Aspects of differential geometry II
Gilkey, Peter
2015-01-01
Differential Geometry is a wide field. We have chosen to concentrate upon certain aspects that are appropriate for an introduction to the subject; we have not attempted an encyclopedic treatment. Book II deals with more advanced material than Book I and is aimed at the graduate level. Chapter 4 deals with additional topics in Riemannian geometry. Properties of real analytic curves given by a single ODE and of surfaces given by a pair of ODEs are studied, and the volume of geodesic balls is treated. An introduction to both holomorphic and Kähler geometry is given. In Chapter 5, the basic properties of de Rham cohomology are discussed, the Hodge Decomposition Theorem, Poincaré duality, and the Künneth formula are proved, and a brief introduction to the theory of characteristic classes is given. In Chapter 6, Lie groups and Lie algebras are dealt with. The exponential map, the classical groups, and geodesics in the context of a bi-invariant metric are discussed. The de Rham cohomology of compact Lie groups an...
Left Ventricular Geometry In Nigerians With Type II Diabetes Mellitus ...
African Journals Online (AJOL)
Background: Left ventricular hypertrophy is independently associated with increased incidence of cardiovascular disease, cardiovascular and all cause mortality. In a relatively healthy hypertensive adult population, type II diabetes is associated with higher left ventricular mass, concentric left ventricular geometry and lower ...
Sossinsky, A B
2012-01-01
The book is an innovative modern exposition of geometry, or rather, of geometries; it is the first textbook in which Felix Klein's Erlangen Program (the action of transformation groups) is systematically used as the basis for defining various geometries. The course of study presented is dedicated to the proposition that all geometries are created equal--although some, of course, remain more equal than others. The author concentrates on several of the more distinguished and beautiful ones, which include what he terms "toy geometries", the geometries of Platonic bodies, discrete geometries, and classical continuous geometries. The text is based on first-year semester course lectures delivered at the Independent University of Moscow in 2003 and 2006. It is by no means a formal algebraic or analytic treatment of geometric topics, but rather, a highly visual exposition containing upwards of 200 illustrations. The reader is expected to possess a familiarity with elementary Euclidean geometry, albeit those lacking t...
Indian Academy of Sciences (India)
. In the previous article we looked at the origins of synthetic and analytic geometry. More practical minded people, the builders and navigators, were studying two other aspects of geometry- trigonometry and integral calculus. These are actually ...
Prasolov, V V
2015-01-01
This book provides a systematic introduction to various geometries, including Euclidean, affine, projective, spherical, and hyperbolic geometries. Also included is a chapter on infinite-dimensional generalizations of Euclidean and affine geometries. A uniform approach to different geometries, based on Klein's Erlangen Program is suggested, and similarities of various phenomena in all geometries are traced. An important notion of duality of geometric objects is highlighted throughout the book. The authors also include a detailed presentation of the theory of conics and quadrics, including the theory of conics for non-Euclidean geometries. The book contains many beautiful geometric facts and has plenty of problems, most of them with solutions, which nicely supplement the main text. With more than 150 figures illustrating the arguments, the book can be recommended as a textbook for undergraduate and graduate-level courses in geometry.
Implementation of Self-Bias Transistor on Voting Logic
International Nuclear Information System (INIS)
Harzawardi Hasim; Syirrazie Che Soh
2014-01-01
Study in the eld of digital integrated circuit (IC) already become common to the modern industrial. Day by day we have been introduced with new gadget that was developed based on transistor. This paper will study the implementation of self-bias transistor on voting logic. The self-bias transistor will connected both on pull-up network and pull-down network. On previous research, study on comparison of total number of transistors, time propagation delay, and frequency between NAND and NOR gate of voting logic. It's show, with the same number of transistor, NAND gate achieve high frequency and low time propagation delay compare to NOR gate. We extend this analysis by comparing the total number of transistor, time propagation delay, frequency and power dissipation between common NAND gate with self-bias NAND gate. Extensive LTSpice simulations were performed using IBM 90 nm CMOS(Complementary Metal Oxide Semiconductor) process technology. The result show self-bias voting NAND gate consumes 54 % less power dissipation, 43% slow frequency and 43 % high time propagation delay compare to common voting NAND gate. (author)
Modified geometry three-layered tablet as a platform for class II ...
African Journals Online (AJOL)
Modified geometry three-layered tablet as a platform for class II drugs zero-order release system. Abdullah Monahi Albogami, Mustafa E. Omer, Abdulkareem M. Al Bekairy, Abdulmalik Alkatheri, Alaa Eldeen B. Yassin ...
Pedoe, Dan
1988-01-01
""A lucid and masterly survey."" - Mathematics Gazette Professor Pedoe is widely known as a fine teacher and a fine geometer. His abilities in both areas are clearly evident in this self-contained, well-written, and lucid introduction to the scope and methods of elementary geometry. It covers the geometry usually included in undergraduate courses in mathematics, except for the theory of convex sets. Based on a course given by the author for several years at the University of Minnesota, the main purpose of the book is to increase geometrical, and therefore mathematical, understanding and to he
An excursion through elementary mathematics, volume ii euclidean geometry
Caminha Muniz Neto, Antonio
2018-01-01
This book provides a comprehensive, in-depth overview of elementary mathematics as explored in Mathematical Olympiads around the world. It expands on topics usually encountered in high school and could even be used as preparation for a first-semester undergraduate course. This second volume covers Plane Geometry, Trigonometry, Space Geometry, Vectors in the Plane, Solids and much more. As part of a collection, the book differs from other publications in this field by not being a mere selection of questions or a set of tips and tricks that applies to specific problems. It starts from the most basic theoretical principles, without being either too general or too axiomatic. Examples and problems are discussed only if they are helpful as applications of the theory. Propositions are proved in detail and subsequently applied to Olympic problems or to other problems at the Olympic level. The book also explores some of the hardest problems presented at National and International Mathematics Olympiads, as well as many...
Stabilization of electron beam spot size by self bias potential
International Nuclear Information System (INIS)
Kwan, T.J.T.; Moir, D.C.; Snell, C.M.; Kang, M.
1998-01-01
In high resolution flash x-ray imaging technology the electric field developed between the electron beam and the converter target is large enough to draw ions from the target surface. The ions provide fractional neutralization and cause the electron beam to focus radially inward, and the focal point subsequently moves upstream due to the expansion of the ion column. A self-bias target concept is proposed and verified via computer simulation that the electron charge deposited on the target can generate an electric potential, which can effectively limit the ion motion and thereby stabilize the growth of the spot size. A target chamber using the self bias target concept was designed and tested in the Integrated Test Stand (ITS). The authors have obtained good agreement between computer simulation and experiment
Differential geometry based solvation model II: Lagrangian formulation.
Chen, Zhan; Baker, Nathan A; Wei, G W
2011-12-01
Solvation is an elementary process in nature and is of paramount importance to more sophisticated chemical, biological and biomolecular processes. The understanding of solvation is an essential prerequisite for the quantitative description and analysis of biomolecular systems. This work presents a Lagrangian formulation of our differential geometry based solvation models. The Lagrangian representation of biomolecular surfaces has a few utilities/advantages. First, it provides an essential basis for biomolecular visualization, surface electrostatic potential map and visual perception of biomolecules. Additionally, it is consistent with the conventional setting of implicit solvent theories and thus, many existing theoretical algorithms and computational software packages can be directly employed. Finally, the Lagrangian representation does not need to resort to artificially enlarged van der Waals radii as often required by the Eulerian representation in solvation analysis. The main goal of the present work is to analyze the connection, similarity and difference between the Eulerian and Lagrangian formalisms of the solvation model. Such analysis is important to the understanding of the differential geometry based solvation model. The present model extends the scaled particle theory of nonpolar solvation model with a solvent-solute interaction potential. The nonpolar solvation model is completed with a Poisson-Boltzmann (PB) theory based polar solvation model. The differential geometry theory of surfaces is employed to provide a natural description of solvent-solute interfaces. The optimization of the total free energy functional, which encompasses the polar and nonpolar contributions, leads to coupled potential driven geometric flow and PB equations. Due to the development of singularities and nonsmooth manifolds in the Lagrangian representation, the resulting potential-driven geometric flow equation is embedded into the Eulerian representation for the purpose of
Geometry and Framework Interactions of Zeolite-Encapsulated Copper(II)-Histidine Complexes
Weckhuysen, B.M.; Grommen, R.; Manikandan, P.; Gao, Y.; Shane, T.; Shane, J.J.; Schoonheydt, R.A.; Goldfarb, D.
2000-01-01
The coordination geometry of zeolite-encapsulated copper(II)-histidine (CuHis) complexes, prepared by ion exchange of the complexes from aqueous solutions into zeolite NaY, was determined by a combination of UV-vis-NIR diffuse reflectance spectroscopy (DRS), X-band EPR, electron-spin-echo envelope
Geometry of the TJ-II in Astra 6.0
International Nuclear Information System (INIS)
Lopez-Bruna, D.; Romero, J.A.; Castejon, F.
2006-01-01
One of the most exploited features of the TJ-II Heliac, a facility in the Laboratorio Nacional de Fusion (CIEMAT, Madrid), is its ability to explore plasmas in different magnetic configurations. For this reason, there are available libraries that provide the metrics and associated magnitudes for many among all possible configurations. On the other hand, the transport codes that can normally be used to perform transport calculations cannot dea properly with these geometries, which is especially delicate when there are induced plasma currents. In the present work we adopt ASTRA, a transport analysis shell, to study the approximations performed when calculations that impose axi-symmetry (as ASTRA does) are performed on magnetic configurations that are not really axi-symmetric. After describing how we obtain those TJ-II metric averages that must be set in ASTRA, we perform two comparisons: (i) we obtain the vacuum rotational transform as deduced from the metric coefficients but imposing axisymmetry, and compare the results with the rotational transform yielded by the existing libraries; and (ii) we build a ID transport code with TJ-II metrics so its results can be compared with those of ASTRA. In both cases, the differences found indicate that evaluating the evolution of the rotational transform under ohmic induction and transport evolution is acceptable assuming that the geometry itself does not evolve. (Author) 11 refs
Type II InAs/GaAsSb quantum dots: Highly tunable exciton geometry and topology
Energy Technology Data Exchange (ETDEWEB)
Llorens, J. M.; Wewior, L.; Cardozo de Oliveira, E. R.; Alén, B., E-mail: benito.alen@csic.es [IMM-Instituto de Microelectrónica de Madrid (CNM-CSIC), Isaac Newton 8, PTM, E-28760 Tres Cantos, Madrid (Spain); Ulloa, J. M.; Utrilla, A. D.; Guzmán, A.; Hierro, A. [Institute for Systems based on Optoelectronics and Microtechnology (ISOM), Universidad Politécnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid (Spain)
2015-11-02
External control over the electron and hole wavefunctions geometry and topology is investigated in a p-i-n diode embedding a dot-in-a-well InAs/GaAsSb quantum structure with type II band alignment. We find highly tunable exciton dipole moments and largely decoupled exciton recombination and ionization dynamics. We also predicted a bias regime where the hole wavefunction topology changes continuously from quantum dot-like to quantum ring-like as a function of the external bias. All these properties have great potential in advanced electro-optical applications and in the investigation of fundamental spin-orbit phenomena.
LRS Bianchi Type II Massive String Cosmological Models with Magnetic Field in Lyra's Geometry
Directory of Open Access Journals (Sweden)
Raj Bali
2013-01-01
Full Text Available Bianchi type II massive string cosmological models with magnetic field and time dependent gauge function ( in the frame work of Lyra's geometry are investigated. The magnetic field is in -plane. To get the deterministic solution, we have assumed that the shear ( is proportional to the expansion (. This leads to , where and are metric potentials and is a constant. We find that the models start with a big bang at initial singularity and expansion decreases due to lapse of time. The anisotropy is maintained throughout but the model isotropizes when . The physical and geometrical aspects of the model in the presence and absence of magnetic field are also discussed.
XAFS study of copper(II) complexes with square planar and square pyramidal coordination geometries
Gaur, A.; Klysubun, W.; Nitin Nair, N.; Shrivastava, B. D.; Prasad, J.; Srivastava, K.
2016-08-01
X-ray absorption fine structure of six Cu(II) complexes, Cu2(Clna)4 2H2O (1), Cu2(ac)4 2H2O (2), Cu2(phac)4 (pyz) (3), Cu2(bpy)2(na)2 H2O (ClO4) (4), Cu2(teen)4(OH)2(ClO4)2 (5) and Cu2(tmen)4(OH)2(ClO4)2 (6) (where ac, phac, pyz, bpy, na, teen, tmen = acetate, phenyl acetate, pyrazole, bipyridine, nicotinic acid, tetraethyethylenediamine, tetramethylethylenediamine, respectively), which were supposed to have square pyramidal and square planar coordination geometries have been investigated. The differences observed in the X-ray absorption near edge structure (XANES) features of the standard compounds having four, five and six coordination geometry points towards presence of square planar and square pyramidal geometry around Cu centre in the studied complexes. The presence of intense pre-edge feature in the spectra of four complexes, 1-4, indicates square pyramidal coordination. Another important XANES feature, present in complexes 5 and 6, is prominent shoulder in the rising part of edge whose intensity decreases in the presence of axial ligands and thus indicates four coordination in these complexes. Ab initio calculations were carried out for square planar and square pyramidal Cu centres to observe the variation of 4p density of states in the presence and absence of axial ligands. To determine the number and distance of scattering atoms around Cu centre in the complexes, EXAFS analysis has been done using the paths obtained from Cu(II) oxide model and an axial Cu-O path from model of a square pyramidal complex. The results obtained from EXAFS analysis have been reported which confirmed the inference drawn from XANES features. Thus, it has been shown that these paths from model of a standard compound can be used to determine the structural parameters for complexes having unknown structure.
Gaur, A.; Klysubun, W.; Soni, Balram; Shrivastava, B. D.; Prasad, J.; Srivastava, K.
2016-10-01
X-ray absorption spectroscopy (XAS) is very useful in revealing the information about geometric and electronic structure of a transition-metal absorber and thus commonly used for determination of metal-ligand coordination. But XAFS analysis becomes difficult if differently coordinated metal centers are present in a system. In the present investigation, existence of distinct coordination geometries around metal centres have been studied by XAFS in a series of trimesic acid Cu(II) complexes. The complexes studied are: Cu3(tma)2(im)6 8H2O (1), Cu3(tma)2(mim)6 17H2O (2), Cu3(tma)2(tmen)3 8.5H2O (3), Cu3(tma) (pmd)3 6H2O (ClO4)3 (4) and Cu3(tma)2 3H2O (5). These complexes have not only Cu metal centres with different coordination but in complexes 1-3, there are multiple coordination geometries present around Cu centres. Using XANES spectra, different coordination geometries present in these complexes have been identified. The variation observed in the pre-edge features and edge features have been correlated with the distortion of the specific coordination environment around Cu centres in the complexes. XANES spectra have been calculated for the distinct metal centres present in the complexes by employing ab-initio calculations. These individual spectra have been used to resolve the spectral contribution of the Cu centres to the particular XANES features exhibited by the experimental spectra of the multinuclear complexes. Also, the variation in the 4p density of states have been calculated for the different Cu centres and then correlated with the features originated from corresponding coordination of Cu. Thus, these spectral features have been successfully utilized to detect the presence of the discrete metal centres in a system. The inferences about the coordination geometry have been supported by EXAFS analysis which has been used to determine the structural parameters for these complexes.
Kramer, S. L.; Ghosh, V. J.; Breitfeller, M.; Wahl, W.
2016-11-01
Third generation high brightness light sources are designed to have low emittance and high current beams, which contribute to higher beam loss rates that will be compensated by Top-Off injection. Shielding for these higher loss rates will be critical to protect the projected higher occupancy factors for the users. Top-Off injection requires a full energy injector, which will demand greater consideration of the potential abnormal beam miss-steering and localized losses that could occur. The high energy electron injection beam produces significantly higher neutron component dose to the experimental floor than a lower energy beam injection and ramped operations. Minimizing this dose will require adequate knowledge of where the miss-steered beam can occur and sufficient EM shielding close to the loss point, in order to attenuate the energy of the particles in the EM shower below the neutron production threshold (weaknesses in the design before a high radiation incident occurs. The effort required to adequately define the accelerator geometry for these codes has been greatly reduced with the implementation of the graphical interface of FLAIR to FLUKA. This made the effective shielding process for NSLS-II quite accurate and reliable. The principles used to provide supplemental shielding to the NSLS-II accelerators and the lessons learned from this process are presented.
Self-Biased Differential Rectifier with Enhanced Dynamic Range for Wireless Powering
Ouda, Mahmoud H.; Khalil, Waleed; Salama, Khaled N.
2016-01-01
A self-biased, cross-coupled, differential rectifier is proposed with enhanced power-conversion efficiency over an extended range of input power. A prototype is designed for UHF 433MHz RF power-harvesting applications and is implemented using 0.18μm
Design and simulation of self-biased circulators in the ultra high frequency band
International Nuclear Information System (INIS)
Wang Jianwei; Geiler, Anton; Mistry, Perhaad; Kaeli, David R.; Harris, Vincent G.; Vittoria, Carmine
2012-01-01
Theoretical models were developed to design self-biased Y-junction circulators operating at ultra high frequency (UHF). The proposed circulator designs consist of insulating nanowires of yttrium iron garnet (YIG) embedded in high permittivity barium–strontium titanate (BSTO) substrates. A design with as many as 10 5 or greater wires may be considered in its entirety to determine the electromagnetic scattering S-parameters of a circulator design, thus helping to mitigate the computational limitations of the available finite element method (FEM) tools. The approach seeks to represent the nanowires and the BSTO substrate by an equivalent medium with effective properties inclusive of the average saturation magnetization, dynamic demagnetizing fields, and permittivity. The effective medium approach was validated in comparison with the FEM models. Using the proposed approach, a self-biased junction circulator consisting of YIG nanowires embedded in a BSTO substrate was designed and simulated in which the center frequency insertion loss was calculated to be as low as 0.16 dB with isolation of −42.3 dB at 1 GHz. The 20 dB bandwidth was calculated to be 50 MHz. These results suggest that practical self-biased circulators at the UHF band are feasible. - Highlights: ► Presented a self-biased Y-junction circulator topology on composite substrate with YIG nanowires and high permittivity BSTO. ► Developed an equivalent model to characterize the composite substrate. ► Designed a self-biased junction circulator consisting of YIG nanowires embedded in a BSTO substrate at 1 GHz.
Complementary Self-Biased Logics Based on Single-Electron Transistor (SET)/CMOS Hybrid Process
Song, Ki-Whan; Lee, Yong Kyu; Sim, Jae Sung; Kim, Kyung Rok; Lee, Jong Duk; Park, Byung-Gook; You, Young Sub; Park, Joo-On; Jin, You Seung; Kim, Young-Wug
2005-04-01
We propose a complementary self-biasing method which enables the single-electron transistor (SET)/complementary metal-oxide semiconductor (CMOS) hybrid multi-valued logics (MVLs) to operate well at high temperatures, where the peak-to-valley current ratio (PVCR) of the Coulomb oscillation markedly decreases. The new architecture is implemented with a few transistors by utilizing the phase control capability of the sidewall depletion gates in dual-gate single-electron transistors (DGSETs). The suggested scheme is evaluated by a SPICE simulation with an analytical DGSET model. Furthermore, we have developed a new process technology for the SET/CMOS hybrid systems. We have confirmed that both of the fabricated devices, namely, SET and CMOS transistors, exhibit the ideal characteristics for the complementary self-biasing scheme: the SET shows clear Coulomb oscillations with a 100 mV period and the CMOS transistors show a high voltage gain.
Women in numbers Europe II contributions to number theory and arithmetic geometry
Ozman, Ekin; Johnson-Leung, Jennifer; Newton, Rachel
2018-01-01
Inspired by the September 2016 conference of the same name, this second volume highlights recent research in a wide range of topics in contemporary number theory and arithmetic geometry. Research reports from projects started at the conference, expository papers describing ongoing research, and contributed papers from women number theorists outside the conference make up this diverse volume. Topics cover a broad range of topics such as arithmetic dynamics, failure of local-global principles, geometry in positive characteristics, and heights of algebraic integers. The use of tools from algebra, analysis and geometry, as well as computational methods exemplifies the wealth of techniques available to modern researchers in number theory. Exploring connections between different branches of mathematics and combining different points of view, these papers continue the tradition of supporting and highlighting the contributions of women number theorists at a variety of career stages. Perfect for students and researche...
Geometry of the TJ-II in Astra 6.0; Geometria del TJ-II en Astra 6.0
Energy Technology Data Exchange (ETDEWEB)
Lopez-Bruna, D.; Romero, J.A.; Castejon, F.
2006-07-01
One of the most exploited features of the TJ-II Heliac, a facility in the Laboratorio Nacional de Fusion (CIEMAT, Madrid), is its ability to explore plasmas in different magnetic configurations. For this reason, there are available libraries that provide the metrics and associated magnitudes for many among all possible configurations. On the other hand, the transport codes that can normally be used to perform transport calculations cannot dea properly with these geometries, which is especially delicate when there are induced plasma currents. In the present work we adopt ASTRA, a transport analysis shell, to study the approximations performed when calculations that impose axi-symmetry (as ASTRA does) are performed on magnetic configurations that are not really axi-symmetric. After describing how we obtain those TJ-II metric averages that must be set in ASTRA, we perform two comparisons: (i) we obtain the vacuum rotational transform as deduced from the metric coefficients but imposing axisymmetry, and compare the results with the rotational transform yielded by the existing libraries; and (ii) we build a ID transport code with TJ-II metrics so its results can be compared with those of ASTRA. In both cases, the differences found indicate that evaluating the evolution of the rotational transform under ohmic induction and transport evolution is acceptable assuming that the geometry itself does not evolve. (Author) 11 refs.
International Nuclear Information System (INIS)
Forkl, A.; Kronmueller, H.
1995-01-01
The distribution of the critical current density j c (r) in hard type-II superconductors depends strongly on their sample geometry. Rules are given for the construction of j c (r). Samples with homogeneous thickness are divided into cakelike regions with a unique current direction. The spatial magnetic flux density distribution and the magnetic polarization of such a cakelike unit cell with homogeneous current density are calculated analytically. The magnetic polarization and magnetic flux density distribution of a superconductor in the mixed state is then given by an adequate superposition of the unit cell solutions. The theoretical results show good agreement with magneto-optically determined magnetic flux density distributions of a quadratic thin superconducting YBa 2 Cu 3 O 7-x film. The current density distribution is discussed for several sample geometries
DEFF Research Database (Denmark)
Krauss, M; Olsen, Lars; Antony, J
2002-01-01
Models of the metal ion binding sites of native ZnZn and of cadmium-substituted ZnCd and CdCd phosphotriesterase, including full amino acid side chains, were geometry optimized with quantum mechanical methods, with effective fragment potentials (EFP) representing the protein environment surroundi...... to the Od1 of the carboxylate of the first-shell aspartate designated M 1, but the energy difference between Cd1Zn2 and the lowest energy Zn1Cd2 structure is only about 2 kcal/mol and decreasing with the addition of water molecules. The Zn1Cd2 arrangement is found experimentally....
Almost-commutative geometries beyond the standard model II: new colours
International Nuclear Information System (INIS)
Stephan, Christoph A
2007-01-01
We will present an extension of the standard model of particle physics in its almost-commutative formulation. This extension is guided by the minimal approach to almost-commutative geometries employed by Iochum et al (2004 J. Math. Phys. 45 5003 (Preprint hep-th/0312276)), Jureit and Stephan (2005 J. Math. Phys. 46 043512 (Preprint hep-th/0501134)), Schuecker (2005 Preprint hep-th/0501181), Jureit et al (2005 J. Math. Phys. 46 072303 (Preprint hep-th/0503190)) and Jureit and Stephan (2006 Preprint hep-th/0610040), although the model presented here is not minimal itself. The corresponding almost-commutative geometry leads to a Yang-Mills-Higgs model which consists of the standard model and two new fermions of opposite electromagnetic charge which may possess a new colour-like gauge group. As a new phenomenon, grand unification is no longer required by the spectral action
On the computation of steady Hopper flows. II: von Mises materials in various geometries
Gremaud, Pierre A.; Matthews, John V.; O'Malley, Meghan
2004-11-01
Similarity solutions are constructed for the flow of granular materials through hoppers. Unlike previous work, the present approach applies to nonaxisymmetric containers. The model involves ten unknowns (stresses, velocity, and plasticity function) determined by nine nonlinear first order partial differential equations together with a quadratic algebraic constraint (yield condition). A pseudospectral discretization is applied; the resulting problem is solved with a trust region method. The important role of the hopper geometry on the flow is illustrated by several numerical experiments of industrial relevance.
On the computation of steady Hopper flows II: von Mises materials in various geometries
International Nuclear Information System (INIS)
Gremaud, Pierre A.; Matthews, John V.; O'Malley, Meghan
2004-01-01
Similarity solutions are constructed for the flow of granular materials through hoppers. Unlike previous work, the present approach applies to nonaxisymmetric containers. The model involves ten unknowns (stresses, velocity, and plasticity function) determined by nine nonlinear first order partial differential equations together with a quadratic algebraic constraint (yield condition). A pseudospectral discretization is applied; the resulting problem is solved with a trust region method. The important role of the hopper geometry on the flow is illustrated by several numerical experiments of industrial relevance
Finley, Adam J.; Matt, Sean P.
2018-02-01
During the lifetime of Sun-like or low-mass stars a significant amount of angular momentum is removed through magnetized stellar winds. This process is often assumed to be governed by the dipolar component of the magnetic field. However, observed magnetic fields can host strong quadrupolar and/or octupolar components, which may influence the resulting spin-down torque on the star. In Paper I, we used the MHD code PLUTO to compute steady-state solutions for stellar winds containing a mixture of dipole and quadrupole geometries. We showed the combined winds to be more complex than a simple sum of winds with these individual components. This work follows the same method as Paper I, including the octupole geometry, which not only increases the field complexity but also, more fundamentally, looks for the first time at combining the same symmetry family of fields, with the field polarity of the dipole and octupole geometries reversing over the equator (unlike the symmetric quadrupole). We show, as in Paper I, that the lowest-order component typically dominates the spin-down torque. Specifically, the dipole component is the most significant in governing the spin-down torque for mixed geometries and under most conditions for real stars. We present a general torque formulation that includes the effects of complex, mixed fields, which predicts the torque for all the simulations to within 20% precision, and the majority to within ≈5%. This can be used as an input for rotational evolution calculations in cases where the individual magnetic components are known.
Multisource inverse-geometry CT. Part II. X-ray source design and prototype
Energy Technology Data Exchange (ETDEWEB)
Neculaes, V. Bogdan, E-mail: neculaes@ge.com; Caiafa, Antonio; Cao, Yang; De Man, Bruno; Edic, Peter M.; Frutschy, Kristopher; Gunturi, Satish; Inzinna, Lou; Reynolds, Joseph; Vermilyea, Mark; Wagner, David; Zhang, Xi; Zou, Yun [GE Global Research, Niskayuna, New York 12309 (United States); Pelc, Norbert J. [Department of Radiology, Stanford University, Stanford, California 94305 (United States); Lounsberry, Brian [Healthcare Science Technology, GE Healthcare, West Milwaukee, Wisconsin 53219 (United States)
2016-08-15
Purpose: This paper summarizes the development of a high-power distributed x-ray source, or “multisource,” designed for inverse-geometry computed tomography (CT) applications [see B. De Man et al., “Multisource inverse-geometry CT. Part I. System concept and development,” Med. Phys. 43, 4607–4616 (2016)]. The paper presents the evolution of the source architecture, component design (anode, emitter, beam optics, control electronics, high voltage insulator), and experimental validation. Methods: Dispenser cathode emitters were chosen as electron sources. A modular design was adopted, with eight electron emitters (two rows of four emitters) per module, wherein tungsten targets were brazed onto copper anode blocks—one anode block per module. A specialized ceramic connector provided high voltage standoff capability and cooling oil flow to the anode. A matrix topology and low-noise electronic controls provided switching of the emitters. Results: Four modules (32 x-ray sources in two rows of 16) have been successfully integrated into a single vacuum vessel and operated on an inverse-geometry computed tomography system. Dispenser cathodes provided high beam current (>1000 mA) in pulse mode, and the electrostatic lenses focused the current beam to a small optical focal spot size (0.5 × 1.4 mm). Controlled emitter grid voltage allowed the beam current to be varied for each source, providing the ability to modulate beam current across the fan of the x-ray beam, denoted as a virtual bowtie filter. The custom designed controls achieved x-ray source switching in <1 μs. The cathode-grounded source was operated successfully up to 120 kV. Conclusions: A high-power, distributed x-ray source for inverse-geometry CT applications was successfully designed, fabricated, and operated. Future embodiments may increase the number of spots and utilize fast read out detectors to increase the x-ray flux magnitude further, while still staying within the stationary target inherent
Ion acceleration in a helicon source due to the self-bias effect
International Nuclear Information System (INIS)
Wiebold, Matt; Sung, Yung-Ta; Scharer, John E.
2012-01-01
Time-averaged plasma potential differences up to 165 V over several hundred Debye lengths are observed in low pressure (p n i ≈ 7 kT e in some cases. RF power up to 500 W at 13.56 MHz is supplied to a half-turn, double-helix antenna in the presence of a nozzle magnetic field, adjustable up to 1 kG. A retarding potential analyzer (RPA) measures the ion energy distribution function (IEDF) and a swept emissive probe measures the plasma potential. Single and double probes measure the electron density and temperature. Two distinct mode hops, the capacitive-inductive (E-H) and inductive-helicon (H-W) transitions, are identified by jumps in density as RF power is increased. In the capacitive (E) mode, large fluctuations of the plasma potential (V p-p ≳140V, V p-p /V p ≈150%) exist at the RF frequency and its harmonics. The more mobile electrons can easily respond to RF-timescale gradients in the plasma potential whereas the inertially constrained ions cannot, leading to an initial flux imbalance and formation of a self-bias voltage between the source and expansion chambers. In the capacitive mode, the ion acceleration is not well described by an ambipolar relation, while in the inductive and helicon modes the ion acceleration more closely follows an ambipolar relation. The scaling of the potential gradient with the argon flow rate and RF power are investigated, with the largest potential gradients observed for the lowest flow rates in the capacitive mode. The magnitude of the self-bias voltage agrees with that predicted for RF self-bias at a wall. Rapid fluctuations in the plasma potential result in a time-dependent axial electron flux that acts to “neutralize” the accelerated ion population, resulting in a zero net time-averaged current through the acceleration region when an insulating upstream boundary condition is enforced. Grounding the upstream endplate increases the self-bias voltage compared to a floating endplate.
Ion acceleration in a helicon source due to the self-bias effect
Energy Technology Data Exchange (ETDEWEB)
Wiebold, Matt; Sung, Yung-Ta; Scharer, John E. [University of Wisconsin-Madison, Electrical and Computer Engineering, Madison, Wisconsin 53706 (United States)
2012-05-15
Time-averaged plasma potential differences up to 165 V over several hundred Debye lengths are observed in low pressure (p{sub n} < 1 mTorr) expanding argon plasmas in the Madison Helicon eXperiment (MadHeX). The potential gradient leads to ion acceleration greater than that predicted by ambipolar expansion, exceeding E{sub i} Almost-Equal-To 7 kT{sub e} in some cases. RF power up to 500 W at 13.56 MHz is supplied to a half-turn, double-helix antenna in the presence of a nozzle magnetic field, adjustable up to 1 kG. A retarding potential analyzer (RPA) measures the ion energy distribution function (IEDF) and a swept emissive probe measures the plasma potential. Single and double probes measure the electron density and temperature. Two distinct mode hops, the capacitive-inductive (E-H) and inductive-helicon (H-W) transitions, are identified by jumps in density as RF power is increased. In the capacitive (E) mode, large fluctuations of the plasma potential (V{sub p-p} Greater-Than-Or-Equivalent-To 140V, V{sub p-p}/V{sub p} Almost-Equal-To 150%) exist at the RF frequency and its harmonics. The more mobile electrons can easily respond to RF-timescale gradients in the plasma potential whereas the inertially constrained ions cannot, leading to an initial flux imbalance and formation of a self-bias voltage between the source and expansion chambers. In the capacitive mode, the ion acceleration is not well described by an ambipolar relation, while in the inductive and helicon modes the ion acceleration more closely follows an ambipolar relation. The scaling of the potential gradient with the argon flow rate and RF power are investigated, with the largest potential gradients observed for the lowest flow rates in the capacitive mode. The magnitude of the self-bias voltage agrees with that predicted for RF self-bias at a wall. Rapid fluctuations in the plasma potential result in a time-dependent axial electron flux that acts to 'neutralize' the accelerated ion
Redefinition of the self-bias voltage in a dielectrically shielded thin sheath RF discharge
Ho, Teck Seng; Charles, Christine; Boswell, Rod
2018-05-01
In a geometrically asymmetric capacitively coupled discharge where the powered electrode is shielded from the plasma by a layer of dielectric material, the self-bias manifests as a nonuniform negative charging in the dielectric rather than on the blocking capacitor. In the thin sheath regime where the ion transit time across the powered sheath is on the order of or less than the Radiofrequency (RF) period, the plasma potential is observed to respond asymmetrically to extraneous impedances in the RF circuit. Consequently, the RF waveform on the plasma-facing surface of the dielectric is unknown, and the behaviour of the powered sheath is not easily predictable. Sheath circuit models become inadequate for describing this class of discharges, and a comprehensive fluid, electrical, and plasma numerical model is employed to accurately quantify this behaviour. The traditional definition of the self-bias voltage as the mean of the RF waveform is shown to be erroneous in this regime. Instead, using the maxima of the RF waveform provides a more rigorous definition given its correlation with the ion dynamics in the powered sheath. This is supported by a RF circuit model derived from the computational fluid dynamics and plasma simulations.
International Nuclear Information System (INIS)
Coffey, M.W.
1996-01-01
Due to their short coherence lengths and relatively large energy gaps, the high-transition temperature superconductors are very likely candidates as ultraclean materials at low temperature. This class of materials features significantly modified vortex dynamics, with very little dissipation at low temperature. The motion is then dominated by wave propagation, being in general nonlinear. Here two-dimensional vortex motion is investigated in the ultraclean regime for a superconductor described in cylindrical geometry. The small-amplitude limit is assumed, and the focus is on the long-wavelength limit. Results for both zero and nonzero Hall force are presented, with the effects of nonlocal vortex interaction and vortex inertia being included within London theory. Linear and nonlinear problems are studied, with a predisposition toward the more analytically tractable situations. For a nonlinear problem in 2+1 dimensions, the cylindrical Kadomtsev-Petviashvili equation is derived. Hall angle measurements on high-T c superconductors indicate the need to investigate the properties of such a completely integrable wave equation. copyright 1996 The American Physical Society
Geometry of deformed black holes. II. Schwarzschild hole surrounded by a Bach-Weyl ring
Basovník, M.; Semerák, O.
2016-08-01
We continue to study the response of black-hole space-times on the presence of additional strong sources of gravity. Restricting ourselves to static and axially symmetric (electro)vacuum exact solutions of Einstein's equations, we first considered the Majumdar-Papapetrou solution for a binary of extreme black holes in a previous paper, while here we deal with a Schwarzschild black hole surrounded by a concentric thin ring described by the Bach-Weyl solution. The geometry is again revealed on the simplest invariants determined by the metric (lapse function) and its gradient (gravitational acceleration), and by curvature (Kretschmann scalar). Extending the metric inside the black hole along null geodesics tangent to the horizon, we mainly focus on the black-hole interior (specifically, on its sections at constant Killing time) where the quantities behave in a way indicating a surprisingly strong influence of the external source. Being already distinct on the level of potential and acceleration, this is still more pronounced on the level of curvature: for a sufficiently massive and/or nearby (small) ring, the Kretschmann scalar even becomes negative in certain toroidal regions mostly touching the horizon from inside. Such regions have been interpreted as those where magnetic-type curvature dominates, but here we deal with space-times which do not involve rotation and the negative value is achieved due to the electric-type components of the Riemann/Weyl tensor. The Kretschmann scalar also shapes rather nontrivial landscapes outside the horizon.
Magnetic fields, stellar feedback, and the geometry of H II regions
Ferland, Gary J.
2009-04-01
Magnetic pressure has long been known to dominate over gas pressure in atomic and molecular regions of the interstellar medium. Here I review several recent observational studies of the relationships between the H+, H0 and H2 regions in M42 (the Orion complex) and M17. A simple picture results. When stars form they push back surrounding material, mainly through the outward momentum of starlight acting on grains, and field lines are dragged with the gas due to flux freezing. The magnetic field is compressed and the magnetic pressure increases until it is able to resist further expansion and the system comes into approximate magnetostatic equilibrium. Magnetic field lines can be preferentially aligned perpendicular to the long axis of quiescent cloud before stars form. After star formation and pushback occurs ionized gas will be constrained to flow along field lines and escape from the system along directions perpendicular to the long axis. The magnetic field may play other roles in the physics of the H II region and associated PDR. Cosmic rays may be enhanced along with the field and provide additional heating of atomic and molecular material. Wave motions may be associated with the field and contribute a component of turbulence to observed line profiles.
Self-Biased Differential Rectifier with Enhanced Dynamic Range for Wireless Powering
Ouda, Mahmoud H.
2016-08-29
A self-biased, cross-coupled, differential rectifier is proposed with enhanced power-conversion efficiency over an extended range of input power. A prototype is designed for UHF 433MHz RF power-harvesting applications and is implemented using 0.18μm CMOS technology. The proposed rectifier architecture is compared to the conventional cross-coupled rectifier. It demonstrates an improvement of more than 40% in the rectifier power conversion efficiency (PCE) and an input power range extension of more than 50% relative to the conventional crosscoupled rectifier. A sensitivity of -15.2dBm (30μW) input power for 1V output voltage and a peak power-conversion efficiency of 65% are achieved for a 50kω load. © 2004-2012 IEEE.
Self-Biased 215MHz Magnetoelectric NEMS Resonator for Ultra-Sensitive DC Magnetic Field Detection
Nan, Tianxiang; Hui, Yu; Rinaldi, Matteo; Sun, Nian X.
2013-06-01
High sensitivity magnetoelectric sensors with their electromechanical resonance frequencies electromechanical systems (NEMS) resonator with an electromechanical resonance frequency of 215 MHz based on an AlN/(FeGaB/Al2O3) × 10 magnetoelectric heterostructure for detecting DC magnetic fields. This magnetoelectric NEMS resonator showed a high quality factor of 735, and strong magnetoelectric coupling with a large voltage tunable sensitivity. The admittance of the magnetoelectric NEMS resonator was very sensitive to DC magnetic fields at its electromechanical resonance, which led to a new detection mechanism for ultra-sensitive self-biased RF NEMS magnetoelectric sensor with a low limit of detection of DC magnetic fields of ~300 picoTelsa. The magnetic/piezoelectric heterostructure based RF NEMS magnetoelectric sensor is compact, power efficient and readily integrated with CMOS technology, which represents a new class of ultra-sensitive magnetometers for DC and low frequency AC magnetic fields.
Spinning geometry = Twisted geometry
International Nuclear Information System (INIS)
Freidel, Laurent; Ziprick, Jonathan
2014-01-01
It is well known that the SU(2)-gauge invariant phase space of loop gravity can be represented in terms of twisted geometries. These are piecewise-linear-flat geometries obtained by gluing together polyhedra, but the resulting geometries are not continuous across the faces. Here we show that this phase space can also be represented by continuous, piecewise-flat three-geometries called spinning geometries. These are composed of metric-flat three-cells glued together consistently. The geometry of each cell and the manner in which they are glued is compatible with the choice of fluxes and holonomies. We first remark that the fluxes provide each edge with an angular momentum. By studying the piecewise-flat geometries which minimize edge lengths, we show that these angular momenta can be literally interpreted as the spin of the edges: the geometries of all edges are necessarily helices. We also show that the compatibility of the gluing maps with the holonomy data results in the same conclusion. This shows that a spinning geometry represents a way to glue together the three-cells of a twisted geometry to form a continuous geometry which represents a point in the loop gravity phase space. (paper)
EXTINCTION AND DUST GEOMETRY IN M83 H II REGIONS: AN HUBBLE SPACE TELESCOPE/WFC3 STUDY
Energy Technology Data Exchange (ETDEWEB)
Liu, Guilin; Calzetti, Daniela; Hong, Sungryong [Astronomy Department, University of Massachusetts, Amherst, MA 01003 (United States); Whitmore, Bradley [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Chandar, Rupali [Department of Physics and Astronomy, University of Toledo, Toledo, OH 43606 (United States); O' Connell, Robert W. [Astronomy Department, University of Virginia, P.O. Box 3818, Charlottesville, VA 22903 (United States); Blair, William P. [Center for Astrophysical Sciences, Johns Hopkins University, Baltimore, MD 21218 (United States); Cohen, Seth H.; Kim, Hwihyun [School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287 (United States); Frogel, Jay A., E-mail: liu@pha.jhu.edu [Galaxies Unlimited, Lutherville, MD 21093 (United States)
2013-12-01
We present Hubble Space Telescope/WFC3 narrow-band imaging of the starburst galaxy M83 targeting the hydrogen recombination lines (Hβ, Hα, and Paβ), which we use to investigate the dust extinction in the H II regions. We derive extinction maps with 6 pc spatial resolution from two combinations of hydrogen lines (Hα/Hβ and Hα/Paβ), and show that the longer wavelengths probe larger optical depths, with A{sub V} values larger by ≳1 mag than those derived from the shorter wavelengths. This difference leads to a factor ≳2 discrepancy in the extinction-corrected Hα luminosity, a significant effect when studying extragalactic H II regions. By comparing these observations to a series of simple models, we conclude that a large diversity of absorber/emitter geometric configurations can account for the data, implying a more complex physical structure than the classical foreground ''dust screen'' assumption. However, most data points are bracketed by the foreground screen and a model where dust and emitters are uniformly mixed. When averaged over large (≳100-200 pc) scales, the extinction becomes consistent with a ''dust screen'', suggesting that other geometries tend to be restricted to more local scales. Moreover, the extinction in any region can be described by a combination of the foreground screen and the uniform mixture model with weights of 1/3 and 2/3 in the center (≲2 kpc), respectively, and 2/3 and 1/3 for the rest of the disk. This simple prescription significantly improves the accuracy of the dust extinction corrections and can be especially useful for pixel-based analyses of galaxies similar to M83.
Junctionless Diode Enabled by Self-Bias Effect of Ion Gel in Single-Layer MoS2 Device.
Khan, Muhammad Atif; Rathi, Servin; Park, Jinwoo; Lim, Dongsuk; Lee, Yoontae; Yun, Sun Jin; Youn, Doo-Hyeb; Kim, Gil-Ho
2017-08-16
The self-biasing effects of ion gel from source and drain electrodes on electrical characteristics of single layer and few layer molybdenum disulfide (MoS 2 ) field-effect transistor (FET) have been studied. The self-biasing effect of ion gel is tested for two different configurations, covered and open, where ion gel is in contact with either one or both, source and drain electrodes, respectively. In open configuration, the linear output characteristics of the pristine device becomes nonlinear and on-off ratio drops by 3 orders of magnitude due to the increase in "off" current for both single and few layer MoS 2 FETs. However, the covered configuration results in a highly asymmetric output characteristics with a rectification of around 10 3 and an ideality factor of 1.9. This diode like behavior has been attributed to the reduction of Schottky barrier width by the electric field of self-biased ion gel, which enables an efficient injection of electrons by tunneling at metal-MoS 2 interface. Finally, finite element method based simulations are carried out and the simulated results matches well in principle with the experimental analysis. These self-biased diodes can perform a crucial role in the development of high-frequency optoelectronic and valleytronic devices.
Ziegler, Ronny; Brendel, Bernhard; Rinneberg, Herbert; Nielsen, Tim
2009-01-21
Using a statistical (chi-square) test on simulated data and a realistic noise model derived from the system's hardware we study the performance of diffuse optical tomography systems for fluorescence imaging. We compare the predicted smallest size of detectable lesions at various positions in slab and cup geometry and model how detection sensitivity depends on breast compression and lesion fluorescence contrast. Our investigation shows that lesion detection is limited by relative noise in slab geometry and by absolute noise in cup geometry.
A Self-Biased Active Voltage Doubler for Energy Harvesting Systems
Tayyab, Umais
2017-12-03
An active voltage doubler utilizing a single supply op-amp for energy harvesting system is presented. The proposed doubler is used for rectification process to achieve both acceptably high power conversion efficiency (PCE) and large rectified DC voltage. The incorporated op-amp is self-biased, meaning no external supply is needed but rather it uses part of the harvested energy for its biasing. The proposed active doubler achieves maximum power conversion efficiency (PCE) of 61.7% for a 200 Hz sinusoidal input of 0.8 V for a 20 K load resistor. This efficiency is 2 times more when compared with the passive voltage doubler. The rectified DC voltage is almost 2 times more than conventional passive doubler. The relation between PCE and the load resistor is also presented. The proposed active voltage doubler is designed and simulated in LF 0.15 μm CMOS process technology using Cadence virtuoso tool.
Shaikh, Parvez Abdul Ajij
2016-08-16
Schottky junctions formed between semiconductors and metal contacts are ubiquitous in modern electronic and optoelectronic devices. Here we report on the physical properties of Schottky-junctions formed on hybrid perovskite CH3NH3PbBr3 single crystals. It is found that light illumination can significantly increase the dielectric constant of perovskite junctions by 2300%. Furthermore, such Pt/perovskite junctions are used to fabricate self-biased photodetectors. A photodetectivity of 1.4 × 1010 Jones is obtained at zero bias, which increases to 7.1 × 1011 Jones at a bias of +3 V, and the photodetectivity remains almost constant in a wide range of light intensity. These devices also exhibit fast responses with a rising time of 70 μs and a falling time of 150 μs. As a result of the high crystal quality and low defect density, such single-crystal photodetectors show stable performance after storage in air for over 45 days. Our results suggest that hybrid perovskite single crystals provide a new platform to develop promising optoelectronic applications. © 2016 The Royal Society of Chemistry.
Solar proton exposure of an ICRU sphere within a complex structure part II: Ray-trace geometry.
Slaba, Tony C; Wilson, John W; Badavi, Francis F; Reddell, Brandon D; Bahadori, Amir A
2016-06-01
A computationally efficient 3DHZETRN code with enhanced neutron and light ion (Z ≤ 2) propagation was recently developed for complex, inhomogeneous shield geometry described by combinatorial objects. Comparisons were made between 3DHZETRN results and Monte Carlo (MC) simulations at locations within the combinatorial geometry, and it was shown that 3DHZETRN agrees with the MC codes to the extent they agree with each other. In the present report, the 3DHZETRN code is extended to enable analysis in ray-trace geometry. This latest extension enables the code to be used within current engineering design practices utilizing fully detailed vehicle and habitat geometries. Through convergence testing, it is shown that fidelity in an actual shield geometry can be maintained in the discrete ray-trace description by systematically increasing the number of discrete rays used. It is also shown that this fidelity is carried into transport procedures and resulting exposure quantities without sacrificing computational efficiency. Published by Elsevier Ltd.
