WorldWideScience

Sample records for geometrically frustrating fcc

  1. PREFACE: Geometrically frustrated magnetism Geometrically frustrated magnetism

    Science.gov (United States)

    Gardner, Jason S.

    2011-04-01

    Frustrated magnetism is an exciting and diverse field in condensed matter physics that has grown tremendously over the past 20 years. This special issue aims to capture some of that excitement in the field of geometrically frustrated magnets and is inspired by the 2010 Highly Frustrated Magnetism (HFM 2010) meeting in Baltimore, MD, USA. Geometric frustration is a broad phenomenon that results from an intrinsic incompatibility between some fundamental interactions and the underlying lattice geometry based on triangles and tetrahedra. Most studies have centred around the kagomé and pyrochlore based magnets but recent work has looked at other structures including the delafossite, langasites, hyper-kagomé, garnets and Laves phase materials to name a few. Personally, I hope this issue serves as a great reference to scientist both new and old to this field, and that we all continue to have fun in this very frustrated playground. Finally, I want to thank the HFM 2010 organizers and all the sponsors whose contributions were an essential part of the success of the meeting in Baltimore. Geometrically frustrated magnetism contents Spangolite: an s = 1/2 maple leaf lattice antiferromagnet? T Fennell, J O Piatek, R A Stephenson, G J Nilsen and H M Rønnow Two-dimensional magnetism and spin-size effect in the S = 1 triangular antiferromagnet NiGa2S4 Yusuke Nambu and Satoru Nakatsuji Short range ordering in the modified honeycomb lattice compound SrHo2O4 S Ghosh, H D Zhou, L Balicas, S Hill, J S Gardner, Y Qi and C R Wiebe Heavy fermion compounds on the geometrically frustrated Shastry-Sutherland lattice M S Kim and M C Aronson A neutron polarization analysis study of moment correlations in (Dy0.4Y0.6)T2 (T = Mn, Al) J R Stewart, J M Hillier, P Manuel and R Cywinski Elemental analysis and magnetism of hydronium jarosites—model kagome antiferromagnets and topological spin glasses A S Wills and W G Bisson The Herbertsmithite Hamiltonian: μSR measurements on single crystals

  2. Perspective: Geometrically frustrated assemblies

    Science.gov (United States)

    Grason, Gregory M.

    2016-09-01

    This perspective will overview an emerging paradigm for self-organized soft materials, geometrically frustrated assemblies, where interactions between self-assembling elements (e.g., particles, macromolecules, proteins) favor local packing motifs that are incompatible with uniform global order in the assembly. This classification applies to a broad range of material assemblies including self-twisting protein filament bundles, amyloid fibers, chiral smectics and membranes, particle-coated droplets, curved protein shells, and phase-separated lipid vesicles. In assemblies, geometric frustration leads to a host of anomalous structural and thermodynamic properties, including heterogeneous and internally stressed equilibrium structures, self-limiting assembly, and topological defects in the equilibrium assembly structures. The purpose of this perspective is to (1) highlight the unifying principles and consequences of geometric frustration in soft matter assemblies; (2) classify the known distinct modes of frustration and review corresponding experimental examples; and (3) describe outstanding questions not yet addressed about the unique properties and behaviors of this broad class of systems.

  3. Geometric frustration of icosahedron in metallic glasses.

    Science.gov (United States)

    Hirata, A; Kang, L J; Fujita, T; Klumov, B; Matsue, K; Kotani, M; Yavari, A R; Chen, M W

    2013-07-26

    Icosahedral order has been suggested as the prevalent atomic motif of supercooled liquids and metallic glasses for more than half a century, because the icosahedron is highly close-packed but is difficult to grow, owing to structure frustration and the lack of translational periodicity. By means of angstrom-beam electron diffraction of single icosahedra, we report experimental observation of local icosahedral order in metallic glasses. All the detected icosahedra were found to be distorted with partially face-centered cubic symmetry, presenting compelling evidence on geometric frustration of local icosahedral order in metallic glasses.

  4. Quasiparticle vanishing driven by geometrical frustration

    Science.gov (United States)

    Trumper, A. E.; Gazza, C. J.; Manuel, L. O.

    2004-05-01

    We investigate the single hole dynamics in the triangular t-J model. We study the structure of the hole spectral function, assuming the existence of a 120° magnetic Néel order. Within the self-consistent Born approximation (SCBA) there is a strong momentum and t sign dependence of the spectra, related to the underlying magnetic structure and the particle-hole asymmetry of the model. For positive t, and in the strong coupling regime, we find that the low-energy quasiparticle excitations vanish outside the neighborhood of the magnetic Goldstone modes; while for negative t the quasiparticle excitations are always well defined. In the latter, we also find resonances of magnetic origin whose energies scale as (J/t)2/3 and can be identified with string excitations. We argue that this complex structure of the spectra is due to the subtle interplay between magnon-assisted and free-hopping mechanisms. Our predictions are supported by an excellent agreement between the SCBA and the exact results on finite-size clusters. We conclude that the conventional quasiparticle picture can be broken by the effect of geometrical magnetic frustration.

  5. Direct evidence of spin frustration in the fcc antiferromagnet NiS sub 2

    CERN Document Server

    Matsuura, M; Endoh, Y; Hirota, K; Yamada, K

    2002-01-01

    NiS sub 2 is a well-known Mott insulator with anomalous antiferromagnetic long-range order of coexistent type I (Q sub M =(1,0,0), T sub N sub 1 =40 K) and type II (Q sub M =(1/2,1/2,1/2), T sub N sub 2 =30 K). Extensive neutron-scattering measurements reveal that magnetism in NiS sub 2 is governed by geometrical spin frustration, resulting in magnetic diffuse scattering extending along the fcc zone boundary. Although the diffuse scattering exists at temperatures as high as 250 K (6T sub N sub 1), it disappears rapidly below T sub N sub 2 , associated with minor crystal distortion. We observed a clear energy gap in addition to the low-energy spin-wave excitation at significantly below 30 K, and obtain evidence that degeneracy due to the coexistence of the two types of antiferromagnetism is relieved in the ground state via the reduction in symmetry due to distortion. (orig.)

  6. Approximate eigenvalue determination of geometrically frustrated magnetic molecules

    Directory of Open Access Journals (Sweden)

    A.M. Läuchli

    2009-01-01

    Full Text Available Geometrically frustrated magnetic molecules have attracted a lot of interest in the field of molecular magnetism as well as frustrated Heisenberg antiferromagnets. In this article we demonstrate how an approximate diagonalization scheme can be used in order to obtain thermodynamic and spectroscopic information about frustrated magnetic molecules. To this end we theoretically investigate an antiferromagnetically coupled spin system with cuboctahedral structure modeled by an isotropic Heisenberg Hamiltonian.

  7. Characteristic signatures of quantum criticality driven by geometrical frustration.

    Science.gov (United States)

    Tokiwa, Yoshifumi; Stingl, Christian; Kim, Moo-Sung; Takabatake, Toshiro; Gegenwart, Philipp

    2015-04-01

    Geometrical frustration describes situations where interactions are incompatible with the lattice geometry and stabilizes exotic phases such as spin liquids. Whether geometrical frustration of magnetic interactions in metals can induce unconventional quantum critical points is an active area of research. We focus on the hexagonal heavy fermion metal CeRhSn, where the Kondo ions are located on distorted kagome planes stacked along the c axis. Low-temperature specific heat, thermal expansion, and magnetic Grüneisen parameter measurements prove a zero-field quantum critical point. The linear thermal expansion, which measures the initial uniaxial pressure derivative of the entropy, displays a striking anisotropy. Critical and noncritical behaviors along and perpendicular to the kagome planes, respectively, prove that quantum criticality is driven be geometrical frustration. We also discovered a spin flop-type metamagnetic crossover. This excludes an itinerant scenario and suggests that quantum criticality is related to local moments in a spin liquid-like state.

  8. Matching of the Flux Lattice to Geometrically Frustrated Pinning Arrays

    Science.gov (United States)

    Trastoy, J.; Bernard, R.; Briatico, J.; Villegas, J. E.; Lesueur, J.; Ulysse, C.; Faini, G.

    2013-03-01

    We use vortex dynamics on artificial nanoscale energy landscapes as a model to experimentally investigate a problem inspired by ``spin ice'' systems. In particular, we study the matching of the flux lattice to pinning arrays in which the geometrical frustration is expected to impede a unique stable vortex configuration and to promote metastability. This is done with YBCO films in which the nanoscale vortex energy landscape is fabricated via masked ion irradiation. Surprisingly, we found that minimal changes in the distance between pinning sites lead to the suppression of some of the magneto-resistance matching effects, that is, for certain well-defined vortex densities. This effect strongly depends on the temperature. We argue that this behavior can be explained considering the arrays' geometrical frustration and the thermally activated reconfiguration of the vortex lattice between isoenergetic states. Work supported by the French ANR via SUPERHYRBIDS-II and ``MASTHER,'' and the Galician Fundacion Barrie

  9. Geometrical frustration yields fiber formation in self-assembly.

    Science.gov (United States)

    Lenz, Martin; Witten, Thomas A

    2017-11-01

    Controlling the self-assembly of supramolecular structures is vital for living cells, and a central challenge for engineering at the nano- and microscales [1, 2]. Nevertheless, even particles without optimized shapes can robustly form well-defined morphologies. This is the case in numerous medical conditions where normally soluble proteins aggregate into fibers [3, 4]. Beyond the diversity of molecular mechanisms involved [5, 6], we propose that fibers generically arise from the aggregation of irregular particles with short-range interactions. Using a minimal model of ill-fitting, sticky particles, we demonstrate robust fiber formation for a variety of particle shapes and aggregation conditions. Geometrical frustration plays a crucial role in this process, and accounts for the range of parameters in which fibers form as well as for their metastable character.

  10. Geometrical frustration yields fibre formation in self-assembly

    Science.gov (United States)

    Lenz, Martin; Witten, Thomas A.

    2017-11-01

    Controlling the self-assembly of supramolecular structures is vital for living cells, and a central challenge for engineering at the nano- and microscales. Nevertheless, even particles without optimized shapes can robustly form well-defined morphologies. This is the case in numerous medical conditions where normally soluble proteins aggregate into fibres. Beyond the diversity of molecular mechanisms involved, we propose that fibres generically arise from the aggregation of irregular particles with short-range interactions. Using a minimal model of ill-fitting, sticky particles, we demonstrate robust fibre formation for a variety of particle shapes and aggregation conditions. Geometrical frustration plays a crucial role in this process, and accounts for the range of parameters in which fibres form as well as for their metastable character.

  11. Nanoscale control of competing interactions and geometrical frustration in a dipolar trident lattice.

    Science.gov (United States)

    Farhan, Alan; Petersen, Charlotte F; Dhuey, Scott; Anghinolfi, Luca; Qin, Qi Hang; Saccone, Michael; Velten, Sven; Wuth, Clemens; Gliga, Sebastian; Mellado, Paula; Alava, Mikko J; Scholl, Andreas; van Dijken, Sebastiaan

    2017-10-17

    Geometrical frustration occurs when entities in a system, subject to given lattice constraints, are hindered to simultaneously minimize their local interactions. In magnetism, systems incorporating geometrical frustration are fascinating, as their behavior is not only hard to predict, but also leads to the emergence of exotic states of matter. Here, we provide a first look into an artificial frustrated system, the dipolar trident lattice, where the balance of competing interactions between nearest-neighbor magnetic moments can be directly controlled, thus allowing versatile tuning of geometrical frustration and manipulation of ground state configurations. Our findings not only provide the basis for future studies on the low-temperature physics of the dipolar trident lattice, but also demonstrate how this frustration-by-design concept can deliver magnetically frustrated metamaterials.Artificial magnetic nanostructures enable the study of competing frustrated interactions with more control over the system parameters than is possible in magnetic materials. Farhan et al. present a two-dimensional lattice geometry where the frustration can be controlled by tuning the unit cell parameters.

  12. Complex ordered patterns in mechanical instability induced geometrically frustrated triangular cellular structures

    Science.gov (United States)

    Kang, Sung; Shan, Sicong; Kosmrlj, Andrej; Noorduin, Wim; Shian, Samuel; Weaver, James; Clarke, David; Bertoldi, Katia

    2014-03-01

    Geometrical frustration arises when a local order cannot propagate throughout the space due to geometrical constraints. It plays a major role in many natural and synthetic systems including water ice, spin ice, and metallic glasses. All of these geometrically frustrated systems are degenerate and tend to form disordered ground-state configurations. Here, we report a theoretical and experimental study on the behavior of buckling-induced geometrically frustrated triangular cellular structures. To our surprise, we find that mechanical instabilities induce complex ordered patterns with tunability. For structures with low porosity, an ordered symmetric pattern emerges, which shows striking correlations with the ideal spin solid. In contrast, for high porosity systems, an ordered chiral pattern forms with a new spin configuration. Our analysis using a spin-like model reveals that the connected geometry of the cellular structure plays a crucial role in the formation of ordered states in this system. Since in our study geometrical frustration is induced by a mechanical instability that is scale-independent, our findings can be extended to different materials, stimuli, and length scales, providing a general strategy to study and visualize the physics of frustration.

  13. Geometric Frustration and Dimensional Reduction at a Quantum Critical Point

    Science.gov (United States)

    Batista, C. D.; Schmalian, J.; Kawashima, N.; Sengupta, P.; Sebastian, S. E.; Harrison, N.; Jaime, M.; Fisher, I. R.

    2007-06-01

    We show that the spatial dimensionality of the quantum critical point associated with Bose-Einstein condensation at T=0 is reduced when the underlying lattice comprises layers coupled by a frustrating interaction. Our theoretical predictions for the critical behavior correspond very well with recent measurements in BaCuSi2O6 [ S. E. Sebastian et al., Nature (London)NATUAS0028-0836 441, 617 (2006)].

  14. How to identify and resolve beyond-geometrical frustration

    Science.gov (United States)

    Kimchi, Itamar

    In this talk, we will discuss recent theoretical developments triggered by the experimental discoveries of iridium oxides α , β , γ -Li2IrO3. In these polytypes, spin-orbit-coupled J=1/2 moments form 2D and 3D lattices (honeycomb, hyperhoneycomb and stripyhoneycomb) which generalize the 2D honeycomb lattice. Scattering experiments on these compounds have uncovered a peculiar non-coplanar incommensurate magnetic order, involving spirals which counter-rotate across neighboring sites. We discuss the emergence of this ordering, and the striking similarities visible across the three Li2IrO3 structures. The model Hamiltonians that capture the materials indicate strong magnetic frustration, which arises from spin-orbit coupling. Tuning the frustration, perhaps by just a 10 % Hamiltonian perturbation, exposes a fractionalized phase: Kitaev's three-dimensional quantum spin liquid (QSL). What is its range of stability to the competing Hamiltonian terms which occur in the materials, such as antiferromagnetic Heisenberg exchange? The frustration prohibits direct computations. Instead, we demonstrate a viable approach by numerically solving the model in a fully quantum infinite-dimensional approximation, which captures both the magnetically ordered and the QSL phases. Finally, we discuss the phenomenology of the QSL phase, including the role of its emergent magnetic-like field lines in stabilizing its deconfined fermion excitations to finite temperatures. The resulting phase transition is a signature unique to three-dimensional fractionalization.

  15. Enhancement of geometric phase by frustration of decoherence: A Parrondo-like effect

    Science.gov (United States)

    Banerjee, Subhashish; Chandrashekar, C. M.; Pati, Arun K.

    2013-04-01

    Geometric phase plays an important role in evolution of pure or mixed quantum states. However, when a system undergoes decoherence the development of geometric phase may be inhibited. Here we show that when a quantum system interacts with two competing environments there can be enhancement of geometric phase. This effect is akin to a Parrondo-like effect on the geometric phase which results from quantum frustration of decoherence. Our result suggests that the mechanism of two competing decoherence can be useful in fault-tolerant holonomic quantum computation.

  16. Geometrical frustration: A study of four-dimensional hard spheres

    NARCIS (Netherlands)

    van Meel, J.A.; Frenkel, D.; Charbonneau, P.

    2009-01-01

    The smallest maximum-kissing-number Voronoi polyhedron of three-dimensional (3D) Euclidean spheres is the icosahedron, and the tetrahedron is the smallest volume that can show up in Delaunay tessellation. No periodic lattice is consistent with either, and hence these dense packings are geometrically

  17. Geometrical frustration in the ferromagnetic pyrochlore Ho2Ti2O7

    DEFF Research Database (Denmark)

    Harris, M.J.; Bramwell, S.T.; McMorrow, D.F.

    1997-01-01

    We report a detailed study of the pyrochlore Ho2Ti2O7, in which the magnetic ions (Ho3+) are ferromagnetically coupled with J similar to 1 K. We show that the presence of local Ising anisotropy leads to a geometrically frustrated ground state, preventing long-range magnetic order down to at least 0.......05 K. However, unlike in the case of a frustrated antiferromagnet, this disorder is principally static. In a magnetic field, the ground-state degeneracy is broken and ordered magnetic phases are formed which display an unusual history dependence due to the slow dynamics of the system. These results...... represent the first experimental evidence for geometrical frustration in a ferromagnetic system....

  18. Spin freezing in the geometrically frustrated pyrochlore antiferromagnet Tb2Mo2O7

    DEFF Research Database (Denmark)

    Gaulin, B.D.; Reimers, J.N.; Mason, T.E.

    1992-01-01

    The magnetic metal ions in the cubic pyrochlore Tb2Mo2O7 form an infinite three-dimensional network of corner-sharing tetrahedra with a very high potential for frustration in the presence of antiferromagnetism. We have performed neutron scattering measurements which show short-range spatial...... correlations that develop continuously with decreasing temperature, while the characteristic time scale for the fluctuating moments decreases dramatically below T(f) is similar to 25 K. Therefore, this pure material, which possesses frustration that is purely geometrical in origin, displays a spin-glass state...

  19. Is Geometric Frustration-Induced Disorder a Recipe for High Ionic Conductivity?

    Science.gov (United States)

    Düvel, Andre; Heitjans, Paul; Fedorov, Pavel; Scholz, Gudrun; Cibin, Giannantonio; Chadwick, Alan V; Pickup, David M; Ramos, Silvia; Sayle, Lewis W L; Sayle, Emma K L; Sayle, Thi X T; Sayle, Dean C

    2017-04-26

    Ionic conductivity is ubiquitous to many industrially important applications such as fuel cells, batteries, sensors, and catalysis. Tunable conductivity in these systems is therefore key to their commercial viability. Here, we show that geometric frustration can be exploited as a vehicle for conductivity tuning. In particular, we imposed geometric frustration upon a prototypical system, CaF 2 , by ball milling it with BaF 2 , to create nanostructured Ba 1-x Ca x F 2 solid solutions and increased its ionic conductivity by over 5 orders of magnitude. By mirroring each experiment with MD simulation, including "simulating synthesis", we reveal that geometric frustration confers, on a system at ambient temperature, structural and dynamical attributes that are typically associated with heating a material above its superionic transition temperature. These include structural disorder, excess volume, pseudovacancy arrays, and collective transport mechanisms; we show that the excess volume correlates with ionic conductivity for the Ba 1-x Ca x F 2 system. We also present evidence that geometric frustration-induced conductivity is a general phenomenon, which may help explain the high ionic conductivity in doped fluorite-structured oxides such as ceria and zirconia, with application for solid oxide fuel cells. A review on geometric frustration [ Nature 2015 , 521 , 303 ] remarks that classical crystallography is inadequate to describe systems with correlated disorder, but that correlated disorder has clear crystallographic signatures. Here, we identify two possible crystallographic signatures of geometric frustration: excess volume and correlated "snake-like" ionic transport; the latter infers correlated disorder. In particular, as one ion in the chain moves, all the other (correlated) ions in the chain move simultaneously. Critically, our simulations reveal snake-like chains, over 40 Å in length, which indicates long-range correlation in our disordered systems. Similarly

  20. Structural properties of the geometrically frustrated pyrochlore Tb2Ti2O7

    International Nuclear Information System (INIS)

    Han, Sang-Wook; Gardner, Jason S.; Booth, Corwin H.

    2004-01-01

    Although materials that exhibit nearest-neighbor-only antiferromagnetic interactions and geometrical frustration theoretically should not magnetically order in the absence of disorder, few such systems have been observed experimentally. One such system appears to be the pyrochlore Tb 2 Ti 2 O 7 . However, previous structural studies indicated that Tb 2 Ti 2 O 7 is an imperfect pyrochlore. To clarify the situation, we performed neutron powder diffraction (NPD) and x-ray absorption fine structure (XAFS) measurements on samples that were prepared identically to those that show no magnetic order. The NPD measurements show that the long-range structure of Tb 2 Ti 2 O 7 is well ordered with no structural transitions between 4.5 and 600 K. In particular, mean-squared displacements (u 2 's) for each site follow a Debye model with no offsets. No evidence for Tb/Ti site interchange was observed within an upper limit of 2%. Likewise, no excess or deficiency in the oxygen stoichiometry was observed, within an upper limit of 2% of the nominal pyrochlore value. Tb L III and Ti K-edge XAFS measurements from 20-300 K similarly indicate a well-ordered local structure. Other aspects of the structure are considered. We conclude that Tb 2 Ti 2 O 7 has, within experimental error, an ideal, disorder-free pyrochlore lattice, thereby allowing the system to remain in a dynamic, frustrated spin state to the lowest observed temperatures

  1. Structural properties of the geometrically frustrated pyrochlore Tb2Ti2O7

    Energy Technology Data Exchange (ETDEWEB)

    Han, Sang-Wook; Gardner, Jason S.; Booth, Corwin H.

    2004-06-14

    Although materials that exhibit nearest-neighbor-only antiferromagnetic interactions and geometrical frustration theoretically should not magnetically order in the absence of disorder, few such systems have been observed experimentally. One such system appears to be the pyrochlore Tb{sub 2}Ti{sub 2}O{sub 7}. However, previous structural studies indicated that Tb{sub 2}Ti{sub 2}O{sub 7} is an imperfect pyrochlore. To clarify the situation, we performed neutron powder diffraction (NPD) and x-ray absorption fine structure (XAFS) measurements on samples that were prepared identically to those that show no magnetic order. The NPD measurements show that the long-range structure of Tb{sub 2}Ti{sub 2}O{sub 7} is well ordered with no structural transitions between 4.5 and 600 K. In particular, mean-squared displacements (u{sup 2}'s) for each site follow a Debye model with no offsets. No evidence for Tb/Ti site interchange was observed within an upper limit of 2%. Likewise, no excess or deficiency in the oxygen stoichiometry was observed, within an upper limit of 2% of the nominal pyrochlore value. Tb L{sub III} and Ti K-edge XAFS measurements from 20-300 K similarly indicate a well-ordered local structure. Other aspects of the structure are considered. We conclude that Tb{sub 2}Ti{sub 2}O{sub 7} has, within experimental error, an ideal, disorder-free pyrochlore lattice, thereby allowing the system to remain in a dynamic, frustrated spin state to the lowest observed temperatures.

  2. Antiferromagnetic geometric frustration under the influence of the next-nearest-neighbor interaction. An exactly solvable model

    Science.gov (United States)

    Jurčišinová, E.; Jurčišin, M.

    2018-02-01

    The influence of the next-nearest-neighbor interaction on the properties of the geometrically frustrated antiferromagnetic systems is investigated in the framework of the exactly solvable antiferromagnetic spin- 1 / 2 Ising model in the external magnetic field on the square-kagome recursive lattice, where the next-nearest-neighbor interaction is supposed between sites within each elementary square of the lattice. The thermodynamic properties of the model are investigated in detail and it is shown that the competition between the nearest-neighbor antiferromagnetic interaction and the next-nearest-neighbor ferromagnetic interaction changes properties of the single-point ground states but does not change the frustrated character of the basic model. On the other hand, the presence of the antiferromagnetic next-nearest-neighbor interaction leads to the enhancement of the frustration effects with the formation of additional plateau and single-point ground states at low temperatures. Exact expressions for magnetizations and residual entropies of all ground states of the model are found. It is shown that the model exhibits various ground states with the same value of magnetization but different macroscopic degeneracies as well as the ground states with different values of magnetization but the same value of the residual entropy. The specific heat capacity is investigated and it is shown that the model exhibits the Schottky-type anomaly behavior in the vicinity of each single-point ground state value of the magnetic field. The formation of the field-induced double-peak structure of the specific heat capacity at low temperatures is demonstrated and it is shown that its very existence is directly related to the presence of highly macroscopically degenerated single-point ground states in the model.

  3. Geometrically frustrated Cairo pentagonal lattice stripe with Ising and Heisenberg exchange interactions

    Science.gov (United States)

    Rodrigues, F. C.; de Souza, S. M.; Rojas, Onofre

    2017-04-01

    Motivated by the recent discoveries of some compounds such as the Bi2Fe4O9 which crystallizes in an orthorhombic crystal structure with the Fe3+ ions, and iron-based oxyfluoride Bi4Fe5O13 F compounds following the pattern of Cairo pentagonal structure, among some other compounds. We propose a model for one stripe of the Cairo pentagonal Ising-Heisenberg lattice, one of the edges of a pentagon is different, and this edge will be associated with a Heisenberg exchange interaction, while the Ising exchange interactions will associate the other edges. We study the phase transition at zero temperature, illustrating five phases: a ferromagnetic phase (FM), a dimer antiferromagnetic (DAF), a plaquette antiferromagnetic (PAF), a typical antiferromagnetic (AFM) and a peculiar frustrated phase (FRU) where two types of frustrated states with the same energy coexist. To obtain the partition function of this model, we use the transfer matrix approach and following the eight vertex model notation. Using this result we discuss the specific heat, internal energy and entropy as a function of the temperature, and we can observe some unexpected behavior in the low-temperature limit, such as anomalous double peak in specific heat due to the existence of three phase (FRU, PAF(AFM) and FM) transitions occurring in a close region to each other. Consequently, the low-lying energy thermal excitation generates this double anomalous peak, and we also discuss the internal energy at the low temperature limit, where this double peak curve occurs. Some properties of our result were compared with two dimensional Cairo pentagonal lattices, as well as orthogonal dimer plaquette Ising-Heisenberg chain.

  4. Critical space-time networks and geometric phase transitions from frustrated edge antiferromagnetism

    Science.gov (United States)

    Trugenberger, Carlo A.

    2015-12-01

    Recently I proposed a simple dynamical network model for discrete space-time that self-organizes as a graph with Hausdorff dimension dH=4 . The model has a geometric quantum phase transition with disorder parameter (dH-ds) , where ds is the spectral dimension of the dynamical graph. Self-organization in this network model is based on a competition between a ferromagnetic Ising model for vertices and an antiferromagnetic Ising model for edges. In this paper I solve a toy version of this model defined on a bipartite graph in the mean-field approximation. I show that the geometric phase transition corresponds exactly to the antiferromagnetic transition for edges, the dimensional disorder parameter of the former being mapped to the staggered magnetization order parameter of the latter. The model has a critical point with long-range correlations between edges, where a continuum random geometry can be defined, exactly as in Kazakov's famed 2D random lattice Ising model but now in any number of dimensions.

  5. Magnetization process and magnetocaloric effect in geometrically frustrated Ising antiferromagnet and spin ice models on a 'Star of David' nanocluster

    Science.gov (United States)

    Žukovič, M.; Semjan, M.

    2018-04-01

    Magnetic and magnetocaloric properties of geometrically frustrated antiferromagnetic Ising (IA) and ferromagnetic spin ice (SI) models on a nanocluster with a 'Star of David' topology, including next-nearest-neighbor (NNN) interactions, are studied by an exact enumeration. In an external field applied in characteristic directions of the respective models, depending on the NNN interaction sign and magnitude, the ground state magnetization of the IA model is found to display up to three intermediate plateaus at fractional values of the saturation magnetization, while the SI model shows only one zero-magnetization plateau and only for the antiferromagnetic NNN coupling. A giant magnetocaloric effect is revealed in the IA model with the NNN interaction either absent or equal to the nearest-neighbor coupling. The latter is characterized by abrupt isothermal entropy changes at low temperatures and infinitely fast adiabatic temperature variations for specific entropy values in the processes when the magnetic field either vanishes or tends to the critical values related to the magnetization jumps.

  6. Lifting the geometric frustration through a monoclinic distortion in “114” YBaFe4O7.0: Magnetism and transport

    International Nuclear Information System (INIS)

    Duffort, V.; Sarkar, T.; Caignaert, V.; Pralong, V.; Raveau, B.; Avdeev, M.; Cervellino, A.; Waerenborgh, J.C.; Tsipis, E.V.

    2013-01-01

    The possibility to lift the geometric frustration in the “114” stoichiomeric tetragonal oxide YBaFe 4 O 7.0 by decreasing the temperature has been investigated using neutron and synchrotron powder diffraction techniques. Besides the structural transition from tetragonal to monoclinic symmetry that appears at T S =180 K, a magnetic transition is observed below T N =95 K. The latter corresponds to a lifting of the 3D geometric frustration toward an antiferromagnetic long range ordering, never observed to date in a cubic based “114’” oxide. The magnetic structure, characterized by the propagation vector k 1 =(0,0,½), shows that one iron Fe2 exhibits a larger magnetic moment than the three others, suggesting a possible charge ordering according to the formula YBaFe 3+ Fe 3 2+ O 7.0 . The magnetic M(T) and χ′(T) curves, in agreement with neutron data, confirm the structural and magnetic transitions and evidence the coexistence of residual magnetic frustration. Moreover, the transport measurements show a resistive transition from a thermally activated conduction mechanism to a variable range hopping mechanism at T S =180 K, with a significant increase of the dependence of the resistivity vs. temperature. Mössbauer spectroscopy clearly evidences a change in the electronic configuration of the iron framework at the structural transition as well as coexistence of several oxidation states. The role of barium underbonding in these transitions is discussed. - Graphical abstract: Atomic displacements at the tetragonal-monoclinic transition in YBaFe 4 O 7 . Display Omitted - Highlights: • The structural and magnetic phase transitions of YBaFe 4 O 7 were studied below room temperature. • The tetragonal to monoclinic transition, characterized by NPD and SXRD, was studied using mode crystallography approach. • Monoclinic distortion allows the lifting of the geometrical frustration on the iron sublattice, leading to AF order at T=95 K

  7. Geometrical Frustration in Interleukin-33 Decouples the Dynamics of the Functional Element from the Folding Transition State Ensemble.

    Directory of Open Access Journals (Sweden)

    Kaitlin M Fisher

    the protein is geometrically frustrated, requiring the more stable elements to fold first, acting as a scaffold for docking of the functional element to allow productive folding to the native state.

  8. Geometrical Frustration in Interleukin-33 Decouples the Dynamics of the Functional Element from the Folding Transition State Ensemble.

    Science.gov (United States)

    Fisher, Kaitlin M; Haglund, Ellinor; Noel, Jeffrey K; Hailey, Kendra L; Onuchic, José N; Jennings, Patricia A

    2015-01-01

    geometrically frustrated, requiring the more stable elements to fold first, acting as a scaffold for docking of the functional element to allow productive folding to the native state.

  9. Calculation of the expected zero-field muon relaxation rate in the geometrically frustrated rare earth pyrochlore Gd(2)Sn(2)O(7) antiferromagnet.

    Science.gov (United States)

    McClarty, P A; Cosman, J N; Del Maestro, A G; Gingras, M J P

    2011-04-27

    The magnetic insulator Gd(2)Sn(2)O(7) is one of many geometrically frustrated magnetic materials known to exhibit a nonzero muon spin polarization relaxation rate, λ(T), down to the lowest temperature (T) studied. Such behaviour is typically interpreted as signalling the presence of persistent spin dynamics (PSD) of the host material. In the case of Gd(2)Sn(2)O(7), such PSD comes as a surprise since magnetic specific heat measurements suggest conventional gapped magnons, which would naively lead to an exponentially vanishing λ(T) as T → 0. In contrast to most materials that display PSD, the ordered phase of Gd(2)Sn(2)O(7) is well characterized and both the nature and the magnitude of the interactions have been inferred from the magnetic structure and the temperature dependence of the magnetic specific heat. Based on this understanding, the temperature dependence of the muon spin polarization relaxation through the scattering of spin waves (magnons) is calculated. The result explicitly shows that, despite the unusual extensive number of weakly dispersive (gapped) excitations characterizing Gd(2)Sn(2)O(7), a remnant of the zero modes of the parent frustrated pyrochlore Heisenberg antiferromagnet, the temperature dependence of the calculated λ(T) differs dramatically from the experimental one. Indeed, the calculation conforms to the naive expectation of an exponential collapse of λ(T) at temperatures below ∼ 0.7 K. This result, for the first time, illustrates crisply and quantitatively the paradox that presents itself with the pervasive occurrence of PSD in highly frustrated magnetic systems as evinced by muon spin relaxation measurements.

  10. Using a genetic algorithm to study properties of minimum energy states and geometrical frustration in artificial 'spin ice' systems

    Energy Technology Data Exchange (ETDEWEB)

    Leon, A. [Facultad de Ingenieria, Universidad Diego Portales. Ejercito 441, Santiago (Chile)], E-mail: alejandro.leon@udp.cl; Pozo, J. [Facultad de Ingenieria, Universidad Diego Portales. Ejercito 441, Santiago (Chile)

    2008-02-15

    This article reports the results of a study on the base state of artificially frustrated 'spin ice' systems. We have studied the states of minimum energy reported by experimental studies on nanoscale ferromagnetic islands and the protocols employed to reach those states. The main technique employed in this study is a genetic algorithm that has been contrasted with two Montecarlo methods. Nanoscale islands are modeled through dipolar moments placed on a plane, rectangular array. Studies include the correlation between nanoscale islands, statistics on vertex types formed in the array for the minimum energy state and intermediate states. The results suggest a failure in the protocols adopted to minimize energy in these systems. A study on the efficiency between the devised genetic algorithm and the Montecarlo methods used in the research is also included.

  11. Synthesis, crystal structure, and magnetic properties of Li3Mg2OsO6, a geometrically frustrated osmium(V) oxide with an ordered rock salt structure: comparison with isostructural Li3Mg2RuO6.

    Science.gov (United States)

    Nguyen, Phuong-Hieu T; Ramezanipour, Farshid; Greedan, John E; Cranswick, Lachlan M D; Derakhshan, Shahab

    2012-11-05

    The novel osmium-based oxide Li(3)Mg(2)OsO(6) was synthesized in polycrystalline form by reducing Li(5)OsO(6) by osmium metal and osmium(IV) oxide in the presence of stoichiometric amounts of magnesium oxide. The crystal structure was refined using powder X-ray diffraction data in the orthorhombic Fddd space group with a = 5.88982(5) Å, b = 8.46873(6) Å, and c = 17.6825(2) Å. This compound is isostructural and isoelectronic with the ruthenium-based system Li(3)Mg(2)RuO(6). The magnetic ion sublattice Os(5+) (S = 3/2) consists of chains of interconnected corner- and edge-shared triangles, which brings about the potential for geometric magnetic frustration. The Curie-Weiss law holds over the range 80-300 K with C = 1.42(3) emu·K/mol [μ(eff) = 3.37(2) μ(B)] and θ(C) = -105.8(2) K. Below 80 K, there are three anomalies at 75, 30, and 8 K. Those at 75 and 30 K are suggestive of short-range antiferromagnetic correlations, while that at 8 K is a somewhat sharper maximum showing a zero-field-cooled/field-cooled divergence suggestive of perhaps spin freezing. The absence of magnetic Bragg peaks at 3.9 K in the neutron diffraction pattern supports this characterization, as does the absence of a sharp peak in the heat capacity, which instead shows only a very broad maximum at ∼12 K. A frustration index of f = 106/8 = 13 indicates a high degree of frustration. The magnetic properties of the osmium phase differ markedly from those of the isostructural ruthenium material, which shows long-range antiferromagnetic order below 17 K, f = 6, and no unusual features at higher temperatures. Estimates of the magnetic exchange interactions at the level of spin-dimer analysis for both the ruthenium and osmium materials support a more frustrated picture for the latter. Errors in the calculation and assignment of the exchange pathways in the previous report on Li(3)Mg(2)RuO(6) are identified and corrected.

  12. Frustration Is a Catalyst!

    NARCIS (Netherlands)

    Jeronimus, Bertus

    2017-01-01

    Frustration is our emotional response to unexpected non-reward. Frustration has an energizing effect that can catalyze a broad range of outcomes, either good or bad. It is therefore important to learn to effectively deal with frustration.

  13. FCC Official Brochure - 2016

    CERN Multimedia

    Charitos, Panagiotis

    2016-01-01

    The FCC brochure describes the main scope of the study and give more information about the main scenarios explored under the study. It also highlights the R&D efforts under the study that will go into a Conceptual Design Report. Finally, it offers more information about the collaboration and a list of useful contact details.

  14. Introduction to Frustrated Magnetism Materials, Experiments, Theory

    CERN Document Server

    Lacroix, Claudine; Mila, Frédéric

    2011-01-01

    The field of Highly Frustrated Magnetism has developed and expanded considerably over the last 15 years. Originating with canonical geometric frustration of interactions, it today extends over other phenomena with many degrees of freedom, including magneto-elastic couplings, orbital degrees of freedom, dilution effects, and electron doping. It is also demonstrated that the concept of frustration impacts many other fields in physics beyond magnetism. This book represents a state-of-the-art review aimed at a broad audience with tutorial chapters and more topical ones, which encompass solid-state chemistry as well as experimental and theoretical physics.

  15. Frustrated spin systems

    CERN Document Server

    2013-01-01

    This book covers all principal aspects of currently investigated frustrated systems, from exactly solved frustrated models to real experimental frustrated systems, going through renormalization group treatment, Monte Carlo investigation of frustrated classical Ising and vector spin models, low-dimensional systems, spin ice and quantum spin glass. The reader can - within a single book - obtain a global view of the current research development in the field of frustrated systems.This new edition is updated with recent theoretical, numerical and experimental developments in the field of frustrated

  16. FCC Official Brochure - German version

    CERN Multimedia

    Charitos, Panagiotis

    2017-01-01

    The FCC brochure describes the main scope of the study and give more information about the main scenarios explored under the study. It also highlights the ongoing R&D efforts launched by the FCC study. Finally, it offers more information about the collaboration and a list of useful contact details.

  17. FCC Official Brochure - Japanese Version

    CERN Multimedia

    AUTHOR|(CDS)2082248; Yamamoto, Akira; Uchibori, Yumemi.katsuki

    2017-01-01

    The FCC brochure describes the main scope of the study and give more information about the main scenarios explored under the study. It also highlights the ongoing R&D efforts launched by the FCC study. Finally, it offers more information about the collaboration and a list of useful contact details.

  18. FCC Official Brochure - French Version

    CERN Multimedia

    Charitos, Panagiotis

    2017-01-01

    The FCC brochure describes the main scope of the study and give more information about the main scenarios explored under the study. It also highlights the ongoing R&D efforts launched by the FCC study. Finally, it offers more information about the collaboration and a list of useful contact details.

  19. Quasiparticle excitations in frustrated antiferromagnets

    Energy Technology Data Exchange (ETDEWEB)

    Trumper, Adolfo E. [Instituto de Fisica Rosario (CONICET) Universidad Nacional de Rosario, Boulevard 27 de Febrero 210 bis, 2000 Rosario (Argentina)]. E-mail: trumper@ifir.edu.ar; Gazza, Claudio J. [Instituto de Fisica Rosario (CONICET) Universidad Nacional de Rosario, Boulevard 27 de Febrero 210 bis, 2000 Rosario (Argentina); Manuel, Luis O. [Instituto de Fisica Rosario (CONICET) Universidad Nacional de Rosario, Boulevard 27 de Febrero 210 bis, 2000 Rosario (Argentina)]. E-mail: manuel@ifir.edu.ar

    2004-12-31

    We have computed the quasiparticle wave function corresponding to a hole injected in a triangular antiferromagnet. We have taken into account multi-magnon contributions within the self-consistent Born approximation. We have found qualitative differences, under sign reversal of the integral transfer t, regarding the multi-magnon components and the own existence of the quasiparticle excitations. Such differences are due to the subtle interplay between magnon-assisted and free hopping mechanisms. We conclude that the conventional quasiparticle picture can be broken by geometrical frustration without invoking spin liquid phases.

  20. Quasiparticle excitations in frustrated antiferromagnets

    Science.gov (United States)

    Trumper, Adolfo E.; Gazza, Claudio J.; Manuel, Luis O.

    2004-12-01

    We have computed the quasiparticle wave function corresponding to a hole injected in a triangular antiferromagnet. We have taken into account multi-magnon contributions within the self-consistent Born approximation. We have found qualitative differences, under sign reversal of the integral transfer t, regarding the multi-magnon components and the own existence of the quasiparticle excitations. Such differences are due to the subtle interplay between magnon-assisted and free hopping mechanisms. We conclude that the conventional quasiparticle picture can be broken by geometrical frustration without invoking spin liquid phases.

  1. Quasiparticle excitations in frustrated antiferromagnets

    International Nuclear Information System (INIS)

    Trumper, Adolfo E.; Gazza, Claudio J.; Manuel, Luis O.

    2004-01-01

    We have computed the quasiparticle wave function corresponding to a hole injected in a triangular antiferromagnet. We have taken into account multi-magnon contributions within the self-consistent Born approximation. We have found qualitative differences, under sign reversal of the integral transfer t, regarding the multi-magnon components and the own existence of the quasiparticle excitations. Such differences are due to the subtle interplay between magnon-assisted and free hopping mechanisms. We conclude that the conventional quasiparticle picture can be broken by geometrical frustration without invoking spin liquid phases

  2. Frustration in biomolecules.

    Science.gov (United States)

    Ferreiro, Diego U; Komives, Elizabeth A; Wolynes, Peter G

    2014-11-01

    Biomolecules are the prime information processing elements of living matter. Most of these inanimate systems are polymers that compute their own structures and dynamics using as input seemingly random character strings of their sequence, following which they coalesce and perform integrated cellular functions. In large computational systems with finite interaction-codes, the appearance of conflicting goals is inevitable. Simple conflicting forces can lead to quite complex structures and behaviors, leading to the concept of frustration in condensed matter. We present here some basic ideas about frustration in biomolecules and how the frustration concept leads to a better appreciation of many aspects of the architecture of biomolecules, and especially how biomolecular structure connects to function by means of localized frustration. These ideas are simultaneously both seductively simple and perilously subtle to grasp completely. The energy landscape theory of protein folding provides a framework for quantifying frustration in large systems and has been implemented at many levels of description. We first review the notion of frustration from the areas of abstract logic and its uses in simple condensed matter systems. We discuss then how the frustration concept applies specifically to heteropolymers, testing folding landscape theory in computer simulations of protein models and in experimentally accessible systems. Studying the aspects of frustration averaged over many proteins provides ways to infer energy functions useful for reliable structure prediction. We discuss how frustration affects folding mechanisms. We review here how the biological functions of proteins are related to subtle local physical frustration effects and how frustration influences the appearance of metastable states, the nature of binding processes, catalysis and allosteric transitions. In this review, we also emphasize that frustration, far from being always a bad thing, is an essential feature

  3. Frustration and quantum criticality.

    Science.gov (United States)

    Vojta, Matthias

    2018-03-15

    This review article is devoted to the interplay between frustrated magnetism and quantum critical phenomena, covering both theoretical concepts and ideas as well as recent experimental developments in correlated-electron materials. The first part deals with local-moment magnetism in Mott insulators and the second part with frustration in metallic systems. In both cases, frustration can either induce exotic phases accompanied by exotic quantum critical points or lead to conventional ordering with unconventional crossover phenomena. In addition, the competition of multiple phases inherent to frustrated systems can lead to multi-criticality. © 2018 IOP Publishing Ltd.

  4. Frustration in Biomolecules

    Science.gov (United States)

    Ferreiro, Diego U.; Komives, Elizabeth A.; Wolynes, Peter G.

    2014-01-01

    Biomolecules are the prime information processing elements of living matter. Most of these inanimate systems are polymers that compute their own structures and dynamics using as input seemingly random character strings of their sequence, following which they coalesce and perform integrated cellular functions. In large computational systems with a finite interaction-codes, the appearance of conflicting goals is inevitable. Simple conflicting forces can lead to quite complex structures and behaviors, leading to the concept of frustration in condensed matter. We present here some basic ideas about frustration in biomolecules and how the frustration concept leads to a better appreciation of many aspects of the architecture of biomolecules, and how biomolecular structure connects to function. These ideas are simultaneously both seductively simple and perilously subtle to grasp completely. The energy landscape theory of protein folding provides a framework for quantifying frustration in large systems and has been implemented at many levels of description. We first review the notion of frustration from the areas of abstract logic and its uses in simple condensed matter systems. We discuss then how the frustration concept applies specifically to heteropolymers, testing folding landscape theory in computer simulations of protein models and in experimentally accessible systems. Studying the aspects of frustration averaged over many proteins provides ways to infer energy functions useful for reliable structure prediction. We discuss how frustration affects folding mechanisms. We review here how a large part of the biological functions of proteins are related to subtle local physical frustration effects and how frustration influences the appearance of metastable states, the nature of binding processes, catalysis and allosteric transitions. We hope to illustrate how Frustration is a fundamental concept in relating function to structural biology. PMID:25225856

  5. FCC 5 and FCC 6 (3/4)

    CERN Multimedia

    CERN. Geneva; Schulte, Daniel

    2016-01-01

    Abstract: The electron-positron collider, FCC-ee, should provide collisions over a wide range of beam energies, ranging from roughly 35 GeV to almost 200 GeV. The physics goals of the FCC-ee collider call for luminosities around 1e36 cm-2s-1 per interaction point at the Z pole and several 1e34 cm-2s-1 at the ZH production peak. The beam energy should be pushed above 175 GeV, with a total synchrotron-radiation power not exceeding 100 MW. The extremely high luminosities and resulting short beam lifetime, due to radiative Bhabha scattering, can be sustained by top-up injection. The FCC-ee acce...

