, made in this report, is that the preliminary predictions made in stage 2, of the site characterization and validation project (Olsson et.al, 1988), are adequate. The results from the geophysical logging can support the four predicted fracture/ fracture zones GHa, GHb, GA and GB whereas the predicted zones GC and GI are hard to confirm from the logging results. (author)

  1. Common interests bind AGU and geophysical groups around the globe

    Science.gov (United States)

    McEntee, Christine

    2012-02-01

    In continuation of our work to strengthen alliances with key organizations in the Earth and space science community, AGU president Michael McPhaden, president-elect Carol Finn, and I held a series of meetings with leaders from other science societies during the 2011 Fall Meeting. Over the course of 2 days we met with leaders from the Geophysical Society of America, European Geosciences Union, Japan Geosciences Union, Ethiopian Geophysical Union, Asia Oceania Geosciences Society, Chinese Geophysical Society, and Asociación Latinoamericana de Geofísica Espacial. This gave us a valued opportunity to discuss the common interests and challenges we all face and to learn from each other's experience. The meetings allowed AGU to strengthen existing cooperative agreements and reach new levels of understanding between us and other societies. Additionally, we met with representatives from the Korean Ocean Research and Development Institute to discuss their intention to establish a geophysical union modeled after AGU.

  2. Engineering Geophysical Study of the Convocation Square, Kaduna

    African Journals Online (AJOL)

    Abdullahi et. al

    integrated techniques for engineering site investigations. The applications .... distribution, numerical techniques are more commonly used. For the 1-D case, ... the software, IPIWIN (version 3.0.1) developed by the Geophysics. Group Moscow ...

  3. The University of Texas Institute for Geophysics Marine Geology and Geophysics Field Course

    Science.gov (United States)

    Duncan, D.; Davis, M. B.; Goff, J. A.; Gulick, S. P. S.; McIntosh, K. D.; Saustrup, S., Sr.

    2014-12-01

    The University of Texas Institute for Geophysics, part of the Jackson School of Geosciences, annually offers a three-week marine geology and geophysics field course during the spring-summer intersession. The course provides hands-on instruction and training for graduate and upper-level undergraduate students in high-resolution seismic reflection, CHIRP sub-bottom profiling, multibeam bathymetry, sidescan sonar, several types of sediment coring, grab sampling, and the sedimentology of resulting seabed samples. Students participate in an initial three days of classroom instruction designed to communicate geological context of the field area along with theoretical and technical background on each field method. The class then travels to the Gulf Coast for a week of at-sea field work. Our field sites at Port Aransas, and Galveston, TX, and Grand Isle, LA, provide ideal locations for students to investigate coastal processes of the Gulf Coast and continental shelf through application of geophysical techniques in an exploratory mode. At sea, students assist with survey design and instrumentation set up while learning about acquisition parameters, data quality control, trouble-shooting, and safe instrument deployment and retrieval. In teams of four, students work in onshore field labs preparing sediment samples for particle size analysis and data processing. During the course's final week, teams return to the classroom where they integrate, interpret, and visualize data in a final project using industry-standard software such as Echos, Landmark, Caris, and Fledermaus. The course concludes with a series of final presentations and discussions in which students examine geologic history and/or sedimentary processes represented by the Gulf Coast continental shelf with academic and industry supporters. Students report a greater understanding of marine geology and geophysics through the course's intensive, hands-on, team approach and low instructor to student ratio (sixteen

  4. Notes on the history of geophysics in the Ottoman Empire

    Science.gov (United States)

    Ozcep, F.; Ozcep, T.

    2014-09-01

    In Anatolia, the history of geophysical sciences may go back to antiquity (600 BC), namely the period when Thales lived in Magnesia (Asia Minor). In the modern sense, geophysics started with geomagnetic works in the 1600s. The period between 1600 and 1800 includes the measurement of magnetic declination, inclination and magnetic field strength. Before these years, there is a little information, such as how to use a compass, in the Kitab-i Bahriye (the Book of Navigation) of Piri Reis, who is one of the most important mariners of the Ottoman Empire. However, this may not mean that magnetic declination was generally understood. The first scientific book relating to geophysics is the book Fuyuzat-i Miknatissiye that was translated by Ibrahim Müteferrika and printed in 1731. The subject of this book is earth's magnetism. There is also information concerning geophysics in the book Cihannuma (Universal Geography) that was written by Katip Celebi and in the book Marifetname written by Ibrahim Hakki Erzurumlu, but these books are only partly geophysical books. In Istanbul the year 1868 is one of the most important for geophysical sciences because an observatory called Rasathane-i Amire was installed in the Pera region of this city. At this observatory the first systematic geophysical observations such as meteorological, seismological and even gravimetrical were made. There have been meteorological records in Anatolia since 1839. These are records of atmospheric temperature, pressure and humidity. In the Ottoman Empire, the science of geophysics is considered as one of the natural sciences along with astronomy, mineralogy, geology, etc., and these sciences are included as a part of physics and chemistry.

  5. Development of Geophysical Ideas and Institutions in Ottoman Empire

    Science.gov (United States)

    Ozcep, Ferhat; Ozcep, Tazegul

    2015-04-01

    In Anatolia, the history of geophysical sciences may go back to antiquity (600 BC), namely the period when Thales lived in Magnesia (Asia Minor). In the modern sense, geophysics started with geomagnetic works in the 1600s. The period between 1600 and 1800 includes the measurement of magnetic declination, inclination and magnetic field strength. Before these years, there is a little information, such as how to use a compass, in the Kitab-i Bahriye (the Book of Navigation) of Piri Reis, who is one of the most important mariners of the Ottoman Empire. However, this may not mean that magnetic declination was generally understood. The first scientific book relating to geophysics is the book Fuyuzat-i Miknatissiye that was translated by Ibrahim Müteferrika and printed in 1731. The subject of this book is earth's magnetism. There is also information concerning geophysics in the book Cihannuma (Universal Geography) that was written by Katip Celebi and in the book Marifetname written by Ibrahim Hakki Erzurumlu, but these books are only partly geophysical books. In Istanbul the year 1868 is one of the most important for geophysical sciences because an observatory called Rasathane-i Amire was installed in the Pera region of this city. At this observatory the first systematic geophysical observations such as meteorological, seismological and even gravimetrical were made. There have been meteorological records in Anatolia since 1839. These are records of atmospheric temperature, pressure and humidity. In the Ottoman Empire, the science of geophysics is considered as one of the natural sciences along with astronomy, mineralogy, geology, etc., and these sciences are included as a part of physics and chemistry.

  6. Groundwater geophysics. A tool for hydrology. 2. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Kirsch, Reinhard (ed.) [Landesamt fuer Natur und Umwelt, Flintbek (Germany). Abt. Geologie/Boden

    2009-07-01

    Access to clean water is a human right and a basic requirement for economic development. The safest kind of water supply is the use of groundwater. Since groundwater normally has a natural protection against pollution by the covering layers, only minor water treatment is required. Detailed knowledge on the extent, hydraulic properties, and vulnerability of groundwater reservoirs is necessary to enable a sustainable use of the resources. This book addresses students and professionals in Geophysics and Hydrogeology. The aim of the authors is to demonstrate the application of geophysical techniques to provide a database for hydrogeological decisions like drillhole positioning or action plans for groundwater protection. Physical fundamentals and technical aspects of modern geophysical reconnaissance methods are discussed in the first part of the book. Beside 'classical' techniques like seismic, resistivity methods, radar, magnetic, and gravity methods emphasis is on relatively new techniques like complex geoelectric, radiomagnetotellurics, vertical groundwater flow determination, or nuclear magnetic resonance. An overview of direct push techniques is given which can fill the gap between surface and borehole geophysics. The applications of these techniques for hydrogeological purposes are illustrated in the second part of the book. The investigation of pore aquifers is demonstrated by case histories from Denmark, Germany, and Egypt. Examples for the mapping of fracture zone and karst aquifers as well as for saltwater intrusions leading to reduced groundwater quality are shown. The assessment of hydraulic conductivities of aquifers by geophysical techniques is discussed with respect to the use of porosity - hydraulic conductivity relations and to geophysical techniques like NMR or SIP which are sensitive to the effective porosity of the material. The classification of groundwater protective layers for vulnerability maps as required by the EU water framework

  7. Site characterization at the Rabbit Valley Geophysical Performance Evaluation Range

    International Nuclear Information System (INIS)

    Koppenjan, S.; Martinez, M.

    1994-01-01

    The United States Department of Energy (US DOE) is developing a Geophysical Performance Evaluation Range (GPER) at Rabbit Valley located 30 miles west of Grand Junction, Colorado. The purpose of the range is to provide a test area for geophysical instruments and survey procedures. Assessment of equipment accuracy and resolution is accomplished through the use of static and dynamic physical models. These models include targets with fixed configurations and targets that can be re-configured to simulate specific specifications. Initial testing (1991) combined with the current tests at the Rabbit Valley GPER will establish baseline data and will provide performance criteria for the development of geophysical technologies and techniques. The US DOE's Special Technologies Laboratory (STL) staff has conducted a Ground Penetrating Radar (GPR) survey of the site with its stepped FM-CW GPR. Additionally, STL contracted several other geophysical tests. These include an airborne GPR survey incorporating a ''chirped'' FM-CW GPR system and a magnetic survey with a surfaced-towed magnetometer array unit Ground-based and aerial video and still frame pictures were also acquired. STL compiled and analyzed all of the geophysical maps and created a site characterization database. This paper discusses the results of the multi-sensor geophysical studies performed at Rabbit Valley and the future plans for the site

  8. Synchronization of Well Log Data and Geophysical Data with Remote Sensing Technique to Develop the Hydrocarbon System of Bengal Basin

    Science.gov (United States)

    Kesh, S.; Samadder, P. K.

    2012-12-01

    Remote sensing along with more conventional exploration techniques such as geophysics and reconnaissance field mapping can help to establish regional geologic relationships, to extract major structural features and to pinpoint anomalous patterns. Many well have been drilled in Bengal basin still no commercially viable reserves have been discovered. Geophysical well logging is used in virtually every oil well. It is the primary means by which we characterize the subsurface in search of hydrocarbons. Oil and gas exploration activities for large areas require ground gravity surveys to facilitate detailed geological interpretations for subsurface features integrating geological cross-sections with the sub-surface structural trends leads to the identification of prospect areas. Remote sensing, geological and geophysical data integration provide accurate geometric shapes of the basins. Bengal basin has a sedimentary fill of 10-15 km, is the northernmost of the east coast basins of India In the first phase Remote sensing satellite sensors help in identifying surface anomaly which indicates the presence of hydrocarbon reservoirs providing regional geological settings of petroleferous basins. It provides accurate and visual data for directly determining geometric shapes of basin. It assists in the selection of exploration regions by defining the existence of sedimentary basin. Remote sensing methods can generate a wealth of information useful in determining the value of exploratory prospecting. In the second phase Well Log data provide relative subsurface information for oil and gas exploration. Remote sensing data are merged with other available information such as Aeromagnetic, gravity, geochemical surveys and 2D seismic surveys. The result of this phase is to estimate the outcome of oil discovery probabilities for locating oil prospects

  9. Unleashing Geophysics Data with Modern Formats and Services

    Science.gov (United States)

    Ip, Alex; Brodie, Ross C.; Druken, Kelsey; Bastrakova, Irina; Evans, Ben; Kemp, Carina; Richardson, Murray; Trenham, Claire; Wang, Jingbo; Wyborn, Lesley

    2016-04-01

    Geoscience Australia (GA) is the national steward of large volumes of geophysical data extending over the entire Australasian region and spanning many decades. The volume and variety of data which must be managed, coupled with the increasing need to support machine-to-machine data access, mean that the old "click-and-ship" model delivering data as downloadable files for local analysis is rapidly becoming unviable - a "big data" problem not unique to geophysics. The Australian Government, through the Research Data Services (RDS) Project, recently funded the Australian National Computational Infrastructure (NCI) to organize a wide range of Earth Systems data from diverse collections including geoscience, geophysics, environment, climate, weather, and water resources onto a single High Performance Data (HPD) Node. This platform, which now contains over 10 petabytes of data, is called the National Environmental Research Data Interoperability Platform (NERDIP), and is designed to facilitate broad user access, maximise reuse, and enable integration. GA has contributed several hundred terabytes of geophysical data to the NERDIP. Historically, geophysical datasets have been stored in a range of formats, with metadata of varying quality and accessibility, and without standardised vocabularies. This has made it extremely difficult to aggregate original data from multiple surveys (particularly un-gridded geophysics point/line data) into standard formats suited to High Performance Computing (HPC) environments. To address this, it was decided to use the NERDIP-preferred Hierarchical Data Format (HDF) 5, which is a proven, standard, open, self-describing and high-performance format supported by extensive software tools, libraries and data services. The Network Common Data Form (NetCDF) 4 API facilitates the use of data in HDF5, whilst the NetCDF Climate & Forecasting conventions (NetCDF-CF) further constrain NetCDF4/HDF5 data so as to provide greater inherent interoperability

  10. Assessment of groundwater potentiality using geophysical techniques in Wadi Allaqi basin, Eastern Desert, Egypt - Case study

    Science.gov (United States)

    Helaly, Ahmad Sobhy

    2017-12-01

    Electrical resistivity surveying has been carried out for the determination of the thickness and resistivity of layered media in Wadi Allaqi, Eastern Desert, Egypt. That is widely used geophysical tool for the purpose of assessing the groundwater potential and siting the best locations for boreholes in the unconfined Nubian Sandstone aquifers within the study area. This has been done using thirteen 1D Vertical Electrical Sounding (VES) surveys. 1D-VES surveys provide only layered model structures for the subsurface and do not provide comprehensive information for interpreting the structure and extent of subsurface hydro-geological features. The integration of two-dimensional (2D) geophysical techniques for groundwater prospecting has been done to provide a more detailed identification for the subsurface hydro-geological features from which potential sites for successful borehole locations are recognized. In addition, five magnetic profiles were measured for basement depth determination, expected geological structures and thickness of sedimentary succession that could include some basins suitable for groundwater accumulation as groundwater aquifers.

  11. Integrated geophysical survey to recognize ancient Picentia’s buried walls, in the Archaeological Park of Pontecagnano – Faiano (Southern Italy

    Directory of Open Access Journals (Sweden)

    A. Rossi

    2008-06-01

    Full Text Available There is no information on previous geophysical prospections carried out in the Archaeological Park of Pontecagnano- Faiano, in order to reconstruct the ancient settlement of Picentia, an Etrusco-Campanian and Roman settlement near Salerno (Southern Italy. Therefore, an integrated geophysical survey based on magnetic, geoelectric and ground-penetrating radar (GPR prospections was executed in the Park. The methods provided a basic map of buried ancient structures at depth from 0.1-0.2 to about 1.5 meters. Magnetic data were processed analyzing the analytical signal of the vertical derivative of the measured gradient and this substantially reduced a strong fence effect. The results of the geophysical prospections showed archaeological structures located close to those discovered in the excavated areas. The shape of the anomalies are usually elongated with well-defined geometrical characteristics. Many anomalies are arranged along orthogonal directions and they are very coherent with the excavated structures, namely the quarters structures of the ancient Picentia.

  12. The Geophysical Investigation of Drinkable Water at Shkodra Region

    Science.gov (United States)

    Jata, I. B.; Kavaja, V. S.; Kotori, A. N.

    2002-12-01

    The drinkable water has been and is a great problem for the population of Shkodra region, NW of Albania. Many studies have been widely used in this domain by Geophysical Center of Tirana.Two case histories are presented in this paper.One, the Drini river terraces and other example near coast line.Actually, the need from fresh water are increasing due to the high demand for water supply. In compliance with geographical and geological classification the survey is in a narrow sense belongs to marginal part of the Nenshkodra plain. Geological situation of survey area consists on diverse geological make up.The stratigrafic section begins with carbonate formations (Cr2) have a monoclyne structure, nearly NW-SE trending. Paleogene formations is composed mainly: by carbonatic flysch (Pg2), alevrolitic-sanstone formation(Pg31 - Pg32) and Oligocene deposits with alevrolitic-clay-sandston formation (Pg13). Quaternary formation interbeded by silt, clay, sand and gravel layers. In survey area the thickness of concerned younger deposits does not surpass 50-70m, therefor we were able to draw up a picture of the thickness and depositional conditions of the Quaternary accumulations as corresponding in precision to given scale. The aim of the study is been delineation of aquifers and aquicludes soils extension within terrace profile based in the resistivity parameter as well as zone of aeration and water table. In the paper are described all the phases from field measurements, data processing and interpretation, as well as the soil thickness and resistivity maps, the thickness and resistivity maps of gravel terraces was build up. The high resistivity values show best aquifers gravel deposits. But when the gravel terrace companies with large thickness of the layers it is practical to multiply these two parameters, Hi x *i = S. In the other hand, one and more important maps are the correlation of rocks permeability T (sq.m/day) with transversal resistivity (S) parameters. In preparing

  13. Inversion algorithms for large-scale geophysical electromagnetic measurements

    International Nuclear Information System (INIS)

    Abubakar, A; Habashy, T M; Li, M; Liu, J

    2009-01-01

    Low-frequency surface electromagnetic prospecting methods have been gaining a lot of interest because of their capabilities to directly detect hydrocarbon reservoirs and to compliment seismic measurements for geophysical exploration applications. There are two types of surface electromagnetic surveys. The first is an active measurement where we use an electric dipole source towed by a ship over an array of seafloor receivers. This measurement is called the controlled-source electromagnetic (CSEM) method. The second is the Magnetotelluric (MT) method driven by natural sources. This passive measurement also uses an array of seafloor receivers. Both surface electromagnetic methods measure electric and magnetic field vectors. In order to extract maximal information from these CSEM and MT data we employ a nonlinear inversion approach in their interpretation. We present two types of inversion approaches. The first approach is the so-called pixel-based inversion (PBI) algorithm. In this approach the investigation domain is subdivided into pixels, and by using an optimization process the conductivity distribution inside the domain is reconstructed. The optimization process uses the Gauss–Newton minimization scheme augmented with various forms of regularization. To automate the algorithm, the regularization term is incorporated using a multiplicative cost function. This PBI approach has demonstrated its ability to retrieve reasonably good conductivity images. However, the reconstructed boundaries and conductivity values of the imaged anomalies are usually not quantitatively resolved. Nevertheless, the PBI approach can provide useful information on the location, the shape and the conductivity of the hydrocarbon reservoir. The second method is the so-called model-based inversion (MBI) algorithm, which uses a priori information on the geometry to reduce the number of unknown parameters and to improve the quality of the reconstructed conductivity image. This MBI approach can

  14. PREFACE: Padjadjaran Earth Dialogues: International Symposium on Geophysical Issues, PEDISGI

    Science.gov (United States)

    Rosandi, Y.; Urbassek, H. M.; Yamanaka, H.

    2016-01-01

    This issue of IOP Conference Series: Earth and Environmental Science contains selected papers presented at the Padjadjaran Earth Dialogues: International Symposium on Geophysical Issues, PEDISGI. The meeting was held from June 8 to 10, 2015, at the Bale-Sawala of Universitas Padjadjaran in Jatinangor, Indonesia. The PEDISGI is a symposium to accommodate communication between researchers, in particular geophysicists and related scientists, and to enable sharing of knowledge and research findings concerning local and global geophysical issues. The symposium was attended by 126 participants and 64 contributors from Indonesian universities and the neighbouring countries in four categories, viz. Theoretical and Computational Geophysics, Environmental Geophysics, Geophysical Explorations, and Geophysical Instrumentations and Methods. The symposium was accompanied by a dialog, discussing a chosen topic regarding environmental and geological problems of relevance for the Indonesian archipelago and the surrounding regions. For this first event the topic was ''The formation of Bandung-Basin between myths and facts: Exemplary cultural, geological and geophysical study on the evolution of the earth surface'', presented by invited speakers and local experts. This activity was aimed at extending our knowledge on this particular subject, which may have global impact. This topic was augmented by theoretical background lectures on the earth's surface formation, presented by the invited speakers of the symposium. The meeting would not have been successful without the assistance of the local organizing committee. We want to specially thank Irwan A. Dharmawan for managing the programme, Anggie Susilawati and Mia U. Hasanah for the conference administration, and Dini Fitriani for financial management. We also thank the National Geographic Indonesia for its support via the Business to Business Collaboration Program. The conference photograph can be viewed in the PDF.

  15. An electric and electromagnetic geophysical approach for subsurface investigation of anthropogenic mounds in an urban environment

    Science.gov (United States)

    Pazzi, Veronica; Tapete, Deodato; Cappuccini, Luca; Fanti, Riccardo

    2016-11-01

    Scientific interest in mounds as geomorphological features that currently represent topographic anomalies in flat urban landscapes mainly lies on the understanding of their origin, either purely natural or anthropogenic. In this second circumstance, another question is whether traces of lost buildings are preserved within the mound subsurface and can be mapped as remnants testifying past settlement. When these landforms have been modified in centuries for civilian use, structural stability is a further element of concern. To address these issues we applied a geophysical approach based on a very low frequency electromagnetic (VLF-EM) technique and two-dimensional electrical resistivity tomography (2D-ERT) and integrated it with well-established surface survey methods within a diagnostic workflow of structural assessment. We demonstrate the practical benefits of this method in the English Cemetery of Florence, Italy, whose mixed nature and history of morphological changes are suggested by archival records. The combination of the two selected geophysical techniques allowed us to overcome the physical obstacles caused by tomb density and to prevent interference from the urban vehicular traffic on the geophysical signals. Eighty-two VLF-EM profiles and five 2D-ERTs were collected to maximise the spatial coverage of the subsurface prospection, while surface indicators of instability (e.g., tomb tilt, location, and direction of ground fractures and wall cracks) were mapped by standard metric survey. High resistive anomalies (> 300 and 400 Ωm) observed in VLF-EM tomographies are attributed to remnants of the ancient perimeter wall that are still buried along the southern side of the mound. While no apparent correlation is found between the causes of tomb and ground movements, the crack pattern map supplements the overall structural assessment. The main outcome is that the northern portion of the retaining wall is classed with the highest hazard rate. The impact of this

  16. Geophysical investigation of the June 6, 1944 D-Day invasion site at Pointe du Hoc, Normandy, France

    Science.gov (United States)

    Everett, M. E.; Pierce, C. J.; Warden, R. R.; Burt, R. A.

    2005-05-01

    A near-surface geophysical survey at the D-Day invasion site atop the cliffs at Pointe du Hoc, Normandy, France was carried out using ground-penetrating radar, electromagnetic induction, and magnetic gradiometry equipment. The subsurface targets of investigation are predominantly buried concrete and steel structures and earthworks associated with the German coastal fortifications at this stronpoint of Hitler's Atlantic Wall. The targets are readily detectable embedded within the vadose zone of a weakly magnetic, electrically resistive loess soil cover. The radar and electromagnetic induction responses lend themselves to plan-view imaging of the subsurface, while the magnetics data reveal the presence of buried magnetic bodies in a more subtle fashion. Several intriguing geophysical signatures were discovered, including what may be the buried remains of a railway turntable, ordnance fragments in the bomb craters, a buried steel-reinforced concrete trench, and a linear chain of machine gun firing positins. Geophysical prospecting is shown to be a very powerful tool for historical battlefield characterization.

  17. Korea prospects

    International Nuclear Information System (INIS)

    Wyman, V.

    1990-01-01

    Contacts between the South Korean nuclear industry and a combined United Kingdom mission representing AEA Technology and British Nuclear Fuels Limited (BNFL) are reported. Prospects for entering the Korean market in two areas are perceived. The first is waste management and the second is the Safe Integral Reactor (SIR), an advanced pressurized water reactor design. AEA Technology and three collaborators have been promoting SIR as an inherently safe reactor design. Korean interest could be expressed in financial backing for the building of SIR stations in Korea and the opportunity could arise for BNFL to win fuel supply contracts. (UK)

  18. New geophysical electromagnetic method of archeological object research in Egypt

    Science.gov (United States)

    Hachay, O. A.; Khachay, O. Yu.; Attia, Magdi.

    2009-04-01

    The demand to the enhanced geophysical technique and device, in addition to the precise interpretation of the geophysical data, is the resolution of the geophysical complex research, especially by the absence of priory information about the researched place. Therefore, an approach to use the planshet method of electromagnetic induction in the frequency geometry was developed by Hachay. et al., 1997a, 1997b, 1999, 2000, 2002, and 2005. The method was adapted to map and monitor the high complicated geological mediums, to determine the structural factors and criteria of the rock massif in the mine subsurface. The field observation and the way of interpretation make the new technology differ from other known earlier methods of field raying or tomography (Hachay et al., 1997c, 1999, and 2000).The 3D geoelectrical medium research is based on the concept of three staged interpreting of the alternating electromagnetic field in a frame of the block-layered isotropic medium with inclusion (Hachay 1997a, and 2002); in the first stage, the geoelectrical parameters of the horizontal block-layered medium, which includes the heterogeneities, are defined. In the second stage a geometrical model of the different local heterogeneities or groups inside the block-layered medium is constructed based on the local geoelectrical heterogeneities produced from the first stage after filtering the anomalous fields plunged in the medium. While in the third stage, the surfaces of the searched heterogeneities could be calculated in account of the physical parameters of the anomalous objects.For practical realization of that conception the system of observation for alternating electromagnetic field with use of vertical magnetic dipole was elaborated. Such local source of excitation and regular net of observations allows realizing overlapping by different angles of observation directions. As incoming data for interpretation, three components of modules of three components of magnetic field are

  19. Uruguay mining inventory[Geochemical prospection of Uranium in Uruguay]; Inventario Minero Nacional

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1979-07-01

    In the framework of the studies by the group DINAMIGE-BRGM it has carried out a programme about the Uranium prospection in Uruguay.The main resources used were: geologic mapping, radiometry, analysis and sampling of soils,alluvial and rocks, geophysical and perforations.The Uranium programme can be estimated on five or six years of duration.

  20. Ceres' Geophysical Evolution Inferred from Dawn Data

    Science.gov (United States)

    Castillo-Rogez, Julie; Bowling, Timothy; Ermakov, Anton I.; Fu, Roger; Park, Ryan; Raymond, Carol; De Sanctis, Maria Cristina; Ammannito, Eleonora; Ruesch, Ottaviano; Prettyman, Thomas H.; Y McSween, Harry; Toplis, Michael J.; Russell, Christopher T.; Dawn Team

    2016-10-01

    If Ceres formed as an ice-rich body, as suggested by its low density and the detection of ammoniated phyllosilicates [1], then it should have differentiated an ice-dominated shell, analogous to large icy satellites [2]. Instead, Dawn observations revealed an enrichment of Ceres' shell in strong materials, either a rocky component and/or salts and gas hydrates [3, 4, 5, 6]. We have explored several scenarios for the emplacement of Ceres' surface. Endogenic processes cannot account for its overall homogeneity. Instead we suggest that Ceres differentiated an icy shell upon freezing of its early ocean that was removed as a consequence of frequent exposure by impacting after the dwarf planet migrated from a cold accretional environment to the warmer outer main belt (or when the solar nebula dissipated, if Ceres formed in situ). This scenario implies that Ceres' current surface represents the interface between the original ice shell and the top of the frozen ocean, a region that is extremely rich chemistry-wise, as illustrated by the mineralogical observations returned by Dawn [7]. Thermal modeling shows that the shell could remain warm over the long term and offer a setting for the generation of brines that may be responsible for the emplacement of Ahuna Mons [8] and Occator's bright spots [7] on an otherwise homogeneous surface [9]. An important implication is that Ceres' surface offers an analog for better understanding the deep interior and chemical evolution of large ice-rich bodies.References: [1] De Sanctis et al., Nature, 2015; [2] McCord and Sotin, Journal of Geophysical Research, 2005; [3] Park et al., Nature, 2016 (in press); [4] Hiesinger et al., Science (submitted); [5] Bland et al., Nature Geoscience, 2016 (in press); [6] Fu et al., AGU Fall Meeting, 2015 [7] De Sanctis et al., Nature, 2016 (in press); [8] Ruesch et al., Science, in revision; [9] Ammannito et al., Science, 2016 (accepted).Acknowledgements: Part of this work is being carried out at the Jet

  1. THE SMALL BODY GEOPHYSICAL ANALYSIS TOOL

    Science.gov (United States)

    Bercovici, Benjamin; McMahon, Jay

    2017-10-01

    The Small Body Geophysical Analysis Tool (SBGAT) that we are developing aims at providing scientists and mission designers with a comprehensive, easy to use, open-source analysis tool. SBGAT is meant for seamless generation of valuable simulated data originating from small bodies shape models, combined with advanced shape-modification properties.The current status of SBGAT is as follows:The modular software architecture that was specified in the original SBGAT proposal was implemented in the form of two distinct packages: a dynamic library SBGAT Core containing the data structure and algorithm backbone of SBGAT, and SBGAT Gui which wraps the former inside a VTK, Qt user interface to facilitate user/data interaction. This modular development facilitates maintenance and addi- tion of new features. Note that SBGAT Core can be utilized independently from SBGAT Gui.SBGAT is presently being hosted on a GitHub repository owned by SBGAT’s main developer. This repository is public and can be accessed at https://github.com/bbercovici/SBGAT. Along with the commented code, one can find the code documentation at https://bbercovici.github.io/sbgat-doc/index.html. This code documentation is constently updated in order to reflect new functionalities.SBGAT’s user’s manual is available at https://github.com/bbercovici/SBGAT/wiki. This document contains a comprehensive tutorial indicating how to retrieve, compile and run SBGAT from scratch.Some of the upcoming development goals are listed hereafter. First, SBGAT's dynamics module will be extented: the PGM algorithm is the only type of analysis method currently implemented. Future work will therefore consists in broadening SBGAT’s capabilities with the Spherical Harmonics Expansion of the gravity field and the calculation of YORP coefficients. Second, synthetic measurements will soon be available within SBGAT. The software should be able to generate synthetic observations of different type (radar, lightcurve, point clouds

  2. Experiment Prevails Over Observation in Geophysical Science

    Science.gov (United States)

    Galvin, C.

    2006-05-01

    , but during that career, Popper painted himself into a philosophical corner by disallowing observation as contaminated with psychological problems and by advocating an aggressive deductive application of crucial experiments. As a result, in a 1974 review of what he really meant, Popper at least twice remembered ""Eddington's famous eclipse experiments of 1919."" The Web in 2006 lists NASA and NOAA acronyms for recent and ongoing research programs with geophysical content. A significant subset of these acronyms end in E or in EX, meaning experiment, but the scientific work done in the associated programs is actually observation. Experiment stands for actual Observation. This reversal in meaning recognizes the higher status of Experiment compared to Observation in the competition for government grants.

  3. Field Geophysics at SAGE: Strategies for Effective Education

    Science.gov (United States)

    Braile, L. W.; Baldridge, W. S.; Jiracek, G. R.; Biehler, S.; Ferguson, J. F.; Pellerin, L.; McPhee, D. K.; Bedrosian, P. A.; Snelson, C. M.; Hasterok, D. P.

    2011-12-01

    SAGE (Summer of Applied Geophysical Experience) is a unique program of education and research in geophysical field methods for undergraduate and graduate students from any university and for professionals. The core program is held for 4 weeks each summer in New Mexico and for an additional week in the following academic year in San Diego for U.S. undergraduates supported by the NSF Research Experience for Undergraduates (REU) program. Since SAGE was initiated in 1983, 730 students have participated in the program. NSF REU funding for SAGE began in 1990 and 319 REU students have completed SAGE through 2011. The primary objectives of SAGE are to teach the major geophysical exploration methods (seismic, gravity, magnetics, electromagnetics); apply these methods to the solution of specific problems (environmental, archaeological, hydrologic, geologic structure and stratigraphy); gain experience in processing, modeling and interpretation of geophysical data; and integrate the geophysical models and interpretations with geology. Additional objectives of SAGE include conducting research on the Rio Grande rift of northern New Mexico, and providing information on geophysics careers and professional development experiences to SAGE participants. Successful education, field and research strategies that we have implemented over the years include: 1. learn by doing; 2. mix lecture/discussion, field work, data processing and analysis, modeling and interpretation, and presentation of results; 3. a two-tier team approach - method/technique oriented teams and interpretation/integration teams (where each team includes persons representing different methods), provides focus, in-depth study, opportunity for innovation, and promotes teamwork and a multi-disciplinary approach; 4. emphasis on presentations/reports - each team (and all team members) make presentation, each student completes a written report; 5. experiment design discussion - students help design field program and consider

  4. Analysis of shallow continuous electromagnetic measurements on archaeological sites in southern Austria and comparison with other geophysical methods

    Science.gov (United States)

    Niesner, Erich

    2010-05-01

    Aim of this investigation was outlining the potential of continuous electromagnetic measurements by the comparison of the electromagnetic results with other different geophysical methods at known archaeological sites in Carinthia (Southern Austria). In general a very high resolution is necessary to outline the foundations of roman buildings covered by a sedimentary layer of at least half a meter thickness. The electromagnetic prospecting method had been applied within an archaeologically important region, the archaeological remnants of the first roman provincial capital at the Magdalensberg and at the site of the later location of the capital, at Virunum. With the establishment and consolidation of the Roman Empire the Romans needed more settlement space for the fast growing town and also the demands for defence were less - therefore the Romans transferred the provincial capital down to the "Zollfeld" valley northeast of Klagenfurt. Additional to the electromagnetic investigations, geoelectric, magnetic and susceptibility mapping, spontaneous potential surveys, multielectrode tomography (Niesner, Scholger, Leonhardt 2009) and ground penetrating radar (Morawetz 2006) have been employed jointly during the last years. Also visual and infrared aerial pictures had been available from those areas. The work had been done within a collaborative project between the Geophysical Institute of the University of Leoben and the Landesmuseum Kärnten. The fieldwork and part of the interpretation had been done by students of the University of Leoben within summer field camps. Within these surveys various portions of the archaeological sites had been mapped, providing valuable information of this ancient settlement. One of the most important achievements of the past years of close integration work by the archaeological and the geophysical team was the detailed outlining of an early Christian church, dated by the archaeologists to the early time of the Christians (Dolenz, Niesner

  5. Geophysics comes of age in oil sands development

    Energy Technology Data Exchange (ETDEWEB)

    Bauman, P. [WorleyParsons Komex, Calgary, AB (Canada); Birch, R.; Parker, D.; Andrews, B. [Calgary Univ., AB (Canada). Dept. of Geology and Geophysics

    2008-07-01

    This paper discussed geophysical techniques developed for oil sands exploration and production applications in Alberta's oil sands region. Geophysical methods are playing an important role in mine planning, tailings containment, water supply, and land reclamation activities. Geophysics techniques are used to estimate the volume of muskeg that needs to be stripped and stored for future reclamation activities as well as to site muskeg piles and delineate the thickness of clay Clearwater formations overlying Cretaceous oil-bearing sands. 2-D electrical resistivity mapping is used to map river-connected deep bedrock Pleistocene paleovalleys in the region. Geophysical studies are also used to investigate the interiors of dikes and berms as well as to monitor salt migration within tailings piles. Sonic and density logs are used to create synthetic seismograms for mapping the Devonian surface in the region. The new applications included the calculation of bitumen saturation from surface sands and shales; muskeg thickness mapping; and non-intrusive monitoring of leachate plumes. Geophysical techniques included 2-D electrical resistivity imaging; transient electromagnetic (EM) technologies; ground penetrating radar; and high-resolution seismic reflections. Polarization, surface nuclear magnetic resonance and push-probe sensing techniques were also discussed. Techniques were discussed in relation to Alberta's Athabasca oil sands deposits. 4 refs.

  6. Geophysical background and as-built target characteristics

    International Nuclear Information System (INIS)

    Allen, J.W.

    1994-09-01

    The US Department of Energy (DOE) Grand Junction Projects Office (GJPO) has provided a facility for DOE, other Government agencies, and the private sector to evaluate and document the utility of specific geophysical measurement techniques for detecting and defining cultural and environmental targets. This facility is the Rabbit Valley Geophysics Performance Evaluation Range (GPER). Geophysical surveys prior to the fiscal year (FY) 1994 construction of new test cells showed the primary test area to be relatively homogeneous and free from natural or man-made artifacts, which would generate spurious responses in performance evaluation data. Construction of nine new cell areas in Rabbit Valley was completed in June 1994 and resulted in the emplacement of approximately 150 discrete targets selected for their physical and electrical properties. These targets and their geophysical environment provide a broad range of performance evaluation parameters from ''very easy to detect'' to ''challenging to the most advanced systems.'' Use of nonintrusive investigative techniques represents a significant improvement over intrusive characterization methods, such as drilling or excavation, because there is no danger of exposing personnel to possible hazardous materials and no risk of releasing or spreading contamination through the characterization activity. Nonintrusive geophysical techniques provide the ability to infer near-surface structure and waste characteristics from measurements of physical properties associated with those targets

  7. The teaching of geophysics in Latin America: An updated assessment

    Science.gov (United States)

    Valencio, Daniel A.; Schneider, Otto

    The situation of geophysics in developing countries has been the subject of discussions and analysis by diverse international organizations. It was also discussed in some articles in Eos [e.g., Lomnitz, 1982; Urrutia Fucugauchi, 1982; Bolt, 1982]. We have been requested to contribute a current evaluation of the problem, with particular reference to geophysical education in Latin America.In the following report on specialized training of geophysicists in Latin American countries, we consider the “exact earth sciences” in the broader sense, i.e., the mathematical and physical (and, to a certain extent, chemical) aspects of the planet earth as a whole, including its fluid portions, as opposed to the more restricted concept of just solid earth geophysics. In other words, our inquiry follows the scope of both AGU and the International Union of Geodesy and Geophysics (IUGG), so geodesy, although not explicitly covered, will still be mentioned occasionally. We will also consider the applied branches, especially exploration geophysics, since these areas furnish powerful motivation for fostering our sciences, both in the governmental circles of developing countries and among the young people looking for a promising professional future.