DEFF Research Database (Denmark)
Rasmussen, N. G.; Simeoni, G. G.; Lefmann, K.
2016-01-01
A dedicated beam-focusing device has been designed for the direct geometry thermal-cold neutron time-of-flight spectrometer TOFTOF at the neutron facility FRM II (Garching, Germany). The prototype, based on the compressed Archimedes' mirror concept, benefits from the adaptive-optics technology (a...... than 3.5 would have only marginal influence on the optimal behaviour, whereas comparable spectrometers could take advantage of longer focusing segments, with particular impact for the thermal region of the neutron spectrum....
Culture modulates implicit ownership-induced self-bias in memory.
Sparks, Samuel; Cunningham, Sheila J; Kritikos, Ada
2016-08-01
The relation of incoming stimuli to the self implicitly determines the allocation of cognitive resources. Cultural variations in the self-concept shape cognition, but the extent is unclear because the majority of studies sample only Western participants. We report cultural differences (Asian versus Western) in ownership-induced self-bias in recognition memory for objects. In two experiments, participants allocated a series of images depicting household objects to self-owned or other-owned virtual baskets based on colour cues before completing a surprise recognition memory test for the objects. The 'other' was either a stranger or a close other. In both experiments, Western participants showed greater recognition memory accuracy for self-owned compared with other-owned objects, consistent with an independent self-construal. In Experiment 1, which required minimal attention to the owned objects, Asian participants showed no such ownership-related bias in recognition accuracy. In Experiment 2, which required attention to owned objects to move them along the screen, Asian participants again showed no overall memory advantage for self-owned items and actually exhibited higher recognition accuracy for mother-owned than self-owned objects, reversing the pattern observed for Westerners. This is consistent with an interdependent self-construal which is sensitive to the particular relationship between the self and other. Overall, our results suggest that the self acts as an organising principle for allocating cognitive resources, but that the way it is constructed depends upon cultural experience. Additionally, the manifestation of these cultural differences in self-representation depends on the allocation of attentional resources to self- and other-associated stimuli. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.
The effect of dust on electron heating and dc self-bias in hydrogen diluted silane discharges
International Nuclear Information System (INIS)
Schüngel, E; Mohr, S; Iwashita, S; Schulze, J; Czarnetzki, U
2013-01-01
In capacitive hydrogen diluted silane discharges the formation of dust affects plasma processes used, e.g. for thin film solar cell manufacturing. Thus, a basic understanding of the interaction between plasma and dust is required to optimize such processes. We investigate a highly diluted silane discharge experimentally using phase-resolved optical emission spectroscopy to study the electron dynamics, laser light scattering on the dust particles to relate the electron dynamics with the spatial distribution of dust, and current and voltage measurements to characterize the electrical symmetry of the discharge via the dc self-bias. The measurements are performed in single and dual frequency discharges. A mode transition from the α-mode to a bulk drift mode (Ω-mode) is found, if the amount of silane and, thereby, the amount of dust and negative ions is increased. By controlling the electrode temperatures, the dust can be distributed asymmetrically between the electrodes via the thermophoretic force. This affects both the electron heating and the discharge symmetry, i.e. a dc self-bias develops in a single frequency discharge. Using the Electrical Asymmetry Effect (EAE), the dc self-bias can be controlled in dual frequency discharges via the phase angle between the two applied frequencies. The Ω-mode is observed for all phase angles and is explained by a simple model of the electron power dissipation. The model shows that the mode transition is characterized by a phase shift between the applied voltage and the electron conduction current, and that the plasma density profile can be estimated using the measured phase shift. The control interval of the dc self-bias obtained using the EAE will be shifted, if an asymmetric dust distribution is present. However, the width of the interval remains unchanged, because the dust distribution is hardly affected by the phase angle. (paper)
Wiebold, Matthew D.
Time-averaged plasma potential differences up to ˜ 165 V over several hundred Debye lengths are observed in low pressure (pn floating potential for argon (Vp ≈ 5kTe/e). In the capacitive mode, the ion acceleration is not well described by an ambipolar relation. The accelerated population decay is consistent with that predicted by charge-exchange collisions. Grounding the upstream endplate increases the self-bias voltage compared to a floating endplate. In the inductive and helicon modes, the ion acceleration more closely follows an ambipolar relation, a result of decreased capacitive coupling due to the decreased RF skin depth. The scaling of the potential gradient with the argon flow rate, magnetic field and RF power are investigated, with the highest potential gradients observed for the lowest flow rates in the capacitive mode. The magnitude of the self-bias voltage agrees well with that predicted for RF sheaths. Use of the self-bias effect in a plasma thruster is explored, possibly for a low thrust, high specific impulse mode in a multi-mode helicon thruster. This work could also explain similar potential gradients in expanding helicon plasmas that are ascribed to double layer formation in the literature.
International Nuclear Information System (INIS)
Kramer, S. L.; Ghosh, V. J.; Breitfeller, M.; Wahl, W.
2016-01-01
Third generation high brightness light sources are designed to have low emittance and high current beams, which contribute to higher beam loss rates that will be compensated by Top-Off injection. Shielding for these higher loss rates will be critical to protect the projected higher occupancy factors for the users. Top-Off injection requires a full energy injector, which will demand greater consideration of the potential abnormal beam miss-steering and localized losses that could occur. The high energy electron injection beam produces significantly higher neutron component dose to the experimental floor than a lower energy beam injection and ramped operations. Minimizing this dose will require adequate knowledge of where the miss-steered beam can occur and sufficient EM shielding close to the loss point, in order to attenuate the energy of the particles in the EM shower below the neutron production threshold (<10 MeV), which will spread the incident energy on the bulk shield walls and thereby the dose penetrating the shield walls. Designing supplemental shielding near the loss point using the analytic shielding model is shown to be inadequate because of its lack of geometry specification for the EM shower process. To predict the dose rates outside the tunnel requires detailed description of the geometry and materials that the beam losses will encounter inside the tunnel. Modern radiation shielding Monte-Carlo codes, like FLUKA, can handle this geometric description of the radiation transport process in sufficient detail, allowing accurate predictions of the dose rates expected and the ability to show weaknesses in the design before a high radiation incident occurs. The effort required to adequately define the accelerator geometry for these codes has been greatly reduced with the implementation of the graphical interface of FLAIR to FLUKA. This made the effective shielding process for NSLS-II quite accurate and reliable. Lastly, the principles used to provide
International Nuclear Information System (INIS)
Sitaramayya, M.
1993-11-01
After a brief review of the geometry of Moishezon spaces, their relation with l-convex spaces and a reasonable and up to date understanding of the obstructions for projectivity of Moishezon objects both in singular and non-singular case is given. The geometry of l-convex manifolds and with l-dimensional exceptional set is studied and some problems and conjectures are stated. The tools of cohomology vanishing theorems important for the subject are briefly sketched. Compactifications of C 3 and Stein spaces are finally outlined. given. 111 refs, 2 figs
Energy Technology Data Exchange (ETDEWEB)
Albuquerque, M.D.F. [Program of Metallurgical and Materials Engineering, COPPE, Federal University of Rio de Janeiro (UFRJ), P.O. Box 68505, 21941-972 Rio de Janeiro, RJ (Brazil); Santos, E. [Program of Metallurgical and Materials Engineering, COPPE, Federal University of Rio de Janeiro (UFRJ), P.O. Box 68505, 21941-972 Rio de Janeiro, RJ (Brazil); Faculty of Civil Engineering, University Center of Volta Redonda (UniFOA), Volta Redonda, RJ (Brazil); Perdone, R.R.T. [Program of Metallurgical and Materials Engineering, COPPE, Federal University of Rio de Janeiro (UFRJ), P.O. Box 68505, 21941-972 Rio de Janeiro, RJ (Brazil); Simao, R.A., E-mail: renata@metalmat.ufrj.br [Program of Metallurgical and Materials Engineering, COPPE, Federal University of Rio de Janeiro (UFRJ), P.O. Box 68505, 21941-972 Rio de Janeiro, RJ (Brazil)
2014-08-01
Copper and silicon substrates were coated by chemical vapor deposition using hexamethyldisiloxane (HMDSO) as the precursor gas. Substrates were placed both at the anode and cathode of a glow discharge reactor, and films were deposited using different self-bias voltages. This study focuses on comparing the differences between the hydrophilicity, polymeric character, chemical structure and nanomechanical properties of HMDSO films produced at the cathode and anode of the reactor at different self-bias voltages. Fourier transform infrared spectroscopy and Raman confocal spectroscopy indicated a significant increase in the content of organic groups when films were deposited at the anode. Analyzing the nanomechanical properties of the cathode and anode films indicated that the penetration depth was higher for samples prepared at the cathode (lower hardness) compared with the samples produced at the anode. The measured contact angles indicated that all samples became hydrophobic with water contact angles close to 100°; however, a different lyophobic character was observed when diiodomethane was used. Films produced at the anode with diiodomethane exhibited higher contact angles than did films produced at the cathode. - Highlights: • Hexamethyldisiloxane (HMDSO) films deposited by CVD on Si and Cu substrates • HMDSO films produced at the anode have greater content of organic SiO{sub 4} groups. • Films produced at the anode are harder than those deposited at the cathode. • HMDSO films produced at the cathode exhibited higher elastic recovery. • All films are hydrophobic (θ close to 100°)
International Nuclear Information System (INIS)
Albuquerque, M.D.F.; Santos, E.; Perdone, R.R.T.; Simao, R.A.
2014-01-01
Copper and silicon substrates were coated by chemical vapor deposition using hexamethyldisiloxane (HMDSO) as the precursor gas. Substrates were placed both at the anode and cathode of a glow discharge reactor, and films were deposited using different self-bias voltages. This study focuses on comparing the differences between the hydrophilicity, polymeric character, chemical structure and nanomechanical properties of HMDSO films produced at the cathode and anode of the reactor at different self-bias voltages. Fourier transform infrared spectroscopy and Raman confocal spectroscopy indicated a significant increase in the content of organic groups when films were deposited at the anode. Analyzing the nanomechanical properties of the cathode and anode films indicated that the penetration depth was higher for samples prepared at the cathode (lower hardness) compared with the samples produced at the anode. The measured contact angles indicated that all samples became hydrophobic with water contact angles close to 100°; however, a different lyophobic character was observed when diiodomethane was used. Films produced at the anode with diiodomethane exhibited higher contact angles than did films produced at the cathode. - Highlights: • Hexamethyldisiloxane (HMDSO) films deposited by CVD on Si and Cu substrates • HMDSO films produced at the anode have greater content of organic SiO 4 groups. • Films produced at the anode are harder than those deposited at the cathode. • HMDSO films produced at the cathode exhibited higher elastic recovery. • All films are hydrophobic (θ close to 100°)
Self-biased broadband magnet-free linear isolator based on one-way space-time coherency
Taravati, Sajjad
2017-12-01
This paper introduces a self-biased broadband magnet-free and linear isolator based on one-way space-time coherency. The incident wave and the space-time-modulated medium share the same temporal frequency and are hence temporally coherent. However, thanks to the unidirectionally of the space-time modulation, the space-time-modulated medium and the incident wave are spatially coherent only in the forward direction and not in the opposite direction. As a consequence, the energy of the medium strongly couples to the propagating wave in the forward direction, while it conflicts with the propagating wave in the opposite direction, yielding strong isolation. We first derive a closed-form solution for the wave scattering from a spatiotemporally coherent medium and then show that a perfectly coherent space-time-modulated medium provides a moderate isolation level which is also subject to one-way transmission gain. To overcome this issue, we next investigate the effect of space-coherency imperfection between the medium and the wave, while they are still perfectly temporally coherent. Leveraging the spatial-coherency imperfection, the medium exhibits a quasiarbitrary and strong nonreciprocal transmission. Finally, we present the experimental demonstration of the self-biased version of the proposed broadband isolator, exhibiting more than 122 % fractional operation bandwidth.
Iversen, Birger
1992-01-01
Although it arose from purely theoretical considerations of the underlying axioms of geometry, the work of Einstein and Dirac has demonstrated that hyperbolic geometry is a fundamental aspect of modern physics
Mattei, Jean-Luc; Le, Cong Nha; Chevalier, Alexis; Maalouf, Azar; Noutehou, Nathan; Queffelec, Patrick; Laur, Vincent
2018-04-01
An efficient and inexpensive process is presented that produces highly oriented bulk compacts made of BaM particles. Barium hexaferrite particles (BaM, nominal composition BaFe11O19) were prepared by a chemical coprecipitation method, using different rates and types of precipitating agents (NaOH and Na2CO3). It was demonstrated that when a large excess of Na2CO3 is used, a noteworthy packing of hexagonal BaM platelets is obtained, after mechanical compaction and firing at moderate temperature (1140 °C), without including any more steps than those required for a conventional sintering process. The hysteresis loop displays a very competitive squareness of 0.88 (normalized remanent magnetization) and a coercivity of 215 kA/m, which make this BaM bulk ferrite suitable for self-biased applications.
Generation of pure spin currents via spin Seebeck effect in self-biased hexagonal ferrite thin films
Energy Technology Data Exchange (ETDEWEB)
Li, Peng; Ellsworth, David; Chang, Houchen; Janantha, Praveen; Richardson, Daniel; Phillips, Preston; Vijayasarathy, Tarah; Wu, Mingzhong, E-mail: mwu@lamar.colostate.edu [Department of Physics, Colorado State University, Fort Collins, Colorado 80523 (United States); Shah, Faisal [Department of Electrical Engineering, University of Notre Dame, Notre Dame, Indiana 46556 (United States)
2014-12-15
Light-induced generation of pure spin currents in a Pt(2.5 nm)/BaFe{sub 12}O{sub 19}(1.2 μm)/sapphire(0.5 mm) structure is reported. The BaFe{sub 12}O{sub 19} film had strong in-plane uniaxial anisotropy and was therefore self-biased. Upon exposure to light, a temperature difference (ΔT) was established across the BaFe{sub 12}O{sub 19} thickness that gave rise to a pure spin current in the Pt via the spin Seebeck effect. Via the inverse spin Hall effect, the spin current produced an electric voltage across one of the Pt lateral dimensions. The voltage varied with time in the same manner as ΔT and flipped its sign when the magnetization in BaFe{sub 12}O{sub 19} was reversed.
Wu, Chuanjian; Yu, Zhong; Sokolov, Alexander S.; Yu, Chengju; Sun, Ke; Jiang, Xiaona; Lan, Zhongwen; Harris, Vincent G.
2018-05-01
Discussed is a novel self-biased hexaferrite gelling system based on a nontoxic and water-soluble copolymer of isobutylene and maleic anhydride. This copolymer simultaneously acts as a dispersant and gelling agent, and recently received much attention from the ceramics community. Herein its effects on the rheological conditions throughout magnetic-field pressing, and consequently, orientation, density and magnetic properties of textured hexaferrites were investigated. Ka-band FMR linewidths were measured, and the crystalline anisotropy and porosity induced linewidth broadening were estimated according to Schlömann's theory. The copolymer allowed to reduce the friction between micron-sized magnetic particulates, resulting in higher density and degree of crystalline orientation, and lower FMR linewidth.
Energy Technology Data Exchange (ETDEWEB)
Ruiz, H S; BadIa-Majos, A [Departamento de Fisica de la Materia Condensada and Instituto de Ciencia de Materiales de Aragon (ICMA), Universidad de Zaragoza-CSIC, MarIa de Luna 3, E-50018 Zaragoza (Spain); Lopez, C, E-mail: hsruizr@unizar.es [Departamento de Matematicas, Universidad de Alcala de Henares, E-28871 Alcala de Henares (Spain)
2011-11-15
Relying on our theoretical approach for the superconducting critical state problem in 3D magnetic field configurations, we present an exhaustive analysis of the electrodynamic response for the so-called longitudinal transport problem in the slab geometry. A wide set of experimental conditions have been considered, including modulation of the applied magnetic field either perpendicular or parallel (longitudinal) to the transport current density. The main objective of our work was to characterize the role of the macroscopic material law that should properly account for the underlying mechanisms of flux cutting and depinning. The intriguing occurrence of negative current patterns and the enhancement of the transport current flow along the center of the superconducting sample are reproduced as a straightforward consequence of the magnetically induced internal anisotropy. Moreover, we show that, related to a maximal projection of the current density vector onto the local magnetic field, a maximal transport current density occurs somewhere within the sample. The elusive measurement of the flux cutting threshold (critical value of such parallel component J{sub c||}) is suggested on the basis of local measurements of the transport current density. Finally, we show that a high correlation exists between the evolution of the transport current density and the appearance of paramagnetic peak structures in terms of the applied longitudinal magnetic field.
van den Broek, P.M.
1984-01-01
The aim of this paper is to give a detailed exposition of the relation between the geometry of twistor space and the geometry of Minkowski space. The paper has a didactical purpose; no use has been made of differential geometry and cohomology.
International Nuclear Information System (INIS)
Beckhoff, B.; Ulm, G.; Pepponi, G.; Streli, C.; Wobrauschek, P.; Fabry, L.; Pahlke, S.
2000-01-01
A set of initial TXRF experiments were conducted at the PTB plane grating monochromator beamline for undulator radiation at the electron storage ring BESSY II allowing for exciting energies between 0.1 keV and 1.9 keV. Here, the lower limits of detection of TXRF analysis investigated for some low Z elements such as C, N, 0, Al, Mg and Na in two different detection geometries for various excitation modes. Compared to ordinary XRF geometries involving large incident angles, the TXRF variant offers also at low excitation energies drastically reduced background contributions due to the small penetration depth caused by the total reflection of the incident beam at the polished surface of a flat specimen carrier such as a silicon wafer. For the sake of an application-oriented TXRF approach, droplet samples on Si wafer surfaces were prepared by Wacker Siltronic and investigated in the TXRF irradiation chamber of the Atominstitut offering a semiconductor detector with a thin entrance window that was only 300 nm thick. (author)
Nakonieczna, Anna; Yeom, Dong-han
2016-05-01
Investigating the dynamics of gravitational systems, especially in the regime of quantum gravity, poses a problem of measuring time during the evolution. One of the approaches to this issue is using one of the internal degrees of freedom as a time variable. The objective of our research was to check whether a scalar field or any other dynamical quantity being a part of a coupled multi-component matter-geometry system can be treated as a `clock' during its evolution. We investigated a collapse of a self-gravitating electrically charged scalar field in the Einstein and Brans-Dicke theories using the 2+2 formalism. Our findings concentrated on the spacetime region of high curvature existing in the vicinity of the emerging singularity, which is essential for the quantum gravity applications. We investigated several values of the Brans-Dicke coupling constant and the coupling between the Brans-Dicke and the electrically charged scalar fields. It turned out that both evolving scalar fields and a function which measures the amount of electric charge within a sphere of a given radius can be used to quantify time nearby the singularity in the dynamical spacetime part, in which the apparent horizon surrounding the singularity is spacelike. Using them in this respect in the asymptotic spacetime region is possible only when both fields are present in the system and, moreover, they are coupled to each other. The only nonzero component of the Maxwell field four-potential cannot be used to quantify time during the considered process in the neighborhood of the whole central singularity. None of the investigated dynamical quantities is a good candidate for measuring time nearby the Cauchy horizon, which is also singular due to the mass inflation phenomenon.
Rodger, Alison
1995-01-01
Molecular Geometry discusses topics relevant to the arrangement of atoms. The book is comprised of seven chapters that tackle several areas of molecular geometry. Chapter 1 reviews the definition and determination of molecular geometry, while Chapter 2 discusses the unified view of stereochemistry and stereochemical changes. Chapter 3 covers the geometry of molecules of second row atoms, and Chapter 4 deals with the main group elements beyond the second row. The book also talks about the complexes of transition metals and f-block elements, and then covers the organometallic compounds and trans
International Nuclear Information System (INIS)
Robinson, I.; Trautman, A.
1988-01-01
The geometry of classical physics is Lorentzian; but weaker geometries are often more appropriate: null geodesics and electromagnetic fields, for example, are well known to be objects of conformal geometry. To deal with a single null congruence, or with the radiative electromagnetic fields associated with it, even less is needed: flag geometry for the first, optical geometry, with which this paper is chiefly concerned, for the second. The authors establish a natural one-to-one correspondence between optical geometries, considered locally, and three-dimensional Cauchy-Riemann structures. A number of Lorentzian geometries are shown to be equivalent from the optical point of view. For example the Goedel universe, the Taub-NUT metric and Hauser's twisting null solution have an optical geometry isomorphic to the one underlying the Robinson congruence in Minkowski space. The authors present general results on the problem of lifting a CR structure to a Lorentz manifold and, in particular, to Minkowski space; and exhibit the relevance of the deviation form to this problem
Pottmann, Helmut; Eigensatz, Michael; Vaxman, Amir; Wallner, Johannes
2014-01-01
Around 2005 it became apparent in the geometry processing community that freeform architecture contains many problems of a geometric nature to be solved, and many opportunities for optimization which however require geometric understanding. This area of research, which has been called architectural geometry, meanwhile contains a great wealth of individual contributions which are relevant in various fields. For mathematicians, the relation to discrete differential geometry is significant, in particular the integrable system viewpoint. Besides, new application contexts have become available for quite some old-established concepts. Regarding graphics and geometry processing, architectural geometry yields interesting new questions but also new objects, e.g. replacing meshes by other combinatorial arrangements. Numerical optimization plays a major role but in itself would be powerless without geometric understanding. Summing up, architectural geometry has become a rewarding field of study. We here survey the main directions which have been pursued, we show real projects where geometric considerations have played a role, and we outline open problems which we think are significant for the future development of both theory and practice of architectural geometry.
Pottmann, Helmut
2014-11-26
Around 2005 it became apparent in the geometry processing community that freeform architecture contains many problems of a geometric nature to be solved, and many opportunities for optimization which however require geometric understanding. This area of research, which has been called architectural geometry, meanwhile contains a great wealth of individual contributions which are relevant in various fields. For mathematicians, the relation to discrete differential geometry is significant, in particular the integrable system viewpoint. Besides, new application contexts have become available for quite some old-established concepts. Regarding graphics and geometry processing, architectural geometry yields interesting new questions but also new objects, e.g. replacing meshes by other combinatorial arrangements. Numerical optimization plays a major role but in itself would be powerless without geometric understanding. Summing up, architectural geometry has become a rewarding field of study. We here survey the main directions which have been pursued, we show real projects where geometric considerations have played a role, and we outline open problems which we think are significant for the future development of both theory and practice of architectural geometry.
Energy Technology Data Exchange (ETDEWEB)
Rasmussen, N.G. [Nanoscience Center, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø (Denmark); Simeoni, G.G., E-mail: ggsimeoni@outlook.com [Heinz Maier-Leibnitz Zentrum (MLZ) and Physics Department, Technical University of Munich, D-85748 Garching (Germany); Lefmann, K. [Nanoscience Center, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø (Denmark)
2016-04-21
A dedicated beam-focusing device has been designed for the direct geometry thermal-cold neutron time-of-flight spectrometer TOFTOF at the neutron facility FRM II (Garching, Germany). The prototype, based on the compressed Archimedes' mirror concept, benefits from the adaptive-optics technology (adjustable supermirror curvature) and the compact size (only 0.5 m long). We have simulated the neutron transport across the entire guide system. We present a detailed computer characterization of the existing device, along with the study of the factors mostly influencing the future improvement. We have optimized the simulated prototype as a function of the neutron wavelength, accounting also for all relevant features of a real instrument like the non-reflecting side edges. The results confirm the “chromatic” displacement of the focal point (flux density maximum) at fixed supermirror curvature, and the ability of a variable curvature to keep the focal point at the sample position. Our simulations are in excellent agreement with theoretical predictions and the experimentally measured beam profile. With respect to the possibility of a further upgrade, we find that supermirror coatings with m-values higher than 3.5 would have only marginal influence on the optimal behaviour, whereas comparable spectrometers could take advantage of longer focusing segments, with particular impact for the thermal region of the neutron spectrum.
Maor, Eli
2014-01-01
If you've ever thought that mathematics and art don't mix, this stunning visual history of geometry will change your mind. As much a work of art as a book about mathematics, Beautiful Geometry presents more than sixty exquisite color plates illustrating a wide range of geometric patterns and theorems, accompanied by brief accounts of the fascinating history and people behind each. With artwork by Swiss artist Eugen Jost and text by acclaimed math historian Eli Maor, this unique celebration of geometry covers numerous subjects, from straightedge-and-compass constructions to intriguing configur
Kemnitz, Arnfried
Der Grundgedanke der Analytischen Geometrie besteht darin, dass geometrische Untersuchungen mit rechnerischen Mitteln geführt werden. Geometrische Objekte werden dabei durch Gleichungen beschrieben und mit algebraischen Methoden untersucht.
Lefschetz, Solomon
2005-01-01
An introduction to algebraic geometry and a bridge between its analytical-topological and algebraical aspects, this text for advanced undergraduate students is particularly relevant to those more familiar with analysis than algebra. 1953 edition.
Ay, Nihat; Lê, Hông Vân; Schwachhöfer, Lorenz
2017-01-01
The book provides a comprehensive introduction and a novel mathematical foundation of the field of information geometry with complete proofs and detailed background material on measure theory, Riemannian geometry and Banach space theory. Parametrised measure models are defined as fundamental geometric objects, which can be both finite or infinite dimensional. Based on these models, canonical tensor fields are introduced and further studied, including the Fisher metric and the Amari-Chentsov tensor, and embeddings of statistical manifolds are investigated. This novel foundation then leads to application highlights, such as generalizations and extensions of the classical uniqueness result of Chentsov or the Cramér-Rao inequality. Additionally, several new application fields of information geometry are highlighted, for instance hierarchical and graphical models, complexity theory, population genetics, or Markov Chain Monte Carlo. The book will be of interest to mathematicians who are interested in geometry, inf...
Palneedi, Haribabu; Maurya, Deepam; Geng, Liwei D; Song, Hyun-Cheol; Hwang, Geon-Tae; Peddigari, Mahesh; Annapureddy, Venkateswarlu; Song, Kyung; Oh, Yoon Seok; Yang, Su-Chul; Wang, Yu U; Priya, Shashank; Ryu, Jungho
2018-04-04
Enhanced and self-biased magnetoelectric (ME) coupling is demonstrated in a laminate heterostructure comprising 4 μm-thick Pb(Zr,Ti)O 3 (PZT) film deposited on 50 μm-thick flexible nickel (Ni) foil. A unique fabrication approach, combining room temperature deposition of PZT film by granule spray in vacuum (GSV) process and localized thermal treatment of the film by laser radiation, is utilized. This approach addresses the challenges in integrating ceramic films on metal substrates, which is often limited by the interfacial chemical reactions occurring at high processing temperatures. Laser-induced crystallinity improvement in the PZT thick film led to enhanced dielectric, ferroelectric, and magnetoelectric properties of the PZT/Ni composite. A high self-biased ME response on the order of 3.15 V/cm·Oe was obtained from the laser-annealed PZT/Ni film heterostructure. This value corresponds to a ∼2000% increment from the ME response (0.16 V/cm·Oe) measured from the as-deposited PZT/Ni sample. This result is also one of the highest reported values among similar ME composite systems. The tunability of self-biased ME coupling in PZT/Ni composite has been found to be related to the demagnetization field in Ni, strain mismatch between PZT and Ni, and flexural moment of the laminate structure. The phase-field model provides quantitative insight into these factors and illustrates their contributions toward the observed self-biased ME response. The results present a viable pathway toward designing and integrating ME components for a new generation of miniaturized tunable electronic devices.
Burdette, A C
1971-01-01
Analytic Geometry covers several fundamental aspects of analytic geometry needed for advanced subjects, including calculus.This book is composed of 12 chapters that review the principles, concepts, and analytic proofs of geometric theorems, families of lines, the normal equation of the line, and related matters. Other chapters highlight the application of graphing, foci, directrices, eccentricity, and conic-related topics. The remaining chapters deal with the concept polar and rectangular coordinates, surfaces and curves, and planes.This book will prove useful to undergraduate trigonometric st
Berger, Marcel
2010-01-01
Both classical geometry and modern differential geometry have been active subjects of research throughout the 20th century and lie at the heart of many recent advances in mathematics and physics. The underlying motivating concept for the present book is that it offers readers the elements of a modern geometric culture by means of a whole series of visually appealing unsolved (or recently solved) problems that require the creation of concepts and tools of varying abstraction. Starting with such natural, classical objects as lines, planes, circles, spheres, polygons, polyhedra, curves, surfaces,
Robinson, Gilbert de B
2011-01-01
This brief undergraduate-level text by a prominent Cambridge-educated mathematician explores the relationship between algebra and geometry. An elementary course in plane geometry is the sole requirement for Gilbert de B. Robinson's text, which is the result of several years of teaching and learning the most effective methods from discussions with students. Topics include lines and planes, determinants and linear equations, matrices, groups and linear transformations, and vectors and vector spaces. Additional subjects range from conics and quadrics to homogeneous coordinates and projective geom
Connes, Alain
1994-01-01
This English version of the path-breaking French book on this subject gives the definitive treatment of the revolutionary approach to measure theory, geometry, and mathematical physics developed by Alain Connes. Profusely illustrated and invitingly written, this book is ideal for anyone who wants to know what noncommutative geometry is, what it can do, or how it can be used in various areas of mathematics, quantization, and elementary particles and fields.Key Features* First full treatment of the subject and its applications* Written by the pioneer of this field* Broad applications in mathemat
Indian Academy of Sciences (India)
mathematicians are trained to use very precise language, and so find it hard to simplify and state .... thing. If you take a plane on which there are two such triangles which enjoy the above ... within this geometry to simplify things if needed.
Geometry -----------~--------------RESONANCE
Indian Academy of Sciences (India)
Parallel: A pair of lines in a plane is said to be parallel if they do not meet. Mathematicians were at war ... Subsequently, Poincare, Klein, Beltrami and others refined non-. Euclidean geometry. ... plane divides the plane into two half planes and.
Petersen, Peter
2016-01-01
Intended for a one year course, this text serves as a single source, introducing readers to the important techniques and theorems, while also containing enough background on advanced topics to appeal to those students wishing to specialize in Riemannian geometry. This is one of the few Works to combine both the geometric parts of Riemannian geometry and the analytic aspects of the theory. The book will appeal to a readership that have a basic knowledge of standard manifold theory, including tensors, forms, and Lie groups. Important revisions to the third edition include: a substantial addition of unique and enriching exercises scattered throughout the text; inclusion of an increased number of coordinate calculations of connection and curvature; addition of general formulas for curvature on Lie Groups and submersions; integration of variational calculus into the text allowing for an early treatment of the Sphere theorem using a proof by Berger; incorporation of several recent results about manifolds with posit...
International Nuclear Information System (INIS)
Strominger, A.
1990-01-01
A special manifold is an allowed target manifold for the vector multiplets of D=4, N=2 supergravity. These manifolds are of interest for string theory because the moduli spaces of Calabi-Yau threefolds and c=9, (2,2) conformal field theories are special. Previous work has given a local, coordinate-dependent characterization of special geometry. A global description of special geometries is given herein, and their properties are studied. A special manifold M of complex dimension n is characterized by the existence of a holomorphic Sp(2n+2,R)xGL(1,C) vector bundle over M with a nowhere-vanishing holomorphic section Ω. The Kaehler potential on M is the logarithm of the Sp(2n+2,R) invariant norm of Ω. (orig.)
General Geometry and Geometry of Electromagnetism
Shahverdiyev, Shervgi S.
2002-01-01
It is shown that Electromagnetism creates geometry different from Riemannian geometry. General geometry including Riemannian geometry as a special case is constructed. It is proven that the most simplest special case of General Geometry is geometry underlying Electromagnetism. Action for electromagnetic field and Maxwell equations are derived from curvature function of geometry underlying Electromagnetism. And it is shown that equation of motion for a particle interacting with electromagnetic...
Ciarlet, Philippe G
2007-01-01
This book gives the basic notions of differential geometry, such as the metric tensor, the Riemann curvature tensor, the fundamental forms of a surface, covariant derivatives, and the fundamental theorem of surface theory in a selfcontained and accessible manner. Although the field is often considered a classical one, it has recently been rejuvenated, thanks to the manifold applications where it plays an essential role. The book presents some important applications to shells, such as the theory of linearly and nonlinearly elastic shells, the implementation of numerical methods for shells, and
Argyres, Philip C.; Lotito, Matteo; Lü, Yongchao; Martone, Mario
2018-02-01
This is the second in a series of three papers on systematic analysis of rank 1 Coulomb branch geometries of four dimensional N = 2 SCFTs. In [1] we developed a strategy for classifying physical rank-1 CB geometries of N = 2 SCFTs. Here we show how to carry out this strategy computationally to construct the Seiberg-Witten curves and one-forms for all the rank-1 SCFTs. Explicit expressions are given for all 28 cases, with the exception of the N f =4 su(2) gauge theory and the E n SCFTs which were constructed in [2, 3] and [4, 5].
International Nuclear Information System (INIS)
Kumari, Mukesh; Prakash, Chandra; Chatterjee, Ratnamala
2017-01-01
In this work, room temperature magnetoelectric properties of (0−3) particulate composites of non lead based piezoelectric BNTKNNLTS [0.97(Bi 0.5 Na 0.5 TiO 3 )–0.03(K 0.47 Na 0.47 Li 0.06 Nb 0.74 Sb 0.06 Ta 0.2 O 3 ) and magnetostrictive CZFMO (Co 0.6 Zn 0.4 Fe 1.7 Mn 0.3 O 4 ) are presented. Composite samples of (1-x)(BNTKNNLTS)-x(CZFMO) , with x=0.1 and 0.5, are synthesized by solid state reaction route. X-ray diffraction confirms the single phase formation of parent phases and the presence of two phases in the composites. Similar sintering conditions of the two individual components lead to optimal ferroelectric and ferromagnetic properties in the composites. A large self-biased magnetoelectric (ME) coupling ~74 mV/cm.Oe for the sample with x=0.1 (measured in longitudinally magnetized-transversely polarized configuration) is observed at room temperature. - Highlights: • Modified BNT-CFO based (0−3) particulate composites have been synthesized. • Similar sintering conditions of two components lead to optimal multiferroicity. • A large self-biased ME coupling ~74 mV/cm. Oe is obtained at room temperature.
Señís, Roger; Brufau, Robert; Sastre, Ramón; Carbajal, Eusebio Carlos
2015-01-01
Congreso celebrado en la Escuela de Arquitectura de la Universidad de Sevilla desde el 24 hasta el 26 de junio de 2015. This study compares flat lattice girders mounted on two supports, based on various design parameters, to determine which have better structural performance and what geometries are more efficient. The fundamental goal is to determine the relationship of performance and structural behaviour of each type of framework structure, with respect to the principle of optimization a...
Pardo-Montero, Juan; Fenwick, John D
2010-06-01
The purpose of this work is twofold: To further develop an approach to multiobjective optimization of rotational therapy treatments recently introduced by the authors [J. Pardo-Montero and J. D. Fenwick, "An approach to multiobjective optimization of rotational therapy," Med. Phys. 36, 3292-3303 (2009)], especially regarding its application to realistic geometries, and to study the quality (Pareto optimality) of plans obtained using such an approach by comparing them with Pareto optimal plans obtained through inverse planning. In the previous work of the authors, a methodology is proposed for constructing a large number of plans, with different compromises between the objectives involved, from a small number of geometrically based arcs, each arc prioritizing different objectives. Here, this method has been further developed and studied. Two different techniques for constructing these arcs are investigated, one based on image-reconstruction algorithms and the other based on more common gradient-descent algorithms. The difficulty of dealing with organs abutting the target, briefly reported in previous work of the authors, has been investigated using partial OAR unblocking. Optimality of the solutions has been investigated by comparison with a Pareto front obtained from inverse planning. A relative Euclidean distance has been used to measure the distance of these plans to the Pareto front, and dose volume histogram comparisons have been used to gauge the clinical impact of these distances. A prostate geometry has been used for the study. For geometries where a blocked OAR abuts the target, moderate OAR unblocking can substantially improve target dose distribution and minimize hot spots while not overly compromising dose sparing of the organ. Image-reconstruction type and gradient-descent blocked-arc computations generate similar results. The Pareto front for the prostate geometry, reconstructed using a large number of inverse plans, presents a hockey-stick shape
Yang, Z.; Li, X.; Li, J.; Long, J. D.; Lan, C. H.; Wang, T.; Dong, P.; He, J. L.
2017-03-01
A large amount of back streaming electrons will bring about a part of current drain on power supply, cause sparking or high-voltage breakdowns, and affect the neutron yield and waveform for a compact sealed-tube pulsed neutron generator. A novel idea which uses a ZnO varistor to provide a constant self-biased voltage to suppress the secondary electrons is introduced. The I-V curve for the ZnO varistor was measured in the experiment. The effects of suppressing the secondary electrons were investigated using a ZnO varistor, linear resistors, and an independent power supply, respectively. The results show that the secondary electrons are suppressed effectively by the compact ZnO varistor, while not increasing the size and the component of the device. It is a promising design for compact sealed-tube neutron generators.
International Nuclear Information System (INIS)
Rafalskyi, D; Aanesland, A
2014-01-01
We propose an alternative method to accelerate ions in classical gridded ion thrusters and ion sources such that co-extracted electrons from the source may provide beam space charge neutralization. In this way there is no need for an additional electron neutralizer. The method consists of applying RF voltage to a two-grid acceleration system via a blocking capacitor. Due to the unequal effective area of the two grids in contact with the plasma, a dc self-bias is formed, rectifying the applied RF voltage. As a result, ions are continuously accelerated within the grid system while electrons are emitted in brief instants within the RF period when the RF space charge sheath collapses. This paper presents the first experimental results and a proof-of-principle. Experiments are carried out using the Neptune thruster prototype which is a gridded Inductively Coupled Plasma (ICP) source operated at 4 MHz, attached to a larger beam propagation chamber. The RF power supply is used both for the ICP discharge (plasma generation) and powering the acceleration grids via a capacitor for ion acceleration and electron extraction without any dc power supplies. The ion and electron energies, particle flux and densities are measured using retarding field energy analyzers (RFEA), Langmuir probes and a large beam target. The system operates in Argon and N 2 . The dc self-bias is found to be generated within the gridded extraction system in all the range of operating conditions. Broad quasi-neutral ion-electron beams are measured in the downstream chamber with energies up to 400 eV. The beams from the RF acceleration method are compared with classical dc acceleration with an additional external electron neutralizer. It is found that the two acceleration techniques provide similar performance, but the ion energy distribution function from RF acceleration is broader, while the floating potential of the beam is lower than for the dc accelerated beam. (paper)
Energy Technology Data Exchange (ETDEWEB)
Kumari, Mukesh [Magnetics & Advanced Ceramics Laboratory, Indian Institute of Technology, Delhi-110016 India (India); Prakash, Chandra [Solid State Physics Laboratory Timarpur, Delhi-110054 India (India); Chatterjee, Ratnamala, E-mail: rmala@physics.iitd.ac.in [Magnetics & Advanced Ceramics Laboratory, Indian Institute of Technology, Delhi-110016 India (India)
2017-05-01
In this work, room temperature magnetoelectric properties of (0−3) particulate composites of non lead based piezoelectric BNTKNNLTS [0.97(Bi{sub 0.5}Na{sub 0.5}TiO{sub 3})–0.03(K{sub 0.47}Na{sub 0.47}Li{sub 0.06}Nb{sub 0.74}Sb{sub 0.06}Ta{sub 0.2}O{sub 3}) and magnetostrictive CZFMO (Co{sub 0.6}Zn{sub 0.4}Fe{sub 1.7}Mn{sub 0.3}O{sub 4}) are presented. Composite samples of (1-x)(BNTKNNLTS)-x(CZFMO){sub ,} with x=0.1 and 0.5, are synthesized by solid state reaction route. X-ray diffraction confirms the single phase formation of parent phases and the presence of two phases in the composites. Similar sintering conditions of the two individual components lead to optimal ferroelectric and ferromagnetic properties in the composites. A large self-biased magnetoelectric (ME) coupling ~74 mV/cm.Oe for the sample with x=0.1 (measured in longitudinally magnetized-transversely polarized configuration) is observed at room temperature. - Highlights: • Modified BNT-CFO based (0−3) particulate composites have been synthesized. • Similar sintering conditions of two components lead to optimal multiferroicity. • A large self-biased ME coupling ~74 mV/cm. Oe is obtained at room temperature.
National Aeronautics and Space Administration — Ferrite control components including circulators and isolators are fundamental building blocks of Transmit/Receive modules (TRM) utilized in high data rate active...
Silva, Alessandro
1993-01-01
The papers in this wide-ranging collection report on the results of investigations from a number of linked disciplines, including complex algebraic geometry, complex analytic geometry of manifolds and spaces, and complex differential geometry.
Eisenhart, Luther Pfahler
2005-01-01
This concise text by a prominent mathematician deals chiefly with manifolds dominated by the geometry of paths. Topics include asymmetric and symmetric connections, the projective geometry of paths, and the geometry of sub-spaces. 1927 edition.
International Nuclear Information System (INIS)
Gurevich, L.Eh.; Gliner, Eh.B.
1978-01-01
Problems of investigating the Universe space-time geometry are described on a popular level. Immediate space-time geometries, corresponding to three cosmologic models are considered. Space-time geometry of a closed model is the spherical Riemann geonetry, of an open model - is the Lobachevskij geometry; and of a plane model - is the Euclidean geometry. The Universe real geometry in the contemporary epoch of development is based on the data testifying to the fact that the Universe is infinitely expanding
Flux compactifications and generalized geometries
International Nuclear Information System (INIS)
Grana, Mariana
2006-01-01
Following the lectures given at CERN Winter School 2006, we present a pedagogical overview of flux compactifications and generalized geometries, concentrating on closed string fluxes in type II theories. We start by reviewing the supersymmetric flux configurations with maximally symmetric four-dimensional spaces. We then discuss the no-go theorems (and their evasion) for compactifications with fluxes. We analyse the resulting four-dimensional effective theories for Calabi-Yau and Calabi-Yau orientifold compactifications, concentrating on the flux-induced superpotentials. We discuss the generic mechanism of moduli stabilization and illustrate with two examples: the conifold in IIB and a T 6 /(Z 3 x Z 3 ) torus in IIA. We finish by studying the effective action and flux vacua for generalized geometries in the context of generalized complex geometry
Flux compactifications and generalized geometries
Energy Technology Data Exchange (ETDEWEB)
Grana, Mariana [Service de Physique Theorique, CEA/Saclay, 91191 Gif-sur-Yvette Cedex (France)
2006-11-07
Following the lectures given at CERN Winter School 2006, we present a pedagogical overview of flux compactifications and generalized geometries, concentrating on closed string fluxes in type II theories. We start by reviewing the supersymmetric flux configurations with maximally symmetric four-dimensional spaces. We then discuss the no-go theorems (and their evasion) for compactifications with fluxes. We analyse the resulting four-dimensional effective theories for Calabi-Yau and Calabi-Yau orientifold compactifications, concentrating on the flux-induced superpotentials. We discuss the generic mechanism of moduli stabilization and illustrate with two examples: the conifold in IIB and a T{sup 6} /(Z{sub 3} x Z{sub 3}) torus in IIA. We finish by studying the effective action and flux vacua for generalized geometries in the context of generalized complex geometry.
International Nuclear Information System (INIS)
Bozic, M.; Zagar, T.; Ravnik, M.
2003-01-01
Neutron fluxes in different spatial locations in biological shield are obtained with TORT code (TORT-Three Dimensional Oak Ridge Discrete Ordinates Neutron/Photon Transport Code). Libraries used with TORT code were BUGLE-96 library (coupled library with 47 neutron groups and 20 gamma groups) and VITAMIN-B6 library (coupled library with 199 neutron groups and 42 gamma groups). BUGLE-96 library is derived from VITAMIN-B6 library. 2-D and 3-D models for homogeneous type of problem (without inserted beam port 4) and problem with asymmetry (non-homogeneous problem; inserted beam port 4, filled with different materials) were of interest for neutron flux calculation. The main purpose is to verify the possibility for using 2-D approximation model instead of large 3-D model in some calculations. Another purpose of this paper was to compare neutron spectral constants obtained from neutron fluxes (3-D model) determined with smaller BUGLE-96 library with new constants obtained from fluxes calculated with bigger VITAMIN-B6 library. These neutron spectral constants are used in isotopic calculation with SCALE code package (ORIGEN-S). In past only neutron spectral constants determined by neutron fluxes from BUGLE-96 library were used. Experimental results used for isotopic composition comparison are available from irradiation experiment with selected type of concrete and other materials in beam port 4 (irradiation channel 4) in TRIGA Mark II reactor. These experimental results were used as a benchmark in this paper. (author)
Meyer, Walter J
2006-01-01
Meyer''s Geometry and Its Applications, Second Edition, combines traditional geometry with current ideas to present a modern approach that is grounded in real-world applications. It balances the deductive approach with discovery learning, and introduces axiomatic, Euclidean geometry, non-Euclidean geometry, and transformational geometry. The text integrates applications and examples throughout and includes historical notes in many chapters. The Second Edition of Geometry and Its Applications is a significant text for any college or university that focuses on geometry''s usefulness in other disciplines. It is especially appropriate for engineering and science majors, as well as future mathematics teachers.* Realistic applications integrated throughout the text, including (but not limited to): - Symmetries of artistic patterns- Physics- Robotics- Computer vision- Computer graphics- Stability of architectural structures- Molecular biology- Medicine- Pattern recognition* Historical notes included in many chapters...
Indian Academy of Sciences (India)
algebraic geometry but also in related fields like number theory. ... every vector bundle on the affine space is trivial. (equivalently ... les on a compact Riemann surface to unitary rep- ... tial geometry and topology and was generalised in.