  6. FCC 3 and FCC 4 (2/4)

    CERN Multimedia

    CERN. Geneva; Dam, Mogens

    2016-01-01

    Abstract: Owing to its specific interaction region design, the FCC-ee will be able to deliver unprecedented luminosities at centre-of-mass energies ranging from below the Z pole to the ttbar threshold and above. Operation at four energy regimes - at the Z pole, at the WW threshold, at 240 GeV for Higgs production, and at the ttbar thre...

  7. Frustration and dynamics

    International Nuclear Information System (INIS)

    Sarkar, S.

    1980-01-01

    Dynamical models incorporating frustration are discussed in general. In particular, it is shown how self-screening of Yang-Mills fields may lead to models of a generalized Ma-Rudnick genre for the spin-glass

  8. Frustrated Lewis Pairs

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 11. Frustrated Lewis Pairs : Enabling via inability. Sanjoy Mukherjee ... Author Affiliations. Sanjoy Mukherjee Pakkirisamy Thilagar1. Department of Inorgainic and Physical Chemistry Indian Institute of Science Bangalore 560 012, India.

  9. Frustrated Lewis Pairs

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 11. Frustrated Lewis Pairs : Enabling via inability. Sanjoy Mukherjee Pakkirisamy Thilagar. General Article Volume 19 Issue 11 November 2014 pp 1017-1027. Fulltext. Click here to view fulltext PDF. Permanent link:

  10. Excitations in the quantum paramagnetic phase of the quasi-one-dimensional Ising magnet CoNb2O6 in a transverse field: Geometric frustration and quantum renormalization effects

    Science.gov (United States)

    Cabrera, I.; Thompson, J. D.; Coldea, R.; Prabhakaran, D.; Bewley, R. I.; Guidi, T.; Rodriguez-Rivera, J. A.; Stock, C.

    2014-07-01

    The quasi-one-dimensional (1D) Ising ferromagnet CoNb2O6 has recently been driven via applied transverse magnetic fields through a continuous quantum phase transition from spontaneous magnetic order to a quantum paramagnet, and dramatic changes were observed in the spin dynamics, characteristic of weakly perturbed 1D Ising quantum criticality. We report here extensive single-crystal inelastic neutron scattering measurements of the magnetic excitations throughout the three-dimensional (3D) Brillouin zone in the quantum paramagnetic phase just above the critical field to characterize the effects of the finite interchain couplings. In this phase, we observe that excitations have a sharp, resolution-limited line shape at low energies and over most of the dispersion bandwidth, as expected for spin-flip quasiparticles. We map the full bandwidth along the strongly dispersive chain direction and resolve clear modulations of the dispersions in the plane normal to the chains, characteristic of frustrated interchain couplings in an antiferromagnetic isosceles triangular lattice. The dispersions can be well parametrized using a linear spin-wave model that includes interchain couplings and further neighbor exchanges. The observed dispersion bandwidth along the chain direction is smaller than that predicted by a linear spin-wave model using exchange values determined at zero field, and this effect is attributed to quantum renormalization of the dispersion beyond the spin-wave approximation in fields slightly above the critical field, where quantum fluctuations are still significant.

  11. Lattice Dynamics of fcc Ca

    DEFF Research Database (Denmark)

    Stassis, C.; Zaretsky, J.; Misemer, D. K.;

    1983-01-01

    A large single crystal of FCC Ca was grown and was used to study the lattice dynamics of this divalent metal by coherent inelastic neutron scattering. The phonon dispersion curves were measured, at room temperature, along the [ξ00], [ξξ0], [ξξξ], and [0ξ1] symmetry directions. The dispersion curves...... to the propagation of elastic waves. The frequencies of the T1[ξξ0] branch for ξ between approximately 0.5 and 0.8 are slightly above the velocity-of-sound line determined from the low-frequency measurements. Since a similar effect has been observed in FCC Yb, it is natural to assume that the anomalous dispersion.......8, there is a relative decrease in the electronic screening of the vibrational motion of the nuclei, which may account for the positive dispersion exhibited by the T1 [ξξ0] branch in this range of ξ values. The data were used to evaluate the elastic constants, the phonon density of states, and the lattice specific heat...

  12. Phonons in fcc binary alloys

    International Nuclear Information System (INIS)

    Sharma, Amita; Rathore, R.P.S.

    1992-01-01

    Born-Mayer potential has been modified to account for the unpaired (three body) forces among the common nearest neighbours of the ordered binary fcc alloys i.e. Ni 3 Fe 7 , Ni 5 Fe 5 and Ni 75 Fe 25 . The three body potential is added to the two body form of Morse to formalize the total interaction potential. Measured inverse ionic compressibility, cohesive energy, lattice constant and one measured phonon frequency are used to evaluate the defining parameters of the potential. The potential seeks to bring about the binding among 140 and 132 atoms though pair wise (two body) and non-pair wise (three body) forces respectively. The phonon-dispersion relations obtained by solving the secular equation are compared with the experimental findings on the aforesaid alloys. (author). 19 refs., 3 figs

  13. Pair potentials for fcc metals

    International Nuclear Information System (INIS)

    Baskes, M.I.; Melius, C.F.

    1979-01-01

    Long-range pair potentials are presented for the fcc metals Ni, Au, Ag, Pt, Pd, Cu, and Al. Experimental data considered in deriving the potentials include the sublimination energies and stacking-fault energies as well as the lattice parameters, elastic constants, and vacancy-formation and -migration energies. A volume-dependent energy term has been included in the potentials. By scaling the potentials with respect to lattice spacing and a characteristic binding energy, a striking similarity can be seen between the various potentials. These potentials have been used to calculate a variety of point-defect properties including self-interstitial geometries and migration energies. In addition the migration energy of helium and its binding energy to a vacancy have been calculated

  14. Magnetic domains and frustration in metallic CePdAl

    Energy Technology Data Exchange (ETDEWEB)

    Lucas, Stefan; Huesges, Zita; Huang, Chien-Lung; Stockert, Oliver [Max Planck Institute CPfS, Dresden (Germany); Fritsch, Veronika; Sakai, Akito [EP 6, Electronic Correlations and Magnetism, University of Augsburg (Germany); Grube, Kai; Taubenheim, Christian; Loehneysen, Hilbert von [Karlsruhe Institute of Technology (Germany)

    2016-07-01

    Magnetic frustration is an exciting topic in condensed matter physics, since it can lead to new ground states of materials, e.g. a spin liquid or spin glass state. Effects of magnetic frustration have been investigated intensively for insulating materials. However, the existence of magnetic frustration in metallic systems is still under debate. CePdAl is a metallic Kondo system, where geometric magnetic frustration arises from the formation of Ce ions on a distorted Kagome lattice. Neutron scattering experiments revealed, that only two thirds of the magnetic Ce moments order antiferromagnetically below T{sub N}=2.7 K, whereas the other third remains mainly disordered. Thermodynamic as well as neutron scattering measurements are presented to verify the existence of partial magnetic frustration in CePdAl. Recently neutron diffraction experiments under magnetic fields applied along two orthogonal directions in the magnetically hard basal plane were performed. They show opposite effects on the magnetic intensity of a selected magnetic domain depending on the field direction with respect to the propagation vector. If this is only an effect of different domain population or also due to a change in magnetic frustration shall be discussed.

  15. Teaching Students to Overcome Frustration.

    Science.gov (United States)

    Henley, Martin

    1997-01-01

    Offers concrete strategies for teaching students about frustration, reducing classroom stress, and integrating frustration-tolerance techniques into the regular curriculum. Discusses how to teach self-control within the curriculum with tips on relaxation, support, and acknowledging accomplishments. Claims that such steps will reduce related…

  16. User Frustrations as Opportunities

    Directory of Open Access Journals (Sweden)

    Michael Weiss

    2012-04-01

    Full Text Available User frustrations are an excellent source of new product ideas. Starting with this observation, this article describes an approach that entrepreneurs can use to discover business opportunities. Opportunity discovery starts with a problem that the user has, but may not be able to articulate. User-centered design techniques can help elicit those latent needs. The entrepreneur should then try to understand how users are solving their problem today, before proposing a solution that draws on the unique skills and technical capabilities available to the entrepreneur. Finally, an in-depth understanding of the user allows the entrepreneur to hone in on the points of difference and resonance that are the foundation of a strong customer value proposition.

  17. HOM power in FCC-ee cavities

    CERN Document Server

    Karpov, Ivan; Chapochnikova, Elena

    2018-01-01

    This Note summarizes the results of the power loss calculations for FCC-ee machines with 400.79 MHz cavity options. The requirements for the single-cell cavity design and for the operation with beam are obtained from the results for the high-current FCC-ee machine (Z). For other machines the power loss is sufficiently low and can be absorbed and extracted by foreseen HOM couplers.

  18. Magnetic vortex crystals in frustrated 3D Mott insulators

    Science.gov (United States)

    Wang, Zhentao; Kamiya, Yoshitomo; Nevidomskyy, Andriy; Batista, Cristian

    2015-03-01

    Topological spin textures, such as skyrmions, are of great interest to the field of spintronics and usually arise due to the interplay of Dzyaloshinskii-Moriya and exchange couplings. By contrast, using the BCC and FCC lattices as examples, here we demonstrate that frustrated spin exchange interactions alone can produce topological vortex crystals near the magnetic field-induced saturation transition of 3D bulk Mott insulators. Because of the magnetic frustration, the magnon spectrum of the high-field fully polarized state has multiple degenerate minima at different Q-vectors. This quantum paramagnet becomes gapless and goes through a Bose-Einstein condensation at the saturation field (quantum critical point). In this limit, we apply the dilute bosonic gas approximation to study the rich topological structures produced due to multi-Q condensation. We find that the vortex crystal phases span sizable regions in the phase diagrams of frustrated 3D Mott insulators with isotropic Heisenberg interactions, and are further stabilized by exchange anisotropies. Vortex strings emerge in the direction of the magnetic field and, depending on the distributions of the condensed modes, can form different exotic patterns.

  19. Frustration and chiral orderings in correlated electron systems

    Science.gov (United States)

    Batista, Cristian D.; Lin, Shi-Zeng; Hayami, Satoru; Kamiya, Yoshitomo

    2016-08-01

    The term frustration refers to lattice systems whose ground state cannot simultaneously satisfy all the interactions. Frustration is an important property of correlated electron systems, which stems from the sign of loop products (similar to Wilson products) of interactions on a lattice. It was early recognized that geometric frustration can produce rather exotic physical behaviors, such as macroscopic ground state degeneracy and helimagnetism. The interest in frustrated systems was renewed two decades later in the context of spin glasses and the emergence of magnetic superstructures. In particular, Phil Anderson’s proposal of a quantum spin liquid ground state for a two-dimensional lattice S  =  1/2 Heisenberg magnet generated a very active line of research that still continues. As a result of these early discoveries and conjectures, the study of frustrated models and materials exploded over the last two decades. Besides the large efforts triggered by the search of quantum spin liquids, it was also recognized that frustration plays a crucial role in a vast spectrum of physical phenomena arising from correlated electron materials. Here we review some of these phenomena with particular emphasis on the stabilization of chiral liquids and non-coplanar magnetic orderings. In particular, we focus on the ubiquitous interplay between magnetic and charge degrees of freedom in frustrated correlated electron systems and on the role of anisotropy. We demonstrate that these basic ingredients lead to exotic phenomena, such as, charge effects in Mott insulators, the stabilization of single magnetic vortices, as well as vortex and skyrmion crystals, and the emergence of different types of chiral liquids. In particular, these orderings appear more naturally in itinerant magnets with the potential of inducing a very large anomalous Hall effect.

  20. Dementia, Caregiving, and Controlling Frustration

    Science.gov (United States)

    ... A You are here Home Dementia, Caregiving, and Controlling Frustration Order this publication Printer-friendly version The ... Caregiver Alliance Learn more CAREGIVER STORIES Honoring Your Parents My parents lived together and they received 24- ...

  1. Blocking incidental frustration during bargaining.

    Science.gov (United States)

    Vargas, Maria Esperanza S; Brown, Anna-Leigh; Durkee, Cassandra M; Sim, Hoeun

    2018-02-08

    The current study examined the effects of an intervention aimed at blocking the transfer of frustration from a previous experience (i.e. recall task) to a subsequent and unrelated task (i.e. ultimatum bargaining task). Participants who went through the intervention were more likely to accept unfair offers in the ultimatum bargaining task than those who did not go through the intervention. These results show that participants who were blocked from transferring their feelings of frustration from the recall task to the subsequent bargaining task (no-transfer condition) more likely accepted unfair offers than those who inadvertently transferred their feelings of frustration (transfer condition). The effect of conditions on accept-reject decisions in the ultimatum bargaining was mediated by reported feelings of frustration.

  2. Analytic nearest neighbour model for FCC metals

    International Nuclear Information System (INIS)

    Idiodi, J.O.A.; Garba, E.J.D.; Akinlade, O.

    1991-06-01

    A recently proposed analytic nearest-neighbour model for fcc metals is criticised and two alternative nearest-neighbour models derived from the separable potential method (SPM) are recommended. Results for copper and aluminium illustrate the utility of the recommended models. (author). 20 refs, 5 tabs

  3. Frustration behaviors in domestic dogs.

    Science.gov (United States)

    Jakovcevic, Adriana; Elgier, Angel M; Mustaca, Alba E; Bentosela, Mariana

    2013-01-01

    During extinction a previously learned behavior stops being reinforced. In addition to the decrease in the rate of the instrumental response, it produces an aversive emotional state known as frustration. This state can be assimilated with the fear reactions that occur after aversive stimuli are introduced at both the physiological and behavioral levels. This study evaluated frustration reactions of domestic dogs (Canis familiaris) during a communicative situation involving interactions with a human. The task included the reinforcement and extinction of the gaze response toward the experimenter's face when the dogs tried to obtain inaccessible food. The dog's frustration reactions during extinction involved an increase in withdrawal and side orientation to the location of the human as well as lying down, ambulation, sniffing, and vocalizations compared with the last acquisition trial. These results are especially relevant for domestic dog training situations in which the extinction technique is commonly used to discourage undesirable behaviors.

  4. Academic Training Lectures | FCC | 2-5 February

    CERN Multimedia

    2016-01-01

    Please note that the next series of Academic Training Lectures will take place from 2 to 5 February 2016.   Tuesday, 2 February 2016 from 10.30 a.m. to 12.30 p.m. in the Filtration Plant (Building 222-R-001) FCC 1: Introduction to FCC by Michael Benedikt FCC 2: FCC Physics - Challenges and Potentials by Christophe Grojean, Michelangelo Mangano https://indico.cern.ch/event/472105/   Wednesday, 3 February 2016 from 10.30 a.m. to 12.30 p.m in the Filtration Plant (Building 222-R-001) FCC 3: FCC hh Detectors and Experiments by Werner Riegler FCC 4: Experimental Measurements and Detectors for the FCC-ee by Mogens Dam https://indico.cern.ch/event/472106/   Thursday, 4 February 2016 from 10.30 a.m. to 12.30 p.m in the Filtration Plant (Building 222-R-001) FCC 5: FCC Hadron Collider Design by Daniel Schulte FCC 6: FCC Lepton Collider Design by Frank Zimmermann https://indico...

  5. 47 CFR 73.4000 - Listing of FCC policies.

    Science.gov (United States)

    2010-10-01

    ... BROADCAST SERVICES Rules Applicable to All Broadcast Stations § 73.4000 Listing of FCC policies. The... 47 Telecommunication 4 2010-10-01 2010-10-01 false Listing of FCC policies. 73.4000 Section 73.... The present listing of FCC policies and citations thereto should not be relied upon as an all...

  6. Regeneration of Hydrotreating and FCC Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    CM Wai; JG Frye; JL Fulton; LE Bowman; LJ Silva; MA Gerber

    1999-09-30

    Hydrotreating, hydrocracking, and fluid catalytic cracking (FCC) catalysts are important components of petroleum refining processes. Hydrotreating and hydrocracking catalysts are used to improve the yield of high-quality light oil fractions from heavier crude oil and petroleum feedstocks containing high levels of impurities. FCC catalysts improve the yield of higher octane gasoline from crude oil. Residuum hydrotreating and cracking catalysts are susceptible to irreversible deactivation caused by adsorption of sulfur and by metals impurities, such as vanadium and nickel. The gradual buildup of these impurities in a hydrotreating catalyst eventually plugs the pores and deactivates it. Nickel and vanadium adversely affect the behavior of cracking catalysts, reducing product yield and quality. Replacing deactivated catalysts represents a significant cost in petroleum refining. Equally important are the costs and potential liabilities associated with treating and disposing spent catalysts. For example, recent US Environmental Protection Agency rulings have listed spent hydrotreating and hydrorefining catalysts as hazardous wastes. FCC catalysts, though more easily disposed of as road-base or as filler in asphalt and cement, are still an economic concern mainly because of the large volumes of spent catalysts generated. New processes are being considered to increase the useful life of catalysts or for meeting more stringent disposal requirements for spent catalysts containing metals. This report discusses a collaborative effort between Pacific Northwest National Laboratory (PNNL) and Phillips Petroleum, Inc., to identify promising chemical processes for removing metals adhered to spent hydrodesulfurization (HDS, a type of hydrotreating catalyst) and FCC catalysts. This study, conducted by PNNL, was funded by the US Department of Energy's Bartlesville Project Office. Fresh and spent catalysts were provided by Phillips Petroleum. The FCC catalyst was a rare

  7. Frustration: A common user experience

    DEFF Research Database (Denmark)

    Hertzum, Morten

    2010-01-01

    The use of computer applications can be a frustrating experience. This study replicates previous studies of the amount of time users – involuntarily – spend trying to diagnose and recover from problems they encounter while using computer applications such as web browsers, email, and text processing...

  8. Physics case of FCC-ee

    CERN Document Server

    d'Enterria, David

    2016-01-01

    The physics case for electron-positron beams at the Future Circular Collider (FCC-ee) is succinctly summarized. The FCC-ee core program involves $e^+e^-$ collisions at $\\sqrt{s}$ = 90, 160, 240, and 350 GeV with multi-ab$^{-1}$ integrated luminosities, yielding about 10$^{12}$ Z bosons, 10$^{8}$ W$^+$W$^-$ pairs, 10$^{6}$ Higgs bosons and 4$\\cdot$10$^{5}$ $t\\bar{t}$ pairs per year. The huge luminosities combined with $\\cal{100}$ keV knowledge of the c.m. energy will allow for Standard Model studies at unrivaled precision. Indirect constraints on new physics can thereby be placed up to scales $\\Lambda_{_{\\rm NP}} \\approx$ 7 and 100 TeV for particles coupling respectively to the Higgs and electroweak bosons.

  9. Spin Waves in the FCC Kagome Lattice

    Science.gov (United States)

    Leblanc, Martin; Southern, Byron; Plumer, Martin; Whitehead, John

    2014-03-01

    The impact of an effective local cubic anisotropy on the spin wave excitations and inelastic neutron scattering intensity peaks of the Heisenberg model on the 3D fcc kagome lattice are examined through a linear spin wave theory. Previous Monte Carlo simulations revealed that the addition of anisotropy to the fcc kagome lattice changes the order of the phase transition from weakly first order to continuous and restricts the T = 0 spin configuration to a number of discrete ground states, removing the continuous degeneracy. It is shown that the addition of anisotropy removes the number of zero energy modes in the excitation spectrum associated with the removed degeneracies. These results are relevant to Ir-Mn alloys which have been widely used by the magnetic storage industry in thin-film form as the antiferromagnetic pinning layer in GMR and TMR spin valves. Supported by NSERC of Canada.

  10. Quantum Monte Carlo Simulation of Frustrated Kondo Lattice Models

    Science.gov (United States)

    Sato, Toshihiro; Assaad, Fakher F.; Grover, Tarun

    2018-03-01

    The absence of the negative sign problem in quantum Monte Carlo simulations of spin and fermion systems has different origins. World-line based algorithms for spins require positivity of matrix elements whereas auxiliary field approaches for fermions depend on symmetries such as particle-hole symmetry. For negative-sign-free spin and fermionic systems, we show that one can formulate a negative-sign-free auxiliary field quantum Monte Carlo algorithm that allows Kondo coupling of fermions with the spins. Using this general approach, we study a half-filled Kondo lattice model on the honeycomb lattice with geometric frustration. In addition to the conventional Kondo insulator and antiferromagnetically ordered phases, we find a partial Kondo screened state where spins are selectively screened so as to alleviate frustration, and the lattice rotation symmetry is broken nematically.

  11. Transformation of methylcyclohexane on an FCC catalyst

    Directory of Open Access Journals (Sweden)

    Rabeharitsara A.

    2003-01-01

    Full Text Available The transformation of methylcyclohexane at 723 K over on a USHY sample and on an FCC catalyst composed of 30% USHY and 70% matrix containing 25% Al2O3 was studied. With both samples, C2-C7 alkenes and alkanes, cyclopentane and methylcyclopentane (cracking products, dimethylcyclopentanes and ethylcyclopentane (isomers and aromatics appeared as primary products. The activity and selectivity of fresh samples as well as the influence of coke deposits on porosity and selectivity are discussed.

  12. Electrical Power Budget for FCC-ee

    CERN Document Server

    Aull, S.; Bozzini, D.; Brunner, O.; Burnet, J.-P.; Butterworth, A.; Calaga, R.; Jensen, E.; Mertens, V.; Milanese, A.; Nonis, M.; Oide, K.; Schwerg, N.; Tavian, L.; Wenninger, J.; Zimmermann, F.; Rinolfi, L; Blondel, A.; Koratzinos, M.; Gorgi Zadeh, S.

    2016-01-01

    We present a first rough estimate for the electrical power consumption of the FCC-ee lepton collider. This electrical power is dominated by the RF system, which provides the motivation for the ongoing R&D on highly efficient RF power sources. Other contributions come from the warm arc magnets, the cryogenics systems, cooling, ventilation, general services, the particle-physics detectors, and the injector complex.

  13. Beam Dynamics Challenges for FCC-ee

    CERN Document Server

    AUTHOR|(SzGeCERN)442987; Benedikt, Michael; Oide, Katsunobu; Bogomyagkov, Anton; Levichev, Evgeny; Migliorati, Mauro; Wienands, Uli

    2015-01-01

    The goals of FCC-ee include reaching luminosities of up to a few 1036 cm-2s-1 per interaction point at the Z pole or some 1034 cm-2s-1 at the ZH production peak, and pushing the beam energy up to ≥175 GeV, in a ring of 100 km circumference, with a total synchrotron-radiation power not exceeding 100 MW. A parameter baseline as well as high-luminosity crab-waist options were described in [1] and [2], respectively. The extremely high luminosity and resulting short beam lifetime (due to radiative Bhabha scattering) are sustained by top-up injection. The FCC-ee design status and typical beam parameters for different modes of operation are reported in [3]. One distinct feature of the FCC-ee design is its conception as a double ring, with separate beam pipes for the two counter-rotating (electron and positron) beams, resembling, in this aspect, the high-luminosity B factories PEP-II, KEKB and SuperKEKB as well as the LHC. The two separate rings do not only permit operation with a large number of bunches, up to a f...

  14. The fcc structure isomerization in gold nanoclusters.

    Science.gov (United States)

    Zhuang, Shengli; Liao, Lingwen; Li, Man-Bo; Yao, Chuanhao; Zhao, Yan; Dong, Hongwei; Li, Jin; Deng, Haiteng; Li, Lingling; Wu, Zhikun

    2017-10-12

    Structural isomerization is an important concept in organic chemistry and it is recently found to be applicable to thiolated gold nanoparticles. However, to the best of our knowledge, the isomerization with the kernel structure of the cluster changed while maintaining fcc packing was not previously found. Here, we report such a structural isomerization by synthesizing a novel gold nanocluster and solving its atomic structure. The as-obtained novel gold nanocluster Au 52 (PET) 32 (PET = phenylethanethiolate) has completely the same Au/S molar ratio as a well-known gold nanocluster Au 52 (TBBT) 32 (TBBT = 4-tert-butyl-benzenethiolate) but an essentially different fcc structure. As a result of fcc structure isomerization, Au 52 (PET) 32 has remarkably different UV/vis/NIR absorption from Au 52 (TBBT) 32 . Another interesting finding in this work is that the kernel of Au 52 (PET) 32 has high-indexed (311)-like facets, which is not previously reported in the structures of gold nanoclusters to the best of our knowledge.

  15. Geometric analysis

    CERN Document Server

    Bray, Hubert L; Mazzeo, Rafe; Sesum, Natasa

    2015-01-01

    This volume includes expanded versions of the lectures delivered in the Graduate Minicourse portion of the 2013 Park City Mathematics Institute session on Geometric Analysis. The papers give excellent high-level introductions, suitable for graduate students wishing to enter the field and experienced researchers alike, to a range of the most important areas of geometric analysis. These include: the general issue of geometric evolution, with more detailed lectures on Ricci flow and Kähler-Ricci flow, new progress on the analytic aspects of the Willmore equation as well as an introduction to the recent proof of the Willmore conjecture and new directions in min-max theory for geometric variational problems, the current state of the art regarding minimal surfaces in R^3, the role of critical metrics in Riemannian geometry, and the modern perspective on the study of eigenfunctions and eigenvalues for Laplace-Beltrami operators.

  16. Spin dynamics in highly frustrated pyrochlore magnets

    International Nuclear Information System (INIS)

    Petit, S.; Guitteny, S.; Robert, J.; Mirebeau, I.; Bonville, P.; Decorse, C.; Ollivier, J.; Mutka, H.

    2015-01-01

    This paper aims at showing the complementarity between time-of-flight and triple-axis neutron scattering experiments, on the basis of two topical examples in the field of geometrical magnetic frustration. Rare earth pyrochlore magnets R 2 Ti 2 O 7 (R is a rare earth) play a prominent role in this field, as they form model systems showing a rich variety of ground states, depending on the balance between dipolar, exchange interactions and crystal field. We first review the case of the XY antiferromagnet Er 2 Ti 2 O 7 . Here a transition towards a Neel state is observed, possibly induced by an order-by-disorder mechanism. Effective exchange parameters can be extracted from S(Q, ω). We then examine the case of the spin liquid Tb 2 Ti 2 O 7 . Recent experiments reveal a complex ground state characterized by 'pinch points' and supporting a low energy excitation. These studies demonstrate the existence of a coupling between crystal field transitions and a transverse acoustic phonon mode. (authors)

  17. Diesel yield improvement and FCC energy recovery

    Energy Technology Data Exchange (ETDEWEB)

    Sloley, Andrew W. [CH2M HILL, Englewood, CO (United States)

    2012-07-01

    Heat recovery modifications affect FCC LCO yields both directly and indirectly. Direct changes improve LCO recovery by improved fractionation of LCO from both slurry and naphtha. Indirect changes increase LCO yields by increasing FCC reactor feed temperature. Improved diesel yields by direct changes (or higher recovery of the existing diesel) impose changes in internal liquid rates and column temperature profiles. Mechanical and reliability limits must be respected to maintain unit reliability. High diesel recovery from slurry oil increase the slurry oil temperatures. Reliable operation requires keeping the slurry oil operating temperature below roughly 382 deg C (720 deg F). Higher slurry temperatures create a high probability of coke formation in the main fractionators. Close attention to mechanical details is required for reliable operation at 382 deg C (720 deg F). High diesel recovery from naphtha product reduces tower top temperatures. This reduces the available driving force for heat integration. Reduced top temperatures also create the potential for chloride-related and water related corrosion problems. Proper design of equipment can circumvent both these problems. Improved diesel yields by indirect changes creates more shifts heat to feed preheat. This reduces the available heat to other services. The changing yield structure also modifies the required internal liquid rates inside the main fractionators. Again, careful attention to design for heat recovery at low temperature differences is required to maintain the duty to the FCC gas plant. A series of modifications to improve control, increase heat recovery at low temperatures, and circumvent some of the more serious maintenance problems is required. (author)

  18. PURIFIED WASTE FCC CATALYST AS A CEMENT REPLACEMENT MATERIAL

    Directory of Open Access Journals (Sweden)

    Danute Vaiciukyniene

    2015-06-01

    Full Text Available Zeolites are commonly used in the fluid catalytic cracking process. Zeolite polluted with oil products and became waste after some time used. The quantity of this waste inevitably rises by expanding rapidly oil industry. The composition of these catalysts depends on the manufacturer and on the process that is going to be used. The main factors retarding hydration process of cement systems and modifying them strength are organic compounds impurities in the waste FCC catalyst. The present paper shows the results of using purified waste FCC catalyst (pFCC from Lithuania oil refinery, as Portland cement replacement material. For this purpose, the purification of waste FCC catalyst (FCC samples was treated with hydrogen peroxide. Hydrogen peroxide (H2O2 is one of the most powerful oxidizers known. By acting of waste with H2O2 it can eliminate the aforementioned waste deficiency, and the obtained product becomes one of the most promising ingredients, in new advanced building materials. Hardened cement paste samples with FCC or pFCC were formed. It was observed that the pFCC blended cements developed higher strength, after 28 days, compared to the samples with FCC or reference samples. Typical content of Portland cement substituting does not exceed 30 % of mass of Portland cement in samples. Reducing the consumption of Portland cement with utilizing waste materials is preferred for reasons of environmental protection.

  19. Adiabatic cooling processes in frustrated magnetic systems with pyrochlore structure

    Science.gov (United States)

    Jurčišinová, E.; Jurčišin, M.

    2017-11-01

    We investigate in detail the process of adiabatic cooling in the framework of the exactly solvable antiferromagnetic spin-1/2 Ising model in the presence of the external magnetic field on an approximate lattice with pyrochlore structure. The behavior of the entropy of the model is studied and exact values of the residual entropies of all ground states are found. The temperature variation of the system under adiabatic (de)magnetization is investigated and the central role of the macroscopically degenerated ground states in cooling processes is explicitly demonstrated. It is shown that the model parameter space of the studied geometrically frustrated system is divided into five disjunct regions with qualitatively different processes of the adiabatic cooling. The effectiveness of the adiabatic (de)magnetization cooling in the studied model is compared to the corresponding processes in paramagnetic salts. It is shown that the processes of the adiabatic cooling in the antiferromagnetic frustrated systems are much more effective especially in nonzero external magnetic fields. It means that the frustrated magnetic materials with pyrochlore structure can be considered as very promising refrigerants mainly in the situations with nonzero final values of the magnetic field.

  20. Geometric mechanics

    CERN Document Server

    Muniz Oliva, Waldyr

    2002-01-01

    Geometric Mechanics here means mechanics on a pseudo-riemannian manifold and the main goal is the study of some mechanical models and concepts, with emphasis on the intrinsic and geometric aspects arising in classical problems. The first seven chapters are written in the spirit of Newtonian Mechanics while the last two ones as well as two of the four appendices describe the foundations and some aspects of Special and General Relativity. All the material has a coordinate free presentation but, for the sake of motivation, many examples and exercises are included in order to exhibit the desirable flavor of physical applications.

  1. Topological frustration of artificial spin ice

    Science.gov (United States)

    Drisko, Jasper; Marsh, Thomas; Cumings, John

    2017-01-01

    Frustrated systems, typically characterized by competing interactions that cannot all be simultaneously satisfied, display rich behaviours not found elsewhere in nature. Artificial spin ice takes a materials-by-design approach to studying frustration, where lithographically patterned bar magnets mimic the frustrated interactions in real materials but are also amenable to direct characterization. Here, we introduce controlled topological defects into square artificial spin ice lattices in the form of lattice edge dislocations and directly observe the resulting spin configurations. We find the presence of a topological defect produces extended frustration within the system caused by a domain wall with indeterminate configuration. Away from the dislocation, the magnets are locally unfrustrated, but frustration of the lattice persists due to its topology. Our results demonstrate the non-trivial nature of topological defects in a new context, with implications for many real systems in which a typical density of dislocations could fully frustrate a canonically unfrustrated system. PMID:28084314

  2. Classical Antiferromagnetism in Kinetically Frustrated Electronic Models

    Science.gov (United States)

    Sposetti, C. N.; Bravo, B.; Trumper, A. E.; Gazza, C. J.; Manuel, L. O.

    2014-05-01

    We study, by means of the density matrix renormalization group, the infinite U Hubbard model—with one hole doped away from half filling—in triangular and square lattices with frustrated hoppings, which invalidate Nagaoka's theorem. We find that these kinetically frustrated models have antiferromagnetic ground states with classical local magnetization in the thermodynamic limit. We identify the mechanism of this kinetic antiferromagnetism with the release of the kinetic energy frustration, as the hole moves in the established antiferromagnetic background. This release can occur in two different ways: by a nontrivial spin Berry phase acquired by the hole, or by the effective vanishing of the hopping amplitude along the frustrating loops.

  3. Frustration-induced protein intrinsic disorder.

    Science.gov (United States)

    Matsushita, Katsuyoshi; Kikuchi, Macoto

    2013-03-14

    Spontaneous folding into a specific native structure is the most important property of protein to perform their biological functions within organisms. Spontaneous folding is understood on the basis of an energy landscape picture based on the minimum frustration principle. Therefore, frustration seemingly only leads to protein functional disorder. However, frustration has recently been suggested to have a function in allosteric regulation. Functional frustration has the possibility to be a key to our deeper understanding of protein function. To explore another functional frustration, we theoretically examined structural frustration, which is designed to induce intrinsic disorder of a protein and its function through the coupled folding and binding. We extended the Wako-Saitô-Muñoz-Eaton model to take into account a frustration effect. With the model, we analyzed the binding part of neuron-restrictive silencer factor and showed that designed structural frustration in it induces intrinsic disorder. Furthermore, we showed that the folding and the binding are cooperative in interacting with a target protein. The cooperativity enables an intrinsically disordered protein to exhibit a sharp switch-like folding response to binding chemical potential change. Through this switch-like response, the structural frustration may contribute to the regulation function of interprotein interaction of the intrinsically disordered protein.

  4. Analytic functions for calculating binary alloys of FCC metals ...

    African Journals Online (AJOL)

    The problem studied in this paper is that of obtaining appropriate electron density function and a pair potential function for an FCC metal within the EAM format. The approach adopted is to use the experimental dilute limit heats of solution of the binary alloys of FCC metals as input parameters into Johnson analytical model, ...

  5. String picture for a model of frustrated quantum magnets and dimers.

    Science.gov (United States)

    Jiang, Ying; Emig, Thorsten

    2005-03-25

    We study the effect of quantum dynamics on geometrically frustrated magnets for a transverse field Ising model at finite temperatures. We develop a microscopic derivation of the Landau-Ginzburg-Wilson action for this model and show that it can be interpreted as the free energy of a 3D elastic lattice of noncrossing strings. As a first application, we quantitatively predict the phase diagram and correlations, confirming excellently a key prediction of recent simulations about the existence of unusual phase transitions and an ordered phase. We discuss the implications of our string picture for the understanding of the effect of quenched disorder in such quantum frustrated systems.

  6. Precision measurements of the top quark couplings at the FCC

    CERN Document Server

    AUTHOR|(CDS)2051271

    2015-01-01

    The design study of the Future Circular Colliders (FCC) in a 100-km ring in the Geneva area has started at CERN at the beginning of 2014, as an option for post-LHC particle accelerators. The study has an emphasis on proton-proton and electron-positron high-energy frontier machines. In the current plans, the first step of the FCC physics programme would exploit a high-luminosity e+e- collider called FCC-ee, with centre-of-mass energies ranging from below the Z pole to the t-tbar threshold and beyond, followed by 100\\,TeV proton-proton collisions as ultimate goal. When combined, these two steps offer a large palette of complementary measurements and sensitivity for new physics. In particular, the association of the FCC-ee and the FCC-hh allows measurements of the top-quark electroweak and Yukawa couplings to be performed with unrivaled precision.

  7. 78 FR 66357 - Proposed Changes to FCC Form 499-A, FCC Form 499-Q, and Accompanying Instructions

    Science.gov (United States)

    2013-11-05

    ....gov/cgi-bin/leaving.cgi?from=leavingFR.html&log=linklog&to=http://www.bcpiweb.comhttp://www.bcpiweb...-A, available at http://hraunfoss.fcc.gov/edocs_public/attachmatch/DA-13-2090A2.pdf ; Form 499-A Instructions, available at http://hraunfoss.fcc.gov/edocs_public/attachmatch/DA-13-2090A3.pdf ; Form 499-Q...

  8. Neutron diffraction in a frustrated ferrite

    International Nuclear Information System (INIS)

    Mirebeau, I.; Iancu, G.; Gavoille, G.; Hubsch, J.

    1994-01-01

    The competition between a long range ordered ferrimagnetic lattice and small fluctuating clusters have been probed by neutron diffraction in a titanium magnesium frustrated ferrite. The description of the system is then compared to the predictions of several theoretical models for frustrated systems. 3 figs., 8 refs

  9. The Berry phase in frustrated spin glass

    International Nuclear Information System (INIS)

    Banerjee, D.

    2007-12-01

    In this letter we have pointed out that frustration in spin glass is realized through the Berry phase due to the conflict between the spin ordering in the course of parallel transport. We came to the point that the Berry phase depicting the chiral change of helicity of a quantized spinor is prominent only in the presence of frustration. (author)

  10. Frustration Tolerance in Youth With ADHD.

    Science.gov (United States)

    Seymour, Karen E; Macatee, Richard; Chronis-Tuscano, Andrea

    2016-06-08

    The objective of this study was to compare children with ADHD with children without ADHD on frustration tolerance and to examine the role of oppositional defiant disorder (ODD) in frustration tolerance within the sample. Participants included 67 children ages 10 to 14 years-old with (n = 37) and without (n = 30) Diagnostic and Statistical Manual of Mental Disorders (4th ed.; DSM-IV) ADHD who completed the Mirror Tracing Persistence Task (MTPT), a validated computerized behavioral measure of frustration tolerance. Children with ADHD were more likely to quit this task than children without ADHD, demonstrating lower levels of frustration tolerance. There were no differences in frustration tolerance between children with ADHD + ODD and those with ADHD - ODD. Moreover, ODD did not moderate the relationship between ADHD and frustration tolerance. Our results suggest that low frustration tolerance is directly linked to ADHD and not better accounted for by ODD. This research highlights specific behavioral correlates of frustration in children with ADHD. © The Author(s) 2016.

  11. Frustrated lattices of Ising chains

    International Nuclear Information System (INIS)

    Kudasov, Yurii B; Korshunov, Aleksei S; Pavlov, V N; Maslov, Dmitrii A

    2012-01-01

    The magnetic structure and magnetization dynamics of systems of plane frustrated Ising chain lattices are reviewed for three groups of compounds: Ca 3 Co 2 O 6 , CsCoCl 3 , and Sr 5 Rh 4 O 12 . The available experimental data are analyzed and compared in detail. It is shown that a high-temperature magnetic phase on a triangle lattice is normally and universally a partially disordered antiferromagnetic (PDA) structure. The diversity of low-temperature phases results from weak interactions that lift the degeneracy of a 2D antiferromagnetic Ising model on the triangle lattice. Mean-field models, Monte Carlo simulation results on the static magnetization curve, and results on slow magnetization dynamics obtained with Glauber's theory are discussed in detail. (reviews of topical problems)

  12. Validity of a frustration-induction procedure.

    Science.gov (United States)

    Henna, Elaine; Zilberman, Monica L; Gentil, Valentim; Gorenstein, Clarice

    2008-03-01

    To test a reliable and easily administered frustration-induction procedure for experimental research. One hundred volunteers (81 women, mean age +/- SD 34.2 +/- 8 years) physically and psychiatrically healthy submitted to the frustration induction procedure were prevented from reaching reward level scores. Subjective aggressiveness feelings related to frustration were self-rated in a 13-item visual analogue scale before and after the procedure. Significant increases in aggressiveness-related feelings were detected in 12 of the 13 items. This was consistent with the observed overt behavior of the subjects during the task. The frustration-induction procedure is a simple, easy to administer frustration-induction procedure that can be used in experimental studies in normal subjects.

  13. 9th FCC-ee (TLEP) Physics Workshop

    CERN Document Server

    2015-01-01

    This is the 9th in the series of FCCee/TLEP-related workshops. It follows on from the sucessful 8th TLEP workshop that took place in Paris on 27-29 October 2014, and the FCC kick-off meeting held on 12-15 February 2014 at University of Geneva. The workshop is open to all FCC-ee /TLEP design study members, and more generally to all interested in a precision Z, W, H, top factory. The focus will be on physics and experiments at the FCC-ee, but a more general session is organized the first day (Tuesday 3 February afternoon) with presentations about the FCC design study as a whole, and on machine and physics for the FCC-ee and the FCC-hh, with synergies and complementarities. This session is aimed at a larger audience, towards improving the project visibility in Italy. It will be followed by a social dinner in the evening. The workshop starts on Tuesday at 13:30 and ends on Thursday 16:00. Registration is now open, please proceed at your earliest convenience! Please visit the FCC-ee / TLEP web site, and subscrib...

  14. FCC-ee Physics workshop | 19-21 June 2014

    CERN Multimedia

    2014-01-01

    The 7th FCC-ee/TLEP workshop, the first after the FCC kick-off in February 2014, will be focused on physics and experiments.     It will take place on 19-21 June at CERN in the TH auditorium. The registration is open and the agenda is available on the indico web page: http://indico.cern.ch/event/313708/. You are all cordially invited to attend! This will be the first in a series of workshops that will lead us to the first FCC-ee physics milestone, a document defining the physics landscape and study plans, required for March 2015. More information can be found here. FCC-ee is a high-luminosity Z, W, Higgs and top factory, to be hosted in a 100km tunnel, possibly as the first step towards a 100 TeV pp collider FCC-hh. These two machines are being studied within the FCC design study. High precision, high statistics and a clean environment are the tools available in FCC-ee to shed light on the unknown physics that underlies present mysteries: dark matter, the baryon asymmetry of th...

  15. Finite-Temperature Signatures of Spin Liquids in Frustrated Hubbard Model

    Science.gov (United States)

    Misawa, Takahiro; Yamaji, Youhei

    2018-02-01

    Finite-temperature properties of the frustrated Hubbard model are theoretically examined by using the recently proposed thermal pure quantum state, which is an unbiased numerical method for performing finite-temperature calculations. By performing systematic calculations for the frustrated Hubbard model, we show that the geometrical frustration controls the characteristic energy scale of the metal-insulator transitions. We also find that entropy remains large even at moderately high temperatures around the region where the quantum spin liquid is expected to appear at zero temperature. We propose that this is a useful criterion for determining whether the target systems have chances of becoming the quantum spin liquid or the non-magnetic insulator at zero temperature.

  16. Probing spin correlations with phonons in the strongly frustrated magnet ZnCr2O4.

    Science.gov (United States)

    Sushkov, A B; Tchernyshyov, O; Ratcliff, W; Cheong, S W; Drew, H D

    2005-04-08

    The spin-lattice coupling plays an important role in strongly frustrated magnets. In ZnCr2O4, an excellent realization of the Heisenberg antiferromagnet on the pyrochlore network, a lattice distortion relieves the geometrical frustration through a spin-Peierls-like phase transition at T(c)=12.5 K. Conversely, spin correlations strongly influence the elastic properties of a frustrated magnet. By using infrared spectroscopy and published data on magnetic specific heat, we demonstrate that the frequency of an optical phonon triplet in ZnCr2O4 tracks the nearest-neighbor spin correlations above T(c). The splitting of the phonon triplet below T(c) provides a way to measure the spin-Peierls order parameter.

  17. Meperidine addiction or treatment frustration?

    Science.gov (United States)

    Hung, C I; Liu, C Y; Chen, C Y; Yang, C H; Yeh, E K

    2001-01-01

    There have been few studies of the psychiatric characteristics of analgesics addiction. The physician's perceptions that patients were addicted to analgesics might be partially attributable to frustration with poor response to treatment. In this retrospective study, we evaluated the medical records of 20 subjects (15 male and 5 female) who were perceived as having addiction to meperidine by general physicians. The most common medical diagnosis among these patients was chronic pancreatitis (7/20). Among them, five had a past history of suicide attempt and three had self-injury behavior during the index admission. The fact that subjects were perceived as being addicted might be attributable to a vicious cycle of the following factors: 1) chronic intractable pain; 2) poor staff-patient relationship; 3) lower pain threshold or tolerance due to anxiety or depression; 4) patients with a history or tendency of substance abuse; 5) placebo use and inadequate analgesics regimen. The findings of this study suggest that the importance of the following diagnostic and treatment procedures in these patients: 1) suicide risk should be evaluated; 2) comorbid psychiatric diseases should be treated; 3) factors that cause a vicious cycle in pain control should be identified; 4) misconceptions of opiate analgesics among medical staff should be discussed; 5) poor staff-patient relationship should be managed aggressively; and 6) "addiction" is a critical diagnosis that should be avoided if possible.

  18. Geometric recursion

    DEFF Research Database (Denmark)

    Andersen, Jørgen Ellegaard; Borot, Gaëtan; Orantin, Nicolas

    We propose a general theory whose main component are functorial assignments ∑→Ω∑ ∈ E (∑), for a large class of functors E from a certain category of bordered surfaces (∑'s) to a suitable a target category of topological vector spaces. The construction is done by summing appropriate compositions...... of the initial data over all homotopy classes of successive excisions of embedded pair of pants. We provide sufficient conditions to guarantee these infinite sums converge and as a result, we can generate mapping class group invariant vectors Ω∑ which we call amplitudes. The initial data encode the amplitude...... for pair of pants and tori with one boundary, as well as the "recursion kernels" used for glueing. We give this construction the name of "geometric recursion", abbreviated GR. As an illustration, we show how to apply our formalism to various spaces of continuous functions over Teichmueller spaces, as well...