  8. Geophysical methods in protected environments. Electrical resistivity tomography

    International Nuclear Information System (INIS)

    Rubio Sánchez-Aguililla, F.M.; Ramiro-Camacho, A.; Ibarra Torre, P.

    2017-01-01

    There is a strong interest in protecting the environment with the aim of its long term preservation. Sometimes the heritage value of these natural areas is related to their biodiversity as there are restricted ecosystems that depend directly on them. In other cases there a singular geological record might exist, essential for the understanding of certain processes affecting the planet, such as volcanic events or glacial periods. To achieve the protection and conservation of these areas it is necessary to generate knowledge about the distribution of geological materials and groundwater masses, to study the parameters that dominate the behaviour of these systems and then define those elements that require special protection or attention. In these protected environments, research methods with a minimal environmental impact should be used. Therefore, indirect methods, such as geophysical techniques, are reliable and complementary tools with a minimum environmental impact and are therefore useful for research these unique areas. The IGME has conducted several geophysical surveys in different protected environments in Spain with the aim of achieving a better understanding, and thus facilitate their preservation and exploitation in a sustainable manner. In this paper we present a review of some case studies where geophysical methods have been used. In all the cases electrical resistivity tomography has been the axis of the geophysical research and stands out due to its great effectiveness. The main objective of this communication is to divulgate and increase awareness of the important role that these geophysical methods can play in the sustainable study of these unique places. [es

  9. Towards an Operational Use of Geophysics for Archaeology in Henan (China: Methodological Approach and Results in Kaifeng

    Directory of Open Access Journals (Sweden)

    Nicola Masini

    2017-08-01

    Full Text Available One of the major issues in buried archeological sites especially if characterized by intense human activity, complex structures, and several constructive phases, is: to what depth conduct the excavation? The answer depends on a number of factors, among these one of the most important is the a priori and reliable knowledge of what the subsoil can preserve. To this end, geophysics (if used in strong synergy with archaeological research can help in the planning of time, depth, and modes of excavation also when the physical characteristics of the remains and their matrix are not ideal for archaeo-geophysical applications. This is the case of a great part of the archaeological sites in Henan, the cradle of the most important cultures in China and the seat of several capitals for more than two millennia. There, the high depth of buried remains covered by alluvial deposits and the building materials, mainly made by rammed earth, did not favor the use of geophysics. In this paper, we present and discuss the GPR and ERT prospection we conducted in Kaifeng (Henan, China, nearby a gate of the city walls dated to the Northern Song Dynasty. The integration of GPR and ERT provided useful information for the identification and characterization of archaeological remains buried at different depths. Actually, each geophysical technique, GPR frequency (used for the data acquisition as well as each way to analyze and visualize the results (from radargrams to time slice only provided partial information of little use if alone. The integration of the diverse techniques, data processing and visualization enabled us to optimize the penetration capability, the resolution for the detection of archaeological features and their interpretation. Finally, the results obtained from the GPR and ERT surveys were correlated with archaeological stratigraphy, available nearby the investigated area. This enabled us to further improve the interpretation of results from GPR and ERT

  10. Survey of the results of oil prospecting in Northern Bosnia

    Energy Technology Data Exchange (ETDEWEB)

    Soklic, I

    1972-06-01

    Oil prospecting in N. Bosnia was undertaken from 1898 till 1899, 1929 till 1941 and 1948 till 1963. Besides geological and geophysical prospecting, prospecting drillings have also been performed. Basic data of the results, especially of those in the post-war period, are given. Crude oil in the Tuzla Basin has been found in the Eocene and the middle Miocene-strata of the marine origin, as well as in freshwater Oligomiocene. The accumulation of oil in Pozarnica near Tuzla has the character of unsufficiently drained fissure bed. Test production gave 800 tons of oil before the last war. In Bosanska, Posavina and Semberija, the prospecting wells are located on the highest parts of pre-Neogene relief. (18 refs.)

  11. Geophysical logging for groundwater investigations in Southern Thailand

    Directory of Open Access Journals (Sweden)

    Phongpiyah Klinmanee

    2012-09-01

    Full Text Available In Thailand the Department of Groundwater Resources is drilling to find vital aquifers. Sometimes groundwater formations cannot be identified clearly during drilling; therefore, geophysical logging was applied after drilling and before casing.The tool used here is measuring nine parameters in one run, natural gamma ray, spontaneous potential, single point resistance, normal resistivity (AM 8’’, 16’’, 32’’, and 64’’, mud temperature and resistivity. Cutting was used to support the geophysical interpretations. In many cases the groundwater bearing zones could be clearly identified. The combination of andthe possibility choosing from nine parameters measured provided the necessary data base to identify groundwater bearingzones in different environments. It has been demonstrated that in different wells different tools are favorable than others.Based on the conclusions of this study geophysical logging in groundwater exploration is recommended as a normalstandard technique that should be applied in every new well drilled.

  12. Geophysical mapping of complex glaciogenic large-scale structures

    DEFF Research Database (Denmark)

    Høyer, Anne-Sophie

    2013-01-01

    This thesis presents the main results of a four year PhD study concerning the use of geophysical data in geological mapping. The study is related to the Geocenter project, “KOMPLEKS”, which focuses on the mapping of complex, large-scale geological structures. The study area is approximately 100 km2...... data types and co-interpret them in order to improve our geological understanding. However, in order to perform this successfully, methodological considerations are necessary. For instance, a structure indicated by a reflection in the seismic data is not always apparent in the resistivity data...... information) can be collected. The geophysical data are used together with geological analyses from boreholes and pits to interpret the geological history of the hill-island. The geophysical data reveal that the glaciotectonic structures truncate at the surface. The directions of the structures were mapped...

  13. Integrated geophysical surveys for searching of podiform chromite in Albania

    Energy Technology Data Exchange (ETDEWEB)

    Kospiri, Aleksander; Zajmi, Asim [Geophysical and Geochemical Center, Tirana (Albania)

    1995-12-31

    The purpose of this paper is to describe the application of geophysical methods to the search for chromite in Albania. Albania is well known for its chromite resources and ranks third amongst world producers of high-quality chromite. The ultramafic massif of Bulqiza, is the most important chromite bearing one. Surveying a surface of about 120 square kilometers (30% of massifs area) in that massif with integrated geophysical methods a considerable number of targets has been discovered, from which some are already objects under mine activity. In the integrated methods for chromite exploration in Bulqiza ultramafic massif are included: geological, gravity, magnetic and electrical mapping of the scale 1:2000 with survey grids 40x20m, 20x5m. Based on the interpretations of geophysical exploration were projected drilling which led to the discovery of some big ore deposits. (author). 12 refs., 3 figs

  14. Preliminary evaluation of alterant geophysical tomography in welded tuff

    International Nuclear Information System (INIS)

    Ramirez, A.L.; Daily, W.D.

    1985-01-01

    The ability of alterant geophysical tomography to delineate flow paths in a welded tuff rock mass has been preliminarily evaluated based on the results of a field experiment. Electromagnetic measurements were made before, during and after a water-based, dye tracer flowed through the rock mass. Alterant geophysical tomographs were generated and compared with independent evidence - borescope logs, neutron logs and dyed rock samples. Anomalies present in the tomograph match the location and orientation of fractures mapped with a borescope. The location of tracer-stained fractures coincides with the location of some image anomalies; other geophysical anomalies exist where tracer-stained fractures were not observed, perhaps due to poor core recovery. Additional drilling to locate stained flow paths and other experiments are planned so that the applicability of the technique can be further evaluated

  15. The Nirex Sellafield site investigation: the role of geophysical interpretation

    International Nuclear Information System (INIS)

    Muir Wood, R.; Woo, G.; MacMillan, G.

    1992-01-01

    This report reviews the methods by which geophysical data are interpreted, and used to characterize the 3-D geology of a site for potential storage of radioactive waste. The report focuses on the NIREX site investigation at Sellafield, for which geophysical observations provide a significant component of the structural geological understanding. In outlining the basic technical principles of seismic data processing and interpretation, and borehole logging, an attempt has been made to identify errors, uncertainties, and the implicit use of expert judgement. To enhance the reliability of a radiological probabilistic risk assessment, recommendations are proposed for independent use of the primary NIREX geophysical site investigation data in characterizing the site geology. These recommendations include quantitative procedures for undertaking an uncertainty audit using a combination of statistical analysis and expert judgement. (author)

  16. Energy prospects

    International Nuclear Information System (INIS)

    Lyall, K.

    1991-01-01

    The Business Council of Australia's study on Prospects for Improved Energy Efficiency and the Application of Renewable Energy Resources is summarised. The study estimates that replacement of all off-peak electric units in Australia with solar gas boosted systems would reduce electricity consumption for residential water heating by approximately 25% and almost halve carbon dioxide emissions resulting from residential water heating. Furthermore, substitution of all water heating units in Australia with solar gas systems would reduce total emissions by about 80%. The study concludes that while substitution on such a scale could not readily be achieved even within several decades, the estimates do indicate the significant benefits that might be realised by a long term program. 2 refs., 3 tabs

  17. Learning about hydrothermal volcanic activity by modeling induced geophysical changes

    Science.gov (United States)

    Currenti, Gilda M.; Napoli, Rosalba

    2017-05-01

    Motivated by ongoing efforts to understand the nature and the energy potential of geothermal resources, we devise a coupled numerical model (hydrological, thermal, mechanical), which may help in the characterization and monitoring of hydrothermal systems through computational experiments. Hydrothermal areas in volcanic regions arise from a unique combination of geological and hydrological features which regulate the movement of fluids in the vicinity of magmatic sources capable of generating large quantities of steam and hot water. Numerical simulations help in understanding and characterizing rock-fluid interaction processes and the geophysical observations associated with them. Our aim is the quantification of the response of different geophysical observables (i.e. deformation, gravity and magnetic field) to hydrothermal activity on the basis of a sound geological framework (e.g. distribution and pathways of the flows, the presence of fractured zones, caprock). A detailed comprehension and quantification of the evolution and dynamics of the geothermal systems and the definition of their internal state through a geophysical modeling approach are essential to identify the key parameters for which the geothermal system may fulfill the requirements to be exploited as a source of energy. For the sake of illustration only, the numerical computations are focused on a conceptual model of the hydrothermal system of Vulcano Island by simulating a generic 1-year unrest and estimating different geophysical changes. We solved (i) the mass and energy balance equations of flow in porous media for temperature, pressure and density changes, (ii) the elastostatic equation for the deformation field and (iii) the Poisson’s equations for gravity and magnetic potential fields. Under the model assumptions, a generic unrest of 1-year engenders on the ground surface low amplitude changes in the investigated geophysical observables, that are, however, above the accuracies of the modern

  18. Geophysics Fatally Flawed by False Fundamental Philosophy

    Science.gov (United States)

    Myers, L. S.

    2004-05-01

    volcanoes, that enable planetary expansion the same way cranial sutures permit human skulls to grow to maturity. Expansion is shown by the Asian and Australian trenches, from Kamchatka to the Marianas, and from Samoa to the tip of Macquarie Ridge south of New Zealand, that are mirror images of the western coasts of North and South America. This is clear evidence neither the Atlantic nor the Pacific Ocean existed 250 Ma when Earth was much smaller. In just 250 Ma external accretion and internal core expansion increased Earth's diameter from 7640 km to 12,735 km and increased total surface area to 361,060,000 sq. km, the area occupied by today's oceans-oceans that did not exist 250 Ma when Earth was slightly larger than Mars is today \\(6787 km\\). The fallacy of the nebular hypothesis did not become apparent until after Oliver and Isacks introduced the concept of subduction in 1967. Subduction was based on the false assumption that Earth's diameter is constant and unchanging, and spawned the theory of Plate Tectonics that "revolutionized" geophysics in a short period of time-a "revolution" destined for failure. Evidence is presented showing all solar bodies originate as comets \\(fragments of supernovae explosions\\) captured by the Sun that become meteoroids or asteroids by external accretion of meteorites and dust from over 370 known meteor streams.\\(Terentjeva, 1964\\) Accreation replaces the nebular hypothesis and rejuvenates Carey's Earth Expansion theory that, unfortunately, was pushed aside by plate tectonics because it lacked a plausible mechanism. However, expansion carries an ultimate threat to Mankind's tenure on Earth and exploration of Mars as the future home of Mankind takes on added significance.

  19. The relationship of fractals in geophysics to 'the new science'

    International Nuclear Information System (INIS)

    Turcotte, Donald L.

    2004-01-01

    Many phenomena in geophysics satisfy fractal statistics, examples range from the frequency-area statistics of earthquakes to the time series of the earth's magnetic field. Solutions to classical differential equations cannot give this type of behavior. Several 'cellular automata' models have successfully reproduced the observed statistics. For example, the slider-block model for earthquakes. Stephen Wolfram's recent book A New Kind of Science sets forth a 'new science' based on cellular automata. This paper discusses the role of cellular automata in geophysics

  20. Solar wind monitor—a school geophysics project

    Science.gov (United States)

    Robinson, Ian

    2018-05-01

    Described is an established geophysics project to construct a solar wind monitor based on a nT resolution fluxgate magnetometer. Low-cost and appropriate from school to university level it incorporates elements of astrophysics, geophysics, electronics, programming, computer networking and signal processing. The system monitors the earth’s field in real-time uploading data and graphs to a website every few minutes. Modular design encourages construction and testing by teams of students as well as expansion and refinement. The system has been tested running unattended for months at a time. Both the hardware design and software is published as open-source [1, 10].

  1. UNMANNED AIRCRAFT SYSTEMS FOR RAPID NEAR SURFACE GEOPHYSICAL MEASUREMENTS

    Directory of Open Access Journals (Sweden)

    J. B. Stoll

    2013-08-01

    Full Text Available This paper looks at some of the unmanned aircraft systems (UAS options and deals with a magnetometer sensor system which might be of interest in conducting rapid near surface geophysical measurements. Few of the traditional airborne geophysical sensors are now capable of being miniaturized to sizes and payload within mini UAS limits (e.g. airborne magnetics, gamma ray spectrometer. Here the deployment of a fluxgate magnetometer mounted on an UAS is presented demonstrating its capability of detecting metallic materials that are buried in the soil. The effectiveness in finding ferrous objects (e.g. UXO, landslides is demonstrated in two case studies.

  2. Prospects for development of industrial-geophysical investigations using tracer techniques

    International Nuclear Information System (INIS)

    Zhuvagin, I.G.; Kalinin, V.G.; Makarov, M.S.; Pestrikov, A.S.; Pinkenzon, D.B.; Romanov, V.V.

    1977-01-01

    The problem is discussed of studying oil and gas wells with the use of artificial and natural radioactive isotopes. It is stressed that the use of noble gases, especially radon as isotopes is promising. Examples of the application of the indicating radioisotope method with the use of radon in the Lower Volga region wells are presented

  3. Geoarchaeological results from geophysical prospections at the Roman city of Urbs Salvia, central Italy

    Science.gov (United States)

    Schettino, Antonio; Perna, Roberto; Pierantoni, Pietro Paolo; Ghezzi, Annalisa; Tassi, Luca; Cingolani, Sofia

    2017-04-01

    We report on a combined magnetic-GPR survey performed in 2015 and 2016 at the ancient Roman city of Urbs Salvia, located in central Italy. The main objective of this survey was to reconstruct the urban organization of the city forum and determine possible sites of future excavations. We found a complex pattern of buried structures, possibly resulting from the coexistence of republican and imperial artifacts and burned structures. A test excavation at the location where we detected a long linear structure characterized by strong magnetic signal revealed the presence of thermal baths. GPR data were acquired in areas characterized by high magnetic noise induced by metallic infrastructures (e.g., fences), which prevented a correct acquisition of archaeological anomalies. These data not only allowed to overcome the magnetic noise, but provided interesting 3D reconstructions of the buried structures. A detailed GPR survey in the theatre area was also performed, with the aim to investigate the plan of the porticus post scaenam. This survey allowed to identify some interesting structures related to different chronological phases and confirms the epigraphic data related to the development of the monument.

  4. Geophysical prospecting for iron ore deposit around Tajimi village, Lokoja, North–Central Nigeria

    Directory of Open Access Journals (Sweden)

    Bayowa Oyelowo

    2016-09-01

    Full Text Available Ground magnetic and electrical resistivity survey were undertaken to investigate the occurrence and geometry of iron ore deposit around Tajimi village, Lokoja, North-Central Nigeria. The generated residual map of the ground-magnetic data acquired at 250 stations along 15 traverses revealed numerous prominent anomalies, mostly trending in the N-S direction. The radial power spectrum revealed the depth to magnetic sources between 6 m to 20 m. The interpreted VES data characterized the area into three subsurface layers: top soil, presumably iron ore layer and weathered/fresh basement. The result of vertical electrical sounding curves showed a sudden drop in resistivity (42-241 Ωm over high magnetic response. The geo-electric section revealed that the study area is generally characterized with thin overburden (0.5-1.7 m and the thickness of the second layer (presumed to be the iron ore layer ranged between 6.2-25.1 m. The study concluded that areas of high magnetic intensity showed a sudden drop in resistivity value for the VES points, which give an indication of the presence of an electrically conductive structure presumed to be iron ore deposits.

  5. Time-lapse Joint Inversion of Geophysical Data and its Applications to Geothermal Prospecting - GEODE

    Energy Technology Data Exchange (ETDEWEB)

    Revil, Andre [Univ. of Savoy, Chambery (France)

    2015-12-31

    The objectives of this project were to develop new algorithms to decrease the cost of drilling for geothermal targets during the exploration phase of a hydrothermal field and to improve the monitoring of a geothermal field to better understand its plumbing system and keep the resource renewable. We developed both new software and algorithms for geothermal explorations (that can also be used in other areas of interest to the DOE) and we applied the methods to a geothermal field of interest to ORMAT in Nevada.

  6. Combination of geophysical prospecting techniques into areas of high protection value: Identification of shallow volcanic structures

    Science.gov (United States)

    Gómez-Ortiz, David; Montesinos, Fuensanta G.; Martín-Crespo, Tomás; Solla, Mercedes; Arnoso, José; Vélez, Emilio

    2014-10-01

    Timanfaya National Park is a volcanic area located in the southwest of Lanzarote Island (Canary Islands, Spain). Several lava tubes have been found in the lava flows but many others remain unknown. Its location and identification are important to mitigate collapse hazards in this touristic area. We present a new study about the location of recent lava tubes by the analysis and joint interpretation of ground penetrating radar (GPR), microgravity and electromagnetic induction (EMI) data along the same profile over an area not previously surveyed. GPR data display a complex pattern of reflections up to ~ 10 m depth. The strongest hyperbolic reflections can be grouped in four different areas. Visual inspections carried out in the field allow confirming the occurrence of lava tubes at two of them. These reflections have been interpreted as the effect of the roof and bottom interfaces of several lava tubes. The microgravity survey defines a wide gravity low with several over-imposed minor highs and lows. Using the GPR data, a 2.5D gravity model has been obtained revealing four lava tubes. EMI data have been used to obtain an inverted resistivity model that displays four high resistivity areas that closely match the locations of the lava tubes derived from the previous methods. This resistivity model exhibits the lower resolution although reaches a deeper investigation depth (~ 20 m). The comparison of the results has revealed that joint interpretation of GPR, microgravity and EMI methods provides reliable models useful for the detection of unknown shallow lava tubes.

  7. MLS/Aura Level 2 Diagnostics, Geophysical Parameter Grid V004

    Data.gov (United States)

    National Aeronautics and Space Administration — ML2DGG is the EOS Aura Microwave Limb Sounder (MLS) product containing geophysical diagnostic quantities pertaining directly to the standard geophysical data...

  8. Geological characterization in urban areas based on geophysical mapping: A case study from Horsens, Denmark

    DEFF Research Database (Denmark)

    Andersen, Theis Raaschou; Poulsen, Søren Erbs; Thomsen, Peter

    2018-01-01

    Geophysical mapping in urban areas. Detailed 3D geological model of the area. Mapping contaminant plume......Geophysical mapping in urban areas. Detailed 3D geological model of the area. Mapping contaminant plume...

  9. 77 FR 19321 - Geological and Geophysical Exploration on the Atlantic Outer Continental Shelf (OCS)

    Science.gov (United States)

    2012-03-30

    ... DEPARTMENT OF THE INTERIOR Bureau of Ocean Energy Management Geological and Geophysical... Statement (PEIS) to evaluate potential environmental effects of multiple Geological and Geophysical (G&G... limited to, seismic surveys, sidescan-sonar surveys, electromagnetic surveys, geological and geochemical...

  10. Report of geophysical raising of the amethyst and agate in two quarries in Artigas district Uruguay

    International Nuclear Information System (INIS)

    Reitmayr, G.; Gonzalez, C.; Torterolo, M.

    1989-01-01

    In a geophysical raising of amethyst and agate was studied the possibility to apply a better suitable geophysical method. The conclusion was that the electromagnetic VLF method was suitable to identify the zones.

  11. Intercomparison of IRS-P4-MSMR derived geophysical products ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    In this paper, MSMR geophysical products like Integrated Water Vapour (IWV), Ocean Surface. Wind Speed (OWS) and Cloud Liquid Water (CLW) in different grids of 50, 75 and 150kms are compared with similar products available from other satellites like DMSP-SSM/I and TRMM-. TMI. MSMR derived IWV, OWS and CLW ...

  12. Secular variations in carbon-14 and their geophysical implications

    CSIR Research Space (South Africa)

    Vogel

    2002-03-01

    Full Text Available . The identification of the causes and magnitudes of these deviations has created a new too that is contributing to the investigation of different geophysical: phenomena. Variations in the activity of the Sun produce fluctuations of the C-14 level in the atmosphere...

  13. Solvable Model for Dynamic Mass Transport in Disordered Geophysical Media

    KAUST Repository

    Marder, M.; Eftekhari, Behzad; Patzek, Tadeusz

    2018-01-01

    We present an analytically solvable model for transport in geophysical materials on large length and time scales. It describes the flow of gas to a complicated absorbing boundary over long periods of time. We find a solution to this model using Green's function techniques, and apply the solution to three absorbing networks of increasing complexity.

  14. Geophysical characterisation of the groundwater-surface water interface

    Science.gov (United States)

    McLachlan, P. J.; Chambers, J. E.; Uhlemann, S. S.; Binley, A.

    2017-11-01

    Interactions between groundwater (GW) and surface water (SW) have important implications for water quantity, water quality, and ecological health. The subsurface region proximal to SW bodies, the GW-SW interface, is crucial as it actively regulates the transfer of nutrients, contaminants, and water between GW systems and SW environments. However, geological, hydrological, and biogeochemical heterogeneity in the GW-SW interface makes it difficult to characterise with direct observations. Over the past two decades geophysics has been increasingly used to characterise spatial and temporal variability throughout the GW-SW interface. Geophysics is a powerful tool in evaluating structural heterogeneity, revealing zones of GW discharge, and monitoring hydrological processes. Geophysics should be used alongside traditional hydrological and biogeochemical methods to provide additional information about the subsurface. Further integration of commonly used geophysical techniques, and adoption of emerging techniques, has the potential to improve understanding of the properties and processes of the GW-SW interface, and ultimately the implications for water quality and environmental health.

  15. Geophysical techniques for the study of ground water pollution: A ...

    African Journals Online (AJOL)

    Geophysical techniques for the study of ground water pollution: A review. IB Osazuwa, NK Abdulahi. Abstract. No Abstract. Nigerian Journal of Physics Vol. 20 (1) 2008: pp.163-174. Full Text: EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT.

  16. Marine geophysical studies off Karwar, West Coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Subrahmanyam, V.; Ramana, M.V.; SubbaRaju, L.V.

    Geophysical studies of the southwestern continental margin revealed significant surface and subsurface topographic highs (ridges) trending NNW-SSE to NW-Se beyond the shelf break. Residual magnetic anomaly map depicts prominent NNW-SSE, NW-SE and E...

  17. Geophysical study of saline water intrusion in Lagos municipality

    African Journals Online (AJOL)

    aghomotsegin

    1Department of Applied Geophysics, Federal University of Technology, Akure, Ondo State, Nigeria. 2Lagos State ... E'. C. C'. N070 00'. E0020 300'. N060 15'. E0020 300'. N070 00'. E0040 30' ..... coastal aquifer, Youngkwang-gun, Korea.

  18. Atmospheric and Geophysical Sciences Program report, 1990--1991

    International Nuclear Information System (INIS)

    MacCracken, M.C.; Albritton, J.R.; MacGregor, P.M.

    1992-06-01

    This report describes research programs from Lawrence Livermore Laboratory from 1990--1991 in atmospheric chemistry and geophysics. Programs such as mathematical modeling of atmospheric dispersions of pollutants and radionuclides,tropospheric chemistry, clouds, climate models, and the effects of atmospheric trace constiuents on ozone are described

  19. Addressing the difficulty of changing fields in geophysics

    Science.gov (United States)

    Civilini, F.; Savage, M. K.

    2014-12-01

    Geophysics is a wonderfully diverse field of study, encompassing a variety of disciplines greatly different from one other. Even within the same discipline, various branches of study can have drastically different vocabulary and methodologies. The difficulty of breaking this "jargon" barrier is also an important reminder for scientists of how critical it is to clearly and concisely convey information. This presentation will focus on strategies that students can focus on to ease a transition between fields in geophysics. I believe that a student changing disciplines should proceed in the following steps: [1] Do a cursory literature review to find a review paper of the desired topic and work backwards through the details until a level of understanding or recognition is reached, [2] Obtain a clear physical understanding of the data and methods of the proposed study, and [3] Establish a support network through the research group or elsewhere which will recognize the areas in which the student is behind and offer remedies in a supportive and productive manner. These strategies are based on my own personal experience changing from music to geophysics in my undergrad and working on projects spanning various subdisciplines of geophysics during my Masters and PhD. It is worthwhile for research groups to spend the time to mentor students switching from other disciplines because those students will in time be able to observe the research in a different way than their peers, and easily adapt to changes of direction within the research.

  20. Summary of coal problems and possible geophysics solutions

    CSIR Research Space (South Africa)

    Van Schoor, Abraham M

    2015-01-01

    Full Text Available problem description concludes with a list of geophysical methods that may be applicable. The application summary table at the end of the chapter aims to integrate all of this information into a single, one-page reference guide....

  1. Geophysical outlook. Part 8. Interactive interpretation comes of age

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, H.R. Jr.

    1982-05-01

    Computer-aided analysis is the obvious solution to handling the large volumes of geophysical data being generated by today's explorationists. When coupled with new developments in display devices, computer technology is particularly relevant to interactive interpretation of seismic data, particularly for mapping, three-dimensional graphics, and color-coding purpposes.

  2. Impacts of geo-physical factors and human disturbance on ...

    African Journals Online (AJOL)

    We examined vegetation-disturbance-environment relationships in the Xiaomengyang Section of Xishuangbanna Nature Reserve (XNR) using multivariate analysis to understand the impacts of geo-physical factors and human disturbance on vegetation along the highway corridor. We found that native forests were the best ...

  3. Staff - Kenneth R. Papp | Alaska Division of Geological & Geophysical

    Science.gov (United States)

    Surveys Home About Us Director's Office Alaska Statutes Annual Reports Employment Staff Directory and Facilities Staff Seismic and Well Data Data Reports Contact Us Frequently Asked Questions Ask a Facebook DGGS News Natural Resources Geological & Geophysical Surveys Staff - Kenneth R. Papp main

  4. Geophysics report of Santa Rosa place Canelones province

    International Nuclear Information System (INIS)

    Cicalese, H.; Mari, C.; Lema, F.

    1985-01-01

    The Geophysical Division of the DINAMIGE has carried out several vertical electric well of long reach, with the purpose of estimating the basaltic mantel power of Arapey Formation , the thickness of the deep Tacuarembo Yaguari aquifer and the depth of the crystalline basement.

  5. Directional filtering for linear feature enhancement in geophysical maps

    NARCIS (Netherlands)

    Sykes, M.P.; Das, U.C.

    2000-01-01

    Geophysical maps of data acquired in ground and airborne surveys are extensively used for mineral, groundwater, and petroleum exploration. Lineaments in these maps are often indicative of contacts, basement faulting, and other tectonic features of interest. To aid the interpretation of these maps, a

  6. Solvable Model for Dynamic Mass Transport in Disordered Geophysical Media

    KAUST Repository

    Marder, M.

    2018-03-29

    We present an analytically solvable model for transport in geophysical materials on large length and time scales. It describes the flow of gas to a complicated absorbing boundary over long periods of time. We find a solution to this model using Green\\'s function techniques, and apply the solution to three absorbing networks of increasing complexity.

  7. COTHERM: Geophysical Modeling of High Enthalpy Geothermal Systems

    Science.gov (United States)

    Grab, Melchior; Maurer, Hansruedi; Greenhalgh, Stewart

    2014-05-01

    In recent years geothermal heating and electricity generation have become an attractive alternative energy resource, especially natural high enthalpy geothermal systems such as in Iceland. However, the financial risk of installing and operating geothermal power plants is still high and more needs to be known about the geothermal processes and state of the reservoir in the subsurface. A powerful tool for probing the underground system structure is provided by geophysical techniques, which are able to detect flow paths and fracture systems without drilling. It has been amply demonstrated that small-scale features can be well imaged at shallow depths, but only gross structures can be delineated for depths of several kilometers, where most high enthalpy systems are located. Therefore a major goal of our study is to improve geophysical mapping strategies by multi-method geophysical simulations and synthetic data inversions, to better resolve structures at greater depth, characterize the reservoir and monitor any changes within it. The investigation forms part of project COTHERM - COmbined hydrological, geochemical and geophysical modeling of geoTHERMal systems - in which a holistic and synergistic approach is being adopted to achieve multidisciplinary cooperation and mutual benefit. The geophysical simulations are being performed in combination with hydrothermal fluid flow modeling and chemical fluid rock interaction modeling, to provide realistic constraints on lithology, pressure, temperature and fluid conditions of the subsurface. Two sites in Iceland have been selected for the study, Krafla and Reykjanes. As a starting point for the geophysical modeling, we seek to establish petrophysical relations, connecting rock properties and reservoir conditions with geophysical parameters such as seismic wave speed, attenuation, electrical conductivity and magnetic susceptibility with a main focus on seismic properties. Therefore, we follow a comprehensive approach involving

  8. Geophysical Methods for Investigating Ground-Water Recharge

    Science.gov (United States)

    Ferre, Ty P.A.; Binley, Andrew M.; Blasch, Kyle W.; Callegary, James B.; Crawford, Steven M.; Fink, James B.; Flint, Alan L.; Flint, Lorraine E.; Hoffmann, John P.; Izbicki, John A.; Levitt, Marc T.; Pool, Donald R.; Scanlon, Bridget R.

    2007-01-01

    While numerical modeling has revolutionized our understanding of basin-scale hydrologic processes, such models rely almost exclusively on traditional measurements?rainfall, streamflow, and water-table elevations?for calibration and testing. Model calibration provides initial estimates of ground-water recharge. Calibrated models are important yet crude tools for addressing questions about the spatial and temporal distribution of recharge. An inverse approach to recharge estimation is taken of necessity, due to inherent difficulties in making direct measurements of flow across the water table. Difficulties arise because recharging fluxes are typically small, even in humid regions, and because the location of the water table changes with time. Deep water tables in arid and semiarid regions make recharge monitoring especially difficult. Nevertheless, recharge monitoring must advance in order to improve assessments of ground-water recharge. Improved characterization of basin-scale recharge is critical for informed water-resources management. Difficulties in directly measuring recharge have prompted many efforts to develop indirect methods. The mass-balance approach of estimating recharge as the residual of generally much larger terms has persisted despite the use of increasing complex and finely gridded large-scale hydrologic models. Geophysical data pertaining to recharge rates, timing, and patterns have the potential to substantially improve modeling efforts by providing information on boundary conditions, by constraining model inputs, by testing simplifying assumptions, and by identifying the spatial and temporal resolutions needed to predict recharge to a specified tolerance in space and in time. Moreover, under certain conditions, geophysical measurements can yield direct estimates of recharge rates or changes in water storage, largely eliminating the need for indirect measures of recharge. This appendix presents an overview of physically based, geophysical methods

  9. Optimized Enhanced Bioremediation Through 4D Geophysical Monitoring and Autonomous Data Collection, Processing and Analysis

    Science.gov (United States)

    2014-09-01

    ER-200717) Optimized Enhanced Bioremediation Through 4D Geophysical Monitoring and Autonomous Data Collection, Processing and Analysis...N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE Optimized Enhanced Bioremediation Through 4D Geophysical Monitoring and Autonomous Data...8 2.1.2 The Geophysical Signatures of Bioremediation ......................................... 8 2.2 PRIOR

  10. Geophysical analysis for the Ada Tepe region (Bulgaria) - case study

    Science.gov (United States)

    Trifonova, Petya; Metodiev, Metodi; Solakov, Dimcho; Simeonova, Stela; Vatseva, Rumiana

    2013-04-01

    According to the current archeological investigations Ada Tepe is the oldest gold mine in Europe with Late Bronze and Early Iron age. It is a typical low-sulfidation epithermal gold deposit and is hosted in Maastrichtian-Paleocene sedimentary rocks above a detachment fault contact with underlying Paleozoic metamorphic rocks. Ada Tepe (25o.39'E; 41o.25'N) is located in the Eastern Rhodope unit. The region is highly segmented despite the low altitude (470-750 m) due to widespread volcanic and sediment rocks susceptible to torrential erosion during the cold season. Besides the thorough geological exploration focused on identifying cost-effective stocks of mineral resources, a detailed geophysical analysis concernig diferent stages of the gold extraction project was accomplished. We present the main results from the geophysical investigation aimed to clarify the complex seismotectonic setting of the Ada Tepe site region. The overall study methodology consists of collecting, reviewing and estimating geophysical and seismological information to constrain the model used for seismic hazard assessment of the area. Geophysical information used in the present work consists of gravity, geomagnetic and seismological data. Interpretation of gravity data is applied to outline the axes of steep gravity transitions marked as potential axes of faults, flexures and other structures of dislocation. Direct inverse techniques are also utilized to estimate the form and depth of anomalous sources. For the purposes of seismological investigation of the Ada Tepe site region an earthquake catalogue is compiled for the time period 510BC - 2011AD. Statistical parameters of seismicity - annual seismic rate parameter, ?, and the b-value of the Gutenberg-Richter exponential relation for Ada Tepe site region, are estimated. All geophysical datasets and derived results are integrated using GIS techniques ensuring interoperability of data when combining, processing and visualizing obtained

  11. Environmental geophysics and geochemistry for contamination mapping and monitoring 1

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Tai Sup; Lee, Sang Kyu; Hong, Young Kook [Korea Inst. of Geology Mining and Materials, Taejon (Korea, Republic of); and others

    1995-12-01

    This study aims to provide the technologies which can be practically used for contamination mapping and monitoring. To accomplish this goal, the geophysical and geochemical expertise and techniques commonly used in the mineral resources exploration are employed. In the first year of the three-year-long project, the purpose of the study is to introduce the optimum methodologies among the geophysical and geochemical techniques to tackle the various cases of environmental contamination. To achieve the purpose, case studies of the developed countries were surveyed and analyzed through the various kinds of literatures. The followings are categorized to be solved by geophysical methods: 1) delineation of water system pollution by acid mine drainage and distributions of waste rocks in the closed mine area, 2) defining boundaries of subsurface contamination due to oil seepage, 3) zoning of sea water intrusion in the seashore or subsurface geology highly containing salt, 4) locating of buried metallic wastes such as pipes and drums which can cause the secondary pollution by corrosion, and 5) outlining of the subsurface area polluted by leachate from the landfill. To experiment the above items, various geophysical methods were applied to the corresponding test sites. From these experiments, the applicabilities of the respective geophysical method were analyzed, and the optimum methods were derived for the various pollution types. Furthermore, electric and electromagnetic surveys data processing software were developed to quantitatively interpret and highly resolve the geology. The environmental assignments which can be solved by geochemical methods include: 1) drainage pollution by coal mine effluents, 2)subsurface contamination of oil-spill, 3) sea water intrusion, 4) dispersion of toxic heavy metallic elements in the metal mines, and 5) radon environmental geochemistry. The appropriate test sites for applying the geochemical methods were selected. (Abstract Truncated)

  12. Different integrated geophysical approaches to investigate archaeological sites in urban and suburban area.

    Science.gov (United States)

    Piro, Salvatore; Papale, Enrico; Zamuner, Daniela

    2016-04-01

    Geophysical methods are frequently used in archaeological prospection in order to provide detailed information about the presence of structures in the subsurface as well as their position and their geometrical reconstruction, by measuring variations of some physical properties. Often, due to the limited size and depth of an archaeological structure, it may be rather difficult to single out its position and extent because of the generally low signal-to-noise ratio. This problem can be overcome by improving data acquisition, processing techniques and by integrating different geophysical methods. In this work, two sites of archaeological interest, were investigated employing several methods (Ground Penetrating Radar (GPR), Electrical Resistivity Tomography (ERT), Fluxgate Differential Magnetic) to obtain precise and detailed maps of subsurface bodies. The first site, situated in a suburban area between Itri and Fondi, in the Aurunci Natural Regional Park (Central Italy), is characterized by the presence of remains of past human activity dating from the third century B.C. The second site, is instead situated in an urban area in the city of Rome (Basilica di Santa Balbina), where historical evidence is also present. The methods employed, allowed to determine the position and the geometry of some structures in the subsurface related to this past human activity. To have a better understanding of the subsurface, we then performed a qualitative and quantitative integration of this data, which consists in fusing the data from all the methods used, to have a complete visualization of the investigated area. Qualitative integration consists in graphically overlaying the maps obtained by the single methods; this method yields only images, not new data that may be subsequently analyzed. Quantitative integration is instead performed by mathematical and statistical solutions, which allows to have a more accurate reconstruction of the subsurface and generates new data with high

  13. Utilization of Integrated Geophysical Techniques to Delineate the Extraction of Mining Bench of Ornamental Rocks (Marble

    Directory of Open Access Journals (Sweden)

    Julián Martínez

    2017-12-01

    Full Text Available Low yields in ornamental rock mining remain one of the most important problems in this industry. This fact is usually associated with the presence of anisotropies in the rock, which makes it difficult to extract the blocks. An optimised planning of the exploitation, together with an improved geological understanding of the deposit, could increase these yields. In this work, marble mining in Macael (Spain was studied to test the capacity of non-destructive geophysical prospecting methods (GPR and ERI as tools to characterize the geology of the deposit. It is well-known that the ERI method provides a greater penetration depth. By using this technique, it is possible to distinguish the boundaries between the marble and the underlying micaschists, the morphology of the unit to be exploited, and even fracture zones to be identified. Therefore, this technique could be used in the early stages of research, to estimate the reserves of the deposit. The GPR methodology, with a lower penetration depth, is able to offer more detailed information. Specifically, it detects lateral and vertical changes of the facies inside the marble unit, as well as the anisotropies of the rock (fractures or holes. This technique would be suitable for use in a second stage of research. On the one hand, it is very useful for characterization of the texture and fabric of the rock, which allows us to determine in advance its properties, and therefore, the quality for ornamental use. On the other hand, the localization of anisotropy using the GPR technique will make it possible to improve the planning of the rock exploitation in order to increase yields. Both integrated geophysical techniques are effective for assessing the quality of ornamental rock and thus can serve as useful tools in mine planning to improve yields and costs.