International Nuclear Information System (INIS)
Sloane, Peter
2007-01-01
We adapt the spinorial geometry method introduced in [J. Gillard, U. Gran and G. Papadopoulos, 'The spinorial geometry of supersymmetric backgrounds,' Class. Quant. Grav. 22 (2005) 1033 [ (arXiv:hep-th/0410155)
Energy Technology Data Exchange (ETDEWEB)
Sloane, Peter [Department of Mathematics, King' s College, University of London, Strand, London WC2R 2LS (United Kingdom)
2007-09-15
We adapt the spinorial geometry method introduced in [J. Gillard, U. Gran and G. Papadopoulos, 'The spinorial geometry of supersymmetric backgrounds,' Class. Quant. Grav. 22 (2005) 1033 [ (arXiv:hep-th/0410155)
Shen, Yongchun; Ling, Zhihao; Lu, Caijiang
2015-12-01
This paper develops a self-biased magnetoelectric (ME) composite Metglas/H-type-FeNi/PZT (MHFP) of H-type magnetization-graded Metglas/H-type-FeNi fork and piezoelectric Pb(Zr,Ti)O3 (PZT) plate. By using the magnetization-graded magnetostrictive layer and symmetrical H-type structure, giant self-biased ME coupling and multi-peak phenomenon are observed. The zero-biased ME voltage coefficient of MHFP composite reaches ˜63.8 V/cm Oe, which is ˜37.5 times higher than that of traditional FeNi/PZT laminate. The output ME voltage has a good near linear relation with Hac and is determined to be ˜5.1 V/Oe and ˜10.6 mV/Oe at ˜65 kHz and 1 kHz, respectively. These indicate that the proposed composite show promising applications for ME transducers and high-sensitivity self-biased magnetic sensors.
Geometry essentials for dummies
Ryan, Mark
2011-01-01
Just the critical concepts you need to score high in geometry This practical, friendly guide focuses on critical concepts taught in a typical geometry course, from the properties of triangles, parallelograms, circles, and cylinders, to the skills and strategies you need to write geometry proofs. Geometry Essentials For Dummies is perfect for cramming or doing homework, or as a reference for parents helping kids study for exams. Get down to the basics - get a handle on the basics of geometry, from lines, segments, and angles, to vertices, altitudes, and diagonals Conque
Arithmetic noncommutative geometry
Marcolli, Matilde
2005-01-01
Arithmetic noncommutative geometry denotes the use of ideas and tools from the field of noncommutative geometry, to address questions and reinterpret in a new perspective results and constructions from number theory and arithmetic algebraic geometry. This general philosophy is applied to the geometry and arithmetic of modular curves and to the fibers at archimedean places of arithmetic surfaces and varieties. The main reason why noncommutative geometry can be expected to say something about topics of arithmetic interest lies in the fact that it provides the right framework in which the tools of geometry continue to make sense on spaces that are very singular and apparently very far from the world of algebraic varieties. This provides a way of refining the boundary structure of certain classes of spaces that arise in the context of arithmetic geometry, such as moduli spaces (of which modular curves are the simplest case) or arithmetic varieties (completed by suitable "fibers at infinity"), by adding boundaries...
Bárány, Imre; Vilcu, Costin
2016-01-01
This volume presents easy-to-understand yet surprising properties obtained using topological, geometric and graph theoretic tools in the areas covered by the Geometry Conference that took place in Mulhouse, France from September 7–11, 2014 in honour of Tudor Zamfirescu on the occasion of his 70th anniversary. The contributions address subjects in convexity and discrete geometry, in distance geometry or with geometrical flavor in combinatorics, graph theory or non-linear analysis. Written by top experts, these papers highlight the close connections between these fields, as well as ties to other domains of geometry and their reciprocal influence. They offer an overview on recent developments in geometry and its border with discrete mathematics, and provide answers to several open questions. The volume addresses a large audience in mathematics, including researchers and graduate students interested in geometry and geometrical problems.
Clustering in Hilbert simplex geometry
Nielsen, Frank
2017-04-03
Clustering categorical distributions in the probability simplex is a fundamental primitive often met in applications dealing with histograms or mixtures of multinomials. Traditionally, the differential-geometric structure of the probability simplex has been used either by (i) setting the Riemannian metric tensor to the Fisher information matrix of the categorical distributions, or (ii) defining the information-geometric structure induced by a smooth dissimilarity measure, called a divergence. In this paper, we introduce a novel computationally-friendly non-Riemannian framework for modeling the probability simplex: Hilbert simplex geometry. We discuss the pros and cons of those three statistical modelings, and compare them experimentally for clustering tasks.
Algorithms in Algebraic Geometry
Dickenstein, Alicia; Sommese, Andrew J
2008-01-01
In the last decade, there has been a burgeoning of activity in the design and implementation of algorithms for algebraic geometric computation. Some of these algorithms were originally designed for abstract algebraic geometry, but now are of interest for use in applications and some of these algorithms were originally designed for applications, but now are of interest for use in abstract algebraic geometry. The workshop on Algorithms in Algebraic Geometry that was held in the framework of the IMA Annual Program Year in Applications of Algebraic Geometry by the Institute for Mathematics and Its
O'Leary, Michael
2010-01-01
Guides readers through the development of geometry and basic proof writing using a historical approach to the topic. In an effort to fully appreciate the logic and structure of geometric proofs, Revolutions of Geometry places proofs into the context of geometry's history, helping readers to understand that proof writing is crucial to the job of a mathematician. Written for students and educators of mathematics alike, the book guides readers through the rich history and influential works, from ancient times to the present, behind the development of geometry. As a result, readers are successfull
Fundamental concepts of geometry
Meserve, Bruce E
1983-01-01
Demonstrates relationships between different types of geometry. Provides excellent overview of the foundations and historical evolution of geometrical concepts. Exercises (no solutions). Includes 98 illustrations.
Developments in special geometry
International Nuclear Information System (INIS)
Mohaupt, Thomas; Vaughan, Owen
2012-01-01
We review the special geometry of N = 2 supersymmetric vector and hypermultiplets with emphasis on recent developments and applications. A new formulation of the local c-map based on the Hesse potential and special real coordinates is presented. Other recent developments include the Euclidean version of special geometry, and generalizations of special geometry to non-supersymmetric theories. As applications we discuss the proof that the local r-map and c-map preserve geodesic completeness, and the construction of four- and five-dimensional static solutions through dimensional reduction over time. The shared features of the real, complex and quaternionic version of special geometry are stressed throughout.
Geometry of multihadron production
Energy Technology Data Exchange (ETDEWEB)
Bjorken, J.D.
1994-10-01
This summary talk only reviews a small sample of topics featured at this symposium: Introduction; The Geometry and Geography of Phase space; Space-Time Geometry and HBT; Multiplicities, Intermittency, Correlations; Disoriented Chiral Condensate; Deep Inelastic Scattering at HERA; and Other Contributions.
1996-01-01
Designs and Finite Geometries brings together in one place important contributions and up-to-date research results in this important area of mathematics. Designs and Finite Geometries serves as an excellent reference, providing insight into some of the most important research issues in the field.
Geometry of multihadron production
International Nuclear Information System (INIS)
Bjorken, J.D.
1994-10-01
This summary talk only reviews a small sample of topics featured at this symposium: Introduction; The Geometry and Geography of Phase space; Space-Time Geometry and HBT; Multiplicities, Intermittency, Correlations; Disoriented Chiral Condensate; Deep Inelastic Scattering at HERA; and Other Contributions
Morris, Barbara H.
2004-01-01
This article describes a geometry project that used the beauty of stained-glass-window designs to teach middle school students about geometric figures and concepts. Three honors prealgebra teachers and a middle school mathematics gifted intervention specialist created a geometry project that covered the curriculum and also assessed students'…
Energy Technology Data Exchange (ETDEWEB)
Grotz, Andreas
2011-10-07
In this thesis, a formulation of a Lorentzian quantum geometry based on the framework of causal fermion systems is proposed. After giving the general definition of causal fermion systems, we deduce space-time as a topological space with an underlying causal structure. Restricting attention to systems of spin dimension two, we derive the objects of our quantum geometry: the spin space, the tangent space endowed with a Lorentzian metric, connection and curvature. In order to get the correspondence to classical differential geometry, we construct examples of causal fermion systems by regularizing Dirac sea configurations in Minkowski space and on a globally hyperbolic Lorentzian manifold. When removing the regularization, the objects of our quantum geometry reduce to the common objects of spin geometry on Lorentzian manifolds, up to higher order curvature corrections.
Methods of information geometry
Amari, Shun-Ichi
2000-01-01
Information geometry provides the mathematical sciences with a new framework of analysis. It has emerged from the investigation of the natural differential geometric structure on manifolds of probability distributions, which consists of a Riemannian metric defined by the Fisher information and a one-parameter family of affine connections called the \\alpha-connections. The duality between the \\alpha-connection and the (-\\alpha)-connection together with the metric play an essential role in this geometry. This kind of duality, having emerged from manifolds of probability distributions, is ubiquitous, appearing in a variety of problems which might have no explicit relation to probability theory. Through the duality, it is possible to analyze various fundamental problems in a unified perspective. The first half of this book is devoted to a comprehensive introduction to the mathematical foundation of information geometry, including preliminaries from differential geometry, the geometry of manifolds or probability d...
International Nuclear Information System (INIS)
Grotz, Andreas
2011-01-01
In this thesis, a formulation of a Lorentzian quantum geometry based on the framework of causal fermion systems is proposed. After giving the general definition of causal fermion systems, we deduce space-time as a topological space with an underlying causal structure. Restricting attention to systems of spin dimension two, we derive the objects of our quantum geometry: the spin space, the tangent space endowed with a Lorentzian metric, connection and curvature. In order to get the correspondence to classical differential geometry, we construct examples of causal fermion systems by regularizing Dirac sea configurations in Minkowski space and on a globally hyperbolic Lorentzian manifold. When removing the regularization, the objects of our quantum geometry reduce to the common objects of spin geometry on Lorentzian manifolds, up to higher order curvature corrections.
Geometry on the space of geometries
International Nuclear Information System (INIS)
Christodoulakis, T.; Zanelli, J.
1988-06-01
We discuss the geometric structure of the configuration space of pure gravity. This is an infinite dimensional manifold, M, where each point represents one spatial geometry g ij (x). The metric on M is dictated by geometrodynamics, and from it, the Christoffel symbols and Riemann tensor can be found. A ''free geometry'' tracing a geodesic on the manifold describes the time evolution of space in the strong gravity limit. In a regularization previously introduced by the authors, it is found that M does not have the same dimensionality, D, everywhere, and that D is not a scalar, although it is covariantly constant. In this regularization, it is seen that the path integral measure can be absorbed in a renormalization of the cosmological constant. (author). 19 refs
Complex and symplectic geometry
Medori, Costantino; Tomassini, Adriano
2017-01-01
This book arises from the INdAM Meeting "Complex and Symplectic Geometry", which was held in Cortona in June 2016. Several leading specialists, including young researchers, in the field of complex and symplectic geometry, present the state of the art of their research on topics such as the cohomology of complex manifolds; analytic techniques in Kähler and non-Kähler geometry; almost-complex and symplectic structures; special structures on complex manifolds; and deformations of complex objects. The work is intended for researchers in these areas.
Kulczycki, Stefan
2008-01-01
This accessible approach features two varieties of proofs: stereometric and planimetric, as well as elementary proofs that employ only the simplest properties of the plane. A short history of geometry precedes a systematic exposition of the principles of non-Euclidean geometry.Starting with fundamental assumptions, the author examines the theorems of Hjelmslev, mapping a plane into a circle, the angle of parallelism and area of a polygon, regular polygons, straight lines and planes in space, and the horosphere. Further development of the theory covers hyperbolic functions, the geometry of suff
Roe, John
2003-01-01
Coarse geometry is the study of spaces (particularly metric spaces) from a 'large scale' point of view, so that two spaces that look the same from a great distance are actually equivalent. This point of view is effective because it is often true that the relevant geometric properties of metric spaces are determined by their coarse geometry. Two examples of important uses of coarse geometry are Gromov's beautiful notion of a hyperbolic group and Mostow's proof of his famous rigidity theorem. The first few chapters of the book provide a general perspective on coarse structures. Even when only metric coarse structures are in view, the abstract framework brings the same simplification as does the passage from epsilons and deltas to open sets when speaking of continuity. The middle section reviews notions of negative curvature and rigidity. Modern interest in large scale geometry derives in large part from Mostow's rigidity theorem and from Gromov's subsequent 'large scale' rendition of the crucial properties of n...
Lectures on Symplectic Geometry
Silva, Ana Cannas
2001-01-01
The goal of these notes is to provide a fast introduction to symplectic geometry for graduate students with some knowledge of differential geometry, de Rham theory and classical Lie groups. This text addresses symplectomorphisms, local forms, contact manifolds, compatible almost complex structures, Kaehler manifolds, hamiltonian mechanics, moment maps, symplectic reduction and symplectic toric manifolds. It contains guided problems, called homework, designed to complement the exposition or extend the reader's understanding. There are by now excellent references on symplectic geometry, a subset of which is in the bibliography of this book. However, the most efficient introduction to a subject is often a short elementary treatment, and these notes attempt to serve that purpose. This text provides a taste of areas of current research and will prepare the reader to explore recent papers and extensive books on symplectic geometry where the pace is much faster. For this reprint numerous corrections and cl...
Kollár, János
1997-01-01
This volume contains the lectures presented at the third Regional Geometry Institute at Park City in 1993. The lectures provide an introduction to the subject, complex algebraic geometry, making the book suitable as a text for second- and third-year graduate students. The book deals with topics in algebraic geometry where one can reach the level of current research while starting with the basics. Topics covered include the theory of surfaces from the viewpoint of recent higher-dimensional developments, providing an excellent introduction to more advanced topics such as the minimal model program. Also included is an introduction to Hodge theory and intersection homology based on the simple topological ideas of Lefschetz and an overview of the recent interactions between algebraic geometry and theoretical physics, which involve mirror symmetry and string theory.
DEFF Research Database (Denmark)
Kokkendorff, Simon Lyngby
2002-01-01
The subject of this Ph.D.-thesis is somewhere in between continuous and discrete geometry. Chapter 2 treats the geometry of finite point sets in semi-Riemannian hyperquadrics,using a matrix whose entries are a trigonometric function of relative distances in a given point set. The distance...... to the geometry of a simplex in a semi-Riemannian hyperquadric. In chapter 3 we study which finite metric spaces that are realizable in a hyperbolic space in the limit where curvature goes to -∞. We show that such spaces are the so called leaf spaces, the set of degree 1 vertices of weighted trees. We also...... establish results on the limiting geometry of such an isometrically realized leaf space simplex in hyperbolic space, when curvature goes to -∞. Chapter 4 discusses negative type of metric spaces. We give a measure theoretic treatment of this concept and related invariants. The theory developed...
Busemann, Herbert
2005-01-01
A comprehensive approach to qualitative problems in intrinsic differential geometry, this text examines Desarguesian spaces, perpendiculars and parallels, covering spaces, the influence of the sign of the curvature on geodesics, more. 1955 edition. Includes 66 figures.
Tabachnikov, Serge
2005-01-01
Mathematical billiards describe the motion of a mass point in a domain with elastic reflections off the boundary or, equivalently, the behavior of rays of light in a domain with ideally reflecting boundary. From the point of view of differential geometry, the billiard flow is the geodesic flow on a manifold with boundary. This book is devoted to billiards in their relation with differential geometry, classical mechanics, and geometrical optics. The topics covered include variational principles of billiard motion, symplectic geometry of rays of light and integral geometry, existence and nonexistence of caustics, optical properties of conics and quadrics and completely integrable billiards, periodic billiard trajectories, polygonal billiards, mechanisms of chaos in billiard dynamics, and the lesser-known subject of dual (or outer) billiards. The book is based on an advanced undergraduate topics course (but contains more material than can be realistically taught in one semester). Although the minimum prerequisit...
Introduction to tropical geometry
Maclagan, Diane
2015-01-01
Tropical geometry is a combinatorial shadow of algebraic geometry, offering new polyhedral tools to compute invariants of algebraic varieties. It is based on tropical algebra, where the sum of two numbers is their minimum and the product is their sum. This turns polynomials into piecewise-linear functions, and their zero sets into polyhedral complexes. These tropical varieties retain a surprising amount of information about their classical counterparts. Tropical geometry is a young subject that has undergone a rapid development since the beginning of the 21st century. While establishing itself as an area in its own right, deep connections have been made to many branches of pure and applied mathematics. This book offers a self-contained introduction to tropical geometry, suitable as a course text for beginning graduate students. Proofs are provided for the main results, such as the Fundamental Theorem and the Structure Theorem. Numerous examples and explicit computations illustrate the main concepts. Each of t...
Rudiments of algebraic geometry
Jenner, WE
2017-01-01
Aimed at advanced undergraduate students of mathematics, this concise text covers the basics of algebraic geometry. Topics include affine spaces, projective spaces, rational curves, algebraic sets with group structure, more. 1963 edition.
Implosions and hypertoric geometry
DEFF Research Database (Denmark)
Dancer, A.; Kirwan, F.; Swann, A.
2013-01-01
The geometry of the universal hyperkahler implosion for SU (n) is explored. In particular, we show that the universal hyperkahler implosion naturally contains a hypertoric variety described in terms of quivers. Furthermore, we discuss a gauge theoretic approach to hyperkahler implosion.......The geometry of the universal hyperkahler implosion for SU (n) is explored. In particular, we show that the universal hyperkahler implosion naturally contains a hypertoric variety described in terms of quivers. Furthermore, we discuss a gauge theoretic approach to hyperkahler implosion....
Intermediate algebra & analytic geometry
Gondin, William R
1967-01-01
Intermediate Algebra & Analytic Geometry Made Simple focuses on the principles, processes, calculations, and methodologies involved in intermediate algebra and analytic geometry. The publication first offers information on linear equations in two unknowns and variables, functions, and graphs. Discussions focus on graphic interpretations, explicit and implicit functions, first quadrant graphs, variables and functions, determinate and indeterminate systems, independent and dependent equations, and defective and redundant systems. The text then examines quadratic equations in one variable, system
Ceresole, Anna; Gnecchi, Alessandra; Marrani, Alessio
2013-01-01
We analyze some properties of the four dimensional supergravity theories which originate from five dimensions upon reduction. They generalize to N>2 extended supersymmetries the d-geometries with cubic prepotentials, familiar from N=2 special K\\"ahler geometry. We emphasize the role of a suitable parametrization of the scalar fields and the corresponding triangular symplectic basis. We also consider applications to the first order flow equations for non-BPS extremal black holes.
International Nuclear Information System (INIS)
Osborne, I; Brownson, E; Eulisse, G; Jones, C D; Sexton-Kennedy, E; Lange, D J
2014-01-01
CMS faces real challenges with upgrade of the CMS detector through 2020 and beyond. One of the challenges, from the software point of view, is managing upgrade simulations with the same software release as the 2013 scenario. We present the CMS geometry description software model, its integration with the CMS event setup and core software. The CMS geometry configuration and selection is implemented in Python. The tools collect the Python configuration fragments into a script used in CMS workflow. This flexible and automated geometry configuration allows choosing either transient or persistent version of the same scenario and specific version of the same scenario. We describe how the geometries are integrated and validated, and how we define and handle different geometry scenarios in simulation and reconstruction. We discuss how to transparently manage multiple incompatible geometries in the same software release. Several examples are shown based on current implementation assuring consistent choice of scenario conditions. The consequences and implications for multiple/different code algorithms are discussed.
Software Geometry in Simulations
Alion, Tyler; Viren, Brett; Junk, Tom
2015-04-01
The Long Baseline Neutrino Experiment (LBNE) involves many detectors. The experiment's near detector (ND) facility, may ultimately involve several detectors. The far detector (FD) will be significantly larger than any other Liquid Argon (LAr) detector yet constructed; many prototype detectors are being constructed and studied to motivate a plethora of proposed FD designs. Whether it be a constructed prototype or a proposed ND/FD design, every design must be simulated and analyzed. This presents a considerable challenge to LBNE software experts; each detector geometry must be described to the simulation software in an efficient way which allows for multiple authors to easily collaborate. Furthermore, different geometry versions must be tracked throughout their use. We present a framework called General Geometry Description (GGD), written and developed by LBNE software collaborators for managing software to generate geometries. Though GGD is flexible enough to be used by any experiment working with detectors, we present it's first use in generating Geometry Description Markup Language (GDML) files to interface with LArSoft, a framework of detector simulations, event reconstruction, and data analyses written for all LAr technology users at Fermilab. Brett is the other of the framework discussed here, the General Geometry Description (GGD).
Introduction to combinatorial geometry
International Nuclear Information System (INIS)
Gabriel, T.A.; Emmett, M.B.
1985-01-01
The combinatorial geometry package as used in many three-dimensional multimedia Monte Carlo radiation transport codes, such as HETC, MORSE, and EGS, is becoming the preferred way to describe simple and complicated systems. Just about any system can be modeled using the package with relatively few input statements. This can be contrasted against the older style geometry packages in which the required input statements could be large even for relatively simple systems. However, with advancements come some difficulties. The users of combinatorial geometry must be able to visualize more, and, in some instances, all of the system at a time. Errors can be introduced into the modeling which, though slight, and at times hard to detect, can have devastating effects on the calculated results. As with all modeling packages, the best way to learn the combinatorial geometry is to use it, first on a simple system then on more complicated systems. The basic technique for the description of the geometry consists of defining the location and shape of the various zones in terms of the intersections and unions of geometric bodies. The geometric bodies which are generally included in most combinatorial geometry packages are: (1) box, (2) right parallelepiped, (3) sphere, (4) right circular cylinder, (5) right elliptic cylinder, (6) ellipsoid, (7) truncated right cone, (8) right angle wedge, and (9) arbitrary polyhedron. The data necessary to describe each of these bodies are given. As can be easily noted, there are some subsets included for simplicity
Global aspects of complex geometry
Catanese, Fabrizio; Huckleberry, Alan T
2006-01-01
Present an overview of developments in Complex Geometry. This book covers topics that range from curve and surface theory through special varieties in higher dimensions, moduli theory, Kahler geometry, and group actions to Hodge theory and characteristic p-geometry.
Sources of hyperbolic geometry
Stillwell, John
1996-01-01
This book presents, for the first time in English, the papers of Beltrami, Klein, and Poincaré that brought hyperbolic geometry into the mainstream of mathematics. A recognition of Beltrami comparable to that given the pioneering works of Bolyai and Lobachevsky seems long overdue-not only because Beltrami rescued hyperbolic geometry from oblivion by proving it to be logically consistent, but because he gave it a concrete meaning (a model) that made hyperbolic geometry part of ordinary mathematics. The models subsequently discovered by Klein and Poincaré brought hyperbolic geometry even further down to earth and paved the way for the current explosion of activity in low-dimensional geometry and topology. By placing the works of these three mathematicians side by side and providing commentaries, this book gives the student, historian, or professional geometer a bird's-eye view of one of the great episodes in mathematics. The unified setting and historical context reveal the insights of Beltrami, Klein, and Po...
International Nuclear Information System (INIS)
Jonsson, Rickard; Westman, Hans
2006-01-01
We show that by employing the standard projected curvature as a measure of spatial curvature, we can make a certain generalization of optical geometry (Abramowicz M A and Lasota J-P 1997 Class. Quantum Grav. A 14 23-30). This generalization applies to any spacetime that admits a hypersurface orthogonal shearfree congruence of worldlines. This is a somewhat larger class of spacetimes than the conformally static spacetimes assumed in standard optical geometry. In the generalized optical geometry, which in the generic case is time dependent, photons move with unit speed along spatial geodesics and the sideways force experienced by a particle following a spatially straight line is independent of the velocity. Also gyroscopes moving along spatial geodesics do not precess (relative to the forward direction). Gyroscopes that follow a curved spatial trajectory precess according to a very simple law of three-rotation. We also present an inertial force formalism in coordinate representation for this generalization. Furthermore, we show that by employing a new sense of spatial curvature (Jonsson R 2006 Class. Quantum Grav. 23 1)) closely connected to Fermat's principle, we can make a more extensive generalization of optical geometry that applies to arbitrary spacetimes. In general this optical geometry will be time dependent, but still geodesic photons move with unit speed and follow lines that are spatially straight in the new sense. Also, the sideways experienced (comoving) force on a test particle following a line that is straight in the new sense will be independent of the velocity
Computational synthetic geometry
Bokowski, Jürgen
1989-01-01
Computational synthetic geometry deals with methods for realizing abstract geometric objects in concrete vector spaces. This research monograph considers a large class of problems from convexity and discrete geometry including constructing convex polytopes from simplicial complexes, vector geometries from incidence structures and hyperplane arrangements from oriented matroids. It turns out that algorithms for these constructions exist if and only if arbitrary polynomial equations are decidable with respect to the underlying field. Besides such complexity theorems a variety of symbolic algorithms are discussed, and the methods are applied to obtain new mathematical results on convex polytopes, projective configurations and the combinatorics of Grassmann varieties. Finally algebraic varieties characterizing matroids and oriented matroids are introduced providing a new basis for applying computer algebra methods in this field. The necessary background knowledge is reviewed briefly. The text is accessible to stud...
Discrete and computational geometry
Devadoss, Satyan L
2011-01-01
Discrete geometry is a relatively new development in pure mathematics, while computational geometry is an emerging area in applications-driven computer science. Their intermingling has yielded exciting advances in recent years, yet what has been lacking until now is an undergraduate textbook that bridges the gap between the two. Discrete and Computational Geometry offers a comprehensive yet accessible introduction to this cutting-edge frontier of mathematics and computer science. This book covers traditional topics such as convex hulls, triangulations, and Voronoi diagrams, as well as more recent subjects like pseudotriangulations, curve reconstruction, and locked chains. It also touches on more advanced material, including Dehn invariants, associahedra, quasigeodesics, Morse theory, and the recent resolution of the Poincaré conjecture. Connections to real-world applications are made throughout, and algorithms are presented independently of any programming language. This richly illustrated textbook also fe...
Ochiai, T.; Nacher, J. C.
2011-09-01
Recently, the application of geometry and conformal mappings to artificial materials (metamaterials) has attracted the attention in various research communities. These materials, characterized by a unique man-made structure, have unusual optical properties, which materials found in nature do not exhibit. By applying the geometry and conformal mappings theory to metamaterial science, it may be possible to realize so-called "Harry Potter cloaking device". Although such a device is still in the science fiction realm, several works have shown that by using such metamaterials it may be possible to control the direction of the electromagnetic field at will. We could then make an object hidden inside of a cloaking device. Here, we will explain how to design invisibility device using differential geometry and conformal mappings.
2002-01-01
Discrete geometry investigates combinatorial properties of configurations of geometric objects. To a working mathematician or computer scientist, it offers sophisticated results and techniques of great diversity and it is a foundation for fields such as computational geometry or combinatorial optimization. This book is primarily a textbook introduction to various areas of discrete geometry. In each area, it explains several key results and methods, in an accessible and concrete manner. It also contains more advanced material in separate sections and thus it can serve as a collection of surveys in several narrower subfields. The main topics include: basics on convex sets, convex polytopes, and hyperplane arrangements; combinatorial complexity of geometric configurations; intersection patterns and transversals of convex sets; geometric Ramsey-type results; polyhedral combinatorics and high-dimensional convexity; and lastly, embeddings of finite metric spaces into normed spaces. Jiri Matousek is Professor of Com...
Zheng, Fangyang
2002-01-01
The theory of complex manifolds overlaps with several branches of mathematics, including differential geometry, algebraic geometry, several complex variables, global analysis, topology, algebraic number theory, and mathematical physics. Complex manifolds provide a rich class of geometric objects, for example the (common) zero locus of any generic set of complex polynomials is always a complex manifold. Yet complex manifolds behave differently than generic smooth manifolds; they are more coherent and fragile. The rich yet restrictive character of complex manifolds makes them a special and interesting object of study. This book is a self-contained graduate textbook that discusses the differential geometric aspects of complex manifolds. The first part contains standard materials from general topology, differentiable manifolds, and basic Riemannian geometry. The second part discusses complex manifolds and analytic varieties, sheaves and holomorphic vector bundles, and gives a brief account of the surface classifi...
Yale, Paul B
2012-01-01
This book is an introduction to the geometry of Euclidean, affine, and projective spaces with special emphasis on the important groups of symmetries of these spaces. The two major objectives of the text are to introduce the main ideas of affine and projective spaces and to develop facility in handling transformations and groups of transformations. Since there are many good texts on affine and projective planes, the author has concentrated on the n-dimensional cases.Designed to be used in advanced undergraduate mathematics or physics courses, the book focuses on ""practical geometry,"" emphasi
Conference on Strings, Duality, and Geometry
Phong, Duong; Yau, Shing-Tung; Mirror Symmetry IV
2002-01-01
This book presents contributions of participants of a workshop held at the Centre de Recherches Mathématiques (CRM), University of Montréal. It can be viewed as a sequel to Mirror Symmetry I (1998), Mirror Symmetry II (1996), and Mirror Symmetry III (1999), copublished by the AMS and International Press. The volume presents a broad survey of many of the noteworthy developments that have taken place in string theory, geometry, and duality since the mid 1990s. Some of the topics emphasized include the following: Integrable models and supersymmetric gauge theories; theory of M- and D-branes and noncommutative geometry; duality between strings and gauge theories; and elliptic genera and automorphic forms. Several introductory articles present an overview of the geometric and physical aspects of mirror symmetry and of corresponding developments in symplectic geometry. The book provides an efficient way for a very broad audience of mathematicians and physicists to explore the frontiers of research into this rapi...
Towards relativistic quantum geometry
Energy Technology Data Exchange (ETDEWEB)
Ridao, Luis Santiago [Instituto de Investigaciones Físicas de Mar del Plata (IFIMAR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mar del Plata (Argentina); Bellini, Mauricio, E-mail: mbellini@mdp.edu.ar [Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes 3350, C.P. 7600, Mar del Plata (Argentina); Instituto de Investigaciones Físicas de Mar del Plata (IFIMAR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mar del Plata (Argentina)
2015-12-17
We obtain a gauge-invariant relativistic quantum geometry by using a Weylian-like manifold with a geometric scalar field which provides a gauge-invariant relativistic quantum theory in which the algebra of the Weylian-like field depends on observers. An example for a Reissner–Nordström black-hole is studied.
Multiplicity in difference geometry
Tomasic, Ivan
2011-01-01
We prove a first principle of preservation of multiplicity in difference geometry, paving the way for the development of a more general intersection theory. In particular, the fibres of a \\sigma-finite morphism between difference curves are all of the same size, when counted with correct multiplicities.
Spacetime and Euclidean geometry
Brill, Dieter; Jacobson, Ted
2006-04-01
Using only the principle of relativity and Euclidean geometry we show in this pedagogical article that the square of proper time or length in a two-dimensional spacetime diagram is proportional to the Euclidean area of the corresponding causal domain. We use this relation to derive the Minkowski line element by two geometric proofs of the spacetime Pythagoras theorem.
International Nuclear Information System (INIS)
Konopleva, N.P.
2009-01-01
The basic ideas of description methods of physical fields and elementary particle interactions are discussed. One of such ideas is the conception of space-time geometry. In this connection experimental measurement methods are analyzed. It is shown that measure procedures are the origin of geometrical axioms. The connection between space symmetry properties and the conservation laws is considered
Wares, Arsalan; Elstak, Iwan
2017-01-01
The purpose of this paper is to describe the mathematics that emanates from the construction of an origami box. We first construct a simple origami box from a rectangular sheet and then discuss some of the mathematical questions that arise in the context of geometry and algebra. The activity can be used as a context for illustrating how algebra…
MacKeown, P. K.
1984-01-01
Clarifies two concepts of gravity--those of a fictitious force and those of how space and time may have geometry. Reviews the position of Newton's theory of gravity in the context of special relativity and considers why gravity (as distinct from electromagnetics) lends itself to Einstein's revolutionary interpretation. (JN)
DEFF Research Database (Denmark)
Booss-Bavnbek, Bernhelm
2011-01-01
This paper applies I.M. Gelfand's distinction between adequate and non-adequate use of mathematical language in different contexts to the newly opened window of model-based measurements of intracellular dynamics. The specifics of geometry and dynamics on the mesoscale of cell physiology are elabo...
Diophantine geometry an introduction
Hindry, Marc
2000-01-01
This is an introduction to diophantine geometry at the advanced graduate level. The book contains a proof of the Mordell conjecture which will make it quite attractive to graduate students and professional mathematicians. In each part of the book, the reader will find numerous exercises.
Sliding vane geometry turbines
Sun, Harold Huimin; Zhang, Jizhong; Hu, Liangjun; Hanna, Dave R
2014-12-30
Various systems and methods are described for a variable geometry turbine. In one example, a turbine nozzle comprises a central axis and a nozzle vane. The nozzle vane includes a stationary vane and a sliding vane. The sliding vane is positioned to slide in a direction substantially tangent to an inner circumference of the turbine nozzle and in contact with the stationary vane.
Boyer, Carl B
2012-01-01
Designed as an integrated survey of the development of analytic geometry, this study presents the concepts and contributions from before the Alexandrian Age through the eras of the great French mathematicians Fermat and Descartes, and on through Newton and Euler to the "Golden Age," from 1789 to 1850.
Coxeter, HSM
1965-01-01
This textbook introduces non-Euclidean geometry, and the third edition adds a new chapter, including a description of the two families of 'mid-lines' between two given lines and an elementary derivation of the basic formulae of spherical trigonometry and hyperbolic trigonometry, and other new material.
International Nuclear Information System (INIS)
Ezin, J.P.
1988-08-01
The lectures given at the ''5th Symposium of Mathematics in Abidjan: Differential Geometry and Mechanics'' are presented. They are divided into four chapters: Riemannian metric on a differential manifold, curvature tensor fields on a Riemannian manifold, some classical functionals on Riemannian manifolds and questions. 11 refs
Hartshorne, Robin
2000-01-01
In recent years, I have been teaching a junior-senior-level course on the classi cal geometries. This book has grown out of that teaching experience. I assume only high-school geometry and some abstract algebra. The course begins in Chapter 1 with a critical examination of Euclid's Elements. Students are expected to read concurrently Books I-IV of Euclid's text, which must be obtained sepa rately. The remainder of the book is an exploration of questions that arise natu rally from this reading, together with their modern answers. To shore up the foundations we use Hilbert's axioms. The Cartesian plane over a field provides an analytic model of the theory, and conversely, we see that one can introduce coordinates into an abstract geometry. The theory of area is analyzed by cutting figures into triangles. The algebra of field extensions provides a method for deciding which geometrical constructions are possible. The investigation of the parallel postulate leads to the various non-Euclidean geometries. And ...
Multivariate calculus and geometry
Dineen, Seán
2014-01-01
Multivariate calculus can be understood best by combining geometric insight, intuitive arguments, detailed explanations and mathematical reasoning. This textbook has successfully followed this programme. It additionally provides a solid description of the basic concepts, via familiar examples, which are then tested in technically demanding situations. In this new edition the introductory chapter and two of the chapters on the geometry of surfaces have been revised. Some exercises have been replaced and others provided with expanded solutions. Familiarity with partial derivatives and a course in linear algebra are essential prerequisites for readers of this book. Multivariate Calculus and Geometry is aimed primarily at higher level undergraduates in the mathematical sciences. The inclusion of many practical examples involving problems of several variables will appeal to mathematics, science and engineering students.
Transformational plane geometry
Umble, Ronald N
2014-01-01
Axioms of Euclidean Plane Geometry The Existence and Incidence Postulates The Distance and Ruler Postulates The Plane Separation Postulate The Protractor Postulate The Side-Angle-Side Postulate and the Euclidean Parallel Postulate Theorems of Euclidean Plane Geometry The Exterior Angle Theorem Triangle Congruence Theorems The Alternate Interior Angles Theorem and the Angle Sum Theorem Similar Triangles Introduction to Transformations, Isometries, and Similarities Transformations Isometries and SimilaritiesAppendix: Proof of Surjectivity Translations, Rotations, and Reflections Translations Rotations Reflections Appendix: Geometer's Sketchpad Commands Required by Exploratory Activities Compositions of Translations, Rotations, and Reflections The Three Points Theorem Rotations as Compositions of Two Reflections Translations as Compositions of Two Halfturns or Two Reflections The Angle Addition Theorem Glide Reflections Classification of Isometries The Fundamental Theorem and Congruence Classification of Isometr...
Multilevel geometry optimization
Rodgers, Jocelyn M.; Fast, Patton L.; Truhlar, Donald G.
2000-02-01
Geometry optimization has been carried out for three test molecules using six multilevel electronic structure methods, in particular Gaussian-2, Gaussian-3, multicoefficient G2, multicoefficient G3, and two multicoefficient correlation methods based on correlation-consistent basis sets. In the Gaussian-2 and Gaussian-3 methods, various levels are added and subtracted with unit coefficients, whereas the multicoefficient Gaussian-x methods involve noninteger parameters as coefficients. The multilevel optimizations drop the average error in the geometry (averaged over the 18 cases) by a factor of about two when compared to the single most expensive component of a given multilevel calculation, and in all 18 cases the accuracy of the atomization energy for the three test molecules improves; with an average improvement of 16.7 kcal/mol.
Multilevel geometry optimization
Energy Technology Data Exchange (ETDEWEB)
Rodgers, Jocelyn M. [Department of Chemistry and Supercomputer Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431 (United States); Fast, Patton L. [Department of Chemistry and Supercomputer Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431 (United States); Truhlar, Donald G. [Department of Chemistry and Supercomputer Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431 (United States)
2000-02-15
Geometry optimization has been carried out for three test molecules using six multilevel electronic structure methods, in particular Gaussian-2, Gaussian-3, multicoefficient G2, multicoefficient G3, and two multicoefficient correlation methods based on correlation-consistent basis sets. In the Gaussian-2 and Gaussian-3 methods, various levels are added and subtracted with unit coefficients, whereas the multicoefficient Gaussian-x methods involve noninteger parameters as coefficients. The multilevel optimizations drop the average error in the geometry (averaged over the 18 cases) by a factor of about two when compared to the single most expensive component of a given multilevel calculation, and in all 18 cases the accuracy of the atomization energy for the three test molecules improves; with an average improvement of 16.7 kcal/mol. (c) 2000 American Institute of Physics.
Krauss, Lawrence M.; Turner, Michael S.
1999-01-01
The recognition that the cosmological constant may be non-zero forces us to re-evaluate standard notions about the connection between geometry and the fate of our Universe. An open Universe can recollapse, and a closed Universe can expand forever. As a corollary, we point out that there is no set of cosmological observations we can perform that will unambiguously allow us to determine what the ultimate destiny of the Universe will be.
DEFF Research Database (Denmark)
Tamke, Martin; Ramsgaard Thomsen, Mette; Riiber Nielsen, Jacob
2009-01-01
The versatility of wood constructions and traditional wood joints for the production of non standard elements was in focus of a design based research. Herein we established a seamless process from digital design to fabrication. A first research phase centered on the development of a robust...... parametric model and a generic design language a later explored the possibilities to construct complex shaped geometries with self registering joints on modern wood crafting machines. The research was carried out as collaboration with industrial partners....
International Nuclear Information System (INIS)
Lepora, N.; Kibble, T.
1999-01-01
We analyse symmetry breaking in the Weinberg-Salam model paying particular attention to the underlying geometry of the theory. In this context we find two natural metrics upon the vacuum manifold: an isotropic metric associated with the scalar sector, and a squashed metric associated with the gauge sector. Physically, the interplay between these metrics gives rise to many of the non-perturbative features of Weinberg-Salam theory. (author)
International Nuclear Information System (INIS)
Hull, C.M.
1993-01-01
The geometric structure of theories with gauge fields of spins two and higher should involve a higher spin generalisation of Riemannian geometry. Such geometries are discussed and the case of W ∝ -gravity is analysed in detail. While the gauge group for gravity in d dimensions is the diffeomorphism group of the space-time, the gauge group for a certain W-gravity theory (which is W ∝ -gravity in the case d=2) is the group of symplectic diffeomorphisms of the cotangent bundle of the space-time. Gauge transformations for W-gravity gauge fields are given by requiring the invariance of a generalised line element. Densities exist and can be constructed from the line element (generalising √detg μν ) only if d=1 or d=2, so that only for d=1,2 can actions be constructed. These two cases and the corresponding W-gravity actions are considered in detail. In d=2, the gauge group is effectively only a subgroup of the symplectic diffeomorphisms group. Some of the constraints that arise for d=2 are similar to equations arising in the study of self-dual four-dimensional geometries and can be analysed using twistor methods, allowing contact to be made with other formulations of W-gravity. While the twistor transform for self-dual spaces with one Killing vector reduces to a Legendre transform, that for two Killing vectors gives a generalisation of the Legendre transform. (orig.)
Integral geometry and valuations
Solanes, Gil
2014-01-01
Valuations are finitely additive functionals on the space of convex bodies. Their study has become a central subject in convexity theory, with fundamental applications to integral geometry. In the last years there has been significant progress in the theory of valuations, which in turn has led to important achievements in integral geometry. This book originated from two courses delivered by the authors at the CRM and provides a self-contained introduction to these topics, covering most of the recent advances. The first part, by Semyon Alesker, is devoted to the theory of convex valuations, with emphasis on the latest developments. A special focus is put on the new fundamental structures of the space of valuations discovered after Alesker's irreducibility theorem. Moreover, the author describes the newly developed theory of valuations on manifolds. In the second part, Joseph H. G. Fu gives a modern introduction to integral geometry in the sense of Blaschke and Santaló, based on the notions and tools presented...
CBM RICH geometry optimization
Energy Technology Data Exchange (ETDEWEB)
Mahmoud, Tariq; Hoehne, Claudia [II. Physikalisches Institut, Giessen Univ. (Germany); Collaboration: CBM-Collaboration
2016-07-01
The Compressed Baryonic Matter (CBM) experiment at the future FAIR complex will investigate the phase diagram of strongly interacting matter at high baryon density and moderate temperatures in A+A collisions from 2-11 AGeV (SIS100) beam energy. The main electron identification detector in the CBM experiment will be a RICH detector with a CO{sub 2} gaseous-radiator, focusing spherical glass mirrors, and MAPMT photo-detectors being placed on a PMT-plane. The RICH detector is located directly behind the CBM dipole magnet. As the final magnet geometry is now available, some changes in the RICH geometry become necessary. In order to guarantee a magnetic field of 1 mT at maximum in the PMT plane for effective operation of the MAPMTs, two measures have to be taken: The PMT plane is moved outwards of the stray field by tilting the mirrors by 10 degrees and shielding boxes have been designed. In this contribution the results of the geometry optimization procedure are presented.
Golbedaghi, Reza; Alavipour, Ehsan
2015-11-01
Three new binuclear Cu(II), Mn(II), Co(II) complexes [Cu2(L) (ClO4)](ClO4)2 (1), [Mn2(L) (ClO4)](ClO4)2 (2), and [Co2(L) (ClO4)](ClO4)2 (3), {L = 1,3-bis(2-((Z)-(2-aminopropylimino)methyl)phenoxy)propan-2-ol} have been synthesized. Single crystal X-ray structure analysis of complex 1 showed that the complex is binuclear and all nitrogen and oxygen atoms of ligand (N4O3) are coordinated to two Cu(II) center ions. In addition, the crystal structure studying shows, a perchlorate ion has been bridged to the Cu(II) metal centers. However, two distorted square pyramidal Cu(II) ions are bridged asymmetrically by a perchlorate ion and oxygen of hydroxyl group of Schiff base ligand. In addition, the conductometry behaviors of all complexes were studied in acetonitrile solution.
Introducing geometry concept based on history of Islamic geometry
Maarif, S.; Wahyudin; Raditya, A.; Perbowo, K. S.
2018-01-01
Geometry is one of the areas of mathematics interesting to discuss. Geometry also has a long history in mathematical developments. Therefore, it is important integrated historical development of geometry in the classroom to increase’ knowledge of how mathematicians earlier finding and constructing a geometric concept. Introduction geometrical concept can be started by introducing the Muslim mathematician who invented these concepts so that students can understand in detail how a concept of geometry can be found. However, the history of mathematics development, especially history of Islamic geometry today is less popular in the world of education in Indonesia. There are several concepts discovered by Muslim mathematicians that should be appreciated by the students in learning geometry. Great ideas of mathematicians Muslim can be used as study materials to supplement religious character values taught by Muslim mathematicians. Additionally, by integrating the history of geometry in teaching geometry are expected to improve motivation and geometrical understanding concept.
Two lectures on D-geometry and noncommutative geometry
International Nuclear Information System (INIS)
Douglas, M.R.
1999-01-01
This is a write-up of lectures given at the 1998 Spring School at the Abdus Salam ICTP. We give a conceptual introduction to D-geometry, the study of geometry as seen by D-branes in string theory, and to noncommutative geometry as it has appeared in D-brane and Matrix theory physics. (author)
International Nuclear Information System (INIS)
Hook, D W
2008-01-01
A geometric framework for quantum mechanics arose during the mid 1970s when authors such as Cantoni explored the notion of generalized transition probabilities, and Kibble promoted the idea that the space of pure quantum states provides a natural quantum mechanical analogue for classical phase space. This central idea can be seen easily since the projection of Schroedinger's equation from a Hilbert space into the space of pure spaces is a set of Hamilton's equations. Over the intervening years considerable work has been carried out by a variety of authors and a mature description of quantum mechanics in geometric terms has emerged with many applications. This current offering would seem ideally placed to review the last thirty years of progress and relate this to the most recent work in quantum entanglement. Bengtsson and Zyczkowski's beautifully illustrated volume, Geometry of Quantum States (referred to as GQS from now on) attempts to cover considerable ground in its 466 pages. Its topics range from colour theory in Chapter 1 to quantum entanglement in Chapter 15-to say that this is a whirlwind tour is, perhaps, no understatement. The use of the work 'introduction' in the subtitle of GQS, might suggest to the reader that this work be viewed as a textbook and I think that this interpretation would be incorrect. The authors have chosen to present a survey of different topics with the specific aim to introduce entanglement in geometric terms-the book is not intended as a pedagogical introduction to the geometric approach to quantum mechanics. Each of the fifteen chapters is a short, and mostly self-contained, essay on a particular aspect or application of geometry in the context of quantum mechanics with entanglement being addressed specifically in the final chapter. The chapters fall into three classifications: those concerned with the mathematical background, those which discuss quantum theory and the foundational aspects of the geometric framework, and
Functional integration over geometries
International Nuclear Information System (INIS)
Mottola, E.