  19. The FCC-ee study: Progress and challenges

    CERN Document Server

    Koratzinos, Michael; Bogomyagkov, Anton; Boscolo, Manuela; Cook, Charlie; Doblhammer, Andreas; Härer, Bastian; Tomás, Rogelio; Levichev, Evgeny; Medina Medrano, Luis; Shatilov, Dmitry; Wienands, Ulrich; Zimmermann, Frank

    The FCC (Future Circular Collider) study represents a vision for the next large project in high energy physics, comprising an 80-100 km tunnel that can house a future 100 TeV hadron collider. The study also includes a high luminosity e+e- collider operating in the centre-of-mass energy range of 90-350 GeV as a possible intermediate step, the FCC-ee. The FCC-ee aims at definitive electro-weak precision measurements of the Z, W, H and top particles, and search for rare phenomena. Although FCC-ee is based on known technology, the goal performance in luminosity and energy calibration make it quite challenging. During 2014 the study went through an exploration phase. The study has now entered its second year and the aim is to produce a conceptual design report during the next three to four years. We here report on progress since the last IPAC conference.

  20. Neutron Scattering from fcc Pr and Pr3Tl

    DEFF Research Database (Denmark)

    Birgeneau, R. J.; Als-Nielsen, Jens Aage; Bucher, E.

    1972-01-01

    Elastic-neutron-scattering measurements on the singlet-ground-state ferromagnets fcc Pr and Pr3 Tl are reported. Both exhibit magnetic phase transitions, possibly to a simple ferromagnetic state at 20 and 11.6 °K, respectively. The transitions appear to be of second order although that in fcc Pr...... is clearly anomalous. Additional information on the inelastic scattering studies of the Γ1-Γ4 excitons in these systems is presented. dhcp Pr is also briefly discussed....

  1. Outline and Status of the FCC-ee Design Study

    CERN Document Server

    Zimmermann, Frank

    2015-01-01

    The Update of the European Strategy for Particle Physics in 2013 [1] declared as its second highest priority that “…to propose an ambitious post-LHC accelerator project….., CERN should undertake design studies for accelerator projects in a global context,…with emphasis on proton-proton and electron-positron high-energy frontier machines…”. In response to this request, the global Future Circular Collider (FCC) study is designing a 100-TeV proton collider (FCC-hh) in a new ~100 km tunnel near Geneva, a high-luminosity electron-positron collider (FCC-ee) as a potential intermediate step, and a lepton-hadron option (FCC-he). The FCC study comprises accelerators, technology, infrastructure, detector, physics, concepts for worldwide data services, international governance models, and implementation scenarios. The FCC study is mandated to deliver a Conceptual Design Report and preliminary cost estimate by the time of the next European Strategy Update expected for 2019. As of July 2015, 58 institutes from...

  2. Doktryna frustration of contract w prawie angielskim

    OpenAIRE

    Wałachowska, Monika

    2011-01-01

    This article presents the basis and practical uses of frustration of contract doctrine under English law. This concept sets up rules as to the eff ect of a change of circumstances to the binding contract. Frustration is opposite to the pacta sunt servanda concept. The Author analyses a great number of cases to show the practical dimension of the doctrine and the rules stemming out of it. When the unforeseen and unforeseeable circumstances appear after the contract has been concluded the contr...

  3. Correlations, spin dynamics, defects: the highly-frustrated Kagome bilayer

    International Nuclear Information System (INIS)

    Bono, David; Limot, Laurent; Mendels, Philippe; Collin Gaston; Blanchard Nicole

    2005-01-01

    The SrCr 9p Ga 1 -2 -9p O 19 and Ba 2 Sn 2 ZnGa 10-7p Cr 7p O 22 compounds are two highly-frustrated magnets possessing a quasi-two-dimensional Kagome bilayer of spin 3/2 chromium ions with antiferromagnetic interactions. Their magnetic susceptibility was measured by local nuclear magnetic resonance and nonlocal (SQUID) techniques, and their low-temperature spin dynamics by muon spin resonance. Consistent with the theoretical picture drawn for geometrically frustrated systems, the Kagome bilayer is shown here to exhibit: (i) short range spin-spin correlations down to a temperature much lower than the Curie-Weiss temperature, no conventional long-range transition occurring; (ii) a Curie contribution to the susceptibility from paramagnetic defects generated by spin vacancies; (iii) low-temperature spin fluctuations, at least down to 30 mK, which are a trademark of a dynamical ground state. These properties point to a spin-liquid ground state, possibly built on resonating valence bonds with unconfined spinons as the magnetic excitations

  4. Magnetocaloric properties of a frustrated Blume-Capel antiferromagnet

    Directory of Open Access Journals (Sweden)

    Žukovič Milan

    2014-07-01

    Full Text Available Low-temperature magnetization processes and magnetocaloric properties of a geometrically frustrated spin-1 Blume-Capel model on a triangular lattice are studied by Monte Carlo simulations. The model is found to display qualitatively different behavior depending on the sign of the single-ion anisotropy D. For positive values of D we observe two magnetization plateaus, similar to the spin-1/2 Ising antiferromagnet, and negative isothermal entropy changes for any field intensity. For a range of small negative values of D there are four magnetization plateaus and the entropy changes can be either negative or positive, depending on the field. If D is negative but large in absolute value then the entropy changes are solely positive.

  5. Geometric interpretation of the geometric discord

    International Nuclear Information System (INIS)

    Yao, Yao; Li, Hong-Wei; Yin, Zhen-Qiang; Han, Zheng-Fu

    2012-01-01

    We investigate the level surfaces of geometric measure of quantum discord, and provide a pictorial interpretation of geometric discord for Bell-diagonal states. We have observed its nonanalytic behavior under decoherence employing this approach and interestingly found if we expect geometric discord to remain constant under phase-flip channel for a finite period, the initial state must be separable. Besides, this geometric understanding can be applied to verify the hierarchical relationships between geometric discord and the original one. The present work makes us conjecture that the incompatibility of these two definitions may originate from the discrepancy of the geometric structures of them. -- Highlights: ► We investigate geometry structure of geometric measure of quantum discord. ► If geometric discord is assumed to remain constant, the initial state must be separable. ► Geometry interpretation can be applied to verify hierarchical relationships between geometric discord and the original one.

  6. Kitaev-Heisenberg models for iridates on the triangular, hyperkagome, kagome, fcc, and pyrochlore lattices

    Science.gov (United States)

    Kimchi, Itamar; Vishwanath, Ashvin

    2014-01-01

    The Kitaev-Heisenberg (KH) model has been proposed to capture magnetic interactions in iridate Mott insulators on the honeycomb lattice. We show that analogous interactions arise in many other geometries built from edge-sharing IrO6 octahedra, including the pyrochlore and hyperkagome lattices relevant to Ir2O4 and Na4Ir3O8, respectively. The Kitaev spin liquid exact solution does not generalize to these lattices. However, a different, exactly soluble point of the honeycomb lattice KH model, obtained by a four-sublattice transformation to a ferromagnet, generalizes to all of these lattices and even to certain additional further neighbor Heisenberg couplings. A Klein four-group ≅Z2×Z2 structure is associated with this mapping (hence Klein duality). A finite lattice admits the duality if a simple geometrical condition is met. This duality predicts fluctuation-free ordered states on these different 2D and 3D lattices, which are analogues of the honeycomb lattice KH stripy order. This result is used in conjunction with a semiclassical Luttinger-Tisza approximation to obtain phase diagrams for KH models on the different lattices. We also discuss a Majorana fermion based mean-field theory at the Kitaev point, which is exact on the honeycomb lattice, for the KH models on the different lattices. We attribute the rich behavior of these models to the interplay of geometric frustration and frustration induced by spin-orbit coupling.

  7. Determination of the catalyst circulation rate in a FCC cold flow pilot unit using nuclear techniques

    International Nuclear Information System (INIS)

    Santos, Valdemir A. dos; Lima, Emerson A.O.

    2013-01-01

    Nuclear techniques of gamma transmission and radioactive tracer were used to estimate the catalyst circulation rate in a cold flow pilot plant unit of Fluid Catalytic Cracking (FCC). Catalyst circulation rate in a FCC unit, allow to determine operating conditions of the exchange catalyst and inlet data for fluid dynamic simulation computational program. The pilot unit was fabricated obeying geometrical parameters provided by the Petrobras Research Center (CENPES), based on hot pilot units to existing in that center. The cold flow pilot unit has a transfer line, two separation vessels flash type, a return column, a riser and a regenerator. The vertical sections as riser, return column, regenerator column and transfer line are made of transparent material (glass). The two separation vessels have bases with tapered cylindrical shapes and are made of steel plates. The riser is divided into four sections of different diameters (0.005 m, 0.010 m, 0.018 m and 0.025 m) and rising upwards, to simulate the increasing flow rate caused by the increase of volume with the increase of the number of moles due to molecules breakage. The radioactive tracer used was the catalyst itself (intrinsic tracer) irradiated by neutron activation, yielding the radioisotope 59 Fe. The velocity measurements were also obtained with aid of an electronic clock triggered by certain radiation levels across the two detectors. Besides estimates for the catalyst circulation rate was possible to identify the type of flow relative to the catalyst in return column. (author)

  8. CFD Study of Industrial FCC Risers: The Effect of Outlet Configurations on Hydrodynamics and Reactions

    Directory of Open Access Journals (Sweden)

    Gabriela C. Lopes

    2012-01-01

    Full Text Available Fluid catalytic cracking (FCC riser reactors have complex hydrodynamics, which depend not only on operating conditions, feedstock quality, and catalyst particles characteristics, but also on the geometric configurations of the reactor. This paper presents a numerical study of the influence of different riser outlet designs on the dynamic of the flow and reactor efficiency. A three-dimensional, three-phase flow model and a four-lump kinetic scheme were used to predict the performance of the reactor. The phenomenon of vaporization of the liquid oil droplets was also analyzed. Results showed that small changes in the outlet configuration had a significant effect on the flow patterns and consequently, on the reaction yields.

  9. Second Frustration for Artificial Spin Ice

    Science.gov (United States)

    Nisoli, Cristiano; Nelson, Tammie

    2012-02-01

    Since its introduction six years ago, artificial spin ice has been employed to successfully study frustration and disorder, to explore extensions of thermodynamics to granular systems, to investigate topological defects and information encoding, and has become ground for direct imaging of ``magnetic monopoles.'' The research has concentrated so far on a few basic geometries (square, ladder, honeycomb, triangular) in which the frustration of the magnetic interaction at the vertices could (or not) bring about a degeneracy. Here we propose new topologically non-trivial geometries, which we call ``of second frustration.'' In these arrays each vertex, while frustrated, has a unique low energy configuration, and is therefore non degenerate; yet a second frustration is regained globally and vertex excitations are topologically protected on loops inside the array. These topological excitations, which control the entropy, cannot be suppressed, can move, merge and exchange topological charge. As novel, more dynamical artificial spin ice is being developed by many, these new lattices could provide an interesting playground for driving and controlling topological excitations, and for taylor-design of probe-response properties.

  10. Inelastic neutron scattering from high-density fcc 4He

    International Nuclear Information System (INIS)

    Thomlinson, W.; Eckert, J.; Shirane, G.

    1978-01-01

    The phonon dispersion relations in high-density crystals of fcc 4 He have been measured along high-symmetry directions by the neutron-inelastic-scattering technique. A recent study of the lattice dynamics of fcc 4 He by Eckert et al. has been extended to cover the fcc phase diagram at pressures below 5 kbar. Molar volumes of 9.03, 9.43, and 9.97 cm 3 /mole have been studied in the temperature range from near the melting curve to near the fcc-hcp transition line. The phonon dispersion relations are in good agreement with a first-order self-consistent phonon theory calculation by Goldman. The observed phonon-group line shapes at large energy and momentum transfers show evidence for multiphonon scattering in agreement with calculations by Glyde. Eckert et al. reported extremely large anharmonic isochoric temperature shifts of the phonon energies. The present work studied the shifts as a function of molar volume and temperature. Mode-Grueneisen-parameter dispersion curves have been measured using the present data and earlier measurements at lower density in the fcc phase by Traylor et al. Macroscopic Grueneisen parameters have been calculated from the phonon density of states obtained from the data

  11. Field-induced cluster spin glass and inverse symmetry breaking enhanced by frustration

    Science.gov (United States)

    Schmidt, M.; Zimmer, F. M.; Magalhaes, S. G.

    2018-03-01

    We consider a cluster disordered model to study the interplay between short- and long-range interactions in geometrically frustrated spin systems under an external magnetic field (h). In our approach, the intercluster long-range disorder (J) is analytically treated to get an effective cluster model that is computed exactly. The clusters follow a checkerboard lattice with first-neighbor (J1) and second-neighbor (J2) interactions. We find a reentrant transition from the cluster spin-glass (CSG) state to a paramagnetic (PM) phase as the temperature decreases for a certain range of h. This inverse symmetry breaking (ISB) appears as a consequence of both quenched disorder with frustration and h, that introduce a CSG state with higher entropy than the polarized PM phase. The competitive scenario introduced by antiferromagnetic (AF) short-range interactions increases the CSG state entropy, leading to continuous ISB transitions and enhancing the ISB regions, mainly in the geometrically frustrated case (J1 =J2). Remarkably, when strong AF intracluster couplings are present, field-induced CSG phases can be found. These CSG regions are strongly related to the magnetization plateaus observed in this cluster disordered system. In fact, it is found that each field-induced magnetization jump brings a CSG region. We notice that geometrical frustration, as well as cluster size, play an important role in the magnetization plateaus and, therefore, are also relevant in the field-induced glassy states. Our findings suggest that competing interactions support ISB and field-induced CSG phases in disordered cluster systems under an external magnetic field.

  12. Dynamical Frustration in ANNNI Model and Annealing

    Science.gov (United States)

    Sen, Parongama; Das, Pratap K.

    Simulated annealing is usually applied to systems with frustration, like spin glasses and optimisation problems, where the energy landscape is complex with many spurious minima. There are certain other systems, however, which have very simple energy landscape picture and ground states, but still the system fails to reach its ground state during a energy-lowering dynamical process. This situation corresponds to "dynamical frustration ". We have specifically considered the case of the axial next nearest neighbour (ANNNI) chain, where such a situation is encountered. In Sect. II, we elaborate the notion of dynamic frustration with examples and in Sect. III, the dynamics in ANNNI model is discussed in detail. The results of application of the classical and quantum annealing are discussed in Sects. IV and V. Summary and some concluding comments are given in the last section.

  13. Maximal frustration as an immunological principle.

    Science.gov (United States)

    de Abreu, F Vistulo; Mostardinha, P

    2009-03-06

    A fundamental problem in immunology is that of understanding how the immune system selects promptly which cells to kill without harming the body. This problem poses an apparent paradox. Strong reactivity against pathogens seems incompatible with perfect tolerance towards self. We propose a different view on cellular reactivity to overcome this paradox: effector functions should be seen as the outcome of cellular decisions which can be in conflict with other cells' decisions. We argue that if cellular systems are frustrated, then extensive cross-reactivity among the elements in the system can decrease the reactivity of the system as a whole and induce perfect tolerance. Using numerical and mathematical analyses, we discuss two simple models that perform optimal pathogenic detection with no autoimmunity if cells are maximally frustrated. This study strongly suggests that a principle of maximal frustration could be used to build artificial immune systems. It would be interesting to test this principle in the real adaptive immune system.

  14. Nanosized f.c.c. thallium inclusions in aluminium

    International Nuclear Information System (INIS)

    Johnson, E.; Johansen, A.; Thoft, N.B.; Andersen, H.H.; Sarholt-Kristensen, L.

    1993-01-01

    Ion implantation of pure aluminium with thallium induces the formation of nanosized crystalline inclusions of thallium with a f.c.c. structure. The size of the inclusions depends on the implantation conditions and subsequent annealing treatments and is typically in the range from 1 to 10 nm. The inclusions are aligned topotactically with the aluminium matrix with a cube-cube orientation relationship and they have a truncated octahedral shape bounded by {111} and {001} planes. The lattice parameter of the f.c.c. thallium inclusions is 0.484 ± 0.002 nm, which is slightly but significantly larger than in the high-pressure f.c.c. thallium phase known to be stable above 3.8 GPa. (Author)

  15. Impact of FCC regenerator design in the NOx emissions

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Hugo Borges; Sandes, Emanuel Freire; Gilbert, William Richard; Roncolatto, Rodolfo Eugenio; Gobbo, Rodrigo; Casavechia, Luiz Carlos; Candido, William Victor Carlos [Petroleo Brasileiro S.A. (PETROBRAS), Rio de Janeiro, RJ (Brazil); Bridi, Patricia Elaine [Possebon Engenharia, Sao Mateus do Sul, PR (Brazil)

    2012-07-01

    Fluid Catalytic Cracking (FCC) is the main point source of NOx in the refinery and it is responsible for at least 20% of the total NOx emissions from the refineries. The thermal NOx formation in the FCC regenerator is negligible. However, half of the feed nitrogen is converted to coke, and is burned in the regenerator. The majority of coke nitrogen is reduced to N2 and less than 10% is converted to NOx. This number may vary significantly with the oxygen excess in the flue gas and other operational conditions. With the purpose of evaluating the impact of different regenerator designs in NOx formation, several tests were carried out in the PETROBRAS FCC prototype unit. The test unit is equipped with adiabatic insulation and a CO boiler, allowing it to reproduce the heat balance of a commercial FCC and to operate either in full combustion or partial combustion. Two different designs of FCC regenerators were evaluated: single stage regenerator (the existing configuration) and two stage regenerator, with the catalyst bed divided into two sections by a structured packing baffle. It was observed in the tests that the combustion regime had a very strong effect on NOx formation. In full combustion, the effect of the FCC operating variables: excess oxygen, combustion promoter content in catalyst and regenerator design could be identified. The two stage configuration was capable of decreasing NOx emissions by 30%. In partial combustion, the effect of the CO-boiler variables on NOx emissions was overwhelming, but the use of the structured packing baffle was able to improve the catalyst regeneration.(author)

  16. Teacher frustration and professional development: Causes, consequences and practical implications

    DEFF Research Database (Denmark)

    Noesgaard, Signe Schack

    2018-01-01

    The influence of frustration on the effectiveness of teacher professional development has previously been overlooked. This study of in-service teachers who become frustrated during professional development interventions considers the development of two Danish science teachers. Frustration theory...... of teacher change. At a practical level, the effectiveness of teacher professional development in advancing teaching is shown to be unpredictable, requiring individualized and timely support...... is expanded with situated learning theory to illuminate some of the complexities of teacher frustration found in the empirical case. Through multiple new perspectives on the field, the study conceptualizes transformative and regressive frustration to illustrate how frustration operates at the tipping point...

  17. [French validation of the Frustration Discomfort Scale].

    Science.gov (United States)

    Chamayou, J-L; Tsenova, V; Gonthier, C; Blatier, C; Yahyaoui, A

    2016-08-01

    Rational emotive behavior therapy originally considered the concept of frustration intolerance in relation to different beliefs or cognitive patterns. Psychological disorders or, to some extent, certain affects such as frustration could result from irrational beliefs. Initially regarded as a unidimensional construct, recent literature considers those irrational beliefs as a multidimensional construct; such is the case for the phenomenon of frustration. In order to measure frustration intolerance, Harrington (2005) developed and validated the Frustration Discomfort Scale. The scale includes four dimensions of beliefs: emotional intolerance includes beliefs according to which emotional distress is intolerable and must be controlled or avoided as soon as possible. The intolerance of discomfort or demand for comfort is the second dimension based on beliefs that life should be peaceful and comfortable and that any inconvenience, effort or hassle should be avoided. The third dimension is entitlement, which includes beliefs about personal goals, such as merit, fairness, respect and gratification, and that others must not frustrate those non-negotiable desires. The fourth dimension is achievement, which reflects demands for high expectations or standards. The aim of this study was to translate and validate in a French population the Frustration and Discomfort Scale developed by Harrington (2005), assess its psychometric properties, highlight the four factors structure of the scale, and examine the relationships between this concept and both emotion regulation and perceived stress. We translated the Frustration Discomfort Scale from English to French and back from French to English in order to ensure good quality of translation. We then submitted the scale to 289 students (239 females and 50 males) from the University of Savoy in addition to the Cognitive Emotional Regulation Questionnaire and the Perceived Stress Scale. The results showed satisfactory psychometric

  18. Evaluation of residue feedstocks in a FCC pilot unit; Avaliacao de cargas residuais em unidade piloto de FCC

    Energy Technology Data Exchange (ETDEWEB)

    Baptista, Claudia M.L. Alvarenga; Pinho, Andrea Rezende [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    1998-07-01

    This paper display experimental runs data done in a FCC pilot riser unit (PETROBRAS Research Center) to determine yield profile and conversion of three residue feedstocks derived from brazilian crude oils. In order to perform this study the pilot riser's hardware, operating conditions and operating procedures had to be adapted to the heavier feeds (feeds with carbon residue around 10% weight). These modifications have allowed to get good process results in a stable operation. The study's purpose was to subsidize projects of new commercial FCC Units designed for residue processing and to allow the development of catalytic for feedstocks with a high level of contaminants. (author)

  19. CORE: Frustrated Magnets, Charge Fractionalization and QCD

    Energy Technology Data Exchange (ETDEWEB)

    Weinstein, M.

    2004-10-11

    I explain how to use a simple method to extract the physics of lattice Hamiltonian systems which are not easily analyzed by exact or other numerical methods. I will then use this method to establish the relationship between QCD and a special class of generalized, highly frustrated anti-ferromagnets.

  20. Frustrated Lewis pairs: Design and reactivity

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 127; Issue 2. Frustrated Lewis pairs: Design and reactivity. Sanjoy Mukherjee Pakkirisamy Thilagar. Volume 127 Issue 2 ... main group as well as transition metal chemistry. The design strategies adopted for FLP systems and their unique reactivity are discussed here.

  1. Frustrated Lewis pairs-assisted tritium labeling

    Czech Academy of Sciences Publication Activity Database

    Marek, Aleš; Široká, Sabina; Elbert, Tomáš

    2016-01-01

    Roč. 14, č. 5 (2016), s. 219 ISSN 2336-7202. [Sjezd českých a slovenských chemických společností /68./. 04.09.2016-07.09.2016, Praha] Institutional support: RVO:61388963 Keywords : frustrated Lewis pairs * one-pot synthesis * tritium -labeling Subject RIV: CC - Organic Chemistry

  2. Children, Hyperactivity and Low Frustration Tolerance.

    Science.gov (United States)

    Shaughnessy, Michael F.; Scott, Patricia Carol

    This paper addresses issues regarding the hyperactive child, the impulsive child, and the low frustration tolerance child. It points out the subjectivity involved in identifying children as hyperactive, and outlines various forms of hyperactivity: the child who is in constant movement, the child who manages control in school but exhibits whirlwind…

  3. Commercial Firm Training Practices versus Aerial Port Hazardous Cargo Frustration

    National Research Council Canada - National Science Library

    Maynard, Jill L

    2007-01-01

    .... This research investigates if commercial companies are a cause of the frustration problems. A case study methodology was used to investigate training practices of companies that had frustrated hazardous cargo at either Charleston or Dover Aerial Ports...

  4. 76 FR 69738 - Revised 2011 Annual Telecommunications Reporting Worksheet (FCC Form 499-A) and Accompanying...

    Science.gov (United States)

    2011-11-09

    ... Telecommunications Reporting Worksheet (FCC Form 499-A) and Accompanying Instructions AGENCY: Federal Communications... Telecommunications Reporting Worksheet (FCC Form 499-A) and accompanying instructions that have been approved by the... INFORMATION CONTACT: Ernesto Beckford, Wireline Competition Bureau, Telecommunications Access Policy Division...

  5. 47 CFR 76.1714 - FCC rules and regulations.

    Science.gov (United States)

    2010-10-01

    ... Operating Handbook, and is expected to be familiar with the rules governing cable television systems and the... MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Documents to be Maintained for Inspection § 76.1714 FCC rules and regulations. (a) The operator of a cable television system shall have a current copy of part 76...

  6. FCC-hh Hadron Collider - Parameter Scenarios and Staging Options

    CERN Document Server

    Benedikt, Michael; Schulte, Daniel; Zimmermann, F; Syphers, M J

    2015-01-01

    FCC-hh is a proposed future energy-frontier hadron collider, based on dipole magnets with a field around 16 T installed in a new tunnel with a circumference of about 100 km, which would provide proton collisions at a centre-of-mass energy of 100 TeV, as well as heavy-ion collisions at the equivalent energy. The FCC-hh should deliver a high integrated proton-proton luminosity at the level of several 100 fb−1 per year, or more. The challenges for operating FCC-hh with high beam current and at high luminosity include the heat load from synchrotron radiation in a cold environment, the radiation from collision debris around the interaction region, and machine protection. In this paper, starting from the FCC-hh design baseline parameters we explore different approaches for increasing the integrated luminosity, and discuss the impact of key individual pa- rameters, such as the turnaround time. We also present some injector considerations and options for early hadron-collider operation.

  7. A Guide to Federal Regulation; Understanding the FCC Rules.

    Science.gov (United States)

    Cable Television Information Center, Washington, DC.

    While it is apparent that the Federal Communications Commission (FCC) has given a great deal of thought to the regulation of cable systems, the basic success or failure of cable as a communications service will depend on local development. Relatively little guidance has been provided to local franchising authorities for selecting among applicants,…

  8. Quantitative comparison between simulated and experimental FCC rolling textures

    DEFF Research Database (Denmark)

    Wronski, M.; Wierzbanowski, K.; Leffers, Torben

    2015-01-01

    The degree of similarity between simulated and experimental fcc rolling textures is characterized by a single scalar parameter. The textures are simulated with a relatively simple and efficient 1-point model which allows us to vary the strength of the interaction between the grains and the surrou...

  9. The 16 T Dipole Development Program for FCC

    NARCIS (Netherlands)

    Tommasini, Davide; Auchmann, Bernhard; Bajas, Hugues; Bajko, Marta; Ballarino, Amalia; Bellomo, Giovanni; Benedikt, Michael; Bermudez, Susana Izquierdo; Bordini, Bernardo; Bottura, Luca; Buzio, Marco; Dhalle, Marc; Durante, Maria; De Rijk, Gijs; Fabbricatore, Pasquale; Farinon, Stefania; Ferracin, Paolo; Gao, Peng; Lackner, Friedrich; Lorin, Clement; Marinozzi, Vittorio; Martinez, Teresa; Munilla, Javier; Ogitsu, Toru; Ortwein, Rafal; Perez, Juan Carlos; Prioli, Marco; Rifflet, Jean Michel; Rochepault, Etienne; Russenschuck, Stephan; Salmi, Tiina; Savary, Frederic; Schoerling, Daniel; Segreti, Michel; Senatore, Carmine; Sorbi, Massimo; Stenvall, Antti; Todesco, Ezio; Toral, Fernando; Verweij, Arjan P.; Volpini, Giovanni; Wessel, W.A.J.; Wolf, Felix

    2017-01-01

    A key challenge for a future circular collider (FCC) with centre-of-mass energy of 100 TeV and a circumference in the range of 100 km is the development of high-field superconducting accelerator magnets, capable of providing a 16 T dipolar field of accelerator quality in a 50 mm aperture. This paper

  10. Deformation microstructure and orientation of F.C.C. crystals

    DEFF Research Database (Denmark)

    Liu, Q.; Hansen, N.

    1995-01-01

    The effect of crystallographic orientation on the microstructural evolution in f.c.c. metals with medium to high stacking fault energy is analyzed. This analysis is based on a literature review of the behaviour of single crystals and polycrystals supplemented with an experimental study of cold...

  11. Volume variation of Gruneisen parameters of fcc transition metals

    Indian Academy of Sciences (India)

    Unknown

    ultrasonic measurements and melting of solids (Mulargia and Boschi 1978 .... Several studies in the past based on model pseudo- potential suggest ... Volume variation of fcc transition metals. 65. The present value for Cu is in good agreement with the experimental values. Also, the presently obtained value agrees well with ...

  12. QCD and $\\gamma\\,\\gamma$ studies at FCC-ee

    CERN Document Server

    Skands, Peter

    2016-10-20

    The Future Circular Collider (FCC) is a post-LHC project aiming at searches for physics beyond the SM in a new 80--100~km tunnel at CERN. Running in its first phase as a very-high-luminosity electron-positron collider (FCC-ee), it will provide unique possibilities for indirect searches of new phenomena through high-precision tests of the SM. In addition, by collecting tens of ab$^{-1}$ integrated luminosity in the range of center-of-mass energies $\\sqrt{s}$~=90--350~GeV, the FCC-ee also offers unique physics opportunities for precise measurements of QCD phenomena and of photon-photon collisions through, literally, billions of hadronic final states as well as unprecedented large fluxes of quasireal $\\gamma$'s radiated from the $\\rm e^+e^-$ beams. We succinctly summarize the FCC-ee perspectives for high-precision extractions of the QCD coupling, for detailed analyses of parton radiation and fragmentation, and for SM and BSM studies through $\\gamma\\gamma$ collisions.

  13. Frustrated spin-1/2 ladder with ferro- and antiferromagnetic legs

    Science.gov (United States)

    Maiti, Debasmita; Dey, Dayasindhu; Kumar, Manoranjan

    2018-01-01

    Two-leg spin-1/2 ladder systems consisting of a ferromagnetic leg and an antiferromagnetic leg are considered where the spins on the legs interact through antiferromagnetic rung couplings J1 . These ladders can have two geometrical arrangements either zigzag or normal ladder and these systems are frustrated irrespective of their geometry. This frustration gives rise to incommensurate spin density wave, dimer and spin fluid phases in the ground state. The magnetization in the systems decreases linearly with J12, and the systems show an incommensurate phase for 0.0

  14. Organizational Frustration: A Model and Review of the Literature.

    Science.gov (United States)

    Spector, Paul E.

    1978-01-01

    This discussion is divided into four parts: (1) the definition of frustration; (2) general behavioral reactions to frustration which have implications for organizations; (3) integration of the individual behavioral reactions into a model of organizational frustration; and (4) a review of the supporting evidence for the model. (Author)

  15. Frustration and curvature - Glasses and the cholesteric blue phase

    Science.gov (United States)

    Sethna, J. P.

    1983-01-01

    An analogy is drawn between continuum elastic theories of the blue phase of cholesteric liquid crystals and recent theories of frustration in configurational glasses. Both involve the introduction of a lattice of disclination lines to relieve frustration; the frustration is due to an intrinsic curvature in the natural form of parallel transport. A continuum theory of configurational glasses is proposed.

  16. Database implementation to fluidized cracking catalytic-FCC process

    International Nuclear Information System (INIS)

    Santana, Antonio Otavio de; Dantas, Carlos Costa; Santos, Valdemir A. dos

    2009-01-01

    A process of Fluidized Cracking Catalytic (FCC) was developed by our research group. A cold model FCC unit, in laboratory scale, was used for obtaining of the data relative to the following parameters: air flow, system pressure, riser inlet pressure, rise outlet pressure, pressure drop in the riser, motor speed of catalyst injection and density. The measured of the density is made by gamma ray transmission. For the fact of the process of FCC not to have a database until then, the present work supplied this deficiency with the implementation of a database in connection with the Matlab software. The data from the FCC unit (laboratory model) are obtained as spreadsheet of the MS-Excel software. These spreadsheets were treated before importing them as database tables. The application of the process of normalization of database and the analysis done with the MS-Access in these spreadsheets treated revealed the need of an only relation (table) for to represent the database. The Database Manager System (DBMS) chosen has been the MS-Access by to satisfy our flow of data. The next step was the creation of the database, being built the table of data, the action query, selection query and the macro for to import data from the unit FCC in study. Also an interface between the application 'Database Toolbox' (Matlab2008a) and the database was created. This was obtained through the drivers ODBC (Open Data Base Connectivity). This interface allows the manipulation of the database by the users operating in the Matlab. (author)

  17. Spin-frustrated pyrochlore chains in the volcanic mineral kamchatkite (KCu3OCl(SO4)2)

    Science.gov (United States)

    Volkova, L. M.; Marinin, D. V.

    2018-02-01

    Search of new frustrated magnetic systems is of a significant importance for physics studying the condensed matter. The platform for geometric frustration of magnetic systems can be provided by copper oxocentric tetrahedra (OCu4) forming the base of crystalline structures of copper minerals from Tolbachik volcanos in Kamchatka. The present work was devoted to a new frustrated antiferromagnetic—kamchatkite (KCu3OCl(SO4)2). The calculation of the sign and strength of magnetic couplings in KCu3OCl(SO4)2 has been performed on the basis of structural data by the phenomenological crystal chemistry method with taking into account corrections on the Jahn-Teller orbital degeneracy of Cu2+. It has been established that kamchatkite (KCu3OCl(SO4)2) contains AFM spin-frustrated chains of the pyrochlore type composed of cone-sharing Cu4 tetrahedra. Strong AFM intrachain and interchain couplings compete with each other. Frustration of magnetic couplings in tetrahedral chains is combined with the presence of electric polarization.

  18. Effects of frustration on explosive synchronization

    Science.gov (United States)

    Huang, Xia; Gao, Jian; Sun, Yu-Ting; Zheng, Zhi-Gang; Xu, Can

    2016-12-01

    In this study, we consider the emergence of explosive synchronization in scale-free networks by considering the Kuramoto model of coupled phase oscillators. The natural frequencies of oscillators are assumed to be correlated with their degrees and frustration is included in the system. This assumption can enhance or delay the explosive transition to synchronization. Interestingly, a de-synchronization phenomenon occurs and the type of phase transition is also changed. Furthermore, we provide an analytical treatment based on a star graph, which resembles that obtained in scale-free networks. Finally, a self-consistent approach is implemented to study the de-synchronization regime. Our findings have important implications for controlling synchronization in complex networks because frustration is a controllable parameter in experiments and a discontinuous abrupt phase transition is always dangerous in engineering in the real world.

  19. Information Geometric Complexity of a Trivariate Gaussian Statistical Model

    Directory of Open Access Journals (Sweden)

    Domenico Felice

    2014-05-01

    Full Text Available We evaluate the information geometric complexity of entropic motion on low-dimensional Gaussian statistical manifolds in order to quantify how difficult it is to make macroscopic predictions about systems in the presence of limited information. Specifically, we observe that the complexity of such entropic inferences not only depends on the amount of available pieces of information but also on the manner in which such pieces are correlated. Finally, we uncover that, for certain correlational structures, the impossibility of reaching the most favorable configuration from an entropic inference viewpoint seems to lead to an information geometric analog of the well-known frustration effect that occurs in statistical physics.

  20. Dy2Ti2O7 spin ice: a test case for emergent clusters in a frustrated magnet.

    Science.gov (United States)

    Yavors'kii, Taras; Fennell, Tom; Gingras, Michel J P; Bramwell, Steven T

    2008-07-18

    Dy2Ti2O7 is a geometrically frustrated magnetic material with a strongly correlated spin ice regime that extends from 1 K down to as low as 60 mK. The diffuse elastic neutron scattering intensities in the spin ice regime can be remarkably well described by a phenomenological model of weakly interacting hexagonal spin clusters, as invoked in other geometrically frustrated magnets. We present a highly refined microscopic theory of Dy2Ti2O7 that includes long-range dipolar and exchange interactions to third nearest neighbors and which demonstrates that the clusters are purely fictitious in this material. The seeming emergence of composite spin clusters and their associated scattering pattern is instead an indicator of fine-tuning of ancillary correlations within a strongly correlated state.

  1. Quantum phase transition with dissipative frustration

    Science.gov (United States)

    Maile, D.; Andergassen, S.; Belzig, W.; Rastelli, G.

    2018-04-01

    We study the quantum phase transition of the one-dimensional phase model in the presence of dissipative frustration, provided by an interaction of the system with the environment through two noncommuting operators. Such a model can be realized in Josephson junction chains with shunt resistances and resistances between the chain and the ground. Using a self-consistent harmonic approximation, we determine the phase diagram at zero temperature which exhibits a quantum phase transition between an ordered phase, corresponding to the superconducting state, and a disordered phase, corresponding to the insulating state with localized superconducting charge. Interestingly, we find that the critical line separating the two phases has a nonmonotonic behavior as a function of the dissipative coupling strength. This result is a consequence of the frustration between (i) one dissipative coupling that quenches the quantum phase fluctuations favoring the ordered phase and (ii) one that quenches the quantum momentum (charge) fluctuations leading to a vanishing phase coherence. Moreover, within the self-consistent harmonic approximation, we analyze the dissipation induced crossover between a first and second order phase transition, showing that quantum frustration increases the range in which the phase transition is second order. The nonmonotonic behavior is reflected also in the purity of the system that quantifies the degree of correlation between the system and the environment, and in the logarithmic negativity as an entanglement measure that encodes the internal quantum correlations in the chain.

  2. Sulfur and octane trade off in FCC naphta conventional hydrotreating

    Energy Technology Data Exchange (ETDEWEB)

    Badra, C. [INTEVEP S.A. Research and Technological Support Center of Petroleos de Venzuela, Caracas (Venezuela). Dept. de Refinacion; Perez, J.A. [INTEVEP S.A. Research and Technological Support Center of Petroleos de Venzuela, Caracas (Venezuela). Dept. de Refinacion; Salazar, J.A. [INTEVEP S.A. Research and Technological Support Center of Petroleos de Venzuela, Caracas (Venezuela). Dept. de Refinacion; Cabrera, L. [INTEVEP S.A. Research and Technological Support Center of Petroleos de Venzuela, Caracas (Venezuela). Dept. de Refinacion; Gracia, W. [INTEVEP S.A. Research and Technological Support Center of Petroleos de Venzuela, Caracas (Venezuela). Dept. de Refinacion

    1997-06-01

    A model to predict the change of octane numbers expected in an FCC naphtha hydrotreating process as a function of the hydroprocessing severity (degree of sulfur removal) and the type of naphtha (expressed as the sulfur content and bromine number in the feedstock) is presented. When considering hydrotreating as an option for processing their catalytic naphthas, refiners search for the proper balance between the desired reduction of sulfur and olefins and the resulting undesired reduction of octane (RON and MON). In doing so, refiners should study the possibility of performing the hydrotreating at mild severities and/or the possibility of fractionating FCC naphthas to just treat a specific cut. This paper provides simple tools to study and analyze these study cases and to assess the sulfur-octane trade offs. (orig.)

  3. On Geometric Infinite Divisibility

    OpenAIRE

    Sandhya, E.; Pillai, R. N.

    2014-01-01

    The notion of geometric version of an infinitely divisible law is introduced. Concepts parallel to attraction and partial attraction are developed and studied in the setup of geometric summing of random variables.

  4. Geometric Design Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Purpose: The mission of the Geometric Design Laboratory (GDL) is to support the Office of Safety Research and Development in research related to the geometric design...

  5. Physics Perspectives for a Future Circular Collider: FCC-ee

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    The lectures will briefly discuss the parameters of a Future Circular Collider, before addressing in detail the physics perspectives and the challenges for the experiments and detector systems. The main focus will be on ee and pp collisions, but opportunities for e—p physics will also be covered. The FCC physics perspectives will be presented with reference to the ongoing LHC programme, including the physics potential from future upgrades to the LHC in luminosity and possibly energy.  

  6. FCC-ee final focus with chromaticity correction

    CERN Document Server

    Garcia, H; Tomás, R

    2014-01-01

    A 100 km circular electron-positron collider is considered as one of the possible future high energy facilities. In order to achieve a high luminosity, strong beam focusing at the Interaction Point (IP) is used requiring the correction of the chromatic aberrations. In this paper we study preliminary designs of a Final Focus System (FFS) for the FCC-ee collider with chromatic correction. Beam orbit stability and dynamic aperture calculations are also presented.

  7. First results for a FCC-hh ring optics design

    CERN Document Server

    Chance, Antoine; Payet, Jacques; Alemany Fernandez, Reyes; Holzer, Bernhard; Schulte, Daniel

    2015-01-01

    The first order considerations of the optics for the FCC-hh ring are presented. The arc cell is generated taking into account some general considerations like the whole circumference, maximum gradients and lengths of the elements in the cell. The integration of the insertion regions started. Three types of Dispersion Suppressors (DIS) are studied. The sensitivity of the arc parameters to these layout considerations is studied in more detail. An alternative layout is shown as well.

  8. Future Circular Collider Study FCC-he Baseline Parameters

    CERN Document Server

    Bruning, Oliver; Klein, Max; Pellegrini, Dario; Schulte, Daniel; Zimmermann, Frank

    2017-01-01

    Initial considerations are presented on the FCC-he, the electron-hadron collider con guration within the Future Circular Collider study. This note considers arguments for the choice of the electron beam energy based on physics, ep scattering kinematics and cost. The default con guration for the electron accelerator, as for the LHeC, is chosen to be a multi-turn energy recovery linac external to the proton beam tunnel. The main accelerator parameters of the FCC-he are discussed, assuming the concurrent operation of ep with the 100TeV cms energy pp collider. These are compared with the LHeC design concept, for increased performance as for a Higgs facility using the HL-LHC, and also the high energy HE-LHC ep collider configuration. Initial estimates are also provided for the luminosity performance of electron-ion colliders for the 60 GeV electron ERL when combined with the LHC, the HE-LHC and the FCC ion beams.

  9. Attrition Resistant Fischer-Tropsch Catalysts Based on FCC Supports

    Energy Technology Data Exchange (ETDEWEB)

    Adeyiga, Adeyinka

    2010-02-05

    Commercial spent fluid catalytic cracking (FCC) catalysts provided by Engelhard and Albemarle were used as supports for Fe-based catalysts with the goal of improving the attrition resistance of typical F-T catalysts. Catalysts with the Ruhrchemie composition (100 Fe/5 Cu/4.2 K/25 spent FCC on mass basis) were prepared by wet impregnation. XRD and XANES analysis showed the presence of Fe{sub 2}O{sub 3} in calcined catalysts. FeC{sub x} and Fe{sub 3}O{sub 4} were present in the activated catalysts. The metal composition of the catalysts was analyzed by ICP-MS. F-T activity of the catalysts activated in situ in CO at the same conditions as used prior to the attrition tests was measured using a fixed bed reactor at T = 573 K, P = 1.38 MPa and H{sub 2}:CO ratio of 0.67. Cu and K promoted Fe supported over Engelhard provided spent FCC catalyst shows relatively good attrition resistance (8.2 wt% fines lost), high CO conversion (81%) and C{sub 5}+ hydrocarbons selectivity (18.3%).

  10. Frustration under pressure: Exotic magnetism in new pyrochlore oxides

    Directory of Open Access Journals (Sweden)

    C. R. Wiebe

    2015-04-01

    Full Text Available Pyrochlore structures, of chemical formula A2B2O7 (A and B are typically trivalent and tetravalent ions, respectively, have been the focus of much activity in the condensed matter community due to the ease of substitution of rare earth and transition metal ions upon the two interpenetrating corner-shared tetrahedral lattices. Over the last few decades, superconductivity, spin liquid states, spin ice states, glassy states in the absence of chemical disorder, and metal-insulator transitions have all been discovered in these materials. Geometric frustration plays a role in the relevant physics of all of these phenomena. In the search for new pyrochlore materials, it is the RA/RB cation radius ratio which determines the stability of the lattice over the defect fluorite structure in the lower limit. Under ambient pressure, the pyrochlores are stable for 1.36 ≤ RA/RB ≤ 1.71. However, using high pressure synthesis techniques (1-10 GPa of pressure, metastable pyrochlores exist up to RA/RB = 2.30. Many of these compounds are stable on a timescale of years after synthesis, and provide a means to greatly enhance exchange, and thus test theories of quantum magnetism and search for new phenomena. Within this article, we review new pyrochlore compounds synthesized via high pressure techniques and show how the ground states are extremely sensitive to chemical pressure.

  11. Pressure Profile in the experimental area of FCC-hh and FCC-ee calculated by an analytical code

    CERN Multimedia

    Aichinger, Ida

    2017-01-01

    Ultra high vacuum in the beam pipe is a basic requirement for the Future Circular Colliders (FCC). The dimension of the FCC and the high energy of the particles will make this requirement challenging. Simulations that predict the vacuum quality due to material and beam induced effects will allow to evaluate different designs and to choose an optimal solution. The mathematical model behind the simulations will be shown. Four coupled differential equations describe the mass conservation of the residual gas particles in the beam pipe. The sinks include all kind of distributed and local pumping. The sources are caused by synchrotron radiation, electron clouds, thermal outgassing and ion-induced desorption. The equation system is solved by an analytical method. This requires a transformation to first order equations for which a general valid solution exists. Adding a particular solution and the inclusion of appropriate boundary conditions define the solution function. The big advantage here is that an analytical...

  12. Gifts and exchanges problems, frustrations, and triumphs

    CERN Document Server

    Katz, Linda S; Denning, Catherine

    2013-01-01

    This important book explores the many questions challenging librarians who work with gifts and exchanges (G&E) as part of their daily responsibilities. Too often, because of shrinking library budgets, library gifts are considered burdensome and unprofitable drains on both financial and personnel resources. However, Gifts and Exchanges: Problems, Frustrations, . . . and Triumphs gives you solutions that will allow you to embrace your library's gifts as rewards. In this book, you will discover the latest ways of disposing unwanted materials, planning and holding book sales and auctions, and oper

  13. Complexity due to disorder and frustration

    International Nuclear Information System (INIS)

    Sherrington, D.