  14. 3D modeling of a dolerite intrusion from the photogrammetric and geophysical data integration.

    Science.gov (United States)

    Duarte, João; Machadinho, Ana; Figueiredo, Fernando; Mira, Maria

    2015-04-01

    The aims of this study is create a methodology based on the integration of data obtained from various available technologies, which allow a credible and complete evaluation of rock masses. In this particular case of a dolerite intrusion, which deployed an exploration of aggregates and belongs to the Jobasaltos - Extracção e Britagem. S.A.. Dolerite intrusion is situated in the volcanic complex of Serra de Todo-o-Mundo, Casais Gaiola, intruded in Jurassic sandstones. The integration of the surface and subsurface mapping, obtained by technology UAVs (Drone) and geophysical surveys (Electromagnetic Method - TEM 48 FAST), allows the construction of 2D and 3D models of the study local. The combination of the 3D point clouds produced from two distinct processes, modeling of photogrammetric and geophysical data, will be the basis for the construction of a single model of set. The rock masses in an integral perspective being visible their development above the surface and subsurface. The presentation of 2D and 3D models will give a perspective of structures, fracturation, lithology and their spatial correlations contributing to a better local knowledge, as well as its potential for the intended purpose. From these local models it will be possible to characterize and quantify the geological structures. These models will have its importance as a tool to assist in the analysis and drafting of regional models. The qualitative improvement in geological/structural modeling, seeks to reduce the value of characterization/cost ratio, in phase of prospecting, improving the investment/benefit ratio. This methodology helps to assess more accurately the economic viability of the projects.

  15. Prospecting for coal in China with remote sensing

    Energy Technology Data Exchange (ETDEWEB)

    Ke-long Tan; Yu-qing Wan; Sun-xin Sun; Gui-bao Bao; Jing-shui Kuang [Aerophotogrammetry and Remote Sensing Center of China Coal, Xi' an (China)

    2008-12-15

    In China it is important to explore coal prospecting by taking advantage of modern remote sensing and geographic information system technologies. Given a theoretical basis for coal prospecting by remote sensing, the methodologies and existing problems are demonstrated systematically by summarizing past practices of coal prospecting with remote sensing. A new theory of coal prospecting with remote sensing is proposed. In uncovered areas, coal resources can be prospected by direct interpretation. In coal bearing strata of developed areas covered by thin Quaternary strata or vegetation, prospecting for coal can be carried out by indirect interpretation of geomorphology and vegetation. For deeply buried underground deposits, coal prospecting can rely on tectonic structures, interpretation and analysis of new tectonic clues and regularity of coal formation and preservation controlled by tectonic structures. By applying newly hyper-spectral, multi-polarization, multi-angle, multi-temporal and multi-resolution remote sensing data and carrying out integrated analysis of geographic attributes, ground attributes, geophysical exploration results, geochemical exploration results, geological drilling results and remote sensing data by GIS tools, coal geology resources and mineralogical regularities can be explored and coal resource information can be acquired with some confidence. 12 refs., 4 figs., 3 tabs.

  16. Learning about Hydrothermal Volcanic Activity by Modeling Induced Geophysical Changes

    Directory of Open Access Journals (Sweden)

    Gilda M. Currenti

    2017-05-01

    Full Text Available Motivated by ongoing efforts to understand the nature and the energy potential of geothermal resources, we devise a coupled numerical model (hydrological, thermal, mechanical, which may help in the characterization and monitoring of hydrothermal systems through computational experiments. Hydrothermal areas in volcanic regions arise from a unique combination of geological and hydrological features which regulate the movement of fluids in the vicinity of magmatic sources capable of generating large quantities of steam and hot water. Numerical simulations help in understanding and characterizing rock-fluid interaction processes and the geophysical observations associated with them. Our aim is the quantification of the response of different geophysical observables (i.e., deformation, gravity, and magnetic fields to hydrothermal activity on the basis of a sound geological framework (e.g., distribution and pathways of the flows, the presence of fractured zones, caprock. A detailed comprehension and quantification of the evolution and dynamics of the geothermal systems and the definition of their internal state through a geophysical modeling approach are essential to identify the key parameters for which the geothermal system may fulfill the requirements to be exploited as a source of energy. For the sake of illustration only, the numerical computations are focused on a conceptual model of the hydrothermal system of Vulcano Island by simulating a generic 1-year unrest and estimating different geophysical changes. We solved (i the mass and energy balance equations of flow in porous media for temperature, pressure and density changes, (ii the elastostatic equation for the deformation field and (iii the Poisson's equations for gravity and magnetic potential fields. Under the model assumptions, a generic unrest of 1-year engenders on the ground surface low amplitude changes in the investigated geophysical observables, that, being above the accuracies of

  17. A tool for Exploring Geophysical Data: The VGEE-IDV

    Science.gov (United States)

    Pandya, R. E.; Murray, D.

    2002-12-01

    The Visual Geophysical Exploration Environment (VGEE) is a suite of computer tools and accompanying online curricular units that enable students to develop physical insight from geophysical data sets. The VGEE curriculum is inquiry and visualization based. The curriculum begins by asking students to compare visualizations they construct from authentic geosciences data to their own conception of the geophysical phenomenon. This comparison encourages students to identify and challenge their own prior conceptions of the phenomenon, a necessary prerequisite to successful learning. Students then begin building correct understandings by identifying patterns and relationships within their visualizations. Students use idealized concept models that highlight physical principles to explain these patterns and relationships. Research, however, has shown that the physical insight gained from these idealized models isn't often applied to either the real world or to the data visualized. To address this, students can easily embed these idealized concept models into their visualizations; there the idealized models respond to the real physical conditions of the geophysical data. The entire inquiry process is built around multi-dimensional and multi-variable visualizations of real geophysical data. Advantages of visualization include its using a natural human talent and its removing mathematics as a barrier to insight. Multi-dimensional and multi-variable visualizations offer the additional advantage of integrated perspectives; rather than asking learners to mentally combine two-dimensional representations of different variables, the learners can navigate through a three-dimensional time-varying representation and get a holistic view. Finally, learner constructed visualizations offer the students a experience with scientific tools, a chance to tailor their investigation to their own misconceptions, and the potential for more robust understanding than prepared visualizations. The

  18. The University of Texas Institute for Geophysics' Marine Geology and Geophysics Field Course: A Hand-On Education Approach to Applied Geophysics

    Science.gov (United States)

    Davis, M. B.; Goff, J.; Gulick, S. P. S.; Fernandez, R.; Duncan, D.; Saustrup, S.

    2016-12-01

    The University of Texas Institute for Geophysics, Jackson School of Geosciences, offers a 3-week marine geology and geophysics field course. The course provides hands-on instruction and training for graduate and upper-level undergraduate students in high-resolution seismic reflection, CHIRP sub-bottom profiling, multibeam bathymetry, sidescan sonar, and sediment sampling and analysis. Students first participate in 3 days of classroom instruction designed to communicate geological context of the field area along with theoretical and technical background on each field method. The class then travels to the Gulf Coast for a week of at-sea field work at locations that provide an opportunity to investigate coastal and continental shelf processes. Teams of students rotate between UTIG's 26' R/V Scott Petty and NOAA's 82' R/V Manta. They assist with survey design, instrumentation set up, and learn about acquisition, quality control, and safe instrument deployment. Teams also process data and analyze samples in onshore field labs. During the final week teams integrate, interpret, and visualize data in a final project using industry-standard software. The course concludes with team presentations on their interpretations with academic and industry supporters. Students report a greater understanding of marine geology and geophysics through the course's intensive, hands-on, team approach and high instructor/student ratio (sixteen students, three faculty, and three teaching assistants). Post-class, students may incorporate course data in senior honors or graduate thesis and are encouraged to publish and present results at national meetings. This course (to our knowledge) remains the only one of its kind, satisfies field experience requirements for some degree programs, and provides an alternative to land-based field courses. Alumni note the course's applicability to energy, environmental, and geotechnical industries as well as coastal restoration/management fields.

  19. Uranium project. Geochemistry prospection

    International Nuclear Information System (INIS)

    Lambert, J.

    1983-01-01

    Geochemistry studies the distribution of the chemicals elements in the terrestrial crust and its ways to migrate. The terminology used in this report is the following one: 1) Principles of the prospection geochemistry 2) Stages of the prospection geochemistry 3)utility of the prospection geochemistry 4) geochemistry of uranium 5) procedures used within the framework of uranium project 6) Average available 7) Selection of the zones of prospection geochemistry 8) Stages of the prospection, Sample preparation and analisis 9) Presentation of the results

  20. NATO Advanced Study Institute on Buoyant Convection in Geophysical Flows

    CERN Document Server

    Fedorovich, E; Viegas, D; Wyngaard, J

    1998-01-01

    Studies of convection in geophysical flows constitute an advanced and rapidly developing area of research that is relevant to problems of the natural environment. During the last decade, significant progress has been achieved in the field as a result of both experimental studies and numerical modelling. This led to the principal revision of the widely held view on buoyancy-driven turbulent flows comprising an organised mean component with superimposed chaotic turbulence. An intermediate type of motion, represented by coherent structures, has been found to play a key role in geophysical boundary layers and in larger scale atmospheric and hydrospheric circulations driven by buoyant forcing. New aspects of the interaction between convective motions and rotation have recently been discovered and investigated. Extensive experimental data have also been collected on the role of convection in cloud dynamics and microphysics. New theoretical concepts and approaches have been outlined regarding scaling and parameteriz...

  1. Use of the radon gas as a natural geophysical tracer

    International Nuclear Information System (INIS)

    Pena, P.; Balcazar, M.; Flores R, J.H.; Lopez M, A.

    2006-01-01

    In this work it is denoted the applications of the radon gas like a natural geophysical radiotracer in the different branches of the Earth Sciences (Geology, geophysics and geochemistry). It importance resides in its employment like one additional tool to register the possible occurrence of seismic events by means of radon anomalies that are presented in land movements (volcanic eruptions and presence of geothermal areas), as well as its potential in environmental works whose purpose is the evaluation of the feather of contamination in the underground water and the porous media for spills of hydrocarbons. The measurement techniques to determine the concentration of radon was carried out by means of Solid Detectors of Nuclear tracks, as well as by Liquid scintillation, Clipperton, Honeywell, AlphaGUARD. The towns where these techniques its were applied were: Mexico City, Estado de Mexico (Toluca, ININ), Jalisco (The Spring), Guerrero coast. (Author)

  2. Site investigation - equipment for geological, geophysical, hydrogeological and hydrochemical characterization

    International Nuclear Information System (INIS)

    Almen, K.E.; Fridh, B.; Johansson, B.E.; Sehlstedt, M.

    1986-11-01

    The investigations are performed within a site investigation program. In total about 60,000 m of cored 56 mm boreholes have been drilled and investigated at eight study sites. A summarized description of the main investigation methods is included. Instruments for geophysical investigations contains equipment for ground measurements as well as for borehole logging. The Geophysical investigations including the borehole radar measurements, are indirect methods for the geological and hydrogeological characterization of the rock formation. Great effort has been laid on the development of hydrogeological instruments for hydraulic tests and groundwater head measurements. In order to obtain hydrochemical investigations with high quality, a complete system for sampling and analysis of ground water has been developed. (orig./PW)

  3. Geophysical study in waste landfill localized above fractured rocks

    Directory of Open Access Journals (Sweden)

    Ariveltom Cosme da Silva

    2011-08-01

    Full Text Available Geophysical survey is an important method for investigation of contaminated areas used in the characterization of contrasting physical properties in the presence of pollutants. This work applied the geophysical methods of Electrical Resistivity and Self Potential in waste landfill, located in Caçapava do Sul city, RS. The landfill is located over fractured metamorphic rocks. Eight lines of electrical profiling with 288 measures of self potential were done. In addition, 83 measurements of direction and dip of fractures were taken. The application of spontaneous potential method permitted to detect the direction of groundwater flow. The electrical resistivity measurements allowed the identification of low-intensity anomalies associated with the presence of leachate. There is a relationship between anomalous zones and the directions of fractures.

  4. Geophysical data fusion for subsurface imaging. Final report

    International Nuclear Information System (INIS)

    1995-10-01

    This report contains the results of a three year, three-phase project whose long-range goal has been to create a means for the more detailed and accurate definition of the near-surface (0--300 ft) geology beneath a site that had been subjected to environmental pollution. The two major areas of research and development have been: improved geophysical field data acquisition techniques; and analytical tools for providing the total integration (fusion) of all site data. The long-range goal of this project has been to mathematically, integrate the geophysical data that could be derived from multiple sensors with site geologic information and any other type of available site data, to provide a detailed characterization of thin clay layers and geological discontinuities at hazardous waste sites

  5. Geophysical data fusion for subsurface imaging. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-01

    This report contains the results of a three year, three-phase project whose long-range goal has been to create a means for the more detailed and accurate definition of the near-surface (0--300 ft) geology beneath a site that had been subjected to environmental pollution. The two major areas of research and development have been: improved geophysical field data acquisition techniques; and analytical tools for providing the total integration (fusion) of all site data. The long-range goal of this project has been to mathematically, integrate the geophysical data that could be derived from multiple sensors with site geologic information and any other type of available site data, to provide a detailed characterization of thin clay layers and geological discontinuities at hazardous waste sites.

  6. Site characterization and validation - geophysical single hole logging. Stage 1

    International Nuclear Information System (INIS)

    Fridh, B.

    1987-12-01

    Five 'boundary boreholes' have been drilled for preliminary characterization of a previously unexplored site at the 360 m level in the Stripa mine. Three of these boreholes are directed towards the North in the mine coordinate system, while two are directed towards the West. Furthermore, a vertical hole has been drilled at the end of the 3D-migration drift. To adequately describe the rock mass in the vicinity of these boreholes, a comprehensive program utilizing a large number of geophysical borehole methods has been carried out. The specific geophysical character of the rock mass and the major deformed units distinguished in the boreholes are recognized, and in certain cases also correlated between the boreholes. (orig.)

  7. The value of DCIP geophysical surveys for contaminated site investigations

    DEFF Research Database (Denmark)

    Balbarini, Nicola; Rønde, Vinni Kampman; Maurya, Pradip Kumar

    an old factory site by combining traditional geological, hydrological, and contaminant concentration data with DCIP surveys. The plume consisted of xenobiotic organic compounds and inorganics. The study assesses benefits and limitations of DCIP geophysics for contaminated site investigations. A 3D......Geophysical methods are increasingly being used in contaminant hydrogeology to map lithology, hydraulic properties, and contaminant plumes with a high ionic strength. Advances in the Direct Current resistivity and Induced Polarization (DCIP) method allow the collection of high resolution three...... water and below the streambed. Surface DCIP surveys supported the characterization of the spatial variability in geology, hydraulic conductivity and contaminant concentration. Though DCIP data interpretation required additional borehole data, the DCIP survey reduced the number of boreholes required...

  8. SIAM conference on inverse problems: Geophysical applications. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    This conference was the second in a series devoted to a particular area of inverse problems. The theme of this series is to discuss problems of major scientific importance in a specific area from a mathematical perspective. The theme of this symposium was geophysical applications. In putting together the program we tried to include a wide range of mathematical scientists and to interpret geophysics in as broad a sense as possible. Our speaker came from industry, government laboratories, and diverse departments in academia. We managed to attract a geographically diverse audience with participation from five continents. There were talks devoted to seismology, hydrology, determination of the earth`s interior on a global scale as well as oceanographic and atmospheric inverse problems.

  9. Relationship of Worldwide Rocket Launch Crashes with Geophysical Parameters

    Directory of Open Access Journals (Sweden)

    N. Romanova

    2013-01-01

    Full Text Available A statistical comparison of launch crashes at different worldwide space ports with geophysical factors has been performed. A comprehensive database has been compiled, which includes 50 years of information from the beginning of the space age in 1957 about launch crashes occurring world-wide. Special attention has been paid to statistics concerning launches at the largest space ports: Plesetsk, Baikonur, Cape Canaveral, and Vandenberg. In search of a possible influence of geophysical factors on launch failures, such parameters as the vehicle type, local time, season, sunspot number, high-energy electron fluxes, and solar proton events have been examined. Also, we have analyzed correlations with the geomagnetic indices as indirect indicators of the space weather condition. Regularities found in this study suggest that further detailed studies of space weather effects on launcher systems, especially in the high-latitude regions, should be performed.

  10. Geophysical borehole logging. Final disposal of spent fuel

    International Nuclear Information System (INIS)

    Rouhiainen, P.

    1984-01-01

    Teollisuuden Voima Oy (Industrial Power Company Ltd.) will take precautions for final disposal of spent fuel in the Finnish bedrock. The first stage of the site selection studies includes drilling of a deep borehole down to approximately 1000 meters in the year 1984. The report deals with geophysical borehole logging methods, which could be used for the studies. The aim of geophysical borehole logging methods is to descripe specially hydrogeological and structural features. Only the most essential methods are dealt with in this report. Attention is paid to the information produced with the methods, derscription of the methods, interpretation and limitations. The feasibility and possibilities for the aims are evaluated. The evaluations are based mainly on the results from Sweden, England, Canada and USA as well as experiencies gained in Finland

  11. Environmental and regulatory considerations when planning a geophysical program

    International Nuclear Information System (INIS)

    Down-Cicoria, C.

    1999-01-01

    Public concerns regarding the environmental impact of geophysical programs have resulted in more pressure on the federal and provincial governments to regulate and protect unique ecosites. In the past decade, about 1 million kilometres of seismic have been shot by the petroleum industry in Alberta alone, representing about 70,000 hectares of land base. This paper reviewed how a preliminary assessment of any geophysical project should consider the effects of all projects on the terrain, climate, vegetation, soils, fisheries, wildlife, aquatic ecosystems, heritage resources, and timber dispositions. Geo-administrative boundaries, field assessments, environmental assessments and mitigation measures such as low impact line cutting methods, timing methods, and heli-portable operations must also be considered. Special considerations when planning a three-dimensional program were highlighted. Certain equipment suitable as mitigation measures such as mulchers, hydro-axes, enviro-drills, biodegradable lathes, tracked/low PSI equipment, and doglegs were also reviewed. 15 refs., 2 tabs., 18 figs

  12. Spectral analysis and filter theory in applied geophysics

    CERN Document Server

    Buttkus, Burkhard

    2000-01-01

    This book is intended to be an introduction to the fundamentals and methods of spectral analysis and filter theory and their appli­ cations in geophysics. The principles and theoretical basis of the various methods are described, their efficiency and effectiveness eval­ uated, and instructions provided for their practical application. Be­ sides the conventional methods, newer methods arediscussed, such as the spectral analysis ofrandom processes by fitting models to the ob­ served data, maximum-entropy spectral analysis and maximum-like­ lihood spectral analysis, the Wiener and Kalman filtering methods, homomorphic deconvolution, and adaptive methods for nonstation­ ary processes. Multidimensional spectral analysis and filtering, as well as multichannel filters, are given extensive treatment. The book provides a survey of the state-of-the-art of spectral analysis and fil­ ter theory. The importance and possibilities ofspectral analysis and filter theory in geophysics for data acquisition, processing an...

  13. Location of Buried Mineshafts and Adits Using Reconnaissance Geophysical Methods

    Science.gov (United States)

    Culshaw, Martin; Donnelly, Laurance; McCann, David

    Britain has a long history of mining activity, which stretches back some 3000 years to the excavation of flint in East Anglia. The legacy of this long period of activity is the presence of many buried mineshafts and adits, whose location is often unknown precisely and in many cases not even recorded in historical mining records. As has been shown by Donnelly et al (2003) the discovery of a mineshaft in an area of housing development can have a profound effect on property values in its vicinity. Hence, urgent action must be taken to establish at the site investigation stage of a development to determine whether any mineshafts are present at the site so that remedial action can be taken before construction commences. A study of historical information and the drilling may well enable the developer to locate any suspected mineshafts and adits on his site. However, the use of geophysical reconnaissance methods across the whole site may well provide sufficient information to simplify the drilling programme and reduce its cost to a minimum. In this paper a number of rapid reconnaissance geophysical methods are described and evaluated in terms of their success in the location of buried mineshafts and adits. It has shown that a combination of ground conductivity and magnetic surveys provides a most effective approach on open sites in greenfield and brownfield areas. Ground penetrating radar and micro-gravity surveys have proved to be a valuable approach in urban areas where the use of many geophysical methods is prevented by the presence of various types of cultural noise. On a regional scale the infrared thermography method is being increasingly used but care must be taken to overcome certain environmental difficulties. The practical use of all these geophysical methods in the field is illustrated by a number of appropriate case histories.

  14. Geophysical excitation of nutation - comparison of different models

    Czech Academy of Sciences Publication Activity Database

    Vondrák, Jan; Ron, Cyril

    2014-01-01

    Roč. 11, č. 3 (2014), s. 193-200 ISSN 1214-9705 R&D Projects: GA ČR GA13-15943S Institutional research plan: CEZ:AV0Z1003909 Institutional support: RVO:67985815 Keywords : rotation of the Earth * geophysical excitations * geomagnetic jerks * celestial pole offsets * free core nutation Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 0.389, year: 2014

  15. Smartphones - the Geophysics Lab in Your Students' Pocket

    Science.gov (United States)

    Salaree, A.; Stein, S.; Saloor, N.; Elling, R. P.

    2017-12-01

    Many interesting topics are hard to demonstrate in geophysics classes without costly equipment and logistic hassles. For instance, the speed of P-waves in the Earth's crust is usually calculated using printed seismic sections from published studies, giving students little insight into the recording process. This is mainly due to the complex, costly, and weather-dependent logistics of conducting seismic reflection experiments using arrays of - either purchased or borrowed - expensive seismometers and recording units. Smartphones, which students own and are (perhaps unduly) comfortable with, have many otherwise expensive instruments as built-in sensors. These instruments are nifty tools that make labs easier, faster, and more fun. We use smartphones in several labs in an introductory geophysics class. In one, students use their phones to measure the latitude and longitude of a point on campus. Combining the data shows a nice spread of positions illustrating the precision of measurements, spatial trends in the scatter, and even differences between Android and iPhone data. Hence concepts about data that are often presented with ideal theoretical examples emerge from the students' measurements. Another uses the phones' accelerometers and available software to measure the speed of P-waves using a linear array of smartphones/seismometers along a table, similar to the procedure used in reflection seismology. In a third, students used their smartphones in an elevator to measure the acceleration of gravity in a moving reference frame, and thus explore key concepts that arise in many geophysical applications. These three applications illustrate the potential for using smartphones in a wide variety of geophysics teaching, much as their value is being increasingly recognized in other educational applications. Here are some links to an instructions document and a video from the seismic experiment: Instructions: http://www.earth.northwestern.edu/ amir/202/smartphone

  16. Coherence between geophysical excitations and celestial pole offsets

    Czech Academy of Sciences Publication Activity Database

    Ron, Cyril; Vondrák, Jan

    2011-01-01

    Roč. 8, č. 3 (2011), s. 243-247 ISSN 1214-9705. [Czech-Polish Workshop on Recent Geodynamics of the Sudeten and Adjacent Areas. Třešť, 04.11.2010-06.11. 2010] R&D Projects: GA ČR GA205/08/0908 Institutional research plan: CEZ:AV0Z10030501 Keywords : geophysical excitations * celestial pole offsets * coherence Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 0.530, year: 2011

  17. Marine geophysics. By E.J.W. Jones

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, D.G.

    .Earth-Science Reviews 52 2001 381–384 www.elsevier.comrlocaterearscirev Book reviews Marine Geophysics E.J.W. Jones, University College, London, UK, Wiley, Chichester, West Sussex PO19IUD, England, 1999, 466 pp. As a practicing marine geophysicist working... principles, theory, state-of-the-art instruments, latest techniques in data acquisition, processing and interpretation. The book contains 16 chapters, in which the author has done commendable job in presenting the best examples of case studies in critical...

  18. SQUID use for Geophysics: finding billions of dollars

    Science.gov (United States)

    Foley, Catherine

    2014-03-01

    Soon after their discovery, Jim Zimmerman saw the potential of using Superconducting Quantum Interference Devices, SQUIDs, for the study of Geophysics and undertook experiments to understand the magnetic phenomena of the Earth. However his early experiments were not successful. Nevertheless up to the early 1980's, some research effort in the use of SQUIDs for geophysics continued and many ideas of how you could use SQUIDs evolved. Their use was not adopted by the mining industry at that time for a range of reasons. The discovery of high temperature superconductors started a reinvigoration in the interest to use SQUIDs for mineral exploration. Several groups around the world worked with mining companies to develop both liquid helium and nitrogen cooled systems. The realisation of the achievable sensitivity that contributed to successful mineral discoveries and delineation led to real financial returns for miners. By the mid 2000's, SQUID systems for geophysics were finally being offered for sale by several start-up companies. This talk will tell the story of SQUID use in geophysics. It will start with the early work of the SQUID pioneers including that of Jim Zimmerman and John Clarke and will also cover the development since the early 1990's up to today of a number of magnetometers and gradiometers that have been successfully commercialised and used to create significant impact in the global resources industry. The talk will also cover some of the critical technical challenges that had to be overcome to succeed. It will focus mostly on magnetically unshielded systems used in the field although some laboratory-based systems will be discussed.

  19. Fusion of Geophysical Images in the Study of Archaeological Sites

    Science.gov (United States)

    Karamitrou, A. A.; Petrou, M.; Tsokas, G. N.

    2011-12-01

    This paper presents results from different fusion techniques between geophysical images from different modalities in order to combine them into one image with higher information content than the two original images independently. The resultant image will be useful for the detection and mapping of buried archaeological relics. The examined archaeological area is situated in Kampana site (NE Greece) near the ancient theater of Maronia city. Archaeological excavations revealed an ancient theater, an aristocratic house and the temple of the ancient Greek God Dionysus. Numerous ceramic objects found in the broader area indicated the probability of the existence of buried urban structure. In order to accurately locate and map the latter, geophysical measurements performed with the use of the magnetic method (vertical gradient of the magnetic field) and of the electrical method (apparent resistivity). We performed a semi-stochastic pixel based registration method between the geophysical images in order to fine register them by correcting their local spatial offsets produced by the use of hand held devices. After this procedure we applied to the registered images three different fusion approaches. Image fusion is a relatively new technique that not only allows integration of different information sources, but also takes advantage of the spatial and spectral resolution as well as the orientation characteristics of each image. We have used three different fusion techniques, fusion with mean values, with wavelets by enhancing selected frequency bands and curvelets giving emphasis at specific bands and angles (according the expecting orientation of the relics). In all three cases the fused images gave significantly better results than each of the original geophysical images separately. The comparison of the results of the three different approaches showed that the fusion with the use of curvelets, giving emphasis at the features' orientation, seems to give the best fused image

  20. Gas dynamics an introduction with examples from astrophysics and geophysics

    CERN Document Server

    Achterberg, Abraham

    2016-01-01

    This book lays the foundations of gas- and fluid dynamics. The basic equations are developed from first principles, building on the (assumed) knowledge of Classical Mechanics. This leads to the discussion of the mathematical properties of flows, conservation laws, perturbation analysis, waves and shocks. Most of the discussion centers on ideal (frictionless) fluids and gases. Viscous flows are discussed when considering flows around obstacles and shocks. Many of the examples used to illustrate various processes come from astrophysics and geophysical phenomena.

  1. The innovative application of surface geophysical techniques for remedial investigations

    Energy Technology Data Exchange (ETDEWEB)

    Saunders, W.R. [OYO Geospace, Fort Myers, FL (United States); Smith, S. [ICF Kaiser Engineers, Boston, MA (United States); Gilmore, P. [Fishbeck, Thomson, Carr and Huber, Aida, MI (United States); Cox, S. [Blasland, Bouck, and Lee, Edison, NJ (United States)

    1993-03-01

    When researchers are investigating potential subsurface contamination at hazardous waste landfills, the surface geophysical techniques they may use are often limited. Many geophysical surveys are concerned with areas next to and not directly within the landfill units. The highly variable properties of the materials within the landfill may result in geophysical data that are either difficult or impossible to interpret. Therefore, contamination at these sites may not be detected until substantial lateral migration away from the unit has occurred. In addition, because of the poor resolution of some techniques, the landfill as a whole must be considered as a source, where discrete disposal areas within landfill units may be the actual point sources of contaminants. In theory, if specific sources within the landfill are identified and isolated, then reduced time, effort, and expenditures will be required for remediation activities. In the summer of 1989, the Idaho National Engineering Laboratory (INEL) investigated a small potentially hazardous waste landfill to determine if contaminant hot spots could be identified within the landfill and to determine if significant vertical and lateral migration of contaminants was occurring away from these locations. Based on the present hydrogeologic conditions, researchers anticipated that subsurface flow would be primarily vertical, with the zone of saturation at a depth greater than 150 meters. This necessitated that the survey be performed, for the most part, directly on the capped portion of the landfill. Focused geophysical surveys conducted off the landfill would not have provided useful information concerning conditions directly beneath the landfill. This paper discusses the planning, application, and analysis of four combined sensing methods: two methods of electromagnetic induction [low induction (Em) and time domain (TEM)], ground penetrating radar (GPR), and soil gas.

  2. Cost-effective geophysical survey systems for uranium exploration

    International Nuclear Information System (INIS)

    Hasbrouck, J.C.

    1981-01-01

    When planning a uranium exploration survey the question always arises as to how to take advantage of the different exploration methods and equipment for maximum probability of success. Discussed here are the choice of radiometric geophysical equipment, its effectiveness in identifying targets, its limitations, and the criteria for selection. Particular attention is given to systems that are suitable for the exploration programmes of small size and on a small budget, that are common in Latin America. (author)

  3. Geophysics-based method of locating a stationary earth object

    Science.gov (United States)

    Daily, Michael R [Albuquerque, NM; Rohde, Steven B [Corrales, NM; Novak, James L [Albuquerque, NM

    2008-05-20

    A geophysics-based method for determining the position of a stationary earth object uses the periodic changes in the gravity vector of the earth caused by the sun- and moon-orbits. Because the local gravity field is highly irregular over a global scale, a model of local tidal accelerations can be compared to actual accelerometer measurements to determine the latitude and longitude of the stationary object.

  4. Geophysical fluids, geomagnetic jerks, and their impact on Earth orientation

    Czech Academy of Sciences Publication Activity Database

    Vondrák, Jan; Ron, Cyril

    2017-01-01

    Roč. 96, č. 1 (2017), s. 51-60 ISSN 0373-3742. [National Conference of Astronomers of Serbia /17./. Belgrade, 23.09.2014-27.09.2014] R&D Projects: GA ČR GA13-15943S Institutional support: RVO:67985815 Keywords : Earth orientation * geophysical fluids * geomagnetic jerks Subject RIV: DE - Earth Magnetism, Geodesy, Geography OBOR OECD: Physical geography

  5. Geophysical study of the Peinan Archaeological Site, Taiwan

    Science.gov (United States)

    Tong, Lun-Tao; Lee, Kun-Hsiu; Yeh, Chang-Keng; Hwang, Yan-Tsong; Chien, Jeng-Ming

    2013-02-01

    The Peinan archaeological site is the most intact Neolithic village with slate coffin burial complexes in Taiwan. However, the area that potentially contains significant ancient remains is covered by dense vegetation. No reliable data show the distribution of the ancient village, and no geophysical investigation has been performed at this site. To evaluate various geophysical methods under the geological setting and surface condition of the site, the physical properties of the remains were measured and four geophysical methods involving magnetic, electromagnetic (EM), electrical resistivity tomography (ERT), and ground-penetrating radar (GPR) were tested along three parallel profiles. The results imply that the EM and magnetic methods are much cost-effective and suitable for investigating the entire area. GPR and ERT methods can provide high resolution subsurface image, which are much suitable for subsequently detail investigation. The EM and magnetic surveys were thus conducted over the entire Peinan Cultural Park to understand the distribution of the ancient building remains at the Peinan site. The results of this study were verified by subsequent excavations, which indicate that the EM survey was successful in delineating the majority of the ancient village because the basements of building are highly resistive in comparison to the background sediment. The results of this investigation suggest that the ancient village was broadly distributed over the eastern part of the Peinan Culture Park and extended to the southeast.

  6. WLS software for the Los Alamos geophysical instrumentation truck

    International Nuclear Information System (INIS)

    Ideker, C.D.; LaDelfe, C.M.

    1985-01-01

    Los Alamos National Laboratory's capabilities for special downhole geophysical well logging has increased steadily over the past few years. Software was developed originally for each individual tool as it became operational. With little or no standardization for tool software modules, software development became redundant, time consuming, and cost ineffective. With long-term use and the rapid evolution of well logging capacity in mind. Los Alamos and EG and G personnel decided to purchase a software system. The system was designed to offer: wide-range use and programming flexibility; standardization subroutines for tool module development; user friendly operation which would reduce training time; operator error checking and alarm activation; maximum growth capacity for new tools as they are added to the inventory; and the ability to incorporate changes made to the computer operating system and hardware. The end result is a sophisticated and flexible software tool and for transferring downhole geophysical measurement data to computer disk files. This paper outlines the need, design, development, and implementation of the WLS software for geophysical data acquisition. A demonstration and working examples are included in the presentation

  7. Geophysical applications for oil sand mine tailings management

    Energy Technology Data Exchange (ETDEWEB)

    Parker, D.; Bauman, P. [WorleyParsons, Calgary, AB (Canada)

    2009-07-01

    Geophysical techniques are applied throughout a mine's life cycle to facilitate siting, constructing and monitoring of tailings dumps and ponds. This presentation described 3 case studies from the Athabasca region in northeast Alberta that demonstrated some of the concerns associated with oil sand mine tailings, and the information that geophysical surveys can provide. The objectives of these studies were to determine the lateral and depth extents of elevated conductivities of soil and groundwater that have high salt concentration from the tailings sand pore fluid. Due to high chloride concentrations within the tailings material, salt within the root zone may affect vegetation. A terrain conductivity survey was designed to map the lateral extents of salinity impact, while an electrical resistivity tomography (ERT) survey was used to delineate the tailings sand leachate at depth. The proper management of oil sand tailings facilities is vital to the life cycle of a mine. It was concluded that geophysical techniques can be instrumental in managing several engineering and environmental challenges, from Pleistocene channel mapping, to tailings pond settling characteristics, to reclaiming tailings sands. 1 ref., 7 figs.

  8. Space Geodesy Monitoring Mass Transport in Global Geophysical Fluids

    Science.gov (United States)

    Chao, Benjamin F.

    2004-01-01

    Mass transports occurring in the atmosphere-hydrosphere-cryosphere-solid Earth-core system (the 'global geophysical fluids') are important geophysical phenomena. They occur on all temporal and spatial scales. Examples include air mass and ocean circulations, oceanic and solid tides, hydrological water and idsnow redistribution, mantle processes such as post-glacial rebound, earthquakes and tectonic motions, and core geodynamo activities. The temporal history and spatial pattern of such mass transport are often not amenable to direct observations. Space geodesy techniques, however, have proven to be an effective tool in monitorihg certain direct consequences of the mass transport, including Earth's rotation variations, gravitational field variations, and the geocenter motion. Considerable advances have been made in recent years in observing and understanding of these geodynamic effects. This paper will use several prominent examples to illustrate the triumphs in research over the past years under a 'Moore's law' in space geodesy. New space missions and projects promise to further advance our knowledge about the global mass transports. The latter contributes to our understanding of the geophysical processes that produce and regulate the mass transports, as well as of the solid Earth's response to such changes in terms of Earth's mechanical properties.

  9. Reconsidering Volcanic Ocean Island Hydrology: Recent Geophysical and Drilling Results

    Science.gov (United States)

    Thomas, D. M.; Pierce, H. A.; Lautze, N. C.