1995-01-01
The geometric construction of the functional integral over coset spaces M/G is reviewed. The inner product on the cotangent space of infinitesimal deformations of M defines an invariant distance and volume form, or functional integration measure on the full configuration space. Then, by a simple change of coordinates parameterizing the gauge fiber G, the functional measure on the coset space M/G is deduced. This change of integration variables leads to a Jacobian which is entirely equivalent to the Faddeev--Popov determinant of the more traditional gauge fixed approach in non-abelian gauge theory. If the general construction is applied to the case where G is the group of coordinate reparameterizations of spacetime, the continuum functional integral over geometries, i.e. metrics modulo coordinate reparameterizations may be defined. The invariant functional integration measure is used to derive the trace anomaly and effective action for the conformal part of the metric in two and four dimensional spacetime. In two dimensions this approach generates the Polyakov--Liouville action of closed bosonic non-critical string theory. In four dimensions the corresponding effective action leads to novel conclusions on the importance of quantum effects in gravity in the far infrared, and in particular, a dramatic modification of the classical Einstein theory at cosmological distance scales, signaled first by the quantum instability of classical de Sitter spacetime. Finite volume scaling relations for the functional integral of quantum gravity in two and four dimensions are derived, and comparison with the discretized dynamical triangulation approach to the integration over geometries are discussed. Outstanding unsolved problems in both the continuum definition and the simplicial approach to the functional integral over geometries are highlighted
Dooner, David B
2012-01-01
Building on the first edition published in 1995 this new edition of Kinematic Geometry of Gearing has been extensively revised and updated with new and original material. This includes the methodology for general tooth forms, radius of torsure', cylinder of osculation, and cylindroid of torsure; the author has also completely reworked the '3 laws of gearing', the first law re-written to better parallel the existing 'Law of Gearing" as pioneered by Leonard Euler, expanded from Euler's original law to encompass non-circular gears and hypoid gears, the 2nd law of gearing describing a unique relat
Flegg, H Graham
2001-01-01
This excellent introduction to topology eases first-year math students and general readers into the subject by surveying its concepts in a descriptive and intuitive way, attempting to build a bridge from the familiar concepts of geometry to the formalized study of topology. The first three chapters focus on congruence classes defined by transformations in real Euclidean space. As the number of permitted transformations increases, these classes become larger, and their common topological properties become intuitively clear. Chapters 4-12 give a largely intuitive presentation of selected topics.
Torsional heterotic geometries
International Nuclear Information System (INIS)
Becker, Katrin; Sethi, Savdeep
2009-01-01
We construct new examples of torsional heterotic backgrounds using duality with orientifold flux compactifications. We explain how duality provides a perturbative solution to the type I/heterotic string Bianchi identity. The choice of connection used in the Bianchi identity plays an important role in the construction. We propose the existence of a much larger landscape of compact torsional geometries using string duality. Finally, we present some quantum exact metrics that correspond to NS5-branes placed on an elliptic space. These metrics describe how torus isometries are broken by NS flux.
Geometrie verstehen: statisch - kinematisch
Kroll, Ekkehard
Dem Allgemeinen steht begrifflich das Besondere gegenüber. In diesem Sinne sind allgemeine Überlegungen zum Verstehen von Mathematik zu ergänzen durch Untersuchungen hinsichtlich des Verstehens der einzelnen mathematischen Disziplinen, insbesondere der Geometrie. Hier haben viele Schülerinnen und Schüler Probleme. Diese rühren hauptsächlich daher, dass eine fertige geometrische Konstruktion in ihrer statischen Präsentation auf Papier nicht mehr die einzelnen Konstruktionsschritte erkennen lässt; zum Nachvollzug müssen sie daher ergänzend in einer Konstruktionsbeschreibung festgehalten werden.
Kendig, Keith
2015-01-01
Designed to make learning introductory algebraic geometry as easy as possible, this text is intended for advanced undergraduates and graduate students who have taken a one-year course in algebra and are familiar with complex analysis. This newly updated second edition enhances the original treatment's extensive use of concrete examples and exercises with numerous figures that have been specially redrawn in Adobe Illustrator. An introductory chapter that focuses on examples of curves is followed by a more rigorous and careful look at plane curves. Subsequent chapters explore commutative ring th
Abhyankar, Shreeram Shankar
1964-01-01
This book provides, for use in a graduate course or for self-study by graduate students, a well-motivated treatment of several topics, especially the following: (1) algebraic treatment of several complex variables; (2) geometric approach to algebraic geometry via analytic sets; (3) survey of local algebra; (4) survey of sheaf theory. The book has been written in the spirit of Weierstrass. Power series play the dominant role. The treatment, being algebraic, is not restricted to complex numbers, but remains valid over any complete-valued field. This makes it applicable to situations arising from
Akopyan, A V
2007-01-01
The book is devoted to the properties of conics (plane curves of second degree) that can be formulated and proved using only elementary geometry. Starting with the well-known optical properties of conics, the authors move to less trivial results, both classical and contemporary. In particular, the chapter on projective properties of conics contains a detailed analysis of the polar correspondence, pencils of conics, and the Poncelet theorem. In the chapter on metric properties of conics the authors discuss, in particular, inscribed conics, normals to conics, and the Poncelet theorem for confoca
2015-01-01
This stimulating volume offers a broad collection of the principles of geometry and trigonometry and contains colorful diagrams to bring mathematical principles to life. Subjects are enriched by references to famous mathematicians and their ideas, and the stories are presented in a very comprehensible way. Readers investigate the relationships of points, lines, surfaces, and solids. They study construction methods for drawing figures, a wealth of facts about these figures, and above all, methods to prove the facts. They learn about triangle measure for circular motion, sine and cosine, tangent
REA, The Editors of
2012-01-01
REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Geometry I includes methods of proof, points, lines, planes, angles, congruent angles and line segments, triangles, parallelism, quadrilaterals, geometric inequalities, and geometric
Graded geometry and Poisson reduction
Cattaneo, A S; Zambon, M
2009-01-01
The main result of [2] extends the Marsden-Ratiu reduction theorem [4] in Poisson geometry, and is proven by means of graded geometry. In this note we provide the background material about graded geometry necessary for the proof in [2]. Further, we provide an alternative algebraic proof for the main result. ©2009 American Institute of Physics
Conference on Complex Geometry and Mirror Symmetry
Vinet, Luc; Yau, Shing-Tung; Mirror Symmetry III
1999-01-01
This book presents surveys from a workshop held during the theme year in geometry and topology at the Centre de recherches mathématiques (CRM, University of Montréal). The volume is in some sense a sequel to Mirror Symmetry I (1998) and Mirror Symmetry II (1996), copublished by the AMS and International Press. Included are recent developments in the theory of mirror manifolds and the related areas of complex and symplectic geometry. The long introductory articles explain the key physical ideas and motivation, namely conformal field theory, supersymmetry, and string theory. Open problems are emphasized. Thus the book provides an efficient way for a very broad audience of mathematicians and physicists to reach the frontier of research in this fast expanding area. - See more at: http://bookstore.ams.org/amsip-10#sthash.DbxEFJDx.dpuf
Bochnak, Jacek; Roy, Marie-Françoise
1998-01-01
This book is a systematic treatment of real algebraic geometry, a subject that has strong interrelation with other areas of mathematics: singularity theory, differential topology, quadratic forms, commutative algebra, model theory, complexity theory etc. The careful and clearly written account covers both basic concepts and up-to-date research topics. It may be used as text for a graduate course. The present edition is a substantially revised and expanded English version of the book "Géometrie algébrique réelle" originally published in French, in 1987, as Volume 12 of ERGEBNISSE. Since the publication of the French version the theory has made advances in several directions. Many of these are included in this English version. Thus the English book may be regarded as a completely new treatment of the subject.
Critique of information geometry
International Nuclear Information System (INIS)
Skilling, John
2014-01-01
As applied to probability, information geometry fails because probability distributions do not form a metric space. Probability theory rests on a compelling foundation of elementary symmetries, which also support information (aka minus entropy, Kullback-Leibler) H(p;q) as the unique measure of divergence from source probability distribution q to destination p. Because the only compatible connective H is from≠to asymmetric, H(p;q)≠H(q;p), there can be no compatible geometrical distance (which would necessarily be from=to symmetric). Hence there is no distance relationship compatible with the structure of probability theory. Metrics g and densities sqrt(det(g)) interpreted as prior probabilities follow from the definition of distance, and must fail likewise. Various metrics and corresponding priors have been proposed, Fisher's being the most popular, but all must behave unacceptably. This is illustrated with simple counter-examples
International Nuclear Information System (INIS)
Correa, Diego H.; Silva, Guillermo A.
2008-01-01
We discuss how geometrical and topological aspects of certain (1/2)-BPS type IIB geometries are captured by their dual operators in N = 4 Super Yang-Mills theory. The type IIB solutions are characterized by arbitrary droplet pictures in a plane and we consider, in particular, axially symmetric droplets. The 1-loop anomalous dimension of the dual gauge theory operators probed with single traces is described by some bosonic lattice Hamiltonians. These Hamiltonians are shown to encode the topology of the droplets. In appropriate BMN limits, the Hamiltonians spectrum reproduces the spectrum of near-BPS string excitations propagating along each of the individual edges of the droplet. We also study semiclassical regimes for the Hamiltonians. For droplets having disconnected constituents, the Hamiltonian admits different complimentary semiclassical descriptions, each one replicating the semiclassical description for closed strings extending in each of the constituents
Emergent geometry of membranes
Energy Technology Data Exchange (ETDEWEB)
Badyn, Mathias Hudoba de; Karczmarek, Joanna L.; Sabella-Garnier, Philippe; Yeh, Ken Huai-Che [Department of Physics and Astronomy, University of British Columbia,6224 Agricultural Road, Vancouver (Canada)
2015-11-13
In work http://dx.doi.org/10.1103/PhysRevD.86.086001, a surface embedded in flat ℝ{sup 3} is associated to any three hermitian matrices. We study this emergent surface when the matrices are large, by constructing coherent states corresponding to points in the emergent geometry. We find the original matrices determine not only shape of the emergent surface, but also a unique Poisson structure. We prove that commutators of matrix operators correspond to Poisson brackets. Through our construction, we can realize arbitrary noncommutative membranes: for example, we examine a round sphere with a non-spherically symmetric Poisson structure. We also give a natural construction for a noncommutative torus embedded in ℝ{sup 3}. Finally, we make remarks about area and find matrix equations for minimal area surfaces.
Geometry through history Euclidean, hyperbolic, and projective geometries
Dillon, Meighan I
2018-01-01
Presented as an engaging discourse, this textbook invites readers to delve into the historical origins and uses of geometry. The narrative traces the influence of Euclid’s system of geometry, as developed in his classic text The Elements, through the Arabic period, the modern era in the West, and up to twentieth century mathematics. Axioms and proof methods used by mathematicians from those periods are explored alongside the problems in Euclidean geometry that lead to their work. Students cultivate skills applicable to much of modern mathematics through sections that integrate concepts like projective and hyperbolic geometry with representative proof-based exercises. For its sophisticated account of ancient to modern geometries, this text assumes only a year of college mathematics as it builds towards its conclusion with algebraic curves and quaternions. Euclid’s work has affected geometry for thousands of years, so this text has something to offer to anyone who wants to broaden their appreciation for the...
On organizing principles of discrete differential geometry. Geometry of spheres
International Nuclear Information System (INIS)
Bobenko, Alexander I; Suris, Yury B
2007-01-01
Discrete differential geometry aims to develop discrete equivalents of the geometric notions and methods of classical differential geometry. This survey contains a discussion of the following two fundamental discretization principles: the transformation group principle (smooth geometric objects and their discretizations are invariant with respect to the same transformation group) and the consistency principle (discretizations of smooth parametrized geometries can be extended to multidimensional consistent nets). The main concrete geometric problem treated here is discretization of curvature-line parametrized surfaces in Lie geometry. Systematic use of the discretization principles leads to a discretization of curvature-line parametrization which unifies circular and conical nets.
Higher geometry an introduction to advanced methods in analytic geometry
Woods, Frederick S
2005-01-01
For students of mathematics with a sound background in analytic geometry and some knowledge of determinants, this volume has long been among the best available expositions of advanced work on projective and algebraic geometry. Developed from Professor Woods' lectures at the Massachusetts Institute of Technology, it bridges the gap between intermediate studies in the field and highly specialized works.With exceptional thoroughness, it presents the most important general concepts and methods of advanced algebraic geometry (as distinguished from differential geometry). It offers a thorough study
An introduction to incidence geometry
De Bruyn, Bart
2016-01-01
This book gives an introduction to the field of Incidence Geometry by discussing the basic families of point-line geometries and introducing some of the mathematical techniques that are essential for their study. The families of geometries covered in this book include among others the generalized polygons, near polygons, polar spaces, dual polar spaces and designs. Also the various relationships between these geometries are investigated. Ovals and ovoids of projective spaces are studied and some applications to particular geometries will be given. A separate chapter introduces the necessary mathematical tools and techniques from graph theory. This chapter itself can be regarded as a self-contained introduction to strongly regular and distance-regular graphs. This book is essentially self-contained, only assuming the knowledge of basic notions from (linear) algebra and projective and affine geometry. Almost all theorems are accompanied with proofs and a list of exercises with full solutions is given at the end...
International Nuclear Information System (INIS)
Buescher, R.
2005-01-01
Casimir interactions are interactions induced by quantum vacuum fluctuations and thermal fluctuations of the electromagnetic field. Using a path integral quantization for the gauge field, an effective Gaussian action will be derived which is the starting point to compute Casimir forces between macroscopic objects analytically and numerically. No assumptions about the independence of the material and shape dependent contributions to the interaction are made. We study the limit of flat surfaces in further detail and obtain a concise derivation of Lifshitz' theory of molecular forces. For the case of ideally conducting boundaries, the Gaussian action will be calculated explicitly. Both limiting cases are also discussed within the framework of a scalar field quantization approach, which is applicable for translationally invariant geometries. We develop a non-perturbative approach to calculate the Casimir interaction from the Gaussian action for periodically deformed and ideally conducting objects numerically. The obtained results reveal two different scaling regimes for the Casimir force as a function of the distance between the objects, their deformation wavelength and -amplitude. The results confirm that the interaction is non-additive, especially in the presence of strong geometric deformations. Furthermore, the numerical approach is extended to calculate lateral Casimir forces. The results are consistent with the results of the proximity-force approximation for large deformation wavelengths. A qualitatively different behaviour between the normal and lateral force is revealed. We also establish a relation between the boundary induced change of the of the density of states for the scalar Helmholtz equation and the Casimir interaction using the path integral method. For statically deformed boundaries, this relation can be expressed as a novel trace formula, which is formally similar to the so-called Krein-Friedel-Lloyd formula. While the latter formula describes the
Planetary Image Geometry Library
Deen, Robert C.; Pariser, Oleg
2010-01-01
The Planetary Image Geometry (PIG) library is a multi-mission library used for projecting images (EDRs, or Experiment Data Records) and managing their geometry for in-situ missions. A collection of models describes cameras and their articulation, allowing application programs such as mosaickers, terrain generators, and pointing correction tools to be written in a multi-mission manner, without any knowledge of parameters specific to the supported missions. Camera model objects allow transformation of image coordinates to and from view vectors in XYZ space. Pointing models, specific to each mission, describe how to orient the camera models based on telemetry or other information. Surface models describe the surface in general terms. Coordinate system objects manage the various coordinate systems involved in most missions. File objects manage access to metadata (labels, including telemetry information) in the input EDRs and RDRs (Reduced Data Records). Label models manage metadata information in output files. Site objects keep track of different locations where the spacecraft might be at a given time. Radiometry models allow correction of radiometry for an image. Mission objects contain basic mission parameters. Pointing adjustment ("nav") files allow pointing to be corrected. The object-oriented structure (C++) makes it easy to subclass just the pieces of the library that are truly mission-specific. Typically, this involves just the pointing model and coordinate systems, and parts of the file model. Once the library was developed (initially for Mars Polar Lander, MPL), adding new missions ranged from two days to a few months, resulting in significant cost savings as compared to rewriting all the application programs for each mission. Currently supported missions include Mars Pathfinder (MPF), MPL, Mars Exploration Rover (MER), Phoenix, and Mars Science Lab (MSL). Applications based on this library create the majority of operational image RDRs for those missions. A
Initiation to global Finslerian geometry
Akbar-Zadeh, Hassan
2006-01-01
After a brief description of the evolution of thinking on Finslerian geometry starting from Riemann, Finsler, Berwald and Elie Cartan, the book gives a clear and precise treatment of this geometry. The first three chapters develop the basic notions and methods, introduced by the author, to reach the global problems in Finslerian Geometry. The next five chapters are independent of each other, and deal with among others the geometry of generalized Einstein manifolds, the classification of Finslerian manifolds of constant sectional curvatures. They also give a treatment of isometric, affine, p
Directory of Open Access Journals (Sweden)
C. SPÎNU
2008-04-01
Full Text Available Iron(II, cobalt(II, nickel (II, copper (II, zinc(II and cadmium(II complexes of the type ML2Cl2, where M is a metal and L is the Schiff base N-(2-thienylmethylenemethanamine (TNAM formed by the condensation of 2-thiophenecarboxaldehyde and methylamine, were prepared and characterized by elemental analysis as well as magnetic and spectroscopic measurements. The elemental analyses suggest the stoichiometry to be 1:2 (metal:ligand. Magnetic susceptibility data coupled with electronic, ESR and Mössbauer spectra suggest a distorted octahedral structure for the Fe(II, Co(II and Ni(II complexes, a square-planar geometry for the Cu(II compound and a tetrahedral geometry for the Zn(II and Cd(II complexes. The infrared and NMR spectra of the complexes agree with co-ordination to the central metal atom through nitrogen and sulphur atoms. Conductance measurements suggest the non-electrolytic nature of the complexes, except for the Cu(II, Zn(II and Cd(II complexes, which are 1:2 electrolytes. The Schiff base and its metal chelates were screened for their biological activity against Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa and the metal chelates were found to possess better antibacterial activity than that of the uncomplexed Schiff base.
DEFF Research Database (Denmark)
Frisvad, Jeppe Revall
Interaction of light and matter produces the appearance of materials. To deal with the immense complexity of nature, light and matter is modelled at a macroscopic level in computer graphics. This work is the first to provide the link between the microscopic physical theories of light and matter...... of a material and determine the contents of the material. The book is in four parts. Part I provides the link between microscopic and macroscopic theories of light. Part II describes how to use the properties of microscopic particles to compute the macroscopic properties of materials. Part III illustrates...
Directory of Open Access Journals (Sweden)
Šárka Nedomová
2013-01-01
Full Text Available Precise quantification of the profile of egg can provide a powerful tool for the analysis of egg shape for various biological problems. A new approach to the geometry of a Ostrich’s egg profile is presented here using an analysing the egg’s digital photo by edge detection techniques. The obtained points on the eggshell counter are fitted by the Fourier series. The obtained equations describing an egg profile have been used to calculate radii of curvature. The radii of the curvature at the important point of the egg profile (sharp end, blunt end and maximum thickness are independent on the egg shape index. The exact values of the egg surface and the egg volume have been obtained. These quantities are also independent on the egg shape index. These quantities can be successively estimated on the basis of simplified equations which are expressed in terms of the egg length, L¸ and its width, B. The surface area of the eggshells also exhibits good correlation with the egg long circumference length. Some limitations of the most used procedures have been also shown.
Nonperturbative quantum geometries
International Nuclear Information System (INIS)
Jacobson, T.; California Univ., Santa Barbara; Smolin, L.; California Univ., Santa Barbara
1988-01-01
Using the self-dual representation of quantum general relativity, based on Ashtekar's new phase space variables, we present an infinite dimensional family of quantum states of the gravitational field which are exactly annihilated by the hamiltonian constraint. These states are constructed from Wilson loops for Ashtekar's connection (which is the spatial part of the left handed spin connection). We propose a new regularization procedure which allows us to evaluate the action of the hamiltonian constraint on these states. Infinite linear combinations of these states which are formally annihilated by the diffeomorphism constraints as well are also described. These are explicit examples of physical states of the gravitational field - and for the compact case are exact zero eigenstates of the hamiltonian of quantum general relativity. Several different approaches to constructing diffeomorphism invariant states in the self dual representation are also described. The physical interpretation of the states described here is discussed. However, as we do not yet know the physical inner product, any interpretation is at this stage speculative. Nevertheless, this work suggests that quantum geometry at Planck scales might be much simpler when explored in terms of the parallel transport of left-handed spinors than when explored in terms of the three metric. (orig.)
Bhatia, Rajendra
2013-01-01
This book is an outcome of the Indo-French Workshop on Matrix Information Geometries (MIG): Applications in Sensor and Cognitive Systems Engineering, which was held in Ecole Polytechnique and Thales Research and Technology Center, Palaiseau, France, in February 23-25, 2011. The workshop was generously funded by the Indo-French Centre for the Promotion of Advanced Research (IFCPAR). During the event, 22 renowned invited french or indian speakers gave lectures on their areas of expertise within the field of matrix analysis or processing. From these talks, a total of 17 original contribution or state-of-the-art chapters have been assembled in this volume. All articles were thoroughly peer-reviewed and improved, according to the suggestions of the international referees. The 17 contributions presented are organized in three parts: (1) State-of-the-art surveys & original matrix theory work, (2) Advanced matrix theory for radar processing, and (3) Matrix-based signal processing applications.
GPS: Geometry, Probability, and Statistics
Field, Mike
2012-01-01
It might be said that for most occupations there is now less of a need for mathematics than there was say fifty years ago. But, the author argues, geometry, probability, and statistics constitute essential knowledge for everyone. Maybe not the geometry of Euclid, but certainly geometrical ways of thinking that might enable us to describe the world…
Surrogate Modeling for Geometry Optimization
DEFF Research Database (Denmark)
Rojas Larrazabal, Marielba de la Caridad; Abraham, Yonas; Holzwarth, Natalie
2009-01-01
A new approach for optimizing the nuclear geometry of an atomic system is described. Instead of the original expensive objective function (energy functional), a small number of simpler surrogates is used.......A new approach for optimizing the nuclear geometry of an atomic system is described. Instead of the original expensive objective function (energy functional), a small number of simpler surrogates is used....
Kaehler geometry and SUSY mechanics
International Nuclear Information System (INIS)
Bellucci, Stefano; Nersessian, Armen
2001-01-01
We present two examples of SUSY mechanics related with Kaehler geometry. The first system is the N = 4 supersymmetric one-dimensional sigma-model proposed in hep-th/0101065. Another system is the N = 2 SUSY mechanics whose phase space is the external algebra of an arbitrary Kaehler manifold. The relation of these models with antisymplectic geometry is discussed
A prediction for bubbling geometries
Okuda, Takuya
2007-01-01
We study the supersymmetric circular Wilson loops in N=4 Yang-Mills theory. Their vacuum expectation values are computed in the parameter region that admits smooth bubbling geometry duals. The results are a prediction for the supergravity action evaluated on the bubbling geometries for Wilson loops.
Molecular motion in restricted geometries
Indian Academy of Sciences (India)
Molecular dynamics in restricted geometries is known to exhibit anomalous behaviour. Diffusion, translational or rotational, of molecules is altered significantly on confinement in restricted geometries. Quasielastic neutron scattering (QENS) offers a unique possibility of studying molecular motion in such systems. Both time ...
Shafarevich, Igor Rostislavovich
1994-01-01
Shafarevich Basic Algebraic Geometry 2 The second edition of Shafarevich's introduction to algebraic geometry is in two volumes. The second volume covers schemes and complex manifolds, generalisations in two different directions of the affine and projective varieties that form the material of the first volume. Two notable additions in this second edition are the section on moduli spaces and representable functors, motivated by a discussion of the Hilbert scheme, and the section on Kähler geometry. The book ends with a historical sketch discussing the origins of algebraic geometry. From the Zentralblatt review of this volume: "... one can only respectfully repeat what has been said about the first part of the book (...): a great textbook, written by one of the leading algebraic geometers and teachers himself, has been reworked and updated. As a result the author's standard textbook on algebraic geometry has become even more important and valuable. Students, teachers, and active researchers using methods of al...
Optical geometry across the horizon
International Nuclear Information System (INIS)
Jonsson, Rickard
2006-01-01
In a recent paper (Jonsson and Westman 2006 Class. Quantum Grav. 23 61), a generalization of optical geometry, assuming a non-shearing reference congruence, is discussed. Here we illustrate that this formalism can be applied to (a finite four-volume) of any spherically symmetric spacetime. In particular we apply the formalism, using a non-static reference congruence, to do optical geometry across the horizon of a static black hole. While the resulting geometry in principle is time dependent, we can choose the reference congruence in such a manner that an embedding of the geometry always looks the same. Relative to the embedded geometry the reference points are then moving. We discuss the motion of photons, inertial forces and gyroscope precession in this framework
Auluck, S. K. H.
2017-11-01
This paper continues earlier discussion [S. K. H. Auluck, Phys. Plasmas 21, 102515 (2014)] concerning the formulation of conservation laws of mass, momentum, and energy in a local curvilinear coordinate system in the dense plasma focus. This formulation makes use of the revised Gratton-Vargas snowplow model [S. K. H. Auluck, Phys. Plasmas 20, 112501 (2013)], which provides an analytically defined imaginary surface in three dimensions which resembles the experimentally determined shape of the plasma. Unit vectors along the local tangent to this surface, along the azimuth, and along the local normal define a right-handed orthogonal local curvilinear coordinate system. The simplifying assumption that physical quantities have significant variation only along the normal enables writing laws of conservation of mass, momentum, and energy in the form of effectively one-dimensional hyperbolic conservation law equations using expressions for various differential operators derived for this coordinate system. This formulation demonstrates the highly non-trivial result that the axial magnetic field and toroidally streaming fast ions, experimentally observed by multiple prestigious laboratories, are natural consequences of conservation of mass, momentum, and energy in the curved geometry of the dense plasma focus current sheath. The present paper continues the discussion in the context of a 3-region shock structure similar to the one experimentally observed: an unperturbed region followed by a hydrodynamic shock containing some current followed by a magnetic piston. Rankine-Hugoniot conditions are derived, and expressions are obtained for the specific volumes and pressures using the mass-flux between the hydrodynamic shock and the magnetic piston and current fraction in the hydrodynamic shock as unknown parameters. For the special case of a magnetic piston that remains continuously in contact with the fluid being pushed, the theory gives closed form algebraic results for the
Complex analysis and CR geometry
Zampieri, Giuseppe
2008-01-01
Cauchy-Riemann (CR) geometry is the study of manifolds equipped with a system of CR-type equations. Compared to the early days when the purpose of CR geometry was to supply tools for the analysis of the existence and regularity of solutions to the \\bar\\partial-Neumann problem, it has rapidly acquired a life of its own and has became an important topic in differential geometry and the study of non-linear partial differential equations. A full understanding of modern CR geometry requires knowledge of various topics such as real/complex differential and symplectic geometry, foliation theory, the geometric theory of PDE's, and microlocal analysis. Nowadays, the subject of CR geometry is very rich in results, and the amount of material required to reach competence is daunting to graduate students who wish to learn it. However, the present book does not aim at introducing all the topics of current interest in CR geometry. Instead, an attempt is made to be friendly to the novice by moving, in a fairly relaxed way, f...
The geometry description markup language
International Nuclear Information System (INIS)
Chytracek, R.
2001-01-01
Currently, a lot of effort is being put on designing complex detectors. A number of simulation and reconstruction frameworks and applications have been developed with the aim to make this job easier. A very important role in this activity is played by the geometry description of the detector apparatus layout and its working environment. However, no real common approach to represent geometry data is available and such data can be found in various forms starting from custom semi-structured text files, source code (C/C++/FORTRAN), to XML and database solutions. The XML (Extensible Markup Language) has proven to provide an interesting approach for describing detector geometries, with several different but incompatible XML-based solutions existing. Therefore, interoperability and geometry data exchange among different frameworks is not possible at present. The author introduces a markup language for geometry descriptions. Its aim is to define a common approach for sharing and exchanging of geometry description data. Its requirements and design have been driven by experience and user feedback from existing projects which have their geometry description in XML
Fallow), Stray
2009-01-01
Having trouble with geometry? Do Pi, The Pythagorean Theorem, and angle calculations just make your head spin? Relax. With Head First 2D Geometry, you'll master everything from triangles, quads and polygons to the time-saving secrets of similar and congruent angles -- and it'll be quick, painless, and fun. Through entertaining stories and practical examples from the world around you, this book takes you beyond boring problems. You'll actually use what you learn to make real-life decisions, like using angles and parallel lines to crack a mysterious CSI case. Put geometry to work for you, and
Walsh, Edward T
2014-01-01
This introductory text is designed to help undergraduate students develop a solid foundation in geometry. Early chapters progress slowly, cultivating the necessary understanding and self-confidence for the more rapid development that follows. The extensive treatment can be easily adapted to accommodate shorter courses. Starting with the language of mathematics as expressed in the algebra of logic and sets, the text covers geometric sets of points, separation and angles, triangles, parallel lines, similarity, polygons and area, circles, space geometry, and coordinate geometry. Each chapter incl
Differential geometry curves, surfaces, manifolds
Kohnel, Wolfgang
2002-01-01
This carefully written book is an introduction to the beautiful ideas and results of differential geometry. The first half covers the geometry of curves and surfaces, which provide much of the motivation and intuition for the general theory. Special topics that are explored include Frenet frames, ruled surfaces, minimal surfaces and the Gauss-Bonnet theorem. The second part is an introduction to the geometry of general manifolds, with particular emphasis on connections and curvature. The final two chapters are insightful examinations of the special cases of spaces of constant curvature and Einstein manifolds. The text is illustrated with many figures and examples. The prerequisites are undergraduate analysis and linear algebra.
Advances in discrete differential geometry
2016-01-01
This is one of the first books on a newly emerging field of discrete differential geometry and an excellent way to access this exciting area. It surveys the fascinating connections between discrete models in differential geometry and complex analysis, integrable systems and applications in computer graphics. The authors take a closer look at discrete models in differential geometry and dynamical systems. Their curves are polygonal, surfaces are made from triangles and quadrilaterals, and time is discrete. Nevertheless, the difference between the corresponding smooth curves, surfaces and classical dynamical systems with continuous time can hardly be seen. This is the paradigm of structure-preserving discretizations. Current advances in this field are stimulated to a large extent by its relevance for computer graphics and mathematical physics. This book is written by specialists working together on a common research project. It is about differential geometry and dynamical systems, smooth and discrete theories, ...
Hyperbolic Metamaterials with Complex Geometry
DEFF Research Database (Denmark)
Lavrinenko, Andrei; Andryieuski, Andrei; Zhukovsky, Sergei
2016-01-01
We investigate new geometries of hyperbolic metamaterialssuch as highly corrugated structures, nanoparticle monolayer assemblies, super-structured or vertically arranged multilayersand nanopillars. All structures retain basic propertiesof hyperbolic metamaterials, but have functionality improved...
An introduction to differential geometry
Willmore, T J
2012-01-01
This text employs vector methods to explore the classical theory of curves and surfaces. Topics include basic theory of tensor algebra, tensor calculus, calculus of differential forms, and elements of Riemannian geometry. 1959 edition.
Symplectic geometry and Fourier analysis
Wallach, Nolan R
2018-01-01
Suitable for graduate students in mathematics, this monograph covers differential and symplectic geometry, homogeneous symplectic manifolds, Fourier analysis, metaplectic representation, quantization, Kirillov theory. Includes Appendix on Quantum Mechanics by Robert Hermann. 1977 edition.
Topology and geometry for physicists
Nash, Charles
1983-01-01
Differential geometry and topology are essential tools for many theoretical physicists, particularly in the study of condensed matter physics, gravity, and particle physics. Written by physicists for physics students, this text introduces geometrical and topological methods in theoretical physics and applied mathematics. It assumes no detailed background in topology or geometry, and it emphasizes physical motivations, enabling students to apply the techniques to their physics formulas and research. ""Thoroughly recommended"" by The Physics Bulletin, this volume's physics applications range fr
Spectral dimension of quantum geometries
International Nuclear Information System (INIS)
Calcagni, Gianluca; Oriti, Daniele; Thürigen, Johannes
2014-01-01
The spectral dimension is an indicator of geometry and topology of spacetime and a tool to compare the description of quantum geometry in various approaches to quantum gravity. This is possible because it can be defined not only on smooth geometries but also on discrete (e.g., simplicial) ones. In this paper, we consider the spectral dimension of quantum states of spatial geometry defined on combinatorial complexes endowed with additional algebraic data: the kinematical quantum states of loop quantum gravity (LQG). Preliminarily, the effects of topology and discreteness of classical discrete geometries are studied in a systematic manner. We look for states reproducing the spectral dimension of a classical space in the appropriate regime. We also test the hypothesis that in LQG, as in other approaches, there is a scale dependence of the spectral dimension, which runs from the topological dimension at large scales to a smaller one at short distances. While our results do not give any strong support to this hypothesis, we can however pinpoint when the topological dimension is reproduced by LQG quantum states. Overall, by exploring the interplay of combinatorial, topological and geometrical effects, and by considering various kinds of quantum states such as coherent states and their superpositions, we find that the spectral dimension of discrete quantum geometries is more sensitive to the underlying combinatorial structures than to the details of the additional data associated with them. (paper)
Investigating the Problem Solving Competency of Pre Service Teachers in Dynamic Geometry Environment
Haja, Shajahan
2005-01-01
This study investigated the problem-solving competency of four secondary pre service teachers (PSTs) of University of London as they explored geometry problems in dynamic geometry environment (DGE) in 2004. A constructivist experiment was designed in which dynamic software Cabri-Geometre II (hereafter Cabri) was used as an interactive medium.…
Emergent Geometry from Entropy and Causality
Engelhardt, Netta
generalizations are discussed, both at the classical and perturbatively quantum limits. In particular, several No Go Theorems are proven, indicative of a conclusion that supplementary approaches or information may be necessary to recover the full spacetime geometry. Part II of this thesis involves the relation between geometry and causality, the property that information cannot travel faster than light. Requiring this of any quantum field theory results in constraints on string theory setups that are dual to quantum field theories via the AdS/CFT correspondence. At the level of perturbative quantum gravity, it is shown that causality in the field theory constraints the causal structure in the bulk. At the level of nonperturbative quantum string theory, we find that constraints on causal signals restrict the possible ways in which curvature singularities can be resolved in string theory. Finally, a new program of research is proposed for the construction of bulk geometry from the divergences of correlation functions in the dual field theory. This divergence structure is linked to the causal structure of the bulk and of the field theory.
Directory of Open Access Journals (Sweden)
Monika Tyagi
2014-01-01
Full Text Available Complexes of Mn(II, Co(II, Ni(II, Pd(II and Pt(II were synthesized with the macrocyclic ligand, i.e., 2,3,9,10-tetraketo-1,4,8,11-tetraazacycoletradecane. The ligand was prepared by the [2 + 2] condensation of diethyloxalate and 1,3-diamino propane and characterized by elemental analysis, mass, IR and 1H NMR spectral studies. All the complexes were characterized by elemental analysis, molar conductance, magnetic susceptibility measurements, IR, electronic and electron paramagnetic resonance spectral studies. The molar conductance measurements of Mn(II, Co(II and Ni(II complexes in DMF correspond to non electrolyte nature, whereas Pd(II and Pt(II complexes are 1:2 electrolyte. On the basis of spectral studies an octahedral geometry has been assigned for Mn(II, Co(II and Ni(II complexes, whereas square planar geometry assigned for Pd(II and Pt(II. In vitro the ligand and its metal complexes were evaluated against plant pathogenic fungi (Fusarium odum, Aspergillus niger and Rhizoctonia bataticola and some compounds found to be more active as commercially available fungicide like Chlorothalonil.
Black Holes and Large Order Quantum Geometry
Huang, Min-xin; Mariño, Marcos; Tavanfar, Alireza
2009-01-01
We study five-dimensional black holes obtained by compactifying M theory on Calabi-Yau threefolds. Recent progress in solving topological string theory on compact, one-parameter models allows us to test numerically various conjectures about these black holes. We give convincing evidence that a microscopic description based on Gopakumar-Vafa invariants accounts correctly for their macroscopic entropy, and we check that highly nontrivial cancellations -which seem necessary to resolve the so-called entropy enigma in the OSV conjecture- do in fact occur. We also study analytically small 5d black holes obtained by wrapping M2 branes in the fiber of K3 fibrations. By using heterotic/type II duality we obtain exact formulae for the microscopic degeneracies in various geometries, and we compute their asymptotic expansion for large charges.
Advanced geometries for ballistic neutron guides
International Nuclear Information System (INIS)
Schanzer, Christian; Boeni, Peter; Filges, Uwe; Hils, Thomas
2004-01-01
Sophisticated neutron guide systems take advantage of supermirrors being used to increase the neutron flux. However, the finite reflectivity of supermirrors becomes a major loss mechanism when many reflections occur, e.g. in long neutron guides and for long wavelengths. In order to reduce the number of reflections, ballistic neutron guides have been proposed. Usually linear tapered sections are used to enlarge the cross-section and finally, focus the beam to the sample. The disadvantages of linear tapering are (i) an inhomogeneous phase space at the sample position and (ii) a decreasing flux with increasing distance from the exit of the guide. We investigate the properties of parabolic and elliptic tapering for ballistic neutron guides, using the Monte Carlo program McStas with a new guide component dedicated for such geometries. We show that the maximum flux can indeed be shifted away from the exit of the guide. In addition we explore the possibilities of parabolic and elliptic geometries to create point like sources for dedicated experimental demands
Variable geometry Darrieus wind machine
Pytlinski, J. T.; Serrano, D.
1983-08-01
A variable geometry Darrieus wind machine is proposed. The lower attachment of the blades to the rotor can move freely up and down the axle allowing the blades of change shape during rotation. Experimental data for a 17 m. diameter Darrieus rotor and a theoretical model for multiple streamtube performance prediction were used to develop a computer simulation program for studying parameters that affect the machine's performance. This new variable geometry concept is described and interrelated with multiple streamtube theory through aerodynamic parameters. The computer simulation study shows that governor behavior of a Darrieus turbine can not be attained by a standard turbine operating within normally occurring rotational velocity limits. A second generation variable geometry Darrieus wind turbine which uses a telescopic blade is proposed as a potential improvement on the studied concept.
Euclidean geometry and its subgeometries
Specht, Edward John; Calkins, Keith G; Rhoads, Donald H
2015-01-01
In this monograph, the authors present a modern development of Euclidean geometry from independent axioms, using up-to-date language and providing detailed proofs. The axioms for incidence, betweenness, and plane separation are close to those of Hilbert. This is the only axiomatic treatment of Euclidean geometry that uses axioms not involving metric notions and that explores congruence and isometries by means of reflection mappings. The authors present thirteen axioms in sequence, proving as many theorems as possible at each stage and, in the process, building up subgeometries, most notably the Pasch and neutral geometries. Standard topics such as the congruence theorems for triangles, embedding the real numbers in a line, and coordinatization of the plane are included, as well as theorems of Pythagoras, Desargues, Pappas, Menelaus, and Ceva. The final chapter covers consistency and independence of axioms, as well as independence of definition properties. There are over 300 exercises; solutions to many of the...
Guide to Computational Geometry Processing
DEFF Research Database (Denmark)
Bærentzen, Jakob Andreas; Gravesen, Jens; Anton, François
be processed before it is useful. This Guide to Computational Geometry Processing reviews the algorithms for processing geometric data, with a practical focus on important techniques not covered by traditional courses on computer vision and computer graphics. This is balanced with an introduction...... to the theoretical and mathematical underpinnings of each technique, enabling the reader to not only implement a given method, but also to understand the ideas behind it, its limitations and its advantages. Topics and features: Presents an overview of the underlying mathematical theory, covering vector spaces......, metric space, affine spaces, differential geometry, and finite difference methods for derivatives and differential equations Reviews geometry representations, including polygonal meshes, splines, and subdivision surfaces Examines techniques for computing curvature from polygonal meshes Describes...
Electrodynamics and Spacetime Geometry: Foundations
Cabral, Francisco; Lobo, Francisco S. N.
2017-02-01
We explore the intimate connection between spacetime geometry and electrodynamics. This link is already implicit in the constitutive relations between the field strengths and excitations, which are an essential part of the axiomatic structure of electromagnetism, clearly formulated via integration theory and differential forms. We review the foundations of classical electromagnetism based on charge and magnetic flux conservation, the Lorentz force and the constitutive relations. These relations introduce the conformal part of the metric and allow the study of electrodynamics for specific spacetime geometries. At the foundational level, we discuss the possibility of generalizing the vacuum constitutive relations, by relaxing the fixed conditions of homogeneity and isotropy, and by assuming that the symmetry properties of the electro-vacuum follow the spacetime isometries. The implications of this extension are briefly discussed in the context of the intimate connection between electromagnetism and the geometry (and causal structure) of spacetime.
Dayside merging and cusp geometry
International Nuclear Information System (INIS)
Crooker, N.U.
1979-01-01
Geometrical considerations are presented to show that dayside magnetic merging when constrained to act only where the fields are antiparallel results in lines of merging that converge at the polar cusps. An important consequence of this geometry is that no accelerated flows are predicted across the dayside magnetopause. Acceleration owing to merging acts in opposition to the magnetosheath flow at the merging point and produces the variably directed, slower-than-magnetosheath flows observed in the entry layer. Another consequence of the merging geometry is that much of the time closed field lines constitute the subsolar region of the magnetopause. The manner in which the polar cap convection patterns predicted by the proposed geometry change as the interplanetary field is rotated through 360 0 provides a unifying description of how the observed single circular vortex and the crescent-shaped double vortex patterns mutually evolve under the influence of a single operating principle
DOGBONE GEOMETRY FOR RECIRCULATING ACCELERATORS
International Nuclear Information System (INIS)
BERG, J.S.; JOHNSTONE, C.; SUMMERS, D.
2001-01-01
Most scenarios for accelerating muons require recirculating acceleration. A racetrack shape for the accelerator requires particles with lower energy in early passes to traverse almost the same length of arc as particles with the highest energy. This extra arc length may lead to excess decays and excess cost. Changing the geometry to a dogbone shape, where there is a single linac and the beam turns completely around at the end of the linac, returning to the same end of the linac from which it exited, addresses this problem. In this design, the arc lengths can be proportional to the particle's momentum. This paper proposes an approximate cost model for a recirculating accelerator, attempts to make cost-optimized designs for both racetrack and dogbone geometries, and demonstrates that the dogbone geometry does appear to be more cost effective
Geometric Transformations in Engineering Geometry
Directory of Open Access Journals (Sweden)
I. F. Borovikov
2015-01-01
Full Text Available Recently, for business purposes, in view of current trends and world experience in training engineers, research and faculty staff there has been a need to transform traditional courses of descriptive geometry into the course of engineering geometry in which the geometrical transformations have to become its main section. On the basis of critical analysis the paper gives suggestions to improve a presentation technique of this section both in the classroom and in academic literature, extend an application scope of geometrical transformations to solve the position and metric tasks and simulation of surfaces, as well as to design complex engineering configurations, which meet a number of pre-specified conditions.The article offers to make a number of considerable amendments to the terms and definitions used in the existing courses of descriptive geometry. It draws some conclusions and makes the appropriate proposals on feasibility of coordination in teaching the movement transformation in the courses of analytical and descriptive geometry. This will provide interdisciplinary team teaching and allow students to be convinced that a combination of analytical and graphic ways to solve geometric tasks is useful and reasonable.The traditional sections of learning courses need to be added with a theory of projective and bi-rational transformations. In terms of application simplicity and convenience it is enough to consider the central transformations when solving the applied tasks. These transformations contain a beam of sub-invariant (low-invariant straight lines on which the invariant curve induces non-involution and involution projectivities. The expediency of nonlinear transformations application is shown in the article by a specific example of geometric modeling of the interfacing surface "spar-blade".Implementation of these suggestions will contribute to a real transformation of a traditional course of descriptive geometry to the engineering geometry
KEMAJUAN BELAJAR SISWA PADA GEOMETRI TRANSFORMASI MENGGUNAKAN AKTIVITAS REFLEKSI GEOMETRI
Directory of Open Access Journals (Sweden)
Irkham Ulil Albab
2014-10-01
Full Text Available Abstrak: Penelitian ini bertujuan untuk mendeskripsikan kemajuan belajar siswa pada materi geometri transformasi yang didukung dengan serangkaian aktivitas belajar berdasarkan Pendidikan Matematika Realistik Indonesia. Penelitian didesain melalui tiga tahap, yaitu tahapan perancangan desain awal, pengujian desain melalui pembelajaran awal dan pembelajaran eksperimental, dan tahap analisis retrospektif. Dalam penelitian ini, Hypothetical Learning Trajectory, HLT (HLT berperan penting sebagai desain pembelajaran sekaligus instrumen penelitian. HLT diujikan terhadap 26 siswa kelas VII. Data dikumpulkan dengan teknik wawancara, pengamatan, dan catatan lapangan. Hasil penelitian menunjukkan bahwa desain pembelajaran ini mampu menstimulasi siswa untuk memberikan karakteristik refleksi dan transformasi geometri lainnya secara informal, mengklasifikasikannya dalam transformasi isometri pada level kedua, dan menemukan garis bantuan refleksi pada level yang lebih formal. Selain itu, garis bantuan refleksi digunakan oleh siswa untuk menggambar bayangan refleksi dan pola pencerminan serta memahami bentuk rotasi dan translasi sebagai kombinasi refleksi adalah level tertinggi. Keyword: transformasi geometri, kombinasi refleksi, rotasi, translasi, design research, HLT STUDENTS’ LEARNING PROGRESS ON TRANSFORMATION GEOMETRY USING THE GEOMETRY REFLECTION ACTIVITIES Abstract: This study was aimed at describing the students’ learning progress on transformation geometry supported by a set of learning activities based on Indonesian Realistic Mathematics Education. The study was designed into three stages, that is, the preliminary design stage, the design testing through initial instruction and experiment, and the restrospective analysis stage. In this study, Hypothetical Learning Trajectory (HLT played an important role as an instructional design and a research instrument. HLT was tested to 26 seventh grade students. The data were collected through interviews
Graphical debugging of combinational geometry
International Nuclear Information System (INIS)
Burns, T.J.; Smith, M.S.
1992-01-01
A graphical debugger for combinatorial geometry being developed at Oak Ridge National Laboratory is described. The prototype debugger consists of two parts: a FORTRAN-based ''view'' generator and a Microsoft Windows application for displaying the geometry. Options and features of both modules are discussed. Examples illustrating the various options available are presented. The potential for utilizing the images produced using the debugger as a visualization tool for the output of the radiation transport codes is discussed as is the future direction of the development
Lectures on Algebraic Geometry I
Harder, Gunter
2012-01-01
This book and the following second volume is an introduction into modern algebraic geometry. In the first volume the methods of homological algebra, theory of sheaves, and sheaf cohomology are developed. These methods are indispensable for modern algebraic geometry, but they are also fundamental for other branches of mathematics and of great interest in their own. In the last chapter of volume I these concepts are applied to the theory of compact Riemann surfaces. In this chapter the author makes clear how influential the ideas of Abel, Riemann and Jacobi were and that many of the modern metho
Combinatorial geometry in the plane
Hadwiger, Hugo; Klee, Victor
2014-01-01
Geared toward advanced undergraduates familiar with analysis and college geometry, this concise book discusses theorems on topics restricted to the plane such as convexity, coverings, and graphs. In addition to helping students cultivate rigorous thought, the text encourages the development of mathematical intuition and clarifies the nature of mathematical research.The two-part treatment begins with specific topics including integral distances, covering problems, point set geometry and convexity, simple paradoxes involving point sets, and pure combinatorics, among other subjects. The second pa
Modern differential geometry for physicists
Isham, C J
1989-01-01
These notes are the content of an introductory course on modern, coordinate-free differential geometry which is taken by the first-year theoretical physics PhD students, or by students attending the one-year MSc course "Fundamental Fields and Forces" at Imperial College. The book is concerned entirely with mathematics proper, although the emphasis and detailed topics have been chosen with an eye to the way in which differential geometry is applied these days to modern theoretical physics. This includes not only the traditional area of general relativity but also the theory of Yang-Mills fields
Comparison theorems in Riemannian geometry
Cheeger, Jeff
2008-01-01
The central theme of this book is the interaction between the curvature of a complete Riemannian manifold and its topology and global geometry. The first five chapters are preparatory in nature. They begin with a very concise introduction to Riemannian geometry, followed by an exposition of Toponogov's theorem-the first such treatment in a book in English. Next comes a detailed presentation of homogeneous spaces in which the main goal is to find formulas for their curvature. A quick chapter of Morse theory is followed by one on the injectivity radius. Chapters 6-9 deal with many of the most re
Geometry, topology, and string theory
Energy Technology Data Exchange (ETDEWEB)
Varadarajan, Uday [Univ. of California, Berkeley, CA (United States)
2003-01-01
A variety of scenarios are considered which shed light upon the uses and limitations of classical geometric and topological notions in string theory. The primary focus is on situations in which D-brane or string probes of a given classical space-time see the geometry quite differently than one might naively expect. In particular, situations in which extra dimensions, non-commutative geometries as well as other non-local structures emerge are explored in detail. Further, a preliminary exploration of such issues in Lorentzian space-times with non-trivial causal structures within string theory is initiated.