    1990-01-01

    In these lectures the author aims to demonstrate that quenched disorder and frustrated interactions combine to produce rich and complex behavior, static and dynamic, in a wealth of situations ranging from solid-state physics, through NP-hard optimization (e.g., in operational research), to neural models for memory. The techniques employed draw heavily on statistical mechanics and automaton theory, but the conventional versions of these subjects require non-trivial extension to deal with the new phenomena, leading to the development of new concepts. 16 refs., 12 figs

  14. Maternal frustration, emotional and behavioural responses to prolonged infant crying.

    Science.gov (United States)

    Barr, Ronald G; Fairbrother, Nicole; Pauwels, Julie; Green, James; Chen, Mandy; Brant, Rollin

    2014-11-01

    Prolonged inconsolable crying bouts in the first months of life are frustrating to parents and may lead to abuse. There is no empirical description of frustration trajectories during prolonged crying, nor of their emotional predictors or emotional and behavioural sequelae. Frustration responses and their relationships were explored in an analogue cry listening paradigm. Without knowing how long it would last, 111 postpartum mothers were randomized to listen to a 10-min audiotape of infant crying or cooing while continuously recording frustration on a visual analogue 'slider' scale. The listening bout was preceded by questionnaires on negative mood, trait anger and empathy and followed by questionnaires on the reality of the cry sound, positive and negative emotions, soothing strategies, coping strategies and urges to comfort and flee. Individual frustration trajectories were modelled parametrically and characterized by frustration maximum, rate of rise, inflections and harmonicity parameters. As hypothesized, the modal response was of gradually increasing frustration throughout. However, there were marked individual differences in frustration trajectories. Negative mood, trait anger and empathy did not predict modal or modelled individual trajectories. However, frustration responses were significantly related to post-listening emotions and behavioural ratings. In particular, prolonged crying generated highly ambivalent positive and negative emotional responses. In summary, maternal frustration generally increased as the crying bout progressed; however, frustration trajectories were highly individual and emotional responses were highly ambivalent in terms of positive and negative emotions generated. Some emotional and behavioural responses were associated with specific trajectory parameters of frustration responses. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. The 8th International Conference on Highly Frustrated Magnetism (HFM 2016)

    Science.gov (United States)

    Gardner, J. S.; Kao, Y. J.

    2017-04-01

    The 8th International Conference on Highly Frustrated Magnetism 2016 (HFM 2016) took place between the 7th and 11th of September 2016 at the GIS Convention Center at National Taiwan University, Taipei, Taiwan. Over 260 participants from all over the world, attended the meeting making it the largest HFM to-date and revealing the impressive growth in the community since the original meeting in Waterloo, Canada where 80 participants attended. Preceding the meeting a school was held at the National Synchrotron Radiation Research Center to help those new to the field understand the material they were likely to see at HFM2016. Our thanks to the international speakers who attended this school John Chalker, Michel Kenzelmann, Philippe Mendels, Luigi Paolasini, Kirrily Rule, Yixi Su, Isao Watanabe and those from Taiwan W. T. Chen, Y-J, Kao, L. J. Chang and C. S. Ku, for their enlightening presentations. The HFM 2016 conference consisted of five plenary talks by H Takagi, B D Gaulin, L Balents, Y Tokura and S T Bramwell, 20 invited and 40 contributed presentations, and about 160 poster presentations from all aspects of theoretical and experimental frustrated magnetism. During the conference period, many stimulating discussions were held both inside and outside the conference room. Excursions to Taipei 101 and the National Palace Museum, as well as several organized dinners and receptions allowed the participants to initiate collaborations and discuss the hottest issues. The subjects covered in the conference included: · Quantum frustrated magnetism and spin liquids · Novel ordering of geometrically frustrated magnets · Frustration effect on the coupling to lattice, orbital and charge degrees of freedom · Exotic phenomena induced by macroscopic degeneracy · Field effect on frustrated magnetism etc. These proceeding represent a very small, but valuable contribution to the community. I hope you enjoy reading them. In view of the rapid growth of the field, it has been

  16. Analyzing the effect of homogeneous frustration in protein folding.

    Science.gov (United States)

    Contessoto, Vinícius G; Lima, Debora T; Oliveira, Ronaldo J; Bruni, Aline T; Chahine, Jorge; Leite, Vitor B P

    2013-10-01

    The energy landscape theory has been an invaluable theoretical framework in the understanding of biological processes such as protein folding, oligomerization, and functional transitions. According to the theory, the energy landscape of protein folding is funneled toward the native state, a conformational state that is consistent with the principle of minimal frustration. It has been accepted that real proteins are selected through natural evolution, satisfying the minimum frustration criterion. However, there is evidence that a low degree of frustration accelerates folding. We examined the interplay between topological and energetic protein frustration. We employed a Cα structure-based model for simulations with a controlled nonspecific energetic frustration added to the potential energy function. Thermodynamics and kinetics of a group of 19 proteins are completely characterized as a function of increasing level of energetic frustration. We observed two well-separated groups of proteins: one group where a little frustration enhances folding rates to an optimal value and another where any energetic frustration slows down folding. Protein energetic frustration regimes and their mechanisms are explained by the role of non-native contact interactions in different folding scenarios. These findings strongly correlate with the protein free-energy folding barrier and the absolute contact order parameters. These computational results are corroborated by principal component analysis and partial least square techniques. One simple theoretical model is proposed as a useful tool for experimentalists to predict the limits of improvements in real proteins. Copyright © 2013 Wiley Periodicals, Inc.

  17. Packing frustration in dense confined fluids.

    Science.gov (United States)

    Nygård, Kim; Sarman, Sten; Kjellander, Roland

    2014-09-07

    Packing frustration for confined fluids, i.e., the incompatibility between the preferred packing of the fluid particles and the packing constraints imposed by the confining surfaces, is studied for a dense hard-sphere fluid confined between planar hard surfaces at short separations. The detailed mechanism for the frustration is investigated via an analysis of the anisotropic pair distributions of the confined fluid, as obtained from integral equation theory for inhomogeneous fluids at pair correlation level within the anisotropic Percus-Yevick approximation. By examining the mean forces that arise from interparticle collisions around the periphery of each particle in the slit, we calculate the principal components of the mean force for the density profile--each component being the sum of collisional forces on a particle's hemisphere facing either surface. The variations of these components with the slit width give rise to rather intricate changes in the layer structure between the surfaces, but, as shown in this paper, the basis of these variations can be easily understood qualitatively and often also semi-quantitatively. It is found that the ordering of the fluid is in essence governed locally by the packing constraints at each single solid-fluid interface. A simple superposition of forces due to the presence of each surface gives surprisingly good estimates of the density profiles, but there remain nontrivial confinement effects that cannot be explained by superposition, most notably the magnitude of the excess adsorption of particles in the slit relative to bulk.

  18. Comparison of mechanical and thermodynamic properties of fcc and bcc titanium under high pressure

    Science.gov (United States)

    Zhang, Yongmei; Zhao, Yuhong; Hou, Hua; Wen, Zhiqin; Duan, Meiling

    2018-02-01

    The mechanical and thermodynamic properties of fcc and bcc Ti have been discussed based on the first-principles calculation combined with the quasi-harmonic Debye model. We find that the bulk modulus B, shear modulus G, Young’s modulus E of fcc Ti are larger, while Poisson’s ratio σ is smaller than that of bcc Ti under the same pressure, which indicates the better mechanical performance of fcc Ti compared with bcc Ti. The values of B/G and σ indicate that mechanically stable fcc structure is much less ductile than the bcc structure, while mechanically metastable fcc structure has better ductility than stable bcc structure under high pressure. The normalized volume, isothermal bulk modulus, heat capacity, volume thermal expansion coefficient and Debye temperature under pressure and temperature for fcc and bcc Ti are predicted.

  19. First-principles study of ternary fcc solution phases from special quasirandom structures

    International Nuclear Information System (INIS)

    Shin Dongwon; Wang Yi; Liu Zikui; Walle, Axel van de

    2007-01-01

    In the present work, ternary special quasirandom structures (SQSs) for a fcc solid solution phase are generated at different compositions, x A =x B =x C =(1/3) and x A =(1/2), x B =x C =(1/4), whose correlation functions are satisfactorily close to those of a random fcc solution. The generated SQSs are used to calculate the mixing enthalpy of the fcc phase in the Ca-Sr-Yb system. It is observed that first-principles calculations of all the binary and ternary SQSs in the Ca-Sr-Yb system exhibit very small local relaxation. It is concluded that the fcc ternary SQSs can provide valuable information about the mixing behavior of the fcc ternary solid solution phase. The SQSs presented in this work can be widely used to study the behavior of ternary fcc solid solutions

  20. Frustrated quantum magnetism in the Kondo lattice on the zigzag ladder

    Science.gov (United States)

    Peschke, Matthias; Rausch, Roman; Potthoff, Michael

    2018-03-01

    The interplay between the Kondo effect, indirect magnetic interaction, and geometrical frustration is studied in the Kondo lattice on the one-dimensional zigzag ladder. Using the density-matrix renormalization group, the ground-state and various short- and long-range spin- and density-correlation functions are calculated for the model at half filling as a function of the antiferromagnetic Kondo interaction down to J =0.3 t , where t is the nearest-neighbor hopping on the zigzag ladder. Geometrical frustration is shown to lead to at least two critical points: Starting from the strong-J limit, where almost local Kondo screening dominates and where the system is a nonmagnetic Kondo insulator, antiferromagnetic correlations between nearest-neighbor and next-nearest-neighbor local spins become stronger and stronger, until at Jcdim≈0.89 t frustration is alleviated by a spontaneous breaking of translational symmetry and a corresponding transition to a dimerized state. This is characterized by antiferromagnetic correlations along the legs and by alternating antiferro- and ferromagnetic correlations on the rungs of the ladder. A mechanism of partial Kondo screening that has been suggested for the Kondo lattice on the two-dimensional triangular lattice is not realized in the one-dimensional case. Furthermore, within the symmetry-broken dimerized state, there is a magnetic transition to a 90∘ quantum spin spiral with quasi-long-range order at Jcmag≈0.84 t . The quantum-critical point is characterized by a closure of the spin gap (with decreasing J ) and a divergence of the spin-correlation length and of the spin-structure factor S (q ) at wave vector q =π /2 . This is opposed to the model on the one-dimensional bipartite chain, which is known to have a finite spin gap for all J >0 at half filling.

  1. Software for Mathematical Modeling of Plastic Deformation in FCC Metals

    Science.gov (United States)

    Petelin, A. E.; Eliseev, A. S.

    2017-08-01

    The question on the necessity of software implementation in the study of plastic deformation in FCC metals with the use of mathematical modeling methods is investigated. This article describes the implementation features and the possibility of using the software Dislocation Dynamics of Crystallographic Slip (DDCS). The software has an advanced user interface and is designed for users without an extensive experience in IT-technologies. Parameter values of the mathematical model, obtained from field experiments and accumulated in a special database, are used in DDCS to carry out computational experiments. Moreover, the software is capable of accumulating bibliographic information used in research.

  2. Optimising A Read Out for A Possible FCC hh Collision

    CERN Document Server

    Alagaraisamy, Revathy

    2017-01-01

    The Future Circular Collider Study (FCC) aims to provide a conceptual design for an accelerator to possibly be constructed in the 2040s-2050s. The most ambitious design proposed is a 100 km-circumference proton-proton collider (FCChh), designed to achieve a centre-of-mass energy of 100 TeV and exceeding . Thus,along with this the precision of the detector is increased via many ways,e.g: calculation and reduction of electronic noise with PCB readout in detector.

  3. Properties of the FCC Catalyst Additive Prepared from Guizhou Kaoline

    Directory of Open Access Journals (Sweden)

    Xianlun Xu

    2006-09-01

    Full Text Available The properties of a FCC catalyst additive prepared from Guizhou kaoline were extensively investigated. The samples were characterized by N2 adsorption, X-ray diffraction, IR spectrometry, and scanning electron microscope (SEM. The results showed that the crystallinity of NaY zeolite synthesized from this kaoline was 25% and the silica alumina ratio was rk/s ˇ m = 5.05. The catalyst additive prepared from above crystallization product exhibited excellent performance of nickel and vanadium passivation, offered 21% lower coke versus base catalyst, while maintaining high bottoms upgrading selectivity.

  4. Beam-beam studies for FCC-hh

    CERN Document Server

    AUTHOR|(CDS)2068329; Pieloni, Tatiana; Buffat, Xavier; Furuseth, Sondre Vik

    2017-01-01

    The Future Circular Collider hadron-hadron (FCC-hh) design study is currently exploring different IR design possibilities including round and flat optics or different crossing schemes. The present study intends to evaluate each scenario from the beam-beam effects point of view. In particular the single particle long term stability to maximize beam lifetimes and luminosity reach is used to quantify the differences. The impact of strong head on interactions on the beam quality and lifetime is addressed by means of GPU accelerated simulations code featuring a weak-strong 6-dimensional beam-beam interaction.

  5. EFFECT OF VANADIUM ON THE DEACTIVATION OF FCC CATALYSTS

    Directory of Open Access Journals (Sweden)

    Roncolatto R.E

    1998-01-01

    Full Text Available This work provides concrete evidence that vanadium causes the destruction of the zeolite in the FCC catalysts by a mechanism of acid attack or solid-solid transformation, as well as additional dealumination of the zeolite framework in the presence of steam and at high temperature. While these effects resulted in the reduction in crystallinity (zeolite Y content, specific area and unit cell size of the Y zeolite as the amount of vanadium in the catalysts increased, the reduction in activity was the most pronounced. The differences in these behaviors were interpreted and the model can be used for better catalyst formulation or screening.

  6. FCC catalyst finds three safe reuse outlets in Europe

    International Nuclear Information System (INIS)

    Schmitt, R.

    1991-01-01

    This paper reports on three usages in the area of construction materials which offer a potential outlet for the reuse of spent fluid catalytic cracking (FCC) catalyst that far exceeds the supply from European refineries. The proximity of the spent catalyst source to the point-of-use is critical because this determines the transportation cost-the major element in the cost of disposal/reuse. This is why a balance geographical spread of reuse outlets throughout Europe is sought. Asphalt, cement, and red bricks containing spent fluid catalytic cracking catalyst, have all passed environmental acceptability tests

  7. Olefin recovery from FCC off-gas can pay off

    International Nuclear Information System (INIS)

    Brahn, M.G.

    1992-01-01

    This paper reports on olefins recovery from refinery FCC offgas streams which offers an attractive cash flow from olefins from a tail-gas stream that has typically been consumed as refinery fuel. Such recovery schemes can be employed in refineries or olefins plants, and can be tailored to fit individual requirements. Mobil Chemical Co. has operated such a dephlegmator-based off-gas recovery unit at its Beaumont, Tex., olefin plant since 1987. It reported that the project was paid out within 11 months of initial start-up

  8. Enhanced propylene production in FCC by novel catalytic materials

    Energy Technology Data Exchange (ETDEWEB)

    Kelkar, C.P.; Harris, D.; Xu, M.; Fu, J. [BASF Catalyst LLC, Iselin, NJ (United States)

    2007-07-01

    Fluid catalytic cracking is expected to increasingly supply the additional incremental requirements for propylene. The most efficient route to increase propylene yield from an FCC unit is through the use of medium pore zeolites such as ZSM-5. ZSM-5 zeolite cracks near linear olefins in the gasoline range to LPG olefins such as propylene and butylenes. This paper will describe catalytic approaches to increase gasoline range olefins and the chemistry of ZSM-5 to crack those olefins. The paper will also describe novel catalytic materials designed to increase propylene. (orig.)

  9. Single beam collective effects in FCC-ee due to beam coupling impedance

    CERN Document Server

    Belli, Eleonora; Persichelli, Serena; Zobov, Mikhail

    2016-01-01

    The Future Circular Collider study, hosted by CERN to design post-LHC particle accelerator options in a worldwide context, is focused on proton-proton high-energy and electron-positron high-luminosity frontier machines. This new accelerator complex represents a great challenge under several aspects, which involve R&D on beam dynamics and new technologies. One very critical point in this context is represented by collective effects, generated by the interaction of the beam with self-induced electromagnetic fields, called wake fields, which could produce beam instabilities, thus reducing the machines performance and limiting the maximum stored current. It is therefore very important to be able to predict these effects and to study in detail potential solutions to counteract them. In this paper the resistive wall and some other important geometrical sources of impedance for the FCC electron-positron accelerator are identified and evaluated, and their impact on the beam dynamics, which in some cases could lea...

  10. Single beam collective effects in FCC-ee due to beam coupling impedance

    CERN Document Server

    Belli, Eleonora

    2016-01-01

    The Future Circular Collider study, hosted by CERN to design post-LHC particle accelerator options in a worldwide context, is focused on proton-proton high-energy and electron-positron high-luminosity frontier machines. This new accelerator complex represents a great challenge under several aspects, which involve R&D on beam dynamics and new technologies. One very critical point in this context is represented by collective effects, generated by the interaction of the beam with self-induced electromagnetic fields, called wake fields, which could produce beam instabilities, thus reducing the machines performance and limiting the maximum stored current. It is therefore very important to be able to predict these effects and to study in detail potential solutions to counteract them. In this paper the resistive wall and some other important geometrical sources of impedance for the FCC electron-positron accelera- tor are identified and evaluated, and their impact on the beam dynamics, which in some cases could l...

  11. Nonlinear Conductivity of Geometrically Frustrated Iridate Ca5Ir3O12

    Science.gov (United States)

    Matsuhira, Kazuyuki; Nakamura, Kazuma; Yasukuni, Yuki; Yoshimoto, Yoshihide; Hirai, Daigorou; Hiroi, Zenji

    2018-01-01

    We report the discovery of nonlinear conductivity along the c-axis in a single crystal of Ca5Ir3O12, which indicates a semiconducting behavior with a narrow band gap of ˜0.2 eV. The resistivity decreases with increase in the applied current. This nonlinearity is reversible with the direction of current. We also show the ab initio density functional band structures and the Fermi surface. We found that the spin-orbit interactions result in an appreciable change in the low-energy electronic structure; the interaction splits the metallic bands and leads to a pocket-like band structure, thus reducing the metallic trend. The size of the spin-orbit interaction is estimated as ˜0.3 eV, which is large enough to be comparable to the valence bandwidth of ˜0.5 eV. The Fermi surface exhibits a sheet structure along the c*-axis, due to the 1D chain structure of edge-sharing IrO6.

  12. Large magnetocaloric effect in geometrically frustrated polycrystalline ErMnO3 compound at cryogenic temperature

    Science.gov (United States)

    Das, Kalipada; Banik, Sanjib; Das, I.

    2018-03-01

    In this manuscript we report significantly large magnetocaloric effect in the cryogenic temperature region for the chemically stable polycrystalline ErMnO3 compound. For this compound, the antiferromagnetic transition temperature of the Mn3+ ions is nearly T ∼ 75 K. However, the large non saturating magnetization and magnetocaloric effect are found at a temperature lower than 20 K. Such non saturating nature of magnetization and magnetic entropy changes for the application of external magnetic field is addressed by considering the gradual alignments of dominant paramagnetic moments caused by Er3+ ions.

  13. Are Online Learners Frustrated with Collaborative Learning Experiences?

    Science.gov (United States)

    Capdeferro, Neus; Romero, Margarida

    2012-01-01

    Online education increasingly puts emphasis on collaborative learning methods. Despite the pedagogical advantages of collaborative learning, online learners can perceive collaborative learning activities as frustrating experiences. The purpose of this study was to characterize the feelings of frustration as a negative emotion among online learners…

  14. Occupational frustration variables of the librarians in public ...

    African Journals Online (AJOL)

    Frustrations abound in virtually all human engagements and professions, library and information services inclusive. Consequently, this study employed a survey research method to investigate the incidence of occupational frustration variables among librarians in the public owned university in South-West Nigeria, thirteen ...

  15. Precision Electroweak measurements at the FCC-ee

    CERN Document Server

    Dam, Mogens

    2016-01-01

    Because of a luminosity of up to five orders of magnitude larger than at LEP, electroweak precision measurements at the FCC-ee -- the Future Circular Collider with electron-positron beams -- would provide improvements by orders of magnitude over the present status and constitute a broad search for the existence of new, weakly interacting particles up to very high energy scales. The FCC-ee will address centre-of-mass energies ranging from below the Z pole to the $\\mathrm{t\\bar{t}}$ threshold and above. At energies around the Z pole, the Z-boson mass and width can be measured to better than 100 keV each. Asymmetry measurements at the Z pole allow improvements in the determination of the weak mixing angle by at least a factor 30 to $\\delta\\sin^2\\theta\\mathrm{_W^{eff}}\\simeq 6\\times 10^{-6}$. A determination of the electromagnetic coupling constant at the Z energy scale, $\\alpha_\\mathrm{QED}(m_\\mathrm{Z}^2)$, to a relative precision of $3\\times 10^{-5}$ can be obtained via measurement of the forward-backward asym...

  16. Iron Contamination Mechanism and Reaction Performance Research on FCC Catalyst

    Directory of Open Access Journals (Sweden)

    Zhaoyong Liu

    2015-01-01

    Full Text Available FCC (Fluid Catalytic Cracking catalyst iron poisoning would not only influence units’ product slate; when the poisoning is serious, it could also jeopardize FCC catalysts’ fluidization in reaction-regeneration system and further cause bad influences on units’ stable operation. Under catalytic cracking reaction conditions, large amount of iron nanonodules is formed on the seriously iron contaminated catalyst due to exothermic reaction. These nodules intensify the attrition between catalyst particles and generate plenty of fines which severely influence units’ smooth running. A dense layer could be formed on the catalysts’ surface after iron contamination and the dense layer stops reactants to diffuse to inner structures of catalyst. This causes extremely negative effects on catalyst’s heavy oil conversion ability and could greatly cut down gasoline yield while increasing yields of dry gas, coke, and slurry largely. Research shows that catalyst’s reaction performance would be severely deteriorated when iron content in E-cat (equilibrium catalyst exceeds 8000 μg/g.

  17. Iron Contamination Mechanism and Reaction Performance Research on FCC Catalyst

    International Nuclear Information System (INIS)

    Liu, Z.; Zhang, Z.; Yang, C.; Liu, Z.; Zhang, Z.; Liu, P.; Zhai, J.

    2015-01-01

    FCC (Fluid Catalytic Cracking) catalyst iron poisoning would not only influence units’ product slate; when the poisoning is serious, it could also jeopardize FCC catalysts’ fluidization in reaction-regeneration system and further cause bad influences on units’ stable operation. Under catalytic cracking reaction conditions, large amount of iron nano nodules is formed on the seriously iron contaminated catalyst due to exothermic reaction. These nodules intensify the attrition between catalyst particles and generate plenty of fines which severely influence units’ smooth running. A dense layer could be formed on the catalysts’ surface after iron contamination and the dense layer stops reactants to diffuse to inner structures of catalyst. This causes extremely negative effects on catalyst’s heavy oil conversion ability and could greatly cut down gasoline yield while increasing yields of dry gas, coke, and slurry largely. Research shows that catalyst’s reaction performance would be severely deteriorated when iron content in E-cat (equilibrium catalyst) exceeds 8000 μg/g.

  18. Geometric Dimensioning Sentence Structure.

    Science.gov (United States)

    McCuistion, Patrick J.

    1991-01-01

    Explanations of geometric dimensioning symbols are provided to assist in the comprehension of the implied basic sentence structure of modern geometric dimensioning and tolerance. The proper identification and interpretation of the substantive language within several exemplary engineering drawings, otherwise called feature control frames, is…

  19. Evidence supporting need satisfaction and frustration as two distinguishable constructs.

    Science.gov (United States)

    Longo, Ylenio; Alcaraz-Ibáñez, Manuel; Sicilia, Alvaro

    2018-02-01

    This paper aims to (1) investigate whether psychological need satisfaction and frustration are distinguishable constructs or part of a single continuum, and (2) to develop and validate the Spanish version of the Need Satisfaction and Frustration Scale (NSFS). Confirmatory factor analysis (CFA) and exploratory structural equation models (ESEM) were tested using three samples ( N total = 959). In all samples, a CFA model specifying satisfaction and frustration of each psychological need as distinguishable constructs fit the data better than models specifying them as part of a continuum, even after including method corrections (CFA) or cross-loadings (ESEM). Scale score reliabilities were adequate only when the satisfaction and frustration of each need were treated as distinguishable constructs. The paper provides strong support for specifying need satisfaction and frustration as distinguishable but correlated constructs, as well as adequate evidence of dimensionality, reliability and criterion validity for the Spanish version of the NSFS.

  20. Highly macroscopically degenerated single-point ground states as source of specific heat capacity anomalies in magnetic frustrated systems

    Science.gov (United States)

    Jurčišinová, E.; Jurčišin, M.

    2018-04-01

    Anomalies of the specific heat capacity are investigated in the framework of the exactly solvable antiferromagnetic spin- 1 / 2 Ising model in the external magnetic field on the geometrically frustrated tetrahedron recursive lattice. It is shown that the Schottky-type anomaly in the behavior of the specific heat capacity is related to the existence of unique highly macroscopically degenerated single-point ground states which are formed on the borders between neighboring plateau-like ground states. It is also shown that the very existence of these single-point ground states with large residual entropies predicts the appearance of another anomaly in the behavior of the specific heat capacity for low temperatures, namely, the field-induced double-peak structure, which exists, and should be observed experimentally, along with the Schottky-type anomaly in various frustrated magnetic system.

  1. On Campus Web-Monitoring Rules, Colleges and the FCC Have a Bad Connection

    Science.gov (United States)

    Hartle, Terry W.

    2006-01-01

    A regulation issued by the US Federal Communications Commission (FCC) requires facilities-based Internet services providers who operate their own equipment, including colleges, to make their Internet systems compliant with a statute known as the Communications Assistance for Law Enforcement Act (Calea) by April 2007. However, the FCC does not…

  2. Shrink, twist, ripple and melt: Studies of frustrated liquid crystals

    Science.gov (United States)

    Fernsler, Jonathan G.

    Complex structures can arise out of a simple system with more than one competing influence on its behavior. The protypical example of this is the two-dimensional triangular lattice Ising model. The ferromagnetic model has two simple degenerate ground states of all spins up or down, but the antiferromagnetic model is a frustrated system. Its geometry does not allow satisfaction of the antiferro condition everywhere, which produces complex ordered structures with dimerization of the spins [1]. Without frustration, the complex structures and phase behavior are lost. All of the topics discussed in this thesis concern smectic liquid crystals. Liquid crystals are perhaps uniquely adept at manifesting frustrated phases. Their combination of periodicity in one or more dimensions allows ordered structures, yet their fluid nature in remaining dimensions allows creation of defects and extraordinarily complex structures in ways that a normal crystal could not tolerate. Liquid crystals contain a huge menagerie of frustrated phases and effects including the polarization modulated [2], vortex lattice [3], twist grain boundary [4], and blue [5] phases, as well as frustrated structures such as cholesteric or SmC* helix unwinding [6], defect lattices in thin films [7], and bend melted grain boundary defects [8], arising from boundary conditions and field effects. In this thesis, we study four liquid crystal systems that show unusual phase behavior or complex structures, deriving from the effects of frustration. Frustration, despite some human prejudices against the word, leaves nature all the more interesting and beautiful.

  3. The FCC process as a producer of light olefins

    International Nuclear Information System (INIS)

    Yung, K.Y.; Yanik, S.; O'Connor, P.; Pouwels, C.

    1992-01-01

    To reduce emissions from the gasoline engine, aromatics content and vapor pressure of the motor gasoline pool will be reduced and a minimum amount of oxygen will be mandated. This reformulation will limit the application of high octane components like benzene, toluene and butanes and will require the use of oxygenates. To compensate for the loss in octane, the use of alkylate and, of course also oxygenates will grow. The Fluid Catalytic Cracking Unit is, as producer of (olefinic) propanes, butanes and pentanes, an important feedstock producer for alkylate and oxygenate producing process. Hence, process adjustments and FCC catalyst formations to increase the yield of above desirable light products are of prime importance and will be dealt with in this paper

  4. Lattice mechanical properties of some fcc f-shell metals

    International Nuclear Information System (INIS)

    Baria, J.K.; Jani, A.R.

    2003-01-01

    A pseudopotential depending on an effective core radius is proposed to study the binding energy, equation of state, ion-ion interaction, phonon dispersion curves (q-space and r-space analysis), mode Grueneisen parameters and dynamical elastic constants of some fcc f-shell metals La, Yb, Ce and Th. The contribution of the s-like electrons is calculated in the second-order perturbation theory for the potential while d- and f-like electron is taken into account by introducing repulsive short-range Born-Mayer term. The parameter of the potential is evaluated by zero pressure condition. An excellent agreement between theoretical investigations and experimental findings is achieved which confirms the present formalism. (author)

  5. Calculation of the surface free energy of fcc copper nanoparticles

    International Nuclear Information System (INIS)

    Jia Ming; Lai Yanqing; Tian Zhongliang; Liu Yexiang

    2009-01-01

    Using molecular dynamics simulations with the modified analytic embedded-atom method we calculate the Gibbs free energy and surface free energy for fcc Cu bulk, and further obtain the Gibbs free energy of nanoparticles. Based on the Gibbs free energy of nanoparticles, we have investigated the heat capacity of copper nanoparticles. Calculation results indicate that the Gibbs free energy and the heat capacity of nanoparticles can be divided into two parts: bulk quantity and surface quantity. The molar heat capacity of the bulk sample is lower compared with the molar heat capacity of nanoparticles, and this difference increases with the decrease in the particle size. It is also observed that the size effect on the thermodynamic properties of Cu nanoparticles is not really significant until the particle is less than about 20 nm. It is the surface atoms that decide the size effect on the thermodynamic properties of nanoparticles

  6. The FCC-ee Interaction Region Magnet Design

    CERN Document Server

    Koratzinos, Michael; Blondel, Alain; Bogomyagkov, Anton; Holzer, Bernhard; Oide, Katsunobu; Sinyatkin, Sergey; Zimmermann, Frank; van Nugteren, Jeroen

    2016-01-01

    The design of the region close to the interaction point of the FCC-ee experiments is especially challenging. The beams collide at an angle (+-15 mrad) in the high-field region of the detector solenoid. Moreover, the very low vertical beta_y* of the machine necessitates that the final focusing quadrupoles have a distance from the IP (L*) of around 2 m and therefore are inside the main detector solenoid. The beams should be screened from the effect of the detector magnetic field, and the emittance blow-up due to vertical dispersion in the interaction region should be minimized, while leaving enough space for detector components. Crosstalk between the two final focus quadrupoles, only about 6 cm apart at the tip, should also be minimized.

  7. Neural mechanisms of frustration in chronically irritable children.

    Science.gov (United States)

    Deveney, Christen M; Connolly, Megan E; Haring, Catherine T; Bones, Brian L; Reynolds, Richard C; Kim, Pilyoung; Pine, Daniel S; Leibenluft, Ellen

    2013-10-01

    Irritability is common in children and adolescents and is the cardinal symptom of disruptive mood dysregulation disorder, a new DSM-5 disorder, yet its neural correlates remain largely unexplored. The authors conducted a functional MRI study to examine neural responses to frustration in children with severe mood dysregulation. The authors compared emotional responses, behavior, and neural activity between 19 severely irritable children (operationalized using criteria for severe mood dysregulation) and 23 healthy comparison children during a cued-attention task completed under nonfrustrating and frustrating conditions. Children in both the severe mood dysregulation and the healthy comparison groups reported increased frustration and exhibited decreased ability to shift spatial attention during the frustration condition relative to the nonfrustration condition. However, these effects of frustration were more marked in the severe mood dysregulation group than in the comparison group. During the frustration condition, participants in the severe mood dysregulation group exhibited deactivation of the left amygdala, the left and right striatum, the parietal cortex, and the posterior cingulate on negative feedback trials, relative to the comparison group (i.e., between-group effect) and to the severe mood dysregulation group's responses on positive feedback trials (i.e., within-group effect). In contrast, neural response to positive feedback during the frustration condition did not differ between groups. In response to negative feedback received in the context of frustration, children with severe, chronic irritability showed abnormally reduced activation in regions implicated in emotion, attention, and reward processing. Frustration appears to reduce attention flexibility, particularly in severely irritable children, which may contribute to emotion regulation deficits in this population. Further research is needed to relate these findings to irritability specifically

  8. Neural Mechanisms of Frustration in Chronically Irritable Children

    Science.gov (United States)

    Deveney, Christen M.; Connolly, Megan E.; Haring, Catherine T.; Bones, Brian L.; Reynolds, Richard C.; Kim, Pilyoung; Pine, Daniel S.; Leibenluft, Ellen

    2014-01-01

    Objective Irritability is common in children and adolescents and is the cardinal symptom of disruptive mood dysregulation disorder, a new DSM-5 disorder, yet its neural correlates remain largely unexplored. The authors conducted a functional MRI study to examine neural responses to frustration in children with severe mood dysregulation. Method The authors compared emotional responses, behavior, and neural activity between 19 severely irritable children (operationalized using criteria for severe mood dysregulation) and 23 healthy comparison children during a cued-attention task completed under nonfrustrating and frustrating conditions. Results Children in both the severe mood dysregulation and the healthy comparison groups reported increased frustration and exhibited decreased ability to shift spatial attention during the frustration condition relative to the nonfrustration condition. However, these effects of frustration were more marked in the severe mood dysregulation group than in the comparison group. During the frustration condition, participants in the severe mood dysregulation group exhibited deactivation of the left amygdala, the left and right striatum, the parietal cortex, and the posterior cingulate on negative feedback trials, relative to the comparison group (i.e., between-group effect) and to the severe mood dysregulation group’s responses on positive feedback trials (i.e., within-group effect). In contrast, neural response to positive feedback during the frustration condition did not differ between groups. Conclusions In response to negative feedback received in the context of frustration, children with severe, chronic irritability showed abnormally reduced activation in regions implicated in emotion, attention, and reward processing. Frustration appears to reduce attention flexibility, particularly in severely irritable children, which may contribute to emotion regulation deficits in this population. Further research is needed to relate these

  9. Geometric and engineering drawing

    CERN Document Server

    Morling, K

    2010-01-01

    The new edition of this successful text describes all the geometric instructions and engineering drawing information that are likely to be needed by anyone preparing or interpreting drawings or designs with plenty of exercises to practice these principles.

  10. Geometric ghosts and unitarity

    International Nuclear Information System (INIS)

    Ne'eman, Y.

    1980-09-01

    A review is given of the geometrical identification of the renormalization ghosts and the resulting derivation of Unitarity equations (BRST) for various gauges: Yang-Mills, Kalb-Ramond, and Soft-Group-Manifold

  11. Differential geometric structures

    CERN Document Server

    Poor, Walter A

    2007-01-01

    This introductory text defines geometric structure by specifying parallel transport in an appropriate fiber bundle and focusing on simplest cases of linear parallel transport in a vector bundle. 1981 edition.

  12. Lattice dynamics of fcc helium at high pressure

    International Nuclear Information System (INIS)

    Eckert, J.; Thomlinson, W.; Shirane, G.

    1977-01-01

    The neutron-inelastic-scattering technique was used to measure the phonon dispersion relations in a high-density crystal of fcc He at 38 K. The crystal was grown at a pressure of 4.93 kbar and a temperature of 38.5 K in a high-pressure sample holder. Its lattice parameter was determined to be 3.915 +- 0.002 A, equivalent to a molar volume of 9.03 cm 3 /mol. The measured dispersion curves were found to be in good agreement with a recent calculation by Goldman using the first-order self-consistent phonon theory without short-range correlation functions. The strong anharmonic effects observed in earlier measurements on the crystals of 21 cm 3 /mol were found to be much less prominent in this He crystal. The magnitude of the multiphonon interference effects on the one-phonon intensities is shown to be less than half of that observed in the low-density crystals. Thermodynamic analysis of the data yielded THETA/sup M//sub D/ = 154 K which indicates that the ratio of mean amplitude of vibration to the nearest-neighbor distance is 8.6%, as opposed to nearly 30% for the lowest-density He crystals. The dependence of the phonon energies on volume is discussed with reference to the earlier work of Traylor et al. on an fcc crystal at 11.7 cm 3 /mol. Limited measurements were also made at 22 K to determine the temperature dependence of the phonon energies. Unusually large isochoric temperature shifts of as much as 15% for some phonons close to the zone center were found over the range of 22--38 K

  13. Spin stiffness of frustrated Heisenberg antiferromagnets: Finite size scaling

    International Nuclear Information System (INIS)

    Feiguin, A.E.; Gazza, C.J.; Trumper, A.E.

    1995-07-01

    We calculate the spin stiffness of the S = 1/2 frustrated Heisenberg antiferromagnet on finite square lattices by means of the Schwinger - boson approach. COmparison with recent exact numerical results reveals that the observed lack of scaling with lattice size for intermediate to large frustration cannot be taken as an indication of absence of Neel order. This lack of scaling is already apparent for small frustration and is a finite lattice effect. Our results also indicate that the expected behaviour is regained for larger lattices than those considered in numerical studies. (author). 18 refs, 2 figs

  14. Cellular Phone Towers, FCC registered communications towers. Points were generated from FCC data latlong. Originally created as a basis of comparison for Appraiser's cell tower points, bu comparison was inconclusive. Represented all registered FCC sites as of 6/26/2003. No, Published in 2003, 1:1200 (1in=100ft) scale, Sedgwick County Government.

    Data.gov (United States)

    NSGIC Local Govt | GIS Inventory — Cellular Phone Towers dataset current as of 2003. FCC registered communications towers. Points were generated from FCC data latlong. Originally created as a basis of...

  15. Aluminium Diphosphamethanides: Hidden Frustrated Lewis Pairs.

    Science.gov (United States)

    Styra, Steffen; Radius, Michael; Moos, Eric; Bihlmeier, Angela; Breher, Frank

    2016-07-04

    The synthesis and characterisation of two aluminium diphosphamethanide complexes, [Al(tBu)2 {κ(2) P,P'-Mes*PCHPMes*}] (3) and [Al(C6 F5 )2 {κ(2) P,P'-Mes*PCHPMes*}] (4), and the silylated analogue, Mes*PCHP(SiMe3 )Mes* (5), are reported. The aluminium complexes feature four-membered PCPAl core structures consisting of diphosphaallyl ligands. The silylated phosphine 5 was found to be a valuable precursor for the synthesis of 4 as it cleanly reacts with the diaryl aluminium chloride [(C6 F5 )2 AlCl]2 . The aluminium complex 3 reacts with molecular dihydrogen at room temperature under formation of the acyclic σ(2) λ(3) ,σ(3) λ(3) -diphosphine Mes*PCHP(H)Mes* and the corresponding dialkyl aluminium hydride [tBu2 AlH]3 . Thus, 3 belongs to the family of so-called hidden frustrated Lewis pairs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Complexation of Nitrous Oxide by Frustrated Lewis Pairs

    NARCIS (Netherlands)

    Otten, Edwin; Neu, Rebecca C.; Stephan, Douglas W.

    2009-01-01

    Frustrated Lewis pairs comprised of a basic yet sterically encumbered phosphine with boron Lewis acids bind nitrous oxide to give intact PNNOB linkages. The synthesis, structure, and bonding of these species are described.

  17. Acceptance of disability: determinants of overcoming social frustration.

    Science.gov (United States)

    Morozova, Elena Valeryevna; Shmeleva, Svetlana Vasilyevna; Sorokoumova, Elena Aleksandrovna; Nikishina, Vera Borisovna; Abdalina, Larisa Vasilyevna

    2015-01-25

    The article is devoted to the subjective reaction of patients at different stages of disabling disease, in the context of the formation of a specific cognitive-emotional and motivational model of "internal picture of disability", depending on the severity of social frustration as the most important deconditioning factor. We wanted to identify psychological determinant of the specificity of adaptive activity of the patient to the situation disabling disease, depending on the level of increase social frustration. Nature of adaptation to the disabling disease depending on the level of increase social frustration expressed by: 1) decrease in self-esteem of patient self-efficacy with an increase in subjective experience of disability; 2) the growing tension of personal protective mechanisms; 3) reductions coping competence, which, depending on the rise of frustration, becomes effective instead of the rational-intelligent, more maladaptive emotional.

  18. Acceptance of Disability: Determinants of Overcoming Social Frustration

    Science.gov (United States)

    Morozova, Elena Valeryevna; Shmeleva, Svetlana Vasilyevna; Sorokoumova, Elena Aleksandrovna; Nikishina, Vera Borisovna; Abdalina, Larisa Vasilyevna

    2015-01-01

    The article is devoted to the subjective reaction of patients at different stages of disabling disease, in the context of the formation of a specific cognitive-emotional and motivational model of “internal picture of disability”, depending on the severity of social frustration as the most important deconditioning factor. We wanted to identify psychological determinant of the specificity of adaptive activity of the patient to the situation disabling disease, depending on the level of increase social frustration. Nature of adaptation to the disabling disease depending on the level of increase social frustration expressed by: 1) decrease in self-esteem of patient self-efficacy with an increase in subjective experience of disability; 2) the growing tension of personal protective mechanisms; 3) reductions coping competence, which, depending on the rise of frustration, becomes effective instead of the rational-intelligent, more maladaptive emotional. PMID:25948469

  19. Low Tolerance for Frustration: Target Group for Reading Disabilities

    Science.gov (United States)

    Orlow, Maria

    1974-01-01

    Presents findings which can aid in the prevention and remediation of reading disabilities in children who have a low tolerance for frustration, many of whom often become acute reading disability cases. (TO)

  20. Ab initio lattice stability of fcc and hcp Fe-Mn random alloys

    International Nuclear Information System (INIS)

    Gebhardt, T; Music, D; Hallstedt, B; Schneider, J M; Ekholm, M; Abrikosov, I A; Vitos, L

    2010-01-01

    We have studied the lattice stability of face centred cubic (fcc) versus hexagonal close packed (hcp) Fe-Mn random alloys using ab initio calculations. In the calculations we considered the antiferromagnetic order of local moments, which for fcc alloys models the magnetic configuration of this phase at room temperature (below its Neel temperature) as well as their complete disorder, corresponding to paramagnetic fcc and hcp alloys. For both cases, the results are consistent with our thermodynamic calculations, obtained within the Calphad approach. For the room temperature magnetic configuration, the cross-over of the total energies of the hcp phase and the fcc phase of Fe-Mn alloys is at the expected Mn content, whereas for the magnetic configuration above the fcc Neel temperature, the hcp lattice is more stable within the whole composition range studied. The increase of the total energy difference between hcp and antiferromagnetic fcc due to additions of Mn as well as the stabilizing effect of antiferromagnetic ordering on the fcc phase are well displayed. These results are of relevance for understanding the deformation mechanisms of these random alloys.

  1. Relieving the frustration through M n3 + substitution in holmium gallium garnet

    Science.gov (United States)

    Mukherjee, Paromita; Glass, Hugh F. J.; Suard, Emmanuelle; Dutton, Siân E.

    2017-10-01

    We present a Rapid Communication on the impact of M n3 + substitution in the geometrically frustrated Ising garnet H o3G a5O12 using bulk magnetic measurements and low-temperature powder neutron diffraction. We find that the transition temperature TN=5.8 K for H o3MnG a4O12 is raised by a factor of almost 20 when compared to H o3G a5O12 . Powder neutron diffraction on H o3M nxG a5 -xO12 (x =0.5 ,1 ) below TN shows the formation of a long-range-ordered state with k =(0 ,0 ,0 ) . H o3 + spins are aligned antiferromagnetically along the six crystallographic axes with no resultant moment, whereas the M n3 + spins are oriented along the body diagonals such that there is a net moment along [111]. The magnetic structure can be visualized as ten-membered rings of corner-sharing triangles of H o3 + spins with the M n3 + spins ferromagnetically coupled to each individual H o3 + spin in the triangle. Substitution of M n3 + completely relieves the magnetic frustration with f =θCW/TN˜1.1 for H o3MnG a4O12 .

  2. The neural signature of escalating frustration in humans.

    Science.gov (United States)

    Yu, Rongjun; Mobbs, Dean; Seymour, Ben; Rowe, James B; Calder, Andrew J

    2014-05-01

    Mammalian studies show that frustration is experienced when goal-directed activity is blocked. Despite frustration's strongly negative role in health, aggression and social relationships, the neural mechanisms are not well understood. To address this we developed a task in which participants were blocked from obtaining a reward, an established method of producing frustration. Levels of experienced frustration were parametrically varied by manipulating the participants' motivation to obtain the reward prior to blocking. This was achieved by varying the participants' proximity to a reward and the amount of effort expended in attempting to acquire it. In experiment 1, we confirmed that proximity and expended effort independently enhanced participants' self-reported desire to obtain the reward, and their self-reported frustration and response vigor (key-press force) following blocking. In experiment 2, we used functional magnetic resonance imaging (fMRI) to show that both proximity and expended effort modulated brain responses to blocked reward in regions implicated in animal models of reactive aggression, including the amygdala, midbrain periaqueductal grey (PAG), insula and prefrontal cortex. Our findings suggest that frustration may serve an energizing function, translating unfulfilled motivation into aggressive-like surges via a cortical, amygdala and PAG network. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Rigorous proof for the nonlocal correlation function in the transverse Ising model with ring frustration

    Science.gov (United States)

    Dong, Jian-Jun; Zheng, Zhen-Yu; Li, Peng

    2018-01-01

    An unusual correlation function was conjectured by Campostrini et al. [Phys. Rev. E 91, 042123 (2015), 10.1103/PhysRevE.91.042123] for the ground state of a transverse Ising chain with geometrical frustration. Later, we provided a rigorous proof for it and demonstrated its nonlocal nature based on an evaluation of a Toeplitz determinant in the thermodynamic limit [J. Stat. Mech. (2016) 113102, 10.1088/1742-5468/2016/11/113102]. In this paper, we further prove that all the low excited energy states forming the gapless kink phase share the same asymptotic correlation function with the ground state. As a consequence, the thermal correlation function almost remains constant at low temperatures if one assumes a canonical ensemble.