    2017-12-01

    Recent results of geophysical surveys and exploratory drilling in Hawaii have suggested that Hawaii's hydrogeology may be more complex than has been generally recognized. Instead of a more-or-less homogeneous pile of highly permeable eruptive basalts that are intermittently punctuated by volcanic dikes confined to calderas and rift zones, we are finding that dike compartmentalization is occurring outside of recognized rift zones, leading to significantly higher volumes of stored groundwater within the island. Analysis of recent geophysical surveys have shown local water table elevations that are substantially higher than can be accounted for by the high hydraulic conductivities of Hawaiian basalts. Recent diamond wireline drilling results have also shown that sub-horizontal variations in permeability, associated with significant changes in eruptive character (e.g. explosive vs effusive activity) are acting as significant perching and confining bodies over significant aerial extents and suggest that these features also contribute to increased storage of recharge. Not only is storage much higher than previously assumed, these features appear to impact subsurface groundwater flow in ways that are not accounted for in traditional methods of computing sustainable yields for near shore aquifers: where buried confining formations extend to depths well below sea level, higher elevation recharge is being intercepted and diverted to deep submarine groundwater discharge well below depths that are typically investigated or quantified. We will provide a summary of the recent geophysical survey results along with a revised conceptual model for groundwater circulation within volcanic ocean islands.

  10. Integrated geophysical investigations of Main Barton Springs, Austin, Texas, USA

    Science.gov (United States)

    Saribudak, By Mustafa; Hauwert, Nico M.

    2017-03-01

    Barton Springs is a major discharge site for the Barton Springs Segment of the Edwards Aquifer and is located in Zilker Park, Austin, Texas. Barton Springs actually consists of at least four springs. The Main Barton Springs discharges into the Barton Springs pool from the Barton Springs fault and several outlets along a fault, from a cave, several fissures, and gravel-filled solution cavities on the floor of the pool west of the fault. Surface geophysical surveys [resistivity imaging, induced polarization (IP), self-potential (SP), seismic refraction, and ground penetrating radar (GPR)] were performed across the Barton Springs fault and at the vicinity of the Main Barton Springs in south Zilker Park. The purpose of the surveys was two-fold: 1) locate the precise location of submerged conduits (caves, voids) carrying flow to Main Barton Springs; and 2) characterize the geophysical signatures of the fault crossing Barton Springs pool. Geophysical results indicate significant anomalies to the south of the Barton Springs pool. A majority of these anomalies indicate a fault-like pattern, in front of the south entrance to the swimming pool. In addition, resistivity and SP results, in particular, suggest the presence of a large conduit in the southern part of Barton Springs pool. The groundwater flow-path to the Main Barton Springs could follow the locations of those resistivity and SP anomalies along the newly discovered fault, instead of along the Barton Springs fault, as previously thought.

  11. Bringing 3D Printing to Geophysical Science Education

    Science.gov (United States)

    Boghosian, A.; Turrin, M.; Porter, D. F.

    2014-12-01

    3D printing technology has been embraced by many technical fields, and is rapidly making its way into peoples' homes and schools. While there is a growing educational and hobbyist community engaged in the STEM focused technical and intellectual challenges associated with 3D printing, there is unrealized potential for the earth science community to use 3D printing to communicate scientific research to the public. Moreover, 3D printing offers scientists the opportunity to connect students and the public with novel visualizations of real data. As opposed to introducing terrestrial measurements through the use of colormaps and gradients, scientists can represent 3D concepts with 3D models, offering a more intuitive education tool. Furthermore, the tactile aspect of models make geophysical concepts accessible to a wide range of learning styles like kinesthetic or tactile, and learners including both visually impaired and color-blind students.We present a workflow whereby scientists, students, and the general public will be able to 3D print their own versions of geophysical datasets, even adding time through layering to include a 4th dimension, for a "4D" print. This will enable scientists with unique and expert insights into the data to easily create the tools they need to communicate their research. It will allow educators to quickly produce teaching aids for their students. Most importantly, it will enable the students themselves to translate the 2D representation of geophysical data into a 3D representation of that same data, reinforcing spatial reasoning.

  12. A positioning and data logging system for surface geophysical surveys

    International Nuclear Information System (INIS)

    Nyquist, J.E.; Blair, M.S.

    1988-01-01

    The Ultrasonic Ranging and Data System (USRADS) developed at ORNL is being adapted to work with two commercially available geophysical instruments: a magnetometer and an EM31 terrain conductivity meter. Geophysical surveys have proven an important preliminary step in investigating hazardous waste sites. Magnetometers and terrain conductivity meters are used to locate buried drums, trenches, conductive contaminant plumes and map regional changes in geology. About half the field time of a typical geophysical investigation is spent surveying the position of the grid points at which the measurements will be made. Additional time is lost and errors may be made recording instrument values in field notebooks and transcribing the data to a computer. Developed for gamma radiation surveys, the USRAD system keeps track of the surveyor's position automatically by triangulating on an ultrasonic transmitter carried in a backpack. The backpack also contains a radio transmitter that sends the instrument's reading coincident with the ultrasonic pulse. The surveyor's position and the instrument's reading are recorded by a portable computer which can plot the data to check the survey's progress. Electronic files are stored in a form compatible with AutoCAD to speed report writing. 7 refs., 3 figs

  13. Geophysical monitoring as an information source of rock massif behaviour

    Directory of Open Access Journals (Sweden)

    Pavel Bláha

    2008-06-01

    Full Text Available Geophysical measurements are an integral part of engineering-geological investigation where theypresent a wide range of useful information about the tested geological medium and about its geotechnicalqualities. Lately, repeated geophysical measurements in different time intervals have been used to judgethe changes occurring in the rock massif. These measurements bear the characteristics of total monitoring.This total monitoring contains series of repeated measurements and further an integrated spectrum of linkedactivities including evaluation, comparison with the warning state and making a decision about takingprecautions. From the range of geophysical methods and methodologies used for monitoring in full sensewe may mention, for example, continuous seismoacoustic measurements in mining constructions; (whichmay result even in recalling of the personnel, and further, also seismic measurements in the surroundingsof atomic power stations and measurements considering the protection against radioactive elements and their decay components.As a full monitoring we may also classify measurements in dumping sites with the aid of repeated geoelectrical measurements in the system of fixed electrodes under impermeable foils.These measurements are mostly carried out from time to time followed by taking immediate action when the foil is found damaged. In practice the term monitoring is used, although not very correctly, for all periodically repeated measurements, which do not result in taking action or interference, but supply a wide range of information about the rock massif behavior in time.

  14. Results from the University of Calgary environmental geophysics test range

    Energy Technology Data Exchange (ETDEWEB)

    Duckworth, K; Lawton, D.C.; Juigalli, J; Parry, D. [Calgary Univ., AB (Canada). Dept. of Geology and Geophysics

    1995-12-31

    The Spy Hill Research Farm, operated by the University of Calgary as a test range site where geophysical equipment and methods related to environmental monitoring can be operated under controlled conditions, was described. The site is used by students in the geophysics courses offered at the University, but it is also intended to be available to other users for equipment tests. The site is underlain by glacial gravels and clays which reach thicknesses in excess of 30 m. Surveys of the site have been completed with the following geophysical systems: Geonics EM-31 and EM-34; Apex Max-Min; Huntec Mk4 IP with Phoenix IP-T1 transmitter; Geometrics Proton Magnetometer; McPhar vertical field Fluxgate magnetometer; Androtex TDR6 IP with Phoenix IP-T1 transmitter; Geometrics 12 channel refraction seismic system; and Pulse Echo Ground Penetrating Radar. The site has proved to be well suited to serve as a test range. The addition of yet more features to the site is being planned.

  15. GeoFramework: A Modeling Framework for Solid Earth Geophysics

    Science.gov (United States)

    Gurnis, M.; Aivazis, M.; Tromp, J.; Tan, E.; Thoutireddy, P.; Liu, Q.; Choi, E.; Dicaprio, C.; Chen, M.; Simons, M.; Quenette, S.; Appelbe, B.; Aagaard, B.; Williams, C.; Lavier, L.; Moresi, L.; Law, H.

    2003-12-01

    As data sets in geophysics become larger and of greater relevance to other earth science disciplines, and as earth science becomes more interdisciplinary in general, modeling tools are being driven in new directions. There is now a greater need to link modeling codes to one another, link modeling codes to multiple datasets, and to make modeling software available to non modeling specialists. Coupled with rapid progress in computer hardware (including the computational speed afforded by massively parallel computers), progress in numerical algorithms, and the introduction of software frameworks, these lofty goals of merging software in geophysics are now possible. The GeoFramework project, a collaboration between computer scientists and geoscientists, is a response to these needs and opportunities. GeoFramework is based on and extends Pyre, a Python-based modeling framework, recently developed to link solid (Lagrangian) and fluid (Eulerian) models, as well as mesh generators, visualization packages, and databases, with one another for engineering applications. The utility and generality of Pyre as a general purpose framework in science is now being recognized. Besides its use in engineering and geophysics, it is also being used in particle physics and astronomy. Geology and geophysics impose their own unique requirements on software frameworks which are not generally available in existing frameworks and so there is a need for research in this area. One of the special requirements is the way Lagrangian and Eulerian codes will need to be linked in time and space within a plate tectonics context. GeoFramework has grown beyond its initial goal of linking a limited number of exiting codes together. The following codes are now being reengineered within the context of Pyre: Tecton, 3-D FE Visco-elastic code for lithospheric relaxation; CitComS, a code for spherical mantle convection; SpecFEM3D, a SEM code for global and regional seismic waves; eqsim, a FE code for dynamic

  16. Virtual Geophysics Laboratory: Exploiting the Cloud and Empowering Geophysicsts

    Science.gov (United States)

    Fraser, Ryan; Vote, Josh; Goh, Richard; Cox, Simon

    2013-04-01

    Over the last five decades geoscientists from Australian state and federal agencies have collected and assembled around 3 Petabytes of geoscience data sets under public funding. As a consequence of technological progress, data is now being acquired at exponential rates and in higher resolution than ever before. Effective use of these big data sets challenges the storage and computational infrastructure of most organizations. The Virtual Geophysics Laboratory (VGL) is a scientific workflow portal addresses some of the resulting issues by providing Australian geophysicists with access to a Web 2.0 or Rich Internet Application (RIA) based integrated environment that exploits eResearch tools and Cloud computing technology, and promotes collaboration between the user community. VGL simplifies and automates large portions of what were previously manually intensive scientific workflow processes, allowing scientists to focus on the natural science problems, rather than computer science and IT. A number of geophysical processing codes are incorporated to support multiple workflows. For example a gravity inversion can be performed by combining the Escript/Finley codes (from the University of Queensland) with the gravity data registered in VGL. Likewise, tectonic processes can also be modeled by combining the Underworld code (from Monash University) with one of the various 3D models available to VGL. Cloud services provide scalable and cost effective compute resources. VGL is built on top of mature standards-compliant information services, many deployed using the Spatial Information Services Stack (SISS), which provides direct access to geophysical data. A large number of data sets from Geoscience Australia assist users in data discovery. GeoNetwork provides a metadata catalog to store workflow results for future use, discovery and provenance tracking. VGL has been developed in collaboration with the research community using incremental software development practices and open

  17. Critical zone architecture and processes: a geophysical perspective

    Science.gov (United States)

    Holbrook, W. S.

    2016-12-01

    The "critical zone (CZ)," Earth's near-surface layer that reaches from treetop to bedrock, sustains terrestrial life by storing water and producing nutrients. Despite is central importance, however, the CZ remains poorly understood, due in part to the complexity of interacting biogeochemical and physical processes that take place there, and in part due to the difficulty of measuring CZ properties and processes at depth. Major outstanding questions include: What is the architecture of the CZ? How does that architecture vary across scales and across gradients in climate, lithology, topography, biology and regional states of stress? What processes control the architecture of the CZ? At what depth does weathering initiate, and what controls the rates at which it proceeds? Based on recent geophysical campaigns at seven Critical Zone Observatory (CZO) sites and several other locations, a geophysical perspective on CZ architecture and processes is emerging. CZ architecture can be usefully divided into four layers, each of which has distinct geophysical properties: soil, saprolite, weathered bedrock and protolith. The distribution of those layers across landscapes varies depending on protolith composition and internal structure, topography, climate (P/T) and the regional state of stress. Combined observations from deep CZ drilling, geophysics and geochemistry demonstrate that chemical weathering initiates deep in the CZ, in concert with mechanical weathering (fracturing), as chemical weathering appears concentrated along fractures in borehole walls. At the Calhoun CZO, the plagioclase weathering front occurs at nearly 40 m depth, at the base of a 25-m-thick layer of weathered bedrock. The principal boundary in porosity, however, occurs at the saprolite/weathered bedrock boundary: porosity decreases over an order of magnitude, from 50% to 5% over an 8-m-thick zone at the base of saprolite. Porosity in weathered bedrock is between 2-5%. Future progress will depend on (1

  18. History of geophysical studies at the Waste Isolation Pilot Plant (WIPP), southeastern New Mexico

    International Nuclear Information System (INIS)

    Borns, D.J.

    1997-01-01

    A variety of geophysical methods including the spectrum of seismic, electrical, electromagnetic and potential field techniques have supported characterization, monitoring and experimental studies at the Waste Isolation Pilot Plant (WIPP). The geophysical studies have provided significant understanding of the nature of site deformation, tectonics and stability. Geophysical methods have delineated possible brine reservoirs beneath the underground facility and have defined the disturbed rock zone that forms around underground excavations. The role of geophysics in the WIPP project has evolved with the project. The early uses were for site characterization to satisfy site selection criteria or factors. As the regulatory framework for WIPP grew since 1980, the geophysics program supported experimental and field programs such as Salado hydrogeology and underground room systems and excavations. In summary, the major types of issues that geophysical studies addressed for WIPP are: Site Characterization; Castile Brine Reservoirs; Rustler/Dewey Lake Hydrogeology; Salado Hydrogeology; and Excavation Effects. The nature of geophysics programs for WIPP has been to support investigation rather than being the principal investigation itself. The geophysics program has been used to define conceptual models (e.g., the Disturbed Rock Zone-DRZ) or to test conceptual models (e.g., high transmissivity zones in the Rustler Formation). The geophysics program primarily supported larger characterization and experimental programs. Funding was not available for the complete documentation and interpretation. Therefore, a great deal of the geophysics survey information resides in contractor reports

  19. Evidence for a critical Earth: the New Geophysics

    Science.gov (United States)

    Crampin, Stuart; Gao, Yuan

    2015-04-01

    Phenomena that are critical-systems verging on criticality with 'butterfly wings' sensitivity are common - the weather, climate change; stellar radiation; the New York Stock Exchange; population explosions; population collapses; the life cycle of fruit-flies; and many more. It must be expected that the Earth, an archetypal complex heterogeneous interactive phenomena, is a critical-system, hence there is a New Geophysics imposing fundamentally new properties on conventional sub-critical geophysics. We shall show that, despite shear waves and shear-wave splitting (SWS) being observationally neglected, azimuthally-varying stress-aligned SWS is nearly universally observed throughout the Earth's crust and uppermost ~400km of the mantle. Caused by stress-aligned fluid-saturated microcracks (intergranular films of hydrolysed melt in the mantle), the microcracks are so closely-spaced that they verge on failure in fracturing and earthquakes. Phenomena that verge on failure in this way are critical-systems which impose a range of fundamental-new properties on conventional sub-critical geophysics including: self-similarity; monitorability; calculability; predictability; controllability; universality; and butterfly wings' sensitivity. We shall show how these phenomena have been consistently observed along millions of source-to-receiver ray paths confirming the New Geophysics. New Geophysics helps to explain many otherwise inexplicable observations including a number of geophysical conundrums such as the Gutenberg-Richter relationship which is used to describe the behaviour of conventional classic geophysics despite being massively non-linear. The great advantage of the critical Earth is that, unlike other critical-systems, the progress towards criticality can be monitored at almost any point within the deep interior of the material, by analysing observations of seismic SWS. This gives an unrivalled understanding of the detailed behaviour of a particular critical-system. This

  20. LiDAR, geophysical and field surveys at Ancient Epomanduodurum site and its surrounding country (Doubs, Eastern France)

    Science.gov (United States)

    Laplaige, Clement; Bossuet, Gilles; Thivet, Matthieu

    2010-05-01

    Integrated geophysical studies were carried out over several years, at Mandeure-Mathay (Franche-Comté Region, Eastern France) for the archaeological evaluation of ancient Epomanduodurum. The site is of major scientific interest to understand the territorial structure of earlier agglomerations in Eastern Gaul at the end of the Iron Age and during the Roman period. As regards its size, urban equipment, monuments and function, the ancient town is considered rating second behind the civitas capital of Sequani, Besançon-Vesontio. It is located in the Doubs valley, where the plain of Alsace opens into the marches of Burgundy, in a traffic zone between the Vosges and the Jura. This location allows transit between the Rhône valley and the Rhein plain, through the Saône and Doubs valleys. This geographical situation was a significant factor in the creation of the late Iron Age settlement, later to turn into a major Gallo-roman town. The whole site of the Ancient town includes urban centre and two artisan suburbs. The buried ruins stretch on more than 500 hectares outside and inside a meander of the Doubs River. From the beginning of the survey, in 2001, high resolution and non invasive geophysical methods (magnetic mapping and Automatic Restivity Profiling (ARP) were performed on large scale, both on the terrace and in the floodplain). Excavations associated to geophysical prospection allow to produce a general plan of the Gallo roman structures and to reconstruct the settlement evolution. While human occupation on open land is certified by a lot of indications, on the contrary, the forest-covered zones on table-land appear as less documented areas. The explanation is that some of the classic methods (such as aerial reconnaissance and field walking) are less efficient in the archaeological prospection of table-lands and hills, naturally marked by omnipresent forest. In our new research program (LIEPPEC and PCR Mandeure, 2008-2010), it appears necessary to better

  1. Utilization of geophysical nuclear methods on apatite mines from Gaviao and gold from Jacobina mountain - Bahia, Brazil

    International Nuclear Information System (INIS)

    Barreto, P.T.

    1974-01-01

    This thesis is part of the sub-project Analysis of Rocks and Minerals by Gamma-Spectrometry of the Program of Research and Postgraduation in Geophysics of the Federal University of Bahia. It presents: 1) the results of preliminary radio-geological surveying in Cenozoic, Mesozoic and Pre-Cambrian lands between the cities of Salvador and Miguel Calmon; detailed radiogeological works in two radioactive anomalous areas: Gaviao at Riachao de Jacuipe town, and Canavieiras mine and vicinities at Jacobina town, state of Bahia. The combined results of field gamma-ray survey, gamma-spectrometry accomplished at laboratory from samples, petrographical and mineralogical studies led to the correlation between apatita mineralization with thorium, and Gold with uranium in the Comglomerates of Serra do Corrego formation giving the possibilities in both cases of making the prospection and exploration by the cintilometry. (author)

  2. AfricaArray International Geophysics Field School: Applications of Near Surface Geophysics to challenges encountered in mine planning

    Science.gov (United States)

    Webb, S. J.; Jones, M. Q.; Durrheim, R. J.; Nyblade, A.; Snyman, Q.

    2012-12-01

    Hard rock exploration and mining presents many opportunities for the effective use of near surface geophysics. For over 10 years the AfricaArray international geophysics field school has been hosted at a variety of mines in South Africa. While the main objective of the field school is practical training for the next generation of geophysicists, being hosted at a mine has allowed us to investigate applications of near surface geophysics in the early stages of mine planning and development as geophysics is often cheaper and faster than drilling. Several applications include: detailed delineation of dykes and stringer dykes, physical property measurements on drill core for modeling and marker horizons, determination of overburden thickness, locations of water and faults. Dolerite dykes are usually magnetic and are associated with loss of ground (i.e. where the dyke replaces the ore and thus reduces the amount of ore available) and safety/stability concerns. Thus the accurate mapping of dykes and narrow stringers that are associated with them are crucial to the safe planning of a mine. We have acquired several case studies where ground magnetic surveys have greatly improved on the resolution and detail of airborne magnetic surveys in regions of complicated dyke swarms. In many cases, thin stringer dykes of less than 5 cm have been detected. Physical property measurements of these dykes can be used to distinguish between different ages of dykes. It is important to accurately determine overburden thickness when planning an open pit mine as this directly affects the cost of development. Depending on the nature of the overburden, both refraction seismic and or DC resistivity can provide continuous profiling in the area of interest that fills in gaps between boreholes. DC resistivity is also effective for determining water associated with dykes and structures that may affect mine planning. The field school mainly addresses the training of a variety of students. The core

  3. A Hands-on Approach to Teaching Geophysics through the University of Texas Institute for Geophysics Marine Geology and Geophysics Field Course in the Gulf of Mexico.

    Science.gov (United States)

    Duncan, D.; Davis, M. B.; Goff, J.; Gulick, S. P. S.; Fernandez-Vasquez, R. A.; Saustrup, S.

    2017-12-01

    The three week field course is offered to graduate and upper-level undergraduate students as hands-on instruction and training for marine geology and geophysics applications. Instructors provide theoretical and technical background of high-resolution seismic reflection, CHIRP sub-bottom profiling, multibeam bathymetry, sidescan sonar, sediment coring, grab sampling, and the sedimentology of resulting seabed samples in the initial phase of the course. The class then travels to the Gulf Coast for a week of at-sea field work. Over the last 10 years, field sites at Freeport, Port Aransas, and Galveston, TX, and Grand Isle, LA, have provided ideal locations for students to explore and investigate coastal and continental shelf processes through the application of geophysical techniques. Students with various backgrounds work in teams of four and rotate between two marine vessels: the R/V Scott Petty, a 26' vessel owned and operated by UTIG, and the R/V Manta, an 82' vessel owned and operated by NOAA. They assist with survey design, instrumentation setup and breakdown, data acquisition, trouble-shooting, data quality control, and safe instrumentation deployment and recovery. Teams also process data and sediment samples in an onshore field lab. During the final week, students visualize, integrate and interpret data for a final project using industry software. The course concludes with final presentations and discussions wherein students examine Gulf Coast geological history and sedimentary processes with academic and industry supporters. Students report a greater understanding of marine geology and geophysics through the course's intensive, hands-on, team approach and low instructor to student ratio (sixteen students, three faculty, and three teaching assistants). Post-class, students may incorporate course data in senior honors or graduate thesis and are encouraged to publish and present results at national meetings. This course satisfies field experience requirements for

  4. Subsurface Structure Mapping Using Geophysical Data in Candi Umbul-Telomoyo, Magelang, Central Java, Indonesia

    Science.gov (United States)

    Affanti, A. P.; Prastyani, E.; Maghfira, P. D.; Niasari, S. W.

    2018-04-01

    Candi Umbul warm spring is one of the manifestations in the Telomoyo geothermal prospect area. A geophysical survey had been conducted using VLF (Very Low Frequency) EM, VLF R and magnetic methods in the Candi Umbul-Telomoyo. VLF EM, VLF R and magnetic data were aimed to image the conductivity and magnetic anomalies distribution of the subsurface beneath the Candi Umbul-Telomoyo. VLF EM data had been mapped with Karous-Hjelt filter and analysed by tipper analysis, VLF R data had been modelled using 2layinv and analysed using impedance analysis. On the other hand, magnetic data processing was done with upward continuation. The Karous-Hjelt filter and 2layinv models show the highest conductivity distribution that located at 4800-5000 m were correlated with tipper and impedance analyses. In addition, the high-low magnetic contrast from the quantitative magnetic data interpretation indicates a fault (which could be a fluid pathway) which is closed to the Candi Umbul warm spring manifestation.

  5. Integrated geophysical survey in defining subsidence features on a golf course

    Science.gov (United States)

    Xia, J.; Miller, R.D.

    2007-01-01

    Subsidence was observed at several places on the Salina Municipal Golf Course in areas known to be built over a landfill in Salina, Kansas. High-resolution magnetic survey (???5400 m2), multi-channel electrical resistivity profiling (three 154 m lines) and microgravity profiling (23 gravity-station values) were performed on a subsidence site (Green 16) to aid in determining boundaries and density deficiency of the landfill in the vicinity of the subsidence. Horizontal boundaries of the landfill were confidently defined by both magnetic anomalies and the pseudo-vertical gradient of total field magnetic anomalies. Furthermore, the pseudo-vertical gradient of magnetic anomalies presented a unique anomaly at Green 16, which provided a criterion for predicting other spots with subsidence potential using the same gradient property. Results of multi-channel electrical resistivity profiling (ERP) suggested the bottom limit of the landfill at Green 16 was around 21 m below the ground surface based on the vertical gradient of electric resistivity and a priori information on the depth of the landfill. ERP results also outlined several possible landfill bodies based on their low resistivity values. Microgravity results suggested a -0.14 g cm-3 density deficiency at Green 16 that could equate to future surface subsidence of as much as 1.5 m due to gradual compaction. ?? 2007 Nanjing Institute of Geophysical Prospecting.

  6. Comprehensive geophysical survey technique in exploration for deep-buried hydrothermal type uranium deposits in Xiangshan volcanic basin, China

    International Nuclear Information System (INIS)

    Ke, D.

    2014-01-01

    According to recent drilling results, uranium mineralization has been found underground more than 1000 m deep in the Xiangshan volcanic basin, in where uranium exploration has been carried out for over 50 years. This paper presents a comprehensive geophysical survey technique, including audio magnetotelluric method (AMT), high resolution ground magnetic and radon survey, which aim to prospect deep-buried and concealed uranium deposits in Xiangshan volcanic basin. Based on research and application, a comprehensive geophysical technique consisting of data acquisition, processing and interpretation has been established. Concealed rock and ore-controlling structure buried deeper than 1000 m can be detected by using this technique. Moreover, one kind of anti-interference technique of AMT survey is presented, which can eliminate the interference induced by the high-voltage power lines. Result of AMT in Xiangshan volcanic basin is demonstrated as high-low-high mode, which indicates there are three layers in geology. The upper layer with high resistivity is mainly the react of porphyroclastic lava. The middle layer with low resistivity is metamorphic schists or dellenite whereas the lower layer with high resistivity is inferred as granite. The interface between middle and lower layer is recognized as the potential zone for occurrence of uranium deposits. According to the corresponding relation of the resistivity and magnetic anomaly with uranium ore bodies, the tracing model of faults and interfaces between the different rocks, and the forecasting model of advantageous area for uranium deposits have been established. In terms of the forecasting model, some significant sections for uranium deposits were delineated in the west of the Xiangshan volcanic basin. As a result, some achievements on uranium prospecting have been acquired. High grade economic uranium ore bodies have been found in several boreholes, which are located in the forecasted zones. (author)

  7. Activities and Plan of the Center for Geophysics (Beijing from WDC to WDS

    Directory of Open Access Journals (Sweden)

    Fenglin Peng

    2013-01-01

    Full Text Available In this report we introduce the development of the WDC for Geophysics, Beijing included our activities in the electronic Geophysical Year (eGY and in the transition period from WDC to WDS. We also present our future plans. We have engaged in the development of geophysical informatics and related data science. We began the data visualization of geomagnetic fields in the GIS system. Our database has been expanded from geomagnetic data to the data of solid geophysics, including geothermal data, gravity data, and the records of aurora sightings in ancient China. We also joined the study of the history of the development of geophysics in China organized by the Chinese Geophysical Society (CGS.

  8. Improved extraction of hydrologic information from geophysical data through coupled hydrogeophysical inversion

    Energy Technology Data Exchange (ETDEWEB)

    Hinnell, A.C.; Ferre, T.P.A.; Vrugt, J.A.; Huisman, J.A.; Moysey, S.; Rings, J.; Kowalsky, M.B.

    2009-11-01

    There is increasing interest in the use of multiple measurement types, including indirect (geophysical) methods, to constrain hydrologic interpretations. To date, most examples integrating geophysical measurements in hydrology have followed a three-step, uncoupled inverse approach. This approach begins with independent geophysical inversion to infer the spatial and/or temporal distribution of a geophysical property (e.g. electrical conductivity). The geophysical property is then converted to a hydrologic property (e.g. water content) through a petrophysical relation. The inferred hydrologic property is then used either independently or together with direct hydrologic observations to constrain a hydrologic inversion. We present an alternative approach, coupled inversion, which relies on direct coupling of hydrologic models and geophysical models during inversion. We compare the abilities of coupled and uncoupled inversion using a synthetic example where surface-based electrical conductivity surveys are used to monitor one-dimensional infiltration and redistribution.

  9. Geochemical prospecting in Guiana

    International Nuclear Information System (INIS)

    Coulomb, R.

    1957-01-01

    During the last few years geochemical prospecting techniques have become common usage in the field of mineral deposit prospecting. The real scope of these methods lies in their use in the prospecting of large areas. The most promising use of the geochemistry and hydro-geochemistry of uranium is in heavily forested tropical territories, with few outcrops, where radiometry is strongly handicapped. (author) [fr

  10. Endogenous Prospect Theory

    OpenAIRE

    Schmidt, Ulrich; Zank, Horst

    2010-01-01

    In previous models of (cumulative) prospect theory reference-dependence of preferences is imposed beforehand and the location of the reference point is exogenously determined. This paper provides an axiomatization of a new specification of cumulative prospect theory, termed endogenous prospect theory, where reference-dependence is derived from preference conditions and a unique reference point arises endogenously.

  11. Geothermal exploration in the Virunga Prospect, Northern Rwanda

    Science.gov (United States)

    Jolie, E.

    2009-04-01

    German technical cooperation has taken the initiative to support partner countries in geothermal energy use. Therefore the Federal Institute for Geosciences and Natural Resources (BGR) on behalf of the Federal Ministry for Economic Cooperation and Development (BMZ) is carrying out the technical cooperation programme GEOTHERM. As an example of the ongoing project activities, preliminary results of studies carried out in the Virunga geothermal prospect in Northern Rwanda will be presented. The study area is located along the Western branch of the East African Rift System. Weak geothermal surface manifestations, e.g. hot springs and bubbling pools, indicate an existing hydrothermal system. Previous studies did not determine location, distribution, quality and quantity of the heat source. Consequently the aim of this study is to detect and assess the heat source with a multi method approach. Remote sensing techniques, geochemical analyses and geophysical measurements have been applied to make a first serious attempt. More detailed geophysical investigations and gas measurements are planned to start in spring 2009. Aerial photographs and satellite images were used for a high-resolution structural analysis to determine major fault zones, which are dominating the flow paths of hydrothermal fluids. In the frame of a regional geophysical survey (Magnetotellurics and Transient Electromagnetics) a zone of low resistivity values could be detected SW of the Karisimbi stratovolcano, which is corresponding with the results of the geochemical analyses. Assumptions are made that a magmatic body may exist in a depth of 5 km below surface.

  12. EGS Richardson AGU Chapman NVAG3 Conference: Nonlinear Variability in Geophysics: scaling and multifractal processes

    OpenAIRE

    D. Schertzer; S. Lovejoy; S. Lovejoy

    1994-01-01

    1. The conference The third conference on "Nonlinear VAriability in Geophysics: scaling and multifractal processes" (NVAG 3) was held in Cargese, Corsica, Sept. 10-17, 1993. NVAG3 was joint American Geophysical Union Chapman and European Geophysical Society Richardson Memorial conference, the first specialist conference jointly sponsored by the two organizations. It followed NVAG1 (Montreal, Aug. 1986), NVAG2 (Paris, June 1988; Schertzer and Lovejoy, 1991), five consecutive annual ...

  13. EGS Richardson AGU Chapman NVAG3 Conference: Nonlinear Variability in Geophysics: scaling and multifractal processes

    OpenAIRE

    Schertzer , D; Lovejoy , S.

    1994-01-01

    International audience; 1. The conference The third conference on "Nonlinear VAriability in Geophysics: scaling and multifractal processes" (NVAG 3) was held in Cargese, Corsica, Sept. 10-17, 1993. NVAG3 was joint American Geophysical Union Chapman and European Geophysical Society Richardson Memorial conference, the first specialist conference jointly sponsored by the two organizations. It followed NVAG1 (Montreal, Aug. 1986), NVAG2 (Paris, June 1988; Schertzer and Lovejoy, 1991), five conse...

  14. Prehistory of geophysical service establishment in the National Nuclear Center of the Republic of Kazakhstan

    International Nuclear Information System (INIS)

    Vanchugov, A.G.

    2003-01-01

    To look to the future it is necessary, seeing the present, not to forget the past. Obviously it is important to know 'how was it?', 'in the beginning was the word' - the word of the Ministry of the Republic of Kazakhstan of May 15, 1992 about establishment of the National Nuclear Center of the Republic of Kazakhstan. Originally a geophysical service formed the National Nuclear Center RK as Geophysical Party 35 and Borovoe Geophysical Observatory. (author)

  15. Engineering-geophysical criteria for evaluating the development stages of landslides in loess rocks

    Energy Technology Data Exchange (ETDEWEB)

    Abdullayev, S K

    1981-01-01

    As a result of conducting geophysical observations on landslide slopes formed by loess rocks, with their artifical moistening, quantitiative engineering-geophysical criteria were obtained which characterize the basic stages of landslide development. The studies were conducted by surface methods of electrical resistance and seismometry conducted directly in the massif. According to the indicators of moisture content, state of comminution, compactness calculated with the help of geophysical parameters, the stage of preparation and movement of landslides are characterized.

  16. Comparative study of geological, hydrological, and geophysical borehole investigations

    International Nuclear Information System (INIS)

    Magnusson, K.A.; Duran, O.

    1984-09-01

    The understanding of the permeability of the bedrock can be improved by supplementing the results of the water injection tests with information from core mapping, TB-inspection and borehole geophysics. The comparison between different borehole investigations encompasses core mapping, TV-inspection and various geophysical bore hole measurements. The study includes data from two different study areas, namely Kraakemaala and Finnsjoen. In these two areas, extensive geological, hydrological and geophysical investigation have been carried out. The fractures and microfractures in crystalline rock constitute the main transport paths for both groundwater and electric currents. They will therefore govern both the permeability and the resistivity of the rock. In order to get a better understanding of the influence of fractures on permeability and resistivity, a detailed comparison has been made between the hydraulic conductivity, respectively, and the character of fractures in the core and the borehole wall. The fractures show very large variations in hydraulic conductivity. Microfractures and most of the thin fractures have no measurable hydraulic conductivity (in this case -9 m s -1 ), while test sections which contain a single isloated fracture can have no measurable, to rather high hydraulic conductivities (> 10 -7 m s -1 ). Wide fracture zones often have hydraulic conductivities which vary from very low (less than 2 x 10 -9 m s -1 ) to high values (10 -5 m s -1 ). This indicates that the hydraulic conductivity is governed by a few discrete fractures. The resistivity shows a continous variation in the range 1,000- 100,000 ohm-m and a relatively poor correlation with hydraulic conductivities. The observed difference is considered to the effect of restriction of water flow on a few channels, while electric surface condition, i.e. current transport through thin water films, makes current transport possible through fractures with very small aperatures. (Author)

  17. Geophysical and geological investigations of the Boda area

    Energy Technology Data Exchange (ETDEWEB)

    Waenstedt, S. [Geosigma AB, Uppsala (Sweden)

    2000-04-15

    The studies conducted in the Boda area exhibit the presence of a severely fractured rock mass with occasional caves. The Boda area appears to be intersected by a few significant zones, obvious from a study of the topography but do appear in some of the geophysical investigations as well. The structures in the area have quite efficiently isolated the rock plint where the caves are located. It is not possible from these investigations, however, to draw far-reaching conclusions about the age and genesis of the zones or about their continuation towards depth. The geological investigation shows, apart from the caves, no unusual features. The rock types in the investigated area correspond with rock types found elsewhere in the region. The area is highly unsuitable for geophysical surface investigations. Part of the area consists of scattered and quite large blocks that constitute obstacles when making measurements in the area. Since there is little or no soil between the blocks some measurements (e.g. resistivity) are not possible to carry out. Furthermore, the scattered blocks cause unwanted reflections and other difficulties that deteriorate the quality of the geophysical data. The radar measurements with two different frequencies show an interesting result of importance not only to this investigation. The lower frequency appears to penetrate through the rocky overburden and is able to detect the soil-rock interface. The higher frequency is severely disturbed by the overburden but caves show much more clearly in this data. The fractured rock around Boda appears to be a shallow feature, since the radar measurements show a quite significant feature throughout most of the profiles, which appears to be the upper boundary of the bedrock. There are, however, some occasional strong reflectors below the interface between fractured and competent rock.

  18. Geophysical Investigation of a Thermokarst Lake Talik in Continuous Permafrost

    Science.gov (United States)

    Creighton, A.; Parsekian, A.; Arp, C. D.; Jones, B. M.; Babcock, E.; Bondurant, A. C.

    2016-12-01

    On the Arctic Coastal Plain (ACP) of northern Alaska, shallow thermokarst lakes cover up to 25% of the landscape. These lakes occupy depressions created by the subsidence of thawed, ice-rich permafrost. Areas of unfrozen sediment, or taliks, can form under lakes that have a mean annual bottom temperature greater than 0°C. The geometry of these taliks, as well as the processes that create them, are important for understanding interactions between surface water, groundwater, and carbon cycling. Non-invasive geophysical methods are a useful means to study talik sediments as borehole studies yield few data points, and the contrast between unfrozen and frozen sediments is an ideal geophysical target. To study talik configuration associated with an actively expanding thermokarst lake, we conducted a geophysical transect across Peatball Lake. This lake has an estimated initiation age of 1400 calendar years BP. Over the past 60 years, lake surface area has increased through thermal and mechanical shoreline erosion. A talik of previously unknown thickness likely exists below Peatball Lake. We conducted a transect of transient electromagnetic soundings across the lake extending into the surrounding terrestrial environment. Since permafrost has relatively high resistivity compared to talik sediments, the interpreted electrical structure of the subsurface likely reflects talik geometry. We also conducted nuclear magnetic resonance soundings at representative locations along the transect. These measurements can provide data on sub-lake sediment properties including water content. Together, these measurements resolve the talik structure across the lake transect and showed evidence of varying talik thicknesses from the lake edge to center. These is no evidence of a talik at the terrestrial control sites. These results can help constrain talik development models and thus provide insight into Arctic and permafrost processes in the face of a changing climate.