Spatial geometry and special relativity
DEFF Research Database (Denmark)
Kneubil, Fabiana Botelho
2016-01-01
In this work, it is shown the interplay of relative and absolute entities, which are present in both spatial geometry and special relativity. In order to strengthen the understanding of special relativity, we discuss firstly an instance of geometry and the existence of both frame......-dependent and frame-independent entities. We depart from a subject well known by students, which is the three-dimensional geometric space in order to compare, afterwards, with the treatment of four-dimensional space in the special relativity. The differences and similarities between these two subjects are also...
Stochastic geometry and its applications
Chiu, Sung Nok; Kendall, Wilfrid S; Mecke, Joseph
2013-01-01
An extensive update to a classic text Stochastic geometry and spatial statistics play a fundamental role in many modern branches of physics, materials sciences, engineering, biology and environmental sciences. They offer successful models for the description of random two- and three-dimensional micro and macro structures and statistical methods for their analysis. The previous edition of this book has served as the key reference in its field for over 18 years and is regarded as the best treatment of the subject of stochastic geometry, both as a subject with vital a
Introduction to topology and geometry
Stahl, Saul
2014-01-01
An easily accessible introduction to over three centuries of innovations in geometry Praise for the First Edition ". . . a welcome alternative to compartmentalized treatments bound to the old thinking. This clearly written, well-illustrated book supplies sufficient background to be self-contained." -CHOICE This fully revised new edition offers the most comprehensive coverage of modern geometry currently available at an introductory level. The book strikes a welcome balance between academic rigor and accessibility, providing a complete and cohesive picture of the science with an unparallele
Algebraic geometry and theta functions
Coble, Arthur B
1929-01-01
This book is the result of extending and deepening all questions from algebraic geometry that are connected to the central problem of this book: the determination of the tritangent planes of a space curve of order six and genus four, which the author treated in his Colloquium Lecture in 1928 at Amherst. The first two chapters recall fundamental ideas of algebraic geometry and theta functions in such fashion as will be most helpful in later applications. In order to clearly present the state of the central problem, the author first presents the better-known cases of genus two (Chapter III) and
Geometry, topology, and string theory
International Nuclear Information System (INIS)
Varadarajan, Uday
2003-01-01
A variety of scenarios are considered which shed light upon the uses and limitations of classical geometric and topological notions in string theory. The primary focus is on situations in which D-brane or string probes of a given classical space-time see the geometry quite differently than one might naively expect. In particular, situations in which extra dimensions, non-commutative geometries as well as other non-local structures emerge are explored in detail. Further, a preliminary exploration of such issues in Lorentzian space-times with non-trivial causal structures within string theory is initiated
Photogrammetric computer vision statistics, geometry, orientation and reconstruction
Förstner, Wolfgang
2016-01-01
This textbook offers a statistical view on the geometry of multiple view analysis, required for camera calibration and orientation and for geometric scene reconstruction based on geometric image features. The authors have backgrounds in geodesy and also long experience with development and research in computer vision, and this is the first book to present a joint approach from the converging fields of photogrammetry and computer vision. Part I of the book provides an introduction to estimation theory, covering aspects such as Bayesian estimation, variance components, and sequential estimation, with a focus on the statistically sound diagnostics of estimation results essential in vision metrology. Part II provides tools for 2D and 3D geometric reasoning using projective geometry. This includes oriented projective geometry and tools for statistically optimal estimation and test of geometric entities and transformations and their relations, tools that are useful also in the context of uncertain reasoning in po...
African Journals Online (AJOL)
DR. AMINU
Department of Chemistry Bayero University, P. M. B. 3011, Kano, Nigeria. E-mail: hnuhu2000@yahoo.com. ABSTRACT. The manganese (II), cobalt (II), nickel (II) and .... water and common organic solvents, but are readily soluble in acetone. The molar conductance measurement [Table 3] of the complex compounds in.
Flow, transport and diffusion in random geometries II: applications
Asinari, Pietro
2015-01-07
Multilevel Monte Carlo (MLMC) is an efficient and flexible solution for the propagation of uncertainties in complex models, where an explicit parametrization of the input randomness is not available or too expensive. We present several applications of our MLMC algorithm for flow, transport and diffusion in random heterogeneous materials. The absolute permeability and effective diffusivity (or formation factor) of micro-scale porous media samples are computed and the uncertainty related to the sampling procedures is studied. The algorithm is then extended to the transport problems and multiphase flows for the estimation of dispersion and relative permeability curves. The impact of water drops on random stuctured surfaces, with microfluidics applications to self-cleaning materials, is also studied and simulated. Finally the estimation of new drag correlation laws for poly-dispersed dilute and dense suspensions is presented.
Flow, transport and diffusion in random geometries II: applications
Asinari, Pietro; Ceglia, Diego; Icardi, Matteo; Prudhomme, Serge; Tempone, Raul
2015-01-01
Multilevel Monte Carlo (MLMC) is an efficient and flexible solution for the propagation of uncertainties in complex models, where an explicit parametrization of the input randomness is not available or too expensive. We present several applications of our MLMC algorithm for flow, transport and diffusion in random heterogeneous materials. The absolute permeability and effective diffusivity (or formation factor) of micro-scale porous media samples are computed and the uncertainty related to the sampling procedures is studied. The algorithm is then extended to the transport problems and multiphase flows for the estimation of dispersion and relative permeability curves. The impact of water drops on random stuctured surfaces, with microfluidics applications to self-cleaning materials, is also studied and simulated. Finally the estimation of new drag correlation laws for poly-dispersed dilute and dense suspensions is presented.
Geometry of Kaluza-Klein theory. II. Field equations
International Nuclear Information System (INIS)
Maia, M.D.
1985-01-01
In the preceding paper a geometric formulation of Kaluza-Klein theory was presented with the basic assumption that the space-time is locally and isometrically embedded in the high-dimensional space which emerged at the big bang. In the present note the Gauss-Codazzi-Ricci equations which are the integrability equations for the embedding are interpreted as the dynamical equations for a low-energy observer. The second quadratic form which results from the embedding is interpreted as a fundamental spin-two massless field. The dynamics for an observer with high-energy probes is described as usual by the Einstein-Hilbert action defined in the high-dimensional space and dimensionally reduced by integration over the internal space. The behavior of fermion masses under different gravitational field strengths is implemented by use of the mass operator defined with the second-order Casimir operator of the embedding symmetry group
Discrete Geometry Toolkit for Shape Optimization, Phase II
National Aeronautics and Space Administration — Simulation-based design optimization has been steadily maturing over the past two decades, but not without its own unique and persistent challenges. The proposed...
The Idea of Order at Geometry Class.
Rishel, Thomas
The idea of order in geometry is explored using the experience of assignments given to undergraduates in a college geometry course "From Space to Geometry." Discussed are the definition of geometry, and earth measurement using architecture, art, and common experience. This discussion concludes with a consideration of the question of whether…
Teaching Spatial Geometry in a Virtual World
DEFF Research Database (Denmark)
Förster, Klaus-Tycho
2017-01-01
Spatial geometry is one of the fundamental mathematical building blocks of any engineering education. However, it is overshadowed by planar geometry in the curriculum between playful early primary education and later analytical geometry, leaving a multi-year gap where spatial geometry is absent...
Analogical Reasoning in Geometry Education
Magdas, Ioana
2015-01-01
The analogical reasoning isn't used only in mathematics but also in everyday life. In this article we approach the analogical reasoning in Geometry Education. The novelty of this article is a classification of geometrical analogies by reasoning type and their exemplification. Our classification includes: analogies for understanding and setting a…
Normal forms in Poisson geometry
Marcut, I.T.
2013-01-01
The structure of Poisson manifolds is highly nontrivial even locally. The first important result in this direction is Conn's linearization theorem around fixed points. One of the main results of this thesis (Theorem 2) is a normal form theorem in Poisson geometry, which is the Poisson-geometric
Exploring Bundling Theory with Geometry
Eckalbar, John C.
2006-01-01
The author shows how instructors might successfully introduce students in principles and intermediate microeconomic theory classes to the topic of bundling (i.e., the selling of two or more goods as a package, rather than separately). It is surprising how much students can learn using only the tools of high school geometry. To be specific, one can…
Stochastic Modelling of River Geometry
DEFF Research Database (Denmark)
Sørensen, John Dalsgaard; Schaarup-Jensen, K.
1996-01-01
Numerical hydrodynamic river models are used in a large number of applications to estimate critical events for rivers. These estimates are subject to a number of uncertainties. In this paper, the problem to evaluate these estimates using probabilistic methods is considered. Stochastic models for ...... for river geometries are formulated and a coupling between hydraulic computational methods and numerical reliability methods is presented....
Matter in toy dynamical geometries
Konopka, T.J.
2009-01-01
One of the objectives of theories describing quantum dynamical geometry is to compute expectation values of geometrical observables. The results of such computations can be affected by whether or not matter is taken into account. It is thus important to understand to what extent and to what effect
Ca??adas, Mar??a C.; Molina, Marta; Gallardo, Sandra; Mart??nez-Santaolalla, Manuel J.; Pe??as, Mar??a
2010-01-01
In this work we present an activity for High School students in which various mathematical concepts of plane and spatial geometry are involved. The final objective of the proposed tasks is constructing a particular polyhedron, the cube, by using a modality of origami called modular origami.
Granular flows in constrained geometries
Murthy, Tejas; Viswanathan, Koushik
Confined geometries are widespread in granular processing applications. The deformation and flow fields in such a geometry, with non-trivial boundary conditions, determine the resultant mechanical properties of the material (local porosity, density, residual stresses etc.). We present experimental studies of deformation and plastic flow of a prototypical granular medium in different nontrivial geometries- flat-punch compression, Couette-shear flow and a rigid body sliding past a granular half-space. These geometries represent simplified scaled-down versions of common industrial configurations such as compaction and dredging. The corresponding granular flows show a rich variety of flow features, representing the entire gamut of material types, from elastic solids (beam buckling) to fluids (vortex-formation, boundary layers) and even plastically deforming metals (dead material zone, pile-up). The effect of changing particle-level properties (e.g., shape, size, density) on the observed flows is also explicitly demonstrated. Non-smooth contact dynamics particle simulations are shown to reproduce some of the observed flow features quantitatively. These results showcase some central challenges facing continuum-scale constitutive theories for dynamic granular flows.
General Relativity: Geometry Meets Physics
Thomsen, Dietrick E.
1975-01-01
Observing the relationship of general relativity and the geometry of space-time, the author questions whether the rest of physics has geometrical explanations. As a partial answer he discusses current research on subatomic particles employing geometric transformations, and cites the existence of geometrical definitions of physical quantities such…
Learners engaging with transformation geometry
African Journals Online (AJOL)
participants engaged in investigative semi-structured interviews with the resear- chers. ... Keywords: analysis; conversions; transformation geometry; transformations; treatments .... semiotic systems of representation is not only to designate mathematical objects or to com- municate but also to ... Research design. We believe ...
Multivariable calculus and differential geometry
Walschap, Gerard
2015-01-01
This text is a modern in-depth study of the subject that includes all the material needed from linear algebra. It then goes on to investigate topics in differential geometry, such as manifolds in Euclidean space, curvature, and the generalization of the fundamental theorem of calculus known as Stokes' theorem.
College geometry a unified development
Kay, David C
2011-01-01
""The book is a comprehensive textbook on basic geometry. … Key features of the book include numerous figures and many problems, more than half of which come with hints or even complete solutions. Frequent historical comments add to making the reading a pleasant one.""-Michael Joswig, Zentralblatt MATH 1273
Mahaffey, Michael L.
One of a series of experimental units for children at the preschool level, this booklet deals with geometric concepts. A unit on volume and a unit on linear measurement are covered; for each unit a discussion of mathematical objectives, a list of materials needed, and a sequence of learning activities are provided. Directions are specified for the…
DEFF Research Database (Denmark)
Byg din egen boomerang, kast den, se den flyve, forstå hvorfor og hvordan den vender tilbage, og grib den. Det handler om opdriften på vingerne når du flyver, men det handler også og allermest om den mærkværdige gyroskop-effekt, du bruger til at holde balancen, når du kører på cykel. Vi vil bruge...
Discrete differential geometry. Consistency as integrability
Bobenko, Alexander I.; Suris, Yuri B.
2005-01-01
A new field of discrete differential geometry is presently emerging on the border between differential and discrete geometry. Whereas classical differential geometry investigates smooth geometric shapes (such as surfaces), and discrete geometry studies geometric shapes with finite number of elements (such as polyhedra), the discrete differential geometry aims at the development of discrete equivalents of notions and methods of smooth surface theory. Current interest in this field derives not ...
Numerically robust geometry engine for compound solid geometries
International Nuclear Information System (INIS)
Vlachoudis, V.; Sinuela-Pastor, D.
2013-01-01
Monte Carlo programs heavily rely on a fast and numerically robust solid geometry engines. However the success of solid modeling, depends on facilities for specifying and editing parameterized models through a user-friendly graphical front-end. Such a user interface has to be fast enough in order to be interactive for 2D and/or 3D displays, but at the same time numerically robust in order to display possible modeling errors at real time that could be critical for the simulation. The graphical user interface Flair for FLUKA currently employs such an engine where special emphasis has been given on being fast and numerically robust. The numerically robustness is achieved by a novel method of estimating the floating precision of the operations, which dynamically adapts all the decision operations accordingly. Moreover a predictive caching mechanism is ensuring that logical errors in the geometry description are found online, without compromising the processing time by checking all regions. (authors)
Code subspaces for LLM geometries
Berenstein, David; Miller, Alexandra
2018-03-01
We consider effective field theory around classical background geometries with a gauge theory dual, specifically those in the class of LLM geometries. These are dual to half-BPS states of N= 4 SYM. We find that the language of code subspaces is natural for discussing the set of nearby states, which are built by acting with effective fields on these backgrounds. This work extends our previous work by going beyond the strict infinite N limit. We further discuss how one can extract the topology of the state beyond N→∞ and find that, as before, uncertainty and entanglement entropy calculations provide a useful tool to do so. Finally, we discuss obstructions to writing down a globally defined metric operator. We find that the answer depends on the choice of reference state that one starts with. Therefore, within this setup, there is ambiguity in trying to write an operator that describes the metric globally.
Euclidean distance geometry an introduction
Liberti, Leo
2017-01-01
This textbook, the first of its kind, presents the fundamentals of distance geometry: theory, useful methodologies for obtaining solutions, and real world applications. Concise proofs are given and step-by-step algorithms for solving fundamental problems efficiently and precisely are presented in Mathematica®, enabling the reader to experiment with concepts and methods as they are introduced. Descriptive graphics, examples, and problems, accompany the real gems of the text, namely the applications in visualization of graphs, localization of sensor networks, protein conformation from distance data, clock synchronization protocols, robotics, and control of unmanned underwater vehicles, to name several. Aimed at intermediate undergraduates, beginning graduate students, researchers, and practitioners, the reader with a basic knowledge of linear algebra will gain an understanding of the basic theories of distance geometry and why they work in real life.
Fractal geometry and computer graphics
Sakas, Georgios; Peitgen, Heinz-Otto; Englert, Gabriele
1992-01-01
Fractal geometry has become popular in the last 15 years, its applications can be found in technology, science, or even arts. Fractal methods and formalism are seen today as a general, abstract, but nevertheless practical instrument for the description of nature in a wide sense. But it was Computer Graphics which made possible the increasing popularity of fractals several years ago, and long after their mathematical formulation. The two disciplines are tightly linked. The book contains the scientificcontributions presented in an international workshop in the "Computer Graphics Center" in Darmstadt, Germany. The target of the workshop was to present the wide spectrum of interrelationships and interactions between Fractal Geometry and Computer Graphics. The topics vary from fundamentals and new theoretical results to various applications and systems development. All contributions are original, unpublished papers.The presentations have been discussed in two working groups; the discussion results, together with a...
The geometry of celestial mechanics
Geiges, Hansjörg
2016-01-01
Celestial mechanics is the branch of mathematical astronomy devoted to studying the motions of celestial bodies subject to the Newtonian law of gravitation. This mathematical introductory textbook reveals that even the most basic question in celestial mechanics, the Kepler problem, leads to a cornucopia of geometric concepts: conformal and projective transformations, spherical and hyperbolic geometry, notions of curvature, and the topology of geodesic flows. For advanced undergraduate and beginning graduate students, this book explores the geometric concepts underlying celestial mechanics and is an ideal companion for introductory courses. The focus on the history of geometric ideas makes it perfect supplementary reading for students in elementary geometry and topology. Numerous exercises, historical notes and an extensive bibliography provide all the contextual information required to gain a solid grounding in celestial mechanics.
Differential geometry and mathematical physics
Rudolph, Gerd
Starting from an undergraduate level, this book systematically develops the basics of • Calculus on manifolds, vector bundles, vector fields and differential forms, • Lie groups and Lie group actions, • Linear symplectic algebra and symplectic geometry, • Hamiltonian systems, symmetries and reduction, integrable systems and Hamilton-Jacobi theory. The topics listed under the first item are relevant for virtually all areas of mathematical physics. The second and third items constitute the link between abstract calculus and the theory of Hamiltonian systems. The last item provides an introduction to various aspects of this theory, including Morse families, the Maslov class and caustics. The book guides the reader from elementary differential geometry to advanced topics in the theory of Hamiltonian systems with the aim of making current research literature accessible. The style is that of a mathematical textbook,with full proofs given in the text or as exercises. The material is illustrated by numerous d...
Grassmannian geometry of scattering amplitudes
Arkani-Hamed, Nima; Cachazo, Freddy; Goncharov, Alexander; Postnikov, Alexander; Trnka, Jaroslav
2016-01-01
Outlining a revolutionary reformulation of the foundations of perturbative quantum field theory, this book is a self-contained and authoritative analysis of the application of this new formulation to the case of planar, maximally supersymmetric Yang–Mills theory. The book begins by deriving connections between scattering amplitudes and Grassmannian geometry from first principles before introducing novel physical and mathematical ideas in a systematic manner accessible to both physicists and mathematicians. The principle players in this process are on-shell functions which are closely related to certain sub-strata of Grassmannian manifolds called positroids - in terms of which the classification of on-shell functions and their relations becomes combinatorially manifest. This is an essential introduction to the geometry and combinatorics of the positroid stratification of the Grassmannian and an ideal text for advanced students and researchers working in the areas of field theory, high energy physics, and the...
Foliation theory in algebraic geometry
McKernan, James; Pereira, Jorge
2016-01-01
Featuring a blend of original research papers and comprehensive surveys from an international team of leading researchers in the thriving fields of foliation theory, holomorphic foliations, and birational geometry, this book presents the proceedings of the conference "Foliation Theory in Algebraic Geometry," hosted by the Simons Foundation in New York City in September 2013. Topics covered include: Fano and del Pezzo foliations; the cone theorem and rank one foliations; the structure of symmetric differentials on a smooth complex surface and a local structure theorem for closed symmetric differentials of rank two; an overview of lifting symmetric differentials from varieties with canonical singularities and the applications to the classification of AT bundles on singular varieties; an overview of the powerful theory of the variety of minimal rational tangents introduced by Hwang and Mok; recent examples of varieties which are hyperbolic and yet the Green-Griffiths locus is the whole of X; and a classificati...
Groups and Geometries : Siena Conference
Kantor, William; Lunardon, Guglielmo; Pasini, Antonio; Tamburini, Maria
1998-01-01
On September 1-7, 1996 a conference on Groups and Geometries took place in lovely Siena, Italy. It brought together experts and interested mathematicians from numerous countries. The scientific program centered around invited exposi tory lectures; there also were shorter research announcements, including talks by younger researchers. The conference concerned a broad range of topics in group theory and geometry, with emphasis on recent results and open problems. Special attention was drawn to the interplay between group-theoretic methods and geometric and combinatorial ones. Expanded versions of many of the talks appear in these Proceedings. This volume is intended to provide a stimulating collection of themes for a broad range of algebraists and geometers. Among those themes, represented within the conference or these Proceedings, are aspects of the following: 1. the classification of finite simple groups, 2. the structure and properties of groups of Lie type over finite and algebraically closed fields of f...
Needle decompositions in Riemannian geometry
Klartag, Bo'az
2017-01-01
The localization technique from convex geometry is generalized to the setting of Riemannian manifolds whose Ricci curvature is bounded from below. In a nutshell, the author's method is based on the following observation: When the Ricci curvature is non-negative, log-concave measures are obtained when conditioning the Riemannian volume measure with respect to a geodesic foliation that is orthogonal to the level sets of a Lipschitz function. The Monge mass transfer problem plays an important role in the author's analysis.
Systematics of IIB spinorial geometry
Gran, U.; Gutowski, J.; Papadopoulos, G.; Roest, D.
2005-01-01
We reduce the classification of all supersymmetric backgrounds of IIB supergravity to the evaluation of the Killing spinor equations and their integrability conditions, which contain the field equations, on five types of spinors. This extends the work of [hep-th/0503046] to IIB supergravity. We give the expressions of the Killing spinor equations on all five types of spinors. In this way, the Killing spinor equations become a linear system for the fluxes, geometry and spacetime derivatives of...
Geometry Dependence of Stellarator Turbulence
International Nuclear Information System (INIS)
Mynick, H.E.; Xanthopoulos, P.; Boozer, A.H.
2009-01-01
Using the nonlinear gyrokinetic code package GENE/GIST, we study the turbulent transport in a broad family of stellarator designs, to understand the geometry-dependence of the microturbulence. By using a set of flux tubes on a given flux surface, we construct a picture of the 2D structure of the microturbulence over that surface, and relate this to relevant geometric quantities, such as the curvature, local shear, and effective potential in the Schrodinger-like equation governing linear drift modes
Superbanana orbits in stellarator geometries
International Nuclear Information System (INIS)
Derr, J.A.; Shohet, J.L.
1979-04-01
The presence of superbanana orbit types localized to either the interior or the exterior of stellarators and torsatrons is numerically investigated for 3.5 MeV alpha particles. The absence of the interior superbanana in both geometries is found to be due to non-conservation of the action. Exterior superbananas are found in the stellarator only, as a consequence of the existence of closed helical magnetic wells. No superbananas of either type are found in the torsatron
Turtle geometry the Python way
Battle, S.
2014-01-01
An introduction to coding using Python’s on-screen ‘turtle’ that can be commanded with a few simple instructions including forward, backward, left and right. The turtle leaves a trace that can be used to draw geometric figures. This workshop is aimed at beginners of all ages. The aim is to learn a smattering of programming and a little bit of geometry in a fun way.
Topics in modern differential geometry
Verstraelen, Leopold
2017-01-01
A variety of introductory articles is provided on a wide range of topics, including variational problems on curves and surfaces with anisotropic curvature. Experts in the fields of Riemannian, Lorentzian and contact geometry present state-of-the-art reviews of their topics. The contributions are written on a graduate level and contain extended bibliographies. The ten chapters are the result of various doctoral courses which were held in 2009 and 2010 at universities in Leuven, Serbia, Romania and Spain.
Computational geometry for reactor applications
International Nuclear Information System (INIS)
Brown, F.B.; Bischoff, F.G.
1988-01-01
Monte Carlo codes for simulating particle transport involve three basic computational sections: a geometry package for locating particles and computing distances to regional boundaries, a physics package for analyzing interactions between particles and problem materials, and an editing package for determining event statistics and overall results. This paper describes the computational geometry methods in RACER, a vectorized Monte Carlo code used for reactor physics analysis, so that comparisons may be made with techniques used in other codes. The principal applications for RACER are eigenvalue calculations and power distributions associated with reactor core physics analysis. Successive batches of neutrons are run until convergence and acceptable confidence intervals are obtained, with typical problems involving >10 6 histories. As such, the development of computational geometry methods has emphasized two basic needs: a flexible but compact geometric representation that permits accurate modeling of reactor core details and efficient geometric computation to permit very large numbers of histories to be run. The current geometric capabilities meet these needs effectively, supporting a variety of very large and demanding applications
Number theory III Diophantine geometry
1991-01-01
From the reviews of the first printing of this book, published as Volume 60 of the Encyclopaedia of Mathematical Sciences: "Between number theory and geometry there have been several stimulating influences, and this book records of these enterprises. This author, who has been at the centre of such research for many years, is one of the best guides a reader can hope for. The book is full of beautiful results, open questions, stimulating conjectures and suggestions where to look for future developments. This volume bears witness of the broad scope of knowledge of the author, and the influence of several people who have commented on the manuscript before publication ... Although in the series of number theory, this volume is on diophantine geometry, and the reader will notice that algebraic geometry is present in every chapter. ... The style of the book is clear. Ideas are well explained, and the author helps the reader to pass by several technicalities. Reading and rereading this book I noticed that the topics ...
Riemannian geometry and geometric analysis
Jost, Jürgen
2017-01-01
This established reference work continues to provide its readers with a gateway to some of the most interesting developments in contemporary geometry. It offers insight into a wide range of topics, including fundamental concepts of Riemannian geometry, such as geodesics, connections and curvature; the basic models and tools of geometric analysis, such as harmonic functions, forms, mappings, eigenvalues, the Dirac operator and the heat flow method; as well as the most important variational principles of theoretical physics, such as Yang-Mills, Ginzburg-Landau or the nonlinear sigma model of quantum field theory. The present volume connects all these topics in a systematic geometric framework. At the same time, it equips the reader with the working tools of the field and enables her or him to delve into geometric research. The 7th edition has been systematically reorganized and updated. Almost no page has been left unchanged. It also includes new material, for instance on symplectic geometry, as well as the B...
Donaldson invariants in algebraic geometry
International Nuclear Information System (INIS)
Goettsche, L.
2000-01-01
In these lectures I want to give an introduction to the relation of Donaldson invariants with algebraic geometry: Donaldson invariants are differentiable invariants of smooth compact 4-manifolds X, defined via moduli spaces of anti-self-dual connections. If X is an algebraic surface, then these moduli spaces can for a suitable choice of the metric be identified with moduli spaces of stable vector bundles on X. This can be used to compute Donaldson invariants via methods of algebraic geometry and has led to a lot of activity on moduli spaces of vector bundles and coherent sheaves on algebraic surfaces. We will first recall the definition of the Donaldson invariants via gauge theory. Then we will show the relation between moduli spaces of anti-self-dual connections and moduli spaces of vector bundles on algebraic surfaces, and how this makes it possible to compute Donaldson invariants via algebraic geometry methods. Finally we concentrate on the case that the number b + of positive eigenvalues of the intersection form on the second homology of the 4-manifold is 1. In this case the Donaldson invariants depend on the metric (or in the algebraic geometric case on the polarization) via a system of walls and chambers. We will study the change of the invariants under wall-crossing, and use this in particular to compute the Donaldson invariants of rational algebraic surfaces. (author)
Time-dependent, Bianchi II, rotating universe
International Nuclear Information System (INIS)
Reboucas, M.J.
1981-01-01
An exact cosmological solution of Einstein's equations which has time-dependent rotation is presented. The t-constant sections are of Bianchi type II. The source of this geometry is a fluid which has not been thermalized. (Author) [pt
Algebraic Geometry and Number Theory Summer School
Sarıoğlu, Celal; Soulé, Christophe; Zeytin, Ayberk
2017-01-01
This lecture notes volume presents significant contributions from the “Algebraic Geometry and Number Theory” Summer School, held at Galatasaray University, Istanbul, June 2-13, 2014. It addresses subjects ranging from Arakelov geometry and Iwasawa theory to classical projective geometry, birational geometry and equivariant cohomology. Its main aim is to introduce these contemporary research topics to graduate students who plan to specialize in the area of algebraic geometry and/or number theory. All contributions combine main concepts and techniques with motivating examples and illustrative problems for the covered subjects. Naturally, the book will also be of interest to researchers working in algebraic geometry, number theory and related fields.
Geometry success in 20 minutes a day
LLC, LearningExpress
2014-01-01
Whether you're new to geometry or just looking for a refresher, Geometry Success in 20 Minutes a Day offers a 20-step lesson plan that provides quick and thorough instruction in practical, critical skills. Stripped of unnecessary math jargon but bursting with geometry essentials, Geometry Success in 20 Minutes a Day: Covers all vital geometry skills, from the basic building blocks of geometry to ratio, proportion, and similarity to trigonometry and beyond Provides hundreds of practice exercises in test format Applies geometr
Clustering in Hilbert simplex geometry
Nielsen, Frank; Sun, Ke
2017-01-01
has been used either by (i) setting the Riemannian metric tensor to the Fisher information matrix of the categorical distributions, or (ii) defining the information-geometric structure induced by a smooth dissimilarity measure, called a divergence
Network geometry with flavor: From complexity to quantum geometry
Bianconi, Ginestra; Rahmede, Christoph
2016-03-01
Network geometry is attracting increasing attention because it has a wide range of applications, ranging from data mining to routing protocols in the Internet. At the same time advances in the understanding of the geometrical properties of networks are essential for further progress in quantum gravity. In network geometry, simplicial complexes describing the interaction between two or more nodes play a special role. In fact these structures can be used to discretize a geometrical d -dimensional space, and for this reason they have already been widely used in quantum gravity. Here we introduce the network geometry with flavor s =-1 ,0 ,1 (NGF) describing simplicial complexes defined in arbitrary dimension d and evolving by a nonequilibrium dynamics. The NGF can generate discrete geometries of different natures, ranging from chains and higher-dimensional manifolds to scale-free networks with small-world properties, scale-free degree distribution, and nontrivial community structure. The NGF admits as limiting cases both the Bianconi-Barabási models for complex networks, the stochastic Apollonian network, and the recently introduced model for complex quantum network manifolds. The thermodynamic properties of NGF reveal that NGF obeys a generalized area law opening a new scenario for formulating its coarse-grained limit. The structure of NGF is strongly dependent on the dimensionality d . In d =1 NGFs grow complex networks for which the preferential attachment mechanism is necessary in order to obtain a scale-free degree distribution. Instead, for NGF with dimension d >1 it is not necessary to have an explicit preferential attachment rule to generate scale-free topologies. We also show that NGF admits a quantum mechanical description in terms of associated quantum network states. Quantum network states evolve by a Markovian dynamics and a quantum network state at time t encodes all possible NGF evolutions up to time t . Interestingly the NGF remains fully classical but
A Whirlwind Tour of Computational Geometry.
Graham, Ron; Yao, Frances
1990-01-01
Described is computational geometry which used concepts and results from classical geometry, topology, combinatorics, as well as standard algorithmic techniques such as sorting and searching, graph manipulations, and linear programing. Also included are special techniques and paradigms. (KR)
Optimizing solar-cell grid geometry
Crossley, A. P.
1969-01-01
Trade-off analysis and mathematical expressions calculate optimum grid geometry in terms of various cell parameters. Determination of the grid geometry provides proper balance between grid resistance and cell output to optimize the energy conversion process.
Nahid Nishat; Ashraf Malik
2016-01-01
A biodegradable polymer was synthesized by the modification reaction of polymeric starch with thiourea which is further modified by transition metals, Mn(II), Co(II), Ni(II), Cu(II) and Zn(II). All the polymeric compounds were characterized by (FT-IR) spectroscopy, 1H NMR spectroscopy, 13C NMR spectroscopy, UV–visible spectra, magnetic moment measurements, thermogravimetric analysis (TGA) and antibacterial activities. Polymer complexes of Mn(II), Co(II) and Ni(II) show octahedral geometry, wh...
International Nuclear Information System (INIS)
Gervais, J.L.
1993-01-01
By analyzing the extrinsic geometry of two dimensional surfaces chirally embedded in C P n (the C P n W-surface), we give exact treatments in various aspects of the classical W-geometry in the conformal gauge: First, the basis of tangent and normal vectors are defined at regular points of the surface, such that their infinitesimal displacements are given by connections which coincide with the vector potentials of the (conformal) A n -Toda Lax pair. Since the latter is known to be intrinsically related with the W symmetries, this gives the geometrical meaning of the A n W-Algebra. Second, W-surfaces are put in one-to-one correspondence with solutions of the conformally-reduced WZNW model, which is such that the Toda fields give the Cartan part in the Gauss decomposition of its solutions. Third, the additional variables of the Toda hierarchy are used as coordinates of C P n . This allows us to show that W-transformations may be extended as particular diffeomorphisms of this target-space. Higher-dimensional generalizations of the WZNW equations are derived and related with the Zakharov-Shabat equations of the Toda hierarchy. Fourth, singular points are studied from a global viewpoint, using our earlier observation that W-surfaces may be regarded as instantons. The global indices of the W-geometry, which are written in terms of the Toda fields, are shown to be the instanton numbers for associated mappings of W-surfaces into the Grassmannians. The relation with the singularities of W-surface is derived by combining the Toda equations with the Gauss-Bonnet theorem. (orig.)
Stochastic geometry for image analysis
Descombes, Xavier
2013-01-01
This book develops the stochastic geometry framework for image analysis purpose. Two main frameworks are described: marked point process and random closed sets models. We derive the main issues for defining an appropriate model. The algorithms for sampling and optimizing the models as well as for estimating parameters are reviewed. Numerous applications, covering remote sensing images, biological and medical imaging, are detailed. This book provides all the necessary tools for developing an image analysis application based on modern stochastic modeling.
Magnetoelectrostatic thruster physical geometry tests
Ramsey, W. D.
1981-01-01
Inert gas tests are conducted with several magnetoelectrostatic containment discharge chamber geometries. The configurations tested include three discharge chamber lengths; three boundary magnet patterns; two different flux density magnet materials; hemispherical and conical shaped thrusters having different surface-to-volume ratios; and two and three grid ion optics. Argon mass utilizations of 60 to 79% are attained at 210 to 280 eV/ion in different test configurations. Short hemi thruster configurations are found to produce 70 to 92% xenon mass utilization at 185 to 220 eV/ion.
Programming system for analytic geometry
International Nuclear Information System (INIS)
Raymond, Jacques
1970-01-01
After having outlined the characteristics of computing centres which do not comply with engineering tasks, notably the time required by all different tasks to be performed when developing a software (assembly, compilation, link edition, loading, run), and identified constraints specific to engineering, the author identifies the characteristics a programming system should have to suit engineering tasks. He discussed existing conversational systems and their programming language, and their main drawbacks. Then, he presents a system which aims at facilitating programming and addressing problems of analytic geometry and trigonometry
The geometry of special relativity
International Nuclear Information System (INIS)
Parizet, Jean
2008-01-01
This book for students in mathematics or physics shows the interest of geometry to understand special relativity as a consequence of invariance of Maxwell equations and of constancy of the speed of light. Space-time is actually provided with a geometrical structure and a physical interpretation: at each observer are associated his own time and his own physical space in which occur events he is concerned with. This leads to a natural approach to special relativity. The Lorentz group and its algebra are then studied by using matrices and the Pauli algebra. Quaternions are also addressed
Moduli spaces in algebraic geometry
International Nuclear Information System (INIS)
Goettsche, L.
2000-01-01
This volume of the new series of lecture notes of the Abdus Salam International Centre for Theoretical Physics contains the lecture notes of the School on Algebraic Geometry which took place at the Abdus Salam International Centre for Theoretical Physics from 26 July to 13 August 1999. The school consisted of 2 weeks of lecture courses and one week of conference. The topic of the school was moduli spaces. More specifically the lectures were divided into three subtopics: principal bundles on Riemann surfaces, moduli spaces of vector bundles and sheaves on projective varieties, and moduli spaces of curves
Worldsheet geometries of ambitwistor string
Energy Technology Data Exchange (ETDEWEB)
Ohmori, Kantaro [Department of Physics, the University of Tokyo,Hongo, Bunkyo-ku, Tokyo 133-0022 (Japan)
2015-06-12
Mason and Skinner proposed the ambitwistor string theory which directly reproduces the formulas for the amplitudes of massless particles proposed by Cachazo, He and Yuan. In this paper we discuss geometries of the moduli space of worldsheets associated to the bosonic or the RNS ambitwistor string. Further, we investigate the factorization properties of the amplitudes when an internal momentum is near on-shell in the abstract CFT language. Along the way, we propose the existence of the ambitwistor strings with three or four fermionic worldsheet currents.
Porous media geometry and transports
Adler, Pierre
1992-01-01
The goal of ""Porous Media: Geometry and Transports"" is to provide the basis of a rational and modern approach to porous media. This book emphasizes several geometrical structures (spatially periodic, fractal, and random to reconstructed) and the three major single-phase transports (diffusion, convection, and Taylor dispersion).""Porous Media"" serves various purposes. For students it introduces basic information on structure and transports. Engineers will find this book useful as a readily accessible assemblage of al the major experimental results pertaining to single-phase tr
Geometry of physical dispersion relations
International Nuclear Information System (INIS)
Raetzel, Dennis; Rivera, Sergio; Schuller, Frederic P.
2011-01-01
To serve as a dispersion relation, a cotangent bundle function must satisfy three simple algebraic properties. These conditions are derived from the inescapable physical requirements that local matter field dynamics must be predictive and allow for an observer-independent notion of positive energy. Possible modifications of the standard relativistic dispersion relation are thereby severely restricted. For instance, the dispersion relations associated with popular deformations of Maxwell theory by Gambini-Pullin or Myers-Pospelov are not admissible. Dispersion relations passing the simple algebraic checks derived here correspond to physically admissible Finslerian refinements of Lorentzian geometry.
Projective geometry and projective metrics
Busemann, Herbert
2005-01-01
The basic results and methods of projective and non-Euclidean geometry are indispensable for the geometer, and this book--different in content, methods, and point of view from traditional texts--attempts to emphasize that fact. Results of special theorems are discussed in detail only when they are needed to develop a feeling for the subject or when they illustrate a general method. On the other hand, an unusual amount of space is devoted to the discussion of the fundamental concepts of distance, motion, area, and perpendicularity.Topics include the projective plane, polarities and conic sectio
Tropical geometry of statistical models.
Pachter, Lior; Sturmfels, Bernd
2004-11-16
This article presents a unified mathematical framework for inference in graphical models, building on the observation that graphical models are algebraic varieties. From this geometric viewpoint, observations generated from a model are coordinates of a point in the variety, and the sum-product algorithm is an efficient tool for evaluating specific coordinates. Here, we address the question of how the solutions to various inference problems depend on the model parameters. The proposed answer is expressed in terms of tropical algebraic geometry. The Newton polytope of a statistical model plays a key role. Our results are applied to the hidden Markov model and the general Markov model on a binary tree.
Geometry of supersymmetric gauge theories
International Nuclear Information System (INIS)
Gieres, F.
1988-01-01
This monograph gives a detailed and pedagogical account of the geometry of rigid superspace and supersymmetric Yang-Mills theories. While the core of the text is concerned with the classical theory, the quantization and anomaly problem are briefly discussed following a comprehensive introduction to BRS differential algebras and their field theoretical applications. Among the treated topics are invariant forms and vector fields on superspace, the matrix-representation of the super-Poincare group, invariant connections on reductive homogeneous spaces and the supermetric approach. Various aspects of the subject are discussed for the first time in textbook and are consistently presented in a unified geometric formalism
An invitation to noncommutative geometry
Marcolli, Matilde
2008-01-01
This is the first existing volume that collects lectures on this important and fast developing subject in mathematics. The lectures are given by leading experts in the field and the range of topics is kept as broad as possible by including both the algebraic and the differential aspects of noncommutative geometry as well as recent applications to theoretical physics and number theory. Sample Chapter(s). A Walk in the Noncommutative Garden (1,639 KB). Contents: A Walk in the Noncommutative Garden (A Connes & M Marcolli); Renormalization of Noncommutative Quantum Field Theory (H Grosse & R Wulke
Trends and developments in computational geometry
Berg, de M.
1997-01-01
This paper discusses some trends and achievements in computational geometry during the past five years, with emphasis on problems related to computer graphics. Furthermore, a direction of research in computational geometry is discussed that could help in bringing the fields of computational geometry
Global affine differential geometry of hypersurfaces
Li, An-Min; Zhao, Guosong; Hu, Zejun
2015-01-01
This book draws a colorful and widespread picture of global affine hypersurface theory up to the most recent state. Moreover, the recent development revealed that affine differential geometry- as differential geometry in general- has an exciting intersection area with other fields of interest, like partial differential equations, global analysis, convex geometry and Riemann surfaces.
"WGL," a Web Laboratory for Geometry
Quaresma, Pedro; Santos, Vanda; Maric, Milena
2018-01-01
The role of information and communication technologies (ICT) in education is nowadays well recognised. The "Web Geometry Laboratory," is an e-learning, collaborative and adaptive, Web environment for geometry, integrating a well known dynamic geometry system. In a collaborative session, teachers and students, engaged in solving…
Theory for stationary nonlinear wave propagation in complex magnetic geometry
International Nuclear Information System (INIS)
Watanabe, T.; Hojo, H.; Nishikawa, Kyoji.
1977-08-01
We present our recent efforts to derive a systematic calculation scheme for nonlinear wave propagation in the self-consistent plasma profile in complex magnetic-field geometry. Basic assumptions and/or approximations are i) use of the collisionless two-fluid model with an equation of state; ii) restriction to a steady state propagation and iii) existence of modified magnetic surface, modification due to Coriolis' force. We discuss four situations: i) weak-field propagation without static flow, ii) arbitrary field strength with flow in axisymmetric system, iii) weak field limit of case ii) and iv) arbitrary field strength in nonaxisymmetric torus. Except for case iii), we derive a simple variation principle, similar to that of Seligar and Whitham, by introducing appropriate coordinates. In cases i) and iii), we derive explicit results for quasilinear profile modification. (auth.)
Computational geometry algorithms and applications
de Berg, Mark; Overmars, Mark; Schwarzkopf, Otfried
1997-01-01
Computational geometry emerged from the field of algorithms design and anal ysis in the late 1970s. It has grown into a recognized discipline with its own journals, conferences, and a large community of active researchers. The suc cess of the field as a research discipline can on the one hand be explained from the beauty of the problems studied and the solutions obtained, and, on the other hand, by the many application domains--computer graphics, geographic in formation systems (GIS), robotics, and others-in which geometric algorithms play a fundamental role. For many geometric problems the early algorithmic solutions were either slow or difficult to understand and implement. In recent years a number of new algorithmic techniques have been developed that improved and simplified many of the previous approaches. In this textbook we have tried to make these modem algorithmic solutions accessible to a large audience. The book has been written as a textbook for a course in computational geometry, but it can ...
Tearing modes in toroidal geometry
International Nuclear Information System (INIS)
Connor, J.W.; Cowley, S.C.; Hastie, R.J.; Hender, T.C.; Hood, A.; Martin, T.J.
1988-01-01
The separation of the cylindrical tearing mode stability problem into a resistive resonant layer calculation and an external marginal ideal magnetohydrodynamic (MHD) calculation (Δ' calculation) is generalized to axisymmetric toroidal geometry. The general structure of this separation is analyzed and the marginal ideal MHD information (the toroidal generalization of Δ') required to discuss stability is isolated. This can then, in principle, be combined with relevant resonant layer calculations to determine tearing mode growth rates in realistic situations. Two examples are given: the first is an analytic treatment of toroidally coupled (m = 1, n = 1) and (m = 2, n = 1) tearing modes in a large aspect ratio torus; the second, a numerical treatment of the toroidal coupling of three tearing modes through finite pressure effects in a large aspect ratio torus. In addition, the use of a coupling integral approach for determining the stability of coupled tearing modes is discussed. Finally, the possibility of using initial value resistive MHD codes in realistic toroidal geometry to determine the necessary information from the ideal MHD marginal solution is discussed
Foundations of arithmetic differential geometry
Buium, Alexandru
2017-01-01
The aim of this book is to introduce and develop an arithmetic analogue of classical differential geometry. In this new geometry the ring of integers plays the role of a ring of functions on an infinite dimensional manifold. The role of coordinate functions on this manifold is played by the prime numbers. The role of partial derivatives of functions with respect to the coordinates is played by the Fermat quotients of integers with respect to the primes. The role of metrics is played by symmetric matrices with integer coefficients. The role of connections (respectively curvature) attached to metrics is played by certain adelic (respectively global) objects attached to the corresponding matrices. One of the main conclusions of the theory is that the spectrum of the integers is "intrinsically curved"; the study of this curvature is then the main task of the theory. The book follows, and builds upon, a series of recent research papers. A significant part of the material has never been published before.
Geometry of isotropic convex bodies
Brazitikos, Silouanos; Valettas, Petros; Vritsiou, Beatrice-Helen
2014-01-01
The study of high-dimensional convex bodies from a geometric and analytic point of view, with an emphasis on the dependence of various parameters on the dimension stands at the intersection of classical convex geometry and the local theory of Banach spaces. It is also closely linked to many other fields, such as probability theory, partial differential equations, Riemannian geometry, harmonic analysis and combinatorics. It is now understood that the convexity assumption forces most of the volume of a high-dimensional convex body to be concentrated in some canonical way and the main question is whether, under some natural normalization, the answer to many fundamental questions should be independent of the dimension. The aim of this book is to introduce a number of well-known questions regarding the distribution of volume in high-dimensional convex bodies, which are exactly of this nature: among them are the slicing problem, the thin shell conjecture and the Kannan-Lov�sz-Simonovits conjecture. This book prov...