  4. Emergent criticality and Friedan scaling in a two-dimensional frustrated Heisenberg antiferromagnet

    Science.gov (United States)

    Orth, Peter P.; Chandra, Premala; Coleman, Piers; Schmalian, Jörg

    2014-03-01

    We study a two-dimensional frustrated Heisenberg antiferromagnet on the windmill lattice consisting of triangular and dual honeycomb lattice sites. In the classical ground state, the spins on different sublattices are decoupled, but quantum and thermal fluctuations drive the system into a coplanar state via an "order from disorder" mechanism. We obtain the finite temperature phase diagram using renormalization group approaches. In the coplanar regime, the relative U(1) phase between the spins on the two sublattices decouples from the remaining degrees of freedom, and is described by a six-state clock model with an emergent critical phase. At lower temperatures, the system enters a Z6 broken phase with long-range phase correlations. We derive these results by two distinct renormalization group approaches to two-dimensional magnetism: Wilson-Polyakov scaling and Friedan's geometric approach to nonlinear sigma models where the scaling of the spin stiffnesses is governed by the Ricci flow of a 4D metric tensor.

  5. Geometrical optical illusionists.

    Science.gov (United States)

    Wade, Nicholas J

    2014-01-01

    Geometrical optical illusions were given this title by Oppel in 1855. Variants on such small distortions of visual space were illustrated thereafter, many of which bear the names of those who first described them. Some original forms of the geometrical optical illusions are shown together with 'perceptual portraits' of those who described them. These include: Roget, Chevreul, Fick, Zöllner, Poggendorff, Hering, Kundt, Delboeuf Mach, Helmholtz, Hermann, von Bezold, Müller-Lyer, Lipps, Thiéry, Wundt, Münsterberg, Ebbinghaus, Titchener, Ponzo, Luckiesh, Sander, Ehrenstein, Gregory, Heard, White, Shepard, and. Lingelbach. The illusions are grouped under the headings of orientation, size, the combination of size and orientation, and contrast. Early theories of illusions, before geometrical optical illusions were so named, are mentioned briefly.

  6. Attrition resistant catalysts and sorbents based on heavy metal poisoned FCC catalysts

    Science.gov (United States)

    Gangwal, Santosh; Jothimurugesan, Kandaswamy

    1999-01-01

    A heavy metal poisoned, spent FCC catalyst is treated by chemically impregnating the poisoned catalyst with a new catalytic metal or metal salt to provide an attrition resistant catalyst or sorbent for a different catalytic or absorption processes, such as catalysts for Fischer-Tropsh Synthesis, and sorbents for removal of sulfur gasses from fuel gases and flue-gases. The heavy metal contaminated FCC catalyst is directly used as a support for preparing catalysts having new catalytic properties and sorbents having new sorbent properties, without removing or "passivating" the heavy metals on the spent FCC catalyst as an intermediate step.

  7. Using spent fluid catalytic cracking (FCC catalyst as pozzolanic addition — a review

    Directory of Open Access Journals (Sweden)

    Nancy Torres Castellanos

    2010-05-01

    Full Text Available Spent fluid catalytic cracking (FCC catalyst is an oil industry by product from fluidised-bed catalytic cracking units. This residue is mainly formed by an active component (faujasite type zeolite Y in an amorphous aluminosilicate matrix. It mainly consists of up to 90% silica and alumina. This paper reports an extensive literature review regarding the characterisation and mechanical and durability properties of mortar and concrete added to this material. FCC has been studied lately due to its pozzolanic characteristics and the good performance of concrete mixtures using FCC as cement replacement.

  8. Scenario for Precision Beam Energy Calibration in FCC-ee

    CERN Document Server

    Koop, I A

    2015-01-01

    The resonance depolarization method was very successfully used in the experiments at LEP, where the mass of the Z-boson was determined with the relative uncertainty [1, 2]. In the future FCC-ee circular electron-positron collider the luminosity at Z-peak (beam energy 45.5 GeV) is expected be 4-5 orders of magnitude higher and one goal is to perform the same experiments as at LEP, but with much greater accuracy, approaching the level of [3]. Obviously this can be done only by measuring the spin precession frequency. But there are many problems which still need to be solved on the way towards a complete design. The first one: the self-polarization takes too long a time. The Sokolov-Ternov polarization time is about 250 hours at Z-peak. One approach is to install the special field-asymmetric polarizing wigglers to make the self-polarization time much shorter [4, 5] and to utilize only few percent of the polarization degree to measure the resonance spin precession frequency. But these very strong wigglers substan...

  9. On the dynamic tensile strength of an FCC metal

    Science.gov (United States)

    Bourne, Neil; Jones, David; Fensin, Saryu; Trujillo, Carl; Martinez, Daniel; Gray, George T., III

    2017-06-01

    The tensile response of polycrystalline metals is often accompanied by the formation of pores within the structure of the material. This large deformation process is broadly identified as progressive with nucleation, growth, coalescence, and failure the physical path taken over very short periods of time. These are well known to be complex processes strongly influenced by microstructure, loading path, and the loading profile, which remains a significant challenge to represent and predict numerically. In a previous study, the influence of loading path on the damage evolution in high-purity tantalum has been presented; in this paper we present complimentary measurement on a pure FCC copper. Samples were shock loaded to three different peak shock stresses using both symmetric impact, and two different composite flyer plate configurations such that upon unloading the three samples displayed nearly identical ``pull-back'' signals as measured via rear-surface velocimetry. The damage evolution in the ``soft'' recovered copper samples was quantified using optical metallography, electron-back-scatter diffraction, and tomography. We shall compare metallurgical observations, velocimetry histories and one dimensional simulations to discuss dynamic failure mechanisms in this metal.

  10. Geometric Series via Probability

    Science.gov (United States)

    Tesman, Barry

    2012-01-01

    Infinite series is a challenging topic in the undergraduate mathematics curriculum for many students. In fact, there is a vast literature in mathematics education research on convergence issues. One of the most important types of infinite series is the geometric series. Their beauty lies in the fact that they can be evaluated explicitly and that…

  11. A Geometric Dissection Problem

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 7; Issue 7. A Geometric Dissection Problem. M N Deshpande. Think It Over Volume 7 Issue 7 July 2002 pp 91-91. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/007/07/0091-0091. Author Affiliations.

  12. Geometric statistical inference

    International Nuclear Information System (INIS)

    Periwal, Vipul

    1999-01-01

    A reparametrization-covariant formulation of the inverse problem of probability is explicitly solved for finite sample sizes. The inferred distribution is explicitly continuous for finite sample size. A geometric solution of the statistical inference problem in higher dimensions is outlined

  13. Tunneling anisotropic magnetoresistance in Co/AIOx/Al tunnel junctions with fcc Co (111) electrodes

    NARCIS (Netherlands)

    Wang, Kai; Tran, T. Lan Ahn; Brinks, Peter; Brinks, P.; Sanderink, Johannes G.M.; Bolhuis, Thijs; van der Wiel, Wilfred Gerard; de Jong, Machiel Pieter

    2013-01-01

    Tunneling anisotropic magnetoresistance (TAMR) has been characterized in junctions comprised of face-centered cubic (fcc) Co (111) ferromagnetic electrodes grown epitaxially on sapphire substrates, amorphous AlOx tunnel barriers, and nonmagnetic Al counterelectrodes. Large TAMR ratios have been

  14. Synthesis of 4H/fcc Noble Multimetallic Nanoribbons for Electrocatalytic Hydrogen Evolution Reaction.

    Science.gov (United States)

    Fan, Zhanxi; Luo, Zhimin; Huang, Xiao; Li, Bing; Chen, Ye; Wang, Jie; Hu, Yanling; Zhang, Hua

    2016-02-03

    Noble multimetallic nanomaterials, if only consisting of Au, Ag, Pt, and Pd, typically adopt the high-symmetry face-centered cubic (fcc) structure. Here for the first time, by using the 4H/fcc Au@Ag nanoribbons (NRBs) as seeds, we report the synthesis of 4H/fcc trimetallic Au@PdAg core-shell NRBs via the galvanic reaction method under ambient conditions. Moreover, this strategy can also be used to synthesize 4H/fcc trimetallic Au@PtAg and quatermetallic Au@PtPdAg core-shell NRBs. Impressively, for the first time, these alloy shells, i.e., PdAg, PtAg, and PtPdAg, epitaxially grown on the 4H/fcc Au core with novel 4H hexagonal phase were successfully synthesized. Remarkably, the obtained 4H/fcc Au@PdAg NRBs exhibit excellent electrocatalytic activity toward the hydrogen evolution reaction, which is even quite close to that of the commercial Pt black. We believe that our findings here may provide a novel strategy for the crystal-structure-controlled synthesis of advanced functional noble multimetallic nanomaterials with various promising applications.

  15. Localized structural frustration for evaluating the impact of sequence variants.

    Science.gov (United States)

    Kumar, Sushant; Clarke, Declan; Gerstein, Mark

    2016-12-01

    Population-scale sequencing is increasingly uncovering large numbers of rare single-nucleotide variants (SNVs) in coding regions of the genome. The rarity of these variants makes it challenging to evaluate their deleteriousness with conventional phenotype-genotype associations. Protein structures provide a way of addressing this challenge. Previous efforts have focused on globally quantifying the impact of SNVs on protein stability. However, local perturbations may severely impact protein functionality without strongly disrupting global stability (e.g. in relation to catalysis or allostery). Here, we describe a workflow in which localized frustration, quantifying unfavorable local interactions, is employed as a metric to investigate such effects. Using this workflow on the Protein Databank, we find that frustration produces many immediately intuitive results: for instance, disease-related SNVs create stronger changes in localized frustration than non-disease related variants, and rare SNVs tend to disrupt local interactions to a larger extent than common variants. Less obviously, we observe that somatic SNVs associated with oncogenes and tumor suppressor genes (TSGs) induce very different changes in frustration. In particular, those associated with TSGs change the frustration more in the core than the surface (by introducing loss-of-function events), whereas those associated with oncogenes manifest the opposite pattern, creating gain-of-function events. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  16. Infant distress at five weeks of age and caregiver frustration.

    Science.gov (United States)

    Fujiwara, Takeo; Barr, Ronald G; Brant, Rollin; Barr, Marilyn

    2011-09-01

    To investigate the differential association of three modes (fussing, crying, unsoothable crying) and three properties (duration/day, frequency/day, maximum bout length) of infant distress with daily caregiver frustration. Replicated cross-sectional studies were completed in Vancouver, British Columbia (n = 1065) and Seattle, Washington (n = 1857). Infant fussing, crying, and unsoothable crying and caregiver frustration were measured daily for 4 days at 5 weeks of age by the Baby's Day Diary. Generalized estimating equation models were used to predict caregiver frustration from nine measurements of distress. In Vancouver, measurements of distress significantly associated with caregiver frustration in decreasing order of magnitude were as follow: (1) maximum bout length of unsoothable crying; (2) duration/day of crying; and (3) frequency of unsoothable crying and duration/day of fussing. In Seattle, associated measurements of distress were: (1) maximum bout length of unsoothable crying; (2) maximum bout length and duration/day of crying, frequency of unsoothable crying, and duration/day of fussing; and (3) frequency/day of crying. Daily caregiver frustration is associated differentially with different modes and properties of infant distress. Specifically, maximum bout length of unsoothable crying was most strongly related in both sites. Additionally, frequency/day of unsoothable crying and duration/day of crying and of fussing were significantly associated at both sites. Copyright © 2011 Mosby, Inc. All rights reserved.

  17. Localized structural frustration for evaluating the impact of sequence variants

    Science.gov (United States)

    Kumar, Sushant; Clarke, Declan; Gerstein, Mark

    2016-01-01

    Population-scale sequencing is increasingly uncovering large numbers of rare single-nucleotide variants (SNVs) in coding regions of the genome. The rarity of these variants makes it challenging to evaluate their deleteriousness with conventional phenotype–genotype associations. Protein structures provide a way of addressing this challenge. Previous efforts have focused on globally quantifying the impact of SNVs on protein stability. However, local perturbations may severely impact protein functionality without strongly disrupting global stability (e.g. in relation to catalysis or allostery). Here, we describe a workflow in which localized frustration, quantifying unfavorable local interactions, is employed as a metric to investigate such effects. Using this workflow on the Protein Databank, we find that frustration produces many immediately intuitive results: for instance, disease-related SNVs create stronger changes in localized frustration than non-disease related variants, and rare SNVs tend to disrupt local interactions to a larger extent than common variants. Less obviously, we observe that somatic SNVs associated with oncogenes and tumor suppressor genes (TSGs) induce very different changes in frustration. In particular, those associated with TSGs change the frustration more in the core than the surface (by introducing loss-of-function events), whereas those associated with oncogenes manifest the opposite pattern, creating gain-of-function events. PMID:27915290

  18. Dynamics in geometrical confinement

    CERN Document Server

    Kremer, Friedrich

    2014-01-01

    This book describes the dynamics of low molecular weight and polymeric molecules when they are constrained under conditions of geometrical confinement. It covers geometrical confinement in different dimensionalities: (i) in nanometer thin layers or self supporting films (1-dimensional confinement) (ii) in pores or tubes with nanometric diameters (2-dimensional confinement) (iii) as micelles embedded in matrices (3-dimensional) or as nanodroplets.The dynamics under such conditions have been a much discussed and central topic in the focus of intense worldwide research activities within the last two decades. The present book discusses how the resulting molecular mobility is influenced by the subtle counterbalance between surface effects (typically slowing down molecular dynamics through attractive guest/host interactions) and confinement effects (typically increasing the mobility). It also explains how these influences can be modified and tuned, e.g. through appropriate surface coatings, film thicknesses or pore...

  19. Geometric group theory

    CERN Document Server

    Bestvina, Mladen; Vogtmann, Karen

    2014-01-01

    Geometric group theory refers to the study of discrete groups using tools from topology, geometry, dynamics and analysis. The field is evolving very rapidly and the present volume provides an introduction to and overview of various topics which have played critical roles in this evolution. The book contains lecture notes from courses given at the Park City Math Institute on Geometric Group Theory. The institute consists of a set of intensive short courses offered by leaders in the field, designed to introduce students to exciting, current research in mathematics. These lectures do not duplicate standard courses available elsewhere. The courses begin at an introductory level suitable for graduate students and lead up to currently active topics of research. The articles in this volume include introductions to CAT(0) cube complexes and groups, to modern small cancellation theory, to isometry groups of general CAT(0) spaces, and a discussion of nilpotent genus in the context of mapping class groups and CAT(0) gro...

  20. Gravity, a geometrical course

    CERN Document Server

    Frè, Pietro Giuseppe

    2013-01-01

    ‘Gravity, a Geometrical Course’ presents general relativity (GR) in a systematic and exhaustive way, covering three aspects that are homogenized into a single texture: i) the mathematical, geometrical foundations, exposed in a self consistent contemporary formalism, ii) the main physical, astrophysical and cosmological applications,  updated to the issues of contemporary research and observations, with glimpses on supergravity and superstring theory, iii) the historical development of scientific ideas underlying both the birth of general relativity and its subsequent evolution. The book is divided in two volumes.   Volume One is dedicated to the development of the theory and basic physical applications. It guides the reader from the foundation of special relativity to Einstein field equations, illustrating some basic applications in astrophysics. A detailed  account  of the historical and conceptual development of the theory is combined with the presentation of its mathematical foundations.  Differe...

  1. Geometric measure theory

    CERN Document Server

    Waerden, B

    1996-01-01

    From the reviews: "... Federer's timely and beautiful book indeed fills the need for a comprehensive treatise on geometric measure theory, and his detailed exposition leads from the foundations of the theory to the most recent discoveries. ... The author writes with a distinctive style which is both natural and powerfully economical in treating a complicated subject. This book is a major treatise in mathematics and is essential in the working library of the modern analyst." Bulletin of the London Mathematical Society.

  2. Geometric theory of information

    CERN Document Server

    2014-01-01

    This book brings together geometric tools and their applications for Information analysis. It collects current and many uses of in the interdisciplinary fields of Information Geometry Manifolds in Advanced Signal, Image & Video Processing, Complex Data Modeling and Analysis, Information Ranking and Retrieval, Coding, Cognitive Systems, Optimal Control, Statistics on Manifolds, Machine Learning, Speech/sound recognition, and natural language treatment which are also substantially relevant for the industry.

  3. Geometrically Consistent Mesh Modification

    KAUST Repository

    Bonito, A.

    2010-01-01

    A new paradigm of adaptivity is to execute refinement, coarsening, and smoothing of meshes on manifolds with incomplete information about their geometry and yet preserve position and curvature accuracy. We refer to this collectively as geometrically consistent (GC) mesh modification. We discuss the concept of discrete GC, show the failure of naive approaches, and propose and analyze a simple algorithm that is GC and accuracy preserving. © 2010 Society for Industrial and Applied Mathematics.

  4. Studies in geometric quantization

    International Nuclear Information System (INIS)

    Tuynman, G.M.

    1988-01-01

    This thesis contains five chapters, of which the first, entitled 'What is prequantization, and what is geometric quantization?', is meant as an introduction to geometric quantization for the non-specialist. The second chapter, entitled 'Central extensions and physics' deals with the notion of central extensions of manifolds and elaborates and proves the statements made in the first chapter. Central extensions of manifolds occur in physics as the freedom of a phase factor in the quantum mechanical state vector, as the phase factor in the prequantization process of classical mechanics and it appears in mathematics when studying central extension of Lie groups. In this chapter the connection between these central extensions is investigated and a remarkable similarity between classical and quantum mechanics is shown. In chapter three a classical model is given for the hydrogen atom including spin-orbit and spin-spin interaction. The method of geometric quantization is applied to this model and the results are discussed. In the final chapters (4 and 5) an explicit method to calculate the operators corresponding to classical observables is given when the phase space is a Kaehler manifold. The obtained formula are then used to quantise symplectic manifolds which are irreducible hermitian symmetric spaces and the results are compared with other quantization procedures applied to these manifolds (in particular to Berezin's quantization). 91 refs.; 3 tabs

  5. Ordering due to disorder in frustrated quantum magnetic system

    International Nuclear Information System (INIS)

    Yildirim, T.

    1999-01-01

    The phenomenon of order by disorder in frustrated magnetic systems is reviewed. Disorder (thermal or quantum fluctuations) may sometimes give rise to long range ordering in systems with frustration, where one must often consider the selection among classically degenerate ground states which are not equivalent by any symmetry. The lowest order effects of quantum fluctuations in such frustrated systems usually resolves the continues degeneracy of the ground state manifold into discrete Ising-type degeneracy. A unique ground state selection out of this Ising degenerate manifold then occurs due to higher order effects of quantum fluctuations. For systems such as face-centered cubic and body-centered tetragonal antiferromagnets where the number of Ising parameters to describe the ground state manifold is not macroscopic, we show that quantum fluctuations choose a unique ground state at the first order in 1/S

  6. Acid-base chemistry of frustrated water at protein interfaces.

    Science.gov (United States)

    Fernández, Ariel

    2016-01-01

    Water molecules at a protein interface are often frustrated in hydrogen-bonding opportunities due to subnanoscale confinement. As shown, this condition makes them behave as a general base that may titrate side-chain ammonium and guanidinium cations. Frustration-based chemistry is captured by a quantum mechanical treatment of proton transference and shown to remove same-charge uncompensated anticontacts at the interface found in the crystallographic record and in other spectroscopic information on the aqueous interface. Such observations are untenable within classical arguments, as hydronium is a stronger acid than ammonium or guanidinium. Frustration enables a directed Grotthuss mechanism for proton transference stabilizing same-charge anticontacts. © 2015 Federation of European Biochemical Societies.

  7. Understanding and controlling complex states arising from magnetic frustration

    Energy Technology Data Exchange (ETDEWEB)

    Zapf, Vivien [Los Alamos National Laboratory

    2012-06-01

    Much of our national security relies on capabilities made possible by magnetism, in particular the ability to compute and store huge bodies of information as well as to move things and sense the world. Most of these technologies exploit ferromagnetism, i.e. the global parallel alignment of magnetic spins as seen in a bar magnet. Recent advances in computing technologies, such as spintronics and MRAM, take advantage of antiferromagnetism where the magnetic spins alternate from one to the next. In certain crystal structures, however, the spins take on even more complex arrangements. These are often created by frustration, where the interactions between spins cannot be satisfied locally or globally within the material resulting in complex and often non-coplanar spin textures. Frustration also leads to the close proximity of many different magnetic states, which can be selected by small perturbations in parameters like magnetic fields, temperature and pressure. It is this tunability that makes frustrated systems fundamentally interesting and highly desirable for applications. We move beyond frustration in insulators to itinerant systems where the interaction between mobile electrons and the non-coplanar magnetic states lead to quantum magneto-electric amplification. Here a small external field is amplified by many orders of magnitude by non-coplanar frustrated states. This greatly enhances their sensitivity and opens broader fields for applications. Our objective is to pioneer a new direction for condensed matter science at the Laboratory as well as for international community by discovering, understanding and controlling states that emerge from the coupling of itinerant charges to frustrated spin textures.

  8. Geometric diffusion of quantum trajectories

    Science.gov (United States)

    Yang, Fan; Liu, Ren-Bao

    2015-07-01

    A quantum object can acquire a geometric phase (such as Berry phases and Aharonov-Bohm phases) when evolving along a path in a parameter space with non-trivial gauge structures. Inherent to quantum evolutions of wavepackets, quantum diffusion occurs along quantum trajectories. Here we show that quantum diffusion can also be geometric as characterized by the imaginary part of a geometric phase. The geometric quantum diffusion results from interference between different instantaneous eigenstate pathways which have different geometric phases during the adiabatic evolution. As a specific example, we study the quantum trajectories of optically excited electron-hole pairs in time-reversal symmetric insulators, driven by an elliptically polarized terahertz field. The imaginary geometric phase manifests itself as elliptical polarization in the terahertz sideband generation. The geometric quantum diffusion adds a new dimension to geometric phases and may have applications in many fields of physics, e.g., transport in topological insulators and novel electro-optical effects.

  9. Psychometric properties of Frustration Discomfort Scale in a Turkish sample.

    Science.gov (United States)

    Ozer, Bilge Uzun; Demir, Ayhan; Harrington, Neil

    2012-08-01

    The present study assessed the psychometric properties of the Frustration Discomfort Scale for Turkish college students. The Frustration Discomfort Scale (FDS), Procrastination Assessment Scale-Student, and Rosenberg Self-Esteem Scale were administered to a sample of 171 (98 women, 73 men) Turkish college students. The results of the confirmatory factor analysis yielded fit index values demonstrating viability of the four-dimensional solution as in the original. Findings also revealed that, as predicted, the Discomfort Intolerance subscale of Turkish FDS was most strongly correlated with procrastination. Overall results provided evidence for the factor validity and reliability of the Turkish version of the scale for use in a Turkish population.

  10. How Is Frustration Related to Online Gamer Loyalty? A Synthesis of Multiple Theories.

    Science.gov (United States)

    Huang, Han-Chung; Liao, Gen-Yih; Chiu, Kay-Ling; Teng, Ching-I

    2017-11-01

    Online games can frustrate their gamers, but little was known about how such frustration impacts gamer loyalty. Because novice and experienced gamers may respond differently to frustration, this study investigates how gamers' frustration influences their loyalty and how this influence may differ between novice and experienced gamers. Because of the complexity of this issue, multiple theories were synthesized to develop the theoretical model. This study collected responses from 558 online gamers. Findings indicate that frustration is positively related to novice gamers' participation in task teams, and subsequently their loyalty. However, frustration is negatively related to the self-efficacy of experienced gamers and to their loyalty.

  11. Bulk Nanostructured FCC Steels With Enhanced Radiation Tolerance

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xinghang; Hartwig, K. Ted; Allen, Todd; Yang, Yong

    2012-10-27

    The objective of this project is to increase radiation tolerance in austenitic steels through optimization of grain size and grain boundary (GB) characteristics. The focus will be on nanocrystalline austenitic Fe-Cr-Ni alloys with an fcc crystal structure. The long-term goal is to design and develop bulk nanostructured austenitic steels with enhanced void swelling resistance and substantial ductility, and to enhance their creep resistance at elevated temperatures via GB engineering. The combination of grain refinement and grain boundary engineering approaches allows us to tailor the material strength, ductility, and resistance to swelling by 1) changing the sink strength for point defects, 2) by increasing the nucleation barriers for bubble formation at GBs, and 3) by changing the precipitate distributions at boundaries. Compared to ferritic/martensitic steels, austenitic stainless steels (SS) possess good creep and fatigue resistance at elevated temperatures, and better toughness at low temperature. However, a major disadvantage of austenitic SS is that they are vulnerable to significant void swelling in nuclear reactors, especially at the temperatures and doses anticipated in the Advanced Burner Reactor. The lack of resistance to void swelling in austenitic alloys led to the switch to ferritic/martensitic steels as the preferred material for the fast reactor cladding application. Recently a type of austenitic stainless steel, HT-UPS, was developed at ORNL, and is expected to show enhanced void swelling resistance through the trapping of point defects at nanometersized carbides. Reducing the grain size and increasing the fraction of low energy grain boundaries should reduce the available radiation-produced point defects (due to the increased sink area of the grain boundaries), should make bubble nucleation at the boundaries less likely (by reducing the fraction of high-energy boundaries), and improve the strength and ductility under radiation by producing a higher

  12. Spin-strain effects in the frustrated magnet Tb{sub 2}Ti{sub 2}O{sub 7} at low temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Gritsenko, Y.; Wosnitza, J. [HZDR/HLD, Dresden (Germany); TUD/IFP, Dresden (Germany); Zherlitsyn, S. [HZDR/HLD, Dresden (Germany); Ruminy, M.; Fennell, T. [PSI/LNS, 5232 Villigen PSI (Switzerland); Kenzelmann, M. [PSI/LDM, 5232 Villigen PSI (Switzerland)

    2016-07-01

    Geometrically frustrated magnets have attracted much attention, due to their tendency to build unconventional ground states with exotic excitations. Tb{sub 2}Ti{sub 2}O{sub 7} possesses a pyrochlore lattice as building block of the crystallographic structure, providing a basis for geometric frustration. This cubic material features Curie-Weiss temperature of Θ{sub CW} = -19 K, but no long-range magnetic order has been detected down to 50 mK indicating a large frustration. The existence of a spin-liquid state has been suggested for Tb{sub 2}Ti{sub 2}O{sub 7}. Here, we present results of ultrasonic investigations of this material. The magnetic field was applied along the [110] direction at temperatures of 20, 150 and 300 mK. Clear anomalies were found for different acoustic modes. The temperature dependence of the sound velocity shows a softening at about 500 mK and step-like features at about 150 mK suggesting a low-temperature phase transformation. This investigation sheds new light on the role of lattice degrees of freedom and magneto-elastic interactions in this material.

  13. Geometric Algebra Computing

    CERN Document Server

    Corrochano, Eduardo Bayro

    2010-01-01

    This book presents contributions from a global selection of experts in the field. This useful text offers new insights and solutions for the development of theorems, algorithms and advanced methods for real-time applications across a range of disciplines. Written in an accessible style, the discussion of all applications is enhanced by the inclusion of numerous examples, figures and experimental analysis. Features: provides a thorough discussion of several tasks for image processing, pattern recognition, computer vision, robotics and computer graphics using the geometric algebra framework; int

  14. Geometric correlations and multifractals

    International Nuclear Information System (INIS)

    Amritkar, R.E.

    1991-07-01

    There are many situations where the usual statistical methods are not adequate to characterize correlations in the system. To characterize such situations we introduce mutual correlation dimensions which describe geometric correlations in the system. These dimensions allow us to distinguish between variables which are perfectly correlated with or without a phase lag, variables which are uncorrelated and variables which are partially correlated. We demonstrate the utility of our formalism by considering two examples from dynamical systems. The first example is about the loss of memory in chaotic signals and describes auto-correlations while the second example is about synchronization of chaotic signals and describes cross-correlations. (author). 19 refs, 6 figs

  15. Geometric analysis and PDEs

    CERN Document Server

    Ambrosetti, Antonio; Malchiodi, Andrea

    2009-01-01

    This volume contains lecture notes on some topics in geometric analysis, a growing mathematical subject which uses analytical techniques, mostly of partial differential equations, to treat problems in differential geometry and mathematical physics. The presentation of the material should be rather accessible to non-experts in the field, since the presentation is didactic in nature. The reader will be provided with a survey containing some of the most exciting topics in the field, with a series of techniques used to treat such problems.

  16. GEOMETRIC PROGRESSIONS ON ELLIPTIC CURVES.

    Science.gov (United States)

    Ciss, Abdoul Aziz; Moody, Dustin

    2017-01-01

    In this paper, we look at long geometric progressions on different model of elliptic curves, namely Weierstrass curves, Edwards and twisted Edwards curves, Huff curves and general quartics curves. By a geometric progression on an elliptic curve, we mean the existence of rational points on the curve whose x -coordinate (or y -coordinate) are in geometric progression. We find infinite families of twisted Edwards curves and Huff curves with geometric progressions of length 5, an infinite family of Weierstrass curves with 8 term progressions, as well as infinite families of quartic curves containing 10-term geometric progressions.

  17. Gaining Insight into Antibubbles via Frustrated Total Internal Reflection

    Science.gov (United States)

    Suhr, Wilfried

    2012-01-01

    The interest in the phenomenon of frustrated total internal reflection dates back to the time of Newton. Because of its technological relevance, it has become a standard topic covered by advanced courses in physics. In practical courses optical setups especially designed to demonstrate the phenomenon are commonly used. As an alternative, this…

  18. Charge frustration and quantum criticality for strongly correlated fermions

    NARCIS (Netherlands)

    Huijse, L.; Halverson, J.; Fendley, P.; Schoutens, K.

    2008-01-01

    We study a model of strongly correlated electrons on the square lattice which exhibits charge frustration and quantum critical behavior. The potential is tuned to make the interactions supersymmetric. We establish a rigorous mathematical result which relates quantum ground states to certain tiling

  19. Frustration and single crystal morphology of isotactic poly(2-vinylpyridine)

    NARCIS (Netherlands)

    Okihara, T; Cartier, L; van Ekenstein, GORA; Lotz, B

    The crystal structure of isotactic poly(2-vinylpyridine) (iP2VP) established in 1977 by Puterman et al. is shown to conform to a recently proposed frustrated packing scheme which involves three isochiral three-fold helices packed in a trigonal unit-cell, and observed in a number of polymers and

  20. Getting Frustrated: Modelling Emotion Contagion in Stranded Passengers

    NARCIS (Netherlands)

    van der Wal, C. Natalie; Couwenberg, Maik; Bosse, T.

    2017-01-01

    Train passengers can get stranded due to a variety of events, such as a delay, technical malfunctioning or a natural disaster. Stranded passengers can get frustrated, which could escalate in misbehaviours. Examples are verbal and physical violence or dangerous behaviours such as opening emergency

  1. The challenges and frustrations of librarians in three public libraries ...

    African Journals Online (AJOL)

    This paper, through a survey, analyses the category to which professional librarians in three Ghanaian public universities belong and the challenges concerning status, scholarship, general line of progression and frustrations they are faced with in the university set-up. Their parallel role as partners with faculty and ...

  2. More Opportunities than Wealth. A Network of Power and Frustration

    Energy Technology Data Exchange (ETDEWEB)

    Mahault, Benoit Alexandre [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Saxena, Avadh Behari [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Nisoli, Cristiano [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-08-17

    We introduce a minimal agent-based model to qualitatively conceptualize the allocation of limited wealth among more abundant opportunities. We study the interplay of power, satisfaction and frustration in the problem of wealth distribution, concentration, and inequality. This framework allows us to compare subjective measures of frustration and satisfaction to collective measures of fairness in wealth distribution, such as the Lorenz curve and the Gini index. We find that a completely libertarian, law-of-the-jungle setting, where every agent can acquire wealth from, or lose wealth to, anybody else invariably leads to a complete polarization of the distribution of wealth vs. opportunity, only minimally ameliorated by disorder in a non-optimized society. The picture is however dramatically modified when hard constraints are imposed over agents, and they are forced to share wealth with neighbors on a network. We discuss the case of random networks and scale free networks. We then propose an out of equilibrium dynamics of the networks, based on a competition of power and frustration in the decision-making of agents that leads to network evolution. We show that the ratio of power and frustration controls different dynamical regimes separated by kinetic transition and characterized by drastically different values of the indices of equality.

  3. Frustrated Lewis pairs-assisted reduction of carbonyl compounds

    Czech Academy of Sciences Publication Activity Database

    Marek, Aleš; Pedersen, M. H. F.

    2015-01-01

    Roč. 71, č. 6 (2015), s. 917-921 ISSN 0040-4020 Institutional support: RVO:61388963 Keywords : frustrated Lewis pairs * hydrogen activation * benzyl alcohol * tritium labeling * labeled compounds Subject RIV: CC - Organic Chemistry Impact factor: 2.645, year: 2015

  4. Frustrated Lewis pairs-assisted reduction of carbonyl compounds

    DEFF Research Database (Denmark)

    Marek, Ales; Pedersen, Martin Holst Friborg

    2015-01-01

    An alternative and robust method for the reduction of carbonyl groups by frustrated Lewis pairs (FLPs) is reported in this paper. With its very mild reaction conditions, good to excellent yields, absolute regioselectivity and the non-metallic character of the reagent, it provides an excellent too...

  5. Influence of job frustration, narcissism and demographic variables ...

    African Journals Online (AJOL)

    The study examines the hypothesised relationship among job frustration, narcissism, demographic variables and professional ethical behaviour among Nigerian Police officers. One hundred policemen drawn from four police divisions of Benin Area Command of Edo State participated in the study. There were 18 females ...

  6. Effects of alcohol and frustration on experimental graffiti.

    Science.gov (United States)

    Norlander, T; Nordmarker, A; Archer, T

    1998-12-01

    This study aimed to examine effects between alcohol and frustration in regard to graffiti. Forty-two subjects, 21 men and 21 women were randomly assigned in equal numbers to each of the three experimental groups, namely a Control group, an Alcohol group, and an Alcohol + Frustration group (alcohol dose: 1 ml 100% alcohol/kg body weight). For the purposes of this experiment, a test (AET) was constructed that provided scores of "scrawling-graffiti" (i.e., the amount of scrawling on pictures), "destruction", "aggression", and "sexuality". An elaboration test and a test measuring the "dispositional optimism" were also applied. The primary results indicated that (a) the Alcohol + Frustration group scored significantly higher on scrawling-graffiti compared to the Control group, (b) female subjects performed graffiti-scrawling to a greater extent than male subjects in all three groups, (c) women scored significantly higher on elaboration as compared to men. These results were interpreted as supporting the hypothesis that alcohol intake by itself is unlikely to induce destructive behavior unless accompanied by a "provocative" factor (e.g. frustration) that precipitates the putative expressions of aggressiveness.

  7. Academic Culture in Malaysia: Sources of Satisfaction and Frustration

    Science.gov (United States)

    Da Wan, Chang; Chapman, David W.; Zain, Ahmad Nurulazam Md; Hutcheson, Sigrid; Lee, Molly; Austin, Ann E.

    2015-01-01

    This paper examines the sources of satisfaction and frustration among Malaysian academics across three types of higher education institutions (HEIs)--public research university, public comprehensive university and private non-profit university. Based on interview with 67 academics across six HEIs, there is a clear pattern and relationship between…

  8. Interdiffusion and atomic mobility studies in Ni-rich fcc Ni−Al−Mn alloys

    International Nuclear Information System (INIS)

    Cheng, Kaiming; Liu, Dandan; Zhang, Lijun; Du, Yong; Liu, Shuhong; Tang, Chengying

    2013-01-01

    Highlights: •The interdiffusion coefficients of fcc Ni–Al–Mn alloys are experimentally determined. •The atomic mobilities of fcc Ni–Al–Mn alloys have been assessed. •The calculated results agree well with the present experimental diffusivities. •The mobility parameters obtained can be used to predict many diffusion phenomena. -- Abstract: By employing nine groups of bulk diffusion couples together with electron probe microanalysis technique, the composition dependence of ternary interdiffusion coefficients in Ni-rich fcc Ni−Al−Mn alloys at 1373 K was determined via the Matano–Kirkaldy method. The experimental interdiffusion coefficients were critically assessed to obtain the atomic mobilities of Ni, Al and Mn in fcc Ni−Al−Mn alloys by using the DICTRA (DIffusion-Controlled TRAnsformations) software package. The reliability of these mobilities was validated by comprehensive comparison between the model-predicted diffusion properties and the experimental data. The obtained atomic mobilities could be used to describe various diffusion phenomena in fcc Ni–Al–Mn alloys, such as the concentration profiles, interdiffusion flux and diffusion paths

  9. FCC-HCP coexistence in dense thermo-responsive microgel crystals.

    Science.gov (United States)

    Karthickeyan, D; Joshi, R G; Tata, B V R

    2017-06-14

    Analogous to hard-sphere suspensions, monodisperse thermo-responsive poly (N-isopropyl acrylamide) (PNIPAM) microgel particles beyond a volume fraction (ϕ) of 0.5 freeze into face centered cubic (FCC)-hexagonal close packed (HCP) coexistence under as prepared conditions and into an FCC structure upon annealing. We report here FCC-HCP coexistence to be stable in dense PNIPAM microgel crystals (ϕ > 0.74) with particles in their deswollen state (referred to as osmotically compressed microgel crystals) and the FCC structure with particles in their swollen state by performing annealing studies with different cooling rates. The structure of PNIPAM microgel crystals is characterized using static light scattering technique and UV-Visible spectroscopy and dynamics by dynamic light scattering (DLS). DLS studies reveal that the particle motion is diffusive at short times in crystals with ϕ crystals with ϕ > 0.74. The observed sub-diffusive behavior at short times is due to the overlap (interpenetration) of the dangling polymer chains between the shells of neighbouring PNIPAM microgel particles. Overlap is found to disappear upon heating the crystals well above their melting temperature, T m due to reduction in the particle size. Annealing studies confirm that the overlap of dangling polymer chains between the shells of neighbouring PNIPAM spheres is responsible for the stability of FCC-HCP coexistence observed in osmotically compressed PNIPAM microgel crystals. Results are discussed in the light of recent reports of stabilizing the HCP structure in hard sphere crystals by adding interacting polymer chains.

  10. Why Does Frustration Predict Psychopathology? Multiple Prospective Pathways Over Adolescence : A TRAILS Study

    NARCIS (Netherlands)

    Jeronimus, Bertus F.; Riese, Harriette; Oldehinkel, Albertine J.; Ormel, Johan

    Adolescents' temperamental frustration is a developmental precursor of adult neuroticism and psychopathology. Because the mechanisms that underlie the prospective association between adolescents' high frustration and psychopathology (internalizing/externalizing) have not been studied extensively, we

  11. Computer Simulations and Theoretical Studies of Complex Systems: from complex fluids to frustrated magnets

    Science.gov (United States)

    Choi, Eunsong

    Computer simulations are an integral part of research in modern condensed matter physics; they serve as a direct bridge between theory and experiment by systemactically applying a microscopic model to a collection of particles that effectively imitate a macroscopic system. In this thesis, we study two very differnt condensed systems, namely complex fluids and frustrated magnets, primarily by simulating classical dynamics of each system. In the first part of the thesis, we focus on ionic liquids (ILs) and polymers--the two complementary classes of materials that can be combined to provide various unique properties. The properties of polymers/ILs systems, such as conductivity, viscosity, and miscibility, can be fine tuned by choosing an appropriate combination of cations, anions, and polymers. However, designing a system that meets a specific need requires a concrete understanding of physics and chemistry that dictates a complex interplay between polymers and ionic liquids. In this regard, molecular dynamics (MD) simulation is an efficient tool that provides a molecular level picture of such complex systems. We study the behavior of Poly (ethylene oxide) (PEO) and the imidazolium based ionic liquids, using MD simulations and statistical mechanics. We also discuss our efforts to develop reliable and efficient classical force-fields for PEO and the ionic liquids. The second part is devoted to studies on geometrically frustrated magnets. In particular, a microscopic model, which gives rise to an incommensurate spiral magnetic ordering observed in a pyrochlore antiferromagnet is investigated. The validation of the model is made via a comparison of the spin-wave spectra with the neutron scattering data. Since the standard Holstein-Primakoff method is difficult to employ in such a complex ground state structure with a large unit cell, we carry out classical spin dynamics simulations to compute spin-wave spectra directly from the Fourier transform of spin trajectories. We

  12. Modulation of frustration in folding by sequence permutation

    Science.gov (United States)

    Nobrega, R. Paul; Arora, Karunesh; Kathuria, Sagar V.; Graceffa, Rita; Barrea, Raul A.; Guo, Liang; Chakravarthy, Srinivas; Bilsel, Osman; Irving, Thomas C.; Brooks, Charles L.; Matthews, C. Robert

    2014-01-01

    Folding of globular proteins can be envisioned as the contraction of a random coil unfolded state toward the native state on an energy surface rough with local minima trapping frustrated species. These substructures impede productive folding and can serve as nucleation sites for aggregation reactions. However, little is known about the relationship between frustration and its underlying sequence determinants. Chemotaxis response regulator Y (CheY), a 129-amino acid bacterial protein, has been shown previously to populate an off-pathway kinetic trap in the microsecond time range. The frustration has been ascribed to premature docking of the N- and C-terminal subdomains or, alternatively, to the formation of an unproductive local-in-sequence cluster of branched aliphatic side chains, isoleucine, leucine, and valine (ILV). The roles of the subdomains and ILV clusters in frustration were tested by altering the sequence connectivity using circular permutations. Surprisingly, the stability and buried surface area of the intermediate could be increased or decreased depending on the location of the termini. Comparison with the results of small-angle X-ray–scattering experiments and simulations points to the accelerated formation of a more compact, on-pathway species for the more stable intermediate. The effect of chain connectivity in modulating the structures and stabilities of the early kinetic traps in CheY is better understood in terms of the ILV cluster model. However, the subdomain model captures the requirement for an intact N-terminal domain to access the native conformation. Chain entropy and aliphatic-rich sequences play crucial roles in biasing the early events leading to frustration in the folding of CheY. PMID:25002512

  13. fNIRS Evidence of Prefrontal Regulation of Frustration in Early Childhood

    OpenAIRE

    Perlman, Susan B.; Luna, Beatriz; Hein, Tyler C.; Huppert, Theodore J.

    2013-01-01

    The experience of frustration is common in early childhood, yet some children seem to possess a lower tolerance for frustration than others. Characterizing the biological mechanisms underlying a wide range of frustration tolerance observed in early childhood may inform maladaptive behavior and psychopathology that is associated with this construct. The goal of this study was to measure prefrontal correlates of frustration in 3–5 year-old children, who are not readily adaptable for typical neu...

  14. Cross-talk studies between FCC-hh Experimental Interaction Regions

    CERN Document Server

    AUTHOR|(CDS)2081283; Seryi, Andrei; Appleby, Robert Barrie; Rafique, Haroon; Besana, Maria Ilaria

    2017-01-01

    Debris from 50 TeV proton-proton collisions at the main interaction point in the FCC-hh may contribute to the background in the subsequent detector. This cross-talk is of possible concern for the FCC-hh due to the high luminosity and energy of the collider. DPMJET-III is used as a collision debris generator in order to assess the muon cross-talk contribution. An analytical calculation of muon range in rock is performed. This is followed by a full Monte Carlo simulation using FLUKA, where the accelerator tunnel has been modelled. The muon cross talk between the adjacent interaction points is assessed and its implications for FCC-hh design are discussed.

  15. The temperature behaviour of the elastic and thermodynamic properties of fcc thorium

    Energy Technology Data Exchange (ETDEWEB)

    Jaroszewicz, S., E-mail: jaroszew@tandar.cnea.gov.ar [Gerencia de Investigacion y Aplicaciones, Comision Nacional de Energia Atomica, Av. Gral. Paz 1499, San Martin (Argentina); Instituto de Tecnologia Jorge A. Sabato, UNSAM-CNEA (Argentina); Mosca, H.O. [Gerencia de Investigacion y Aplicaciones, Comision Nacional de Energia Atomica, Av. Gral. Paz 1499, San Martin (Argentina); Instituto de Tecnologia Jorge A. Sabato, UNSAM-CNEA (Argentina); Garces, J.E. [DAEE, Centro Atomico Bariloche, Comisin Nacional de Energia Atomica, Av. Bustillo 9500, Bariloche, Rio Negro (Argentina)

    2012-10-15

    The temperature behaviour of the structural, elastical and thermal properties of fcc thorium have been calculated from a free-parameter Helmholtz free energy developed by computing the cohesive energy from first principles calculations coupled to the Chen-Moebius lattice inversion method and the Debye-Grueneisen quasiharmonic model. The elastic constants, shear modulus, Young modulus, Poisson's ratio and thermodynamic properties of fcc Th as the entropy, the harmonic specific heat, the (P, V, T) equation of state and the thermal lattice expansion are found to be in a very good agreement with experiments and ab initio phonon calculations. The results of this work show the potentiality of the Chen-Moebius method coupled to ab initio calculation of the cohesive energy to develop a free-parameter pair potential capable of giving an overall description of fcc Th properties at T = 0 K with an error similar to ab initio calculations.

  16. Precision measurement of the top quark mass at threshold with the FCC-ee

    CERN Document Server

    Foppiani, Nicolo

    2016-01-01

    The project concerns the study of the sensitivity in measuring the Top quark mass at threshold at the FCC-ee, using a Montecarlo analysis. In particular it has been developed within the FCC software framework, using a fast simulation. The work focused firstly on developing a b-tagging algorithm inside of the FCC fast simulation, managing to obtain results comparable with the ALEPH ones, and new results with a futuristic detector like ILD. Afterwards the selection of the tt events at energy close to the pair production threshold has been studied, obtaining a selection efficiency of 55 % and a background rejection at the level of 99.4 %. In the end, a list of points that can be achieved in the future, to complete the analysis, has been identified.