  19. Released geophysical and geological reports : Newfoundland offshore area September 2003

    International Nuclear Information System (INIS)

    2003-09-01

    This two-part publication contains a list of geophysical and geological data acquired by the Canada-Newfoundland Offshore Petroleum Board (C-NOPB). It is made available to the public in accordance with a subsection of the Canada-Newfoundland Atlantic Accord Implementation Act which states that such data can be released five years after the date of completion of a program. The programs for which the data has been released are listed in chronological order by completion date. A list of wells drilled within the C-NOPB's jurisdictional area is also included along with a map showing the area of jurisdiction. The well data includes category 1 information from exploratory wells, delineation wells, and development wells. It includes factual data obtained directly from well drilling which must be made available for public examination 2 years after well completion. Category 1 data refers to drill cuttings, well fluid samples, open-hole logs, formation stimulation data, petroleum analyses, drill mud reports, and well site survey information. The interpretive geological and geophysical reports are based on industry data from exploratory programs conducted in the Newfoundland offshore area. They include information from synthetic seismograms, velocity surveys, vertical seismic profiles, petrological reports, geochemical reports, and cyberlook logs. The jurisdictional areas include Western Newfoundland, South Grand Banks, North Grand Banks, the Northeast Newfoundland Shelf, and the Labrador Shelf. Program numbers are coded to contain the geographic region to which the program relates, the type of proposed geophysical or geological work, the company operating the program, and the sequential number of that type of program operated by each company. 8 tabs

  20. Estimating climate resilience for conservation across geophysical settings.

    Science.gov (United States)

    Anderson, Mark G; Clark, Melissa; Sheldon, Arlene Olivero

    2014-08-01

    Conservationists need methods to conserve biological diversity while allowing species and communities to rearrange in response to a changing climate. We developed and tested such a method for northeastern North America that we based on physical features associated with ecological diversity and site resilience to climate change. We comprehensively mapped 30 distinct geophysical settings based on geology and elevation. Within each geophysical setting, we identified sites that were both connected by natural cover and that had relatively more microclimates indicated by diverse topography and elevation gradients. We did this by scoring every 405 ha hexagon in the region for these two characteristics and selecting those that scored >SD 0.5 above the mean combined score for each setting. We hypothesized that these high-scoring sites had the greatest resilience to climate change, and we compared them with sites selected by The Nature Conservancy for their high-quality rare species populations and natural community occurrences. High-scoring sites captured significantly more of the biodiversity sites than expected by chance (p < 0.0001): 75% of the 414 target species, 49% of the 4592 target species locations, and 53% of the 2170 target community locations. Calcareous bedrock, coarse sand, and fine silt settings scored markedly lower for estimated resilience and had low levels of permanent land protection (average 7%). Because our method identifies-for every geophysical setting-sites that are the most likely to retain species and functions longer under a changing climate, it reveals natural strongholds for future conservation that would also capture substantial existing biodiversity and correct the bias in current secured lands. © 2014 The Authors. Conservation Biology published by Wiley Periodicals, Inc., on behalf of the Society for Conservation Biology.

  1. Improving Discoverability of Geophysical Data using Location Based Services

    Science.gov (United States)

    Morrison, D.; Barnes, R. J.; Potter, M.; Nylund, S. R.; Patrone, D.; Weiss, M.; Talaat, E. R.; Sarris, T. E.; Smith, D.

    2014-12-01

    The great promise of Virtual Observatories is the ability to perform complex search operations across the metadata of a large variety of different data sets. This allows the researcher to isolate and select the relevant measurements for their topic of study. The Virtual ITM Observatory (VITMO) has many diverse geophysical datasets that cover a large temporal and spatial range that present a unique search problem. VITMO provides many methods by which the user can search for and select data of interest including restricting selections based on geophysical conditions (solar wind speed, Kp, etc) as well as finding those datasets that overlap in time. One of the key challenges in improving discoverability is the ability to identify portions of datasets that overlap in time and in location. The difficulty is that location data is not contained in the metadata for datasets produced by satellites and would be extremely large in volume if it were available, making searching for overlapping data very time consuming. To solve this problem we have developed a series of light-weight web services that can provide a new data search capability for VITMO and others. The services consist of a database of spacecraft ephemerides and instrument fields of view; an overlap calculator to find times when the fields of view of different instruments intersect; and a magnetic field line tracing service that maps in situ and ground based measurements to the equatorial plane in magnetic coordinates for a number of field models and geophysical conditions. These services run in real-time when the user queries for data. They will allow the non-specialist user to select data that they were previously unable to locate, opening up analysis opportunities beyond the instrument teams and specialists, making it easier for future students who come into the field.

  2. Transport in zonal flows in analogous geophysical and plasma systems

    Science.gov (United States)

    del-Castillo-Negrete, Diego

    1999-11-01

    Zonal flows occur naturally in the oceans and the atmosphere of planets. Important examples include the zonal flows in Jupiter, the stratospheric polar jet in Antarctica, and oceanic jets like the Gulf Stream. These zonal flows create transport barriers that have a crucial influence on mixing and confinement (e.g. the ozone depletion in Antarctica). Zonal flows also give rise to long-lasting vortices (e.g. the Jupiter red spot) by shear instability. Because of this, the formation and stability of zonal flows and their role on transport have been problems of great interest in geophysical fluid dynamics. On the other hand, zonal flows have also been observed in fusion plasmas and their impact on the reduction of transport has been widely recognized. Based on the well-known analogy between Rossby waves in quasigeostrophic flows and drift waves in magnetically confined plasmas, I will discuss the relevance to fusion plasmas of models and experiments recently developed in geophysical fluid dynamics. Also, the potential application of plasma physics ideas to geophysical flows will be discussed. The role of shear in the suppression of transport and the effect of zonal flows on the statistics of transport will be studied using simplified models. It will be shown how zonal flows induce large particle displacements that can be characterized as Lévy flights, and that the trapping effect of vortices combined with the zonal flows gives rise to anomalous diffusion and Lévy (non-Gaussian) statistics. The models will be compared with laboratory experiments and with atmospheric and oceanographic qualitative observations.

  3. Geophysical and geological investigations of the Boda area

    International Nuclear Information System (INIS)

    Waenstedt, S.

    2000-04-01

    The studies conducted in the Boda area exhibit the presence of a severely fractured rock mass with occasional caves. The Boda area appears to be intersected by a few significant zones, obvious from a study of the topography but do appear in some of the geophysical investigations as well. The structures in the area have quite efficiently isolated the rock plint where the caves are located. It is not possible from these investigations, however, to draw far-reaching conclusions about the age and genesis of the zones or about their continuation towards depth. The geological investigation shows, apart from the caves, no unusual features. The rock types in the investigated area correspond with rock types found elsewhere in the region. The area is highly unsuitable for geophysical surface investigations. Part of the area consists of scattered and quite large blocks that constitute obstacles when making measurements in the area. Since there is little or no soil between the blocks some measurements (e.g. resistivity) are not possible to carry out. Furthermore, the scattered blocks cause unwanted reflections and other difficulties that deteriorate the quality of the geophysical data. The radar measurements with two different frequencies show an interesting result of importance not only to this investigation. The lower frequency appears to penetrate through the rocky overburden and is able to detect the soil-rock interface. The higher frequency is severely disturbed by the overburden but caves show much more clearly in this data. The fractured rock around Boda appears to be a shallow feature, since the radar measurements show a quite significant feature throughout most of the profiles, which appears to be the upper boundary of the bedrock. There are, however, some occasional strong reflectors below the interface between fractured and competent rock

  4. Geophysical Methods for Non-Destructive Testing in Civil Engineering

    Science.gov (United States)

    Niederleithinger, E.

    2013-12-01

    Many non-destructive testing (NDT) methods for civil engineering (e. g. ultrasonics, radar) are similar to geophysical techniques. They just differ in scale, material under investigation and vocabulary used. In spite of the fact that the same principles of physics and mathematics apply to both fields, exchange has been limited in the past. But since a few years more and more geophysical knowledge is used in civil engineering. One of the focal points in research is to improve ultrasonic testing of concrete to be able to image the inside even of large, complex structures and to detect any deterioration as early as possible. One of the main issues is the heterogeneity of concrete, including aggregates, reinforcement, cracks and many other features. Our current research focuses on three points. One is the application of state of the art geophysical migration techniques as Reverse Time Migration (RTM) to image vertical faces or the backside of voids and ducts in thick concrete structures, which isn't possible with conventional techniques used in NDT. Second, we have started to use seismic interferometric techniques to interpolate ultrasonic traces, which can't be measured directly for technical reasons. Third, we are using coda wave interferometry to detect concrete degradation due to load, fatigue, temperature or other influences as early as possible. Practical examples of the application of these techniques are given and potential future research directions will be discussed. It will be shown, how a subset of these techniques can be used for innovative monitoring systems for civil infrastructure. Imaging the interior of a concrete body by ultrasonics and reverse time migration(simulated data).

  5. HVDC Ground Electrodes - a Source of Geophysical Data

    Science.gov (United States)

    Freire, P. F.; Pereira, S. Y.

    2015-12-01

    The HVDC electrode is a component of a High Voltage Direct Current energy transmission system, and is designed to inject into the ground continuous currents up to 3500 A. The typical HVDC ground electrode is a ring of vertical conductors, 1 km wide, buried a few tens of meters.The design of a HVDC electrode is based on extensive geological, geotechnical and geophysical surveys. Geophysical data are usually electrical (VES) and electromagnetic (TEM/MT) acquisitions, for the modeling of the shallow, near-surface and deep layers of the crust. This survey aims, first, the electrode site selection, and then, at the selected site, this data is combined into a single apparent resistivity curve, which is inverted, allowing for the determination of the layered geoelectric crust model. The injection of electrical continuous current in the electrode is then simulated, with the geoelectric crust model, for the determination of the soil surface potential profile (which is usually asymmetric for different directions, due to non-1D geoelectric models).For the commissioning of a HVDC electrode, field measurements are done, such as electrode grounding resistance, soil surface potentials and metal-to-soil potentials at specific structures (buried pipelines, for instance).The geophysical data acquired during the design phase is a set of data completely independent from the electrical data acquired during the electrode commissioning phase, and both are correlated by the geoelectric model. It happens, therefore, that the geoelectric model can be calibrated based on the electrical data, with the correction of static shifts and other adjustments.This paper suggests that the commissioning of HVDC systems should be associated to a research & development program, with a university or foundation. The idea is to enjoy the opportunity of a more complete field survey, with the acquisition of a wide set of data for a better geological characterization of the area where the electrode was built.

  6. The magnetic universe geophysical and astrophysical dynamo theory

    CERN Document Server

    Rüdiger, Günther

    2004-01-01

    Magnetism is one of the most pervasive features of the Universe, with planets, stars and entire galaxies all having associated magnetic fields. All of these fields are generated by the motion of electrically conducting fluids, the so-called dynamo effect. The precise details of what drives the motion, and indeed what the fluid consists of, differ widely though. In this work the authors draw upon their expertise in geophysical and astrophysical MHD to explore some of these phenomena, and describe the similarities and differences between different magnetized objects. They also explain why magn

  7. New Editors Appointed for Sections of Journal of Geophysical Research

    Science.gov (United States)

    2009-04-01

    New editors have been appointed for the Atmospheres, Biogeosciences, and Oceans sections of the Journal of Geophysical Research (JGR). Joost de Gouw (NOAA, Boulder, Colo.) and Renyi Zhang (Texas A&M, College Station) are filling the vacancies of retiring Atmospheres section editors John Austin and Jose Fuentes. De Gouw and Zhang join the continuing editors Steven Ghan and Yinon Rudich. Sara Pryor (Indiana University, Bloomington) is joining the Atmospheres section editorial board as an associate editor now; she will transition to editor in January 2010.

  8. Geophysics report of Santa Rosa place Canelones province

    International Nuclear Information System (INIS)

    Cicalese, H.

    1984-01-01

    The Hydrogeology Section required to Geophysics Department of the DINAMIGE to carry out this report for Education and Culture Ministery, to study the feasibility of the exploration and exploitation of underground waters located in three properties zones in Santa Rosa's town, Canelones province. By means of the geoeletric methods it was possible to estimate the alluviums thickness ,sedimentary deposits or alteration mantels. The purpose of the present work has been to establish geologic and structural features through vertical electric well by means of which is been able to study the vertical variations of the resistivity .

  9. Atmospheric and Geophysical Sciences Division Program Report, 1988--1989

    Energy Technology Data Exchange (ETDEWEB)

    1990-06-01

    In 1990, the Atmospheric and Geophysical Sciences Division begins its 17th year as a division. As the Division has grown over the years, its modeling capabilities have expanded to include a broad range of time and space scales ranging from hours to decades and from local to global. Our modeling is now reaching out from its atmospheric focus to treat linkages with the oceans and the land. In this report, we describe the Division's goal and organizational structure. We also provide tables and appendices describing the Division's budget, personnel, models, and publications. 2 figs., 1 tab.

  10. Comparing plume characteristics inferred from cross-borehole geophysical data

    DEFF Research Database (Denmark)

    Haarder, Eline Bojsen; Binley, Andrew; Zibar, Majken Caroline Looms

    2012-01-01

    significantly influences results of the moment analysis. We compare results of three cross-borehole geophysical approaches for imaging tracer migration arising from a point injection of water in the unsaturated zone: three-dimensional electrical resistivity tomography (ERT), two-dimensional ground......-penetrating radar (GPR) tomography and quasi-three-dimensional GPR tomography. In the studied field experiment, a tracer was injected for a period of 5 d and was monitored both during injection and for 5 d during the subsequent redistribution. The three methods show similar characteristics of the plume development...

  11. Geophysical Exploration on the Structure of Volcanoes: Two Case Histories

    Energy Technology Data Exchange (ETDEWEB)

    Furumoto, A. S.

    1974-01-01

    Geophysical methods of exploration were used to determine the internal structure of Koolau Volcano in Hawaii and of Rabaul Volcano in New Guinea. By use of gravity and seismic data the central vent or plug of Koolau Volcano was outlined. Magnetic data seem to indicate that the central plug is still above the Curie Point. If so, the amount of heat energy available is tremendous. As for Rabaul Volcano, it is located in a region characterized by numerous block faulting. The volcano is only a part of a large block that has subsided. Possible geothermal areas exist near the volcano but better potential areas may exist away from the volcano.

  12. Geophysical constraints on geodynamical processes at convergent margins

    DEFF Research Database (Denmark)

    Artemieva, Irina; Thybo, Hans; Shulgin, Alexey

    2016-01-01

    Convergent margins, being the boundaries between colliding lithospheric plates, form the most disastrous areas in the world due to intensive, strong seismicity and volcanism. We review global geophysical data in order to illustrate the effects of the plate tectonic processes at convergent margins......, at least, one of the plates is oceanic. However, the oldest oceanic plate in the Pacific ocean has the smallest convergence rate. (2) The presence of an oceanic plate is, in general, required for generation of high-magnitude (M>8.0) earthquakes and for generating intermediate and deep seismicity along...... to shallow mantle levels....

  13. Introduction to the geophysical methods applicable to coal

    CSIR Research Space (South Africa)

    Fourie, S

    2015-01-01

    Full Text Available 2, it is the differences in the magnetic susceptibility of rocks that are exploited by the magnetic method. Units and terminology The internationally accepted unit for the magnetic field strength or intensity is the Tesla (named after Nikola Tesla..., the famous Serbian-American engineer and inventor). The Tesla is too large a unit for practical purposes and the nanotesla (nT, one billionth of a Tesla) is used in geophysical magnetic exploration. The name gamma (γ) was previously used instead...

  14. Modeling of Geological Objects and Geophysical Fields Using Haar Wavelets

    Directory of Open Access Journals (Sweden)

    A. S. Dolgal

    2014-12-01

    Full Text Available This article is a presentation of application of the fast wavelet transform with basic Haar functions for modeling the structural surfaces and geophysical fields, characterized by fractal features. The multiscale representation of experimental data allows reducing significantly a cost of the processing of large volume data and improving the interpretation quality. This paper presents the algorithms for sectionally prismatic approximation of geological objects, for preliminary estimation of the number of equivalent sources for the analytical approximation of fields, and for determination of the rock magnetization in the upper part of the geological section.

  15. Evaluation of ground stiffness parameters using continuous surface wave geophysics

    DEFF Research Database (Denmark)

    Gordon, Anne; Foged, Niels

    2000-01-01

    Present day knowledge of the magnitude of the strain levels in the ground associated with geotechnical structures, together with an increasing number of projects requiring the best estimates of ground movements around excavations, has led to, inter alia, increased interest in measuring the very......-small-strain stiffness of the ground Gmax. Continuous surface wave geophysics offers a quick, non-intrusive and economical way of making such measurements. This paper reviews the continuous surface wave techniques and evaluates, in engineering terms, the applicability of the method to the site investigation industry....

  16. Geophysics and nutritional science: toward a novel, unified paradigm.

    Science.gov (United States)

    Eshel, Gidon; Martin, Pamela A

    2009-05-01

    This article discusses a few basic geophysical processes, which collectively indicate that several nutritionally adverse elements of current Western diets also yield environmentally harmful food consumption patterns. We address oceanic dead zones, which are at the confluence of oceanography, aquatic chemistry, and agronomy and which are a clear environmental problem, and agriculture's effects on the surface heat budget. These exemplify the unknown, complex, and sometimes unexpected large-scale environmental effects of agriculture. We delineate the significant alignment in purpose between nutritional and environmental sciences. We identify red meat, and to a lesser extent the broader animal-based portion of the diet, as having the greatest environmental effect, with clear nutritional parallels.

  17. Russian Meteorological and Geophysical Rockets of New Generation

    Science.gov (United States)

    Yushkov, V.; Gvozdev, Yu.; Lykov, A.; Shershakov, V.; Ivanov, V.; Pozin, A.; Afanasenkov, A.; Savenkov, Yu.; Kuznetsov, V.

    2015-09-01

    To study the process in the middle and upper atmosphere, ionosphere and near-Earth space, as well as to monitor the geophysical environment in Russian Federal Service for Hydrology and Environmental Monitoring (ROSHYDROMET) the development of new generation of meteorological and geophysical rockets has been completed. The modern geophysical research rocket system MR-30 was created in Research and Production Association RPA "Typhoon". The basis of the complex MR-30 is a new geophysical sounding rocket MN-300 with solid propellant, Rocket launch takes place at an angle of 70º to 90º from the launcher, which is a farm with a guide rail type required for imparting initial rotation rocket. The Rocket is spin stabilized with a spin rate between 5 and 7 Hz. Launch weight is 1564 kg, and the mass of the payload of 50 to 150 kg. MR-300 is capable of lifting up to 300 km, while the area of dispersion points for booster falling is an ellipse with parameters 37x 60 km. The payload of the rocket MN-300 consists of two sections: a sealed, located below the instrument compartment, and not sealed, under the fairing. Block of scientific equipment is formed on the platform in a modular layout. This makes it possible to solve a wide range of tasks and conduct research and testing technologies using a unique environment of space, as well as to conduct technological experiments testing and research systems and spacecraft equipment. New Russian rocket system MERA (MEteorological Rocket for Atmospheric Research) belongs to so called "dart" technique that provide lifting of small scientific payload up to altitude 100 km and descending with parachute. It was developed at Central Aerological Observatory jointly with State Unitary Enterprise Instrument Design Bureau. The booster provides a very rapid acceleration to about Mach 5. After the burning phase of the buster the dart is separated and continues ballistic flight for about 2 minutes. The dart carries the instrument payload+ parachute

  18. Chart links solar, geophysical events with impacts on space technologies

    Science.gov (United States)

    Davenport, George R.

    While developing a Space Weather Training Program for Air Force Space Command and the 50th Weather Squadron, both based in Colorado, ARINC Incorporated produced a flowchart that correlates solar and geophysical events with their impacts on Air Force systems.Personnel from both organizations collaborated in the development of the flowchart and provided many comments and suggestions. The model became the centerpiece of the Space Environment Impacts Reference Pamphlet, as well as the formal Space Weather Training Program. Although it is not a numerical or computer model, the flowchart became known as the “Space Environmental Impacts Model.”

  19. Fifth national outdoor action conference on aquifer restoration, ground water monitoring, and geophysical methods

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This book presents papers on technology in ground water sampling, monitoring, and remediation and geophysical techniques. The section on monitoring and remediation covers monitoring case studies, monitoring waste disposal sites, petroleum recovery, techniques in aquifer remediation, mathematical analysis of remedial techniques, vacuum extraction, bioremediation, and monitoring techniques. The section on sampling covers measurement variability, microbial sampling, vadose zone sampling, sampling with hydraulic probes, unusual sampling problems and equipment, and data management. A section on geophysics covers geophysics and site characterization, and geophysics and mining. The focus is on hazardous organic compounds. Individual articles are abstracted separately

  20. iSOIL: Interactions between soil related sciences - Linking geophysics, soil science and digital soil mapping

    Science.gov (United States)

    Dietrich, Peter; Werban, Ulrike; Sauer, Uta

    2010-05-01

    High-resolution soil property maps are one major prerequisite for the specific protection of soil functions and restoration of degraded soils as well as sustainable land use, water and environmental management. To generate such maps the combination of digital soil mapping approaches and remote as well as proximal soil sensing techniques is most promising. However, a feasible and reliable combination of these technologies for the investigation of large areas (e.g. catchments and landscapes) and the assessment of soil degradation threats is missing. Furthermore, there is insufficient dissemination of knowledge on digital soil mapping and proximal soil sensing in the scientific community, to relevant authorities as well as prospective users. As one consequence there is inadequate standardization of techniques. At the poster we present the EU collaborative project iSOIL within the 7th framework program of the European Commission. iSOIL focuses on improving fast and reliable mapping methods of soil properties, soil functions and soil degradation risks. This requires the improvement and integration of advanced soil sampling approaches, geophysical and spectroscopic measuring techniques, as well as pedometric and pedophysical approaches. The focus of the iSOIL project is to develop new and to improve existing strategies and innovative methods for generating accurate, high resolution soil property maps. At the same time the developments will reduce costs compared to traditional soil mapping. ISOIL tackles the challenges by the integration of three major components: (i)high resolution, non-destructive geophysical (e.g. Electromagnetic Induction EMI; Ground Penetrating Radar, GPR; magnetics, seismics) and spectroscopic (e.g., Near Surface Infrared, NIR) methods, (ii)Concepts of Digital Soil Mapping (DSM) and pedometrics as well as (iii)optimized soil sampling with respect to profound soil scientific and (geo)statistical strategies. A special focus of iSOIL lies on the

  1. The hydrocarbon accumulations mapping in crystalline rocks by mobile geophysical methods

    Science.gov (United States)

    Nesterenko, A.

    2013-05-01

    Sedimentary-migration origin theory of hydrocarbons dominates nowadays. However, a significant amount of hydrocarbon deposits were discovered in the crystalline rocks, which corroborates the theory of non-organic origin of hydrocarbons. During the solving of problems of oil and gas exploration in crystalline rocks and arrays so-called "direct" methods can be used. These methods include geoelectric methods of forming short-pulsed electromagnetic field (FSPEF) and vertical electric-resonance sounding (VERS) (FSPEF-VERS express-technology). Use of remote Earth sounding (RES) methods is also actual. These mobile technologies are extensively used during the exploration of hydrocarbon accumulations in crystalline rocks, including those within the Ukrainian crystalline shield. The results of explorations Four anomalous geoelectric zones of "gas condensate reservoir" type were quickly revealed as a result of reconnaissance prospecting works (Fig. 1). DTA "Obukhovychi". Anomaly was traced over a distance of 4 km. Approximate area is 12.0 km2. DTA"Korolevskaya". Preliminary established size of anomalous zone is 10.0 km2. The anomalous polarized layers of gas and gas-condensate type were determined. DTA "Olizarovskaya". Approximate size of anomaly is about 56.0 km2. This anomaly is the largest and the most intense. DTA "Druzhba". Preliminary estimated size of anomaly is 16.0 km2. Conclusions Long experience of a successful application of non-classical geoelectric methods for the solving of variety of practical tasks allow one to state their contribution to the development of a new paradigm of geophysical researches. Simultaneous usage of the remote sensing data processing and interpretation method and FSPEF and VERS technologies can essentially optimize and speed up geophysical work. References 1. S.P. Levashov. Detection and mapping of anomalies of "hydrocarbon deposit" type in the fault zones of crystalline arrays by geoelectric methods. / S.P. Levashov, N.A. Yakymchuk, I

  2. Safety in GPR prospecting: a rarely-considered issue

    Science.gov (United States)

    Persico, Raffaele; Pajewski, Lara; Trela, Christiane; Carrick Utsi, Erica

    2016-04-01

    Safety issues (of people first of all, but also of the equipment and environment) are rarely considered in Ground-Penetrating Radar (GPR) prospecting and, more in general, in near-surface geophysical prospecting. As is right and fully understandable, the scientific community devotes greatest attention first of all to the theoretical and practical aspects of GPR technique, affecting the quality of attainable results, secondly to the efforts and costs needed to achieve them [1-2]. However, the (luckily) growing GPR market and range of applications make it worth giving serious consideration to safety issues, too. The existing manuals dealing with safety in geophysics are mainly concerned with applications requiring "deep" geophysical prospecting, for example the search for oilfields and other hydrocarbon resources [3]. Near-surface geophysics involves less dangers than deep geophysics, of course. Nevertheless, several accidents have already happened during GPR experimental campaigns. We have personally had critical experiences and collected reliable testimonies concerning occurred problems as mountain sicks, fractures of legs, stomach problems, allergic reactions, encounters with potentially-dangerous animals, and more. We have also noticed that much more attention is usually paid to safety issues during indoor experimental activities (in laboratory), rather than during outdoor fieldworks. For example, the Italian National research Council is conventioned with safety experts who hold periodical seminaries about safety aspects. Having taken part to some of them, to our experience we have never heard a "lecture" devoted to outdoor prospecting. Nowadays, any aspects associated to the use of the technologies should be considered. The increasing sensibility and sense of responsibility towards environmental matters impose GPR end-users to be careful not to damage the environment and also the cultural heritage. Near-surface prospecting should not compromise the flora and

  3. Alligator Rivers Analogue project. Geophysics, petrophysics and structure

    International Nuclear Information System (INIS)

    Emerson, D.W.; Mills, K.J.; Hallett, M.S.; Cao, L.Q.; Miyakawa, K.

    1992-01-01

    The geophysical and geological field work at Koongarra (including borehole core logging) showed that the site itself is a folded, faulted, variably fractured Precambrian psammitic and pelitic schist sequence with a quasi-horizontal weathered zone superimposed on the steeply dipping rock fabric. The site is flanked by a high resistivity younger sandstone unit to the northwest and by a magnetic amphibolite/ferricrete sequence to the far southeast. The data interpretations elicited the essential structural and broad lithological elements. Gravity, magnetic and electrical laboratory and field studies confirmed a broad folded fractured sequence of dipping layered host rocks weathered in their upper parts and trending in a southwest-northeast direction. Qualitatively interpreted anomalies indicated the trend of the main groundwater movement to the south where dolomites are thought to act as a sink. These drainage features have SP, resistivity and radiometric expression. The roles of the Kombolgie Sandstone as a source of water and the Koongarra Fault as a barrier or otherwise were not established owing to the lack of sufficient samples for testing and also on account of the difficulty of geophysical access over the site's rugged escarpment. 40 refs., 13 tabs., 69 figs

  4. Geophysics: Building E5481 decommissioning, Aberdeen Proving Ground

    International Nuclear Information System (INIS)

    Thompson, M.D.; McGinnis, M.G.; McGinnis, L.D.; Miller, S.F.

    1992-11-01

    Building E5481 is one of ten potentially contaminated sites in the Canal Creek and Westwood areas of the Edgewood section of Aberdeen Proving Ground examined by a geophysical team from Argonne National Laboratory in April and May of 1992. Noninvasive geophysical surveys, including magnetics, electrical resistivity, and ground-penetrating radar, were conducted around the perimeter of the building to guide a sampling program prior to decommissioning and dismantling. The building is located on the northern margin of a landfill that was sited in a wetland. The large number of magnetic sources surrounding the building are believed to be contained in construction fill that had been used to raise the grade. The smaller anomalies, for the most part, are not imaged with ground radar or by electrical profiling. A conductive zone trending northwest to southeast across the site is spatially related to an old roadbed. Higher resistivity areas in the northeast and east are probably representive of background values. Three high-amplitude, positive, rectangular magnetic anomalies have unknown sources. The features do not have equivalent electrical signatures, nor are they seen with radar imaging

  5. Geophysics: Building E5476 decommissiong, Aberdeen Proving Ground

    International Nuclear Information System (INIS)

    Miller, S.F.; Thompson, M.D.; McGinnis, M.G.; McGinnis, L.D.

    1992-11-01

    Building E5476 was one of ten potentially contaminated sites in the Canal Creek and Westwood areas of the Edgewood section of Aberdeen Proving Ground examined by a geophysical team from Argonne National Laboratory in April and May of 1992. Noninvasive geophysical surveys, including magnetics, electrical resistivity, and ground-penetrating radar, were conducted around the perimeter of the building to guide a sampling program prior to decommissioning and dismantling. The large number of magnetic sources surrounding the building are believed to be contained in construction fill. The smaller anomalies, for the most part, were not imaged with ground radar or by electrical profiling. Large magnetic anomalies near the southwest comer of the building are due to aboveground standpipes and steel-reinforced concrete. Two high-resistivity areas, one projecting northeast from the building and another south of the original structure, may indicate the presence of organic pore fluids in the subsurface. A conductive lineament protruding from the south wall that is enclosed by the southem, high-resistivity feature is not associated with an equivalent magnetic anomaly. Magnetic and electrical anomalies south of the old landfill boundary are probably not associated with the building. The boundary is marked by a band of magnetic anomalies and a conductive zone trending northwest to southeast. The cause of high resistivities in a semicircular area in the southwest comer, within the landfill area, is unexplained

  6. Geophysics: Building E5375 decommissioning, Aberdeen Proving Ground

    International Nuclear Information System (INIS)

    McGinnis, M.G.; McGinnis, L.D.; Miller, S.F.; Thompson, M.D.

    1992-08-01

    Building E5375 was one of ten potentially contaminated sites in the Canal Creek area of the Edgewood section of Aberdeen Proving Ground examined by a geophysical team from Argonne National Laboratory in April and May 1992. Noninvasive geophysical surveys, including magnetics, electrical resistivity, and ground-penetrating radar (GPR), were conducted around the perimeter of the building to guide a sampling program prior to decommissioning and dismantling. Several anomalies wear, noted: (1) An underground storage tank located 25 ft east of Building E5375 was identified with magnetic, resistivity, and GPR profiling. (2) A three-point resistivity anomaly, 12 ft east of the northeast comer of Building E5374 (which borders Building E5375) and 5 ft south of the area surveyed with the magnetometer, may be caused by another underground storage tank. (3) A 2,500-gamma magnetic anomaly near the northeast corner of the site has no equivalent resistivity anomaly, although disruption in GPR reflectors was observed. (4) A one-point magnetic anomaly was located at the northeast comer, but its source cannot be resolved. A chaotic reflective zone to the east represents the radar signature of Building E5375 construction fill

  7. Palaeomagnetism principles and applications in geology, geophysics and archaeology

    CERN Document Server

    Tarling, D H

    1983-01-01

    Palaeomagnetism and archaeomagnetism are fascinating specialized studies because they are applicable to such a wide range of problems in geology, archaeology and geophysics. They can also be undertaken cheaply, when compared with most other geophysical techniques, and, at first sight, simply. In fact, real comprehension of the magnetic processes that have occurred in rocks and other types of material over several thousands or many millions of years is still extremely difficult to assess and measure. On this basis, this book cannot explain all such features, nor can it attempt to cover all the actual and potential applications of the method. All that can be attempted is to give an impression of the ways in which such techniques can be used in a wide variety of fields, and how these techniques are usually applied. The magnetization of rocks is, in fact, one of the earliest of the true sciences, but we are still not in a position to answer many of the problems posed. Consequently some of the examples given of ap...

  8. Determination of coal bed quality in wells by geophysical methods

    International Nuclear Information System (INIS)

    Popov, V.V.

    1974-01-01

    The dependence of the specific electric resistivity of coal and terrigenous material of the Donbass region on the degree of their metamorphism is discussed. From this dependence a method is derived to determine the metamorphism of coal from the effective specific resistivity of rocks by taking into account the self-polarisation and the density of the coal layers. The degree of metamorphism (from the coefficient of gas components in the heating mass of coal) is obtained with a standard deviation of 2.9%. Special physical properties of coal are related to its qualitative composition in a complex and very close way. With the whole complex of geophysical measurements the quality parameters can be estimated in more detail. For the Pavlogradsij-Petropavlovskij region of the Donbass non-linear mutli-dimensional relations between the quality parmaeters of coal are derived, and the measurements with standard geophysical methods (resistivity-, spontaneous-potential-, latero-, calibre- and gamma-gamma-log as well as cavernometry) are presented. The results obtained with these methods are tested by a comparison with 8 samples from mines. The standard deviation for the ash content is 3.73% (for core sampling 1.0%) and for the thickness of the plastic layer 3.63 mm (for core sampling 3.34mm)

  9. Definition of a critical confining zone using surface geophysical methods

    International Nuclear Information System (INIS)

    Eddy-Dilek, C.A.; Hoekstra, P.; Harthill, N.; Blohm, M.; Phillips, D.R.

    1996-01-01

    Definition of the hydrogeologic framework in layered sediments of fluvial and deltaic origin is a difficult challenge for environmental characterization and remediation programs due to the lithologic and stratigraphic heterogeneities inherent in these settings. These heterogeneties often control contaminant transport and the effectiveness of remediation alternatives, Surface geophysical surveys can be cost-effective methods for characterization, but individual methods have inherent limitations in resolution and sensitivity. A synergistic approach, utilizing two geophysical survey methods was applied, to define and examine the nature and extent of a deep confining zone of regulatory importance, the Crouch Branch Confining Unit, in Coastal Plain sediments at the Savannah River Site. TDEM accurately maps the overall conductance (product of thickness and electrical conductivity) of a confining zone clay facies; from variation in conductance, changes in lithology of the conforming zone can be inferred. Shear wave seismic reflection surveys map the depth to the clay layers, and the clay layer thickness, but provides little information on the lithologic nature of the confining zone. Integrated interpretation of the combined data set (including all available borehole logs) allows for delineation of the lateral and vertical extent of clay-dominated zones, sand-dominated zones, key stratigraphic horizons, and erosional features associated with unconformities. This approach has resulted in the collection of critical information that will be used to optimize remedial system design, representing a significant cost savings to environmental restoration programs at the Savannah River Site

  10. Definition of a critical confining zone using surface geophysical methods

    International Nuclear Information System (INIS)

    Eddy-Dilek, C.A.; Looney, B.B.; Hoekstra, P.; Harthill, N.; Blohm, M.; Phillips, D.R.

    1997-01-01

    Definition of the hydrologic framework in layered sediments of fluvial and deltaic origin is a difficult challenge for environmental characterization and remediation programs due to the lithologic and stratigraphic heterogeneities inherent in these settings. The authors set out to use complementary geophysical surveys to determine the nature and extent of a deep confining unit at the Savannah River Site, South Carolina. Time Domain Electromagnetic (TDEM) soundings were used to define the electrical conductance of the clayey confining unit (aquitard), and shear-wave reflection seismic was used to define the stratigraphic framework. Based on correlations with borehole geophysical logs and sieve data, the shear-wave seismic proved capable of defining relatively fine layering in the coastal plain sediments, the upper and lower surfaces of a critical confining unit, and erosional features on the surface of the confining unit. The TDEM surveys defined the presence or absence of the clay facies of the confining unit. Moreover, by constraining the interpretation of the TDEM data with the thickness of the confining unit derived from the seismic data, the authors mapped the extent of the unit, showing where the clay is thicker, where it probably was never deposited, and where it was eroded by downcutting channels. These results have significant implications on the design and optimization of remedial systems

  11. Geophysical approach to gas hydrates studies in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, A; Mizukoshi, I [Japan Petroleum Exploration Corp., Tokyo (Japan)

    1997-10-22

    Studies are under way to estimate by geophysical approaches the saturation of gasses and gas hydrates in the sedimentary rock. Gasses and gas hydrates under stable strata are deemed to be fossil fuel resources. If the characteristics of sonic or elastic waves are related to the amount of gasses or gas hydrates, it will be possible to assess quantitatively the said resources by geophysical approaches. This is the reason why studies have been started for the acquisition of data of a wider frequency range by seismic exploration and about stratum models concerned. In relation to the mean elastic moduli of mixed materials, studies have been made about the applicability of several theories to data from wire-line test boring, to data from seismic exploration, and to pits in zones of perpetual frost. The effort to acquire data of a wider frequency range by seismic exploration aims at filling up the gap between the now-available seismic exploration data and laboratory data. It is believed that these will enable a quantitative assessment of the said resources. 6 refs., 3 figs.