Differential geometry of group lattices
International Nuclear Information System (INIS)
Dimakis, Aristophanes; Mueller-Hoissen, Folkert
2003-01-01
In a series of publications we developed ''differential geometry'' on discrete sets based on concepts of noncommutative geometry. In particular, it turned out that first-order differential calculi (over the algebra of functions) on a discrete set are in bijective correspondence with digraph structures where the vertices are given by the elements of the set. A particular class of digraphs are Cayley graphs, also known as group lattices. They are determined by a discrete group G and a finite subset S. There is a distinguished subclass of ''bicovariant'' Cayley graphs with the property ad(S)S subset of S. We explore the properties of differential calculi which arise from Cayley graphs via the above correspondence. The first-order calculi extend to higher orders and then allow us to introduce further differential geometric structures. Furthermore, we explore the properties of ''discrete'' vector fields which describe deterministic flows on group lattices. A Lie derivative with respect to a discrete vector field and an inner product with forms is defined. The Lie-Cartan identity then holds on all forms for a certain subclass of discrete vector fields. We develop elements of gauge theory and construct an analog of the lattice gauge theory (Yang-Mills) action on an arbitrary group lattice. Also linear connections are considered and a simple geometric interpretation of the torsion is established. By taking a quotient with respect to some subgroup of the discrete group, generalized differential calculi associated with so-called Schreier diagrams are obtained
Geometry of anisotropic CO outflows
International Nuclear Information System (INIS)
Liseau, R.; Sandell, G.; Helsinki Univ., Observatory, Finland)
1986-01-01
A simple geometrical model for the space motions of the bipolar high-velocity CO outflows in regions of recent, active star formation is proposed. It is assumed that the velocity field of the neutral gas component can be represented by large-scale uniform motions. From observations of the spatial distribution and from the characteristics of the line shape of the high-velocity molecular gas emission the geometry of the line-emitting regions can be inferred, i.e., the direction in space and the collimating angle of the flow. The model has been applied to regions where a check on presently obtained results is provided by independent optical determinations of the motions of Herbig-Haro objects associated with the CO flows. These two methods are in good agreement and, furthermore, the results obtained provide convincingly strong evidence for the physical association of CO outflows and Herbig-Haro objects. This also supports the common view that a young stellar central source is responsible for the active phenomena observed in its environmental neighborhood. It is noteworthy that within the framework of the model the determination of the flow geometry of the high-velocity gas from CO measurements is independent of the distance to the source and, furthermore, can be done at relatively low spatial resolution. 32 references
Canonical differential geometry of string backgrounds
International Nuclear Information System (INIS)
Schuller, Frederic P.; Wohlfarth, Mattias N.R.
2006-01-01
String backgrounds and D-branes do not possess the structure of Lorentzian manifolds, but that of manifolds with area metric. Area metric geometry is a true generalization of metric geometry, which in particular may accommodate a B-field. While an area metric does not determine a connection, we identify the appropriate differential geometric structure which is of relevance for the minimal surface equation in such a generalized geometry. In particular the notion of a derivative action of areas on areas emerges naturally. Area metric geometry provides new tools in differential geometry, which promise to play a role in the description of gravitational dynamics on D-branes
Differential Geometry Based Multiscale Models
Wei, Guo-Wei
2010-01-01
Large chemical and biological systems such as fuel cells, ion channels, molecular motors, and viruses are of great importance to the scientific community and public health. Typically, these complex systems in conjunction with their aquatic environment pose a fabulous challenge to theoretical description, simulation, and prediction. In this work, we propose a differential geometry based multiscale paradigm to model complex macromolecular systems, and to put macroscopic and microscopic descriptions on an equal footing. In our approach, the differential geometry theory of surfaces and geometric measure theory are employed as a natural means to couple the macroscopic continuum mechanical description of the aquatic environment with the microscopic discrete atom-istic description of the macromolecule. Multiscale free energy functionals, or multiscale action functionals are constructed as a unified framework to derive the governing equations for the dynamics of different scales and different descriptions. Two types of aqueous macromolecular complexes, ones that are near equilibrium and others that are far from equilibrium, are considered in our formulations. We show that generalized Navier–Stokes equations for the fluid dynamics, generalized Poisson equations or generalized Poisson–Boltzmann equations for electrostatic interactions, and Newton's equation for the molecular dynamics can be derived by the least action principle. These equations are coupled through the continuum-discrete interface whose dynamics is governed by potential driven geometric flows. Comparison is given to classical descriptions of the fluid and electrostatic interactions without geometric flow based micro-macro interfaces. The detailed balance of forces is emphasized in the present work. We further extend the proposed multiscale paradigm to micro-macro analysis of electrohydrodynamics, electrophoresis, fuel cells, and ion channels. We derive generalized Poisson–Nernst–Planck equations that
Differential geometry based multiscale models.
Wei, Guo-Wei
2010-08-01
Large chemical and biological systems such as fuel cells, ion channels, molecular motors, and viruses are of great importance to the scientific community and public health. Typically, these complex systems in conjunction with their aquatic environment pose a fabulous challenge to theoretical description, simulation, and prediction. In this work, we propose a differential geometry based multiscale paradigm to model complex macromolecular systems, and to put macroscopic and microscopic descriptions on an equal footing. In our approach, the differential geometry theory of surfaces and geometric measure theory are employed as a natural means to couple the macroscopic continuum mechanical description of the aquatic environment with the microscopic discrete atomistic description of the macromolecule. Multiscale free energy functionals, or multiscale action functionals are constructed as a unified framework to derive the governing equations for the dynamics of different scales and different descriptions. Two types of aqueous macromolecular complexes, ones that are near equilibrium and others that are far from equilibrium, are considered in our formulations. We show that generalized Navier-Stokes equations for the fluid dynamics, generalized Poisson equations or generalized Poisson-Boltzmann equations for electrostatic interactions, and Newton's equation for the molecular dynamics can be derived by the least action principle. These equations are coupled through the continuum-discrete interface whose dynamics is governed by potential driven geometric flows. Comparison is given to classical descriptions of the fluid and electrostatic interactions without geometric flow based micro-macro interfaces. The detailed balance of forces is emphasized in the present work. We further extend the proposed multiscale paradigm to micro-macro analysis of electrohydrodynamics, electrophoresis, fuel cells, and ion channels. We derive generalized Poisson-Nernst-Planck equations that are
Hopf algebras in noncommutative geometry
International Nuclear Information System (INIS)
Varilly, Joseph C.
2001-10-01
We give an introductory survey to the use of Hopf algebras in several problems of non- commutative geometry. The main example, the Hopf algebra of rooted trees, is a graded, connected Hopf algebra arising from a universal construction. We show its relation to the algebra of transverse differential operators introduced by Connes and Moscovici in order to compute a local index formula in cyclic cohomology, and to the several Hopf algebras defined by Connes and Kreimer to simplify the combinatorics of perturbative renormalization. We explain how characteristic classes for a Hopf module algebra can be obtained from the cyclic cohomology of the Hopf algebra which acts on it. Finally, we discuss the theory of non- commutative spherical manifolds and show how they arise as homogeneous spaces of certain compact quantum groups. (author)
Integrable systems, geometry, and topology
Terng, Chuu-Lian
2006-01-01
The articles in this volume are based on lectures from a program on integrable systems and differential geometry held at Taiwan's National Center for Theoretical Sciences. As is well-known, for many soliton equations, the solutions have interpretations as differential geometric objects, and thereby techniques of soliton equations have been successfully applied to the study of geometric problems. The article by Burstall gives a beautiful exposition on isothermic surfaces and their relations to integrable systems, and the two articles by Guest give an introduction to quantum cohomology, carry out explicit computations of the quantum cohomology of flag manifolds and Hirzebruch surfaces, and give a survey of Givental's quantum differential equations. The article by Heintze, Liu, and Olmos is on the theory of isoparametric submanifolds in an arbitrary Riemannian manifold, which is related to the n-wave equation when the ambient manifold is Euclidean. Mukai-Hidano and Ohnita present a survey on the moduli space of ...
Tarski Geometry Axioms. Part III
Directory of Open Access Journals (Sweden)
Coghetto Roland
2017-12-01
Full Text Available In the article, we continue the formalization of the work devoted to Tarski’s geometry - the book “Metamathematische Methoden in der Geometrie” by W. Schwabhäuser, W. Szmielew, and A. Tarski. After we prepared some introductory formal framework in our two previous Mizar articles, we focus on the regular translation of underlying items faithfully following the abovementioned book (our encoding covers first seven chapters. Our development utilizes also other formalization efforts of the same topic, e.g. Isabelle/HOL by Makarios, Metamath or even proof objects obtained directly from Prover9. In addition, using the native Mizar constructions (cluster registrations the propositions (“Satz” are reformulated under weaker conditions, i.e. by using fewer axioms or by proposing an alternative version that uses just another axioms (ex. Satz 2.1 or Satz 2.2.
Applied geometry and discrete mathematics
Sturm; Gritzmann, Peter; Sturmfels, Bernd
1991-01-01
This volume, published jointly with the Association for Computing Machinery, comprises a collection of research articles celebrating the occasion of Victor Klee's sixty-fifth birthday in September 1990. During his long career, Klee has made contributions to a wide variety of areas, such as discrete and computational geometry, convexity, combinatorics, graph theory, functional analysis, mathematical programming and optimization, and theoretical computer science. In addition, Klee made important contributions to mathematics education, mathematical methods in economics and the decision sciences, applications of discrete mathematics in the biological and social sciences, and the transfer of knowledge from applied mathematics to industry. In honor of Klee's achievements, this volume presents more than forty papers on topics related to Klee's research. While the majority of the papers are research articles, a number of survey articles are also included. Mirroring the breadth of Klee's mathematical contributions, th...
Introduction to global variational geometry
Krupka, Demeter
2015-01-01
The book is devoted to recent research in the global variational theory on smooth manifolds. Its main objective is an extension of the classical variational calculus on Euclidean spaces to (topologically nontrivial) finite-dimensional smooth manifolds; to this purpose the methods of global analysis of differential forms are used. Emphasis is placed on the foundations of the theory of variational functionals on fibered manifolds - relevant geometric structures for variational principles in geometry, physical field theory and higher-order fibered mechanics. The book chapters include: - foundations of jet bundles and analysis of differential forms and vector fields on jet bundles, - the theory of higher-order integral variational functionals for sections of a fibred space, the (global) first variational formula in infinitesimal and integral forms- extremal conditions and the discussion of Noether symmetries and generalizations,- the inverse problems of the calculus of variations of Helmholtz type- variational se...
Some Progress in Conformal Geometry
Directory of Open Access Journals (Sweden)
Sun-Yung A. Chang
2007-12-01
Full Text Available This is a survey paper of our current research on the theory of partial differential equations in conformal geometry. Our intention is to describe some of our current works in a rather brief and expository fashion. We are not giving a comprehensive survey on the subject and references cited here are not intended to be complete. We introduce a bubble tree structure to study the degeneration of a class of Yamabe metrics on Bach flat manifolds satisfying some global conformal bounds on compact manifolds of dimension 4. As applications, we establish a gap theorem, a finiteness theorem for diffeomorphism type for this class, and diameter bound of the $sigma_2$-metrics in a class of conformal 4-manifolds. For conformally compact Einstein metrics we introduce an eigenfunction compactification. As a consequence we obtain some topological constraints in terms of renormalized volumes.
Seesaw mechanism in warped geometry
International Nuclear Information System (INIS)
Huber, S.J.; Shafi, Q.
2003-09-01
We show how the seesaw mechanism for neutrino masses can be realized within a five dimensional (5D) warped geometry framework. Intermediate scale standard model (SM) singlet neutrino masses, needed to explain the atmospheric and solar neutrino oscillations, are shown to be proportional to M P1 .exp((2c-1)πkR), where c denotes the coefficient of the 5D Dirac mass term for the singlet neutrino which also has a Planck scale Majorana mass localized on the Planck-brane, and kR∼11 in order to resolve the gauge hierarchy problem. The case with a bulk 5D Majorana mass term for the singlet neutrino is briefly discussed. (orig.)
Seesaw mechanism in warped geometry
International Nuclear Information System (INIS)
Huber, Stephan J.; Shafi, Qaisar
2004-01-01
We show how the seesaw mechanism for neutrino masses can be realized within a five-dimensional (5D) warped geometry framework. Intermediate scale standard model (SM) singlet neutrino masses, needed to explain the atmospheric and solar neutrino oscillations, are shown to be proportional to M Pl exp((2c-1)πkR), where c denotes the coefficient of the 5D Dirac mass term for the singlet neutrino which also has a Planck scale Majorana mass localized on the Planck-brane, and kR∼11 in order to resolve the gauge hierarchy problem. The case with a bulk 5D Majorana mass term for the singlet neutrino is briefly discussed
Conformal geometry and quasiregular mappings
Vuorinen, Matti
1988-01-01
This book is an introduction to the theory of spatial quasiregular mappings intended for the uninitiated reader. At the same time the book also addresses specialists in classical analysis and, in particular, geometric function theory. The text leads the reader to the frontier of current research and covers some most recent developments in the subject, previously scatterd through the literature. A major role in this monograph is played by certain conformal invariants which are solutions of extremal problems related to extremal lengths of curve families. These invariants are then applied to prove sharp distortion theorems for quasiregular mappings. One of these extremal problems of conformal geometry generalizes a classical two-dimensional problem of O. Teichmüller. The novel feature of the exposition is the way in which conformal invariants are applied and the sharp results obtained should be of considerable interest even in the two-dimensional particular case. This book combines the features of a textbook an...
Quantization of the Schwarzschild geometry
International Nuclear Information System (INIS)
Melas, Evangelos
2013-01-01
The conditional symmetries of the reduced Einstein-Hilbert action emerging from a static, spherically symmetric geometry are used as supplementary conditions on the wave function. Based on their integrability conditions, only one of the three existing symmetries can be consistently imposed, while the unique Casimir invariant, being the product of the remaining two symmetries, is calculated as the only possible second condition on the wave function. This quadratic integral of motion is identified with the reparametrization generator, as an implication of the uniqueness of the dynamical evolution, by fixing a suitable parametrization of the r-lapse function. In this parametrization, the determinant of the supermetric plays the role of the mesure. The combined Wheeler – DeWitt and linear conditional symmetry equations are analytically solved. The solutions obtained depend on the product of the two ''scale factors''.
Eliashberg, Yakov; Maeda, Yoshiaki; Symplectic, Poisson, and Noncommutative geometry
2014-01-01
Symplectic geometry originated in physics, but it has flourished as an independent subject in mathematics, together with its offspring, symplectic topology. Symplectic methods have even been applied back to mathematical physics. Noncommutative geometry has developed an alternative mathematical quantization scheme based on a geometric approach to operator algebras. Deformation quantization, a blend of symplectic methods and noncommutative geometry, approaches quantum mechanics from a more algebraic viewpoint, as it addresses quantization as a deformation of Poisson structures. This volume contains seven chapters based on lectures given by invited speakers at two May 2010 workshops held at the Mathematical Sciences Research Institute: Symplectic and Poisson Geometry in Interaction with Analysis, Algebra and Topology (honoring Alan Weinstein, one of the key figures in the field) and Symplectic Geometry, Noncommutative Geometry and Physics. The chapters include presentations of previously unpublished results and ...
Convection in Slab and Spheroidal Geometries
Porter, David H.; Woodward, Paul R.; Jacobs, Michael L.
2000-01-01
Three-dimensional numerical simulations of compressible turbulent thermally driven convection, in both slab and spheroidal geometries, are reviewed and analyzed in terms of velocity spectra and mixing-length theory. The same ideal gas model is used in both geometries, and resulting flows are compared. The piecewise-parabolic method (PPM), with either thermal conductivity or photospheric boundary conditions, is used to solve the fluid equations of motion. Fluid motions in both geometries exhibit a Kolmogorov-like k(sup -5/3) range in their velocity spectra. The longest wavelength modes are energetically dominant in both geometries, typically leading to one convection cell dominating the flow. In spheroidal geometry, a dipolar flow dominates the largest scale convective motions. Downflows are intensely turbulent and up drafts are relatively laminar in both geometries. In slab geometry, correlations between temperature and velocity fluctuations, which lead to the enthalpy flux, are fairly independent of depth. In spheroidal geometry this same correlation increases linearly with radius over the inner 70 percent by radius, in which the local pressure scale heights are a sizable fraction of the radius. The effects from the impenetrable boundary conditions in the slab geometry models are confused with the effects from non-local convection. In spheroidal geometry nonlocal effects, due to coherent plumes, are seen as far as several pressure scale heights from the lower boundary and are clearly distinguishable from boundary effects.
Directory of Open Access Journals (Sweden)
M. Yadav
2013-01-01
Full Text Available Mn(II, Fe(II, Co(II, Ni(II, Cu(II, Zn(II, and Cd(II complex of N-thiophenoyl -N′-phenylthiocarbohydrazide (H2 TPTH have been synthesized and characterized by elemental analysis, magnetic susceptibility measurements, infrared, NMR, electronic, and ESR spectral studies. The complexes were found to have compositions [Mn(H TPTH2], [Co(TPTH (H2O2], [Ni(TPTH (H2O2], [Cu(TPTH], [Zn(H TPTH], [Cd(H TPTH2], and [Fe(H TPTH2(EtOH]. The magnetic and electronic spectral studies suggest square planar geometry for [Cu(TPTH], tetrahedral geometry for [Zn(TPTH] and [Cd(H TPTH2], and octahedral geometry for rest of the complexes. The infrared spectral studies of the 1 : 1 deprotonated complexes suggest bonding through enolic oxygen, thiolato sulfur, and both the hydrazinic nitrogens. Thus, H2TPTH acts as a binegative tetradentate ligand. H2 TPTH and its metal complexes have been screened against several bacteria and fungi.
Connections between algebra, combinatorics, and geometry
Sather-Wagstaff, Sean
2014-01-01
Commutative algebra, combinatorics, and algebraic geometry are thriving areas of mathematical research with a rich history of interaction. Connections Between Algebra, Combinatorics, and Geometry contains lecture notes, along with exercises and solutions, from the Workshop on Connections Between Algebra and Geometry held at the University of Regina from May 29-June 1, 2012. It also contains research and survey papers from academics invited to participate in the companion Special Session on Interactions Between Algebraic Geometry and Commutative Algebra, which was part of the CMS Summer Meeting at the University of Regina held June 2–3, 2012, and the meeting Further Connections Between Algebra and Geometry, which was held at the North Dakota State University, February 23, 2013. This volume highlights three mini-courses in the areas of commutative algebra and algebraic geometry: differential graded commutative algebra, secant varieties, and fat points and symbolic powers. It will serve as a useful resou...
Second International workshop Geometry and Symbolic Computation
Walczak, Paweł; Geometry and its Applications
2014-01-01
This volume has been divided into two parts: Geometry and Applications. The geometry portion of the book relates primarily to geometric flows, laminations, integral formulae, geometry of vector fields on Lie groups, and osculation; the articles in the applications portion concern some particular problems of the theory of dynamical systems, including mathematical problems of liquid flows and a study of cycles for non-dynamical systems. This Work is based on the second international workshop entitled "Geometry and Symbolic Computations," held on May 15-18, 2013 at the University of Haifa and is dedicated to modeling (using symbolic calculations) in differential geometry and its applications in fields such as computer science, tomography, and mechanics. It is intended to create a forum for students and researchers in pure and applied geometry to promote discussion of modern state-of-the-art in geometric modeling using symbolic programs such as Maple™ and Mathematica®, as well as presentation of new results. ...
A vector space approach to geometry
Hausner, Melvin
2010-01-01
The effects of geometry and linear algebra on each other receive close attention in this examination of geometry's correlation with other branches of math and science. In-depth discussions include a review of systematic geometric motivations in vector space theory and matrix theory; the use of the center of mass in geometry, with an introduction to barycentric coordinates; axiomatic development of determinants in a chapter dealing with area and volume; and a careful consideration of the particle problem. 1965 edition.
Classical geometry Euclidean, transformational, inversive, and projective
Leonard, I E; Liu, A C F; Tokarsky, G W
2014-01-01
Features the classical themes of geometry with plentiful applications in mathematics, education, engineering, and science Accessible and reader-friendly, Classical Geometry: Euclidean, Transformational, Inversive, and Projective introduces readers to a valuable discipline that is crucial to understanding bothspatial relationships and logical reasoning. Focusing on the development of geometric intuitionwhile avoiding the axiomatic method, a problem solving approach is encouraged throughout. The book is strategically divided into three sections: Part One focuses on Euclidean geometry, which p
Introduction to non-Euclidean geometry
Wolfe, Harold E
2012-01-01
One of the first college-level texts for elementary courses in non-Euclidean geometry, this concise, readable volume is geared toward students familiar with calculus. A full treatment of the historical background explores the centuries-long efforts to prove Euclid's parallel postulate and their triumphant conclusion. Numerous original exercises form an integral part of the book.Topics include hyperbolic plane geometry and hyperbolic plane trigonometry, applications of calculus to the solutions of some problems in hyperbolic geometry, elliptic plane geometry and trigonometry, and the consistenc
Disformal transformation in Newton-Cartan geometry
Energy Technology Data Exchange (ETDEWEB)
Huang, Peng [Zhejiang Chinese Medical University, Department of Information, Hangzhou (China); Sun Yat-Sen University, School of Physics and Astronomy, Guangzhou (China); Yuan, Fang-Fang [Nankai University, School of Physics, Tianjin (China)
2016-08-15
Newton-Cartan geometry has played a central role in recent discussions of the non-relativistic holography and condensed matter systems. Although the conformal transformation in non-relativistic holography can easily be rephrased in terms of Newton-Cartan geometry, we show that it requires a nontrivial procedure to arrive at the consistent form of anisotropic disformal transformation in this geometry. Furthermore, as an application of the newly obtained transformation, we use it to induce a geometric structure which may be seen as a particular non-relativistic version of the Weyl integrable geometry. (orig.)
Applications of Affine and Weyl geometry
García-Río, Eduardo; Nikcevic, Stana
2013-01-01
Pseudo-Riemannian geometry is, to a large extent, the study of the Levi-Civita connection, which is the unique torsion-free connection compatible with the metric structure. There are, however, other affine connections which arise in different contexts, such as conformal geometry, contact structures, Weyl structures, and almost Hermitian geometry. In this book, we reverse this point of view and instead associate an auxiliary pseudo-Riemannian structure of neutral signature to certain affine connections and use this correspondence to study both geometries. We examine Walker structures, Riemannia
Special Geometry and Automorphic Forms
Berglund, P; Wyllard, N; Berglund, Per; Henningson, Mans; Wyllard, Niclas
1997-01-01
We consider special geometry of the vector multiplet moduli space in compactifications of the heterotic string on $K3 \\times T^2$ or the type IIA string on $K3$-fibered Calabi-Yau threefolds. In particular, we construct a modified dilaton that is invariant under $SO(2, n; Z)$ T-duality transformations at the non-perturbative level and regular everywhere on the moduli space. The invariant dilaton, together with a set of other coordinates that transform covariantly under $SO(2, n; Z)$, parameterize the moduli space. The construction involves a meromorphic automorphic function of $SO(2, n; Z)$, that also depends on the invariant dilaton. In the weak coupling limit, the divisor of this automorphic form is an integer linear combination of the rational quadratic divisors where the gauge symmetry is enhanced classically. We also show how the non-perturbative prepotential can be expressed in terms of meromorphic automorphic forms, by expanding a T-duality invariant quantity both in terms of the standard special coord...
Differential geometry in string models
International Nuclear Information System (INIS)
Alvarez, O.
1986-01-01
In this article the author reviews the differential geometric approach to the quantization of strings. A seminal paper demonstrates the connection between the trace anomaly and the critical dimension. The role played by the Faddeev-Popov ghosts has been instrumental in much of the subsequent work on the quantization of strings. This paper discusses the differential geometry of two dimensional surfaces and its importance in the quantization of strings. The path integral quantization approach to strings will be carefully analyzed to determine the correct effective measure for string theories. The choice of measure for the path integral is determined by differential geometric considerations. Once the measure is determined, the manifest diffeomorphism invariance of the theory will have to be broken by using the Faddeev-Popov ansatz. The gauge fixed theory is studied in detail with emphasis on the role of conformal and gravitational anomalies. In the analysis, the path integral formulation of the gauge fixed theory requires summing over all the distinct complex structures on the manifold
Geometry of lattice field theory
International Nuclear Information System (INIS)
Honan, T.J.
1986-01-01
Using some tools of algebraic topology, a general formalism for lattice field theory is presented. The lattice is taken to be a simplicial complex that is also a manifold and is referred to as a simplicial manifold. The fields on this lattice are cochains, that are called lattice forms to emphasize the connections with differential forms in the continuum. This connection provides a new bridge between lattice and continuum field theory. A metric can be put onto this simplicial manifold by assigning lengths to every link or I-simplex of the lattice. Regge calculus is a way of defining general relativity on this lattice. A geometric discussion of Regge calculus is presented. The Regge action, which is a discrete form of the Hilbert action, is derived from the Hilbert action using distribution valued forms. This is a new derivation that emphasizes the underlying geometry. Kramers-Wannier duality in statistical mechanics is discussed in this general setting. Nonlinear field theories, which include gauge theories and nonlinear sigma models are discussed in the continuum and then are put onto a lattice. The main new result here is the generalization to curved spacetime, which consists of making the theory compatible with Regge calculus
Latent geometry of bipartite networks
Kitsak, Maksim; Papadopoulos, Fragkiskos; Krioukov, Dmitri
2017-03-01
Despite the abundance of bipartite networked systems, their organizing principles are less studied compared to unipartite networks. Bipartite networks are often analyzed after projecting them onto one of the two sets of nodes. As a result of the projection, nodes of the same set are linked together if they have at least one neighbor in common in the bipartite network. Even though these projections allow one to study bipartite networks using tools developed for unipartite networks, one-mode projections lead to significant loss of information and artificial inflation of the projected network with fully connected subgraphs. Here we pursue a different approach for analyzing bipartite systems that is based on the observation that such systems have a latent metric structure: network nodes are points in a latent metric space, while connections are more likely to form between nodes separated by shorter distances. This approach has been developed for unipartite networks, and relatively little is known about its applicability to bipartite systems. Here, we fully analyze a simple latent-geometric model of bipartite networks and show that this model explains the peculiar structural properties of many real bipartite systems, including the distributions of common neighbors and bipartite clustering. We also analyze the geometric information loss in one-mode projections in this model and propose an efficient method to infer the latent pairwise distances between nodes. Uncovering the latent geometry underlying real bipartite networks can find applications in diverse domains, ranging from constructing efficient recommender systems to understanding cell metabolism.
Fractal Geometry and Stochastics V
Falconer, Kenneth; Zähle, Martina
2015-01-01
This book brings together leading contributions from the fifth conference on Fractal Geometry and Stochastics held in Tabarz, Germany, in March 2014. The book is divided into five sections covering different facets of this fast developing area: geometric measure theory, self-similar fractals and recurrent structures, analysis and algebra on fractals, multifractal theory, and random constructions. There are state-of-the-art surveys as well as papers highlighting more specific recent advances. The authors are world-experts who present their topics comprehensibly and attractively. The book provides an accessible gateway to the subject for newcomers as well as a reference for recent developments for specialists. Authors include: Krzysztof Barański, Julien Barral, Kenneth Falconer, De-Jun Feng, Peter J. Grabner, Rostislav Grigorchuk, Michael Hinz, Stéphane Jaffard, Maarit Järvenpää, Antti Käenmäki, Marc Kesseböhmer, Michel Lapidus, Klaus Mecke, Mark Pollicott, Michał Rams, Pablo Shmerkin, and András Te...
Stochastic geometry in PRIZMA code
International Nuclear Information System (INIS)
Malyshkin, G. N.; Kashaeva, E. A.; Mukhamadiev, R. F.
2007-01-01
The paper describes a method used to simulate radiation transport through random media - randomly placed grains in a matrix material. The method models the medium consequently from one grain crossed by particle trajectory to another. Like in the Limited Chord Length Sampling (LCLS) method, particles in grains are tracked in the actual grain geometry, but unlike LCLS, the medium is modeled using only Matrix Chord Length Sampling (MCLS) from the exponential distribution and it is not necessary to know the grain chord length distribution. This helped us extend the method to media with randomly oriented arbitrarily shaped convex grains. Other extensions include multicomponent media - grains of several sorts, and polydisperse media - grains of different sizes. Sort and size distributions of crossed grains were obtained and an algorithm was developed for sampling grain orientations and positions. Special consideration was given to medium modeling at the boundary of the stochastic region. The method was implemented in the universal 3D Monte Carlo code PRIZMA. The paper provides calculated results for a model problem where we determine volume fractions of modeled components crossed by particle trajectories. It also demonstrates the use of biased sampling techniques implemented in PRIZMA for solving a problem of deep penetration in model random media. Described are calculations for the spectral response of a capacitor dose detector whose anode was modeled with account for its stochastic structure. (authors)
The geometry of population genetics
Akin, Ethan
1979-01-01
The differential equations which model the action of selection and recombination are nonlinear equations which are impossible to It is even difficult to describe in general the solve explicitly. Recently, Shahshahani began using qualitative behavior of solutions. differential geometry to study these equations [28]. with this mono graph I hope to show that his ideas illuminate many aspects of pop ulation genetics. Among these are his proof and clarification of Fisher's Fundamental Theorem of Natural Selection and Kimura's Maximum Principle and also the effect of recombination on entropy. We also discover the relationship between two classic measures of 2 genetic distance: the x measure and the arc-cosine measure. There are two large applications. The first is a precise definition of the biological concept of degree of epistasis which applies to general (i.e. frequency dependent) forms of selection. The second is the unexpected appearance of cycling. We show that cycles can occur in the two-locus-two-allele...
Topics in Cubic Special Geometry
Bellucci, Stefano; Roychowdhury, Raju
2011-01-01
We reconsider the sub-leading quantum perturbative corrections to N=2 cubic special Kaehler geometries. Imposing the invariance under axion-shifts, all such corrections (but the imaginary constant one) can be introduced or removed through suitable, lower unitriangular symplectic transformations, dubbed Peccei-Quinn (PQ) transformations. Since PQ transformations do not belong to the d=4 U-duality group G4, in symmetric cases they generally have a non-trivial action on the unique quartic invariant polynomial I4 of the charge representation R of G4. This leads to interesting phenomena in relation to theory of extremal black hole attractors; namely, the possibility to make transitions between different charge orbits of R, with corresponding change of the supersymmetry properties of the supported attractor solutions. Furthermore, a suitable action of PQ transformations can also set I4 to zero, or vice versa it can generate a non-vanishing I4: this corresponds to transitions between "large" and "small" charge orbit...
Quantum groups: Geometry and applications
International Nuclear Information System (INIS)
Chu, C.S.
1996-01-01
The main theme of this thesis is a study of the geometry of quantum groups and quantum spaces, with the hope that they will be useful for the construction of quantum field theory with quantum group symmetry. The main tool used is the Faddeev-Reshetikhin-Takhtajan description of quantum groups. A few content-rich examples of quantum complex spaces with quantum group symmetry are treated in details. In chapter 1, the author reviews some of the basic concepts and notions for Hopf algebras and other background materials. In chapter 2, he studies the vector fields of quantum groups. A compact realization of these vector fields as pseudodifferential operators acting on the linear quantum spaces is given. In chapter 3, he describes the quantum sphere as a complex quantum manifold by means of a quantum stereographic projection. A covariant calculus is introduced. An interesting property of this calculus is the existence of a one-form realization of the exterior differential operator. The concept of a braided comodule is introduced and a braided algebra of quantum spheres is constructed. In chapter 4, the author considers the more general higher dimensional quantum complex projective spaces and the quantum Grassman manifolds. Differential calculus, integration and braiding can be introduced as in the one dimensional case. Finally, in chapter 5, he studies the framework of quantum principal bundle and construct the q-deformed Dirac monopole as a quantum principal bundle with a quantum sphere as the base and a U(1) with non-commutative calculus as the fiber. The first Chern class can be introduced and integrated to give the monopole charge
The geometry of elementary particles
International Nuclear Information System (INIS)
Lov, T.R.
1987-01-01
A new model of elementary particles based on the geometry of Quantum deSitter space QdS = SU (3,2)/(SU(3,1) x U(1)) is introduced and studied. QdS is a complexification of quantization of anti-de Sitter space, AdS = SO(3,2)/SO(3,1), which in recent years had played a pivotal role in supergravity. The nontrival principle fiber bundle has total space SU(3,2), fiber SU(3,1) x U(1) and base QdS. In this setting, the standard recipes for Yang-Mills fields don't work. These require connections and the associated covariant derivatives. Here it is shown that the Lie derivatives, not the covariant derivatives are important in quantization. In this setting, the no-go theorems are not valid. This new quantum mechanics leads to a model of elementary particles as vertical vector fields in the bundle with interaction via the Lie bracket. There are five physical interactions modelled by the bracket interaction. The quantum numbers are identified as the roots of su(3,2) and are preserved under the bracket interaction. The model explains conservation of charge, baryon number, lepton number, parity and the heirarchy problem. Since the bracket is the curvature of a homogeneous space, particles are then the curvature of QdS. This model for particles is consistent with the requirements of General Relativity. Furthermore, since the curvature tensor is built from the quantized wave functions, the curvature tensor is quantized and this is quantum theory of gravity
Geometry and physics of branes
International Nuclear Information System (INIS)
Gal'tsov, D V
2003-01-01
The book brings together the contents of lecture courses delivered at the school 'Geometry and Physics of Branes' which took place at the Center 'Alessandro Volta' (Como, Italy) in the spring of 2001. The purpose of the school was to provide an introduction to some lines of research, related to the notion of branes in superstring theory, which are in the focus of attention both in the physical and mathematical communities. The book is structured into three parts: the first contains an elementary introduction to branes, the second is devoted to physical aspects (conformal field theory on open and unoriented surfaces and topics in string tachyon dynamics), and the last contains some more formal mathematical developments. An introduction to branes is given in a remarkably lucid contribution by A Lerda. It opens with a construction of p-brane solutions in classical IIA and IIB supergravities with particular emphasis on the 'fundamental string' solution, the NS5-brane and the D3-brane. Then, the quantum description of D-branes is discussed in terms of boundary states of the closed superstring, which is an alternative to the more common description in terms of open strings with Dirichlet boundary conditions in the transverse to the brane directions. When a constant gauge field is present in the D-brane worldvolume, the boundary states are coherent states of the string oscillators depending on the field strength tensor. The couplings of the brane to the bulk fields - the graviton, the dilaton, and the Kalb-Ramond fields - are then extracted and shown to be precisely the ones that are produced by the Dirac-Born-Infeld action governing the low-energy dynamics of the D-brane derived using the open strings formalism. It is also shown that in the classical limit, the boundary states correctly reproduce the parameters of the corresponding classical solutions. The second part of the book starts with a contribution by Y S Stanev devoted to the two-dimensional conformal field
Description of SSG Geometry - phase 1
DEFF Research Database (Denmark)
Margheritini, Lucia; Kofoed, Jens Peter
The purpose of the study is to define the optimized geometry for the SSG in Svaheia, Norway and to provide the responsible for the turbines with useful information to their work.......The purpose of the study is to define the optimized geometry for the SSG in Svaheia, Norway and to provide the responsible for the turbines with useful information to their work....
Increasing insightful thinking in analytic geometry
Timmer, Mark; Verhoef, Neeltje Cornelia
Elsewhere in this issue Ferdinand Verhulst described the discussion of the interaction of analysis and geometry in the 19th century. In modern times such discussions come up again and again. As of 2014, synthetic geometry will not be part of the Dutch 'vwo - mathematics B' programme anymore.
Symposium on Differential Geometry and Differential Equations
Berger, Marcel; Bryant, Robert
1987-01-01
The DD6 Symposium was, like its predecessors DD1 to DD5 both a research symposium and a summer seminar and concentrated on differential geometry. This volume contains a selection of the invited papers and some additional contributions. They cover recent advances and principal trends in current research in differential geometry.
Curvature tensor copies in affine geometry
International Nuclear Information System (INIS)
Srivastava, P.P.
1981-01-01
The sets of space-time and spin-connections which give rise to the same curvature tensor are constructed. The corresponding geometries are compared. Results are illustrated by an explicit calculation and comment on the copies in Einstein-Cartan and Weyl-Cartan geometries. (Author) [pt
Fractal geometry of high temperature superconductors
International Nuclear Information System (INIS)
Mosolov, A.B.
1989-01-01
Microstructural geometry of superconducting structural composites of Ag-Yba 2 Cu 3 O x system with a volumetric shave of silver from 0 to 60% is investigated by light and electron microscopy methods. It is ascertained that the structure of cermets investigated is characterized by fractal geometry which is sufficient for describing the electrical and mechanical properties of these materials
Quantification of variability in bedform geometry
van der Mark, C.F.; Blom, Astrid; Hulscher, Suzanne J.M.H.
2008-01-01
We analyze the variability in bedform geometry in laboratory and field studies. Even under controlled steady flow conditions in laboratory flumes, bedforms are irregular in size, shape, and spacing, also in case of well-sorted sediment. Our purpose is to quantify the variability in bedform geometry.
Random geometry and Yang-Mills theory
International Nuclear Information System (INIS)
Froehlich, J.
1981-01-01
The author states various problems and discusses a very few preliminary rigorous results in a branch of mathematics and mathematical physics which one might call random (or stochastic) geometry. Furthermore, he points out why random geometry is important in the quantization of Yang-Mills theory. (Auth.)
The Geometry of the Universe: Part 2
Francis, Stephanie
2009-01-01
Hyperbolic geometry occurs on hyperbolic planes--the most commonly cited one being a saddle shape. In this article, the author explores negative hyperbolic curvature, and provides a detailed description of how she constructed two hyperbolic paraboloids. Hyperbolic geometry occurs on surfaces that have negative curvature. (Contains 11 figures and 4…
Poisson geometry from a Dirac perspective
Meinrenken, Eckhard
2018-03-01
We present proofs of classical results in Poisson geometry using techniques from Dirac geometry. This article is based on mini-courses at the Poisson summer school in Geneva, June 2016, and at the workshop Quantum Groups and Gravity at the University of Waterloo, April 2016.
An approach for management of geometry data
Dube, R. P.; Herron, G. J.; Schweitzer, J. E.; Warkentine, E. R.
1980-01-01
The strategies for managing Integrated Programs for Aerospace Design (IPAD) computer-based geometry are described. The computer model of geometry is the basis for communication, manipulation, and analysis of shape information. IPAD's data base system makes this information available to all authorized departments in a company. A discussion of the data structures and algorithms required to support geometry in IPIP (IPAD's data base management system) is presented. Through the use of IPIP's data definition language, the structure of the geometry components is defined. The data manipulation language is the vehicle by which a user defines an instance of the geometry. The manipulation language also allows a user to edit, query, and manage the geometry. The selection of canonical forms is a very important part of the IPAD geometry. IPAD has a canonical form for each entity and provides transformations to alternate forms; in particular, IPAD will provide a transformation to the ANSI standard. The DBMS schemas required to support IPAD geometry are explained.
Transformasi Geometri Rotasi Berbantuan Software Geogebra
Directory of Open Access Journals (Sweden)
Muhamad Hanafi
2018-02-01
Full Text Available Penelitian ini bertujuan untuk membantu visualisasi dan menemukan konsep pada Transformasi geometri Rotasi di titik Pusat dengan menggunakan software GeoGebra. Penelitian ini mengulas tentang Koordinat Kartesius dan Polar, dan selanjutntya Transformasi geometri Rotasi di titik Pusat .
Muhassanah, Nuraini; Sujadi, Imam; Riyadi, Riyadi
2014-01-01
The objective of this research was to describe the VIII grade students geometry skills atSMP N 16 Surakarta in the level 0 (visualization), level 1 (analysis), and level 2 (informaldeduction) van Hiele level of thinking in solving the geometry problem. This research was aqualitative research in the form of case study analyzing deeply the students geometry skill insolving the geometry problem based on van Hiele level of thingking. The subject of this researchwas nine students of VIII grade at ...
The design of geometry teaching: learning from the geometry textbooks of Godfrey and Siddons
Fujita, Taro; Jones, Keith
2002-01-01
Deciding how to teach geometry remains a demanding task with one of major arguments being about how to combine the intuitive and deductive aspects of geometry into an effective teaching design. In order to try to obtain an insight into tackling this issue, this paper reports an analysis of innovative geometry textbooks which were published in the early part of the 20th Century, a time when significant efforts were being made to improve the teaching and learning of geometry. The analysis sugge...
African Journals Online (AJOL)
CLEMENT O BEWAJI
Valine (2 - amino - 3 – methylbutanoic acid), is a chemical compound containing .... Stability constant (Kf). Gibb's free energy. ) (. 1. −. ∆. Mol. JG. [CuL2(H2O)2] ... synthesis and characterization of Co(ii), Ni(ii), Cu (II), and Zn(ii) complexes with ...
Physical meaning of the optical reference geometry
International Nuclear Information System (INIS)
Abramowicz, M.A.
1990-09-01
I show that contrary to a popular misconception the optical reference geometry, introduced a few years ago as a formally possible metric of a 3-space corresponding to a static spacetime, is quite satisfactory also from the physical point of view. The optical reference geometry has a clear physical meaning, as it may be constructed experimentally by measuring light round travel time between static observers. Distances and directions in the optical reference geometry are more strongly connected to experiment than distances and directions in the widely used directly projected metric (discussed e.g. in Landau and Lifshitz textbook. In addition, the optical reference geometry is more natural and convenient than the directly projected one in application to dynamics. In the optical geometry dynamical behaviour of matter is described by concepts and formulae identical to those well known in Newtonian dynamics on a given two dimensional (curved) surface. (author). 22 refs
FINAL REPORT: GEOMETRY AND ELEMENTARY PARTICLE PHYSICS
Energy Technology Data Exchange (ETDEWEB)
Singer, Isadore M.
2008-03-04
The effect on mathematics of collaborations between high-energy theoretical physics and modern mathematics has been remarkable. Mirror symmetry has revolutionized enumerative geometry, and Seiberg-Witten invariants have greatly simplified the study of four manifolds. And because of their application to string theory, physicists now need to know cohomology theory, characteristic classes, index theory, K-theory, algebraic geometry, differential geometry, and non-commutative geometry. Much more is coming. We are experiencing a deeper contact between the two sciences, which will stimulate new mathematics essential to the physicists’ quest for the unification of quantum mechanics and relativity. Our grant, supported by the Department of Energy for twelve years, has been instrumental in promoting an effective interaction between geometry and string theory, by supporting the Mathematical Physics seminar, postdoc research, collaborations, graduate students and several research papers.
Machine learning spatial geometry from entanglement features
You, Yi-Zhuang; Yang, Zhao; Qi, Xiao-Liang
2018-02-01
Motivated by the close relations of the renormalization group with both the holography duality and the deep learning, we propose that the holographic geometry can emerge from deep learning the entanglement feature of a quantum many-body state. We develop a concrete algorithm, call the entanglement feature learning (EFL), based on the random tensor network (RTN) model for the tensor network holography. We show that each RTN can be mapped to a Boltzmann machine, trained by the entanglement entropies over all subregions of a given quantum many-body state. The goal is to construct the optimal RTN that best reproduce the entanglement feature. The RTN geometry can then be interpreted as the emergent holographic geometry. We demonstrate the EFL algorithm on a 1D free fermion system and observe the emergence of the hyperbolic geometry (AdS3 spatial geometry) as we tune the fermion system towards the gapless critical point (CFT2 point).
Final Report: Geometry And Elementary Particle Physics
International Nuclear Information System (INIS)
Singer, Isadore M.
2008-01-01
The effect on mathematics of collaborations between high-energy theoretical physics and modern mathematics has been remarkable. Mirror symmetry has revolutionized enumerative geometry, and Seiberg-Witten invariants have greatly simplified the study of four manifolds. And because of their application to string theory, physicists now need to know cohomology theory, characteristic classes, index theory, K-theory, algebraic geometry, differential geometry, and non-commutative geometry. Much more is coming. We are experiencing a deeper contact between the two sciences, which will stimulate new mathematics essential to the physicists quest for the unification of quantum mechanics and relativity. Our grant, supported by the Department of Energy for twelve years, has been instrumental in promoting an effective interaction between geometry and string theory, by supporting the Mathematical Physics seminar, postdoc research, collaborations, graduate students and several research papers.
Special metrics and group actions in geometry
Fino, Anna; Musso, Emilio; Podestà, Fabio; Vezzoni, Luigi
2017-01-01
The volume is a follow-up to the INdAM meeting “Special metrics and quaternionic geometry” held in Rome in November 2015. It offers a panoramic view of a selection of cutting-edge topics in differential geometry, including 4-manifolds, quaternionic and octonionic geometry, twistor spaces, harmonic maps, spinors, complex and conformal geometry, homogeneous spaces and nilmanifolds, special geometries in dimensions 5–8, gauge theory, symplectic and toric manifolds, exceptional holonomy and integrable systems. The workshop was held in honor of Simon Salamon, a leading international scholar at the forefront of academic research who has made significant contributions to all these subjects. The articles published here represent a compelling testimony to Salamon’s profound and longstanding impact on the mathematical community. Target readership includes graduate students and researchers working in Riemannian and complex geometry, Lie theory and mathematical physics.
Analogy and Dynamic Geometry System Used to Introduce Three-Dimensional Geometry
Mammana, M. F.; Micale, B.; Pennisi, M.
2012-01-01
We present a sequence of classroom activities on Euclidean geometry, both plane and space geometry, used to make three dimensional geometry more catchy and simple. The activity consists of a guided research activity that leads the students to discover unexpected properties of two apparently distant geometrical entities, quadrilaterals and…
Drawing Dynamic Geometry Figures Online with Natural Language for Junior High School Geometry
Wong, Wing-Kwong; Yin, Sheng-Kai; Yang, Chang-Zhe
2012-01-01
This paper presents a tool for drawing dynamic geometric figures by understanding the texts of geometry problems. With the tool, teachers and students can construct dynamic geometric figures on a web page by inputting a geometry problem in natural language. First we need to build the knowledge base for understanding geometry problems. With the…
Arvo, James
1991-01-01
Graphics Gems II is a collection of articles shared by a diverse group of people that reflect ideas and approaches in graphics programming which can benefit other computer graphics programmers.This volume presents techniques for doing well-known graphics operations faster or easier. The book contains chapters devoted to topics on two-dimensional and three-dimensional geometry and algorithms, image processing, frame buffer techniques, and ray tracing techniques. The radiosity approach, matrix techniques, and numerical and programming techniques are likewise discussed.Graphics artists and comput
String theory compactifications with fluxes, and generalized geometry
International Nuclear Information System (INIS)
Cassani, D.