  17. Diffusion behavior and atomic mobilities for fcc Cu–Cr–Ni alloys

    International Nuclear Information System (INIS)

    Xu, Gaochi; Liu, Yajun; Lei, Fuyue; Sheng, Guang; Kang, Zhitao

    2015-01-01

    In this work, diffusion couples of fcc Cu–Cr–Ni alloys annealed at 1373 K for 80 h are investigated. The interdiffusion coefficients are retrieved from common compositions of two diffusion couples, which are then combined with thermodynamic descriptions to explore atomic mobilities of Cu, Cr and Ni in fcc Cu–Cr–Ni alloys within the CALPHAD framework. In order to confirm the quality of such kinetic characteristics, a comparison between calculated and experimentally measured concentration profiles of diffusion couples and diffusion paths in Gibbs triangle is made, where the agreement is excellent. The results of this study contribute to the establishment of a general Ni-based mobility database for alloy design. - Highlights: • Atomic mobilities of fcc Cu–Cr–Ni phases were determined. • Experimental interdiffusivities were critically evaluated. • Main and cross interdiffusivities show their peculiarities. • The profiles reveal kinetic importance for alloy microstructures

  18. Two-Way Transformation between fcc- and Nonfcc-Structured Gold Nanoclusters.

    Science.gov (United States)

    Dong, Hongwei; Liao, Lingwen; Wu, Zhikun

    2017-11-02

    Precisely tuning the structure of nanomaterials, especially in a two-way style, is challenging but of great importance for regulating properties and for practical applications. The structural transformation from nonfcc to fcc (face center cubic) in gold nanoclusters has been recently reported; however, the reverse process, that is, the structural transformation from fcc to nonfcc, not to mention the two-way structural transformation between fcc and nonfcc, remains unknown. We developed a novel synthesis method, successfully fulfilled the two-way structure transformation, and studied the stability of gold nanoclusters with different structures. Additionally, a novel gold nanocluster was synthesized and structurally resolved by single-crystal X-ray crystallography. This work has important implications for structure and property tuning of gold nanoclusters and might open up some new potential applications for gold nanoclusters.

  19. Geometrical pattern learning

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, P.W.

    1993-04-01

    In this paper we consider the problem of learning the positions of spheres in metric spaces, given as data randomly drawn points classified according to whether they are internal or external to an unknown sphere. The particular metrics under consideration are geometrical shape metrics, and the results are intended to be applicable to the problem of learning to identify a shape from related shapes classified according to whether they resemble it visually. While it is typically NP-hard to locate a central point for a hypothesis sphere, we find that it is however often possible to obtain a non-spherical hypothesis which can accurately predict whether further random points lie within the unknown sphere. We exhibit algorithms which achieve this, and in the process indicate useful general techniques for computational learning. Finally we exhibit a natural shape metric and show that it defines a class of spheres not predictable in this sense, subject to standard cryptographic assumptions.

  20. Increase of propylene production and recovery in a PETROBRAS FCC units; Aumento da producao e recuperacao de propeno em uma Unidade de FCC da PETROBRAS

    Energy Technology Data Exchange (ETDEWEB)

    Penna, Elisangela Melo; Pinho, Andrea de Rezende; Wolff, Marcelo Straubel [Petroleo Brasileiro S.A (PETROBRAS), Rio de Janeiro, RJ (Brazil)

    2012-07-01

    Propylene is one of the major petrochemical raw materials and its demand has been growing rapidly in recent years. Projections for future years indicate that the growth in propylene production via pyrolysis tends to be lower than the growth in the demand for ethylene, creating a supply deficit of this product. The FCC units are in a unique position to meet this increase in propylene demand due to its operational flexibility. Although their primary function in recent decades has been the gasoline production, FCC units are often operated for maximizing other products, such as LPG or distillates. At the FCC conversion section, the increase of propylene yield requires some increase in reaction severity, which can be obtained by increasing reactor riser temperature, and the use of catalyst additives based on ZSM-5. However, besides maximizing the propylene production in the reactor, a second objective should be pursued: the propylene recovery increase in the gas recovery section. In this section, the yield is affected by the gas compressor performance, the equipment design and process scheme. Eventually, new equipment may be installed, such as chillers, aimed at improving the absorption system. Predicting a real increase in propylene demand in the Brazilian market, this study aims to evaluate the adequacy of the gas recovery section of a PETROBRAS FCC unit, analyzing the impacts that a new products yields profile, which bend the propylene production compared to a conventional operation, would cause on this unit. In this paper, the main limitations and modifications that would be needed for an operation were identified, aiming at maximizing the propylene production, as well as proposed changes in the hardware of the unit. (author)

  1. Updates on the optics of the future hadron-hadron collider FCC-hh

    CERN Document Server

    AUTHOR|(CDS)2093721; Boutin, David Jean Henri; Dalena, Barbara; Holzer, Bernhard; Langner, Andy Sven; Schulte, Daniel

    2017-01-01

    The FCC-hh (Future Hadron-Hadron Circular Collider) is one of the three options considered for the next generation accelerator in high-energy physics as recommended by the European Strategy Group. The layout of FCC-hh has been optimized to a more compact design following recommendations from civil engineering aspects. The updates on the first order and second order optics of the ring will be shown for collisions at the required centre-of-mass energy of 100 TeV. Special emphasis is put on the dispersion suppressors and general beam cleaning sections as well as first considerations of injection and extraction sections.

  2. Deformation-induced dissolution of borides in FCC Fe-Ni alloys

    Science.gov (United States)

    Shabashov, V. A.; Litvinov, A. V.; Lyashkov, K. A.; Kataeva, N. V.; Novikov, S. I.; Titova, S. G.

    2011-12-01

    Deformation-induced dissolution of amorphous and crystal boron and also of orthorhombic boron nitride in face centered cubic (FCC) Fe-Ni alloys matrix has been investigated with the methods of Mössbauer spectroscopy, magnetic susceptibility and X-ray diffraction analysis by compression shear in Bridgman anvils. The formation of boron solid solution in a Fe-Ni alloy matrix has been revealed in the mechanosynthesis process. Growth of inner effective magnetic field, Curie point and crystal lattice period of invar alloys has been detected. Conclusion about the formation of supersaturated crystal boron interstitial solid solution in FCC Fe-Ni alloys has been made.

  3. Maximizing light olefins production in fluid catalytic cracking (FCC) units; Maximizacao de olefinas leves em unidades de craqueamento catalitico fluido

    Energy Technology Data Exchange (ETDEWEB)

    Pimenta, Ricardo D.M.; Pinho, Andrea de Rezende [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    2004-07-01

    The Fluid Catalytic Cracking (FCC) process is widely spread over the ten PETROBRAS refineries in its thirteen industrial units. The importance of the FCC process resides on its high gasoline output, being the main supplier of this important product to the system. Additionally, FCC process is the main source of light hydrocarbons in the LPG range, including light olefins. The increasing demand for ethylene, propylene and butylenes was encouraging to concentrate the research efforts on studies about alternatives for the traditional FCC process. In the present work, the proposals from main licensors (UOP, KBR, Stone and Webster) for a light-olefins-driven FCC process (Petrochemical FCC) will be compared. Furthermore, the catalytic route for light olefins production in FCC units is also described. An additive based on ZSM- 5 zeolite, which is produced following a PETROBRAS proprietary technology, is being largely applied into the catalyst inventories of all FCC units. An analysis of different scenarios was performed to estimate the maximum potential of light olefins production from the highest possible ZSM-5 additive usage. More specifically for the case of ethylene, which production is also boosted by the same type of additive, studies are being conducted with the objective of recovering it from a C2 stream using specific units to do the splitting (UPGR). The search for increasing light olefins production in the refining processes is in line with PETROBRAS strategic plan which targeted for the company a more intense activity in the Brazilian petrochemical market (author)

  4. Evolution of Nagaoka phase with kinetic energy frustrating hopping

    Science.gov (United States)

    Lisandrini, F. T.; Bravo, B.; Trumper, A. E.; Manuel, L. O.; Gazza, C. J.

    2017-05-01

    We investigate, using the density-matrix renormalization group, the evolution of the Nagaoka state with t' hopping that frustrates the hole kinetic energy in the U =∞ Hubbard model on the square and anisotropic triangular lattices. We find that the Nagaoka ferromagnet survives up to a rather small tc'/t ˜0.2 . At this critical value, there is a transition to an antiferromagnetic phase that depends on the lattice: a Q =(Q ,0 ) spiral order, which continuously evolves with t', for the triangular lattice and the usual Q =(π ,π ) Néel order for the square lattice. Remarkably, the local magnetization takes its classical value for all considered t' (t'/t ≤1 ). Our results show that the recently found classical kinetic antiferromagnetism, a perfect counterpart of Nagaoka ferromagnetism, is a generic phenomenon in these kinetically frustrated electronic systems.

  5. Providers' perspectives on treating psychogenic nonepileptic seizures: frustration and hope.

    Science.gov (United States)

    McMillan, Katharine K; Pugh, Mary Jo; Hamid, Hamada; Salinsky, Martin; Pugh, Jacqueline; Noël, Polly H; Finley, Erin P; Leykum, Luci K; Lanham, Holly J; LaFrance, W Curt

    2014-08-01

    Recent diagnostic and treatment advances in psychogenic nonepileptic seizures (PNES) have the potential to improve care for patients, but little is known about the current state of PNES care delivery in the Veterans Health Administration (VA). We conducted semistructured interviews with 74 health-care clinicians and workers in the VA, eliciting provider perceptions of PNES care. Data were analyzed according to principles of Grounded Theory. The results revealed variation in care and two emergent domain themes of frustration and hope. Frustration was manifest in subthemes including Complexity, Patient Acceptance, Uncertainty About Treatment, Need for Evidence-based Treatment, and Failure of Cross-Disciplinary Collaboration between neurologists and mental health providers. Hope encompassed subthemes of Positive Attitudes, Developing Cross-Disciplinary Treatment, and Specific PNES Care. Increased resources for diagnosing, treating, and researching PNES have improved awareness of the disorder. More research is needed to understand patients' and caregivers' perceptions of PNES care. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. VHA Chaplains: challenges, roles, rewards, and frustrations of the work.

    Science.gov (United States)

    Beder, Joan; Yan, Grace W

    2013-01-01

    Chaplains working in the Veterans Health Administration have numerous roles and challenges. They work closely with other behavioral health professionals, especially social workers, to address the multiplicity of needs of the Veteran population. They are essentially an understudied subset of the military Chaplaincy service (most studies focus on those engaged in combat areas). In this exploratory qualitative study, VHA Chaplains responded to a survey to determine how they defined their role and professional challenges, what they felt were the rewards and frustrations of their work and their unique function within the VHA system. Findings showed that role differences between Chaplains and social workers and other behavioral health providers are clearly defined; rewards and challenges were diverse and frustrations were common to those working in a bureaucratic structure.

  7. Morphological Consequences of Frustration in ABC Triblock Polymers

    Energy Technology Data Exchange (ETDEWEB)

    Radlauer, Madalyn R.; Sinturel, Christophe; Asai, Yusuke; Arora, Akash; Bates, Frank S.; Dorfman, Kevin D.; Hillmyer, Marc A. (UMM); (Nagoya); (Orleans)

    2016-12-19

    Three poly(styrene)-block-poly(isoprene)-block-poly(lactide) (PS-b-PI-b-PLA, SIL) triblock terpolymers were synthesized and characterized in the bulk and as thin films. The pronounced incompatibility of the covalently connected PI and PLA led to significant frustration and the tendency to minimize their intermaterial dividing surface area. This resulted in the formation of a core–shell cylinder morphology with exaggerated nonconstant mean curvature from triblock polymers with equal block volume fractions rather than the more typical lamellar morphology. The effect of frustration was magnified in thin films by both confinement and interfacial interactions such that the PI domains became discontinuous. Self-consistent field theory (SCFT) calculations emphasize that the marked difference in the PS/PI and PI/PLA interaction parameters promotes the formation of nonlamellar morphologies. However, SCFT predicts that lamellar morphology is more stable than the observed cylindrical morphology, demonstrating a limitation that arises from the underlying assumptions.

  8. Frustration and thermalization in an artificial magnetic quasicrystal

    Science.gov (United States)

    Shi, Dong; Budrikis, Zoe; Stein, Aaron; Morley, Sophie A.; Olmsted, Peter D.; Burnell, Gavin; Marrows, Christopher H.

    2017-12-01

    Artificial frustrated systems offer a playground to study the emergent properties of interacting systems. Most work to date has been on spatially periodic systems, known as artificial spin ices when the interacting elements are magnetic. Here we have studied artificial magnetic quasicrystals based on quasiperiodic Penrose tiling patterns of interacting nanomagnets. We construct a low-energy configuration from a step-by-step approach that we propose as a ground state. Topologically induced emergent frustration means that this configuration cannot be constructed from vertices in their ground states. It has two parts, a quasi-one-dimensional `skeleton' that spans the entire pattern and is capable of long-range order, surrounding `flippable' clusters of macrospins that lead to macroscopic degeneracy. Magnetic force microscopy imaging of Penrose tiling arrays revealed superdomains that are larger for more strongly coupled arrays, especially after annealing the array above its blocking temperature.

  9. USER FRUSTRATION IN HIT INTERFACES: EXPLORING PAST HCI RESEARCH FOR A BETTER UNDERSTANDING OF CLINICIANS' EXPERIENCES.

    Science.gov (United States)

    Opoku-Boateng, Gloria A

    2015-01-01

    User frustration research has been one way of looking into clinicians' experience with health information technology use and interaction. In order to understand how clinician frustration with Health Information Technology (HIT) use occurs, there is the need to explore Human-Computer Interaction (HCI) literature that addresses both frustration and HIT use. In the past three decades, HCI frustration research has increased and expanded. Researchers have done a lot of work to understand emotions, end-user frustration and affect. This paper uses a historical literature review approach to review the origins of emotion and frustration research and explore the research question; Does HCI research on frustration provide insights on clinicians' frustration with HIT interfaces? From the literature review HCI research on emotion and frustration provides additional insights that can indeed help explain user frustration in HIT. Different approaches and HCI perspectives also help frame HIT user frustration research as well as inform HIT system design. The paper concludes with a suggested directions on how future design and research may take.

  10. USER FRUSTRATION IN HIT INTERFACES: EXPLORING PAST HCI RESEARCH FOR A BETTER UNDERSTANDING OF CLINICIANS’ EXPERIENCES

    Science.gov (United States)

    Opoku-Boateng, Gloria A.

    2015-01-01

    User frustration research has been one way of looking into clinicians’ experience with health information technology use and interaction. In order to understand how clinician frustration with Health Information Technology (HIT) use occurs, there is the need to explore Human-Computer Interaction (HCI) literature that addresses both frustration and HIT use. In the past three decades, HCI frustration research has increased and expanded. Researchers have done a lot of work to understand emotions, end-user frustration and affect. This paper uses a historical literature review approach to review the origins of emotion and frustration research and explore the research question; Does HCI research on frustration provide insights on clinicians’ frustration with HIT interfaces? From the literature review HCI research on emotion and frustration provides additional insights that can indeed help explain user frustration in HIT. Different approaches and HCI perspectives also help frame HIT user frustration research as well as inform HIT system design. The paper concludes with a suggested directions on how future design and research may take. PMID:26958238

  11. fNIRS Evidence of Prefrontal Regulation of Frustration in Early Childhood

    Science.gov (United States)

    Perlman, Susan B.; Luna, Beatriz; Hein, Tyler C.; Huppert, Theodore J.

    2013-01-01

    The experience of frustration is common in early childhood, yet some children seem to possess a lower tolerance for frustration than others. Characterizing the biological mechanisms underlying a wide range of frustration tolerance observed in early childhood may inform maladaptive behavior and psychopathology that is associated with this construct. The goal of this study was to measure prefrontal correlates of frustration in 3–5 year-old children, who are not readily adaptable for typical neuroimaging approaches, using functional near infrared spectroscopy (fNIRS). fNIRS of frontal regions were measured as frustration was induced in children through a computer game where a desired and expected prize was “stolen” by an animated dog. A fNIRS general linear model (GLM) was used to quantify the correlation of brain regions with the task and identify areas that were statistically different between the winning and frustrating test conditions. A second-level voxel-based ANOVA analysis was then used to correlate the amplitude of each individual’s brain activation with measure of parent-reported frustration. Experimental results indicated increased activity in the middle prefrontal cortex during winning of a desired prize, while lateral prefrontal cortex activity increased during frustration. Further, activity increase in lateral prefrontal cortex during frustration correlated positively with parent-reported frustration tolerance. These findings point to the role of the lateral prefrontal cortex as a potential region supporting the regulation of emotion during frustration. PMID:23624495

  12. fNIRS evidence of prefrontal regulation of frustration in early childhood.

    Science.gov (United States)

    Perlman, Susan B; Luna, Beatriz; Hein, Tyler C; Huppert, Theodore J

    2014-01-15

    The experience of frustration is common in early childhood, yet some children seem to possess a lower tolerance for frustration than others. Characterizing the biological mechanisms underlying a wide range of frustration tolerance observed in early childhood may inform maladaptive behavior and psychopathology that is associated with this construct. The goal of this study was to measure prefrontal correlates of frustration in 3-5-year-old children, who are not readily adaptable for typical neuroimaging approaches, using functional near infrared spectroscopy (fNIRS). fNIRS of frontal regions were measured as frustration was induced in children through a computer game where a desired and expected prize was "stolen" by an animated dog. A fNIRS general linear model (GLM) was used to quantify the correlation of brain regions with the task and identify areas that were statistically different between the winning and frustrating test conditions. A second-level voxel-based ANOVA analysis was then used to correlate the amplitude of each individual's brain activation with measure of parent-reported frustration. Experimental results indicated increased activity in the middle prefrontal cortex during winning of a desired prize, while lateral prefrontal cortex activity increased during frustration. Further, activity increase in lateral prefrontal cortex during frustration correlated positively with parent-reported frustration tolerance. These findings point to the role of the lateral prefrontal cortex as a potential region supporting the regulation of emotion during frustration. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Understanding the Impact of User Frustration Intensities on Task Performance Using the OCC Theory of Emotions

    Science.gov (United States)

    Washington, Gloria

    2012-01-01

    Have you heard the saying "frustration is written all over your falce"? Well this saying is true, but that is not the only place. Frustration is written all over your face and your body. The human body has various means to communicate an emotion without the utterance of a single word. The Media Equation says that people interact with computers as if they are human: this includes experiencing frustration. This research measures frustration by monitoring human body-based measures such as heart rate, posture, skin temperature. and respiration. The OCC Theory of Emotions is used to separate frustration into different levels or intensities. The results of this study showed that individual intensities of frustration exist, so that task performance is not degraded. Results from this study can be used by usability testers to model how much frustration is needed before task performance measures start to decrease.

  14. Molecular recognition and packing frustration in a helical protein

    Science.gov (United States)

    Huynh, Loan; Neale, Chris; Pomès, Régis

    2017-01-01

    Biomolecular recognition entails attractive forces for the functional native states and discrimination against potential nonnative interactions that favor alternate stable configurations. The challenge posed by the competition of nonnative stabilization against native-centric forces is conceptualized as frustration. Experiment indicates that frustration is often minimal in evolved biological systems although nonnative possibilities are intuitively abundant. Much of the physical basis of minimal frustration in protein folding thus remains to be elucidated. Here we make progress by studying the colicin immunity protein Im9. To assess the energetic favorability of nonnative versus native interactions, we compute free energies of association of various combinations of the four helices in Im9 (referred to as H1, H2, H3, and H4) by extensive explicit-water molecular dynamics simulations (total simulated time > 300 μs), focusing primarily on the pairs with the largest native contact surfaces, H1-H2 and H1-H4. Frustration is detected in H1-H2 packing in that a nonnative packing orientation is significantly stabilized relative to native, whereas such a prominent nonnative effect is not observed for H1-H4 packing. However, in contrast to the favored nonnative H1-H2 packing in isolation, the native H1-H2 packing orientation is stabilized by H3 and loop residues surrounding H4. Taken together, these results showcase the contextual nature of molecular recognition, and suggest further that nonnative effects in H1-H2 packing may be largely avoided by the experimentally inferred Im9 folding transition state with native packing most developed at the H1-H4 rather than the H1-H2 interface. PMID:29261665

  15. Nuclear and magnetic correlations in a topologically frustrated elemental magnet

    International Nuclear Information System (INIS)

    Stewart, J.R.; Andersen, K.H.; Cywinski, R.

    1999-01-01

    β-Mn is an exchange enhanced paramagnetic metal on the verge of antiferromagnetic order. However, strong spin-fluctuations and topological frustration prevent the formation of static long-range order. We investigate the magnetic properties of the β-MnAl series of alloys in which short-range magnetic order is achieved at low temperature. We extract the short-range nuclear and magnetic correlations using a novel reverse Monte-Carlo procedure. (authors)

  16. Level of Ethics, Ethical Frustration and Accountant Discretionary Practices

    OpenAIRE

    Tamminen, Rauno; Leskinen, Markku

    1996-01-01

    In this paper it is shown with the help of a small sample that accounting is ethically loaded; that there exists ethical frustration caused by situational factors related to accounting; and that most probably the situational pressures may also change the level of ethics in the Kohlbergian sense; and that in studying accounting-related ethical problems empirically, the paper-and pencil tests and interviewing may give biased results. The accountant's model of the world is supplemented with ...

  17. Cholinergic transmission underlies modulation of frustration by open field exposure.

    Science.gov (United States)

    Psyrdellis, Mariana; Pautassi, Ricardo Marcos; Mustaca, Alba; Justel, Nadia

    2016-01-01

    Frustration can be defined as an emotional state generated by the omission or devaluation in the quantity or quality of an expected appetitive reward. Thus, reactivity to a reward is affected by prior experience with the different reinforcer values of that reward. This phenomenon is known as incentive relativity, and can be studied by different paradigms. Although methodologically simple, the exploration of a novel open field (OF) is a complex situation that involves several behavioral processes, including stress induction and novelty detection. OF exposure can enhance or block the acquisition of associative and non-associative memories. These experiments evaluated the effect of OF exploration on frustration and the role played by the cholinergic system in this phenomenon. OF exploration before first or second trial of incentive downshift modulated the expression of frustration. This effect of OF was blocked by the administration of scopolamine either before or after OF exploration. These results indicate that the cholinergic system is involved in the acquisition and consolidation of OF information.

  18. Social comparison mediates chimpanzees' responses to loss, not frustration.

    Science.gov (United States)

    Hopper, Lydia M; Lambeth, Susan P; Schapiro, Steven J; Brosnan, Sarah F

    2014-11-01

    Why do chimpanzees react when their partner gets a better deal than them? Do they note the inequity or do their responses reflect frustration in response to unattainable rewards? To tease apart inequity and contrast, we tested chimpanzees in a series of conditions that created loss through individual contrast, through inequity, or by both. Chimpanzees were tested in four social and two individual conditions in which they received food rewards in return for exchanging tokens with an experimenter. In conditions designed to create individual contrast, after completing an exchange, the chimpanzees were given a relatively less-preferred reward than the one they were previously shown. The chimpanzees' willingness to accept the less-preferred rewards was independent of previously offered foods in both the social and individual conditions. In conditions that created frustration through inequity, subjects were given a less-preferred reward than the one received by their partner, but not in relation to the reward they were previously offered. In a social context, females were more likely to refuse to participate when they received a less-preferred reward than their partner (disadvantageous inequity), than when they received a more-preferred reward (advantageous inequity). Specifically, the females' refusals were typified by refusals to exchange tokens rather than refusals to accept food rewards. Males showed no difference in their responses to inequity or individual contrast. These results support previous evidence that some chimpanzees' responses to inequity are mediated more strongly by what others receive than by frustration effects.

  19. Engineering of frustration in colloidal artificial ice (Conference Presentation)

    Science.gov (United States)

    Ortiz-Ambriz, Antonio; Tierno, Pietro

    2016-09-01

    Artificial spin-ice systems have been used to date as microscopic models of frustration induced by lattice topology, as they allow for the direct visualization of spin arrangements and textures. However, the engineering of frustrated ice states in which individual spins can be manipulated in situ and the real-time observation of their collective dynamics remain both challenging tasks. Recently, an analogue system has been proposed theoretically, where an optical landscape confined colloidal particles that interacted electrostatically. Here we realize experimentally another version of a colloidal artificial ice system using interacting magnetically polarizable particles confined to lattices of bistable gravitational traps. We show quantitatively that ice-selection rules emerge in this frustrated soft matter system by tuning the strength of the pair-interactions between the microscopic units. By using optical tweezers, we can control particle positioning and dipolar coupling, we introduce monopole-like defects and strings and use loops with defined chirality as an elementary unit to store binary information.

  20. Harmonic and geometric analysis

    CERN Document Server

    Citti, Giovanna; Pérez, Carlos; Sarti, Alessandro; Zhong, Xiao

    2015-01-01

    This book presents an expanded version of four series of lectures delivered by the authors at the CRM. Harmonic analysis, understood in a broad sense, has a very wide interplay with partial differential equations and in particular with the theory of quasiconformal mappings and its applications. Some areas in which real analysis has been extremely influential are PDE's and geometric analysis. Their foundations and subsequent developments made extensive use of the Calderón–Zygmund theory, especially the Lp inequalities for Calderón–Zygmund operators (Beurling transform and Riesz transform, among others) and the theory of Muckenhoupt weights.  The first chapter is an application of harmonic analysis and the Heisenberg group to understanding human vision, while the second and third chapters cover some of the main topics on linear and multilinear harmonic analysis. The last serves as a comprehensive introduction to a deep result from De Giorgi, Moser and Nash on the regularity of elliptic partial differen...

  1. Broadband over power lines in the U.S. : FCC update

    Energy Technology Data Exchange (ETDEWEB)

    Romano, B. [Federal Communications Commission, Washington, DC (United States). Office of Engineering and Technology

    2005-07-01

    This presentation provided an update by the Federal Communications Commission (FCC) on broadband over power lines (BPL) in the United States. It described why the FCC has a role in BPL and presented the different types of BPL including in-house and access BPL. The presentation outlined BPL products and installation such as a coupler, backhaul-point, and bridge. Section 301 of the Communications Act and the statutory mandate of the FCC were discussed. Next, a background of unlicensed operations, regulation of low-power devices and other regulations relating to BPL were presented along with access BPL rule making and its objectives. These included removing regulatory uncertainty to encourage investments in BPL; promoting development of Access BPL technology to allow consumers to reap its benefits; and, ensuring protection of licensed radio services. Access BPL rules, database requirements, and equipment authorization were presented in detail. Last, the presentation discussed mitigation requirements, transition time, and next steps. The future of BPL was also discussed with reference to notable cheerleaders of BPL, FCC interest in BPL, the benefits of BPL, and local impediments. 1 tab., 5 figs.

  2. 78 FR 28217 - Sunshine Act Meeting: FCC To Hold Open Commission Meeting

    Science.gov (United States)

    2013-05-14

    ... ENGINEERING & Establishment of an TECHNOLOGY. Air-Ground Mobile Broadband Secondary Service for Passengers...: Amendment of ENGINEERING & Part 2 of the TECHNOLOGY. Commission's Rules for Federal Earth Stations... meeting can be purchased from the FCC's duplicating contractor, Best Copy and Printing, Inc. (202) 488...

  3. Analytical EAM alloy models for FCC metals. | Azi | Journal of the ...

    African Journals Online (AJOL)

    An analytic electron density function (r) and pair potential function (r) have been developed for FCC metals from their experimental binary alloy data. Values of the electron densities, derived from exact dilute limit heat of solution, were used to determine the pair potentials via the equation of state of Rose et al [3].

  4. 76 FR 19357 - FCC To Hold Open Commission Meeting, Thursday, April 7, 2011

    Science.gov (United States)

    2011-04-07

    ... (202) 488-5562. These copies are available in paper format and alternative media, including large print... FEDERAL COMMUNICATIONS COMMISSION FCC To Hold Open Commission Meeting, Thursday, April 7, 2011 March 31, 2011. The Federal Communications Commission will hold an Open Meeting on the subjects listed...

  5. 76 FR 4110 - Sunshine Act Meeting; FCC To Hold Open Commission Meeting Tuesday, January 25, 2011

    Science.gov (United States)

    2011-01-24

    ... (202) 488-5562. These copies are available in paper format and alternative media, including large print... FEDERAL COMMUNICATIONS COMMISSION Sunshine Act Meeting; FCC To Hold Open Commission Meeting Tuesday, January 25, 2011 January 18, 2011. The Federal Communications Commission will hold an Open...

  6. 75 FR 62818 - Sunshine Act Meeting; FCC To Hold Open Commission Meeting Thursday, October 14, 2010

    Science.gov (United States)

    2010-10-13

    ...-5563; TTY (202) 488-5562. These copies are available in paper format and alternative media, including... FEDERAL COMMUNICATIONS COMMISSION Sunshine Act Meeting; FCC To Hold Open Commission Meeting Thursday, October 14, 2010 October 7, 2010. The Federal Communications Commission will hold an Open Meeting...

  7. 77 FR 73462 - Sunshine Act Meeting FCC To Hold Open Commission Meeting Wednesday, December 12, 2012

    Science.gov (United States)

    2012-12-10

    ... alternative media, including large print/ type; digital disk; and audio and video tape. Best Copy and Printing... FEDERAL COMMUNICATIONS COMMISSION Sunshine Act Meeting FCC To Hold Open Commission Meeting Wednesday, December 12, 2012 December 5, 2012. The Federal Communications Commission will hold an Open...

  8. Overview of design development of FCC-hh Experimental Interaction Regions

    CERN Document Server

    AUTHOR|(CDS)2082479; Abelleira, Jose; Cruz Alaniz, Emilia; Van Riesen-Haupt, Leon; Benedikt, Michael; Besana, Maria Ilaria; Buffat, Xavier; Burkhardt, Helmut; Cerutti, Francesco; Langner, Andy Sven; Martin, Roman; Riegler, Werner; Schulte, Daniel; Tomas Garcia, Rogelio; Appleby, Robert Barrie; Rafique, Haroon; Barranco Garcia, Javier; Pieloni, Tatiana; Boscolo, Manuela; Collamati, Francesco; Nevay, Laurence James; Hofer, Michael

    2017-01-01

    The experimental interaction region (EIR) is one of the key areas that define the performance of the Future Circular Collider. In this overview we will describe the status and the evolution of the design of EIR of FCC-hh, focusing on design of the optics, energy deposition in EIR elements, beam-beam effects and machine detector interface issues.

  9. Surface segregation of the metal impurity to the (1 0 0) surface of fcc ...

    Indian Academy of Sciences (India)

    The surface segregation energies for a single metal impurity to the (100) surface of nine fcc metals (Cu, Ag, Au, Ni, Pd, Pt, Rh, Al and Ir) have been calculated using the MAEAM and molecular dynamics .... function (termed as a cut-off potential) while the separated distance between atoms varies in the range r2e to rc [33]:.

  10. Carbon flow analysis and Carbon emission reduction of FCC in Chinese oil refineries

    Science.gov (United States)

    Jia, Fengrui; Wei, Na; Ma, Danzhu; Liu, Guangxin; Wu, Ming; Yue, Qiang

    2017-08-01

    The major problem of the energy production in oil refineries is the high emission of CO2 in China. The fluid catalytic cracking unit (FCC) is the key source of carbon emission in the oil refineries. According to the statistical data, the carbon emission of FCC unit accounts for more than 31% for the typical oil refineries. The carbon flow of FCC in the typical Chinese oil refineries were evaluated and analysed, which aimed at the solution of CO2 emission reduction. The method of substances flow analysis (SFA) and the mathematical programming were used to evaluate the carbon metabolism and optimize the carbon emission. The results indicated that the combustion emission of the reaction-regeneration subsystem (RRS) was the major source of FCC. The quantity of CO2 emission of RSS was more than 90%. The combustion efficiency and the amount of residual oil affected the carbon emission of RRS most according to the optimized analysis of carbon emission reduction. Moreover, the fractionation subsystem (TFS) had the highest environmental efficiency and the absorption-stabilization subsystem (ASS) had the highest resource efficiency (approximately to 1) of carbon.

  11. Interfacial morphologies and growth modes of F.C.C. metallic crystals from liquid alloys

    International Nuclear Information System (INIS)

    Camel, Denis

    1980-01-01

    Equilibrium and growth morphologies of f.c.c. metallic crystals in contact with liquid alloys have been observed in-situ using transmission electron microscopy. These morphologies have been discussed in terms of atomic interfacial structure and growth mechanisms with the help of a statistical thermodynamic model which takes into account the effects of chemical interactions and interfacial adsorption. (author) [fr

  12. Towards an unbiased comparison of CC, BCC, and FCC lattices in terms of prealiasing

    KAUST Repository

    Vad, Viktor

    2014-06-01

    In the literature on optimal regular volume sampling, the Body-Centered Cubic (BCC) lattice has been proven to be optimal for sampling spherically band-limited signals above the Nyquist limit. On the other hand, if the sampling frequency is below the Nyquist limit, the Face-Centered Cubic (FCC) lattice was demonstrated to be optimal in reducing the prealiasing effect. In this paper, we confirm that the FCC lattice is indeed optimal in this sense in a certain interval of the sampling frequency. By theoretically estimating the prealiasing error in a realistic range of the sampling frequency, we show that in other frequency intervals, the BCC lattice and even the traditional Cartesian Cubic (CC) lattice are expected to minimize the prealiasing. The BCC lattice is superior over the FCC lattice if the sampling frequency is not significantly below the Nyquist limit. Interestingly, if the original signal is drastically undersampled, the CC lattice is expected to provide the lowest prealiasing error. Additionally, we give a comprehensible clarification that the sampling efficiency of the FCC lattice is lower than that of the BCC lattice. Although this is a well-known fact, the exact percentage has been erroneously reported in the literature. Furthermore, for the sake of an unbiased comparison, we propose to rotate the Marschner-Lobb test signal such that an undue advantage is not given to either lattice. © 2014 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

  13. Coexistence of long- and short-range magnetic order in the frustrated magnet SrYb2O4

    Science.gov (United States)

    Quintero-Castro, D. L.; Lake, B.; Reehuis, M.; Niazi, A.; Ryll, H.; Islam, A. T. M. N.; Fennell, T.; Kimber, S. A. J.; Klemke, B.; Ollivier, J.; Sakai, V. Garcia; Deen, P. P.; Mutka, H.

    2012-08-01

    SrYb2O4 is a geometrically frustrated rare-earth magnet, which presents a variety of interrelated magnetic phenomena. The magnetic Yb3+ ions (J=7/2) form potentially frustrated “zigzag” chains along the c axis, arranged in a honeycomb fashion in the ab plane. Heat capacity reveals a magnetic phase transition at TN=0.9 K. The magnetic structure was solved by polarized neutron diffraction and found to be noncollinear with a reduction of the ordered spin moment from the full ionic moment. The low-energy excitations, which were measured by inelastic neutron scattering reveal diffuse scattering both above and below TN. Heat capacity and magnetocaloric effect were performed to map out the magnetic phase diagram as a function of magnetic field and temperature and show a complicated series of states. Altogether, the results suggest that the magnetic interactions in SrYb2O4 compete with each other and with the single-ion anisotropy to produce a highly degenerate ground state manifold that suppresses the magnetic order, broadens the excitations and gives rise to a complex phase diagram.

  14. George E. Valley, Jr. Prize Talk: Quantum Frustrated Magnetism and its Expression in the Ground State Selection of Pyrochlore Magnets

    Science.gov (United States)

    Ross, Kate

    In the search for novel quantum states of matter, such as highly entangled Quantum Spin Liquids, ``geometrically frustrated'' magnetic lattices are essential for suppressing conventional magnetic order. In three dimensions, the pyrochlore lattice is the canonical frustrated geometry. Magnetic materials with pyrochlore structures have the potential to realize unusual phases such as ``quantum spin ice'', which is predicted to host emergent magnetic monopoles, electrons, and photons as its fundamental excitations. Even in pyrochlores that form long range ordered phases, this often occurs through unusual routes such as ``order by disorder'', in which the fluctuation spectrum dictates the preferred ordered state. The rare earth-based pyrochlore series R2Ti2O7 provides a fascinating variety of magnetic ground states. I will introduce the general anisotropic interaction Hamiltonian that has been successfully used to describe several materials in this series. Using inelastic neutron scattering, the relevant anisotropic interaction strengths can be extracted quantitatively. I will discuss this approach, and its application to two rare earth pyrochlore materials, Er2Ti2O7 and Yb2Ti<2O7, whose ground state properties have long been enigmatic. From these studies, ErTi2O7 and Yb2Ti2O7 have been suggested to be realizations of "quantum order by disorder" and "quantum spin ice", respectively. This research was supported by NSERC of Canada and the National Science Foundation.

  15. Possible Frustration Effects on a New Antiferromagnetic Compound Ce6Pd13Zn4 with the Octahedral Ce Sublattice

    Science.gov (United States)

    Matsuoka, Eiichi; Oshima, Akihiro; Sugawara, Hitoshi; Sakurai, Takahiro; Ohta, Hitoshi

    2018-01-01

    Magnetization, specific heat, and electrical resistivity measurements have been performed on polycrystalline samples of a new cubic compound, Ce6Pd13Zn4. This compound exhibits metallic behavior and is classified as a Kondo-lattice system. The trivalent Ce ions are responsible for the antiferromagnetic transition at TN = 3.3 K and the phase transition at T'N = 1.3 K with the formation of superzone gaps. The increase in magnetic susceptibilities below TN and the considerably large value of the specific heat divided by temperature (1.25 J·Ce-mol-1·K-2) imply the existence of non-ordered Ce magnetic moments due to the geometrical frustration on the octahedral Ce sublattice.

  16. Frustrated magnetism and caloric effects in Mn-based antiperovskite nitrides: Ab initio theory

    Science.gov (United States)

    Zemen, J.; Mendive-Tapia, E.; Gercsi, Z.; Banerjee, R.; Staunton, J. B.; Sandeman, K. G.

    2017-05-01

    We model changes of magnetic ordering in Mn-based antiperovskite nitrides driven by biaxial lattice strain at zero and at finite temperature. We employ a noncollinear spin-polarized density functional theory to compare the response of the geometrically frustrated exchange interactions to a tetragonal symmetry breaking (the so called piezomagnetic effect) across a range of Mn3AN (A = Rh, Pd, Ag, Co, Ni, Zn, Ga, In, Sn) at zero temperature. Building on the robustness of the effect we focus on Mn3GaN and extend our study to finite temperature using the disordered local moment (DLM) first-principles electronic structure theory to model the interplay between the ordering of Mn magnetic moments and itinerant electron states. We discover a rich temperature-strain magnetic phase diagram with two previously unreported phases stabilized by strains larger than 0.75% and with transition temperatures strongly dependent on strain. We propose an elastocaloric cooling cycle crossing two of the available phase transitions to achieve simultaneously a large isothermal entropy change (due to the first-order transition) and a large adiabatic temperature change (due to the second-order transition).

  17. Geometrical method of decoupling

    Directory of Open Access Journals (Sweden)

    C. Baumgarten

    2012-12-01

    Full Text Available The computation of tunes and matched beam distributions are essential steps in the analysis of circular accelerators. If certain symmetries—like midplane symmetry—are present, then it is possible to treat the betatron motion in the horizontal, the vertical plane, and (under certain circumstances the longitudinal motion separately using the well-known Courant-Snyder theory, or to apply transformations that have been described previously as, for instance, the method of Teng and Edwards. In a preceding paper, it has been shown that this method requires a modification for the treatment of isochronous cyclotrons with non-negligible space charge forces. Unfortunately, the modification was numerically not as stable as desired and it was still unclear, if the extension would work for all conceivable cases. Hence, a systematic derivation of a more general treatment seemed advisable. In a second paper, the author suggested the use of real Dirac matrices as basic tools for coupled linear optics and gave a straightforward recipe to decouple positive definite Hamiltonians with imaginary eigenvalues. In this article this method is generalized and simplified in order to formulate a straightforward method to decouple Hamiltonian matrices with eigenvalues on the real and the imaginary axis. The decoupling of symplectic matrices which are exponentials of such Hamiltonian matrices can be deduced from this in a few steps. It is shown that this algebraic decoupling is closely related to a geometric “decoupling” by the orthogonalization of the vectors E[over →], B[over →], and P[over →], which were introduced with the so-called “electromechanical equivalence.” A mathematical analysis of the problem can be traced down to the task of finding a structure-preserving block diagonalization of symplectic or Hamiltonian matrices. Structure preservation means in this context that the (sequence of transformations must be symplectic and hence canonical. When

  18. Geometric Mixing, Peristalsis, and the Geometric Phase of the Stomach

    OpenAIRE

    Arrieta, Jorge; Cartwright, Julian H.E.; Gouillart, Emmanuelle; Piro, Nicolas; Piro, Oreste; Tuval, Idan

    2015-01-01

    International audience; Mixing fluid in a container at low Reynolds number— in an inertialess environment—is not a trivial task. Reciprocating motions merely lead to cycles of mixing and unmixing, so continuous rotation, as used in many technological applications, would appear to be necessary. However, there is another solution: movement of the walls in a cyclical fashion to introduce a geometric phase. We show using journal-bearing flow as a model that such geometric mixing is a general tool...

  19. Communication government agencies: the case of FCC/ Organismos de regulación y control de las comunicaciones: el caso de la FCC

    Directory of Open Access Journals (Sweden)

    Dra. Ana I. Segovia Alonso; asegovia@ccinf.ucm.es

    2009-01-01

    Full Text Available The Federal Communications Commission (FCC is one of the pioneering regulatory agencies in relation to the communication system within the capitalist model. From a general perspective, beginning with its constitution, plan of action, and regulatory decisions, we carry out a research of the historical, political and economic conditions under which this commission operates and was created. The main objective is to outline the reasons for the failures and mistakes of the FCC, that has been accused –since its origins- of acting in defence of the industry interests it seemingly regulates, and not in the public interest; and of being a creature of Congress, with no real independence from the politic, economic, and judiciary power. The final purpose of this essay is to suggest the necessary democratization of the communicative space, which needs an agency transformation that could change the current defence of the existing status quo. La Comisión Federal de Comunicaciones (FCC es uno de los organismos pioneros en el control y regulación del sistema comunicativo en el modelo capitalista. Desde una mirada general a partir de su composición, formas de actuación, y decisiones normativas, se realiza un estudio de los condicionamientos históricos, políticos y económicos bajo los cuales se crea y desarrolla su labor esta Comisión. El objetivo fundamental es delinear las razones de los errores y negligencias de la FCC, acusada desde sus inicios de actuar en defensa de los intereses de la industria a la que pretende regular, y no en interés del público; y de ser una criatura del Congreso sin independencia del poder político, ni económico, ni judicial. El propósito final del presente artículo es plantear la necesaria democratización del espacio comunicativo, que pasa por una transformación de estos organismos y su defensa del status quo existente.

  20. Geometric inequalities for black holes

    Energy Technology Data Exchange (ETDEWEB)

    Dain, Sergio [Universidad Nacional de Cordoba (Argentina)

    2013-07-01

    Full text: A geometric inequality in General Relativity relates quantities that have both a physical interpretation and a geometrical definition. It is well known that the parameters that characterize the Kerr-Newman black hole satisfy several important geometric inequalities. Remarkably enough, some of these inequalities also hold for dynamical black holes. This kind of inequalities, which are valid in the dynamical and strong field regime, play an important role in the characterization of the gravitational collapse. They are closed related with the cosmic censorship conjecture. In this talk I will review recent results in this subject. (author)

  1. Geometric inequalities for black holes

    International Nuclear Information System (INIS)

    Dain, Sergio

    2013-01-01

    Full text: A geometric inequality in General Relativity relates quantities that have both a physical interpretation and a geometrical definition. It is well known that the parameters that characterize the Kerr-Newman black hole satisfy several important geometric inequalities. Remarkably enough, some of these inequalities also hold for dynamical black holes. This kind of inequalities, which are valid in the dynamical and strong field regime, play an important role in the characterization of the gravitational collapse. They are closed related with the cosmic censorship conjecture. In this talk I will review recent results in this subject. (author)

  2. Geometric Computing for Freeform Architecture

    KAUST Repository

    Wallner, J.

    2011-06-03

    Geometric computing has recently found a new field of applications, namely the various geometric problems which lie at the heart of rationalization and construction-aware design processes of freeform architecture. We report on our work in this area, dealing with meshes with planar faces and meshes which allow multilayer constructions (which is related to discrete surfaces and their curvatures), triangles meshes with circle-packing properties (which is related to conformal uniformization), and with the paneling problem. We emphasize the combination of numerical optimization and geometric knowledge.

  3. PREFACE: The International Conference on Highly Frustrated Magnetism HFM2008

    Science.gov (United States)

    Eremin, Ilya; Brenig, Wolfram; Kremer, Reinhard; Litterst, Jochen

    2009-01-01

    The International Conference on Highly Frustrated Magnetism 2008 (HFM2008) took place on 7-12 September 2008 at the Technische Universität Carolo-Wilhelmina zu Braunschweig, Germany. This conference was the fourth event in a series of meetings, which started in Waterloo, Canada (HFM 2000), followed by the second one in Grenoble, France (HFM 2003), and the third meeting in Osaka, Japan (HFM 2006). HFM2008 attracted more than 220 participants from all over the world. The number of participants of the HFM conference series has been increasing steadily, from about 80 participants at HFM 2000, to 120 participants at HFM 2003, and 190 participants at HFM 2006, demonstrating that highly frustrated magnetism remains a rapidly growing area of research in condensed matter physics. At the end of HFM2008 it was decided that the next International Conference on Highly Frustrated Magnetism will be held in Baltimore, USA in 2010. HFM2008 saw four plenary talks by R Moessner, S Nakatsuji, S-W Cheong, and S Sachdev, 18 invited presentations, 30 contributed talks and about 160 poster presentations from all areas of frustrated magnetism. The subjects covered by the conference included: Kagome systems Itinerant frustrated systems Spinels and pyrochlore materials Triangular systems Unconventional order and spin liquids Chain systems Chain systems Novel frustrated systems This volume of Journal of Physics: Conference Series contains the proceedings of HFM2008 with 83 papers that provide a scientific record of the scientific topics covered by the conference. All articles have been refereed by experts in the field. It is our hope that the reader will enjoy and profit from the HFM2008 Proceedings. Ilya Eremin Proceedings Editor Wolfram Brenig, Reinhard Kremer, and Jochen Litterst Co-Editors International Advisory Board L Balents (USA) F Becca (Italy) S Bramwell (UK) P Fulde (Germany) B D Gaulin (Canada) J E Greedan (Canada) A Harrison (France) Z Hiroi (Japan) H Kawamura (Japan) A Keren

  4. Mobile Watermarking against Geometrical Distortions

    Directory of Open Access Journals (Sweden)

    Jing Zhang

    2015-08-01

    Full Text Available Mobile watermarking robust to geometrical distortions is still a great challenge. In mobile watermarking, efficient computation is necessary because mobile devices have very limited resources due to power consumption. In this paper, we propose a low-complexity geometrically resilient watermarking approach based on the optimal tradeoff circular harmonic function (OTCHF correlation filter and the minimum average correlation energy Mellin radial harmonic (MACE-MRH correlation filter. By the rotation, translation and scale tolerance properties of the two kinds of filter, the proposed watermark detector can be robust to geometrical attacks. The embedded watermark is weighted by a perceptual mask which matches very well with the properties of the human visual system. Before correlation, a whitening process is utilized to improve watermark detection reliability. Experimental results demonstrate that the proposed watermarking approach is computationally efficient and robust to geometrical distortions.