  12. Chronology of petroleum geophysics; Sekiyu butsuri tansa nenpyo

    Energy Technology Data Exchange (ETDEWEB)

    Kametani, T

    1996-10-01

    A table, chronology of petroleum geophysics in overseas and in Japan, has been prepared for the convenience of checking events, which are thought to be important as notable affairs in application, success, and technical innovation. In overseas, successes in the 1920s were remarkable, when the US modern geophysical exploration made a start. Successes in determining the position of exploratory drilling by means of the gravity torsion balance, fan shooting seismic refraction method, and seismic reflection method occurred one after another. The USA has kept its situation stably as the number one by the seismic reflection method occurred most lately, and its life has been further elongated by adopting digital techniques. The CDP technique which became to be used simultaneously, and the seismic sources without using explosives, such as vibro-seismic source and air gun, extended the success of digital techniques drastically. In the future, the progress of 3-D exploration technology is expected. In Japan, about 18 years lag in the seismic reflection method is observed when compared with the USA. Japan has provided leading techniques in the shallow layer seismic reflection method and S-wave exploration. 40 refs., 1 tab.

  13. Geological and geophysical investigations at Sierra del Medio massif - Argentine

    International Nuclear Information System (INIS)

    Perucca, J.C.; Llambias, E.; Puigdomenech, H.H.; Cebrelli, E.; Castro, C.E.; Grassi, I.; Salinas, L.I.

    1987-01-01

    Geological investigations were performed at Sierra del Medio (Chubut Province), a mountainous massif of about 25 km by 8 km of migmatic origin, which emerges from a depressed tectonic trench or graben called Pampa de Gastre. The most ancient rocks belong to biotitic and anphibolic schist that passed almost entirely to tonalitoid migmatites with a second process producing granitic rocks. Boreholes were drilled on the basis of conclusions from Landsat satellites imagery and aerial photographic sets, folowed by field work on geological, petrographic, geophysical and hydrogeological features at surface, structural interpretation supported by geostatistical computations. Two sets of boreholes were drilled to investigate subsurface rock behaviour al 300 m depth and 800 m depth respectively, beginning at peripheral places and ending at the central part or selected site. Basic purposes of boreholes were to define structural and petrographic features of the rock massif by a good comprehension of master joints and faulting distribution with its belts of alteration mylonitization or brecciation, mechanical properties of samples, chemical composition and varitions, petrographic facies and mineralogy. Boreholes provided data to investigate joints, faults and dikes as general discontinuities for hydraulic research like permeability or effective hydraulic conductivity, and their geostatistical modelling. Boreholes are also being prepared for geophysical logging from which logthermal ones have already been completed. (Author) [es

  14. Geophysical investigations in the Veitsivaara area, Finland summary report

    International Nuclear Information System (INIS)

    Heikkinen, E.; Saksa, P.; Hinkkanen, H.

    1991-10-01

    Teollisuuden Voima Oy (TVO carries out site investigations in Finland for final disposal of nuclear high level waste during 1987-2000. Investigations by geological, geophysical, geohydrological and geochemical methods were carried out in the Veitsivaara area in 1987-90 to determine the suitability of the bedrock for the final disposal of spent nuclear fuel. Airborne, ground and borehole geophysical methods were used to study the rock type distribution, fracturing and hydraulic conductivity. Airborne surveys were performed by magnetic, radiometric and two electromagnetic methods and ground investigations by VLF magnetic and resistivity, magnetic and impulse radar methods. Electromagnetic and seismic refraction surveys were used to locate crushed and fracture zones. The properties of weak electrical conductors, e.g. their depth dimensions, were studied by direct current resistivity measurements. The rock type distribution was studied by single-hole logging of susceptibility, natural γ-radiation and radiometric γ γ-density. Electrical and acoustic logging allowed water bearing fractures to be mapped and the results of water injection tests to be interpreted. Flow conditions in the boreholes were studied by both fluid logging and tube wave sounding

  15. How Collecting and Freely Sharing Geophysical Data Broadly Benefits Society

    Science.gov (United States)

    Frassetto, A.; Woodward, R.; Detrick, R. S.

    2017-12-01

    Valuable but often unintended observations of environmental and human-related processes have resulted from open sharing of multidisciplinary geophysical observations collected over the past 33 years. These data, intended to fuel fundamental academic research, are part of the Incorporated Research Institutions for Seismology (IRIS), which is sponsored by the National Science Foundation and has provided a community science facility supporting earthquake science and related disciplines since 1984. These community facilities have included arrays of geophysical instruments operated for EarthScope, an NSF-sponsored science initiative designed to understand the architecture and evolution of the North American continent, as well as the Global Seismographic Network, Greenland Ice Sheet Monitoring Network, a repository of data collected around the world, and other community assets. All data resulting from this facility have been made openly available to support researchers across any field of study and this has expanded the impact of these data beyond disciplinary boundaries. This presentation highlights vivid examples of how basic research activities using open data, collected as part of a community facility, can inform our understanding of manmade earthquakes, geomagnetic hazards, climate change, and illicit testing of nuclear weapons.

  16. Space, geophysical research related to Latin America - Part 2

    Science.gov (United States)

    Mendoza, Blanca; Shea, M. A.

    2016-11-01

    For the last 25 years, every two to three years the Conferencia Latinoamericana de Geofísica Espacial (COLAGE) is held in one of the Latin American countries for the purpose of promoting scientific exchange among scientists of the region and to encourage continued research that is unique to this area of the world. At the more recent conference, the community realized that many individuals both within and outside Latin America have contributed greatly to the understanding of the space sciences in this area of the world. It was therefore decided to assemble a Special Issue Space and Geophysical Physics related to Latin America, presenting recent results and where submissions would be accepted from the world wide community of scientists involved in research appropriate to Latin America. Because of the large number of submissions, these papers have been printed in two separate issues. The first issue was published in Advances in Space Research, Vol. 57, number 6 and contained 15 papers. This is the second issue and contains 25 additional papers. These papers show the wide variety of research, both theoretical and applied, that is currently being developed or related to space and geophysical sciences in the Sub-Continent.

  17. Porosity measurements of crystalline rocks by laboratory and geophysical methods

    International Nuclear Information System (INIS)

    Alexander, J.; Hall, D.H.; Storey, B.C.

    1981-12-01

    Porosity values of igneous and metamorphic crystalline rocks have been determined from core samples taken at specific depths from Altnabreac, by a combination of laboratory and geophysical techniques. Using resaturation and mercury injection methods in three laboratories within I.G.S., porosity values have been derived and the effect of variations in the measuring techniques and results obtained have been compared. Comparison of inter-laboratory porosity values illustrates that systematic errors are present, resulting in higher porosity values for samples subjected to re-testing. This is considered to be caused by the variable nature of the initial samples combined with the inability to completely dry or resaturate samples during a second testing. Geophysical techniques for determining in situ porosity using the neutron log have been carried out in borehole ALA. The neutron log has been calibrated with laboratory derived porosity values and an empirical formula derived enabling porosity values to be ascribed throughout the logged borehole ALA. Comparison of the porosity results from Altnabreac with crystalline samples elsewhere in America, Europe and the U.K. suggest that porosities at Altnabreac are lower than average. However, very few publications concerned with water movement in crystalline areas actually state the method used. (author)

  18. Geophysical exploration of the Boku geothermal area, Central Ethiopian Rift

    Energy Technology Data Exchange (ETDEWEB)

    Abiye, Tamiru A. [School of Geosciences, Faculty of Science, University of the Witwatersrand, Private Bag X3, P.O. Box Wits, 2050 Johannesburg (South Africa); Tigistu Haile [Department of Geology and Geophysics, Addis Ababa University, P.O. Box 1176, Addis Ababa (Ethiopia)

    2008-12-15

    The Boku central volcano is located within the axial zone of the Central Ethiopian Rift near the town of Nazareth, Ethiopia. An integrated geophysical survey involving thermal, magnetic, electrical and gravimetric methods has been carried out over the Boku geothermal area in order to understand the circulation of fluids in the subsurface, and to localize the 'hot spot' providing heat to the downward migrating groundwaters before they return to the surface. The aim of the investigations was to reconstruct the geometry of the aquifers and the fluid flow paths in the Boku geothermal system, the country's least studied. Geological studies show that it taps heat from the shallow acidic Quaternary volcanic rocks of the Rift floor. The aquifer system is hosted in Quaternary Rift floor ignimbrites that are intensively fractured and receive regional meteoric water recharge from the adjacent escarpment and locally from precipitation and the Awash River. Geophysical surveys have mapped Quaternary faults that are the major geologic structures that allow the ascent of the hotter fluids towards the surface, as well as the cold-water recharge of the geothermal system. The shallow aquifers are mapped, preferred borehole sites for the extraction of thermal fluids are delineated and the depths to deeper thermal aquifers are estimated. (author)

  19. Characterising and modelling regolith stratigraphy using multiple geophysical techniques

    Science.gov (United States)

    Thomas, M.; Cremasco, D.; Fotheringham, T.; Hatch, M. A.; Triantifillis, J.; Wilford, J.

    2013-12-01

    Regolith is the weathered, typically mineral-rich layer from fresh bedrock to land surface. It encompasses soil (A, E and B horizons) that has undergone pedogenesis. Below is the weathered C horizon that retains at least some of the original rocky fabric and structure. At the base of this is the lower regolith boundary of continuous hard bedrock (the R horizon). Regolith may be absent, e.g. at rocky outcrops, or may be many 10's of metres deep. Comparatively little is known about regolith, and critical questions remain regarding composition and characteristics - especially deeper where the challenge of collecting reliable data increases with depth. In Australia research is underway to characterise and map regolith using consistent methods at scales ranging from local (e.g. hillslope) to continental scales. These efforts are driven by many research needs, including Critical Zone modelling and simulation. Pilot research in South Australia using digitally-based environmental correlation techniques modelled the depth to bedrock to 9 m for an upland area of 128 000 ha. One finding was the inability to reliably model local scale depth variations over horizontal distances of 2 - 3 m and vertical distances of 1 - 2 m. The need to better characterise variations in regolith to strengthen models at these fine scales was discussed. Addressing this need, we describe high intensity, ground-based multi-sensor geophysical profiling of three hillslope transects in different regolith-landscape settings to characterise fine resolution (i.e. a number of frequencies; multiple frequency, multiple coil electromagnetic induction; and high resolution resistivity. These were accompanied by georeferenced, closely spaced deep cores to 9 m - or to core refusal. The intact cores were sub-sampled to standard depths and analysed for regolith properties to compile core datasets consisting of: water content; texture; electrical conductivity; and weathered state. After preprocessing (filtering, geo

  20. Advances in Airborne and Ground Geophysical Methods for Uranium Exploration

    International Nuclear Information System (INIS)

    2013-01-01

    through the use of effective exploration techniques. Geophysical methods with the capability of mapping surface and subsurface parameters in relation to uranium deposition and accumulation are proving to be vital components of current exploration efforts around the world. There is continuous development and improvement of technical and scientific disciplines using measuring instruments and spatially referenced data processing techniques. Newly designed geophysical instruments and their applications in uranium exploration are contributing to an increased probability of successful discoveries. Dissemination of information on advances in geophysical techniques encourages new strategies and promotes new approaches toward uranium exploration. Meetings and conferences organized by the IAEA, collecting the experience of participating countries, as well as its publications and the International Nuclear Information System, play an important role in the dissemination of knowledge of all aspects of the nuclear fuel cycle. The purpose of this report is to highlight advances in airborne and ground geophysical techniques, succinctly describing modern geophysical methods and demonstrating the application of techniques through examples. The report also provides some basic concepts of radioactivity, nuclear radiation and interaction with matter.

  1. Psychophysiology of prospective memory.

    Science.gov (United States)

    Rothen, Nicolas; Meier, Beat

    2014-01-01

    Prospective memory involves the self-initiated retrieval of an intention upon an appropriate retrieval cue. Cue identification can be considered as an orienting reaction and may thus trigger a psychophysiological response. Here we present two experiments in which skin conductance responses (SCRs) elicited by prospective memory cues were compared to SCRs elicited by aversive stimuli to test whether a single prospective memory cue triggers a similar SCR as an aversive stimulus. In Experiment 2 we also assessed whether cue specificity had a differential influence on prospective memory performance and on SCRs. We found that detecting a single prospective memory cue is as likely to elicit a SCR as an aversive stimulus. Missed prospective memory cues also elicited SCRs. On a behavioural level, specific intentions led to better prospective memory performance. However, on a psychophysiological level specificity had no influence. More generally, the results indicate reliable SCRs for prospective memory cues and point to psychophysiological measures as valuable approach, which offers a new way to study one-off prospective memory tasks. Moreover, the findings are consistent with a theory that posits multiple prospective memory retrieval stages.

  2. Publications - IC 44 ed. 2004 | Alaska Division of Geological & Geophysical

    Science.gov (United States)

    ; Mineral Assessment; Mineral Deposit; Mineral Development; Mineral Resources; Minerals; Mining; Mining Claims; Mining Laws; Placer; Placer Gold; Prospecting Sites; Recreational Mining; Reference Information Map; Topography; Tsunami; Uranium; Volcanic; Volcanic Eruption; Volcanoes; Water Quality; Wetlands Top

  3. 36 CFR 1256.62 - Geological and geophysical information relating to wells.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Geological and geophysical... MATERIALS General Restrictions § 1256.62 Geological and geophysical information relating to wells. (a) In accordance with 5 U.S.C. 552(b)(9), NARA may withhold information in records that relates to geological and...

  4. Results of integrated geophysical measurements on a landslide endangered brown coal dump

    Energy Technology Data Exchange (ETDEWEB)

    Militzer, H; Lindner, H; Kaeppler, R

    1984-01-01

    The measurements revealed occurrence of geophysical anomalies across artificial soils with low content of cohesive material. The proven anomalies varied with time with regard to their magnitude and position. Possible relations between the temporal variations of the geophysical fields and a landslide on the boundary of the object are discussed.

  5. Development of geophysical and geochemical data processing software based on component GIS

    International Nuclear Information System (INIS)

    Ke Dan; Yu Xiang; Wu Qubo; Han Shaoyang; Li Xi

    2013-01-01

    Based on component GIS and mixed programming techniques, a software which combines the basic GIS functions, conventional and unconventional data process methods for the regional geophysical and geochemical data together, is designed and developed. The software has many advantages, such as friendly interface, easy to use and utility functions and provides a useful platform for regional geophysical and geochemical data processing. (authors)

  6. Streamlined Archaeo-geophysical Data Processing and Integration for DoD Field Use

    Science.gov (United States)

    2012-04-01

    6 Figure 2-3. Flowchart illustrating the old, ad-hoc approach of processing...Figure 2-3. Flowchart illustrating the old, ad-hoc approach of processing and integrating multiple geophysical datasets. Each color represents a... beginner , intermediate, and expert user. Most users agreed that the software is very effective for beginners because: (1) it provides a geophysics

  7. Combined interpretation of multiple geophysical techniques: an archaeological case study

    Science.gov (United States)

    Riedl, S.; Reichmann, S.; Tronicke, J.; Lück, E.

    2009-04-01

    In order to locate and ascertain the dimensions of an ancient orangery, we explored an area of about 70 m x 60 m in the Rheinsberg Palace Garden (Germany) with multiple geophysical techniques. The Rheinsberg Park, situated about 100 km northwest of Berlin, Germany, was established by the Prussian emperors in the 18th century. Due to redesign of the architecture and the landscaping during the past 300 years, buildings were dismantled and detailed knowledge about some original buildings got lost. We surveyed an area close to a gazebo where, after historical sources, an orangery was planned around the year 1740. However, today it is not clear to what extent this plan has been realized and if remains of this building are still buried in the subsurface. Applied geophysical techniques include magnetic gradiometry, frequency domain electromagnetic (FDEM) and direct current (DC) resistivity mapping as well as ground penetrating radar (GPR). To get an overview of the site, we performed FDEM electrical conductivity mapping using an EM38 instrument and magnetic gradiometry with caesium magnetometers. Both data sets were collected with an in- and crossline data point spacing of ca. 10 cm and 50 cm, respectively. DC resistivity surveying was performed using a pole-pole electrode configuration with an electrode spacing of 1.5 m and a spacing of 1.0 m between individual readings. A 3-D GPR survey was conducted using 200 MHz antennae and in- and crossline spacing of ca. 10 cm and 40 cm, respectively. A standard processing sequence including 3-D migration was applied. A combined interpretation of all collected data sets illustrates that the magnetic gradient and the EM38 conductivity maps is are dominated by anomalies from metallic water pipes from belonging to the irrigation system of the park. The DC resistivity map outlines a rectangular area which might indicate the extension of a former building south of the gazebo. The 3-D GPR data set provides further insights about

  8. REVIEW ARTICLE: Geophysical signatures of oceanic core complexes

    Science.gov (United States)

    Blackman, Donna K.; Canales, J. Pablo; Harding, Alistair

    2009-08-01

    Oceanic core complexes (OCCs) provide access to intrusive and ultramafic sections of young lithosphere and their structure and evolution contain clues about how the balance between magmatism and faulting controls the style of rifting that may dominate in a portion of a spreading centre for Myr timescales. Initial models of the development of OCCs depended strongly on insights available from continental core complexes and from seafloor mapping. While these frameworks have been useful in guiding a broader scope of studies and determining the extent of OCC formation along slow spreading ridges, as we summarize herein, results from the past decade highlight the need to reassess the hypothesis that reduced magma supply is a driver of long-lived detachment faulting. The aim of this paper is to review the available geophysical constraints on OCC structure and to look at what aspects of current models are constrained or required by the data. We consider sonar data (morphology and backscatter), gravity, magnetics, borehole geophysics and seismic reflection. Additional emphasis is placed on seismic velocity results (refraction) since this is where deviations from normal crustal accretion should be most readily quantified. However, as with gravity and magnetic studies at OCCs, ambiguities are inherent in seismic interpretation, including within some processing/analysis steps. We briefly discuss some of these issues for each data type. Progress in understanding the shallow structure of OCCs (within ~1 km of the seafloor) is considerable. Firm constraints on deeper structure, particularly characterization of the transition from dominantly mafic rock (and/or altered ultramafic rock) to dominantly fresh mantle peridotite, are not currently in hand. There is limited information on the structure and composition of the conjugate lithosphere accreted to the opposite plate while an OCC forms, commonly on the inside corner of a ridge-offset intersection. These gaps preclude full

  9. Deep Interior: The first comprehensive geophysical investigation of an asteroid

    Science.gov (United States)

    Asphaug, E.; Belton, M.; Klaasen, K.; McFadden, L.; Ostro, S.; Safaeinili, A.; Scheeres, D.; Sunshine, J.; Yeomans, D.

    Near-Earth Objects (NEOs) come closer to Earth than any other celestial body, and their compositions are represented on Earth by thousands of well-studied meteorites. Yet we understand neither their origin, evolution, nor their geophysical behavior. These secrets are locked up in their unexplored interiors. Goal 1 of the NASA Strategic Plan emphasizes the requirement to catalogue and understand NEOs down to 1 km diameter. Goal 4 urges us to understand natural processes at work in the low gravity environment. Goal 5 expresses the need to explore the solar system and to learn how planets originated and evolved. In response to the NASA Strategic Plan we are proposing a NASA Discovery mission whose primary science objective is to greatly advance the realization of these Goals by conducting the first investigation of the global geophysics of an asteroid. Radio reflection data from 5 km orbit about a 1 km NEO will provide a tomographic 3D image of electromagnetic properties. Mechanical properties will be examined in the simplest possible way, using explosions to initiate seismic cratering events and to expose diverse interior units for spectroscopic analysis. Deep Interior is the lowest-risk, lowest cost path towards attaining the required characterization of NEOs. It breaks new ground for future missions to asteroids and comets and facilitates the design of reliable NEO technologies. Our science goals are as follows, and the techniques (radio science, imaging, IR spectroscopy, active surface science) will be described at this meeting: Asteroid Interiors. Radio, gravity, and seismology experiments give a complete first picture of an asteroid's deep interior, resolving inclusions, voids and unit boundaries at ˜ 30 m scales, and determining global and regional mechanical properties. Surface Geophysics. Blast experiments explore the structure and mechanics of the upper meters, demonstrate microgravity cratering, trigger natural geomorphic events, and expose subsurface

  10. Geophysical constraints for terrane boundaries in southern Mongolia

    Science.gov (United States)

    Guy, Alexandra; Schulmann, Karel; Munschy, Marc; Miehe, Jean-Marc; Edel, Jean-Bernard; Lexa, Ondrej; Fairhead, Derek

    2014-05-01

    The Central Asian Orogenic Belt (CAOB) is a typical accretionary orogen divided into numerous lithostratigraphic terranes corresponding to magmatic arcs, back arcs, continental basement blocks, accretionary wedges and metamorphic blocks. These terranes should be in theory characterized by contrasting magnetic and gravity signatures thanks to their different petrophysical properties. To test this hypothesis, the stratigraphically defined terranes in southern Mongolia were compared with potential field data to constrain their boundaries and extent. The existence of terranes in southern Mongolia cannot be attested by the uniform geophysical fabrics due to the lack of systematic correspondence between the high/low amplitude and high/low frequency geophysical domains and major terranes. Processed magnetic and gravity grids show that both gravity and magnetic lineaments are E-W trending in the west and correlate with direction of some geological units. In the east, both magnetic and gravity lineaments are disrupted by NE-SW trending heterogeneities resulting in complete blurring of the geophysical pattern. Correlation of magnetic signal with geological map shows that the magnetic highs coincide with late Carboniferous-early Permian volcanic and plutonic belts. The matched-filtering shows good continuity of signal to the depth located along the boundaries of these high magnetic anomalies which may imply presence of deeply rooted tectono-magmatic zones. The axes of high density bodies in the western and central part of the studied CAOB are characterized by periodic alternations of NW-SE trending high frequency and high amplitude gravity anomalies corresponding to late Permian to Triassic cleavage fronts up to 20 km wide. The matched-filtering analysis shows that the largest deformation zones are deeply rooted down to 20 km depth. Such a gravity signal is explained by the verticalization of high density mantle and lower crustal rocks due to localized vertical shearing

  11. Joint Inversion Modelling of Geophysical Data From Lough Neagh Basin

    Science.gov (United States)

    Vozar, J.; Moorkamp, M.; Jones, A. G.; Rath, V.; Muller, M. R.

    2015-12-01

    Multi-dimensional modelling of geophysical data collected in the Lough Neagh Basin is presented in the frame of the IRETHERM project. The Permo-Triassic Lough Neagh Basin, situated in the southeastern part of Northern Ireland, exhibits elevated geothermal gradient (~30 °C/km) in the exploratory drilled boreholes. This is taken to indicate good geothermal exploitation potential in the Sherwood Sandstone aquifer for heating, and possibly even electricity production, purposes. We have used a 3-D joint inversion framework for modelling the magnetotelluric (MT) and gravity data collected to the north of the Lough Neagh to derive robust subsurface geological models. Comprehensive supporting geophysical and geological data (e.g. borehole logs and reflection seismic images) have been used in order to analyze and model the MT and gravity data. The geophysical data sets were provided by the Geological Survey of Northern Ireland (GSNI). Considering correct objective function weighting in favor of noise-free MT response functions is particularly important in joint inversion. There is no simple way how to correct distortion effects the 3-D responses as can be done in 1-D or 2-D case. We have used the Tellus Project airborne EM data to constrain magnetotelluric data and correct them for near surface effects. The shallow models from airborne data are used to constrain the uppermost part of 3-D inversion model. Preliminary 3-D joint inversion modeling reveals that the Sherwood Sandstone Group and the Permian Sandstone Formation are imaged as a conductive zone at the depth range of 500 m to 2000 m with laterally varying thickness, depth, and conductance. The conductive target sediments become shallower and thinner to the north and they are laterally continuous. To obtain better characterization of thermal transport properties of investigated area we used porosity and resistivity data from the Annaghmore and Ballymacilroy boreholes to estimate the relations between porosity

  12. Geophysical Surveys of the Hydrologic Basin Underlying Yosemite Valley, California.

    Science.gov (United States)

    Maher, E. L.; Shaw, K. A.; Carey, C.; Dunn, M. E.; Whitman, S.; Bourdeau, J.; Eckert, E.; Louie, J. N.; Stock, G. M.

    2017-12-01

    UNR students in an Applied Geophysics course conducted geophysical investigations in Yosemite Valley during the months of March and August 2017. The goal of the study is to understand better the depth to bedrock, the geometry of the bedrock basin, and the properties of stratigraphy- below the valley floor. Gutenberg and others published the only prior geophysical investigation in 1956, to constrain the depth to bedrock. We employed gravity, resistivity, and refraction microtremor(ReMi) methods to investigate the interface between valley fill and bedrock, as well as shallow contrasts. Resistivity and ReMi arrays along three north-south transects investigated the top 50-60m of the basin fill. Gravity results constrained by shallow measurements suggest a maximum depth of 1000 m to bedrock. ReMi and resistivity techniques identified shallow contrasts in shear velocity and electrical resistivity that yielded information about the location of the unconfined water table, the thickness of the soil zone, and spatial variation in shallow sediment composition. The upper several meters of sediment commonly showed shear velocities below 200 m/s, while biomass-rich areas and sandy river banks could be below 150 m/s. Vs30 values consistently increased towards the edge of the basin. The general pattern for resistivity profiles was a zone of relatively high resistivity, >100 ohm-m, in the top 4 meters, followed by one or more layers with decreased resistivity. According to gravity measurements, assuming either -0.5 g/cc or -0.7 g/cc density contrast between bedrock and basin sediments, a maximum depth to bedrock is found south of El Capitan at respectively, 1145 ± 215 m or 818 ± 150 m. Longitudinal basin geometry coincides with the basin depth geometry discussed by Gutenberg in 1956. Their results describe a "double camel" shape where the deepest points are near El Capitan and the Ahwahnee Hotel and is shallowest near Yosemite Falls, in a wider part of the valley. An August Deep

  13. Geochemical and Geophysical Signatures of Poas Volcano, Costa Rica

    Science.gov (United States)

    Martinez, M.; van Bergen, M.; Fernandez, E.; Takano, B.; Barboza, V.; Saenz, W.

    2007-05-01

    Among many research fields in volcanology, prediction of eruptions is the most important from the hazard- mitigation point of view. Most geophysicists have sought for the best physical parameters for this objective: various kinds of wave signals and geodesic data are two of such parameters. Being able to be remotely monitored gives them advantage over many other practical methods for volcano monitoring. On the other hand, increasing volcanic activity is always accompanied by mass transfer. The most swiftly-moving materials are volcanic gases which are the target geochemists have intensively studied although monitoring gases is rather tedious and limited for active volcanoes hosting crater lakes. A Japanese group lead by Bokuichiro Takano has recently developed an indirect method for monitoring gas injection into volcanic crater lakes. Polythionates are formed when SO2 and H2S are injected into the lake from subaqueous fumaroles. Such polythionates consist of chains of 4 to 6 sulphur atoms, the terminal ones of which are bonded with three oxygen atoms. The general formula for these anions is SxO62- (x= 4 to 6). Important to note is that SO2 input into the lake also depends upon the plumbing system of the volcanoes: conduits, cracks and hydrothermal reservoirs beneath the lake that usually differ from volcano to volcano. Despite such site-specific characters some general statements can be made on the behaviour of these chemical species. For example, at low volcanic activity S6O62- predominates while S4O62- and S5O62- become predominant with increasing SO2 that increases with volcanic activity. At higher SO2 input and high temperature polythionates disappear in the lake through interaction with aqueous SO2 (sulfitolysis). Thus, the ratios of the three polythionates or their absence serve as an indicator for various stages of volcanic activity. Monitoring polythionates is an independent method that can be compared with results from geophysical methods. However, it

  14. Oman Drilling Project Phase I Borehole Geophysical Survey

    Science.gov (United States)

    Matter, J. M.; Pezard, P. A.; Henry, G.; Brun, L.; Célérier, B.; Lods, G.; Robert, P.; Benchikh, A. M.; Al Shukaili, M.; Al Qassabi, A.

    2017-12-01

    The Oman Drilling Project (OmanDP) drilled six holes at six sites in the Samail ophiolite in the southern Samail and Tayin massifs. 1500-m of igneous and metamorphic rocks were recovered at four sites (GT1, GT2, GT3 and BT1) using wireline diamond core drilling and drill cuttings at two sites (BA1, BA2) using air rotary drilling, respectively. OmanDP is an international collaboration supported by the International Continental Scientific Drilling Program, the Deep Carbon Observatory, NSF, NASA, IODP, JAMSTEC, and the European, Japanese, German and Swiss Science Foundations, and with in-kind support in Oman from Ministry of Regional Municipalities and Water Resources, Public Authority of Mining, Sultan Qaboos University and the German University of Technology. A comprehensive borehole geophysical survey was conducted in all the OmanDP Phase I boreholes shortly after drilling in April 2017. Following geophysical wireline logs, using slim-hole borehole logging equipment provided and run by the Centre National De La Recherche Scientifique (CNRS) and the Université de Montpellier/ Géosciences Montpellier, and logging trucks from the Ministry of Regional Municipalities and Water Resources, were collected in most of the holes: electrical resistivity (dual laterolog resistivity, LLd and LLs), spectral gamma ray (K, U, and Th contents), magnetic susceptibility, total natural gamma ray, full waveform sonic (Vp and Vs), acoustic borehole wall imaging, optical borehole wall imaging, borehole fluid parameters (pressure, temperature, electrical conductivity, dissolved oxygen, pH, redox potential, non-polarized spontaneous electrical potential), and caliper (borehole diameter). In addition, spinner flowmeter (downhole fluid flow rate along borehole axis) and heatpulse flow meter logs (dowhole fluid flow rate along borehole axis) were collected in BA1 to characterize downhole fluid flow rates along borehole axis. Unfortuantely, only incomplete wireline logs are available for

  15. Testing how geophysics can reduce the uncertainty of groundwater model predictions

    DEFF Research Database (Denmark)

    Christensen, Nikolaj Kruse; Christensen, Steen; Ferre, Ty

    2014-01-01

    Geophysical data are increasingly used to construct groundwater models. Such data are collected at lower cost and much higher density than the traditionally used geological, hydraulic, and hydrological data. The geophysical data are often inverted independently and used together with geological......, respectively. There is also complete flexibility in the choice of relationships between hydraulic and geophysical properties. Noise can be added to the synthetic hydrologic and geophysical datasets and these exhaustive data sets can be down sampled to represent realistic data sets of varying measurement...... with and covered by layered glaciofluvial and glacial deposits. The hydrological data consist of 35 hydraulic head measurements and one river discharge measurement, while the geophysical data consist of 77 TEM soundings. The data are inverted sequentially and jointly. Through this example, we highlight the value...

  16. East Chestnut Ridge hydrogeologic characterization: A geophysical study of two karst features

    International Nuclear Information System (INIS)

    1991-01-01

    Permitting and site selection activities for the proposed East Chestnut Ridge landfill, located on the Oak Ridge Reservation, have required additional hydrogeologic studies of two karst features. Geophysical testing methods were utilized for investigating these karst features. The objectives of the geophysical testing was to determine the feasibility of geophysical techniques for locating subsurface karst features and to determine if subsurface anomalies exist at the proposed landfill site. Two karst features, one lacking surface expression (sinkhole) but with a known solution cavity at depth (from previous hydrologic studies), and the other with surface expression were tested with surface geophysical methods. Four geophysical profiles, two crossing and centered over each karst feature were collected using both gravimetric and electrical resistivity techniques

  17. Description of geophysical data in the SKB database GEOTAB. Version 2

    International Nuclear Information System (INIS)

    Sehlstedt, S.

    1991-01-01

    For the storage of different types of data collected by SKB a database called GEOTAB has been created. The following data is stored in the database: Background data, geological data, geophysical data, hydrogeological and meteorological data, hydrochemical data, and tracer tests. This report describes the data flow for different types of geophysical measurement. The descriptions start with measurement and end with the storage of data in GEOTAB. Each process and the resulting data volume is presented separately. The geophysical measurements have been divided into the following subjects: Geophysical ground surface measurements, geophysical borehole logging, and petrophysical measurements. Each group of measurements is described in an individual chapter. In each chapter several measuring techniques are described and each method has a data table and a flyleaf table in GEOTAB. (author)

  18. A general framework of TOPSIS method for integration of airborne geophysics, satellite imagery, geochemical and geological data

    Science.gov (United States)

    Abedi, Maysam; Norouzi, Gholam-Hossain

    2016-04-01

    This work presents the promising application of three variants of TOPSIS method (namely the conventional, adjusted and modified versions) as a straightforward knowledge-driven technique in multi criteria decision making processes for data fusion of a broad exploratory geo-dataset in mineral potential/prospectivity mapping. The method is implemented to airborne geophysical data (e.g. potassium radiometry, aeromagnetic and frequency domain electromagnetic data), surface geological layers (fault and host rock zones), extracted alteration layers from remote sensing satellite imagery data, and five evidential attributes from stream sediment geochemical data. The central Iranian volcanic-sedimentary belt in Kerman province at the SE of Iran that is embedded in the Urumieh-Dokhtar Magmatic Assemblage arc (UDMA) is chosen to integrate broad evidential layers in the region of prospect. The studied area has high potential of ore mineral occurrences especially porphyry copper/molybdenum and the generated mineral potential maps aim to outline new prospect zones for further investigation in future. Two evidential layers of the downward continued aeromagnetic data and its analytic signal filter are prepared to be incorporated in fusion process as geophysical plausible footprints of the porphyry type mineralization. The low values of the apparent resistivity layer calculated from the airborne frequency domain electromagnetic data are also used as an electrical criterion in this investigation. Four remote sensing evidential layers of argillic, phyllic, propylitic and hydroxyl alterations were extracted from ASTER images in order to map the altered areas associated with porphyry type deposits, whilst the ETM+ satellite imagery data were used as well to map iron oxide layer. Since potassium alteration is generally the mainstay of porphyry ore mineralization, the airborne potassium radiometry data was used. The geochemical layers of Cu/B/Pb/Zn elements and the first component of PCA

  19. History of geophysical studies at the Waste Isolation Pilot Plant (WIPP), southeastern New Mexico

    International Nuclear Information System (INIS)

    Borns, D.J.

    1997-01-01

    A variety of geophysical methods including the spectrum of seismic, electrical, electromagnetic and potential field techniques have used support characterization, monitoring and experimental studies at the Waste Isolation Pilot Plant (WIPP). The geophysical studies have provided significant understanding of the nature of site deformation, tectonics and stability. Geophysical methods have delineated possible brine reservoirs beneath the underground facility and have defined the disturbed rock zone that forms around underground excavations. The role of geophysics in the WIPP project has evolved with the project. The early uses were for site characterization to satisfy site selection criteria or factors. As the regulatory framework for WIPP grew since 1980, the geophysics program was focused on support of experimental and field programs such as Salado hydrogeology and underground room systems and excavations. In summary, the major types of issues that geophysical studies addressed for WIPP are: Issue 1: Site Characterization; Issue 2: Castile Brine Reservoirs; Issue 3: Rustler /Dewey Lake Hydrogeology; Issue 4: Salado Hydrogeology; and Issue 5: Excavation Effects. The nature of geophysics program for WIPP has been to support investigation rather than being the principal investigation itself. The geophysics program has been used to define conceptual models (e.g., the Disturbed Rock Zone-DRZ) or to test conceptual models (e.g., high transmissivity zones in the Rustler Formation). An effect of being a support program is that as new project priorities arose the funding for the geophysics program was limited and withdrawn. An outcome is that much of the geophysics survey information resides in contractor reports since final interpretation reports were not funded

  20. Targeting of Gold Deposits in Amazonian Exploration Frontiers using Knowledge- and Data-Driven Spatial Modeling of Geophysical, Geochemical, and Geological Data

    Science.gov (United States)

    Magalhães, Lucíola Alves; Souza Filho, Carlos Roberto

    2012-03-01

    This paper reports the application of weights-of-evidence, artificial neural networks, and fuzzy logic spatial modeling techniques to generate prospectivity maps for gold mineralization in the neighborhood of the Amapari Au mine, Brazil. The study area comprises one of the last Brazilian mineral exploration frontiers. The Amapari mine is located in the Maroni-Itaicaiúnas Province, which regionally hosts important gold, iron, manganese, chromite, diamond, bauxite, kaolinite, and cassiterite deposits. The Amapari Au mine is characterized as of the orogenic gold deposit type. The highest gold grades are associated with highly deformed rocks and are concentrated in sulfide-rich veins mainly composed of pyrrhotite. The data used for the generation of gold prospectivity models include aerogeophysical and geological maps as well as the gold content of stream sediment samples. The prospectivity maps provided by these three methods showed that the Amapari mine stands out as an area of high potential for gold mineralization. The prospectivity maps also highlight new targets for gold exploration. These new targets were validated by means of detailed maps of gold geochemical anomalies in soil and by fieldwork. The identified target areas exhibit good spatial coincidence with the main soil geochemical anomalies and prospects, thus demonstrating that the delineation of exploration targets by analysis and integration of indirect datasets in a geographic information system (GIS) is consistent with direct prospecting. Considering that work of this nature has never been developed in the Amazonian region, this is an important example of the applicability and functionality of geophysical data and prospectivity analysis in regions where geologic and metallogenetic information is scarce.