2009-06-01
The topic of this thesis is compactifications in string theory and supergravity. We study dimensional reductions of type II theories on backgrounds with fluxes, using the techniques of Hitchin's generalized geometry. We start with an introduction of the needed mathematical tools, focusing on SU(3)xSU(3) structures on the generalized tangent bundle T+T * , and analyzing their deformations. Next we study the four dimensional N equals 2 gauged supergravity which can be defined reducing type II theories on SU(3)*SU(3) structure backgrounds with general NSNS and RR fluxes: we establish the complete bosonic action, and we show how its data are related to the generalized geometry formalism on T+T * . In particular, we derive a geometric expression for the full N = 2 scalar potential. Then we focus on the relations between the 10d and 4d descriptions of supersymmetric flux backgrounds: we spell out the N = 1 vacuum conditions within the 4d N = 2 theory, as well as from its N = 1 truncation, and we establish a precise matching with the equations characterizing the N = 1 backgrounds at the ten dimensional level. We conclude by presenting some concrete examples, based on coset spaces with SU(3) structure. We establish for these spaces the consistency of the truncation based on left-invariance, and we explore the landscape of vacua of the corresponding theory, taking string loop corrections into account. (author)
Primes, Geometry and Condensed Matter
Directory of Open Access Journals (Sweden)
Al Rabeh R. H.
2009-07-01
Full Text Available Fascination with primes dates back to the Greeks and before. Primes are named by some "the elementary particles of arithmetic" as every nonprime integer is made of a unique set of primes. In this article we point to new connections between primes, geometry and physics which show that primes could be called "the elementary particles of physics" too. This study considers the problem of closely packing similar circles/spheres in 2D/3D space. This is in effect a discretization process of space and the allowable number in a pack is found to lead to some unexpected cases of prime configurations which is independent of the size of the constituents. We next suggest that a non-prime can be considered geometrically as a symmetric collection that is separable (factorable into similar parts- six is two threes or three twos for example. A collection that has no such symmetry is a prime. As a result, a physical prime aggregate is more difficult to split symmetrically resulting in an inherent stability. This "number/physical" stability idea applies to bigger collections made from smaller (prime units leading to larger stable prime structures in a limitless scaling up process. The distribution of primes among numbers can be understood better using the packing ideas described here and we further suggest that differing numbers (and values of distinct prime factors making a nonprime collection is an important factor in determining the probability and method of possible and subsequent disintegration. Disintegration is bound by energy conservation and is closely related to symmetry by Noether theorems. Thinking of condensed matter as the packing of identical elements, we examine plots of the masses of chemical elements of the periodic table, and also those of the elementary particles of physics, and show that prime packing rules seem to play a role in the make up of matter. The plots show convincingly that the growth of prime numbers and that of the masses of
Primes, Geometry and Condensed Matter
Directory of Open Access Journals (Sweden)
Al Rabeh R. H.
2009-07-01
Full Text Available Fascination with primes dates back to the Greeks and before. Primes are named by some “the elementary particles of arithmetic” as every nonprime integer is made of a unique set of primes. In this article we point to new connections between primes, geometry and physics which show that primes could be called “the elementary particles of physics” too. This study considers the problem of closely packing similar circles / spheres in 2D / 3D space. This is in effect a discretization process of space and the allowable num- ber in a pack is found to lead to some unexpected cases of prime configurations which is independent of the size of the constituents. We next suggest that a non-prime can be considered geometrically as a symmetric collection that is separable (factorable into similar parts- six is two threes or three twos for example. A collection that has no such symmetry is a prime. As a result, a physical prime aggregate is more difficult to split symmetrically resulting in an inherent stability. This “number / physical” stability idea applies to bigger collections made from smaller (prime units leading to larger sta- ble prime structures in a limitless scaling up process. The distribution of primes among numbers can be understood better using the packing ideas described here and we further suggest that differing numbers (and values of distinct prime factors making a nonprime collection is an important factor in determining the probability and method of possible and subsequent disintegration. Disintegration is bound by energy conservation and is closely related to symmetry by Noether theorems. Thinking of condensed matter as the packing of identical elements, we examine plots of the masses of chemical elements of the periodic table, and also those of the elementary particles of physics, and show that prime packing rules seem to play a role in the make up of matter. The plots show con- vincingly that the growth of prime numbers and that
Background geometries in string and M-theory
International Nuclear Information System (INIS)
Jeschek, C.
2005-01-01
In this thesis we consider background geometries resulting from string theory compactifications. In particular, we investigate supersymmetric vacuum spaces of supergravity theories and topological twisted sigma models by means of classical and generalised G-structures. In the first part we compactify 11d supergravity on seven-dimensional manifolds due to phenomenological reasons. A certain amount of supersymmetry forces the internal background to admit a classical SU(3)- or G 2 -structure. Especially, in the case that the four-dimensional space is maximally symmetric and four form fluxes are present we calculate the relation to the intrinsic torsion. The second and main part is two-fold. Firstly, we realise that generalised geometries on six-dimensional manifolds are a natural framework to study T-duality and mirror symmetry, in particular if the B-field is non-vanishing. An explicit mirror map is given and we apply this idea to the generalised formulation of a topological twisted sigma model. Implications of mirror symmetry are studied, e.g. observables and topological A- and B-branes. Secondly, we show that seven-dimensional NS-NS backgrounds in type II supergravity theories can be described by generalised G 2 -geometries. A compactification on six manifolds leads to a new structure. We call this geometry a generalised SU(3)-structure. We study the relation between generalised SU(3)- and G 2 -structures on six- and seven-manifolds and generalise the Hitchin-flow equations. Finally, we further develop the generalised SU(3)- and G 2 -structures via a constrained variational principle to incorporate also the remaining physical R-R fields. (Orig.)
Geometry and physics of branes
Energy Technology Data Exchange (ETDEWEB)
Gal' tsov, D V
2003-03-21
The book brings together the contents of lecture courses delivered at the school 'Geometry and Physics of Branes' which took place at the Center 'Alessandro Volta' (Como, Italy) in the spring of 2001. The purpose of the school was to provide an introduction to some lines of research, related to the notion of branes in superstring theory, which are in the focus of attention both in the physical and mathematical communities. The book is structured into three parts: the first contains an elementary introduction to branes, the second is devoted to physical aspects (conformal field theory on open and unoriented surfaces and topics in string tachyon dynamics), and the last contains some more formal mathematical developments. An introduction to branes is given in a remarkably lucid contribution by A Lerda. It opens with a construction of p-brane solutions in classical IIA and IIB supergravities with particular emphasis on the 'fundamental string' solution, the NS5-brane and the D3-brane. Then, the quantum description of D-branes is discussed in terms of boundary states of the closed superstring, which is an alternative to the more common description in terms of open strings with Dirichlet boundary conditions in the transverse to the brane directions. When a constant gauge field is present in the D-brane worldvolume, the boundary states are coherent states of the string oscillators depending on the field strength tensor. The couplings of the brane to the bulk fields - the graviton, the dilaton, and the Kalb-Ramond fields - are then extracted and shown to be precisely the ones that are produced by the Dirac-Born-Infeld action governing the low-energy dynamics of the D-brane derived using the open strings formalism. It is also shown that in the classical limit, the boundary states correctly reproduce the parameters of the corresponding classical solutions. The second part of the book starts with a contribution by Y S Stanev devoted to the two
Quantification of Porcine Vocal Fold Geometry.
Stevens, Kimberly A; Thomson, Scott L; Jetté, Marie E; Thibeault, Susan L
2016-07-01
The aim of this study was to quantify porcine vocal fold medial surface geometry and three-dimensional geometric distortion induced by freezing the larynx, especially in the region of the vocal folds. The medial surface geometries of five excised porcine larynges were quantified and reported. Five porcine larynges were imaged in a micro-CT scanner, frozen, and rescanned. Segmentations and three-dimensional reconstructions were used to quantify and characterize geometric features. Comparisons were made with geometry data previously obtained using canine and human vocal folds as well as geometries of selected synthetic vocal fold models. Freezing induced an overall expansion of approximately 5% in the transverse plane and comparable levels of nonuniform distortion in sagittal and coronal planes. The medial surface of the porcine vocal folds was found to compare reasonably well with other geometries, although the compared geometries exhibited a notable discrepancy with one set of published human female vocal fold geometry. Porcine vocal folds are qualitatively geometrically similar to data available for canine and human vocal folds, as well as commonly used models. Freezing of tissue in the larynx causes distortion of around 5%. The data can provide direction in estimating uncertainty due to bulk distortion of tissue caused by freezing, as well as quantitative geometric data that can be directly used in developing vocal fold models. Copyright © 2016 The Voice Foundation. Published by Elsevier Inc. All rights reserved.
Discrete quantum geometries and their effective dimension
International Nuclear Information System (INIS)
Thuerigen, Johannes
2015-01-01
In several approaches towards a quantum theory of gravity, such as group field theory and loop quantum gravity, quantum states and histories of the geometric degrees of freedom turn out to be based on discrete spacetime. The most pressing issue is then how the smooth geometries of general relativity, expressed in terms of suitable geometric observables, arise from such discrete quantum geometries in some semiclassical and continuum limit. In this thesis I tackle the question of suitable observables focusing on the effective dimension of discrete quantum geometries. For this purpose I give a purely combinatorial description of the discrete structures which these geometries have support on. As a side topic, this allows to present an extension of group field theory to cover the combinatorially larger kinematical state space of loop quantum gravity. Moreover, I introduce a discrete calculus for fields on such fundamentally discrete geometries with a particular focus on the Laplacian. This permits to define the effective-dimension observables for quantum geometries. Analysing various classes of quantum geometries, I find as a general result that the spectral dimension is more sensitive to the underlying combinatorial structure than to the details of the additional geometric data thereon. Semiclassical states in loop quantum gravity approximate the classical geometries they are peaking on rather well and there are no indications for stronger quantum effects. On the other hand, in the context of a more general model of states which are superposition over a large number of complexes, based on analytic solutions, there is a flow of the spectral dimension from the topological dimension d on low energy scales to a real number between 0 and d on high energy scales. In the particular case of 1 these results allow to understand the quantum geometry as effectively fractal.
A Gyrovector Space Approach to Hyperbolic Geometry
Ungar, Abraham
2009-01-01
The mere mention of hyperbolic geometry is enough to strike fear in the heart of the undergraduate mathematics and physics student. Some regard themselves as excluded from the profound insights of hyperbolic geometry so that this enormous portion of human achievement is a closed door to them. The mission of this book is to open that door by making the hyperbolic geometry of Bolyai and Lobachevsky, as well as the special relativity theory of Einstein that it regulates, accessible to a wider audience in terms of novel analogies that the modern and unknown share with the classical and familiar. T
SABRINA, Geometry Plot Program for MCNP
International Nuclear Information System (INIS)
SEIDL, Marcus
2003-01-01
1 - Description of program or function: SABRINA is an interactive, three-dimensional, geometry-modeling code system, primarily for use with CCC-200/MCNP. SABRINA's capabilities include creation, visualization, and verification of three-dimensional geometries specified by either surface- or body-base combinatorial geometry; display of particle tracks are calculated by MCNP; and volume fraction generation. 2 - Method of solution: Rendering is performed by ray tracing or an edge and intersection algorithm. Volume fraction calculations are made by ray tracing. 3 - Restrictions on the complexity of the problem: A graphics display with X Window capability is required
Information geometry near randomness and near independence
Arwini, Khadiga A
2008-01-01
This volume will be useful to practising scientists and students working in the application of statistical models to real materials or to processes with perturbations of a Poisson process, a uniform process, or a state of independence for a bivariate process. We use information geometry to provide a common differential geometric framework for a wide range of illustrative applications including amino acid sequence spacings in protein chains, cryptology studies, clustering of communications and galaxies, cosmological voids, coupled spatial statistics in stochastic fibre networks and stochastic porous media, quantum chaology. Introduction sections are provided to mathematical statistics, differential geometry and the information geometry of spaces of probability density functions.
Introduction into integral geometry and stereology
DEFF Research Database (Denmark)
Kiderlen, Markus
Statistics and Random Fields and is a self-containing introduction into integral geometry and its applications in stereology. The most important integral geometric tools for stereological applications are kinematic formulas and results of Blaschke-Petkantschin type. Therefore, Crofton's formula......This text is the extended version of two talks held at the Summer Academy Stochastic Geometry, Spatial Statistics and Random Fields in the Soellerhaus, Germany, in September 2009. It forms (with slight modifications) a chapter of the Springer lecture notes Lectures on Stochastic Geometry, Spatial...
Differential geometry and topology of curves
Animov, Yu
2001-01-01
Differential geometry is an actively developing area of modern mathematics. This volume presents a classical approach to the general topics of the geometry of curves, including the theory of curves in n-dimensional Euclidean space. The author investigates problems for special classes of curves and gives the working method used to obtain the conditions for closed polygonal curves. The proof of the Bakel-Werner theorem in conditions of boundedness for curves with periodic curvature and torsion is also presented. This volume also highlights the contributions made by great geometers. past and present, to differential geometry and the topology of curves.
Digital and discrete geometry theory and algorithms
Chen, Li
2014-01-01
This book provides comprehensive coverage of the modern methods for geometric problems in the computing sciences. It also covers concurrent topics in data sciences including geometric processing, manifold learning, Google search, cloud data, and R-tree for wireless networks and BigData.The author investigates digital geometry and its related constructive methods in discrete geometry, offering detailed methods and algorithms. The book is divided into five sections: basic geometry; digital curves, surfaces and manifolds; discretely represented objects; geometric computation and processing; and a
Fractal geometry mathematical foundations and applications
Falconer, Kenneth
2013-01-01
The seminal text on fractal geometry for students and researchers: extensively revised and updated with new material, notes and references that reflect recent directions. Interest in fractal geometry continues to grow rapidly, both as a subject that is fascinating in its own right and as a concept that is central to many areas of mathematics, science and scientific research. Since its initial publication in 1990 Fractal Geometry: Mathematical Foundations and Applications has become a seminal text on the mathematics of fractals. The book introduces and develops the general theory and applica
Fault geometry and earthquake mechanics
Directory of Open Access Journals (Sweden)
D. J. Andrews
1994-06-01
Full Text Available Earthquake mechanics may be determined by the geometry of a fault system. Slip on a fractal branching fault surface can explain: 1 regeneration of stress irregularities in an earthquake; 2 the concentration of stress drop in an earthquake into asperities; 3 starting and stopping of earthquake slip at fault junctions, and 4 self-similar scaling of earthquakes. Slip at fault junctions provides a natural realization of barrier and asperity models without appealing to variations of fault strength. Fault systems are observed to have a branching fractal structure, and slip may occur at many fault junctions in an earthquake. Consider the mechanics of slip at one fault junction. In order to avoid a stress singularity of order 1/r, an intersection of faults must be a triple junction and the Burgers vectors on the three fault segments at the junction must sum to zero. In other words, to lowest order the deformation consists of rigid block displacement, which ensures that the local stress due to the dislocations is zero. The elastic dislocation solution, however, ignores the fact that the configuration of the blocks changes at the scale of the displacement. A volume change occurs at the junction; either a void opens or intense local deformation is required to avoid material overlap. The volume change is proportional to the product of the slip increment and the total slip since the formation of the junction. Energy absorbed at the junction, equal to confining pressure times the volume change, is not large enongh to prevent slip at a new junction. The ratio of energy absorbed at a new junction to elastic energy released in an earthquake is no larger than P/µ where P is confining pressure and µ is the shear modulus. At a depth of 10 km this dimensionless ratio has th value P/µ= 0.01. As slip accumulates at a fault junction in a number of earthquakes, the fault segments are displaced such that they no longer meet at a single point. For this reason the
Polynomials in finite geometries and combinatorics
Blokhuis, A.; Walker, K.
1993-01-01
It is illustrated how elementary properties of polynomials can be used to attack extremal problems in finite and euclidean geometry, and in combinatorics. Also a new result, related to the problem of neighbourly cylinders is presented.
Algebra, Geometry and Mathematical Physics Conference
Paal, Eugen; Silvestrov, Sergei; Stolin, Alexander
2014-01-01
This book collects the proceedings of the Algebra, Geometry and Mathematical Physics Conference, held at the University of Haute Alsace, France, October 2011. Organized in the four areas of algebra, geometry, dynamical symmetries and conservation laws and mathematical physics and applications, the book covers deformation theory and quantization; Hom-algebras and n-ary algebraic structures; Hopf algebra, integrable systems and related math structures; jet theory and Weil bundles; Lie theory and applications; non-commutative and Lie algebra and more. The papers explore the interplay between research in contemporary mathematics and physics concerned with generalizations of the main structures of Lie theory aimed at quantization, and discrete and non-commutative extensions of differential calculus and geometry, non-associative structures, actions of groups and semi-groups, non-commutative dynamics, non-commutative geometry and applications in physics and beyond. The book benefits a broad audience of researchers a...
Attitudes of High School Students towards Geometry
Directory of Open Access Journals (Sweden)
Esat Avcı
2014-12-01
Full Text Available In this research, attitudes of high school students towards geometry were investigated in terms of gender, grade, types of the field and school. Population of research includes students who were studying at high school in five distincs of Mersin in 2013-2014 academical year. Sample of research includes 935 students from twelve high schools. Attitude scale which was developed by Su-Özenir (2008 was used for data collection. For data analysis, mean, standart deviation, t test and ANOVA were used. A meaningful difference between students’ attitudes towards geometry and variance of gender and grade level wasn’t observed, on the other hand a meaningful difference according to field and school type is observed.Key Words: Attitudes towards geometry, high school geometry lesson, attitude scale
Geometry, structure and randomness in combinatorics
Nešetřil, Jaroslav; Pellegrini, Marco
2014-01-01
This book collects some surveys on current trends in discrete mathematics and discrete geometry. The areas covered include: graph representations, structural graphs theory, extremal graph theory, Ramsey theory and constrained satisfaction problems.
The elements of non-Euclidean geometry
Sommerville, D MY
2012-01-01
Renowned for its lucid yet meticulous exposition, this classic allows students to follow the development of non-Euclidean geometry from a fundamental analysis of the concept of parallelism to more advanced topics. 1914 edition. Includes 133 figures.
The local index formula in noncommutative geometry
International Nuclear Information System (INIS)
Higson, N.
2003-01-01
These notes present a partial account of the local index theorem in non-commutative geometry discovered by Alain Connes and Henri Moscovici. It includes Elliptic partial differential operators, cyclic homology theory, Chern characters, homotopy invariants and the index formulas
Quantum geometry of bosonic strings - revisited
International Nuclear Information System (INIS)
Botelho, Luiz C.L.; Botelho, Raimundo C.L.; Universidade Federal Rural do Rio de Janeiro, RJ
1999-07-01
We review the original paper by A.M. Polyakov (Quantum Geometry of Bosonic Strings) with corrections and improvements the concepts exposed there and following as closely as possible to the original A.M. Polyakov's paper. (author)
Energy Technology Data Exchange (ETDEWEB)
Bejarano, Cecilia; Guzman, Maria Jose [Instituto de Astronomia y Fisica del Espacio (IAFE, CONICET-UBA), Buenos Aires (Argentina); Ferraro, Rafael [Instituto de Astronomia y Fisica del Espacio (IAFE, CONICET-UBA), Buenos Aires (Argentina); Universidad de Buenos Aires, Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Buenos Aires (Argentina)
2015-02-01
Null tetrads are shown to be a valuable tool in teleparallel theories of modified gravity. We use them to prove that Kerr geometry remains a solution for a wide family of f(T) theories of gravity. (orig.)
10th China-Japan Geometry Conference
Miyaoka, Reiko; Tang, Zizhou; Zhang, Weiping
2016-01-01
Since the year 2000, we have witnessed several outstanding results in geometry that have solved long-standing problems such as the Poincaré conjecture, the Yau–Tian–Donaldson conjecture, and the Willmore conjecture. There are still many important and challenging unsolved problems including, among others, the Strominger–Yau–Zaslow conjecture on mirror symmetry, the relative Yau–Tian–Donaldson conjecture in Kähler geometry, the Hopf conjecture, and the Yau conjecture on the first eigenvalue of an embedded minimal hypersurface of the sphere. For the younger generation to approach such problems and obtain the required techniques, it is of the utmost importance to provide them with up-to-date information from leading specialists. The geometry conference for the friendship of China and Japan has achieved this purpose during the past 10 years. Their talks deal with problems at the highest level, often accompanied with solutions and ideas, which extend across various fields in Riemannian geometry, sympl...
An experimental study of passive regenerator geometries
DEFF Research Database (Denmark)
Engelbrecht, Kurt; Nielsen, Kaspar Kirstein; Pryds, Nini
2011-01-01
Active magnetic regenerative (AMR) systems are being investigated because they represent a potentially attractive alternative to vapor compression technology. The performance of these systems is dependent on the heat transfer and pressure drop performance of the regenerator geometry. Therefore th...
The geometry of René Descartes
Descartes, René
1954-01-01
The great work that founded analytical geometry. Includes the original French text, Descartes' own diagrams, and the definitive Smith-Latham translation. "The greatest single step ever made in the progress of the exact sciences." - John Stuart Mill.
VIII International Meeting on Lorentzian Geometry
Flores, José; Palomo, Francisco; GeLoMa 2016; Lorentzian geometry and related topics
2017-01-01
This volume contains a collection of research papers and useful surveys by experts in the field which provide a representative picture of the current status of this fascinating area. Based on contributions from the VIII International Meeting on Lorentzian Geometry, held at the University of Málaga, Spain, this volume covers topics such as distinguished (maximal, trapped, null, spacelike, constant mean curvature, umbilical...) submanifolds, causal completion of spacetimes, stationary regions and horizons in spacetimes, solitons in semi-Riemannian manifolds, relation between Lorentzian and Finslerian geometries and the oscillator spacetime. In the last decades Lorentzian geometry has experienced a significant impulse, which has transformed it from just a mathematical tool for general relativity to a consolidated branch of differential geometry, interesting in and of itself. Nowadays, this field provides a framework where many different mathematical techniques arise with applications to multiple parts of mathem...
Homological mirror symmetry and tropical geometry
Catanese, Fabrizio; Kontsevich, Maxim; Pantev, Tony; Soibelman, Yan; Zharkov, Ilia
2014-01-01
The relationship between Tropical Geometry and Mirror Symmetry goes back to the work of Kontsevich and Y. Soibelman (2000), who applied methods of non-archimedean geometry (in particular, tropical curves) to Homological Mirror Symmetry. In combination with the subsequent work of Mikhalkin on the “tropical” approach to Gromov-Witten theory, and the work of Gross and Siebert, Tropical Geometry has now become a powerful tool. Homological Mirror Symmetry is the area of mathematics concentrated around several categorical equivalences connecting symplectic and holomorphic (or algebraic) geometry. The central ideas first appeared in the work of Maxim Kontsevich (1993). Roughly speaking, the subject can be approached in two ways: either one uses Lagrangian torus fibrations of Calabi-Yau manifolds (the so-called Strominger-Yau-Zaslow picture, further developed by Kontsevich and Soibelman) or one uses Lefschetz fibrations of symplectic manifolds (suggested by Kontsevich and further developed by Seidel). Tropical Ge...
International Nuclear Information System (INIS)
Bejarano, Cecilia; Guzman, Maria Jose; Ferraro, Rafael
2015-01-01
Null tetrads are shown to be a valuable tool in teleparallel theories of modified gravity. We use them to prove that Kerr geometry remains a solution for a wide family of f(T) theories of gravity. (orig.)
Geometry modeling for SAM-CE Monte Carlo calculations
International Nuclear Information System (INIS)
Steinberg, H.A.; Troubetzkoy, E.S.
1980-01-01
Three geometry packages have been developed and incorporated into SAM-CE, for representing in three dimensions the transport medium. These are combinatorial geometry - a general (non-lattice) system, complex combinatorial geometry - a very general system with lattice capability, and special reactor geometry - a special purpose system for light water reactor geometries. Their different attributes are described
Calculus of Elementary Functions, Part II. Teacher's Commentary. Revised Edition.
Herriot, Sarah T.; And Others
This course is intended for students who have a thorough knowledge of college preparatory mathematics, including algebra, axiomatic geometry, trigonometry, and analytic geometry. This teacher's guide is for Part II of the course. It is designed to follow Part I of the text. The guide contains background information, suggested instructional…
Calculus of Elementary Functions, Part II. Student Text. Revised Edition.
Herriot, Sarah T.; And Others
This course is intended for students who have a thorough knowledge of college preparatory mathematics, including algebra, axiomatic geometry, trigonometry, and analytic geometry. This text, Part II, contains material designed to follow Part I. Chapters included in this text are: (6) Derivatives of Exponential and Related Functions; (7) Area and…
Directory of Open Access Journals (Sweden)
Shayma A. Shaker
2016-11-01
Full Text Available Synthesis and characterization of Mn(II, Ni(II, Cd(II and Pb(II mixed ligand complexes of 2-methylbenzimidazole with other ligands have been reported. The structure of the ligands and their complexes was investigated using elemental analysis, IR, UV–Vis, (1H, 13C NMR spectroscopy, molar conductivity and magnetic susceptibility measurements. In all the studies of complexes, the 2-methylbenzimidazole behaves as a neutral monodentate ligand which is coordinated with the metal ions through the N atom. While benzotriazole behaves as a neutral bidentate ligand which is coordinated with the Ni(II ion through the two N atoms. Moreover, the N-acetylglycine behaves as a bidentate ligand which is coordinated with the Mn(II, Ni(II and Pb(II ions through the N atom and the terminal carboxyl oxygen atom. The magnetic and spectral data indicate the tetrahedral geometry for Mn(II complex, irregular tetrahedral geometry for Pb(II complex and octahedral geometry for Ni(II complex. The X-ray single crystal diffraction method was used to confirm a centrosymmetric dinuclear Cd(II complex as each two metal ions are linked by a pair of thiocyanate N = S bridge. Two 2-methylbenzimidazole N-atom donors and one terminal thiocyanate N atom complete a highly distorted square pyramid geometry around the Cd atom. Besides, different cell types were used to determine the inhibitory effect of Mn(II, Ni(II, Cd(II and Pb(II complexes on cell growth using MTT assay. Cd(II complex showed cytotoxic effect on various types of cancer cell lines with different EC50 values.
Geometry and quantization of moduli spaces
Andersen, Jørgen; Riera, Ignasi
2016-01-01
This volume is based on four advanced courses held at the Centre de Recerca Matemàtica (CRM), Barcelona. It presents both background information and recent developments on selected topics that are experiencing extraordinary growth within the broad research area of geometry and quantization of moduli spaces. The lectures focus on the geometry of moduli spaces which are mostly associated to compact Riemann surfaces, and are presented from both classical and quantum perspectives.
ON DIFFERENTIAL EQUATIONS, INTEGRABLE SYSTEMS, AND GEOMETRY
Enrique Gonzalo Reyes Garcia
2004-01-01
ON DIFFERENTIAL EQUATIONS, INTEGRABLE SYSTEMS, AND GEOMETRY Equations in partial derivatives appeared in the 18th century as essential tools for the analytic study of physical models and, later, they proved to be fundamental for the progress of mathematics. For example, fundamental results of modern differential geometry are based on deep theorems on differential equations. Reciprocally, it is possible to study differential equations through geometrical means just like it was done by o...
Geometry and topology of wild translation surfaces
Randecker, Anja
2016-01-01
A translation surface is a two-dimensional manifold, equipped with a translation structure. It can be obtained by considering Euclidean polygons and identifying their edges via translations. The vertices of the polygons form singularities if the translation structure can not be extended to them. We study translation surfaces with wild singularities, regarding the topology (genus and space of ends), the geometry (behavior of the singularities), and how the topology and the geometry are related.
Geometry of quantum computation with qutrits.
Li, Bin; Yu, Zu-Huan; Fei, Shao-Ming
2013-01-01
Determining the quantum circuit complexity of a unitary operation is an important problem in quantum computation. By using the mathematical techniques of Riemannian geometry, we investigate the efficient quantum circuits in quantum computation with n qutrits. We show that the optimal quantum circuits are essentially equivalent to the shortest path between two points in a certain curved geometry of SU(3(n)). As an example, three-qutrit systems are investigated in detail.
Perspectives in Analysis, Geometry, and Topology
Itenberg, I V; Passare, Mikael
2012-01-01
The articles in this volume are invited papers from the Marcus Wallenberg symposium and focus on research topics that bridge the gap between analysis, geometry, and topology. The encounters between these three fields are widespread and often provide impetus for major breakthroughs in applications. Topics include new developments in low dimensional topology related to invariants of links and three and four manifolds; Perelman's spectacular proof of the Poincare conjecture; and the recent advances made in algebraic, complex, symplectic, and tropical geometry.
African Journals Online (AJOL)
activities of Schiff base tin (II) complexes. Neelofar1 ... Conclusion: All synthesized Schiff bases and their Tin (II) complexes showed high antimicrobial and ...... Singh HL. Synthesis and characterization of tin (II) complexes of fluorinated Schiff bases derived from amino acids. Spectrochim Acta Part A: Molec Biomolec.
International Nuclear Information System (INIS)
Parekh, H.M.; Patel, M.N.
2006-01-01
The potassium salt of salicylidene-DL-alanine (KHL), bis(benzylidene)ethylenediamine (A 1 ), thiophene-o-carboxaldene-p-toluidine (A 2 ), and its metal complexes of the formula [(M II (L)(A)(H 2 O)] (M=Mn(II), Co(II), Ni(II), Cu(II), Zn(II), and Cd(II); A = A 1 or A 2 ) are prepared. They are characterized by elemental analysis, magnetic susceptibility measurements, thermogravimetric analysis, and infrared and electronic spectral studies. The electronic spectral and magnetic moment data suggest an octahedral geometry for the complexes. All of these complexes, metal nitrates, fungicides (bavistin and emcarb), and ligands are screened for their antifungal activity against Aspergillus niger, Fusarium oxysporum, and Aspergillus flavus using a plate poison technique. The complexes show higher activity than those of the free ligands, metal nitrate, and the control (DMSO) and moderate activity against bavistin and emcarb [ru
Physics- and engineering knowledge-based geometry repair system for robust parametric CAD geometries
Li, Dong
2012-01-01
In modern multi-objective design optimisation, an effective geometry engine is becoming an essential tool and its performance has a significant impact on the entire process. Building a parametric geometry requires difficult compromises between the conflicting goals of robustness and flexibility. The work presents a solution for improving the robustness of parametric geometry models by capturing and modelling relative engineering knowledge into a surrogate model, and deploying it automatically...
Energy Technology Data Exchange (ETDEWEB)
Kalgin, A.V.; Gridnev, S.A.; Popov, I.I. [Voronezh State Technical University, Voronezh (Russian Federation)
2017-03-15
Direct magnetoelectric (ME) effect in two-layered Tb{sub 0.12}Dy{sub 0.2}Fe{sub 0.68}/Epoxy - PbZr{sub 0.53}Ti{sub 0.47}O{sub 3} composites containing magnetostrictive layers of the epoxy with distributed in it Tb{sub 0.12}Dy{sub 0.2}Fe{sub 0.68} granules and piezoelectric layers of the PbZr{sub 0.53}Ti{sub 0.47}O{sub 3} ceramics was studied. It was found, that the gradient distribution of Tb{sub 0.12}Dy{sub 0.2}Fe{sub 0.68} granules in magnetostrictive layers induces the internal (self-biased) magnetic field. This field leads to the increase in ME responses in composites with the gradient distribution of Tb{sub 0.12}Dy{sub 0.2}Fe{sub 0.68} granules in magnetostrictive layers as compared with ME responses in composites with the random distribution of Tb{sub 0.12}Dy{sub 0.2}Fe{sub 0.68} granules in magnetostrictive layers, which does not induce the internal magnetic field. We revealed the possibility of controlling and determining values of the internal magnetic field in composites and conditions for obtaining optimal ME responses. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Geometry The Language of Space and Form (Revised Edition)
Tabak, John
2011-01-01
Geometry, Revised Edition describes geometry in antiquity. Beginning with a brief description of some of the geometry that preceded the geometry of the Greeks, it takes up the story of geometry during the European Renaissance as well as the significant mathematical progress in other areas of the world. It also discusses the analytic geometry of Ren Descartes and Pierre Fermat, the alternative coordinate systems invented by Isaac Newton, and the solid geometry of Leonhard Euler. Also included is an overview of the geometry of one of the most successful mathematicians of the 19th century, Bernha
The Persistification of the ATLAS Geometry
AUTHOR|(INSPIRE)INSPIRE-00068562; The ATLAS collaboration; Bianchi, Riccardo-Maria
2016-01-01
The complex geometry of the whole detector of the ATLAS experiment at LHC is currently stored only in custom online databases, from which it is built on-the- y on request. Accessing the online geometry guarantees accessing the latest version of the detector description, but requires the setup of the full ATLAS so ware framework “Athena”, which provides the online services and the tools to retrieve the data from the database. is operation is cumbersome and slows down the applications that need to access the geometry. Moreover, all applications that need to access the detector geom- etry need to be built and run on the same platform as the ATLAS framework, preventing the usage of the actual detector geometry in stand-alone applications. Here we propose a new mechanism to persistify and serve the geometry of HEP experiments. e new mechanism is composed by a new le format and a REST API. e new le format allows to store the whole detector description locally in a at le, and it is especially optimized to descri...
Cosmological solutions and finite time singularities in Finslerian geometry
Paul, Nupur; de, S. S.; Rahaman, Farook
2018-03-01
We consider a very general scenario of our universe where its geometry is characterized by the Finslerian structure on the underlying spacetime manifold, a generalization of the Riemannian geometry. Now considering a general energy-momentum tensor for matter sector, we derive the gravitational field equations in such spacetime. Further, to depict the cosmological dynamics in such spacetime proposing an interesting equation of state identified by a sole parameter γ which for isotropic limit is simply the barotropic equation of state p = (γ ‑ 1)ρ (γ ∈ ℝ being the barotropic index), we solve the background dynamics. The dynamics offers several possibilities depending on this sole parameter as follows: (i) only an exponential expansion, or (ii) a finite time past singularity (big bang) with late accelerating phase, or (iii) a nonsingular universe exhibiting an accelerating scenario at late time which finally predicts a big rip type singularity. We also discuss several energy conditions and the possibility of cosmic bounce. Finally, we establish the first law of thermodynamics in such spacetime.
Supersymmetric geometries of IIA supergravity III
International Nuclear Information System (INIS)
Gran, Ulf; Papadopoulos, George; Schultz, Christian von
2016-01-01
We find that (massive) IIA backgrounds that admit a G 2 ⋉ℝ 8 invariant Killing spinor must exhibit a null Killing vector field which leaves the Killing spinor invariant and that the rotation of the Killing vector field satisfies a certain g 2 instanton condition. This result together with those in http://dx.doi.org/10.1007/JHEP05(2014)024 and http://dx.doi.org/10.1007/JHEP12(2015)113 complete the classification of geometries of all (massive) IIA backgrounds that preserve one supersymmetry. We also explore the geometry of a class of backgrounds which admit a G 2 ⋉ℝ 8 invariant Killing spinor and where in addition an appropriate 1-form bilinear vanishes. In all cases, we express the fluxes of the theory in terms of the geometry.
Geometry of curves and surfaces with Maple
Rovenski, Vladimir
2000-01-01
This concise text on geometry with computer modeling presents some elementary methods for analytical modeling and visualization of curves and surfaces. The author systematically examines such powerful tools as 2-D and 3-D animation of geometric images, transformations, shadows, and colors, and then further studies more complex problems in differential geometry. Well-illustrated with more than 350 figures---reproducible using Maple programs in the book---the work is devoted to three main areas: curves, surfaces, and polyhedra. Pedagogical benefits can be found in the large number of Maple programs, some of which are analogous to C++ programs, including those for splines and fractals. To avoid tedious typing, readers will be able to download many of the programs from the Birkhauser web site. Aimed at a broad audience of students, instructors of mathematics, computer scientists, and engineers who have knowledge of analytical geometry, i.e., method of coordinates, this text will be an excellent classroom resource...
Quasi-crystalline geometry for architectural structures
DEFF Research Database (Denmark)
Weizierl, Barbara; Wester, Ture
2001-01-01
Artikel på CD-Rom 8 sider. The quasi-crystal (QC) type of material was discovered in 1983 by Dan Schechtman from Technion, Haifa. This new crystalline structure of material broke totally with the traditional conception of crystals and geometry introducing non-periodic close packing of cells...... with fivefold symmetry in 3D space. The quasi-crystal geometry can be constructed from two different cubic cells with identical rhombic facets, where the relation between the diagonals is the golden section. All cells have identical rhombic faces, identical edges and identical icosahedral/dedecahedral nodes....... The purpose of the paper is to investigate some possibilities for the application of Quasi-Crystal geometry for structures in architecture. The basis for the investigations is A: to use the Golden Cubes (the two different hexahedra consisting of rhombic facets where the length of the diagonals has the Golden...
Geometry and dynamics of integrable systems
Matveev, Vladimir
2016-01-01
Based on lectures given at an advanced course on integrable systems at the Centre de Recerca Matemàtica in Barcelona, these lecture notes address three major aspects of integrable systems: obstructions to integrability from differential Galois theory; the description of singularities of integrable systems on the basis of their relation to bi-Hamiltonian systems; and the generalization of integrable systems to the non-Hamiltonian settings. All three sections were written by top experts in their respective fields. Native to actual problem-solving challenges in mechanics, the topic of integrable systems is currently at the crossroads of several disciplines in pure and applied mathematics, and also has important interactions with physics. The study of integrable systems also actively employs methods from differential geometry. Moreover, it is extremely important in symplectic geometry and Hamiltonian dynamics, and has strong correlations with mathematical physics, Lie theory and algebraic geometry (including mir...
International conference on Algebraic and Complex Geometry
Kloosterman, Remke; Schütt, Matthias
2014-01-01
Several important aspects of moduli spaces and irreducible holomorphic symplectic manifolds were highlighted at the conference “Algebraic and Complex Geometry” held September 2012 in Hannover, Germany. These two subjects of recent ongoing progress belong to the most spectacular developments in Algebraic and Complex Geometry. Irreducible symplectic manifolds are of interest to algebraic and differential geometers alike, behaving similar to K3 surfaces and abelian varieties in certain ways, but being by far less well-understood. Moduli spaces, on the other hand, have been a rich source of open questions and discoveries for decades and still continue to be a hot topic in itself as well as with its interplay with neighbouring fields such as arithmetic geometry and string theory. Beyond the above focal topics this volume reflects the broad diversity of lectures at the conference and comprises 11 papers on current research from different areas of algebraic and complex geometry sorted in alphabetic order by the ...
Guided discovery learning in geometry learning
Khasanah, V. N.; Usodo, B.; Subanti, S.
2018-03-01
Geometry is a part of the mathematics that must be learned in school. The purpose of this research was to determine the effect of Guided Discovery Learning (GDL) toward geometry learning achievement. This research had conducted at junior high school in Sukoharjo on academic years 2016/2017. Data collection was done based on student’s work test and documentation. Hypothesis testing used two ways analysis of variance (ANOVA) with unequal cells. The results of this research that GDL gave positive effect towards mathematics learning achievement. GDL gave better mathematics learning achievement than direct learning. There was no difference of mathematics learning achievement between male and female. There was no an interaction between sex differences and learning models toward student’s mathematics learning achievement. GDL can be used to improve students’ mathematics learning achievement in geometry.
Application of Tessellation in Architectural Geometry Design
Chang, Wei
2018-06-01
Tessellation plays a significant role in architectural geometry design, which is widely used both through history of architecture and in modern architectural design with the help of computer technology. Tessellation has been found since the birth of civilization. In terms of dimensions, there are two- dimensional tessellations and three-dimensional tessellations; in terms of symmetry, there are periodic tessellations and aperiodic tessellations. Besides, some special types of tessellations such as Voronoi Tessellation and Delaunay Triangles are also included. Both Geometry and Crystallography, the latter of which is the basic theory of three-dimensional tessellations, need to be studied. In history, tessellation was applied into skins or decorations in architecture. The development of Computer technology enables tessellation to be more powerful, as seen in surface control, surface display and structure design, etc. Therefore, research on the application of tessellation in architectural geometry design is of great necessity in architecture studies.
Physical properties corresponding to vortical flow geometry
Energy Technology Data Exchange (ETDEWEB)
Nakayama, K, E-mail: nakayama@aitech.ac.jp [Department of Mechanical Engineering, Aichi Institute of Technology, Toyota, Aichi 470-0392 (Japan)
2014-10-01
We examine a vortical flow geometry specified by the velocity gradient tensor ∇v, and derive properties representing the symmetry (axisymmetry or skewness) of the vortical flow in the swirl plane and a property specifying inflowing (outflowing) motion in all directions around the point. We focus on the radial and azimuthal velocities in a plane nonparallel to the eigenvector corresponding to the real eigenvalue of ∇v and show that these components are expressed as specific quadratic forms. The real and imaginary parts of the complex eigenvalues of ∇v represent averages of these eigenvalues of the quadratic forms, and are inadequate to specify the detailed flow geometry uniquely. The new properties complement specifying the precise flow geometry of the vortical flow.
Pearson's Functions to Describe FSW Weld Geometry
International Nuclear Information System (INIS)
Lacombe, D.; Coupard, D.; Tcherniaeff, S.; Girot, F.; Gutierrez-Orrantia, M. E.
2011-01-01
Friction stir welding (FSW) is a relatively new joining technique particularly for aluminium alloys that are difficult to fusion weld. In this study, the geometry of the weld has been investigated and modelled using Pearson's functions. It has been demonstrated that the Pearson's parameters (mean, standard deviation, skewness, kurtosis and geometric constant) can be used to characterize the weld geometry and the tensile strength of the weld assembly. Pearson's parameters and process parameters are strongly correlated allowing to define a control process procedure for FSW assemblies which make radiographic or ultrasonic controls unnecessary. Finally, an optimisation using a Generalized Gradient Method allows to determine the geometry of the weld which maximises the assembly tensile strength.
Geometric Monte Carlo and black Janus geometries
Energy Technology Data Exchange (ETDEWEB)
Bak, Dongsu, E-mail: dsbak@uos.ac.kr [Physics Department, University of Seoul, Seoul 02504 (Korea, Republic of); B.W. Lee Center for Fields, Gravity & Strings, Institute for Basic Sciences, Daejeon 34047 (Korea, Republic of); Kim, Chanju, E-mail: cjkim@ewha.ac.kr [Department of Physics, Ewha Womans University, Seoul 03760 (Korea, Republic of); Kim, Kyung Kiu, E-mail: kimkyungkiu@gmail.com [Department of Physics, Sejong University, Seoul 05006 (Korea, Republic of); Department of Physics, College of Science, Yonsei University, Seoul 03722 (Korea, Republic of); Min, Hyunsoo, E-mail: hsmin@uos.ac.kr [Physics Department, University of Seoul, Seoul 02504 (Korea, Republic of); Song, Jeong-Pil, E-mail: jeong_pil_song@brown.edu [Department of Chemistry, Brown University, Providence, RI 02912 (United States)
2017-04-10
We describe an application of the Monte Carlo method to the Janus deformation of the black brane background. We present numerical results for three and five dimensional black Janus geometries with planar and spherical interfaces. In particular, we argue that the 5D geometry with a spherical interface has an application in understanding the finite temperature bag-like QCD model via the AdS/CFT correspondence. The accuracy and convergence of the algorithm are evaluated with respect to the grid spacing. The systematic errors of the method are determined using an exact solution of 3D black Janus. This numerical approach for solving linear problems is unaffected initial guess of a trial solution and can handle an arbitrary geometry under various boundary conditions in the presence of source fields.
Index theory for locally compact noncommutative geometries
Carey, A L; Rennie, A; Sukochev, F A
2014-01-01
Spectral triples for nonunital algebras model locally compact spaces in noncommutative geometry. In the present text, the authors prove the local index formula for spectral triples over nonunital algebras, without the assumption of local units in our algebra. This formula has been successfully used to calculate index pairings in numerous noncommutative examples. The absence of any other effective method of investigating index problems in geometries that are genuinely noncommutative, particularly in the nonunital situation, was a primary motivation for this study and the authors illustrate this point with two examples in the text. In order to understand what is new in their approach in the commutative setting the authors prove an analogue of the Gromov-Lawson relative index formula (for Dirac type operators) for even dimensional manifolds with bounded geometry, without invoking compact supports. For odd dimensional manifolds their index formula appears to be completely new.
Nozzle geometry variations on the discharge coefficient
Directory of Open Access Journals (Sweden)
M.M.A. Alam
2016-03-01
Full Text Available Numerical works have been conducted to investigate the effect of nozzle geometries on the discharge coefficient. Several contoured converging nozzles with finite radius of curvatures, conically converging nozzles and conical divergent orifices have been employed in this investigation. Each nozzle and orifice has a nominal exit diameter of 12.7×10−3 m. A 3rd order MUSCL finite volume method of ANSYS Fluent 13.0 was used to solve the Reynolds-averaged Navier–Stokes equations in simulating turbulent flows through various nozzle inlet geometries. The numerical model was validated through comparison between the numerical results and experimental data. The results obtained show that the nozzle geometry has pronounced effect on the sonic lines and discharge coefficients. The coefficient of discharge was found differ from unity due to the non-uniformity of flow parameters at the nozzle exit and the presence of boundary layer as well.
From groups to geometry and back
Climenhaga, Vaughn
2017-01-01
Groups arise naturally as symmetries of geometric objects, and so groups can be used to understand geometry and topology. Conversely, one can study abstract groups by using geometric techniques and ultimately by treating groups themselves as geometric objects. This book explores these connections between group theory and geometry, introducing some of the main ideas of transformation groups, algebraic topology, and geometric group theory. The first half of the book introduces basic notions of group theory and studies symmetry groups in various geometries, including Euclidean, projective, and hyperbolic. The classification of Euclidean isometries leads to results on regular polyhedra and polytopes; the study of symmetry groups using matrices leads to Lie groups and Lie algebras. The second half of the book explores ideas from algebraic topology and geometric group theory. The fundamental group appears as yet another group associated to a geometric object and turns out to be a symmetry group using covering space...
Tests of compressed geometry NEC acceleration tubes
International Nuclear Information System (INIS)
Raatz, J.E.; Rathmell, R.D.; Stelson, P.H.; Ziegler, N.F.
1985-01-01
Tests have been performed in the 3 MV Pelletron test machine at NEC on a compressed geometry tube which increases the insulating length of the tube by eliminating the heated electrode assemblies (approx.2.5 cm thick) at the end of each tube section. Some insert electrodes are changed to provide some trapping of secondary ions. The geometry tested provided an 18% increase in live ceramic in the tube. The compressed geometry tube allowed a terminal voltage of 3.55 MV on the 3 MV column at normal gradients of 30.3 kv/tube gap. The tube was also conditioned to more than 4 MV and remained stable in voltage with few sparks and with low x-ray levels for days at about 4 MV. This same performance could be achieved with or without arc discharge cleaning. 4 refs., 4 figs
Guven, Bulent
2012-01-01
This study examines the effect of dynamic geometry software (DGS) on students' learning of transformation geometry. A pre- and post-test quasi-experimental design was used. Participants in the study were 68 eighth grade students (36 in the experimental group and 32 in the control group). While the experimental group students were studying the…
Directory of Open Access Journals (Sweden)
Nahid Nishat
2016-09-01
Full Text Available A biodegradable polymer was synthesized by the modification reaction of polymeric starch with thiourea which is further modified by transition metals, Mn(II, Co(II, Ni(II, Cu(II and Zn(II. All the polymeric compounds were characterized by (FT-IR spectroscopy, 1H NMR spectroscopy, 13C NMR spectroscopy, UV–visible spectra, magnetic moment measurements, thermogravimetric analysis (TGA and antibacterial activities. Polymer complexes of Mn(II, Co(II and Ni(II show octahedral geometry, while polymer complexes of Cu(II and Zn(II show square planar and tetrahedral geometry, respectively. The TGA revealed that all the polymer metal complexes are more thermally stable than their parental ligand. In addition, biodegradable studies of all the polymeric compounds were also carried out through ASTM-D-5338-93 standards of biodegradable polymers by CO2 evolution method which says that coordination decreases biodegradability. The antibacterial activity was screened with the agar well diffusion method against some selected microorganisms. Among all the complexes, the antibacterial activity of the Cu(II polymer–metal complex showed the highest zone of inhibition because of its higher stability constant.