  5. Kaleidoscope of exotic quantum phases in a frustrated XY model.

    Science.gov (United States)

    Varney, Christopher N; Sun, Kai; Galitski, Victor; Rigol, Marcos

    2011-08-12

    The existence of quantum spin liquids was first conjectured by Pomeranchuk some 70 years ago, who argued that frustration in simple antiferromagnetic theories could result in a Fermi-liquid-like state for spinon excitations. Here we show that a simple quantum spin model on a honeycomb lattice hosts the long sought for Bose metal with a clearly identifiable Bose surface. The complete phase diagram of the model is determined via exact diagonalization and is shown to include four distinct phases separated by three quantum phase transitions.

  6. Frustration of contract e impossibility of performance en el common law inglés

    OpenAIRE

    José Félix Chamie

    2009-01-01

    Sumario: i. Premisa. Formación de la doctrina de la frustration of contract. ii. Implied term theory. iii. Just and reasonable solution theory. iv. Foundation of contract theory. v. Radical change in the obligation: The “Construction theory”. vi. Efectos de la aplicación de la doctrine of frustration. vii. Límites de la jurisprudencia a la aplicación de la doctrine of frustration of contract

  7. Frustration of contract e impossibility of performance en el common law inglés

    Directory of Open Access Journals (Sweden)

    José Félix Chamie

    2009-06-01

    Full Text Available Sumario: i. Premisa. Formación de la doctrina de la frustration of contract. ii. Implied term theory. iii. Just and reasonable solution theory. iv. Foundation of contract theory. v. Radical change in the obligation: The “Construction theory”. vi. Efectos de la aplicación de la doctrine of frustration. vii. Límites de la jurisprudencia a la aplicación de la doctrine of frustration of contract

  8. Energetic frustrations in protein folding at residue resolution: a homologous simulation study of Im9 proteins.

    Directory of Open Access Journals (Sweden)

    Yunxiang Sun

    Full Text Available Energetic frustration is becoming an important topic for understanding the mechanisms of protein folding, which is a long-standing big biological problem usually investigated by the free energy landscape theory. Despite the significant advances in probing the effects of folding frustrations on the overall features of protein folding pathways and folding intermediates, detailed characterizations of folding frustrations at an atomic or residue level are still lacking. In addition, how and to what extent folding frustrations interact with protein topology in determining folding mechanisms remains unclear. In this paper, we tried to understand energetic frustrations in the context of protein topology structures or native-contact networks by comparing the energetic frustrations of five homologous Im9 alpha-helix proteins that share very similar topology structures but have a single hydrophilic-to-hydrophobic mutual mutation. The folding simulations were performed using a coarse-grained Gō-like model, while non-native hydrophobic interactions were introduced as energetic frustrations using a Lennard-Jones potential function. Energetic frustrations were then examined at residue level based on φ-value analyses of the transition state ensemble structures and mapped back to native-contact networks. Our calculations show that energetic frustrations have highly heterogeneous influences on the folding of the four helices of the examined structures depending on the local environment of the frustration centers. Also, the closer the introduced frustration is to the center of the native-contact network, the larger the changes in the protein folding. Our findings add a new dimension to the understanding of protein folding the topology determination in that energetic frustrations works closely with native-contact networks to affect the protein folding.

  9. Effect of Frustration on Brain Activation Pattern in Subjects with Different Temperament

    OpenAIRE

    Bierzynska, Maria; Bielecki, Maksymilian; Marchewka, Artur; Debowska, Weronika; Duszyk, Anna; Zajkowski, Wojciech; Falkiewicz, Marcel; Nowicka, Anna; Strelau, Jan; Kossut, Malgorzata

    2016-01-01

    In spite of the prevalence of frustration in everyday life, very few neuroimaging studies were focused on this emotional state. In the current study we aimed to examine effects of frustration on brain activity while performing a well-learned task in participants with low and high tolerance for arousal. Prior to the functional magnetic resonance imaging session, the subjects underwent 2 weeks of Braille reading training. Frustration induction was obtained by using a novel highly difficult tact...

  10. [Tolerance for frustration as a reliability factor in the work of the human operator].

    Science.gov (United States)

    Makarevich, O F

    1986-01-01

    Frustration tolerance is a personality trait that contributes to the reliable performance of an air traffic controller. This paper presents the results of a psychological examination of air traffic controllers using the Rosenzweig frustration test and emphasizes a correlation between the predominant behavior type in frustrating circumstances and professional success. The paper contains examples of realistic observations over air traffic controllers which confirm experimental data.

  11. Antenna with Dielectric Having Geometric Patterns

    Science.gov (United States)

    Dudley, Kenneth L. (Inventor); Elliott, Holly A. (Inventor); Cravey, Robin L. (Inventor); Connell, John W. (Inventor); Ghose, Sayata (Inventor); Watson, Kent A. (Inventor); Smith, Jr., Joseph G. (Inventor)

    2013-01-01

    An antenna includes a ground plane, a dielectric disposed on the ground plane, and an electrically-conductive radiator disposed on the dielectric. The dielectric includes at least one layer of a first dielectric material and a second dielectric material that collectively define a dielectric geometric pattern, which may comprise a fractal geometry. The radiator defines a radiator geometric pattern, and the dielectric geometric pattern is geometrically identical, or substantially geometrically identical, to the radiator geometric pattern.

  12. Solid-state NMR as a spectroscopic tool for characterizing phosphane-borane frustrated lewis pairs.

    Science.gov (United States)

    Wiegand, Thomas; Eckert, Hellmut; Grimme, Stefan

    2013-01-01

    Frustrated Lewis pair (FLP) chemistry has provided a new strategy for small molecule binding and/or catalytic activation. It is based on the cooperative reaction behavior of Lewis acid and Lewis base centers that are in close proximity to each other (e.g., within the same molecule) but cannot form a direct bond because of geometrical constraints. The most prominent FLPs are based on intramolecular phosphane-borane adducts, whose catalytic properties can be tailored over wide ranges of reactivity and selectivity. For the structural and chemical design of such systems, a fundamental understanding needs to be developed on how structure, dynamics and covalent interactions between the Lewis centers influence the reactivity profile. Advanced solid-state nuclear magnetic resonance (NMR) spectroscopic techniques afford new opportunities for addressing this challenge. Following a general introduction into the fundamentals of NMR spectroscopy, this review discusses the different types of internal interactions - magnetic shielding, nuclear electric quadrupolar coupling, indirect spin-spin interactions, and "through-space" dipole-dipole couplings - influencing NMR spectra in the solid state. As discussed in detail, each type of interaction bears specific informational content with regard to structural issues in FLP chemistry. One of the most attractive features of solid-state NMR is the possibility of tailoring the effective Hamiltonian by manipulations in either physical space or spin space. Using such "decoupling" or "recoupling" techniques certain types of interactions can be selectively turned off for spectral simplification or turned on for selective evaluation. The present review summarizes the most important selective averaging techniques that have found applications in the characterization of FLPs. In a second step the interaction parameters need to be connected with structure and bonding information. As illustrated in this chapter, ab initio calculations using density

  13. Two-Layer 16 Tesla Cosθ Dipole Design for the FCC

    Energy Technology Data Exchange (ETDEWEB)

    Holik, Eddie Frank [Fermilab; Ambrosio, Giorgio [Fermilab; Apollinari, G. [Fermilab

    2018-02-13

    The Future Circular Collider or FCC is a study aimed at exploring the possibility to reach 100 TeV total collision energy which would require 16 tesla dipoles. Upon the conclusion of the High Luminosity Upgrade, the US LHC Accelerator Upgrade Pro-ject in collaboration with CERN will have extensive Nb3Sn magnet fabrication experience. This experience includes robust Nb3Sn conductor and insulation scheming, 2-layer cos2θ coil fabrication, and bladder-and-key structure and assembly. By making im-provements and modification to existing technology the feasibility of a two-layer 16 tesla dipole is investigated. Preliminary designs indicate that fields up to 16.6 tesla are feasible with conductor grading while satisfying the HE-LHC and FCC specifications. Key challenges include accommodating high-aspect ratio conductor, narrow wedge design, Nb3Sn conductor grading, and especially quench protection of a 16 tesla device.

  14. A Novel FCC Catalyst Based on a Porous Composite Material Synthesized via an In Situ Technique

    Directory of Open Access Journals (Sweden)

    Shu-Qin Zheng

    2015-11-01

    Full Text Available To overcome diffusion limitations and improve transport in microporous zeolite, the materials with a wide-pore structure have been developed. In this paper, composite microspheres with hierarchical porous structure were synthesized by an in situ technique using sepiolite, kaolin and pseudoboehmite as raw material. A novel fluid catalytic cracking (FCC catalyst for maximizing light oil yield was prepared based on the composite materials. The catalyst was characterized by XRD, FT-IR, SEM, nitrogen adsorption-desorption techniques and tested in a bench FCC unit. The results indicated that the catalyst had more meso- and macropores and more acid sites than the reference catalyst, and thus can increase light oil yield by 1.31 %, while exhibiting better gasoline and coke selectivity.

  15. submitter ELECTRON CLOUD AND COLLECTIVE EFFECTS IN THE INTERACTION REGION OF FCC-ee

    CERN Document Server

    Belli, E; Rumolo, G

    2016-01-01

    The FCC-ee is an e⁺e⁻ circular collider designed to accommodate four different experiments in a beam energy range from 91 to 350 GeV and is a part of the Future Circular Collider (FCC) project at CERN. One of the most critical aspects of this new very challenging machine regards the collective effects which can produce instabilities, thus limiting the accelerator operation and reducing its performance. The following studies are focused on the Interaction Region of the machine. This talk will present preliminary simulation results of the power loss due to the wake fields generated by the electromagnetic interaction of the beam with the vacuum chamber. A preliminary estimation of the electron cloud build-up is also reported, whose effects have been recognized as one of the main limitations for the Large Hadron Collider at CERN.

  16. Ultraboosted Zt and γt production at the HL-LHC and FCC-hh

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar-Saavedra, J.A. [Universidad de Granada, Departamento de Fisica Teorica y del Cosmos, Granada (Spain)

    2017-11-15

    Searches for anomalous Zt and γt production provide an excellent probe of flavour-changing top interactions when the energies considered are very large. In this note we estimate the sensitivity to these interactions at the high-luminosity phase of the LHC and a future 100 TeV pp collider (FCC-hh). For the LHC, the expected limits on t → uZ/uγ branching ratios from Zt and γt production will reach the 10{sup -5} level, one order of magnitude better than the existing projections for t → uZ from t anti t production. For the FCC-hh, the limits on t → uZ/uγ could reach an impressive sensitivity at the 10{sup -6} level, with limits on t → cZ/cγ at the 10{sup -5} level. (orig.)

  17. Non linear field correction effects on the dynamic aperture of the FCC-hh

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00361058; Seryi, Andrei; Maclean, Ewen Hamish; Martin, Roman; Tomas Garcia, Rogelio

    2017-01-01

    The Future Circular Collider (FCC) design study aims to develop the designs of possible circular colliders in the post LHC era. In particular the FCC-hh will aim to produce proton-proton collisions at a center of mass energy of 100 TeV. Given the large beta functions and integrated length of the quadrupoles of the final focus triplet the effect of systematic and random non linear errors in the magnets are expected to have a severe impact on the stability of the beam. Following the experience on the HL-LHC this work explores the implementation of non-linear correctors to minimize the resonance driving terms arising from the errors of the triplet. Dynamic aperture studies are then performed to study the impact of this correction.

  18. Anger under control: neural correlates of frustration as a function of trait aggression.

    Science.gov (United States)

    Pawliczek, Christina M; Derntl, Birgit; Kellermann, Thilo; Gur, Ruben C; Schneider, Frank; Habel, Ute

    2013-01-01

    Antisocial behavior and aggression are prominent symptoms in several psychiatric disorders including antisocial personality disorder. An established precursor to aggression is a frustrating event, which can elicit anger or exasperation, thereby prompting aggressive responses. While some studies have investigated the neural correlates of frustration and aggression, examination of their relation to trait aggression in healthy populations are rare. Based on a screening of 550 males, we formed two extreme groups, one including individuals reporting high (n=21) and one reporting low (n=18) trait aggression. Using functional magnetic resonance imaging (fMRI) at 3T, all participants were put through a frustration task comprising unsolvable anagrams of German nouns. Despite similar behavioral performance, males with high trait aggression reported higher ratings of negative affect and anger after the frustration task. Moreover, they showed relatively decreased activation in the frontal brain regions and the dorsal anterior cingulate cortex (dACC) as well as relatively less amygdala activation in response to frustration. Our findings indicate distinct frontal and limbic processing mechanisms following frustration modulated by trait aggression. In response to a frustrating event, HA individuals show some of the personality characteristics and neural processing patterns observed in abnormally aggressive populations. Highlighting the impact of aggressive traits on the behavioral and neural responses to frustration in non-psychiatric extreme groups can facilitate further characterization of neural dysfunctions underlying psychiatric disorders that involve abnormal frustration processing and aggression.

  19. Anger under control: neural correlates of frustration as a function of trait aggression.

    Directory of Open Access Journals (Sweden)

    Christina M Pawliczek

    Full Text Available Antisocial behavior and aggression are prominent symptoms in several psychiatric disorders including antisocial personality disorder. An established precursor to aggression is a frustrating event, which can elicit anger or exasperation, thereby prompting aggressive responses. While some studies have investigated the neural correlates of frustration and aggression, examination of their relation to trait aggression in healthy populations are rare. Based on a screening of 550 males, we formed two extreme groups, one including individuals reporting high (n=21 and one reporting low (n=18 trait aggression. Using functional magnetic resonance imaging (fMRI at 3T, all participants were put through a frustration task comprising unsolvable anagrams of German nouns. Despite similar behavioral performance, males with high trait aggression reported higher ratings of negative affect and anger after the frustration task. Moreover, they showed relatively decreased activation in the frontal brain regions and the dorsal anterior cingulate cortex (dACC as well as relatively less amygdala activation in response to frustration. Our findings indicate distinct frontal and limbic processing mechanisms following frustration modulated by trait aggression. In response to a frustrating event, HA individuals show some of the personality characteristics and neural processing patterns observed in abnormally aggressive populations. Highlighting the impact of aggressive traits on the behavioral and neural responses to frustration in non-psychiatric extreme groups can facilitate further characterization of neural dysfunctions underlying psychiatric disorders that involve abnormal frustration processing and aggression.

  20. Anger under Control: Neural Correlates of Frustration as a Function of Trait Aggression

    Science.gov (United States)

    Pawliczek, Christina M.; Derntl, Birgit; Kellermann, Thilo; Gur, Ruben C.; Schneider, Frank; Habel, Ute

    2013-01-01

    Antisocial behavior and aggression are prominent symptoms in several psychiatric disorders including antisocial personality disorder. An established precursor to aggression is a frustrating event, which can elicit anger or exasperation, thereby prompting aggressive responses. While some studies have investigated the neural correlates of frustration and aggression, examination of their relation to trait aggression in healthy populations are rare. Based on a screening of 550 males, we formed two extreme groups, one including individuals reporting high (n=21) and one reporting low (n=18) trait aggression. Using functional magnetic resonance imaging (fMRI) at 3T, all participants were put through a frustration task comprising unsolvable anagrams of German nouns. Despite similar behavioral performance, males with high trait aggression reported higher ratings of negative affect and anger after the frustration task. Moreover, they showed relatively decreased activation in the frontal brain regions and the dorsal anterior cingulate cortex (dACC) as well as relatively less amygdala activation in response to frustration. Our findings indicate distinct frontal and limbic processing mechanisms following frustration modulated by trait aggression. In response to a frustrating event, HA individuals show some of the personality characteristics and neural processing patterns observed in abnormally aggressive populations. Highlighting the impact of aggressive traits on the behavioral and neural responses to frustration in non-psychiatric extreme groups can facilitate further characterization of neural dysfunctions underlying psychiatric disorders that involve abnormal frustration processing and aggression. PMID:24205247

  1. The association between Internet addiction and belief of frustration intolerance: the gender difference.

    Science.gov (United States)

    Ko, Chih-Hung; Yen, Ju-Yu; Yen, Cheng-Fang; Chen, Chung-Sheng; Wang, Shing-Yaw

    2008-06-01

    This study evaluated the association between Internet addiction and frustration intolerance, the gender difference of frustration intolerance, and the gender differences of the association between Internet addiction and frustration intolerance. Participants were 2,114 students (1,204 male and 910 female) who were recruited to complete the Chen Internet Addiction Scale and Frustration Discomfort scale. Females had higher scores on the subscale of entitlement and emotional intolerance and the total scale of the frustration intolerance. There was a significant gender difference on the association between Internet addiction and frustration intolerance. The association was higher in male adolescents. Regression analysis revealed male adolescents with Internet addiction had higher intolerance to frustration of entitlement and emotional discomfort, and female adolescents with it had higher intolerance to emotional discomfort and lower tolerance to frustration of achievement. Frustration intolerance should be evaluated for adolescents with Internet addiction, especially for males. Rational emotive behavior therapy focusing on different irrational beliefs should be provided to male and female adolescents with Internet addiction.

  2. Physics perspectives for a Future Circular Collider: FCC-hh/eh - Physics-Perspectives

    CERN Document Server

    CERN. Geneva

    2017-01-01

    The lectures will briefly discuss the parameters of a Future Circular Collider, before addressing in detail the physics perspectives and the challenges for the experiments and detector systems. The main focus will be on ee and pp collisions, but opportunities for e—p physics will also be covered. The FCC physics perspectives will be presented with reference to the ongoing LHC programme, including the physics potential from future upgrades to the LHC in luminosity and possibly energy.

  3. Physics Perspectives for a Future Circular Collider: FCC-hh - Accelerator & Detectors

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    The lectures will briefly discuss the parameters of a Future Circular Collider, before addressing in detail the physics perspectives and the challenges for the experiments and detector systems. The main focus will be on ee and pp collisions, but opportunities for e—p physics will also be covered. The FCC physics perspectives will be presented with reference to the ongoing LHC programme, including the physics potential from future upgrades to the LHC in luminosity and possibly energy.

  4. Catalytic cracking of vacuum gasoil overSVR, ITH, and MFI zeolites as FCC catalyst additives

    Czech Academy of Sciences Publication Activity Database

    Hussain, A. I.; Palani, A.; Aitani, A. M.; Čejka, Jiří; Shamzhy, Mariya; Kubů, Martin; Al-Khattaf, S. S.

    2017-01-01

    Roč. 161, JUN 2017 (2017), s. 23-32 ISSN 0378-3820 R&D Projects: GA ČR GBP106/12/G015; GA ČR(CZ) GP14-30898P Institutional support: RVO:61388955 Keywords : ith * mfi * Light olefins * FCC additives Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 3.752, year: 2016

  5. Improved alumina sol FCC catalysts meet challenges of the 1990s

    International Nuclear Information System (INIS)

    Alkemade, V.; Cartlidge, S.; Thompson, J.M.

    1990-01-01

    This paper discusses how improved alumina sol, fluid catalytic cracking (FCC) catalysts allow refiners to upgrade heavier feeds containing high amounts of vanadium and nickel to give premium octane gasolines. When an alumina sol binder is used in catalyst preparation, the desired nickel and vanadium-tolerant alumina phase is formed by precise control of the catalyst finishing conditions. New zeolite formulas also increase gasoline motor octane number and lower gasoline octane sensitivity maintaining gasoline yields

  6. First-principles calculation of the magnetic properties of paramagnetic fcc iron

    International Nuclear Information System (INIS)

    Johnson, D.D.; Gyorffy, B.L.; Pinski, F.J.; Staunton, J.; Stocks, G.M.

    1985-01-01

    Using the disordered local moment picture of itinerant magnetism, we present calculations of the temperature and volume dependence of the magnetic moment and spin-spin correlations for fcc Fe in the paramagnetic state. These calculations are based on the parameter-free, first principles approach of local spin density functional theory and the coherent potential approximation is used to treat the disorder associated with the random orientation of the local moments

  7. Stacking fault growth of FCC crystal: The Monte-Carlo simulation approach

    International Nuclear Information System (INIS)

    Jian Jianmin; Ming Naiben

    1988-03-01

    The Monte-Carlo method has been used to simulate the growth of the FCC (111) crystal surface, on which is presented the outcrop of a stacking fault. The comparison of the growth rates has been made between the stacking fault containing surface and the perfect surface. The successive growth stages have been simulated. It is concluded that the outcrop of stacking fault on the crystal surface can act as a self-perpetuating step generating source. (author). 7 refs, 3 figs

  8. Quantum Spin Liquids in Frustrated Spin-1 Diamond Antiferromagnets

    Science.gov (United States)

    Buessen, Finn Lasse; Hering, Max; Reuther, Johannes; Trebst, Simon

    2018-01-01

    Motivated by the recent synthesis of the spin-1 A -site spinel NiRh2 O4 , we investigate the classical to quantum crossover of a frustrated J1-J2 Heisenberg model on the diamond lattice upon varying the spin length S . Applying a recently developed pseudospin functional renormalization group approach for arbitrary spin-S magnets, we find that systems with S ≥3 /2 reside in the classical regime, where the low-temperature physics is dominated by the formation of coplanar spirals and a thermal (order-by-disorder) transition. For smaller local moments S =1 or S =1 /2 , we find that the system evades a thermal ordering transition and forms a quantum spiral spin liquid where the fluctuations are restricted to characteristic momentum-space surfaces. For the tetragonal phase of NiRh2 O4 , a modified J1-J2--J2⊥ exchange model is found to favor a conventionally ordered Néel state (for arbitrary spin S ), even in the presence of a strong local single-ion spin anisotropy, and it requires additional sources of frustration to explain the experimentally observed absence of a thermal ordering transition.

  9. Effects of isolation in adulthood on frustration and anxiety.

    Science.gov (United States)

    Cuenya, Lucas; Fosacheca, Sandro; Mustaca, Alba; Kamenetzky, Giselle

    2012-06-01

    In consummatory successive negative contrast (cSNC), when rats receive 32% of sweetened water and are unexpectedly exposed to 4% of the same solution, they consume less than those who received 4% regularly. In consummatory extinction (cE), rats receiving a 32% or 4% sugar solution stop lapping when presented with an empty tube. In both cases, these situations trigger an aversive emotional reaction similar to fear and anxiety called frustration or negative contrast effect. Isolation conditions in adulthood increase anxiety responses. We describe an experiment in which isolated or grouped rats in adulthood are evaluated in an elevated plus maze (EPM), in cSNC and cE. Results show that rats in groups express less anxiety and activity in EPM and more persistence in cE than isolated rats. There are no differences between the two housing conditions in cSNC. We discuss these results on the basis of frustration theories. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Bose-Einstein condensation in a frustrated triangular optical lattice

    Science.gov (United States)

    Janzen, Peter; Huang, Wen-Min; Mathey, L.

    2016-12-01

    The recent experimental condensation of ultracold atoms in a triangular optical lattice with a negative effective tunneling parameter paves the way for the study of frustrated systems in a controlled environment. Here, we explore the critical behavior of the chiral phase transition in such a frustrated lattice in three dimensions. We represent the low-energy action of the lattice system as a two-component Bose gas corresponding to the two minima of the dispersion. The contact repulsion between the bosons separates into intra- and intercomponent interactions, referred to as V0 and V12, respectively. We first employ a Huang-Yang-Luttinger approximation of the free energy. For V12/V0=2 , which corresponds to the bare interaction, this approach suggests a first-order phase transition, at which both the U (1 ) symmetry of condensation and the Z2 symmetry of the emergent chiral order are broken simultaneously. Furthermore, we perform a renormalization-group calculation at one-loop order. We demonstrate that the coupling regime 0 1 we show that V0 flows to a negative value, while V12 increases and remains positive. This results in a breakdown of the effective quartic-field theory due to a cubic anisotropy and, again, suggests a discontinuous phase transition.

  11. FCC press release and consumer/retailer enforcement advisories regarding cell jammers, GPS jammers, and other jamming devices

    Science.gov (United States)

    2011-02-09

    FCC ENFORCEMENT BUREAU STEPS UP EDUCATION AND ENFORCEMENT EFFORTS AGAINST CELLPHONE AND GPS JAMMING. CONSUMERS BEWARE: It is Unlawful to Use Cell Jammers and Other Equipment : that Blocks, Jams, or Interferes with Authorized Radio Communication...

  12. Diffusion behavior of Cr diluted in bcc and fcc Fe: Classical and quantum simulation methods

    Energy Technology Data Exchange (ETDEWEB)

    Ramunni, Viviana P., E-mail: vpram@cnea.gov.ar [CONICET, Avda. Rivadavia 1917, Cdad. de Buenos Aires C.P. 1033 (Argentina); Comisión Nacional de Energía Atómica, Gerencia Materiales, Av. Del Libertador 8250, C1429BNP Ciudad de Buenos Aires (Argentina); Rivas, Alejandro M.F. [CONICET, Avda. Rivadavia 1917, Cdad. de Buenos Aires C.P. 1033 (Argentina); Comisión Nacional de Energía Atómica, Departamento de Física Teórica, Tandar, Av. Del Libertador 8250, C1429BNP Ciudad de Buenos Aires (Argentina)

    2015-07-15

    We characterize the atomic mobility behavior driven by vacancies, in bcc and fcc Fe−Cr diluted alloys, using a multi-frequency model. We calculate the full set of the Onsager coefficients and the tracer self and solute diffusion coefficients in terms of the mean jump frequencies. The involved jump frequencies are calculated using a classical molecular static (CMS) technique. For the bcc case, we also perform quantum calculations based on the density functional theory (DFT). There, we show that, in accordance with Bohr's correspondence principle, as the size of the atomic cell (total number of atoms) is increased, quantum results with DFT recover the classical ones obtained with CMS calculations. This last ones, are in perfect agreement with available experimental data for both, solute and solvent diffusion coefficients. For high temperatures, in the fcc phase where no experimental data are yet available, our CMS calculations predict the expected solute and solvent diffusion coefficients. - Graphical abstract: Display Omitted - Highlights: • Comparison of diffusion coefficients obtained from classical and quantum methods. • We perform our calculations in diluted bcc/fcc Fe–Cr alloy. • Magnetic and phonon effects must be taken into account. • Classical calculations are in perfect agreement with experimental data.

  13. Identification of FCC refinery atmospheric pollution events using lanthanoid- and vanadium-bearing aerosols

    Science.gov (United States)

    Moreno, Teresa; Querol, Xavier; Alastuey, Andrés; Gibbons, Wes

    Ambient PM 10 and PM 2.5 at Puertollano (central Spain) are derived mostly from local industrial emissions (including a refinery and power stations) and mineral ("crustal") aerosols from fugitive dusts and African intrusions. Vanadium and the lanthanoid elements (La to Lu) can be used as geochemical markers to help identify these different contributions, especially when combined with atmospheric back-trajectory data. The total lanthanoid (∑Loid) content of PM is controlled primarily by the amount of coarse crustal material present, with the highest values being recorded in PM 10 during an African dust intrusion (13 ng m -3). In contrast, La/Ce and La/Sm ratios are controlled by fine refinery emissions, rising above natural crustal averages due to the release of La from fluid catalytic converters (FCC), and allowing the identification of La anomalies (La > Ce) when FCC emissions are prominent. Crustal La/Ce ratios are least common, and La anomalies most common, in PM 2.5 measured during local pollution events. Increasing contamination of urban/industrial atmospheric PM samples away from crustal compositions may be tracked using a LaCeSm triangular plot, but this does not differentiate between FCC refinery and oil combustion emissions. Comparing lanthanoid and V concentrations does aid such differentiation, although given the likelihood of multiple PM sources in industrial locations, we recommend use of a LaCeV plot rather than simply La/V ratios.

  14. submitter Prospects of Sterile Neutrino Search with the FCC-ee

    CERN Document Server

    Bay Nielsen, Sissel

    A proposed future circular e + e − collider, the FCC-ee, is suggested to search for sterile neutrinos. The Neutrino Minimal Standard Model, νMSM, is a model of sterile neutrinos, that accommodates explanations for several phenomena of physics beyond the Standard Model. This thesis presents an overview of the theoretical motivation for νMSM, an outline of the experimental conditions at the FCC-ee, and a review of previous accelerator bounds for sterile neutrinos. Two studies of sterile neutrinos with masses at the electroweak scale are introduced, an analysis of long lived sterile neutrinos, and an analysis of short lived sterile neutrinos. Both analyses include background studies and sensitivity estimates for the FCC-ee detector. The study of long lived sterile neutrinos is based on a search for detectable displaced vertices with 1012 Z decays, obtaining a search reach on the mixing angle |θ| 2 as small as 10−11. The study of short lived sterile neutrinos is a Monte Carlo study with a cut-based analysi...

  15. Kaolin and commercial fcc catalysts in the cracking of loads of polypropylene under refinary conditions

    Directory of Open Access Journals (Sweden)

    A. M. Ribeiro

    2013-12-01

    Full Text Available The efficiency of Commercial FCC catalysts (low, medium and high activities was evaluated by the catalytic cracking process of combined feeds of polypropylene (PP and vaseline, using a microactivity test unit (M.A.T. for the production of fuel fractions (gasoline, diesel and residue. The PP/vaseline loads, at 2.0% and 4.0% wt, were processed under refinery conditions (load/catalyst ratio and temperature of process. For the PP/vaseline load (4.0% wt, the production of the gasoline fraction was favored by all catalysts, while the diesel fraction was favored by PP/vaseline load (2.0% wt, showing a preferential contact of the zeolite external surface with the end of the polymer chains for the occurrence of the catalytic cracking. All the loads produced a bigger quantity of the gaseous products in the presence of highly active commercial FCC catalyst. The improvement in the activity of the commercial FCC catalyst decreased the production of the liquid fractions and increased the quantity of the solid fractions, independent of the concentration of the loads. These results can be related to the difficulty of the polymer chains to access the catalyst acid sites, occurring preferentially end-chain scission at the external surface of the catalyst.

  16. Large spin fluctuations and moment-volume coupling in Fe in an fcc environment

    International Nuclear Information System (INIS)

    Acet, M.; Wassermann, E.F.

    1999-01-01

    Complete text of publication follows. Polarized paramagnetic neutron diffraction experiments show that the persisting ferromagnetic correlations above the Curie temperature and the associated magnetic moment of fcc Fe 1-x Ni x alloys with x > 0.30 weaken with increasing temperature reflecting a temperature dependence of the band splitting. In alloys with x ≤ 0.30 the magnetic moment becomes more temperature insensitive and, as the pure Fe concentration is reached, it begins to increase with increasing temperature [1]. The observed property is attributed to a combination of effects arising from spin fluctuations pertinent to itinerant system and to moment-volume fluctuations arising from low-spin to high-spin transitions in systems incorporating a high concentration of fcc-Fe. The experiments are extended to broader fcc stability temperature ranges by using and Fe 0.77 Ni 0.13 Mn 0.07 C 0.03 alloy and further and more clear evidence for the temperature driven low-spin to high-spin transitions is shown. (author) [1] M. Acet, E.F. Wassermann, K. Andersen, A. Murani and O. Schaerpf, Europhys. Lett., 40 (1997) 93

  17. submitter Some Critical Collective Effects for the FCC-ee Collider

    CERN Document Server

    Belli, Eleonora; Migliorati, Mauro; Persichelli, Serena; Rumolo, Giovanni; Spataro, Bruno; Zobov, Mikhail

    2017-01-01

    In the framework of the Future Circular Collider (FCC) design studies at CERN [1], the high luminosity electron-positron collider FCC-ee is considered as a possible first step towards FCC-hh, a 100 TeV hadron collider in the same tunnel of about 100 km. Table 1 summarizes the main beam parameters at four different center-of-mass energies from 45.6 GeV (Z pole) to 175 GeV (top pair threshold). One of the major issues for such a kind of machine is represented by collective effects due to electromagnetic fields generated by the interaction of the beam with the vacuum chamber, which could produce instabilities, thus limiting the machine operation and performance. An impedance model is needed to study these instabilities, to predict their effects on the beam dynamics and to find a possible solution for their mitigation. Another critical aspect for the future lepton collider is represented by the electron cloud which will be discussed in the last section of this contribution, together with possible strategies to su...

  18. Design and performance studies of a hadronic calorimeter for a FCC-hh experiment

    Science.gov (United States)

    Faltova, J.

    2018-03-01

    The hadron-hadron Future Circular Collider (FCC-hh) project studies the physics reach of a proton-proton machine with a centre-of-mass-energy of 100 TeV and five times greater peak luminosities than at the High-Luminosity LHC (HL-LHC). The high-energy regime of the FCC-hh opens new opportunities for the discovery of physics beyond the standard model. At 100 TeV a large fraction of the W, Z, H bosons and top quarks are produced with a significant boost. It implies an efficient reconstruction of very high energetic objects decaying hadronically. The reconstruction of those boosted objects sets the calorimeter performance requirements in terms of energy resolution, containment of highly energetic hadron showers, and high transverse granularity. We present the current baseline technologies for the calorimeter system in the barrel region of the FCC-hh reference detector: a liquid argon electromagnetic and a scintillator-steel hadronic calorimeters. The focus of this paper is on the hadronic calorimeter and the performance studies for hadrons. The reconstruction of single particles and the achieved energy resolution for the combined system of the electromagnetic and hadronic calorimeters are discussed.

  19. Development of OCDMA system based on Flexible Cross Correlation (FCC) code with OFDM modulation

    Science.gov (United States)

    Aldhaibani, A. O.; Aljunid, S. A.; Anuar, M. S.; Arief, A. R.; Rashidi, C. B. M.

    2015-03-01

    The performance of the OCDMA systems is governed by numerous quantitative parameters such as the data rate, simultaneous number of users, the powers of transmitter and receiver, and the type of codes. This paper analyzes the performance of the OCDMA system using OFDM technique to enhance the channel data rate, to save power and increase the number of user of OSCDMA systems compared with previous hybrid subcarrier multiplexing/optical spectrum code division multiplexing (SCM/OSCDM) system. The average received signal to noise ratio (SNR) with the nonlinearity of subcarriers is derived. The theoretical results have been evaluated based on BER and number of users as well as amount of power saved. The proposed system gave better performance and save around -6 dBm of the power as well as increase the number of users twice compare to SCM/OCDMA system. In addition it is robust against interference and much more spectrally efficient than SCM/OCDMA system. The system was designed based on Flexible Cross Correlation (FCC) code which is easier construction, less complexity of encoder/decoder design and flexible in-phase cross-correlation for uncomplicated to implement using Fiber Bragg Gratings (FBGs) for the OCDMA systems for any number of users and weights. The OCDMA-FCC_OFDM improves the number of users (cardinality) 108% compare to SCM/ODCMA-FCC system.

  20. Monitoring catalyst flow rate in a FCC cold pilot unity by gamma ray transmission measurements

    International Nuclear Information System (INIS)

    Brito, Marcio F.P.; Netto, Wilson F.S.; Miranda, Marcia V.F.E.S.; Junior, Isacc A.S.; Dantas, Carlos C.; Melo, Silvio B.; Lima, Emerson A.O.

    2013-01-01

    A model for monitoring catalyst mass flow in riser of Fluid Catalytic Cracking - FCC, pilot unity as a function of air flow and solid injection is proposed. The fluidized FCC- catalyst bed system is investigated in an experimental setup the Cold Pilot Unity - CPU by means of gamma ray transmission measurements. Riser in CPU simulates the reactor in FCC process. By automation control air flow is instrumentally measured in riser and the solid injection is manually controlled by valve adjusting. Keeping a constant solid injection, catalyst level at the return column was measured by gamma transmission for several air flow values in riser. The operational condition reached a steady state regime before given to setup a new air flow value. A calibration of catalyst level as a function of air flow in riser is calculated, therefore, a model for solid feed rate is derived. Recent published work evaluates solid concentration in riser of the CPU by means of gamma ray transmission, and a correlation with air velocity is obtained. In this work, the model for solid feed rate was further investigated by carrying out experiments to measure catalyst concentration at the same air flow values. These experiments lead to a model for monitoring catalyst flow in riser as function of solid feed rate and air flow. Simulation with random numbers produced with Matlab software allows to define validation criteria for the model parameters. (author)

  1. Ternary diffusion in Cu-rich fcc Cu–Al–Si alloys at 1073 K

    International Nuclear Information System (INIS)

    Liu, Dandan; Zhang, Lijun; Du, Yong; Xu, Honghui; Jin, Zhanpeng

    2013-01-01

    Highlights: •Interdiffusivities in Cu-rich fcc Cu–Al–Si alloys at 1073 K were determined. •The present results were compared with experimental data in boundary binary systems. •The present results were validated by thermodynamic constraints and Fick’s law. •The sign of ternary cross diffusivities was predicted in terms of thermodynamics. -- Abstract: Utilizing six groups of bulk diffusion couples and with electron probe microanalysis technique, the composition dependence of ternary interdiffusion coefficients in Cu-rich fcc Cu–Al–Si alloys at 1073 K were determined by the Matano-Kirkaldy method. Using a three-dimensional representation, the obtained main ternary diffusion coefficients were found to be consistent with the experimental data in boundary binaries available in the literature. The reliability of the obtained interdiffusivities was further validated by thermodynamic constraints as well as by Fick’s second law applied to numerical simulation. The sign of the ternary cross diffusivities in fcc Cu–Al–Si alloys, which shows a noticeable effect on microstructure, was also successfully predicted in terms of thermodynamics

  2. Geometric Mixing, Peristalsis, and the Geometric Phase of the Stomach.

    Science.gov (United States)

    Arrieta, Jorge; Cartwright, Julyan H E; Gouillart, Emmanuelle; Piro, Nicolas; Piro, Oreste; Tuval, Idan

    2015-01-01

    Mixing fluid in a container at low Reynolds number--in an inertialess environment--is not a trivial task. Reciprocating motions merely lead to cycles of mixing and unmixing, so continuous rotation, as used in many technological applications, would appear to be necessary. However, there is another solution: movement of the walls in a cyclical fashion to introduce a geometric phase. We show using journal-bearing flow as a model that such geometric mixing is a general tool for using deformable boundaries that return to the same position to mix fluid at low Reynolds number. We then simulate a biological example: we show that mixing in the stomach functions because of the "belly phase," peristaltic movement of the walls in a cyclical fashion introduces a geometric phase that avoids unmixing.

  3. Geometric Mixing, Peristalsis, and the Geometric Phase of the Stomach.

    Directory of Open Access Journals (Sweden)

    Jorge Arrieta

    Full Text Available Mixing fluid in a container at low Reynolds number--in an inertialess environment--is not a trivial task. Reciprocating motions merely lead to cycles of mixing and unmixing, so continuous rotation, as used in many technological applications, would appear to be necessary. However, there is another solution: movement of the walls in a cyclical fashion to introduce a geometric phase. We show using journal-bearing flow as a model that such geometric mixing is a general tool for using deformable boundaries that return to the same position to mix fluid at low Reynolds number. We then simulate a biological example: we show that mixing in the stomach functions because of the "belly phase," peristaltic movement of the walls in a cyclical fashion introduces a geometric phase that avoids unmixing.

  4. Geometric Mixing, Peristalsis, and the Geometric Phase of the Stomach

    OpenAIRE

    Arrieta, Jorge; Cartwright, Julyan H. E.; Gouillart, Emmanuelle; Piro, Nicolas; Piro, Oreste; Tuval, Idan

    2012-01-01

    © 2015 Arrieta et al. Mixing fluid in a container at low Reynolds number - in an inertialess environment - is not a trivial task. Reciprocating motions merely lead to cycles of mixing and unmixing, so continuous rotation, as used in many technological applications, would appear to be necessary. However, there is another solution: movement of the walls in a cyclical fashion to introduce a geometric phase.We show using journal-bearing flow as a model that such geometric mixing is a general tool...

  5. Low temperature spin dynamics and high pressure effects in frustrated pyrochlores

    Science.gov (United States)

    Mirebeau, Isabelle

    2008-03-01

    Frustrated pyrochlores R2M2O7, where R^3+ is a rare earth and M^4+ a transition or sp metal ion, show a large variety of exotic magnetic states due to the geometrical frustration of the pyrochlore lattice, consisting of corner sharing tetrahedra for both R and M ions. Neutron scattering allows one to measure their magnetic ground state as well as the spin fluctuations, in a microscopic way. An applied pressure may change the subtle energy balance between magnetic interactions, inducing new magnetic states. In this talk, I will review recent neutron results on Terbium pyrochlores, investigated by high pressure neutron diffraction and inelastic neutron scattering. Tb2M2O7 pyrochlores show respectively a spin liquid state for M=Ti [1], an ordered spin ice state for M= Sn [2], and a spin glass state with chemical order for M=Mo [3]. In Tb2Ti2O7 spin liquid, where only Tb^3+ ions are magnetic, an applied pressure induces long range antiferromagnetic order due to a small distortion of the lattice and magneto elastic coupling [4]. In Tb2Sn2O7, the substitution of Ti^4+ by the bigger Sn^4+ ion expands the lattice, inducing a long range ordered ferromagnetic state, with the local structure of a spin ice [2] and unconventional spin fluctuations [2,5]. The local ground state and excited crystal field states of the Tb^3+ ion were recently investigated by inelastic neutron scattering in both compounds [6]. Tb2Mo2O7, where Mo^4+ ions are also magnetic, shows an even more rich behaviour, due to the complex interaction between frustrated Tb and Mo lattices, having respectively localized and itinerant magnetism. In Tb2Mo2O7 spin glass, the lattice expansion induced by Tb/La substitution yields an ordered ferromagnetic state, which transforms back to spin glass under applied pressure [7]. New data about the spin fluctuations in these compounds, as measured by inelastic neutron scattering, will be presented. The talk will be dedicated to the memory of Igor Goncharenko, a renowned

  6. Performance under sulfate attack of concrete additioned with fluid catalytic cracking catalyst residue (FCC and metakaolin (MK

    Directory of Open Access Journals (Sweden)

    Nancy Torres Castellanos

    2013-01-01

    Full Text Available In this work the evaluation of the performance of concrete added with Fluid Catalytic Cracking Catalyst residue (FCC from a Colombian petroleum company, under sulfate attack, is presented. The results of this concrete are compared with the results of Metakaolin (MK added concrete. The analysis of the pozzolanic materials included the determination of the particle size, the pozzolanic activity and the chemical and mineralogical composition. Different percentages of FCC were used as Portland cement replacement in proportions of 0, 10, 20 and 30%; similarly concrete added with 20% of MK as replacement was elaborated. Compressive strength and performance under sulfate attack were evaluated. Results showed that concrete with FCC and MK as well as control concrete had similar behavior; however its expansion was higher. In addition, the performance of the two types of concrete (FCC y MK under sulfate attack was comparable; this could be due to fact that FCC and MK showed similarities regarding of their chemical and mineralogical composition. Importantly, after 360 days of exposure the specimens with MK and FCC showed no significant deterioration.

  7. How does reactivity to frustrative non-reward increase risk for externalizing symptoms?

    Science.gov (United States)

    Gatzke-Kopp, Lisa M; Willner, Cynthia J; Jetha, Michelle K; Abenavoli, Rachel M; DuPuis, David; Segalowitz, Sidney J

    2015-11-01

    Frustration is a normative affective response with an adaptive value in motivating behavior. However, excessive anger in response to frustration characterizes multiple forms of externalizing psychopathology. How a given trait subserves both normative and pathological behavioral profiles is not entirely clear. One hypothesis is that the magnitude of response to frustration differentiates normative versus maladaptive reactivity. Disproportionate increases in arousal in response to frustration may exceed normal regulatory capacity, thus precipitating aggressive or antisocial responses. Alternatively, pathology may arise when reactivity to frustration interferes with other cognitive systems, impairing the individual's ability to respond to frustration adaptively. In this paper we examine these two hypotheses in a sample of kindergarten children. First we examine whether children with conduct problems (CP; n=105) are differentiated from comparison children (n=135) with regard to magnitude of autonomic reactivity (cardiac and electrodermal) across a task that includes a frustrative non-reward block flanked by two reward blocks. Second we examine whether cognitive processing, as reflected by magnitude of the P3b brain response, is disrupted in the context of frustrative non-reward. Results indicate no differences in skin conductance, but a greater increase in heart rate during the frustration block among children in the CP group. Additionally, the CP group was characterized by a pronounced decrement in P3b amplitude during the frustration condition compared with both reward conditions. No interaction between cardiac and P3b measures was observed, suggesting that each system independently reflects a greater sensitivity to frustration in association with externalizing symptom severity. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. How does Reactivity to Frustrative Non-Reward Increase Risk for Externalizing Symptoms?