  1. Estimating the Prospectivity of Geothermal Resources Using the Concept of Hydrogeologic Windows

    Science.gov (United States)

    Bielicki, Jeffrey; Blackwell, David; Harp, Dylan; Karra, Satish; Kelley, Richard; Kelley, Shari; Middleton, Richard; Person, Mark; Sutula, Glenn; Witcher, James

    2016-04-01

    In this Geothermal Play Fairways Analysis project we sought to develop new ways to analyze geologic, geochemical, and geophysical data to reduce the risk and increase the prospects of successful geothermal exploration and development. We collected, organized, and analyzed data from southwest New Mexico in the context of an integrated framework that combines the data for various signatures of a geothermal resource into a cohesive analysis of the presence of heat, fluid, and permeability. We incorporated data on structural characteristics (earthquakes, geophysical logs, fault location and age, basement depth), topographic and water table elevations, conservative ion concentrations, and thermal information (heat flow, bottom hole temperature, discharge temperature, and basement heat generation). These data were combined to create maps that indicate structural analysis, slope, geothermometry, and heat. We also mapped discharge areas (to constrain elevations where groundwater may be discharged through modern thermal springs or paleo-thermal springs) and subcrops: possible erosionally- or structurally-controlled breaches in regional-scale aquitards that form the basis of our hydrogeologic windows concept. These two maps were particularly useful in identifying known geothermal systems and narrowing the search for unknown geothermal prospects. We further refined the "prospectivity" of the areas within the subcrops and discharge areas by developing and applying a new method for spatial association analysis to data on known and inferred faults, earthquakes, geochemical thermometers, and heat flow. This new methodology determines the relationships of the location and magnitudes of observations of these data with known geothermal sites. The results of each of the six spatial association analyses were weighted between 0 and 1 and summed to produce a prospectivity score between 0 and 6, with 6 indicating highest geothermal potential. The mean value of prospectivity for all

  2. Inverse problems basics, theory and applications in geophysics

    CERN Document Server

    Richter, Mathias

    2016-01-01

    The overall goal of the book is to provide access to the regularized solution of inverse problems relevant in geophysics without requiring more mathematical knowledge than is taught in undergraduate math courses for scientists and engineers. From abstract analysis only the concept of functions as vectors is needed. Function spaces are introduced informally in the course of the text, when needed. Additionally, a more detailed, but still condensed introduction is given in Appendix B. A second goal is to elaborate the single steps to be taken when solving an inverse problem: discretization, regularization and practical solution of the regularized optimization problem. These steps are shown in detail for model problems from the fields of inverse gravimetry and seismic tomography. The intended audience is mathematicians, physicists and engineers having a good working knowledge of linear algebra and analysis at the upper undergraduate level.

  3. Geophysical borehole logging in the unsaturated zone, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Schimschal, U.; Nelson, P.H.

    1991-01-01

    Borehole geophysical logging for site characterization in the volcanic rocks at the proposed nuclear waste repository at Yucca Mountain, Nevada, requires data collection under rather unusual conditions. Logging tools must operate in rugose, dry holes above the water table in the unsaturated zone. Not all logging tools will operate in this environment, therefore; careful consideration must be given to selection and calibration. A sample suite of logs is presented that demonstrates correlation of geological formations from borehole to borehole, the definition of zones of altered mineralogy, and the quantitative estimates of rock properties. The authors show the results of an exploratory calculation of porosity and water saturation based upon density and epithermal neutron logs. Comparison of the results with a few core samples is encouraging, particularly because the logs can provide continuous data in boreholes where core samples are not available

  4. The assessment of the geophysical investigations of boreholes

    International Nuclear Information System (INIS)

    Brotzen, O.; Duran, O.; Magnusson, K.-Aa.

    1980-02-01

    Four geophysical investigations and a televiewer inspection of boreholes have been evaluated in connection with the examinations at Finnsjoen, Karlshamn, Kraakemaala, Stripa and Studsvik. A cooperative assessment of the systems for the measurement of boreholes by Lawrence Berkeley Laboratories and the Geological Survey of Sweden has been made at Stripa. The following methods should be selected for future measurements: determination of the resistivity and temperature of the fluid in the borehole, determination of the resistivity and temperature of the fluid in the borehole, determination of the self-potential, resistivity and resistance of the rock as well as the measurement of sonar waves, the diameter of the borehole and the very low frequency effects. (G.B.)

  5. A geophysical experiment on Newton's inverse-square law

    International Nuclear Information System (INIS)

    Achilli, V.; Errani, M.; Focardi, S.; Palmonari, F.; Pedrielli, F.

    1997-01-01

    A geophysical experiment consisting of measurement of the gravitational effect produced by a large water mass was performed in order to verify Newton's law. The use of a superconducting gravimeter lead to a precision of about 0.1 % in the final result. the ratio between the measured and the expected gravitational effect differs from 1 by more than 9 standard deviations. This may be explained by adding to the Newtonian potential a Yukawa repulsive term. The experimental result leads to constraints for the relationship between the relative magnitude (α) of the new term and the range (λ) of the interaction. In the region 20 m < λ < 500 m, α ranges from 2.6 % to 1.3 %

  6. Geology, geophysics and engineering: a case for synergism

    Energy Technology Data Exchange (ETDEWEB)

    Gretener, P.E.

    1984-06-01

    This article uses the example of artificial well fracturing to show how geologists, geophysicists and engineers can benefit from establishing an interdisciplinary dialogue. The term ''Ultimate Recovery'' is shown to be equally applicable to oil production and hard rock mining. While geology and geophysics schools gear their curricula toward the exploration for natural resources, engineers consider exploitation as their exclusive domain. It is proposed that geologists and geophysicists close ranks with the engineers and abolish the current state of separation which is being perpetuated by both sides. It is shown how geological considerations have helped to unravel the process of artificial well stimulation, while well stimulation in turn has provided valuable insights into the present stress conditions in various geological provinces.

  7. Press conference bring excitement of geophysical research to the public

    Science.gov (United States)

    Leifert, Harvey

    “A Flare to Remember.” “Starbucks for Starfish.” “Earth's Rotation Slows for El Niño.” What do these catchy headlines have in common? They all resulted from presentations at AGU's Spring Meeting in Boston, Mass. Yes, geophysical science can be big news when presented in a way that is interesting to general audiences.Proof? Well, the “Flare to Remember” headline (in the Dallas Morning News) reported the discovery, via the SOHO spacecraft, that a solar flare had produced, deep inside the Sun, seismic disturbances of a magnitude never experienced on Earth. Researchers Valentina Zharkova of Glasgow University and Alexander Kosovichev of Stanford gave media representatives a preview of their session, supported by visual aids, in the AGU press briefing room.

  8. Geophysical Investigations at the Hanna's Town Cemetery, Westmoreland County, Pennsylvania

    Science.gov (United States)

    Taylor, Ashley D.

    Hanna's Town (36WM203), an 18th century site located in Westmoreland County, Pennsylvania, was a major frontier settlement that was attacked and destroyed by a force of British and Native Americans in 1782. The town never fully recovered, and by the early 1800s, no buildings remained from the settlement. The land was repurposed for agricultural use until it was purchased by the Westmoreland County Historical Society, who reconstructed the town for tourism and educational purposes. In addition to the town, the site also contains a cemetery that currently has five headstones. There are several stone fragments in storage that are no longer associated with burials, providing evidence that the cemetery may contain unmarked graves. Geophysical investigations using ground penetrating radar, magnetometry, and electrical resistance were performed to examine the presence of additional grave shafts in and adjacent to the present-day cemetery.

  9. Health physics coverage during the 1993 Maralinga geophysical investigations

    International Nuclear Information System (INIS)

    Holland, B.

    1994-01-01

    Between September and November 1993 geophysical examinations of various types were carried out at Maralinga. These examinations were intended to provide information for the planning of strategies for the planning of strategies for the clean up of most contaminated areas at Maralinga. Approximately 40 people were involved in the project at different times, with the majority working inside controlled areas where Plutonium-239, Americium-241 or Uranium-238 contamination was present. Health physics procedures and monitoring programs were put in place to minimise the radiation exposure to the work force. These procedures and programs were similar to those which might be found in a number of different stations. However, the location and nature of the work did lead to the need for some slightly different solutions to routine Health Physics problems. This paper, and poster presentation, describes the procedures and programs used at Maralinga and indicates their effectiveness. 1 ref

  10. Health physics coverage during the 1993 Maralinga geophysical investigations

    International Nuclear Information System (INIS)

    Holland, B.

    1994-01-01

    Between September and November 1993 geophysical examinations of various types were carried out at Maralinga. These examinations were intended to provide information for the planning of strategies for the clean up of most contaminated areas at Maralinga. Approximately 40 people were involved in the project at different times, with the majority working inside controlled areas where Plutonium-239, Americium-241 or Uranium-238 contamination was present. Health physics procedures and monitoring programs were put in place to minimise the radiation exposure to the work force. These procedures and programs were similar to those which might be found in a number of different stations. However, the location and nature of the work did lead to the need for some slightly different solutions to routine Health Physics problems. This paper, and the poster presentation, describes the procedures and programs used at maralinga and indicates their effectiveness

  11. Geophysical and geochemical characterisation of groundwater resources in Western Zambia

    DEFF Research Database (Denmark)

    Chongo, Mkhuzo; Banda, Kawawa Eddy; Bauer-Gottwein, Peter

    Zambia’s rural water supply system depends on groundwater resources to a large extent. However, groundwater resources are variable in both quantity and quality across the country and a national groundwater resources assessment and mapping program is presently not in place. In the Machile area...... in South-Western Zambia, groundwater quality problems are particularly acute. Saline groundwater occurrence is widespread and affects rural water supply, which is mainly based on shallow groundwater abstraction using hand pumps. This study has mapped groundwater quality variations in the Machile area using...... both ground-based and airborne geophysical methods as well as extensive water quality sampling. The occurrence of saline groundwater follows a clear spatial pattern and appears to be related to the palaeo Lake Makgadikgadi, whose northernmost extension reached into the Machile area. Because the lake...

  12. Geophysical investigation of the ''Thimble,'' 100-H Area

    International Nuclear Information System (INIS)

    Bergstrom, K.A.

    1994-01-01

    This report summarizes the results of the geophysical investigations conducted as part of the characterization of the buried ''Thimble'' site. The site is located just south of the 116-H-2 Crib and is in the 100-HR-2 Operable Unit. Available documentation has it located between, and at the convergence of, two railroad spurs that run north-south. A concrete monument is believed to mark the site. The burial ground is suspected of containing a vertical safety rod thimble that is reportedly 40 ft long. Ground-penetrating radar (GPR) and electromagnetic induction (EMI) were the two techniques used in the investigation. The methods were selected because they are non-intrusive, relatively fast, economical, and have been used successfully in other similar investigations on the Hanford Site. The objective of the investigation was to locate the buried thimble

  13. The Bolmen tunnel project - evaluation of geophysical site investigation methods

    International Nuclear Information System (INIS)

    Stanfors, R.

    1987-12-01

    The report presents geophysical measurements along and adjacent to the tunnel and an evaluation of the ability of the various methods to permit prediction of rock mass parameters of significance to stability and water bearing ability. The evaluation shows that, using airborne electro-magnetic surveys, it was possible to indicate about 80% of alla the zones of weakness more than 50 m wide in the tunnel. Airborne magnetic surveys located about 90% of all dolerite dykes more than 10 m wide. Ground-level VLF and Slingram methods of electro-magnetic measurement indicated 75% and 85% respectively of all zones of weakness more than 50 m wide. Resistivity methods were successfully used to locate clay filled and water-bearing fracture zones. About 75% of the length of tunnel over which resistivity values below 500 ohm m were measured required shotcrete support and pre-grouting. (orig./DG)

  14. Writing memorable geophysical papers: The need for proper author coalitions

    Science.gov (United States)

    Baker, Daniel N.

    A primary function of Eos is to serve the geophysical community. It does this by publishing meeting announcements, book reviews, advertisements for jobs, scientific news items, and the like. Recent articles have helped the membership assess the stage of their careers (Eos, 60, 1024, 1979), informed them of the advantages of having names near the beginning of the alphabet (Eos, 59, 118, 1978), and helped them maximize information transfer during scientific meetings (Eos, 62, 179, 1981). However, no one has dealt with the very difficult problem of making papers memorable. Some techniques, such as long author lists, are now passé. Everyone is doing it. Other techniques, such as writing a very short paper or a humorous paper, are beyond the ken of most AGU members. Fortunately, there remains one technique that can be used by a surprisingly large number of AGU members.

  15. Atmospheric and Geophysical Sciences Division: Program report, FY 1987

    International Nuclear Information System (INIS)

    1988-05-01

    In 1988 the Atmospheric and Geophysical Sciences Division began its 15th year as a division. As the Division has grown over the years, its modeling capabilities have expanded to include a broad range of time and space scales ranging from hours to years, and from kilometers to global, respectively. For this report, we have chosen to show a subset of results from several projects to illustrate the breadth, depth, and diversity of the modeling activities that are a major part of the Division's research, development, and application efforts. In addition, the recent reorganization of the Division, including the merger of another group with the Division, is described, and the budget, personnel, models, and publications are reviewed. 95 refs., 26 figs., 2 tabs

  16. The Earth's heterogeneous mantle a geophysical, geodynamical, and geochemical perspective

    CERN Document Server

    Khan, Amir

    2015-01-01

    This book highlights and discusses recent developments that have contributed to an improved understanding of observed mantle heterogeneities and their relation to the thermo-chemical state of Earth's mantle, which ultimately holds the key to unlocking the secrets of the evolution of our planet. This series of topical reviews and original contributions address 4 themes. Theme 1 covers topics in geophysics, including global and regional seismic tomography, electrical conductivity and seismic imaging of mantle discontinuities and heterogeneities in the upper mantle, transition zone and lower mantle. Theme 2 addresses geochemical views of the mantle including lithospheric evolution from analysis of mantle xenoliths, composition of the deep Earth and the effect of water on subduction-zone processes. Theme 3 discusses geodynamical perspectives on the global thermo-chemical structure of the deep mantle. Theme 4 covers application of mineral physics data and phase equilibrium computations to infer the regional-scale ...

  17. Particle-laden flow from geophysical to Kolmogorov scales

    CERN Document Server

    Clercx, Herman; Uijttewaal, Wim

    2007-01-01

    The dispersion of particles in a flow is of central importance in various geophysical and environmental problems. The spreading of aerosols and soot in the air, the growth and dispersion of plankton blooms in seas and oceans, or the transport of sediment in rivers, estuaries and coastal regions are striking examples. These problems are characterized by strong nonlinear coupling between several dynamical mechanisms. As a result, processes on widely different length and time scales are simultaneously of importance. The multiscale nature of this challenging field motivated the EUROMECH colloquium on particle-laden flow that was held at the University of Twente in 2006. This book contains a selection of the papers that were presented.

  18. Water-Energy-Food Nexus: Compelling Issues for Geophysical Research

    Science.gov (United States)

    Akhbari, M.; Grigg, N. S.; Waskom, R.

    2014-12-01

    The joint security of water, food, and energy systems is an urgent issue everywhere, and strong drivers of development and land use change, exacerbated by climate change, require new knowledge to achieve integrated solution using a nexus-based approach to assess inter-dependencies. Effective research-based decision support tools are essential to identify the major issues and interconnections to help in implementation of the nexus approach. The major needs are models and data to clearly and unambiguously present decision scenarios to local cooperative groups of farmers, electric energy generators and water officials for joint decisions. These can be developed by integrated models to link hydrology, land use, energy use, cropping simulation, and optimization with economic objectives and socio-physical constraints. The first step in modeling is to have a good conceptual model and then to get data. As the linking of models increases uncertainties, each one should be supplied with adequate data at suitable spatial and temporal resolutions. Most models are supplied with data by geophysical scientists, such as hydrologists, geologists, atmospheric scientists, soil scientists, and climatologists, among others. Outcomes of a recently-completed project to study the water-energy-food nexus will be explained to illuminate the model and data needs to inform future management actions across the nexus. The project included a workshop of experts from government, business, academia, and the non-profit sector who met to define and explain nexus interactions and needs. An example of the findings is that data inconsistencies among sectors create barriers to integrated planning. A nexus-based systems model is needed to outline sectoral inter-dependencies and identify data demands and gaps. Geophysical scientists can help to create this model and take leadership on designing data systems to facilitate sharing and enable integrated management.

  19. Temporal associations of life with solar and geophysical activity

    Directory of Open Access Journals (Sweden)

    T. K. Breus

    Full Text Available In biology, circadian rhythms with a period of one cycle in 20–28 h are known to be ubiquitous and partly endogenous. Rhythms with a frequency lower than one cycle per day are called 'infradian rhythms'. Among them are components with one cycle in about 3.5, 7, 14 and 28 days, the multiseptans, which, like the circadians, must be regarded as a general characteristic of life: they characterize unicells as well as much more differentiated organisms. We hypothesize that heliogeophysical factors other than the solar visible light, held responsible for the evolution of circadian periodicity, underlie the infradian rhythms of biosystems. The periodicities in the solar wind and variations in the interplanetary magnetic field (IMF which are associated with the solar rotation are very similar in length to the biological periodicities. We investigate the temporal relations of variations in solar activity and in biological systems to test associations between events in the IMF, in geomagnetic disturbance, in myocardial infarction and in physiology. By cross-spectral analysis, we also find relations at certain frequencies between changes in human physiology on the one hand, and (1 the vertical component of the induction vector of the IMF, Bz, and (2 a global index of geomagnetic disturbance, Kp, on the other hand. We wish to stimulate interest in these periodicities of both biological systems and geophysical endpoints among physicists and biologists alike, so that problems relevant to clinicians and other biologists, including evolutionists, are eventually solved by their cooperation with the geophysical community.

  20. Mobile geophysical study of peat deposits in Fuhrberger Field, Germany

    Science.gov (United States)

    Wunderlich, T.; Petersen, H.; Hagrey, S. A. al; Rabbel, W.

    2012-04-01

    In the water protection area of Fuhrberger Field, north of Hanover, geophysical techniques were applied to study the stakeholder problem of the source detection for nitrate accumulations in the ground water. We used our mobile multisensor platform to conduct measurements using Ground Penetrating Radar (GPR, 200 MHz antenna) and Electromagnetic Induction (EMI, EM31). This aims to study the subsurface occurrences of peat deposits (surplus of organic carbon) supposed to be a source of nitrate emissions due to the aeration and the drawdown of groundwater levels (e.g. by pumping, drainage etc.). Resulting EMI and GPR signals show high data quality. Measured apparent electrical conductivity shows very low values (energy and EMI apparent electrical conductivities are plotted on aerial photographs and compared to each other's and with vegetation intensity. We could separate areas characterized by low reflection energy and high conductivity, and vice versa. Briefly, organic rich sediments such as peats are assumed to have a relative high conductivity and thus low GPR reflectivity. Some areas of local conductivity increase correspond to a deep reflection interface (as seen in the radargrams), which even vanishes due to the high attenuation caused by the high conductivity. This implies that the upper layer is more conductive than the lower layer. Several local areas with these characteristics are found at the study sites. We recommend shallow drillings at representative points to deliver the necessary confirmation with ground truth information. Acknowledgments: iSOIL (Interactions between soil related sciences - Linking geophysics, soil science and digital soil mapping) is a Collaborative Project (Grant Agreement number 211386) co-funded by the Research DG of the European Commission within the RTD activities of the FP7 Thematic Priority Environment.

  1. ORBSIM- ESTIMATING GEOPHYSICAL MODEL PARAMETERS FROM PLANETARY GRAVITY DATA

    Science.gov (United States)

    Sjogren, W. L.

    1994-01-01

    The ORBSIM program was developed for the accurate extraction of geophysical model parameters from Doppler radio tracking data acquired from orbiting planetary spacecraft. The model of the proposed planetary structure is used in a numerical integration of the spacecraft along simulated trajectories around the primary body. Using line of sight (LOS) Doppler residuals, ORBSIM applies fast and efficient modelling and optimization procedures which avoid the traditional complex dynamic reduction of data. ORBSIM produces quantitative geophysical results such as size, depth, and mass. ORBSIM has been used extensively to investigate topographic features on the Moon, Mars, and Venus. The program has proven particulary suitable for modelling gravitational anomalies and mascons. The basic observable for spacecraft-based gravity data is the Doppler frequency shift of a transponded radio signal. The time derivative of this signal carries information regarding the gravity field acting on the spacecraft in the LOS direction (the LOS direction being the path between the spacecraft and the receiving station, either Earth or another satellite). There are many dynamic factors taken into account: earth rotation, solar radiation, acceleration from planetary bodies, tracking station time and location adjustments, etc. The actual trajectories of the spacecraft are simulated using least squares fitted to conic motion. The theoretical Doppler readings from the simulated orbits are compared to actual Doppler observations and another least squares adjustment is made. ORBSIM has three modes of operation: trajectory simulation, optimization, and gravity modelling. In all cases, an initial gravity model of curved and/or flat disks, harmonics, and/or a force table are required input. ORBSIM is written in FORTRAN 77 for batch execution and has been implemented on a DEC VAX 11/780 computer operating under VMS. This program was released in 1985.

  2. Statistical mechanics of two-dimensional and geophysical flows

    International Nuclear Information System (INIS)

    Bouchet, Freddy; Venaille, Antoine

    2012-01-01

    The theoretical study of the self-organization of two-dimensional and geophysical turbulent flows is addressed based on statistical mechanics methods. This review is a self-contained presentation of classical and recent works on this subject; from the statistical mechanics basis of the theory up to applications to Jupiter’s troposphere and ocean vortices and jets. Emphasize has been placed on examples with available analytical treatment in order to favor better understanding of the physics and dynamics. After a brief presentation of the 2D Euler and quasi-geostrophic equations, the specificity of two-dimensional and geophysical turbulence is emphasized. The equilibrium microcanonical measure is built from the Liouville theorem. Important statistical mechanics concepts (large deviations and mean field approach) and thermodynamic concepts (ensemble inequivalence and negative heat capacity) are briefly explained and described. On this theoretical basis, we predict the output of the long time evolution of complex turbulent flows as statistical equilibria. This is applied to make quantitative models of two-dimensional turbulence, the Great Red Spot and other Jovian vortices, ocean jets like the Gulf-Stream, and ocean vortices. A detailed comparison between these statistical equilibria and real flow observations is provided. We also present recent results for non-equilibrium situations, for the studies of either the relaxation towards equilibrium or non-equilibrium steady states. In this last case, forces and dissipation are in a statistical balance; fluxes of conserved quantity characterize the system and microcanonical or other equilibrium measures no longer describe the system.

  3. Research on Integrated Geophysics Detect Potential Ground Fissure in City

    Science.gov (United States)

    Qian, R.

    2017-12-01

    North China confined aquifer lied 70 to 200 meters below the earth's surface has been exploited for several decades, which resulted in confined water table declining and has generated a mass of ground fissure. Some of them has reached the surface and the other is developing. As it is very difficult to stop the ground fissure coming into being, measures of avoiding are often taken. It brings great potential risk to urban architecture and municipal engineering. It is very important to find out specific distribution and characteristic of potential ground fissure in city with high resolution. The ground fissure is concealed, therefor, geophysical method is an important technology to detecting concealed ground fissure. However, it is very difficult to detect the characteristics of the superficial part of ground fissure directly, as it lies dozens of meters below and has only scores of centimeters fault displacement. This paper studies applied ground penetration radar, surface wave and shallow refleciton seismic to detect ground fissure. It sets up model of surface by taking advantage of high resolution of ground penetrating radar data, constrains Reilay wave inversion and improves its resolution. The high resolution reflection seismic is good at detecting the geology structure. The data processing and interpretation technique is developmented to avoid the pitfall and improve the aliability of the rusult. The experiment has been conducted in Shunyi District, Beijing in 2016. 5 lines were settled to collect data of integrated geophysical method. Development zone of concealed ground fissure was found and its ultra shallow layer location was detected by ground penetrating radar. A trial trench of 6 meters in depth was dug and obvious ground fissure development was found. Its upper end was 1.5 meters beneath the earth's surface with displacement of 0.3 meters. The favorable effect of this detection has provided a new way for detecting ground fissure in cities of China, such

  4. Geophysical surveys at the UMTRA project Shiprock, New Mexico site

    International Nuclear Information System (INIS)

    Wightman, E.; Smith, B.; Newlin, B.

    1996-03-01

    Geophysical surveys were performed at the Uranium Mill Tailings Remedial Action (UMTRA) Shiprock site in New Mexico during February 1996. The surveys were designed to locate areas of ground water contamination, consisting largely of sulfate and nitrate salts and uranium. Electrical geophysical methods were used to locate areas of sulfate and nitrate concentrations since these products, when present in ground water, increase its electrical conductivity. These contaminants also increase the density of water, making the water with the highest concentrations of these salts sink to the bottom of the water column. At the Shiprock site, where alluvium is underlain by the impervious Mancos Shale, the saline water will tend to rest in depressions on the shale surface. Seismic refraction surveys were conducted on the floodplain. The site comprises two areas, the terrace and the floodplain, separated by a steep scarp of some 70 feet (ft) (20 meters [m]). Measurements of electrical conductivity were taken over these two areas, searching for possible pockets of saline ground water resting on top of the bedrock. Conductivity surveys were also run to identify fractures within the bedrock that may act as conduits for ground water movement. Several areas of higher than normal conductivity were found on the terrace, including halos of higher conductivities on three sides of the tailings cell. The conductivity measurements searching for fractures found only a small number of minor fracture-like anomalies. These are not considered important. On the floodplain, both conductivity and seismic refraction measurements were taken. The conductivity measurements clearly show areas of high conductivity interpreted to result from ground water contamination. The seismic refraction measurements identified bedrock depressions that may contain denser, and more saline ground water lenses. Generally, the areas of high conductivity coincide with the bedrock depressions

  5. Geophysical Investigations of Habitability in Ice-Covered Ocean Worlds

    Science.gov (United States)

    Vance, Steven D.; Panning, Mark P.; Stähler, Simon; Cammarano, Fabio; Bills, Bruce G.; Tobie, Gabriel; Kamata, Shunichi; Kedar, Sharon; Sotin, Christophe; Pike, William T.; Lorenz, Ralph; Huang, Hsin-Hua; Jackson, Jennifer M.; Banerdt, Bruce

    2018-01-01

    Geophysical measurements can reveal the structures and thermal states of icy ocean worlds. The interior density, temperature, sound speed, and electrical conductivity thus characterize their habitability. We explore the variability and correlation of these parameters using 1-D internal structure models. We invoke thermodynamic consistency using available thermodynamics of aqueous MgSO4, NaCl (as seawater), and NH3; pure water ice phases I, II, III, V, and VI; silicates; and any metallic core that may be present. Model results suggest, for Europa, that combinations of geophysical parameters might be used to distinguish an oxidized ocean dominated by MgSO4 from a more reduced ocean dominated by NaCl. In contrast with Jupiter's icy ocean moons, Titan and Enceladus have low-density rocky interiors, with minimal or no metallic core. The low-density rocky core of Enceladus may comprise hydrated minerals or anhydrous minerals with high porosity. Cassini gravity data for Titan indicate a high tidal potential Love number (k2>0.6), which requires a dense internal ocean (ρocean>1,200 kg m-3) and icy lithosphere thinner than 100 km. In that case, Titan may have little or no high-pressure ice, or a surprisingly deep water-rock interface more than 500 km below the surface, covered only by ice VI. Ganymede's water-rock interface is the deepest among known ocean worlds, at around 800 km. Its ocean may contain multiple phases of high-pressure ice, which will become buoyant if the ocean is sufficiently salty. Callisto's interior structure may be intermediate to those of Titan and Europa, with a water-rock interface 250 km below the surface covered by ice V but not ice VI.

  6. Integrated geophysical study of the northeastern margin of Tibetan Plateau

    Science.gov (United States)

    Shi, L.; Meng, X.; Guo, L.

    2011-12-01

    Tibetan Plateau, the so-called "Roof of the World", is a direct consequence of collision of the Indian plate with the Eurasian plate starting in the early Cenozoic time. The continent-continent collision is still going on. The northeastern margin of Tibetan Plateau is the front part of the Tibetan Plateau extends to mainland and favorable area for studying uplift and deformation of the Tibetan Plateau. In the past decades, a variety of geophysical methods were conducted to study geodynamics and geological tectonics of this region. We assembled satellite-derived free-air gravity anomalies with a resolution of one arc-minute from the Scripps Institution of Oceanography, and reduced them to obtain Complete Bouguer Gravity Anomalies. Then we gridded Complete Bouguer Gravity Anomalies on a regular grid, and subsequently processed them with the preferential continuation method to attenuate high-frequency noise and analyzed regional and residual anomalies. We also calculated tilt-angle derivative of Complete Bouguer Gravity Anomalies to derive clearer geological structures with more details. Then we calculated the depth distribution of the Moho discontinuity surface in this area by 3D density interface inversion. From the results of preliminary processing, we analyzed the main deep faults and geological tectonics in this region. We extracted seven important profiles' data of Complete Bouguer Gravity Anomalies in this area, and then did forward modeling and inversion on each profile with constraints of geological information and other geophysical data. In the future, we will perform 3D constrained inversion of Complete Bouguer Gravity Anomalies in this region for better understanding deep structure and tectonics of the northeastern margin of Tibetan Plateau. Acknowledgment: We acknowledge the financial support of the SinoProbe project (201011039), the Fundamental Research Funds for the Central Universities (2010ZY26 2011PY0184), and the National Natural Science Foundation

  7. A New Multiscale Technique for Time-Accurate Geophysics Simulations

    Science.gov (United States)

    Omelchenko, Y. A.; Karimabadi, H.

    2006-12-01

    Large-scale geophysics systems are frequently described by multiscale reactive flow models (e.g., wildfire and climate models, multiphase flows in porous rocks, etc.). Accurate and robust simulations of such systems by traditional time-stepping techniques face a formidable computational challenge. Explicit time integration suffers from global (CFL and accuracy) timestep restrictions due to inhomogeneous convective and diffusion processes, as well as closely coupled physical and chemical reactions. Application of adaptive mesh refinement (AMR) to such systems may not be always sufficient since its success critically depends on a careful choice of domain refinement strategy. On the other hand, implicit and timestep-splitting integrations may result in a considerable loss of accuracy when fast transients in the solution become important. To address this issue, we developed an alternative explicit approach to time-accurate integration of such systems: Discrete-Event Simulation (DES). DES enables asynchronous computation by automatically adjusting the CPU resources in accordance with local timescales. This is done by encapsulating flux- conservative updates of numerical variables in the form of events, whose execution and synchronization is explicitly controlled by imposing accuracy and causality constraints. As a result, at each time step DES self- adaptively updates only a fraction of the global system state, which eliminates unnecessary computation of inactive elements. DES can be naturally combined with various mesh generation techniques. The event-driven paradigm results in robust and fast simulation codes, which can be efficiently parallelized via a new preemptive event processing (PEP) technique. We discuss applications of this novel technology to time-dependent diffusion-advection-reaction and CFD models representative of various geophysics applications.

  8. Clean enough for industry? An airborne geophysical case study

    International Nuclear Information System (INIS)

    Nyquist, J.E.; Beard, L.P.

    1996-01-01

    Data from two airborne geophysical surveys of the Department of Energy's Oak Ridge Reservation (ORR) were extremely valuable in deciding whether a 1000-acre (400 hectare) parcel of the ORR should be released to the City of Oak Ridge for industrial development. Our findings, based on electromagnetic and magnetic data, were incorporated in the federally mandated Environmental Assessment Statement (EAS), and in general supported claims that this land was never used as a hazardous waste disposal site. We estimated the amount of iron required to produce each anomaly using a simple dipole model. All anomalies with equivalent sources greater than approximately 1000 kg of iron were checked in the field, and the source of all but one identified as either a bridge, reinforced concrete debris, or a similarly benign object. Additionally, some smaller anomalies (equivalent sources of roughly 500 kg) have been checked; thus far, these also have innocuous sources. Airborne video proved invaluable in identifying logging equipment as the source of some of these anomalies. Geologic noise may account for some of the remaining anomalies. Naturally occurring accumulations of magnetic minerals in the soil on the ORR have been shown to produce anomalies which, at a sensor height of 30 m, are comparable to the anomaly produced by about 500 kg of iron. By comparison, the electronic noise of the magnetic gradiometer, 0.01--0.02 nT/m, is equivalent to only about 50--100 kg of iron at a 30 m sensor height. The electromagnetic data, combined with field mapping of karst structures, provided evidence of a northeast-southwest striking conduit spanning the parcel. The possible existence of a karst conduit led the EAS authors to conclude that this is a ''sensitive hydrologic setting.'' We conclude that aerial geophysics is an extremely cost-effective, and efficient technique for screening large tracts of land for environmental characterization

  9. 76 FR 68720 - Takes of Marine Mammals Incidental to Specified Activities; Low-Energy Marine Geophysical Survey...

    Science.gov (United States)

    2011-11-07

    ... Marine Mammals Incidental to Specified Activities; Low- Energy Marine Geophysical Survey in the Western... conducting a low-energy marine geophysical (i.e., seismic) survey in the western tropical Pacific Ocean... Science Foundation (NSF), and ``Environmental Assessment of a Low-Energy Marine Geophysical Survey by the...

  10. CANDU market prospects

    International Nuclear Information System (INIS)

    Kakaria, B.K.

    1994-01-01

    This 1994 survey of prospective markets for CANDU reactors discusses prospects in Turkey, Thailand, the Philippines, Korea, Indonesia, China and Egypt, and other opportunities, such as in fuel cycles and nuclear safety. It was concluded that foreign partners would be needed to help with financing

  11. Sharpening Intertemporal Prospect Theory

    OpenAIRE

    Pushpa, Rathie; Carlos, Radavelli; Sergio, Da Silva

    2006-01-01

    Prospect theory [4] of risky choices has been extended to encompass intertemporal choices [6]. Presentation of intertemporal prospect theory suffers from minor mistakes, however [2]. To clarify the theory we restate it and show further mistakes in current presentations ([6], [2]) of value and discount functions.

  12. Geochemical and geophysical monitoring activities in Campo de Calatrava Volcanic Field (Spain)

    Science.gov (United States)

    Luengo-Oroz, Natividad; Villasante-Marcos, Víctor; López-Díaz, Rubén; Calvo, Marta; Albert, Helena; Domínguez Cerdeña, Itahiza

    2017-04-01

    The Campo de Calatrava Volcanic Field (CCVF) or Spanish Central Volcanic Zone is located in central continental Spain (Ciudad Real province) and covers about 5000 km2. It includes around 240 eruptive centers, mainly monogenetic basaltic cones but also explosive maar structures. According to K-Ar geochronology, its main activity phase occurred during Pliocene and Pleistocene epochs (between 5 and 1.7 Ma) and involved alkaline to ultraalkaline magmas, although an older ultrapotassic phase is dated around 8.7-6.4 Ma. However, some recent works have proposed Holocene ages for some of the volcanic products, opening the possibility of considering the CCVF "active" according to international standards. Responding to this situation, the Instituto Geográfico Nacional (IGN) has initiated geochemical and geophysical monitoring activities in the CCVF. Here, we describe these ongoing efforts and we report results about groundwater geochemistry at several natural highly-gaseous springs in the area (hervideros), as well as soil temperature, CO2 diffuse flux from the soil and electrical self-potential data mapped on a small degassing structure called La Sima. In order to analyze microseismicity or any seismic anomaly in the CCVF, a seismic station has also been installed close to this degassing structure. Physicochemical parameters (temperature, pH, Eh and electric conductivity) were measured in situ in four springs and samples were taken in order to analyze major ions and trace elements. Total composition of dissolved gases and helium isotopic ratios were also determined. To complete soil temperature, self-potential and gas prospections performed in La Sima, soil gases were sampled at the bottom of the structure at a depth of 20 cm. Analysis of the total gas composition found 957400 ppm of CO2. Low values of O2 and N2 were also detected (5600 and 24800 ppm respectively).

  13. Immersive, hands-on, team-based geophysical education at the University of Texas Marine Geology and Geophysics Field Course

    Science.gov (United States)

    Saustrup, S.; Gulick, S. P.; Goff, J. A.; Davis, M. B.; Duncan, D.; Reece, R.

    2013-12-01

    The University of Texas Institute for Geophysics (UTIG), part of the Jackson School of Geosciences, annually offers a unique and intensive three-week marine geology and geophysics field course during the spring/summer semester intersession. Now entering its seventh year, the course transitions students from a classroom environment through real-world, hands-on field acquisition, on to team-oriented data interpretation, culminating in a professional presentation before academic and industry employer representatives. The course is available to graduate students and select upper-division undergraduates, preparing them for direct entry into the geoscience workforce or for further academic study. Geophysical techniques used include high-resolution multichannel seismic reflection, CHIRP sub-bottom profiling, multibeam bathymetry, sidescan sonar, sediment coring, grab sampling, data processing, and laboratory analysis of sediments. Industry-standard equipment, methods, software packages, and visualization techniques are used throughout the course, putting students ahead of many of their peers in this respect. The course begins with a 3-day classroom introduction to the field area geology, geophysical methods, and computing resources used. The class then travels to the Gulf Coast for a week of hands-on field and lab work aboard two research vessels: UTIG's 22-foot, aluminum hulled Lake Itasca; and NOAA's 82-foot high-speed catamaran R/V Manta. The smaller vessel handles primarily shallow, inshore targets using multibeam bathymetry, sidescan sonar, and grab sampling. The larger vessel is used both inshore and offshore for multichannel seismic, CHIRP profiling, multibeam bathymetry, gravity coring, and vibracoring. Field areas to date have included Galveston and Port Aransas, Texas, and Grand Isle, Louisiana, with further work in Grand Isle scheduled for 2014. In the field, students work in teams of three, participating in survey design, instrument set-up, field deployment

  14. The role of the geophysical template and environmental regimes in controlling stream-living trout populations

    Science.gov (United States)

    Penaluna, Brooke E.; Railsback, Steve F.; Dunham, Jason B.; Johnson, S.; Bilby, Richard E.; Skaugset, Arne E.