Exploring Concepts of Geometry not Euclidean
Directory of Open Access Journals (Sweden)
Luiz Ambrozi
2016-02-01
Full Text Available With this article we intend to propose different situations of teaching and learning, how they can be applied in schools, mediated by the use of concrete materials and Geogebra software, emphasizing the use of technology in the classroom, that this proposal has the role of assisting in the conceptualization and identification of elements of non-Euclidean geometry. In addition, this short course is designed to be a time of current and continuing education for teachers, with activities to be developed with dynamic geometry and based on the theory of Conceptual Fields of Vergnaud.
Geometry-Dependent Electrostatics near Contact Lines
International Nuclear Information System (INIS)
Chou, Tom
2001-01-01
Long-ranged electrostatic interactions in electrolytes modify contact angles on charged substrates in a scale and geometry-dependent manner. For angles measured at scales smaller than the typical Debye screening length, the wetting geometry near the contact line must be explicitly considered. Using variational and asymptotic methods, we derive new transcendental equations for the contact angle as functions of the electrostatic potential only at the three phase contact line. Analytic expressions are found in certain limits and compared with predictions for contact angles measured with lower resolution. An estimate for electrostatic contributions to line tension is also given
Noncommutative Geometry, Quantum Fields and Motives
Connes, Alain
2007-01-01
The unifying theme of this book is the interplay among noncommutative geometry, physics, and number theory. The two main objects of investigation are spaces where both the noncommutative and the motivic aspects come to play a role: space-time, where the guiding principle is the problem of developing a quantum theory of gravity, and the space of primes, where one can regard the Riemann Hypothesis as a long-standing problem motivating the development of new geometric tools. The book stresses the relevance of noncommutative geometry in dealing with these two spaces. The first part of the book dea
Density and geometry of single component plasmas
International Nuclear Information System (INIS)
Speck, A.; Gabrielse, G.; Larochelle, P.; Le Sage, D.; Levitt, B.; Kolthammer, W.S.; McConnell, R.; Wrubel, J.; Grzonka, D.; Oelert, W.; Sefzick, T.; Zhang, Z.; Comeau, D.; George, M.C.; Hessels, E.A.; Storry, C.H.; Weel, M.; Walz, J.
2007-01-01
The density and geometry of p-bar and e + plasmas in realistic trapping potentials are required to understand and optimize antihydrogen (H-bar) formation. An aperture method and a quadrupole oscillation frequency method for characterizing such plasmas are compared for the first time, using electrons in a cylindrical Penning trap. Both methods are used in a way that makes it unnecessary to assume that the plasmas are spheroidal, and it is shown that they are not. Good agreement between the two methods illustrates the possibility to accurately determine plasma densities and geometries within non-idealized, realistic trapping potentials
Riemannian geometry in an orthogonal frame
Cartan, Elie Joseph
2001-01-01
Foreword by S S Chern. In 1926-27, Cartan gave a series of lectures in which he introduced exterior forms at the very beginning and used extensively orthogonal frames throughout to investigate the geometry of Riemannian manifolds. In this course he solved a series of problems in Euclidean and non-Euclidean spaces, as well as a series of variational problems on geodesics. In 1960, Sergei P Finikov translated from French into Russian his notes of these Cartan's lectures and published them as a book entitled Riemannian Geometry in an Orthogonal Frame. This book has many innovations, such as the n
Density and geometry of single component plasmas
Speck, A; Larochelle, P; Le Sage, D; Levitt, B; Kolthammer, W S; McConnell, R; Wrubel, J; Grzonka, D; Oelert, W; Sefzick, T; Zhang, Z; Comeau, D; George, M C; Hessels, E A; Storry, C H; Weel, M; Walz, J
2007-01-01
The density and geometry of p¯ and e+ plasmas in realistic trapping potentials are required to understand and optimize antihydrogen (H¯) formation. An aperture method and a quadrupole oscillation frequency method for characterizing such plasmas are compared for the first time, using electrons in a cylindrical Penning trap. Both methods are used in a way that makes it unnecessary to assume that the plasmas are spheroidal, and it is shown that they are not. Good agreement between the two methods illustrates the possibility to accurately determine plasma densities and geometries within non-idealized, realistic trapping potentials.
Quasi-crystalline geometry for architectural structures
DEFF Research Database (Denmark)
Wester, Ture; Weinzieri, Barbara
The quasi-crystal (QC) type of material was discovered in 1983 by Dan Schechtman from Technion, Haifa. This new crystalline structure of material broke totally with the traditional conception of crystals and geometry introducing non-periodic close packing of cells with fivefold symmetry in 3D space....... The quasi-crystal geometry can be constructed from two different cubic cells with identical rhombic facets, where the relation between the diagonals is the golden section. All cells have identical rhombic faces, identical edges and identical icosahedral/dodecahedral nodes....
Third sound in a restricted geometry
International Nuclear Information System (INIS)
Brouwer, P.W.; Draisma, W.A.; Pinkse, P.W.H.; Beelen, H. van; Jochemsen, R.; Frossati, G.
1992-01-01
Bergman's general treatment of third sound waves has been extended to a (restricted) parallel plate geometry. In a parallel plate geometry two independent third sound modes can propagate: a symmetric and an antisymmetric one. Calculations show that at temperatures below 1 K the antisymmetric mode carries the most important part of the temperature amplitude. Because of the relatively strong substrate influence the temperature amplitude of the symmetric mode is suppressed. The ΔT/Δh versus T measurements by Laheurte et al. and of the ΔT/Δh versus ω measurements by Ellis et al. are explained. 7 refs., 2 figs
Thin shells joining local cosmic string geometries
Energy Technology Data Exchange (ETDEWEB)
Eiroa, Ernesto F. [Universidad de Buenos Aires, Ciudad Universitaria Pabellon I, Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Buenos Aires (Argentina); Instituto de Astronomia y Fisica del Espacio (IAFE, CONICET-UBA), Buenos Aires (Argentina); Rubin de Celis, Emilio; Simeone, Claudio [Universidad de Buenos Aires, Ciudad Universitaria Pabellon I, Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Buenos Aires (Argentina); Ciudad Universitaria Pabellon I, IFIBA-CONICET, Buenos Aires (Argentina)
2016-10-15
In this article we present a theoretical construction of spacetimes with a thin shell that joins two different local cosmic string geometries. We study two types of global manifolds, one representing spacetimes with a thin shell surrounding a cosmic string or an empty region with Minkowski metric, and the other corresponding to wormholes which are not symmetric across the throat located at the shell. We analyze the stability of the static configurations under perturbations preserving the cylindrical symmetry. For both types of geometries we find that the static configurations can be stable for suitable values of the parameters. (orig.)
Architectural Geometry and Fabrication-Aware Design
Pottmann, Helmut
2013-04-27
Freeform shapes and structures with a high geometric complexity play an increasingly important role in contemporary architecture. While digital models are easily created, the actual fabrication and construction remains a challenge. This is the source of numerous research problems many of which fall into the area of Geometric Computing and form part of a recently emerging research area, called "Architectural Geometry". The present paper provides a short survey of research in Architectural Geometry and shows how this field moves towards a new direction in Geometric Modeling which aims at combining shape design with important aspects of function and fabrication. © 2013 Kim Williams Books, Turin.
Thin shells joining local cosmic string geometries
International Nuclear Information System (INIS)
Eiroa, Ernesto F.; Rubin de Celis, Emilio; Simeone, Claudio
2016-01-01
In this article we present a theoretical construction of spacetimes with a thin shell that joins two different local cosmic string geometries. We study two types of global manifolds, one representing spacetimes with a thin shell surrounding a cosmic string or an empty region with Minkowski metric, and the other corresponding to wormholes which are not symmetric across the throat located at the shell. We analyze the stability of the static configurations under perturbations preserving the cylindrical symmetry. For both types of geometries we find that the static configurations can be stable for suitable values of the parameters. (orig.)
Relating arithmetical techniques of proportion to geometry
DEFF Research Database (Denmark)
Wijayanti, Dyana
2015-01-01
The purpose of this study is to investigate how textbooks introduce and treat the theme of proportion in geometry (similarity) and arithmetic (ratio and proportion), and how these themes are linked to each other in the books. To pursue this aim, we use the anthropological theory of the didactic....... Considering 6 common Indonesian textbooks in use, we describe how proportion is explained and appears in examples and exercises, using an explicit reference model of the mathematical organizations of both themes. We also identify how the proportion themes of the geometry and arithmetic domains are linked. Our...
Strontium clusters: electronic and geometry shell effects
DEFF Research Database (Denmark)
Lyalin, Andrey G.; Solov'yov, Ilia; Solov'yov, Andrey V.
2008-01-01
charged strontium clusters consisting of up to 14 atoms, average bonding distances, electronic shell closures, binding energies per atom, and spectra of the density of electronic states (DOS). It is demonstrated that the size-evolution of structural and electronic properties of strontium clusters...... is governed by an interplay of the electronic and geometry shell closures. Influence of the electronic shell effects on structural rearrangements can lead to violation of the icosahedral growth motif of strontium clusters. It is shown that the excessive charge essentially affects the optimized geometry...
Thermal geometry from CFT at finite temperature
Directory of Open Access Journals (Sweden)
Wen-Cong Gan
2016-09-01
Full Text Available We present how the thermal geometry emerges from CFT at finite temperature by using the truncated entanglement renormalization network, the cMERA. For the case of 2d CFT, the reduced geometry is the BTZ black hole or the thermal AdS as expectation. In order to determine which spacetimes prefer to form, we propose a cMERA description of the Hawking–Page phase transition. Our proposal is in agreement with the picture of the recent proposed surface/state correspondence.
Thermal geometry from CFT at finite temperature
Energy Technology Data Exchange (ETDEWEB)
Gan, Wen-Cong, E-mail: ganwencong@gmail.com [Department of Physics, Nanchang University, Nanchang 330031 (China); Center for Relativistic Astrophysics and High Energy Physics, Nanchang University, Nanchang 330031 (China); Shu, Fu-Wen, E-mail: shufuwen@ncu.edu.cn [Department of Physics, Nanchang University, Nanchang 330031 (China); Center for Relativistic Astrophysics and High Energy Physics, Nanchang University, Nanchang 330031 (China); Wu, Meng-He, E-mail: menghewu.physik@gmail.com [Department of Physics, Nanchang University, Nanchang 330031 (China); Center for Relativistic Astrophysics and High Energy Physics, Nanchang University, Nanchang 330031 (China)
2016-09-10
We present how the thermal geometry emerges from CFT at finite temperature by using the truncated entanglement renormalization network, the cMERA. For the case of 2d CFT, the reduced geometry is the BTZ black hole or the thermal AdS as expectation. In order to determine which spacetimes prefer to form, we propose a cMERA description of the Hawking–Page phase transition. Our proposal is in agreement with the picture of the recent proposed surface/state correspondence.
Freudenthal duality and generalized special geometry
Energy Technology Data Exchange (ETDEWEB)
Ferrara, Sergio, E-mail: sergio.ferrara@cern.ch [Physics Department, Theory Unit, CERN, CH-1211, Geneva 23 (Switzerland); INFN - Laboratori Nazionali di Frascati, Via Enrico Fermi 40, I-00044 Frascati (Italy); Marrani, Alessio, E-mail: Alessio.Marrani@cern.ch [Physics Department, Theory Unit, CERN, CH-1211, Geneva 23 (Switzerland); Yeranyan, Armen, E-mail: ayeran@lnf.infn.it [INFN - Laboratori Nazionali di Frascati, Via Enrico Fermi 40, I-00044 Frascati (Italy); Department of Physics, Yerevan State University, Alex Manoogian St. 1, Yerevan, 0025 (Armenia)
2011-07-27
Freudenthal duality, introduced in Borsten et al. (2009) and defined as an anti-involution on the dyonic charge vector in d=4 space-time dimensions for those dualities admitting a quartic invariant, is proved to be a symmetry not only of the classical Bekenstein-Hawking entropy but also of the critical points of the black hole potential. Furthermore, Freudenthal duality is extended to any generalized special geometry, thus encompassing all N>2 supergravities, as well as N=2 generic special geometry, not necessarily having a coset space structure.
Geometry of the local equivalence of states
Energy Technology Data Exchange (ETDEWEB)
Sawicki, A; Kus, M, E-mail: assawi@cft.edu.pl, E-mail: marek.kus@cft.edu.pl [Center for Theoretical Physics, Polish Academy of Sciences, Al Lotnikow 32/46, 02-668 Warszawa (Poland)
2011-12-09
We present a description of locally equivalent states in terms of symplectic geometry. Using the moment map between local orbits in the space of states and coadjoint orbits of the local unitary group, we reduce the problem of local unitary equivalence to an easy part consisting of identifying the proper coadjoint orbit and a harder problem of the geometry of fibers of the moment map. We give a detailed analysis of the properties of orbits of 'equally entangled states'. In particular, we show connections between certain symplectic properties of orbits such as their isotropy and coisotropy with effective criteria of local unitary equivalence. (paper)
Noncommutative geometry and twisted conformal symmetry
International Nuclear Information System (INIS)
Matlock, Peter
2005-01-01
The twist-deformed conformal algebra is constructed as a Hopf algebra with twisted coproduct. This allows for the definition of conformal symmetry in a noncommutative background geometry. The twisted coproduct is reviewed for the Poincare algebra and the construction is then extended to the full conformal algebra. The case of Moyal-type noncommutativity of the coordinates is considered. It is demonstrated that conformal invariance need not be viewed as incompatible with noncommutative geometry; the noncommutativity of the coordinates appears as a consequence of the twisting, as has been shown in the literature in the case of the twisted Poincare algebra
The geometry of classical Regge calculus
International Nuclear Information System (INIS)
Barrett, J.W.
1987-01-01
Standard notions of Riemannian geometry are applied to the case of piecewise-flat manifolds. Particular care is taken to explain how one may define some particular vectors and tensors in an invariant way at points of a conical singularity. The geometry surrounding the equations of motion and the energy-momentum of the piecewise-flat manifold is developed in detail. The resolution theorem is presented, which states that on certain resolution hypersurfaces there is a clear connection between the energy-momentum of the piecewise-flat manifold and the Regge equations of motion. (author)
Recent topics in differential and analytic geometry
Ochiai, T
1990-01-01
Advanced Studies in Pure Mathematics, Volume 18-I: Recent Topics in Differential and Analytic Geometry presents the developments in the field of analytical and differential geometry. This book provides some generalities about bounded symmetric domains.Organized into two parts encompassing 12 chapters, this volume begins with an overview of harmonic mappings and holomorphic foliations. This text then discusses the global structures of a compact Kähler manifold that is locally decomposable as an isometric product of Ricci-positive, Ricci-negative, and Ricci-flat parts. Other chapters con
The VSEPR model of molecular geometry
Gillespie, Ronald J
2012-01-01
Valence Shell Electron Pair Repulsion (VSEPR) theory is a simple technique for predicting the geometry of atomic centers in small molecules and molecular ions. This authoritative reference was written by Istvan Hartiggai and the developer of VSEPR theory, Ronald J. Gillespie. In addition to its value as a text for courses in molecular geometry and chemistry, it constitutes a classic reference for professionals.Starting with coverage of the broader aspects of VSEPR, this volume narrows its focus to a succinct survey of the methods of structural determination. Additional topics include the appli
Li, F. H.; Bi, H.; Huang, D. X.; Zhang, M.; Song, Y. B.
2018-01-01
Co(II), Mn(II), Cu(II) and Cr(III) salen type complexes were synthesized in situ in Y zeolite by the reaction of ion-exchanged metal ions with the flexible ligand molecules that had diffused into the cavities. Data of characterization indicates the formation of metal salen complexes in the pores without affecting the zeolite framework structure, the absence of any extraneous species and the geometry of encapsulated complexes. The catalytic activity results show that Cosalcyen Y exhibited higher catalytic activity in the water phase selective oxidation of benzyl alcohol, which could be attributed to their geometry and the steric environment of the metal actives sites.
Self-biased cobalt ferrite nanocomposites for microwave applications
Energy Technology Data Exchange (ETDEWEB)
Hannour, Abdelkrim, E-mail: abdelkrim.hannour@hotmail.com [LT2C Laboratory, Jean-Monnet University, 25 rue Dr. Rémy Annino, F-42000, Saint-Etienne (France); Vincent, Didier; Kahlouche, Faouzi; Tchangoulian, Ardaches [LT2C Laboratory, Jean-Monnet University, 25 rue Dr. Rémy Annino, F-42000, Saint-Etienne (France); Neveu, Sophie; Dupuis, Vincent [UPMC Univ Paris 06, UMR 7195, PECSA, F-75005, Paris (France)
2014-03-15
Oriented CoFe{sub 2}O{sub 4} nanoparticles, dispersed in polymethyl methacrylate (PMMA) matrix, were fabricated by magnetophoretic deposition of functionalized nanocolloidal cobalt ferrite particles into porous alumina membrane. Their magnetic behavior exhibits an out-of-plane easy axis with a large remanent magnetization and coercitivity. This orientation allows high effective internal magnetic anisotropy that contributes to the permanent bias along the wire axis. The microwave studies reveal a ferromagnetic resonance at 46.5 and 49.5 GHz, depending on the filling ratio of the membrane. Ansoft High Frequency Structure Simulator (Ansoft HFSS) simulations are in good agreement with experimental results. Such nanocomposite is presented as one of the promising candidates for microwave devices (circulators, isolators, noise suppressors etc.). - Highlights: • Oriented magnetic CoFe{sub 2}O{sub 4} nanoparticles were fabricated by magnetophoretic deposition of functionalized cobalt ferrite particles into porous alumina membrane. • The nanocomposite obtained presents an out-of-plane easy axis with a large remanent magnetization and coercitivity. • The high effective internal magnetic anisotropy contributes to the permanent bias along the wire axis. • The frequency ferromagnetic resonance ranges from 46.5 to 49.5 GHz, depending on the filling ratio of the membrane. • We have obtained a good agreement between Ansoft High Frequency Structure Simulator simulations and experimental results.
Self-biased cobalt ferrite nanocomposites for microwave applications
International Nuclear Information System (INIS)
Hannour, Abdelkrim; Vincent, Didier; Kahlouche, Faouzi; Tchangoulian, Ardaches; Neveu, Sophie; Dupuis, Vincent
2014-01-01
Oriented CoFe 2 O 4 nanoparticles, dispersed in polymethyl methacrylate (PMMA) matrix, were fabricated by magnetophoretic deposition of functionalized nanocolloidal cobalt ferrite particles into porous alumina membrane. Their magnetic behavior exhibits an out-of-plane easy axis with a large remanent magnetization and coercitivity. This orientation allows high effective internal magnetic anisotropy that contributes to the permanent bias along the wire axis. The microwave studies reveal a ferromagnetic resonance at 46.5 and 49.5 GHz, depending on the filling ratio of the membrane. Ansoft High Frequency Structure Simulator (Ansoft HFSS) simulations are in good agreement with experimental results. Such nanocomposite is presented as one of the promising candidates for microwave devices (circulators, isolators, noise suppressors etc.). - Highlights: • Oriented magnetic CoFe 2 O 4 nanoparticles were fabricated by magnetophoretic deposition of functionalized cobalt ferrite particles into porous alumina membrane. • The nanocomposite obtained presents an out-of-plane easy axis with a large remanent magnetization and coercitivity. • The high effective internal magnetic anisotropy contributes to the permanent bias along the wire axis. • The frequency ferromagnetic resonance ranges from 46.5 to 49.5 GHz, depending on the filling ratio of the membrane. • We have obtained a good agreement between Ansoft High Frequency Structure Simulator simulations and experimental results
A novel self-biased linear silicon drift detector
International Nuclear Information System (INIS)
Corsi, F.; Gramegna, G.; Marzocca, C.
1999-01-01
A novel linear silicon drift detector (SDD) is proposed in which the proper potential profile is established by the voltage drop along a unique p + cathode implanted across the surfaces. This p + implant, arranged in a zigzag shape, acts at the same time as voltage divider and field cathode and allows one to increase the sensitive area, improving also the uniformity of the thermal distribution and thus minimizing the fluctuation of the electron mobility on the sensitive zone of the SDD. The perturbations of the drift field due to the asymmetry of the strips constituting the zigzag cathode have been evaluated by solving analytically Poisson's equation for a simplified model of the structure. Three-dimensional numerical simulations have been carried out to prove the negligible amount of the perturbation and the effectiveness of the proposed structure. Based on this principle, a prototype has been manufactured at Canberra Semiconductor Company. Dynamic measurements of the time-of-flight of an injected charge prove that the linearity of the prototype and the drift uniformity in the anode direction are very high
Architectural Geometry and Fabrication-Aware Design
Pottmann, Helmut
2013-01-01
. This is the source of numerous research problems many of which fall into the area of Geometric Computing and form part of a recently emerging research area, called "Architectural Geometry". The present paper provides a short survey of research in Architectural
Geometry and the Design of Product Packaging
Cherico, Cindy M.
2011-01-01
The most common question the author's students ask is, "When will I ever use this in real life?" To address this question in her geometry classes, the author sought to create a project that would incorporate a real-world business situation with their lesson series on the surface area and volume of three-dimensional objects--specifically, prisms,…
An improved injector bunching geometry for ATLAS
Indian Academy of Sciences (India)
This geometry improves the handling of space charge for high-current beams, signiﬁcantly increases the capture fraction into the primary rf bucket and reduces the capture fraction of the unwanted parasitic rf bucket. Total capture and transport through the PII has been demonstrated as high as 80% of the injected dc beam ...
Anisotropic diffusion in a toroidal geometry
International Nuclear Information System (INIS)
Fischer, Paul F
2005-01-01
As part of the Department of Energy's applications oriented SciDAC project, three model problems have been proposed by the Center for Extended Magnetohydrodynamics Modeling to test the potential of numerical algorithms for challenging magnetohydrodynamics (MHD) problems that are required for future fusion development. The first of these, anisotropic diffusion in a toroidal geometry, is considered in this note
Impact damage reduction by structured surface geometry
DEFF Research Database (Denmark)
Kusano, Yukihiro; Fedorov, Vladimir; McGugan, Malcolm
2018-01-01
performance was observed for polyurethane-coated fibre composites with structured geometries at the back surfaces. Repeated impacts by rubber balls on the coated side caused damage and delamination of the coating. The laminates with structured back surfaces showed longer durability than those with a flat back...
User Interface Design for Dynamic Geometry Software
Kortenkamp, Ulrich; Dohrmann, Christian
2010-01-01
In this article we describe long-standing user interface issues with Dynamic Geometry Software and common approaches to address them. We describe first prototypes of multi-touch-capable DGS. We also give some hints on the educational benefits of proper user interface design.
Fast rendering of scanned room geometries
DEFF Research Database (Denmark)
Olesen, Søren Krarup; Markovic, Milos; Hammershøi, Dorte
2014-01-01
Room acoustics are rendered in Virtual Realities based on models of the real world. These are typically rather coarse representations of the true geometry resulting in room impulse responses with a lack of natural detail. This problem can be overcome by using data scanned by sensors, such as e...
Parameterized combinatorial geometry modeling in Moritz
International Nuclear Information System (INIS)
Van Riper, K.A.
2005-01-01
We describe the use of named variables as surface and solid body coefficients in the Moritz geometry editing program. Variables can also be used as material numbers, cell densities, and transformation values. A variable is defined as a constant or an arithmetic combination of constants and other variables. A variable reference, such as in a surface coefficient, can be a single variable or an expression containing variables and constants. Moritz can read and write geometry models in MCNP and ITS ACCEPT format; support for other codes will be added. The geometry can be saved with either the variables in place, for modifying the models in Moritz, or with the variables evaluated for use in the transport codes. A program window shows a list of variables and provides fields for editing them. Surface coefficients and other values that use a variable reference are shown in a distinctive style on object property dialogs; associated buttons show fields for editing the reference. We discuss our use of variables in defining geometry models for shielding studies in PET clinics. When a model is parameterized through the use of variables, changes such as room dimensions, shielding layer widths, and cell compositions can be quickly achieved by changing a few numbers without requiring knowledge of the input syntax for the transport code or the tedious and error prone work of recalculating many surface or solid body coefficients. (author)
Geometry and Hamiltonian mechanics on discrete spaces
International Nuclear Information System (INIS)
Talasila, V; Clemente-Gallardo, J; Schaft, A J van der
2004-01-01
Numerical simulation is often crucial for analysing the behaviour of many complex systems which do not admit analytic solutions. To this end, one either converts a 'smooth' model into a discrete (in space and time) model, or models systems directly at a discrete level. The goal of this paper is to provide a discrete analogue of differential geometry, and to define on these discrete models a formal discrete Hamiltonian structure-in doing so we try to bring together various fundamental concepts from numerical analysis, differential geometry, algebraic geometry, simplicial homology and classical Hamiltonian mechanics. For example, the concept of a twisted derivation is borrowed from algebraic geometry for developing a discrete calculus. The theory is applied to a nonlinear pendulum and we compare the dynamics obtained through a discrete modelling approach with the dynamics obtained via the usual discretization procedures. Also an example of an energy-conserving algorithm on a simple harmonic oscillator is presented, and its effect on the Poisson structure is discussed
Applications of stochastic geometry in image analysis
Lieshout, van M.N.M.; Kendall, W.S.; Molchanov, I.S.
2009-01-01
A discussion is given of various stochastic geometry models (random fields, sequential object processes, polygonal field models) which can be used in intermediate and high-level image analysis. Two examples are presented of actual image analysis problems (motion tracking in video,
Interactive geometry inside MathDox
Cuypers, H.; Hendriks, M.; Knopper, J.W.
2010-01-01
In this paper we describe how we envision using interactive geometry inside MathDox pages. In particular, by some examples we discuss how users and mathematical services (offered by various mathematical software packages) can interact with the geometric objects available. This not only includes
Ruler of the plane - Games of geometry
Beekhuis, S.; Buchin, K.; Castermans, T.; Hurks, T.; Sonke, W.; Aronov, B.; Katz, M.J.
2017-01-01
Ruler of the Plane is a set of games illustrating concepts from combinatorial and computational geometry. The games are based on the art gallery problem, ham-sandwich cuts, the Voronoi game, and geometric network connectivity problems like the Euclidean minimum spanning tree and traveling
The odd side of torsion geometry
DEFF Research Database (Denmark)
Conti, Diego; Madsen, Thomas Bruun
2014-01-01
We introduce and study a notion of `Sasaki with torsion structure' (ST) as an odd-dimensional analogue of Kähler with torsion geometry (KT). These are normal almost contact metric manifolds that admit a unique compatible connection with 3-form torsion. Any odd-dimensional compact Lie group is sho...
Geometry task sheets : grades 3-5
Rosenberg, Mary
2009-01-01
For grades 3-5, our Common Core State Standards-based resource meets the geometry concepts addressed by the NCTM standards and encourages the students to learn and review the concepts in unique ways. Each task sheet is organized around a central problem taken from real-life experiences of the students.
Geometry task sheets : grades pk-2
Rosenberg, Mary
2009-01-01
For grades PK-2, our Common Core State Standards-based resource meets the geometry concepts addressed by the NCTM standards and encourages the students to learn and review the concepts in unique ways. Each task sheet is organized around a central problem taken from real-life experiences of the students.
Methods of algebraic geometry in control theory
Falb, Peter
1999-01-01
"Control theory represents an attempt to codify, in mathematical terms, the principles and techniques used in the analysis and design of control systems. Algebraic geometry may, in an elementary way, be viewed as the study of the structure and properties of the solutions of systems of algebraic equations. The aim of this book is to provide access to the methods of algebraic geometry for engineers and applied scientists through the motivated context of control theory" .* The development which culminated with this volume began over twenty-five years ago with a series of lectures at the control group of the Lund Institute of Technology in Sweden. I have sought throughout to strive for clarity, often using constructive methods and giving several proofs of a particular result as well as many examples. The first volume dealt with the simplest control systems (i.e., single input, single output linear time-invariant systems) and with the simplest algebraic geometry (i.e., affine algebraic geometry). While this is qui...
On relational nature of geometry of microphysics
International Nuclear Information System (INIS)
Chylinski, Z.
1985-11-01
A relativity principle and a curiosity of Galilei space-time is described. An internal space-time of R 4 relation is presented. Lorentz limit of R 4 geometry and a field theory is given. The sources of the effects of R 4 hypothesis are characterized. The completeness of quantum description is discussed. 32 refs. (A.S.)
Quantum geometry of bosonic strings - revisited
Energy Technology Data Exchange (ETDEWEB)
Botelho, Luiz C.L.; Botelho, Raimundo C.L. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Universidade Federal Rural do Rio de Janeiro, RJ (Brazil). Dept. de Fisica
1999-07-01
We review the original paper by A.M. Polyakov (Quantum Geometry of Bosonic Strings) with corrections and improvements the concepts exposed there and following as closely as possible to the original A.M. Polyakov's paper. (author)
Algebra and Geometry of Hamilton's Quaternions
Indian Academy of Sciences (India)
2016-08-26
Aug 26, 2016 ... ... Public Lectures · Lecture Workshops · Refresher Courses · Symposia. Home; Journals; Resonance – Journal of Science Education; Volume 21; Issue 6. Algebra and Geometry of Hamilton's Quaternions: 'Well, Papa, Can You Multiply Triplets?' General Article Volume 21 Issue 6 June 2016 pp 529-544 ...
Resistor trimming geometry; past, present and future
International Nuclear Information System (INIS)
Alafogianni, M; Penlington, R; Birkett, M
2016-01-01
This paper explores the key developments in thin film resistive trimming geometry for use in the fabrication of discrete precision resistors. Firstly an introduction to the laser trimming process is given with respect to well established trim geometries such as the plunge, 'L' and serpentine cuts. The effect of these trim patterns on key electrical properties of resistance tolerance and temperature co-efficient of resistance (TCR) of the thin films is then discussed before the performance of more recent geometries such as the three-contact and random trim approaches are reviewed. In addition to the properties of the standard trim patterns, the concept of the heat affected zone (HAZ) and ablation energy and the effect of introducing a 'fine' trim in areas of low current density to improve device performance are also studied. It is shown how trimming geometry and laser parameters can be systematically controlled to produce thin film resistors of the required properties for varying applications such as high precision, long term stability and high power pulse performance
Stages As Models of Scene Geometry
Nedović, V.; Smeulders, A.W.M.; Redert, A.; Geusebroek, J.M.
2010-01-01
Reconstruction of 3D scene geometry is an important element for scene understanding, autonomous vehicle and robot navigation, image retrieval, and 3D television. We propose accounting for the inherent structure of the visual world when trying to solve the scene reconstruction problem. Consequently,
Learning Geometry by Designing Persian Mosaics
Karssenberg, Goossen
2014-01-01
To encourage students to do geometry, the art of Islamic geometric ornamentation was chosen as the central theme of a lesson strand which was developed using the newly presented didactical tool called "Learning by Acting". The Dutch students who took these lessons in 2010 to 2013 were challenged to act as if they themselves were Persian…
Gamma spectrometry of infinite 4Π geometry
International Nuclear Information System (INIS)
Nordemann, D.J.R.
1987-07-01
Owing to the weak absorption og gamma radiation by matter, gamma-ray spectrometry may be applied to samples of great volume. A very interesting case is that of the gamma-ray spectrometry applied with 4Π geometry around the detector on a sample assumed to be of infinite extension. The determination of suitable efficiencies allows this method to be quantitative. (author) [pt
On the geometry of fracture and frustration
Koning, Vinzenz
2014-01-01
Geometric frustration occurs when local order cannot propagate through space. A common example is the surface of a soccer ball, which cannot be tiled with hexaganons only. Geometric frustration can also be present in materials. In fact, geometry can act as an instrument to design the mechanical,
Connecting Functions in Geometry and Algebra
Steketee, Scott; Scher, Daniel
2016-01-01
One goal of a mathematics education is that students make significant connections among different branches of mathematics. Connections--such as those between arithmetic and algebra, between two-dimensional and three-dimensional geometry, between compass-and-straight-edge constructions and transformations, and between calculus and analytic…
On Ancient Babylonian Algebra and Geometry
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 8; Issue 8. On Ancient Babylonian Algebra and Geometry. Rahul Roy. General Article Volume 8 Issue 8 August 2003 pp 27-42. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/008/08/0027-0042. Keywords.
Foliations and the geometry of 3-manifolds
Calegari, Danny
2014-01-01
This unique reference, aimed at research topologists, gives an exposition of the 'pseudo-Anosov' theory of foliations of 3-manifolds. This theory generalizes Thurston's theory of surface automorphisms and reveals an intimate connection between dynamics, geometry and topology in 3 dimensions.
The Geometry of the Universe: Part 1
Francis, Stephanie
2009-01-01
This article describes how the author carries out an investigation into the geometry of the three possible curvatures of the universe. The author begins the investigation by looking on the web and in books. She found that the general consensus was that there were three different possible curvatures of the universe, namely: (1) flat; (2) positive;…
Classification of radar echoes using fractal geometry
International Nuclear Information System (INIS)
Azzaz, Nafissa; Haddad, Boualem
2017-01-01
Highlights: • Implementation of two concepts of fractal geometry to classify two types of meteorological radar echoes. • A new approach, called a multi-scale fractal dimension is used for classification between fixed echoes and rain echoes. • An Automatic identification system of meteorological radar echoes was proposed using fractal geometry. - Abstract: This paper deals with the discrimination between the precipitation echoes and the ground echoes in meteorological radar images using fractal geometry. This study aims to improve the measurement of precipitations by weather radars. For this, we considered three radar sites: Bordeaux (France), Dakar (Senegal) and Me lbourne (USA). We showed that the fractal dimension based on contourlet and the fractal lacunarity are pertinent to discriminate between ground and precipitation echoes. We also demonstrated that the ground echoes have a multifractal structure but the precipitations are more homogeneous than ground echoes whatever the prevailing climate. Thereby, we developed an automatic classification system of radar using a graphic interface. This interface, based on the fractal geometry makes possible the identification of radar echoes type in real time. This system can be inserted in weather radar for the improvement of precipitation estimations.
Special Relativity as a Simple Geometry Problem
de Abreu, Rodrigo; Guerra, Vasco
2009-01-01
The null result of the Michelson-Morley experiment and the constancy of the one-way speed of light in the "rest system" are used to formulate a simple problem, to be solved by elementary geometry techniques using a pair of compasses and non-graduated rulers. The solution consists of a drawing allowing a direct visualization of all the fundamental…
Non-commutative geometry and supersymmetry 2
International Nuclear Information System (INIS)
Hussain, F.; Thompson, G.
1991-05-01
Following the general construction of supersymmetric models, the model based on the idea of non-commutative geometry is formulated as a Yang-Mills theory of the graded Lie algebra U(2/1) over a graded space-time manifold. 4 refs
Prediction of protein loop geometries in solution
Rapp, Chaya S.; Strauss, Temima; Nederveen, Aart; Fuentes, Gloria
2007-01-01
The ability to determine the structure of a protein in solution is a critical tool for structural biology, as proteins in their native state are found in aqueous environments. Using a physical chemistry based prediction protocol, we demonstrate the ability to reproduce protein loop geometries in
Geometry of higher-dimensional black hole thermodynamics
International Nuclear Information System (INIS)
Aaman, Jan E.; Pidokrajt, Narit
2006-01-01
We investigate thermodynamic curvatures of the Kerr and Reissner-Nordstroem (RN) black holes in spacetime dimensions higher than four. These black holes possess thermodynamic geometries similar to those in four-dimensional spacetime. The thermodynamic geometries are the Ruppeiner geometry and the conformally related Weinhold geometry. The Ruppeiner geometry for a d=5 Kerr black hole is curved and divergent in the extremal limit. For a d≥6 Kerr black hole there is no extremality but the Ruppeiner curvature diverges where one suspects that the black hole becomes unstable. The Weinhold geometry of the Kerr black hole in arbitrary dimension is a flat geometry. For the RN black hole the Ruppeiner geometry is flat in all spacetime dimensions, whereas its Weinhold geometry is curved. In d≥5 the Kerr black hole can possess more than one angular momentum. Finally we discuss the Ruppeiner geometry for the Kerr black hole in d=5 with double angular momenta
Development of the geometry database for the CBM experiment
Akishina, E. P.; Alexandrov, E. I.; Alexandrov, I. N.; Filozova, I. A.; Friese, V.; Ivanov, V. V.
2018-01-01
The paper describes the current state of the Geometry Database (Geometry DB) for the CBM experiment. The main purpose of this database is to provide convenient tools for: (1) managing the geometry modules; (2) assembling various versions of the CBM setup as a combination of geometry modules and additional files. The CBM users of the Geometry DB may use both GUI (Graphical User Interface) and API (Application Programming Interface) tools for working with it.
Transition metal M(II complexes with isonicotinoylhydrazone-9-anthraldehyde
Directory of Open Access Journals (Sweden)
Dianu M.L.
2010-01-01
Full Text Available New complexes of isonicotinoylhydrazone-9-anthraldehyde with Cu(II, Co(II and Ni(II have been prepared and characterized by analytical and physico-chemical techniques, such as elemental and thermal analyses, magnetic susceptibility and conductivity measurements, and electronic, EPR and IR spectral studies. The infrared spectral studies revealed the bidentate or monodentate nature of the Schiff base in the complexes; the pyridine nitrogen does not participate in the coordination. A tetrahedral geometry is suggested for the nitrate-complexes and an octahedral geometry for the others. Thermal studies support the chemical formulation of these complexes.
Chandra, Sulekh; Kumar, Anil
2007-12-01
Co(II), Ni(II) and Cu(II) complexes were synthesized with thiosemicarbazone (L 1) and semicarbazone (L 2) derived from 2-acetyl furan. These complexes were characterized by elemental analysis, molar conductance, magnetic moment, mass, IR, electronic and EPR spectral studies. The molar conductance measurement of the complexes in DMSO corresponds to non-electrolytic nature. All the complexes are of high-spin type. On the basis of different spectral studies six coordinated geometry may be assigned for all the complexes except Co(L) 2(SO 4) and Cu(L) 2(SO 4) [where L = L 1 and L 2] which are of five coordinated square pyramidal geometry.
College geometry an introduction to the modern geometry of the triangle and the circle
Altshiller-Court, Nathan
2007-01-01
The standard university-level text for decades, this volume offers exercises in construction problems, harmonic division, circle and triangle geometry, and other areas. 1952 edition, revised and enlarged by the author.
Geometry of time-spaces non-commutative algebraic geometry, applied to quantum theory
Landau, Olav Arnfinn
2011-01-01
This is a monograph about non-commutative algebraic geometry, and its application to physics. The main mathematical inputs are the non-commutative deformation theory, moduli theory of representations of associative algebras, a new non-commutative theory o
Jupri, Al
2017-04-01
In this article we address how Realistic Mathematics Education (RME) principles, including the intertwinement and the reality principles, are used to analyze geometry tasks. To do so, we carried out three phases of a small-scale study. First we analyzed four geometry problems - considered as tasks inviting the use of problem solving and reasoning skills - theoretically in the light of the RME principles. Second, we tested two problems to 31 undergraduate students of mathematics education program and other two problems to 16 master students of primary mathematics education program. Finally, we analyzed student written work and compared these empirical to the theoretical results. We found that there are discrepancies between what we expected theoretically and what occurred empirically in terms of mathematization and of intertwinement of mathematical concepts from geometry to algebra and vice versa. We conclude that the RME principles provide a fruitful framework for analyzing geometry tasks that, for instance, are intended for assessing student problem solving and reasoning skills.
Instabilities of microstate geometries with antibranes
International Nuclear Information System (INIS)
Bena, Iosif; Pasini, Giulio
2016-01-01
One can obtain very large classes of horizonless microstate geometries corresponding to near-extremal black holes by placing probe supertubes whose action has metastable minima inside certain supersymmetric bubbling solutions http://dx.doi.org/10.1007/JHEP12(2012)014. We show that these minima can lower their energy when the bubbles move in certain directions in the moduli space, which implies that these near-extremal microstates are in fact unstable once one considers the dynamics of all their degrees of freedom. The decay of these solutions corresponds to Hawking radiation, and we compare the emission rate and frequency to those of the corresponding black hole. Our analysis supports the expectation that generic non-extremal black holes microstate geometries should be unstable. It also establishes the existence of a new type of instabilities for antibranes in highly-warped regions with charge dissolved in fluxes.
Fourier rebinning algorithm for inverse geometry CT.
Mazin, Samuel R; Pele, Norbert J
2008-11-01
Inverse geometry computed tomography (IGCT) is a new type of volumetric CT geometry that employs a large array of x-ray sources opposite a smaller detector array. Volumetric coverage and high isotropic resolution produce very large data sets and therefore require a computationally efficient three-dimensional reconstruction algorithm. The purpose of this work was to adapt and evaluate a fast algorithm based on Defrise's Fourier rebinning (FORE), originally developed for positron emission tomography. The results were compared with the average of FDK reconstructions from each source row. The FORE algorithm is an order of magnitude faster than the FDK-type method for the case of 11 source rows. In the center of the field-of-view both algorithms exhibited the same resolution and noise performance. FORE exhibited some resolution loss (and less noise) in the periphery of the field-of-view. FORE appears to be a fast and reasonably accurate reconstruction method for IGCT.
Testing R-parity with geometry
Energy Technology Data Exchange (ETDEWEB)
He, Yang-Hui [Department of Mathematics, City University, London,Northampton Square, London EC1V 0HB (United Kingdom); School of Physics, NanKai University,94 Weijin Road, Tianjin, 300071 (China); Merton College, University of Oxford,Merton Street, OX1 4JD (United Kingdom); Jejjala, Vishnu [Mandelstam Institute for Theoretical Physics, NITheP, and School of Physics,University of the Witwatersrand,1 Jan Smuts Avenue, Johannesburg, WITS 2050 (South Africa); Matti, Cyril [Department of Mathematics, City University, London,Northampton Square, London EC1V 0HB (United Kingdom); Mandelstam Institute for Theoretical Physics, NITheP, and School of Physics,University of the Witwatersrand,1 Jan Smuts Avenue, Johannesburg, WITS 2050 (South Africa); Nelson, Brent D. [Department of Physics, Northeastern University,360 Huntington Avenue, Boston, MA 02115 (United States)
2016-03-14
We present a complete classification of the vacuum geometries of all renormalizable superpotentials built from the fields of the electroweak sector of the MSSM. In addition to the Severi and affine Calabi-Yau varieties previously found, new vacuum manifolds are identified; we thereby investigate the geometrical implication of theories which display a manifest matter parity (or R-parity) via the distinction between leptonic and Higgs doublets, and of the lepton number assignment of the right-handed neutrino fields. We find that the traditional R-parity assignments of the MSSM more readily accommodate the neutrino see-saw mechanism with non-trivial geometry than those superpotentials that violate R-parity. However there appears to be no geometrical preference for a fundamental Higgs bilinear in the superpotential, with operators that violate lepton number, such as νHH̄, generating vacuum moduli spaces equivalent to those with a fundamental bilinear.
Differential geometry connections, curvature, and characteristic classes
Tu, Loring W
2017-01-01
This text presents a graduate-level introduction to differential geometry for mathematics and physics students. The exposition follows the historical development of the concepts of connection and curvature with the goal of explaining the Chern–Weil theory of characteristic classes on a principal bundle. Along the way we encounter some of the high points in the history of differential geometry, for example, Gauss' Theorema Egregium and the Gauss–Bonnet theorem. Exercises throughout the book test the reader’s understanding of the material and sometimes illustrate extensions of the theory. Initially, the prerequisites for the reader include a passing familiarity with manifolds. After the first chapter, it becomes necessary to understand and manipulate differential forms. A knowledge of de Rham cohomology is required for the last third of the text. Prerequisite material is contained in author's text An Introduction to Manifolds, and can be learned in one semester. For the benefit of the reader and to establ...
Extrinsic and intrinsic curvatures in thermodynamic geometry
Energy Technology Data Exchange (ETDEWEB)
Hosseini Mansoori, Seyed Ali, E-mail: shossein@bu.edu [Department of Physics, Boston University, 590 Commonwealth Ave., Boston, MA 02215 (United States); Department of Physics, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Mirza, Behrouz, E-mail: b.mirza@cc.iut.ac.ir [Department of Physics, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Sharifian, Elham, E-mail: e.sharifian@ph.iut.ac.ir [Department of Physics, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of)
2016-08-10
We investigate the intrinsic and extrinsic curvatures of a certain hypersurface in thermodynamic geometry of a physical system and show that they contain useful thermodynamic information. For an anti-Reissner–Nordström-(A)de Sitter black hole (Phantom), the extrinsic curvature of a constant Q hypersurface has the same sign as the heat capacity around the phase transition points. The intrinsic curvature of the hypersurface can also be divergent at the critical points but has no information about the sign of the heat capacity. Our study explains the consistent relationship holding between the thermodynamic geometry of the KN-AdS black holes and those of the RN (J-zero hypersurface) and Kerr black holes (Q-zero hypersurface) ones [1]. This approach can easily be generalized to an arbitrary thermodynamic system.
Extrinsic and intrinsic curvatures in thermodynamic geometry
International Nuclear Information System (INIS)
Hosseini Mansoori, Seyed Ali; Mirza, Behrouz; Sharifian, Elham
2016-01-01
We investigate the intrinsic and extrinsic curvatures of a certain hypersurface in thermodynamic geometry of a physical system and show that they contain useful thermodynamic information. For an anti-Reissner–Nordström-(A)de Sitter black hole (Phantom), the extrinsic curvature of a constant Q hypersurface has the same sign as the heat capacity around the phase transition points. The intrinsic curvature of the hypersurface can also be divergent at the critical points but has no information about the sign of the heat capacity. Our study explains the consistent relationship holding between the thermodynamic geometry of the KN-AdS black holes and those of the RN (J-zero hypersurface) and Kerr black holes (Q-zero hypersurface) ones [1]. This approach can easily be generalized to an arbitrary thermodynamic system.