    2015-01-01

    The importance of multiple processes and instream factors to aquatic biota has been explored extensively, but questions remain about how local spatiotemporal variability of aquatic biota is tied to environmental regimes and the geophysical template of streams. We used an individual-based trout model to explore the relative role of the geophysical template versus environmental regimes on biomass of trout (Oncorhynchus clarkii clarkii). We parameterized the model with observed data from each of the four headwater streams (their local geophysical template and environmental regime) and then ran 12 simulations where we replaced environmental regimes (stream temperature, flow, turbidity) of a given stream with values from each neighboring stream while keeping the geophysical template fixed. We also performed single-parameter sensitivity analyses on the model results from each of the four streams. Although our modeled findings show that trout biomass is most responsive to changes in the geophysical template of streams, they also reveal that biomass is restricted by available habitat during seasonal low flow, which is a product of both the stream’s geophysical template and flow regime. Our modeled results suggest that differences in the geophysical template among streams render trout more or less sensitive to environmental change, emphasizing the importance of local fish–habitat relationships in streams.

  15. First Paleomagnetic Map of the Easternmost Mediterranean Derived from Combined Geophysical-Geological Analysis

    Science.gov (United States)

    Eppelbaum, Lev; Katz, Youri

    2014-05-01

    he easternmost Mediterranean is a tectonically complex region evolving in the long term and located in the midst of the progressive Afro-Eurasian collision (e.g., Ben-Avraham, 1978; Khain, 1984). Both rift-oceanic systems and terrane belts are known to have been formed in this collision zone (Stampfli et al., 2013). Despite years of investigation, the geological-geophysical structure of the easternmost Mediterranean is not completely known. The formation of its modern complex structure is associated with the evolution of the Neotethys Ocean and its margins (e.g., Ben-Avraham and Ginzburg, 1990; Robertson et al., 1991; Ben-Avraham et al., 2002). The easternmost Mediterranean was formed during the initial phase of the Neotethys in the Early and Late Permian (Golonka and Ford, 2000; Stampfli et al., 2013). At present this block of the ocean crust situated in the northern part of the Sinai plate (Ben-Avraham, 1978; Eppelbaum et al., 2012, 2014) is object of our investigation. The easternmost Mediterranean region has attracted increasing attention in connection with the recent discoveries of significant hydrocarbon deposits in this region (e.g., Montadert et al., 2010; Schenk et al., 2010; Eppelbaum et al., 2012). For example, Schenk et al. (2010) consider that more than 4 trillion m3 of recoverable gas is available in the Levant Basin (which located in the central part of the easternmost Mediterranean). Currently seismic prospecting is the main tool used in hydrocarbon deposit discovery. However, even sophisticated seismic data analysis (e.g., Hall et al., 2005; Roberts and Peace, 2007; Gardosh et al., 2010; Marlow et al., 2011; Lazar et al., 2012), fails to identify the full complex structural-tectonic mosaic of this region, and more importantly, is unable to clarify its baffling complex tectonic evolution. This highlights the need for combined analysis of geophysical data associated with the paleomagnetic and paleobiogeographic conditions that can yield deep

  16. Geophysical methods for fracture characterization in and around potential sites for nuclear waste disposal

    International Nuclear Information System (INIS)

    Majer, E.L.; Lee, K.H.; Morrison, H.F.

    1992-08-01

    Historically, geophysical methods have been used extensively to successfully explore the subsurface for petroleum, gas, mineral, and geothermal resources. Their application, however, for site characterization, and monitoring the performance of near surface waste sites or repositories has been somewhat limited. Presented here is an overview of the geophysical methods that could contribute to defining the subsurface heterogeneity and extrapolating point measurements at the surface and in boreholes to volumetric descriptions in a fractured rock. In addition to site characterization a significant application of geophysical methods may be in performance assessment and in monitoring the repository to determine if the performance is as expected

  17. Reassessing Geophysical Models of the Bushveld Complex in 3D

    Science.gov (United States)

    Cole, J.; Webb, S. J.; Finn, C.

    2012-12-01

    Conceptual geophysical models of the Bushveld Igneous Complex show three possible geometries for its mafic component: 1) Separate intrusions with vertical feeders for the eastern and western lobes (Cousins, 1959) 2) Separate dipping sheets for the two lobes (Du Plessis and Kleywegt, 1987) 3) A single saucer-shaped unit connected at depth in the central part between the two lobes (Cawthorn et al, 1998) Model three incorporates isostatic adjustment of the crust in response to the weight of the dense mafic material. The model was corroborated by results of a broadband seismic array over southern Africa, known as the Southern African Seismic Experiment (SASE) (Nguuri, et al, 2001; Webb et al, 2004). This new information about the crustal thickness only became available in the last decade and could not be considered in the earlier models. Nevertheless, there is still on-going debate as to which model is correct. All of the models published up to now have been done in 2 or 2.5 dimensions. This is not well suited to modelling the complex geometry of the Bushveld intrusion. 3D modelling takes into account effects of variations in geometry and geophysical properties of lithologies in a full three dimensional sense and therefore affects the shape and amplitude of calculated fields. The main question is how the new knowledge of the increased crustal thickness, as well as the complexity of the Bushveld Complex, will impact on the gravity fields calculated for the existing conceptual models, when modelling in 3D. The three published geophysical models were remodelled using full 3Dl potential field modelling software, and including crustal thickness obtained from the SASE. The aim was not to construct very detailed models, but to test the existing conceptual models in an equally conceptual way. Firstly a specific 2D model was recreated in 3D, without crustal thickening, to establish the difference between 2D and 3D results. Then the thicker crust was added. Including the less

  18. Applied Geophysics in the world of tomorrow - Microfabrication arrives

    Science.gov (United States)

    Johnson, R. M.

    2012-12-01

    Instrument manufacturers have a unique perspective on the design and use of geophysical equipment. The field instrument must provide reliable and repeatable performance in every climate condition and environmental extreme. The gear must be easy to use and more importantly easy to understand for non-native English speakers. I have traveled the world installing, repairing, commissioning and demonstrating geophysical survey systems. Everywhere I have traveled there is one unassailable fact - our geophysicist compatriots in developed and developing countries are hungry for information and hungry for technology. They want more and better systems to help improve their understanding of the subsurface. And they want to serve their countries by helping to exploit natural resources. I hold up for your review the first highly successful portable magnetometer, the G-856. Designed in 1981 with over 5000 sold, it is still produced in record numbers today for use all over the world. How could it be that a rather simple device could be so long lived, and make such an impact in exploration programs for 32 years? The answer is in producing reliable and easy to use equipment that is affordable. One might compare it to the iPad or Android device of today. The innovative and no-frills interface has attracted users from all markets including mining, oil/gas, archaeology, environmental, UXO/military and forensics. Powerful ancillary software to process the data has always been included at no charge, offering geoscientists a solution rather than a black box. Many of our technologies are poised for dramatic breakthroughs in miniaturization and interconnectivity. I point specifically to the micro-fabrication of the cesium vapor magnetometer. Initiated 5 years ago in conjunction with NIST, Geometrics has embarked on a high stakes game of minimizing size, weight, power consumption and price while eliminating dead zones and maintaining or increasing sensitivity and sample speed. These new

  19. Adaptive mesh refinement and adjoint methods in geophysics simulations

    Science.gov (United States)

    Burstedde, Carsten

    2013-04-01

    It is an ongoing challenge to increase the resolution that can be achieved by numerical geophysics simulations. This applies to considering sub-kilometer mesh spacings in global-scale mantle convection simulations as well as to using frequencies up to 1 Hz in seismic wave propagation simulations. One central issue is the numerical cost, since for three-dimensional space discretizations, possibly combined with time stepping schemes, a doubling of resolution can lead to an increase in storage requirements and run time by factors between 8 and 16. A related challenge lies in the fact that an increase in resolution also increases the dimensionality of the model space that is needed to fully parametrize the physical properties of the simulated object (a.k.a. earth). Systems that exhibit a multiscale structure in space are candidates for employing adaptive mesh refinement, which varies the resolution locally. An example that we found well suited is the mantle, where plate boundaries and fault zones require a resolution on the km scale, while deeper area can be treated with 50 or 100 km mesh spacings. This approach effectively reduces the number of computational variables by several orders of magnitude. While in this case it is possible to derive the local adaptation pattern from known physical parameters, it is often unclear what are the most suitable criteria for adaptation. We will present the goal-oriented error estimation procedure, where such criteria are derived from an objective functional that represents the observables to be computed most accurately. Even though this approach is well studied, it is rarely used in the geophysics community. A related strategy to make finer resolution manageable is to design methods that automate the inference of model parameters. Tweaking more than a handful of numbers and judging the quality of the simulation by adhoc comparisons to known facts and observations is a tedious task and fundamentally limited by the turnaround times

  20. Distinct Element modeling of geophysical signatures during sinkhole collapse

    Science.gov (United States)

    Al-Halbouni, Djamil; Holohan, Eoghan P.; Taheri, Abbas; Dahm, Torsten

    2017-04-01

    A sinkhole forms due to the collapse of rocks or soil near the Earth's surface into an underground cavity. Such cavities represent large secondary pore spaces derived by dissolution and subrosion in the underground. By changing the stress field in the surrounding material, the growth of cavities can lead to a positive feedback, in which expansion and mechanical instability in the surrounding material increases or generates new secondary pore space (e.g. by fracturing), which in turn increases the cavity size, etc. A sinkhole forms due to the eventual subsidence or collapse of the overburden that becomes destabilized and fails all the way to the Earth's surface. Both natural processes like (sub)surface water movement and earthquakes, and human activities, such as mining, construction and groundwater extraction, intensify such feedbacks. The development of models for the mechanical interaction of a growing cavity and fracturing of its surrounding material, thus capturing related precursory geophysical signatures, has been limited, however. Here we report on the advances of a general, simplified approach to simulating cavity growth and sinkhole formation by using 2D Distinct Element Modeling (DEM) PFC5.0 software and thereby constraining pre-, syn- and post-collapse geophysical and geodetic signatures. This physically realistic approach allows for spontaneous cavity development and dislocation of rock mass to be simulated by bonded particle formulation of DEM. First, we present calibration and validation of our model. Surface subsidence above an instantaneously excavated circular cavity is tracked and compared with an incrementally increasing dissolution zone both for purely elastic and non-elastic material.This validation is important for the optimal choice of model dimensions and particles size with respect to simulation time. Second, a cavity growth approach is presented and compared to a well-documented case study, the deliberately intensified sinkhole collapse at

  1. Haar wavelets, fluctuations and structure functions: convenient choices for geophysics

    Directory of Open Access Journals (Sweden)

    S. Lovejoy

    2012-09-01

    Full Text Available Geophysical processes are typically variable over huge ranges of space-time scales. This has lead to the development of many techniques for decomposing series and fields into fluctuations Δv at well-defined scales. Classically, one defines fluctuations as differences: (Δvdiff = v(xx-v(x and this is adequate for many applications (Δx is the "lag". However, if over a range one has scaling Δv ∝ ΔxH, these difference fluctuations are only adequate when 0 < H < 1. Hence, there is the need for other types of fluctuations. In particular, atmospheric processes in the "macroweather" range ≈10 days to 10–30 yr generally have −1 < H < 0, so that a definition valid over the range −1 < H < 1 would be very useful for atmospheric applications. A general framework for defining fluctuations is wavelets. However, the generality of wavelets often leads to fairly arbitrary choices of "mother wavelet" and the resulting wavelet coefficients may be difficult to interpret. In this paper we argue that a good choice is provided by the (historically first wavelet, the Haar wavelet (Haar, 1910, which is easy to interpret and – if needed – to generalize, yet has rarely been used in geophysics. It is also easy to implement numerically: the Haar fluctuation (ΔvHaar at lag Δx is simply equal to the difference of the mean from x to x+ Δx/2 and from xx/2 to xx. Indeed, we shall see that the interest of the Haar wavelet is this relation to the integrated process rather than its wavelet nature per se.

    Using numerical multifractal simulations, we show that it is quite accurate, and we compare and contrast it with another similar technique, detrended fluctuation analysis. We find that, for estimating scaling exponents, the two methods are very similar, yet

  2. Preliminary Result of Geophysical Some Studieson the Nariinsukhait Coal Deposit

    Science.gov (United States)

    Norov, B.; Purevjav, N.; Roy, D. K., Sr.

    2017-12-01

    Nariinsukhait coal deposit has a strategic importance on Mongolian national economic development. The deposit is located in Gurvan-tes of the Umnu-gobi province, as 849 km south-west away from Ulaanbaatar. The deposit in geographically, belongs to Gobi Altai region region of the Altai mountain region. The area contains Permian, Cretaceous, Jurassic, Triassic age of sediments. Sediments are red or sedimentary cover on some part of area (Minjin. Ch., Batnyam. D., Rentsendorj. S (Baatarkhuyag. A., Altantsetseg. D., 2015). The coal deposit is located in the center portion of the Nariinsukhait basin. The age of coal hosted sedimentary rock is Jurassic estimated by Paleo-botanic methodology, using examination of a total 59 kind of plants, 288 pollen grains (Baatarkhuyag. A., Altantsetseg. D., 2015). The thickness of coal hosted sedimentary sequence is approximately 1105.5m and named as Orgilohbulag formation. In case of geophysical exploration, preliminary interpretation of the coal basin has been done by 3 geophysical methodologies which commonly applying during exploration stage of coal. The interpretations are given below. Natural Gamma Sonde /NGRS 4140/: use to determine natural gamma activation on rock by radionuclides content (238U; 235U; 232Th; 40K). During measurements well contrasted coal bedding and, value indicate between 0-15cps. And depending on the rock type it has been changed, in case of siltstone, argillite, conglomerate value fluctuated between 15-40cps. However, those rocks natural gamma values are difference little, therefore not showing much contrast between rock types. Formation Density Sonde Version B /FDSB 4036/: The Nariinsukhait coal deposit Open holes and protective pipes of density is 0.5-1.5 g/cm3, 1.2-2.3 g/cm3 respectively. Not well contrasted during measurement due to some of sedimentary rock density range is so low as such sandstone, siltstone, and conglomerate. Therefore, applied resistivity methodology and done interpretation. DLL3

  3. Genetic algorithms and their use in Geophysical Problems

    Energy Technology Data Exchange (ETDEWEB)

    Parker, Paul B. [Univ. of California, Berkeley, CA (United States)

    1999-04-01

    Genetic algorithms (GAs), global optimization methods that mimic Darwinian evolution are well suited to the nonlinear inverse problems of geophysics. A standard genetic algorithm selects the best or ''fittest'' models from a ''population'' and then applies operators such as crossover and mutation in order to combine the most successful characteristics of each model and produce fitter models. More sophisticated operators have been developed, but the standard GA usually provides a robust and efficient search. Although the choice of parameter settings such as crossover and mutation rate may depend largely on the type of problem being solved, numerous results show that certain parameter settings produce optimal performance for a wide range of problems and difficulties. In particular, a low (about half of the inverse of the population size) mutation rate is crucial for optimal results, but the choice of crossover method and rate do not seem to affect performance appreciably. Optimal efficiency is usually achieved with smaller (< 50) populations. Lastly, tournament selection appears to be the best choice of selection methods due to its simplicity and its autoscaling properties. However, if a proportional selection method is used such as roulette wheel selection, fitness scaling is a necessity, and a high scaling factor (> 2.0) should be used for the best performance. Three case studies are presented in which genetic algorithms are used to invert for crustal parameters. The first is an inversion for basement depth at Yucca mountain using gravity data, the second an inversion for velocity structure in the crust of the south island of New Zealand using receiver functions derived from teleseismic events, and the third is a similar receiver function inversion for crustal velocities beneath the Mendocino Triple Junction region of Northern California. The inversions demonstrate that genetic algorithms are effective in solving problems

  4. Topological inversion for solution of geodesy-constrained geophysical problems

    Science.gov (United States)

    Saltogianni, Vasso; Stiros, Stathis

    2015-04-01

    Geodetic data, mostly GPS observations, permit to measure displacements of selected points around activated faults and volcanoes, and on the basis of geophysical models, to model the underlying physical processes. This requires inversion of redundant systems of highly non-linear equations with >3 unknowns; a situation analogous to the adjustment of geodetic networks. However, in geophysical problems inversion cannot be based on conventional least-squares techniques, and is based on numerical inversion techniques (a priori fixing of some variables, optimization in steps with values of two variables each time to be regarded fixed, random search in the vicinity of approximate solutions). Still these techniques lead to solutions trapped in local minima, to correlated estimates and to solutions with poor error control (usually sampling-based approaches). To overcome these problems, a numerical-topological, grid-search based technique in the RN space is proposed (N the number of unknown variables). This technique is in fact a generalization and refinement of techniques used in lighthouse positioning and in some cases of low-accuracy 2-D positioning using Wi-Fi etc. The basic concept is to assume discrete possible ranges of each variable, and from these ranges to define a grid G in the RN space, with some of the gridpoints to approximate the true solutions of the system. Each point of hyper-grid G is then tested whether it satisfies the observations, given their uncertainty level, and successful grid points define a sub-space of G containing the true solutions. The optimal (minimal) space containing one or more solutions is obtained using a trial-and-error approach, and a single optimization factor. From this essentially deterministic identification of the set of gridpoints satisfying the system of equations, at a following step, a stochastic optimal solution is computed corresponding to the center of gravity of this set of gridpoints. This solution corresponds to a

  5. Dehydration Kinetics of Chlorite at High Temperatures and Geophysical Implications

    Science.gov (United States)

    Shen, K.; Wang, D.; Liu, T.

    2017-12-01

    A significant amount of water is released from hydrous phases in subduction zones and the brought into the earth's interior. The resulting flux may trigger earthquakes and arc magmatism. Chlorite is one of the most important hydrous minerals with a high water content of 13.0 wt.% in the deep subduction zones, and the dehydration of chlorites are thought to be associated with many anomalies geophysical observations. To understand the nature of the geology and geophysical phenomenon, further research on the dehydration of chlorite should be carried out. Here we report the new results on dehydration kinetics of chlorite at high temperatures. We investigated the dehydration kinetics of chlorite using thermogravimetric analyses (TGA) and X-ray diffraction. The dehydration experiments were conducted with heating rates of 15, 20, 25 K/min up to 1466K. The fitted TGA data results indicate that the probable dehydroxylation mechanism of chlorite is a three-dimensional diffusion reaction with the Fick's second law. The results reveal that the dehydroxylation reaction can be divided into two stages corresponding to the hydroxyls in the two different layers: the first stage between 853 K and 973 K is related to the dehydroxylation of the interlayer hydroxide with the activation energy (Ea) of 159 kJ/ mol and pre-exponential factor (D0) value of 1.53x10-5 m2/s; the second stage between 973 K and 1093 K with an Ea value of 189 kJ/mol and D0 of 2.1x10-5 m2/s is due to the dehydroxylation of the `talc' layer. The mineral reactions and products were observed by high-temperature X-ray diffraction. There are metastable phases during reactions and product phases exhibited a topotactic relationship. The dehydroxylation reaction of chlorite is controlled by an inhomogeneous mechanism. We determine that the fluid production rates of chlorite are 2.7x10-4s-1, 4.5x10-4s-1, 7.3x10-4s-1, 1.2x10-3s-1, 1.7x10-4s-1, at 863 K, 883 K, 903 K, 923 K, 943 K for isothermal dehydration reaction. Our

  6. Integrated Geophysycal Prospecting in Late Antiquity and Early Medieval Sites in Italy

    Science.gov (United States)

    Giannotta, Maria Teresa; Leucci, Giovanni; De Giorgi, Lara; Matera, Loredana; Persico, Raffaele; Muci, Giuseppe

    2016-04-01

    In this contribution, the results of some integrated geophysical prospecting (magnetometric and GPR) are exposed. This work has been performed in collaboration between archaeologists and geophysicists within the research project "History and Global Archaeology of the Rural Landascapes in Italy, between Late Antiquity and Medieval period. Integrated systems of sources, methodologies, and technologies for a sustainable development", financed by the Italian Ministry for Instruction, University and Research MIUR. In particular, the archaeological sites of Badia and San Giovanni in Malcantone, both in the Apulia Region (eastern-southern Italy) have been prospect. The sites have been identified on the basis of available documents, archaeological surveys and testimonies. In particular, we know that in Badia [1] it was probable the presence of an ancient roman villa of the late ancient period (strongly damaged by the subsequent ploughing activities). Whereas in San Giovanni there is still, today, a small chapel (deconsecrated) that was likely to be part of a previous larger church (probably a basilica of the early Christian period) restricted in the subsequent centuries (probably in more phases). The Saracen raids of the XVI centuries made the site ruined and abandoned. In both sites integrated prospecting have been performed [2-6] with a the integration of archaeological, magnetometer and a GPR data have provided some interesting results, allowing to overcome the difficulties relative to an extensive GPR prospecting, that could not be performed because of the intrinsic superficial roughness and/or the intensive ploughing activities. The prospecting activities, in particular, have added elements that seem to confirm the main archaeological hypothesis that motivate their performing, as it will be show at the conference. References [1] M. T, Giannotta, G. Leucci, R. Persico, M. Leo Imperiale, The archaeological site of Badia in terra d'Otranto: contribution of the

  7. Perceiving prospects properly

    Czech Academy of Sciences Publication Activity Database

    Steiner, Jakub; Stewart, C.

    2016-01-01

    Roč. 106, č. 7 (2016), s. 1601-1631 ISSN 0002-8282 Institutional support: RVO:67985998 Keywords : evolution * perception bias * prospect theory Subject RIV: AH - Economics Impact factor: 4.026, year: 2016

  8. Geophysical study of the Clear Lake region, California

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, R.H.

    1975-01-01

    Results of geophysical studies in the Clear Lake region of California, north of San Francisco, have revealed a prominent, nearly circular negative gravity anomaly with an amplitude of more than 25 milligals (mgal) and an areal extent of approximately 250 square miles and, in addition, a number of smaller positive and negative anomalies. The major negative gravity anomaly is closely associated with the Clear Lake volcanic field and with an area characterized by hot springs and geothermal fields. However, the anomaly cannot be explained by mapped surface geologic features of the area. Aeromagnetic data in the Clear Lake region show no apparent correlation with the major negative gravity anomaly; the local magnetic field is affected principally by serpentine. An electrical resistivity low marks the central part of the gravity minimum, and a concentration of earthquake epicenters characterizes the Clear Lake volcanic field area. The primary cause of the major negative gravity anomaly is believed to be a hot intrusive mass, possibly a magma chamber, that may underlie the Clear Lake volcanic field and vicinity. This mass may serve as a source of heat for the geothermal phenomena in the area. Other smaller gravity anomalies in the Clear Lake region are apparently caused by near-surface geologic features, including relatively dense units of the Franciscan Formation and less dense Cenozoic sedimentary and volcanic rock units.

  9. Particle Swarm Optimization algorithms for geophysical inversion, practical hints

    Science.gov (United States)

    Garcia Gonzalo, E.; Fernandez Martinez, J.; Fernandez Alvarez, J.; Kuzma, H.; Menendez Perez, C.

    2008-12-01

    PSO is a stochastic optimization technique that has been successfully used in many different engineering fields. PSO algorithm can be physically interpreted as a stochastic damped mass-spring system (Fernandez Martinez and Garcia Gonzalo 2008). Based on this analogy we present a whole family of PSO algorithms and their respective first order and second order stability regions. Their performance is also checked using synthetic functions (Rosenbrock and Griewank) showing a degree of ill-posedness similar to that found in many geophysical inverse problems. Finally, we present the application of these algorithms to the analysis of a Vertical Electrical Sounding inverse problem associated to a seawater intrusion in a coastal aquifer in South Spain. We analyze the role of PSO parameters (inertia, local and global accelerations and discretization step), both in convergence curves and in the a posteriori sampling of the depth of an intrusion. Comparison is made with binary genetic algorithms and simulated annealing. As result of this analysis, practical hints are given to select the correct algorithm and to tune the corresponding PSO parameters. Fernandez Martinez, J.L., Garcia Gonzalo, E., 2008a. The generalized PSO: a new door to PSO evolution. Journal of Artificial Evolution and Applications. DOI:10.1155/2008/861275.

  10. Geophysical investigations of the Seferihisar geothermal area, Western Anatolia, Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Drahor, Mahmut G.; Berge, Meric A. [Dokuz Eyluel University, Engineering Faculty, Department of Geophysics, Tinaztepe Campus, 35160 Buca-Izmir (Turkey)

    2006-06-15

    Self-potential (SP), magnetic and very low frequency electromagnetic (EM-VLF) surveys were carried out in the Seferihisar geothermal area to identify major and minor fault zones and characterize the geothermal system. The SP study provided useful information on the local faults and subsurface fluid flow. The main SP anomalies appear mostly along and near active fault zones in the area of the Cumali, Tuzla and Doganbey hot springs. Two of these anomalies near the Tuzla hot springs were further evaluated by SP modelling. Total magnetic field values increase from the Doganbey to the Cumali hot springs. Modelling performed on the magnetic data indicates that between these two spring areas are four different regions or units that can be distinguished on the basis of their magnetic susceptibility values. Fraser filtering of EM-VLF data also indicates that there are three significant conductive zones in the regions around the Cumali, Tuzla and Doganbey hot springs, and that they lie between important fault systems. The EM-VLF and total (stacked) SP data show that the conductive tilt anomalies obtained by Fraser filtering generally coincide with negative SP areas. According to our geophysical investigations, new exploratory wells should be drilled into the conductive zones located between the Cumali and Tuzla hot springs. We further recommend that resistivity and magnetotelluric methods be carried out in the area to obtain additional information on the Seferihisar geothermal system. (author)

  11. Borehole geophysical investigations of Lavia deep testhole, Finland

    International Nuclear Information System (INIS)

    Saksa, Pauli

    1985-02-01

    According to the Goverment's decision in principle in 1983 Industrial Power Company Ltd (TVO) is making preparations for all the steps of final disposal of the spent fuel produced by its power plants. Before the actual site investigation phase, TVO drilled a deep borehole in Lavia, Western Finland. The borehole is used during 1984-85 for testing investigation techniques and methods used for bedrock characterization. Borehole geophysical loggings performed in Lavia consisted of galvanic electrical, transient electromagnetic, radiometric, temperature, seismic and magnetic msurements. This composite survey provided both lithological and structural information of rock mass. The neutron-neutron, density, natural gamma radiation and susceptibility methods characterized rock type. Fracturing and its type could be interpreted most effectively with resistivity, acoustic P-wave velocity and density logs. Temperature and tube-wave measurements revealed several fractured zones related to possible water flow in rock. Lavia investigations indicated that a high quality of instrumentation and careful calibration are necessary for site investigations. The large amount of log data also requires efficient data collection and processing systems both in the field and laboratory. (author)

  12. Using geophysical techniques to control in situ thermal remediation

    International Nuclear Information System (INIS)

    Boyd, S.; Daily, W.; Ramirez, A.; Wilt, M.; Goldman, R.; Kayes, D.; Kenneally, K.; Udell, K.; Hunter, R.

    1994-01-01

    Monitoring the thermal and hydrologic processes that occur during thermal environmental remediation programs in near real-time provides essential information for controlling the process. Geophysical techniques played a crucial role in process control as well as for characterization during the recent Dynamic Underground Stripping Project demonstration in which several thousand gallons of gasoline were removed from heterogeneous soils both above and below the water table. Dynamic Underground Stripping combines steam injection and electrical heating for thermal enhancement with ground water pumping and vacuum extraction for contaminant removal. These processes produce rapid changes in the subsurface properties including changes in temperature fluid saturation, pressure and chemistry. Subsurface imaging methods are used to map the heated zones and control the thermal process. Temperature measurements made in wells throughout the field reveal details of the complex heating phenomena. Electrical resistance tomography (ERT) provides near real-time detailed images of the heated zones between boreholes both during electrical heating and steam injection. Borehole induction logs show close correlation with lithostratigraphy and, by identifying the more permeable gravel zones, can be used to predict steam movement. They are also useful in understanding the physical changes in the field and in interpreting the ERT images. Tiltmeters provide additional information regarding the shape of the steamed zones in plan view. They were used to track the growth of the steam front from individual injectors

  13. Detection of hazardous cavities with combined geophysical methods

    Science.gov (United States)

    Hegymegi, Cs.; Nyari, Zs.; Pattantyus-Abraham, M.

    2003-04-01

    Unknown near-surface cavities often cause problems for municipal communities all over the world. This is the situation in Hungary in many towns and villages, too. Inhabitants and owners of real estates (houses, cottages, lands) are responsible for the safety and stability of their properties. The safety of public sites belongs to the local municipal community. Both (the owner and the community) are interested in preventing accidents. Near-surface cavities (unknown caves or earlier built and forgotten cellars) usually can be easily detected by surface geophysical methods. Traditional and recently developed measuring techniques in seismics, geoelectrics and georadar are suitable for economical investigation of hazardous, potentially collapsing cavities, prior to excavation and reinforcement. This poster will show some example for detection of cellars and caves being dangerous for civil population because of possible collapse under public sites (road, yard, playground, agricultural territory, etc.). The applied and presented methods are ground penetrating radar, seismic surface tomography and analysis of single traces, geoelectric 2D and 3D resistivity profiling. Technology and processing procedure will be presented.

  14. Geostatistical regularization operators for geophysical inverse problems on irregular meshes

    Science.gov (United States)

    Jordi, C.; Doetsch, J.; Günther, T.; Schmelzbach, C.; Robertsson, J. OA

    2018-05-01

    Irregular meshes allow to include complicated subsurface structures into geophysical modelling and inverse problems. The non-uniqueness of these inverse problems requires appropriate regularization that can incorporate a priori information. However, defining regularization operators for irregular discretizations is not trivial. Different schemes for calculating smoothness operators on irregular meshes have been proposed. In contrast to classical regularization constraints that are only defined using the nearest neighbours of a cell, geostatistical operators include a larger neighbourhood around a particular cell. A correlation model defines the extent of the neighbourhood and allows to incorporate information about geological structures. We propose an approach to calculate geostatistical operators for inverse problems on irregular meshes by eigendecomposition of a covariance matrix that contains the a priori geological information. Using our approach, the calculation of the operator matrix becomes tractable for 3-D inverse problems on irregular meshes. We tested the performance of the geostatistical regularization operators and compared them against the results of anisotropic smoothing in inversions of 2-D surface synthetic electrical resistivity tomography (ERT) data as well as in the inversion of a realistic 3-D cross-well synthetic ERT scenario. The inversions of 2-D ERT and seismic traveltime field data with geostatistical regularization provide results that are in good accordance with the expected geology and thus facilitate their interpretation. In particular, for layered structures the geostatistical regularization provides geologically more plausible results compared to the anisotropic smoothness constraints.

  15. GONAF - A Deep Geophysical Observatory at the North Anatolian Fault

    International Nuclear Information System (INIS)

    Bohnhoff, Marco

    2014-01-01

    An outline was given of the GONAF (Deep Geophysical Observatory at the North Anatolian Fault Zone) project operating at the Marmara seismic gap of the North Anatolian Fault Zone. The Princes Island Segment is a part of the North Anatolian Fault Zone in Marmara seismic gap. This segment is a remaining part of the recent rupture of the North Anatolian Fault. Further, the rupture of this part is predicted to occur in the near future. The primary objectives of the project are to collect seismograms of small earthquakes with magnitudes less than zero using borehole observations with low noise, to gain new insight into the physical states of critically stressed fault segments during and after large earthquakes, and to monitor progressive damage evolution at fault asperities. There were explanations about the seismic network in the region, the recent micro-earthquake observation, and the project's PIRES (Princes Islands Real time Permanent Seismic Network). For the GONAF project, a network of eight borehole arrays with five-level seismometers, including a ground surface of 300-m boreholes, is planned. Horizontal arrays on the surface of an island in the Marmara Sea have also been deployed. In addition, deployment of a permanent ocean bottom seismometer is planned as part of the GONAF+ plan in 2014. (author)

  16. Preliminary report on geophysical and mechanical borehole measurements at Stripa

    International Nuclear Information System (INIS)

    Nelson, P.; Paulsson, B.; Rachiele, R.; Andersson, L.; Schrauf, T.; Hustrulid, W.; Duran, O.; Magnusson, K.A.

    1979-05-01

    A suite of seven logs--neutron, gamma--gamma, resistivity, gamma ray, sonic, caliper, and temperature--operated in a borehole of 380-m depth located eleven zones where the rock permeability is expected to be enhanced due to the presence of open fractures. The sonic waveform record proved especially useful in this regard. Borehole measurements were also acquired in a large number of boreholes from 5- to 14-m length located in experimental drifts some 340-m underground. Here several physical properties, including the porosity, density, sonic velocity, and borehole rugosity, are generally quite uniform, with the exception of a few local chloritic zones and a few minor fractures. However, in situ determinations of the mechanical modulus with the CSM cell indicate substantial variability, with some apparent fracture control. Uranium and thorium concentrations are quite high in the Stripa granite, with local fluctuations associated with mineralogical changes as revealed by the gamma-ray log. A differential resistance probe appears promising as a sensitive detector of fine fracturing. A cross-hole ultrasonic system indicates variations of a few percent in compressional- and shear-wave velocities, reflecting the presence of fractures and changes in fracture characteristics as the rock is heated in a simulated storage test. The geophysical and mechanical data are being compared with the results from core and television logging, with hydrological test data on static pressure and injection permeability, and with displacements induced by thermal loading

  17. Airborne geophysical survey, Wind River Basin area, Wyoming

    International Nuclear Information System (INIS)

    1974-01-01

    Results are reported of AEC-sponsored, high sensitivity, reconnaisance airborne gamma-ray survey of the Wind River Basin area, Wyoming. The objective of the survey was to define those areas showing surface indications of a generally higher uranium content (uraniferous provinces) and where detailed exploration for uranium would most likely be successful. For the data collection tasks, a TI high sensitivity gamma-ray system consisting of seven large-volume NaI detectors, two 400-channel analyzers, and ancillary geophysical and electronic equipment was used. Gamma-ray spectrometric data were processed to correct for variations in atmospheric and flight conditions and statistically evaluated to remove the effect of surface geologic variations. Data were then compared to regional geomorphic lineaments derived from ERTS-1 imagery. Aeromagnetic data were collected simultaneously with the airborne gamma-ray survey and interpreted in terms of regional structure. Ten major anomalous uranium areas and ten less strong anomalous areas were defined within the region surveyed. These anomalies and the known mining districts and uranium occurrences demonstrated good correlation with the ERTS lineaments. The basins were defined by the aeromagnetic data. It is suggested that gamma-ray spectrometer data be supplemented by both the ERTS and aeromagnetic data to best define the targets of greatest potential for further exploration. (U.S.)

  18. Geophysical Data Sets in GeoMapApp

    Science.gov (United States)

    Goodwillie, A. M.

    2017-12-01

    GeoMapApp (http://www.geomapapp.org), a free map-based data tool developed at Lamont-Doherty Earth Observatory, provides access to hundreds of integrated geoscience data sets that are useful for geophysical studies. Examples include earthquake and volcano catalogues, gravity and magnetics data, seismic velocity tomographic models, geological maps, geochemical analytical data, lithospheric plate boundary information, geodetic velocities, and high-resolution bathymetry and land elevations. Users can also import and analyse their own data files. Data analytical functions provide contouring, shading, profiling, layering and transparency, allowing multiple data sets to be seamlessly compared. A new digitization and field planning portal allow stations and waypoints to be generated. Sessions can be saved and shared with colleagues and students. In this eLightning presentation we will demonstrate some of GeoMapApp's capabilities with a focus upon subduction zones and tectonics. In the attached screen shot of the Cascadia margin, the contoured depth to the top of the subducting Juan de Fuca slab is overlain on a shear wave velocity depth slice. Geochemical data coloured on Al2O3 and scaled on MgO content is shown as circles. The stack of data profiles was generated along the white line.

  19. Evaluation of some geophysical events on 22 September 1979

    International Nuclear Information System (INIS)

    Hones, E.W. Jr.; Baker, D.N.; Feldman, W.C.

    1981-04-01

    TIROS-N plasma data and related geophysical data measured on 22 September 1979 were analyzed to determine whether the electron precipitation event detected by TIROS-N at 00:54:49 universal time could have been related to a surface nuclear burst (SNB). The occurrence of such a burst was inferred from light signals detected by two Vela bhangmeters approx. 2 min before the TIROS-N event. The precipitation was found to be unusually large but not unique. It probably resulted from passage of TIROS-N through The precipitating electrons above a pre-existing auroral arc that may have brightened to an unusually high intensity from natural causes approx. 3 min before the Vela signals. On the othe hand, no data were found that were inconsistent with the SNB interpretation of the 22 September Vela observations. In fact, a patch of auroral light that suddenly appeared in the sky near Syowa Base, Antarctica a few seconds after the Vela event can be interpreted (though not uniquely) as a consequence of the electromagnetic pulse of an SNB

  20. Toroidal vortices over isolated topography in geophysical flows

    International Nuclear Information System (INIS)

    Koshel, Konstantin V; Ryzhov, Evgeny A; Zyryanov, Valery N

    2014-01-01

    This work deals with a model of a topographically trapped vortex appearing over isolated topography in a geophysical flow. The main feature of the study is that we pay special attention to the vertical structure of a topographically trapped vortex. The model considered allows one to study the vertical motion which is known not to be negligible in many cases. Given topography in the form of an isolated cylinder, and radial symmetry and stationarity of a uniform flow, in the linear approximation, we formulate a boundary value problem that determines all the components of the velocity field through a six-order differential operator, and nonincreasing boundary conditions at the center of the topography, and at infinity. The eigenvalues of the boundary value problem correspond to bifurcation points, in which the flow becomes unstable, hence non-negligible vertical velocities occur. We formulate a condition for the boundary value problem to have a discrete spectrum of these bifurcation points, and hence to be solvable. Conducting a series of test calculations, we show that the resulting vortex lies in the vicinity of topography, and can attain the distance up to half of the topography characteristic radius. (papers)