    Science.gov (United States)

    Gatzke-Kopp, Lisa M.; Willner, Cynthia J.; Jetha, Michelle K.; Abenavoli, Rachel M.; DuPuis, David; Segalowitz, Sidney J.

    2015-01-01

    Frustration is a normative affective response with adaptive value in motivating behavior. However, excessive anger in response to frustration characterizes multiple forms of externalizing psychopathology. How a given trait subserves both normative and pathological behavioral profiles is not entirely clear. One hypothesis is that the magnitude of response to frustration differentiates normative versus maladaptive reactivity. Disproportionate increases in arousal in response to frustration may exceed normal regulatory capacity, thus precipitating aggressive or antisocial responses. Alternatively, pathology may arise when reactivity to frustration interferes with other cognitive systems, impairing the individual’s ability to respond to frustration adaptively. In this paper we examine these two hypotheses in a sample of kindergarten children. First we examine whether children with conduct problems (CP; n = 105) are differentiated from comparison children (n = 135) with regard to magnitude of autonomic reactivity (cardiac and electrodermal) across a task that includes a frustrative non-reward block flanked by two reward blocks. Second we examine whether cognitive processing, as reflected by magnitude of the P3b brain response, is disrupted in the context of frustrative non-reward. Results indicate no differences in skin conductance, but a greater increase in heart rate during the frustration block among children in the CP group. Additionally, the CP group was characterized by a pronounced decrement in P3b amplitude during the frustration condition compared with both reward conditions. No interaction between cardiac and P3b measures was observed, suggesting that each system independently reflects a greater sensitivity to frustration in association with externalizing symptom severity. PMID:25937209

  9. Geometric procedures for civil engineers

    CERN Document Server

    Tonias, Elias C

    2016-01-01

    This book provides a multitude of geometric constructions usually encountered in civil engineering and surveying practice.  A detailed geometric solution is provided to each construction as well as a step-by-step set of programming instructions for incorporation into a computing system. The volume is comprised of 12 chapters and appendices that may be grouped in three major parts: the first is intended for those who love geometry for its own sake and its evolution through the ages, in general, and, more specifically, with the introduction of the computer. The second section addresses geometric features used in the book and provides support procedures used by the constructions presented. The remaining chapters and the appendices contain the various constructions. The volume is ideal for engineering practitioners in civil and construction engineering and allied areas.

  10. Geometric group theory an introduction

    CERN Document Server

    Löh, Clara

    2017-01-01

    Inspired by classical geometry, geometric group theory has in turn provided a variety of applications to geometry, topology, group theory, number theory and graph theory. This carefully written textbook provides a rigorous introduction to this rapidly evolving field whose methods have proven to be powerful tools in neighbouring fields such as geometric topology. Geometric group theory is the study of finitely generated groups via the geometry of their associated Cayley graphs. It turns out that the essence of the geometry of such groups is captured in the key notion of quasi-isometry, a large-scale version of isometry whose invariants include growth types, curvature conditions, boundary constructions, and amenability. This book covers the foundations of quasi-geometry of groups at an advanced undergraduate level. The subject is illustrated by many elementary examples, outlooks on applications, as well as an extensive collection of exercises.

  11. Geometric identities in stereological particle analysis

    DEFF Research Database (Denmark)

    Kötzer, S.; Jensen, Eva Bjørn Vedel; Baddeley, A.

    We review recent findings about geometric identities in integral geometry and geometric tomography, and their statistical application to stereological particle analysis. Open questions are discussed.......We review recent findings about geometric identities in integral geometry and geometric tomography, and their statistical application to stereological particle analysis. Open questions are discussed....

  12. Geometric Langlands From Six Dimensions

    CERN Document Server

    Witten, Edward

    2010-01-01

    Geometric Langlands duality is usually formulated as a statement about Riemann surfaces, but it can be naturally understood as a consequence of electric-magnetic duality of four-dimensional gauge theory. This duality in turn is naturally understood as a consequence of the existence of a certain exotic supersymmetric conformal field theory in six dimensions. The same six-dimensional theory also gives a useful framework for understanding some recent mathematical results involving a counterpart of geometric Langlands duality for complex surfaces. (This article is based on a lecture at the Raoul Bott celebration, Montreal, June 2008.)

  13. Catching homologies by geometric entropy

    Science.gov (United States)

    Felice, Domenico; Franzosi, Roberto; Mancini, Stefano; Pettini, Marco

    2018-02-01

    A geometric entropy is defined in terms of the Riemannian volume of the parameter space of a statistical manifold associated with a given network. As such it can be a good candidate for measuring networks complexity. Here we investigate its ability to single out topological features of networks proceeding in a bottom-up manner: first we consider small size networks by analytical methods and then large size networks by numerical techniques. Two different classes of networks, the random graphs and the scale-free networks, are investigated computing their Betti numbers and then showing the capability of geometric entropy of detecting homologies.

  14. Geometric scaling as traveling waves

    International Nuclear Information System (INIS)

    Munier, S.; Peschanski, R.

    2003-01-01

    We show the relevance of the nonlinear Fisher and Kolmogorov-Petrovsky-Piscounov (KPP) equation to the problem of high energy evolution of the QCD amplitudes. We explain how the traveling wave solutions of this equation are related to geometric scaling, a phenomenon observed in deep-inelastic scattering experiments. Geometric scaling is for the first time shown to result from an exact solution of nonlinear QCD evolution equations. Using general results on the KPP equation, we compute the velocity of the wave front, which gives the full high energy dependence of the saturation scale

  15. New prism ring laser design incorporating frustrated total internal reflection output coupling

    DEFF Research Database (Denmark)

    Heyde, C.; Hansen, P.L.; Buchhave, Preben

    1997-01-01

    A novel prism ring laser design incorporating total internal reflection resonator mirrors and frustrated total internal reflection output coupling is analyzed and tested experimentally.......A novel prism ring laser design incorporating total internal reflection resonator mirrors and frustrated total internal reflection output coupling is analyzed and tested experimentally....

  16. Psychometric properties of the Basic Psychological Need Satisfaction and Frustration Scale : Intellectual disability

    NARCIS (Netherlands)

    Frielink, N.; Schuengel, C.; Embregts, P.J.C.M.

    2018-01-01

    The Basic Psychological Need Satisfaction and Frustration Scale – Intellectual Disability (BPNSFS-ID), an adapted version of the original BPNSFS (Chen, Vansteenkiste, et al., 2015), operationalizes satisfaction and frustration with the three basic psychological needs according to self-determination

  17. Can short-term frustration facilitate feather pecking in laying hens?

    NARCIS (Netherlands)

    Rodenburg, T.B.; Koene, P.; Bokkers, E.A.M.; Bos, M.E.H.; Uitdehaag, K.A.; Spruijt, B.M.

    2005-01-01

    Feather pecking is a major problem in laying hens. Frustration, i.e. the omission of expected reward, may play a role in the development of feather pecking. In two experiments, we studied if feather pecking could be facilitated by short-term frustration in birds with a high feather pecking phenotype

  18. The difficult doctor? Characteristics of physicians who report frustration with patients: an analysis of survey data

    Science.gov (United States)

    Krebs, Erin E; Garrett, Joanne M; Konrad, Thomas R

    2006-01-01

    Background Literature on difficult doctor-patient relationships has focused on the "difficult patient." Our objective was to determine physician and practice characteristics associated with greater physician-reported frustration with patients. Methods We conducted a secondary analysis of the Physicians Worklife Survey, which surveyed a random national sample of physicians. Participants were 1391 family medicine, general internal medicine, and medicine subspecialty physicians. The survey assessed physician and practice characteristics, including stress, depression and anxiety symptoms, practice setting, work hours, case-mix, and control over administrative and clinical practice. Physicians estimated the percentage of their patients who were "generally frustrating to deal with." We categorized physicians by quartile of reported frustrating patients and compared characteristics of physicians in the top quartile to those in the other three quartiles. We used logistic regression to model physician characteristics associated with greater frustration. Results In unadjusted analyses, physicians who reported high frustration with patients were younger (p frustration included age 55 per week, higher stress, practice in a medicine subspeciality, and greater number of patients with psychosocial problems or substance abuse. Conclusion Personal and practice characteristics of physicians who report high frustration with patients differ from those of other physicians. Understanding factors contributing to physician frustration with patients may allow us to improve the quality of patient-physician relationships. PMID:17026762

  19. Concept of Care, Caring Expectations, and Caring Frustrations of the Elderly Suffering from Chronic Illness

    Science.gov (United States)

    de Guzman, Allan B.; Santos, Charisse Izobelle Q.; Santos, Ivan Benedict A.; Santos, Jedda A.; Santos, Justin E.; Santos, Justo Martin S.; Santos, Vincent Emmanuelle E.

    2012-01-01

    While it is true that elderly concepts of care and caring expectations have been ascertained in previous literatures, little is known about how the elderly population views caring frustrations--particularly that of the Filipino elderly. This study purports to surface the lebenswelt of healthcare expectations and frustrations based on the…

  20. Effects of Frustration on the Response Rate of Skid Row Alcoholics on a Performance Task

    Science.gov (United States)

    Scorzelli, James F.; Reinke-Scorzelli, Mary

    1976-01-01

    Determines the changes that may occur in the response rates of 14 skid row alcoholics on a performance task after the introduction of a frustration operation. Results suggest a possible relationship between low frustration tolerance and the method by which these individuals tend to motivate themselves. (Author)

  1. Quantum Lifshitz Field Theory of a Frustrated Ferromagnet.

    Science.gov (United States)

    Balents, Leon; Starykh, Oleg A

    2016-04-29

    We propose a universal nonlinear sigma model field theory for one-dimensional frustrated ferromagnets, which applies in the vicinity of a "quantum Lifshitz point," at which the ferromagnetic state develops a spin wave instability. We investigate the phase diagram resulting from perturbations of the exchange and of magnetic field away from the Lifshitz point, and uncover a rich structure with two distinct regimes of different properties, depending upon the value of a marginal, dimensionless, parameter of the theory. In the regime relevant for one-dimensional systems with low spin, we find a metamagnetic transition line to a vector chiral phase. This line terminates in a critical end point, beyond which there is at least one multipolar or "spin nematic" phase. We show that the field theory is asymptotically exactly soluble near the Lifshitz point.

  2. Magnons versus free spinons in finite quantum frustrated antiferromagnets

    Energy Technology Data Exchange (ETDEWEB)

    Hamad, I.J.; Manuel, L.O. [Instituto de Fisica Rosario (CONICET) and Universidad Nacional de Rosario, Boulevard 27 de Febrero 210 bis, 2000 Rosario (Argentina); Trumper, A.E., E-mail: trumper@ifir-conicet.gov.a [Instituto de Fisica Rosario (CONICET) and Universidad Nacional de Rosario, Boulevard 27 de Febrero 210 bis, 2000 Rosario (Argentina)

    2009-10-01

    We have investigated the validity of doping with a vacancy the J{sub 1}-J{sub 3} frustrated Heisenberg model on a finite square lattice as a way to test the existence of fractional spin excitations. Using a generalized t-J{sub 1}-J{sub 3} model we have computed the vacancy spectral functions in the self-consistent Born approximation. We have found that by including spiral fluctuations in the magnetic ground state, the spectral functions on finite systems agree very well with the unbiased exact ones. In contrast to the recent proposal that the quasiparticle weight reduction could be a signal of a spinon free excitation in finite systems, we have found strong evidence that such a reduction is due to the existence of spiral fluctuations.

  3. Magnons versus free spinons in finite quantum frustrated antiferromagnets

    International Nuclear Information System (INIS)

    Hamad, I.J.; Manuel, L.O.; Trumper, A.E.

    2009-01-01

    We have investigated the validity of doping with a vacancy the J 1 -J 3 frustrated Heisenberg model on a finite square lattice as a way to test the existence of fractional spin excitations. Using a generalized t-J 1 -J 3 model we have computed the vacancy spectral functions in the self-consistent Born approximation. We have found that by including spiral fluctuations in the magnetic ground state, the spectral functions on finite systems agree very well with the unbiased exact ones. In contrast to the recent proposal that the quasiparticle weight reduction could be a signal of a spinon free excitation in finite systems, we have found strong evidence that such a reduction is due to the existence of spiral fluctuations.

  4. Magnons versus free spinons in finite quantum frustrated antiferromagnets

    Science.gov (United States)

    Hamad, I. J.; Manuel, L. O.; Trumper, A. E.

    2009-10-01

    We have investigated the validity of doping with a vacancy the J1-J3 frustrated Heisenberg model on a finite square lattice as a way to test the existence of fractional spin excitations. Using a generalized t-J1-J3 model we have computed the vacancy spectral functions in the self-consistent Born approximation. We have found that by including spiral fluctuations in the magnetic ground state, the spectral functions on finite systems agree very well with the unbiased exact ones. In contrast to the recent proposal that the quasiparticle weight reduction could be a signal of a spinon free excitation in finite systems, we have found strong evidence that such a reduction is due to the existence of spiral fluctuations.

  5. The dynamics of the Frustrated Ising Lattice Gas

    International Nuclear Information System (INIS)

    Arenzon, J.J.; Stariolo, D.A.; Ricci-Tersenghi, F.

    2000-04-01

    The dynamical properties of a three dimensional model glass, the Frustrated Ising Lattice Gas (FILG) are studied by Monte Carlo simulations. We present results of compression experiments, where the chemical potential is either slowly or abruptly changed, as well as simulations at constant density. One-time quantities like density and two-times ones as correlations, responses and mean square displacements are measured, and the departure from equilibrium clearly characterized. The aging scenario, particularly in the case of the density autocorrelations, is reminiscent of spin glass phenomenology with violations of the fluctuation-dissipation theorem, typical of systems with one replica symmetry breaking. The FILG, as a valid on-lattice model of structural glasses, can be described with tools developed in spin glass theory and, being a finite dimensional model, can open the way for a systematic study of activated processes in glasses. (author)

  6. Quantum Simulation of Frustrated Classical Magnetism in Triangular Optical Lattices

    Science.gov (United States)

    Struck, J.; Ölschläger, C.; Le Targat, R.; Soltan-Panahi, P.; Eckardt, A.; Lewenstein, M.; Windpassinger, P.; Sengstock, K.

    2011-08-01

    Magnetism plays a key role in modern technology and stimulates research in several branches of condensed matter physics. Although the theory of classical magnetism is well developed, the demonstration of a widely tunable experimental system has remained an elusive goal. Here, we present the realization of a large-scale simulator for classical magnetism on a triangular lattice by exploiting the particular properties of a quantum system. We use the motional degrees of freedom of atoms trapped in an optical lattice to simulate a large variety of magnetic phases: ferromagnetic, antiferromagnetic, and even frustrated spin configurations. A rich phase diagram is revealed with different types of phase transitions. Our results provide a route to study highly debated phases like spin-liquids as well as the dynamics of quantum phase transitions.

  7. Social comparison mediates chimpanzees' responses to loss, not frustration

    DEFF Research Database (Denmark)

    Hopper, Lydia M; Lambeth, Susan P; Schapiro, Steve

    2014-01-01

    were given a relatively less-preferred reward than the one they were previously shown. The chimpanzees' willingness to accept the less-preferred rewards was independent of previously offered foods in both the social and individual conditions. In conditions that created frustration through inequity......), than when they received a more-preferred reward (advantageous inequity). Specifically, the females' refusals were typified by refusals to exchange tokens rather than refusals to accept food rewards. Males showed no difference in their responses to inequity or individual contrast. These results support...... individual contrast, through inequity, or by both. Chimpanzees were tested in four social and two individual conditions in which they received food rewards in return for exchanging tokens with an experimenter. In conditions designed to create individual contrast, after completing an exchange, the chimpanzees...

  8. Frustration-free Hamiltonians supporting Majorana zero edge modes

    International Nuclear Information System (INIS)

    Jevtic, Sania; Barnett, Ryan

    2017-01-01

    A one-dimensional fermionic system, such as a superconducting wire, may host Majorana zero-energy edge modes (MZMs) at its edges when it is in the topological phase. MZMs provide a path to realising fault-tolerant quantum computation, and so are the focus of intense experimental and theoretical studies. However, given a Hamiltonian, determining whether MZMs exist is a daunting task as it relies on knowing the spectral properties of the Hamiltonian in the thermodynamic limit. The Kitaev chain is a paradigmatic non-interacting model that supports MZMs and the Hamiltonian can be fully diagonalised. However, for interacting models, the situation is far more complex. Here we consider a different classification of models, namely, ones with frustration-free Hamiltonians. Within this class of models, interacting and non-interacting systems are treated on an equal footing, and we identify exactly which Hamiltonians can realise MZMs. (paper)

  9. Frustration-free Hamiltonians supporting Majorana zero edge modes

    Science.gov (United States)

    Jevtic, Sania; Barnett, Ryan

    2017-10-01

    A one-dimensional fermionic system, such as a superconducting wire, may host Majorana zero-energy edge modes (MZMs) at its edges when it is in the topological phase. MZMs provide a path to realising fault-tolerant quantum computation, and so are the focus of intense experimental and theoretical studies. However, given a Hamiltonian, determining whether MZMs exist is a daunting task as it relies on knowing the spectral properties of the Hamiltonian in the thermodynamic limit. The Kitaev chain is a paradigmatic non-interacting model that supports MZMs and the Hamiltonian can be fully diagonalised. However, for interacting models, the situation is far more complex. Here we consider a different classification of models, namely, ones with frustration-free Hamiltonians. Within this class of models, interacting and non-interacting systems are treated on an equal footing, and we identify exactly which Hamiltonians can realise MZMs.

  10. Protein Frustratometer 2: a tool to localize energetic frustration in protein molecules, now with electrostatics

    Science.gov (United States)

    Parra, R. Gonzalo; Schafer, Nicholas P.; Radusky, Leandro G.; Tsai, Min-Yeh; Guzovsky, A. Brenda; Wolynes, Peter G.; Ferreiro, Diego U.

    2016-01-01

    The protein frustratometer is an energy landscape theory-inspired algorithm that aims at localizing and quantifying the energetic frustration present in protein molecules. Frustration is a useful concept for analyzing proteins’ biological behavior. It compares the energy distributions of the native state with respect to structural decoys. The network of minimally frustrated interactions encompasses the folding core of the molecule. Sites of high local frustration often correlate with functional regions such as binding sites and regions involved in allosteric transitions. We present here an upgraded version of a webserver that measures local frustration. The new implementation that allows the inclusion of electrostatic energy terms, important to the interactions with nucleic acids, is significantly faster than the previous version enabling the analysis of large macromolecular complexes within a user-friendly interface. The webserver is freely available at URL: http://frustratometer.qb.fcen.uba.ar. PMID:27131359

  11. Emergence and frustration of magnetism with variable-range interactions in a quantum simulator.

    Science.gov (United States)

    Islam, R; Senko, C; Campbell, W C; Korenblit, S; Smith, J; Lee, A; Edwards, E E; Wang, C-C J; Freericks, J K; Monroe, C

    2013-05-03

    Frustration, or the competition between interacting components of a network, is often responsible for the emergent complexity of many-body systems. For instance, frustrated magnetism is a hallmark of poorly understood systems such as quantum spin liquids, spin glasses, and spin ices, whose ground states can be massively degenerate and carry high degrees of quantum entanglement. Here, we engineer frustrated antiferromagnetic interactions between spins stored in a crystal of up to 16 trapped (171)Yb(+) atoms. We control the amount of frustration by continuously tuning the range of interaction and directly measure spin correlation functions and their coherent dynamics. This prototypical quantum simulation points the way toward a new probe of frustrated quantum magnetism and perhaps the design of new quantum materials.

  12. Protein Frustratometer 2: a tool to localize energetic frustration in protein molecules, now with electrostatics.

    Science.gov (United States)

    Parra, R Gonzalo; Schafer, Nicholas P; Radusky, Leandro G; Tsai, Min-Yeh; Guzovsky, A Brenda; Wolynes, Peter G; Ferreiro, Diego U

    2016-07-08

    The protein frustratometer is an energy landscape theory-inspired algorithm that aims at localizing and quantifying the energetic frustration present in protein molecules. Frustration is a useful concept for analyzing proteins' biological behavior. It compares the energy distributions of the native state with respect to structural decoys. The network of minimally frustrated interactions encompasses the folding core of the molecule. Sites of high local frustration often correlate with functional regions such as binding sites and regions involved in allosteric transitions. We present here an upgraded version of a webserver that measures local frustration. The new implementation that allows the inclusion of electrostatic energy terms, important to the interactions with nucleic acids, is significantly faster than the previous version enabling the analysis of large macromolecular complexes within a user-friendly interface. The webserver is freely available at URL: http://frustratometer.qb.fcen.uba.ar. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  13. Frustration influences impact of history and disciplinary attitudes on physical discipline decision making.

    Science.gov (United States)

    Russa, Mary B; Rodriguez, Christina M; Silvia, Paul J

    2014-01-01

    Although intergenerational patterns of punitive physical punishment garner considerable research attention, the mechanisms by which historical, cognitive, and contextual factors interplay to influence disciplinary responding remains poorly understood. Disciplinary attitudes have been shown to mediate the association between disciplinary history and disciplinary responding. The present study investigated whether frustration influences these mediation effects. Half of a sample of 330 undergraduates was randomly assigned to frustration induction. Structural equation modeling confirmed that, for participants in the frustration condition, the relation between disciplinary history and physical discipline decision-making was fully mediated by attitudes approving physical discipline. In contrast, for respondents in the no-frustration condition, the pathway from disciplinary history to discipline decision-making was only partially mediated by attitudes. Under conditions of frustration, attitudes may become a more central means by which personal disciplinary history is associated with disciplinary decision-making. © 2013 Wiley Periodicals, Inc.

  14. The classification of idiopathic spasmodic torticollis: three types based on social adaptation and frustration tolerance.

    Science.gov (United States)

    Kashiwase, H; Kato, M

    1997-12-01

    In this study, idiopathic spasmodic torticollis (ST) has been classfied into three types from the opinion of social adaptation and the differences of frustration tolerance. The three types were as follows: type I (overadaptive type), type II (maladaptive type), and type III (compatible type). Type I is a typical psychosomatic with high frustration tolerance. Type II is personality disorder with low frustration tolerance. In type III, frustration tolerance varies depending on social circumstances (i.e., different at home and at the office). In type I, the prognosis of ST is generally unfavorable, since it is associated with recurrence and prolongation of the symptoms. In type II, the prognosis of ST is generally favorable. However, type II patients experience relationship or social difficulties. One characteristic of type III is that the onset of symptoms is usually found in an older person because of proper use of frustration tolerance at home and at the office.

  15. Folding circular permutants of IL-1β: route selection driven by functional frustration.

    Directory of Open Access Journals (Sweden)

    Dominique T Capraro

    Full Text Available Interleukin-1β (IL-1β is the cytokine crucial to inflammatory and immune response. Two dominant routes are populated in the folding to native structure. These distinct routes are a result of the competition between early packing of the functional loops versus closure of the β-barrel to achieve efficient folding and have been observed both experimentally and computationally. Kinetic experiments on the WT protein established that the dominant route is characterized by early packing of geometrically frustrated functional loops. However, deletion of one of the functional loops, the β-bulge, switches the dominant route to an alternative, yet, as accessible, route, where the termini necessary for barrel closure form first. Here, we explore the effect of circular permutation of the WT sequence on the observed folding landscape with a combination of kinetic and thermodynamic experiments. Our experiments show that while the rate of formation of permutant protein is always slower than that observed for the WT sequence, the region of initial nucleation for all permutants is similar to that observed for the WT protein and occurs within a similar timescale. That is, even permutants with significant sequence rearrangement in which the functional-nucleus is placed at opposing ends of the polypeptide chain, fold by the dominant WT "functional loop-packing route", despite the entropic cost of having to fold the N- and C- termini early. Taken together, our results indicate that the early packing of the functional loops dominates the folding landscape in active proteins, and, despite the entropic penalty of coalescing the termini early, these proteins will populate an entropically unfavorable route in order to conserve function. More generally, circular permutation can elucidate the influence of local energetic stabilization of functional regions within a protein, where topological complexity creates a mismatch between energetics and topology in active

  16. In Defence of Geometrical Algebra

    NARCIS (Netherlands)

    Blasjo, V.N.E.

    The geometrical algebra hypothesis was once the received interpretation of Greek mathematics. In recent decades, however, it has become anathema to many. I give a critical review of all arguments against it and offer a consistent rebuttal case against the modern consensus. Consequently, I find that

  17. Geometric quantization and general relativity

    International Nuclear Information System (INIS)

    Souriau, J.-M.

    1977-01-01

    The purpose of geometric quantization is to give a rigorous mathematical content to the 'correspondence principle' between classical and quantum mechanics. The main tools are borrowed on one hand from differential geometry and topology (differential manifolds, differential forms, fiber bundles, homology and cohomology, homotopy), on the other hand from analysis (functions of positive type, infinite dimensional group representations, pseudo-differential operators). Some satisfactory results have been obtained in the study of dynamical systems, but some fundamental questions are still waiting for an answer. The 'geometric quantization of fields', where some further well known difficulties arise, is still in a preliminary stage. In particular, the geometric quantization on the gravitational field is still a mere project. The situation is even more uncertain due to the fact that there is no experimental evidence of any quantum gravitational effect which could give us a hint towards what we are supposed to look for. The first level of both Quantum Theory, and General Relativity describes passive matter: influence by the field without being a source of it (first quantization and equivalence principle respectively). In both cases this is only an approximation (matter is always a source). But this approximation turns out to be the least uncertain part of the description, because on one hand the first quantization avoids the problems of renormalization and on the other hand the equivalence principle does not imply any choice of field equations (it is known that one can modify Einstein equations at short distances without changing their geometrical properties). (Auth.)

  18. Geometric scaling in exclusive processes

    International Nuclear Information System (INIS)

    Munier, S.; Wallon, S.

    2003-01-01

    We show that according to the present understanding of the energy evolution of the observables measured in deep-inelastic scattering, the photon-proton scattering amplitude has to exhibit geometric scaling at each impact parameter. We suggest a way to test this experimentally at HERA. A qualitative analysis based on published data is presented and discussed. (orig.)

  19. Height and Tilt Geometric Texture

    DEFF Research Database (Denmark)

    Andersen, Vedrana; Desbrun, Mathieu; Bærentzen, Jakob Andreas

    2009-01-01

    compromise between functionality and simplicity: it can efficiently handle and process geometric texture too complex to be represented as a height field, without having recourse to full blown mesh editing algorithms. The height-and-tilt representation proposed here is fully intrinsic to the mesh, making...

  20. Geometric phases and quantum computation

    International Nuclear Information System (INIS)

    Vedral, V.

    2005-01-01

    Full text: In my lectures I will talk about the notion of the geometric phase and explain its relevance for both fundamental quantum mechanics as well as quantum computation. The phase will be at first introduced via the idea of Pancharatnam which involves interference of three or more light beams. This notion will then be generalized to the evolving quantum systems. I will discuss both pure and mixed states as well as unitary and non-unitary evolutions. I will also show how the concept of the vacuum induced geometric phase arises in quantum optics. A simple measurement scheme involving a Mach Zehnder interferometer will be presented and will be used to illustrate all the concepts in the lecture. Finally, I will expose a simple generalization of the geometric phase to evolving degenerate states. This will be seen to lead to the possibility of universal quantum computation using geometric effects only. Moreover, this contains a promise of intrinsically fault tolerant quantum information processing, whose prospects will be outlined at the end of the lecture. (author)

  1. Cartan's geometrical structure of supergravity

    International Nuclear Information System (INIS)

    Baaklini, N.S.

    1977-06-01

    The geometrical partnership of the vierbein and the spin-3/2 field in the structure of the supergravity Lagrangian is emphasized. Both fields are introduced as component of the same matrix differential form. The only local symmetry of the theory is SL(2,C)

  2. Effect of the fcc-hcp martensitic transition on the equation of state of solid krypton up to 140 GPa

    Science.gov (United States)

    Rosa, A. D.; Garbarino, G.; Briggs, R.; Svitlyk, V.; Morard, G.; Bouhifd, M. A.; Jacobs, J.; Irifune, T.; Mathon, O.; Pascarelli, S.

    2018-03-01

    Solid krypton (Kr) undergoes a pressure-induced martensitic phase transition from a face-centered cubic (fcc) to a hexagonal close-packed (hcp) structure. These two phases coexist in a very wide pressure domain inducing important modifications of the bulk properties of the resulting mixed phase system. Here, we report a detailed in situ x-ray diffraction and absorption study of the influence of the fcc-hcp phase transition on the compression behavior of solid krypton in an extended pressure domain up to 140 GPa. The onset of the hcp-fcc transformation was observed in this study at around 2.7 GPa and the coexistence of these two phases up to 140 GPa, the maximum investigated pressure. The appearance of the hcp phase is also evidenced by the pressure-induced broadening and splitting of the first peak in the XANES spectra. We demonstrate that the transition is driven by a continuous nucleation and intergrowth of nanometric hcp stacking faults that evolve in the fcc phase. These hcp stacking faults are unaffected by high-temperature annealing, suggesting that plastic deformation is not at their origin. The apparent small Gibbs free-energy differences between the two structures that decrease upon compression may explain the nucleation of hcp stacking faults and the large coexistence domain of fcc and hcp krypton. We observe a clear anomaly in the equation of state of the fcc solid at ˜20 GPa when the proportion of the hcp form reaches ˜20 % . We demonstrate that this anomaly is related to the difference in stiffness between the fcc and hcp phases and propose two distinct equation of states for the low and high-pressure regimes.

  3. Microstructure and mechanical properties of bulk highly faulted fcc/hcp nanostructured cobalt microstructures

    International Nuclear Information System (INIS)

    Barry, Aliou Hamady; Dirras, Guy; Schoenstein, Frederic; Tétard, Florent; Jouini, Noureddine

    2014-01-01

    Nanostructured cobalt powders with an average particle size of 50 nm were synthesized using a polyol method and subsequently consolidated by spark plasma sintering (SPS). SPS experiments performed at 650 °C with sintering times ranging from 5 to 45 min under a pressure of 100 MPa, yielded to dense bulk nanostructured cobalt (relative density greater than 97%). X-ray diffraction patterns of the as-prepared powders showed only a face centered cubic (fcc) crystalline phase, whereas the consolidated samples exhibited a mixture of both fcc and hexagonal close packed (hcp) phases. Transmission electron microscopy observations revealed a lamellar substructure with a high density of nanotwins and stacking faults in every grain of the sintered samples. Room temperature compression tests, carried out at a strain rate of 10 −3 s −1 , yielded to highest strain to fracture values of up to 5% for sample of holding time of 15 min, which exhibited a yield strength of 1440 MPa, an ultimate strength as high as 1740 MPa and a Young's modulus of 205 GPa. The modulus of elasticity obtained from the nanoindentation tests, ranges from 181 to 218 GPa. The lowest modulus value of 181 GPa was obtained for the sample with the highest sintering time (45 min), which could be related to mass density loss as a consequence of trapped gases releasing. - Highlights: • Co nanopowder (50 nm) was prepared by reduction in polyol medium. • SPS was used to process bulk nanostructured Co specimens. • Microstructures were made of intricate fcc/hcp, along with nanotwins and SFs. • High strengths and moderate compressive ductility were obtained. • Deformation mechanisms related to complex interplay of different length scales

  4. Monitoring of mass flux of catalyst FCC in a Cold Pilot Unit by gamma radiation transmission

    International Nuclear Information System (INIS)

    Brito, Marcio Fernando Paixao de

    2014-01-01

    This paper proposes a model for monitoring the mass flow of catalyst FCC - Fluid Catalytic Cracking - in a CPU - Cold Pilot unit - due to the injection of air and solid by gamma radiation transmission. The CPU simplifies the process of FCC, which is represented by the catalyst cycle, and it was constructed of acrylic, so that the flow can be visualized. The CPU consists of riser separation chamber and return column, and simulates the riser reactor of the FCC process. The catalyst is injected into the column back to the base of the riser, an inclined tube, where the compressed air means that there fluidization along the riser. When the catalyst comes in the separation chamber, the solid phase is sent to the return column, and the gas phase exits the system through one of the four cyclones at the top of the separation chamber. The transmission gamma of measures will be made by means of three test sections that have source and detector shielded. Pressure drop in the riser measurements are made through three pressure gauges positioned on the riser. The source used was Am-241 gamma ray with energy of 60 keV, and detector used was a scintillator of NaI (Tl) of 2 x 2 . Measures the mass flow of catalyst are made by varying the seal of the catalyst, and density of solid in the riser because with the combination of these measures can determine the speed of the catalyst in the riser. The results show that the transmission gamma is a suitable technique for monitoring the flow of catalyst, flow model in CPU is annular, tomography third generation is more appropriate to study the CPU and the density variation in circulation in the CPU decreases linearly with increasing air flow. (author)

  5. Microstructure and mechanical properties of bulk highly faulted fcc/hcp nanostructured cobalt microstructures

    Energy Technology Data Exchange (ETDEWEB)

    Barry, Aliou Hamady [Université Paris 13, Sorbonne Paris Cité, LSPM CNRS UPR 3407, 93430 Villetaneuse (France); Laboratoire Chimie des Matériaux, Département de Chimie, Faculté des Sciences et Technique, Université de Nouakchott (Mauritania, Islamic Republic of); Dirras, Guy, E-mail: dirras@unv-paris13.fr [Université Paris 13, Sorbonne Paris Cité, LSPM CNRS UPR 3407, 93430 Villetaneuse (France); Schoenstein, Frederic; Tétard, Florent; Jouini, Noureddine [Université Paris 13, Sorbonne Paris Cité, LSPM CNRS UPR 3407, 93430 Villetaneuse (France)

    2014-05-01

    Nanostructured cobalt powders with an average particle size of 50 nm were synthesized using a polyol method and subsequently consolidated by spark plasma sintering (SPS). SPS experiments performed at 650 °C with sintering times ranging from 5 to 45 min under a pressure of 100 MPa, yielded to dense bulk nanostructured cobalt (relative density greater than 97%). X-ray diffraction patterns of the as-prepared powders showed only a face centered cubic (fcc) crystalline phase, whereas the consolidated samples exhibited a mixture of both fcc and hexagonal close packed (hcp) phases. Transmission electron microscopy observations revealed a lamellar substructure with a high density of nanotwins and stacking faults in every grain of the sintered samples. Room temperature compression tests, carried out at a strain rate of 10{sup −3} s{sup −1}, yielded to highest strain to fracture values of up to 5% for sample of holding time of 15 min, which exhibited a yield strength of 1440 MPa, an ultimate strength as high as 1740 MPa and a Young's modulus of 205 GPa. The modulus of elasticity obtained from the nanoindentation tests, ranges from 181 to 218 GPa. The lowest modulus value of 181 GPa was obtained for the sample with the highest sintering time (45 min), which could be related to mass density loss as a consequence of trapped gases releasing. - Highlights: • Co nanopowder (50 nm) was prepared by reduction in polyol medium. • SPS was used to process bulk nanostructured Co specimens. • Microstructures were made of intricate fcc/hcp, along with nanotwins and SFs. • High strengths and moderate compressive ductility were obtained. • Deformation mechanisms related to complex interplay of different length scales.

  6. Proceedings, High-Precision $\\alpha_s$ Measurements from LHC to FCC-ee

    Energy Technology Data Exchange (ETDEWEB)

    d' Enterria, David [CERN; Skands, Peter Z. [Monash U.

    2015-01-01

    This document provides a writeup of all contributions to the workshop on "High precision measurements of $\\alpha_s$: From LHC to FCC-ee" held at CERN, Oct. 12--13, 2015. The workshop explored in depth the latest developments on the determination of the QCD coupling $\\alpha_s$ from 15 methods where high precision measurements are (or will be) available. Those include low-energy observables: (i) lattice QCD, (ii) pion decay factor, (iii) quarkonia and (iv) $\\tau$ decays, (v) soft parton-to-hadron fragmentation functions, as well as high-energy observables: (vi) global fits of parton distribution functions, (vii) hard parton-to-hadron fragmentation functions, (viii) jets in $e^\\pm$p DIS and $\\gamma$-p photoproduction, (ix) photon structure function in $\\gamma$-$\\gamma$, (x) event shapes and (xi) jet cross sections in $e^+e^-$ collisions, (xii) W boson and (xiii) Z boson decays, and (xiv) jets and (xv) top-quark cross sections in proton-(anti)proton collisions. The current status of the theoretical and experimental uncertainties associated to each extraction method, the improvements expected from LHC data in the coming years, and future perspectives achievable in $e^+e^-$ collisions at the Future Circular Collider (FCC-ee) with $\\cal{O}$(1--100 ab$^{-1}$) integrated luminosities yielding 10$^{12}$ Z bosons and jets, and 10$^{8}$ W bosons and $\\tau$ leptons, are thoroughly reviewed. The current uncertainty of the (preliminary) 2015 strong coupling world-average value, $\\alpha_s(m_Z)$ = 0.1177 $\\pm$ 0.0013, is about 1\\%. Some participants believed this may be reduced by a factor of three in the near future by including novel high-precision observables, although this opinion was not universally shared. At the FCC-ee facility, a factor of ten reduction in the $\\alpha_s$ uncertainty should be possible, mostly thanks to the huge Z and W data samples available.

  7. Anti-Invar properties and magnetic order in fcc Fe-Ni-C alloy

    Science.gov (United States)

    Nadutov, V. M.; Kosintsev, S. G.; Svystunov, Ye. O.; Garamus, V. M.; Willumeit, R.; Eckerlebe, H.; Ericsson, T.; Annersten, H.

    2011-11-01

    Anti-Invar effect was revealed in the fcc Fe-25.3%Ni-0.73%C (wt%) alloy, which demonstrates high values of thermal expansion coefficient (TEC) (15-21)×10 -6 K -1 accompanied by almost temperature-insensitive behavior in temperature range of 122-525 K. Alloying with carbon considerably expanded the low temperature range of anti-Invar behavior in fcc Fe-Ni-based alloy. The Curie temperature of the alloy TC=195 K was determined on measurements of temperature dependences of magnetic susceptibility and saturation magnetization. The Mössbauer and small-angle neutron scattering (SANS) experiments on the fcc Fe-25.3%Ni-(0.73-0.78)%C alloys with the varying temperatures below and above the Curie point and in external magnetic field of 1.5-5 T were conducted. Low value of the Debye temperature ΘD=180 K was estimated using the temperature dependence of the integral intensity of Mössbauer spectra for specified temperature range. The inequality Beff=(0.7-0.9) Bext was obtained in external field Mössbauer measurement that points to antiferromagnetically coupled Fe atoms, which have a tendency to align their spins perpendicular to Bext. Nano length scale magnetic inhomogeneities nearby and far above TC were revealed, which assumed that it is caused by mixed antiferromagnetically and ferromagnetically coupled Fe atom spins. The anti-Invar behavior of Fe-Ni-C alloy is explained in terms of evolution of magnetic order with changing temperature resulting from thermally varied interspin interaction and decreasing stiffness of interatomic bond.

  8. Segregation of sp-impurities at grain boundaries and surfaces: comparison of fcc cobalt and nickel

    Science.gov (United States)

    Všianská, M.; Vémolová, H.; Šob, M.

    2017-12-01

    We perform systematic ab initio investigations of the segregation of 12 non-magnetic sp-impurities (Al, Si, P, S, Ga, Ge, As, Se, In, Sn, Sb and Te) at the Σ5(210) grain boundary (GB) and (210) free surface (FS) in fcc ferromagnetic cobalt and analyse their effect on structural, magnetic and mechanical properties; the results are compared with those obtained previously for nickel. It turns out that there is a slight enhancement of magnetization at the clean GB and FS with respect to bulk cobalt (4.7% and 17%, respectively). However, segregated sp-impurities sharply reduce this magnetization. As shown previously, in nickel most of the above impurities nearly destroy or substantially reduce the magnetic moments at the FS and, when segregated interstitially (i.e. Si, P, S, Ge, As, and Se), also at the GB, so that they provide atomically thin, magnetically dead layers, which may be very desirable in spintronics. The reduction of magnetic moments at the Σ5(210) GB in fcc ferromagnetic cobalt is, in absolute values, very similar to that in nickel. However, as the magnetic moment in bulk cobalt is higher, we do not observe magnetically dead layers here. Further, we find the preferred segregation sites at the Σ5(210) GB for the sp-impurities studied, and their segregation enthalpies and strengthening/embrittling energies with their decomposition into their chemical and mechanical components. It turns out that interstitially segregated Si is a GB cohesion enhancer, and interstitially segregated P, S, Ge, As, and Se and substitutionally segregated Al, Ga, In, Sn, Sb and Te are GB embrittlers in fcc cobalt. As there is essentially no experimental information on GB segregation in cobalt, most of the present results are theoretical predictions which may motivate future experimental work.

  9. Anti-Invar properties and magnetic order in fcc Fe-Ni-C alloy

    Energy Technology Data Exchange (ETDEWEB)

    Nadutov, V.M., E-mail: nadvl@imp.kiev.ua [G.V. Kurdyumov Institute for Metal Physics of the N.A.S. of Ukraine, Kyiv (Ukraine); Kosintsev, S.G.; Svystunov, Ye.O. [G.V. Kurdyumov Institute for Metal Physics of the N.A.S. of Ukraine, Kyiv (Ukraine); Garamus, V.M.; Willumeit, R.; Eckerlebe, H. [GKSS Research Center, Geesthacht (Germany); Ericsson, T.; Annersten, H. [Uppsala University, Uppsala (Sweden)

    2011-11-15

    Anti-Invar effect was revealed in the fcc Fe-25.3%Ni-0.73%C (wt%) alloy, which demonstrates high values of thermal expansion coefficient (TEC) (15-21)x10{sup -6} K{sup -1} accompanied by almost temperature-insensitive behavior in temperature range of 122-525 K. Alloying with carbon considerably expanded the low temperature range of anti-Invar behavior in fcc Fe-Ni-based alloy. The Curie temperature of the alloy T{sub C}=195 K was determined on measurements of temperature dependences of magnetic susceptibility and saturation magnetization. The Moessbauer and small-angle neutron scattering (SANS) experiments on the fcc Fe-25.3%Ni-(0.73-0.78)%C alloys with the varying temperatures below and above the Curie point and in external magnetic field of 1.5-5 T were conducted. Low value of the Debye temperature {Theta}{sub D}=180 K was estimated using the temperature dependence of the integral intensity of Moessbauer spectra for specified temperature range. The inequality B{sub eff}=(0.7-0.9)B{sub ext} was obtained in external field Moessbauer measurement that points to antiferromagnetically coupled Fe atoms, which have a tendency to align their spins perpendicular to B{sub ext}. Nano length scale magnetic inhomogeneities nearby and far above T{sub C} were revealed, which assumed that it is caused by mixed antiferromagnetically and ferromagnetically coupled Fe atom spins. The anti-Invar behavior of Fe-Ni-C alloy is explained in terms of evolution of magnetic order with changing temperature resulting from thermally varied interspin interaction and decreasing stiffness of interatomic bond. - Highlights: > Anti-Invar effect was revealed in the fcc Fe-25.3%Ni-0.73%C (wt%) alloy. > Carbon expanded the temperature range of anti-Invar behavior in Fe-Ni-based alloy. > Moessbauer data point to mixed interspin interaction and low the Dedye temperature. > The SANS experiments reveal nano length scale magnetic inhomogeneities {<=}6 nm. > Anti-Invar behavior of Fe-Ni-C alloy explained by

  10. Theory of alkali-metal-induced reconstructions of fcc(100) surfaces

    DEFF Research Database (Denmark)

    Christensen, Ole Bøssing; Jacobsen, Karsten Wedel

    1992-01-01

    Calculations of missing-row reconstruction energies of the fcc(100) surfaces of the metals Al, Ni, Pd, Pt, Cu, Ag, and Au have been performed with the effective-medium theory with and without the presence of a potassium overlayer. It is shown that the tendency to reconstruct in the presence...... of adsorbed K is largest for Ag. This is in accordance with recent experiments indicating a potassium-induced missing-row reconstruction for Ag, but not for other metals. The tendency is shown to be related to the relatively low bulk modulus of silver. Differences from the well-known alkali...

  11. Study Of Boosted W-Jets And Higgs-Jets With the SiFCC Detector

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Shin-Shan [Taiwan, Natl. Central U.; Chekanov, Sergei [Argonne; Gray, Lindsey [Fermilab; Kotwal, Ashutosh [Duke U.; Sen, Sourav [Duke U.; Tran, Nhan Viet [Fermilab

    2016-11-04

    We study the detector performance in the reconstruction of hadronically-decaying W bosons and Higgs bosons at very high energy proton colliders using a full GEANT4 simulation of the SiFCC detector. The W and Higgs bosons carry transverse momentum in the multi-TeV range, which results in collimated decay products that are reconstructed as a single jet. We present a measurement of the energy response and resolution of boosted W-jets and Higgs-jets and show the separation of two sub-jets within the boosted boson jet.

  12. Mobile application MDDCS for modeling the expansion dynamics of a dislocation loop in FCC metals

    Science.gov (United States)

    Kirilyuk, Vasiliy; Petelin, Alexander; Eliseev, Andrey

    2017-11-01

    A mobile version of the software package Dynamic Dislocation of Crystallographic Slip (MDDCS) designed for modeling the expansion dynamics of dislocation loops and formation of a crystallographic slip zone in FCC-metals is examined. The paper describes the possibilities for using MDDCS, the application interface, and the database scheme. The software has a simple and intuitive interface and does not require special training. The user can set the initial parameters of the experiment, carry out computational experiments, export parameters and results of the experiment into separate text files, and display the experiment results on the device screen.

  13. Precursors of thermoelastic Fcc-Fct martensite transformation of Fe3Pt alloys

    International Nuclear Information System (INIS)

    Oshima, R.; Takahashi, M.

    2000-01-01

    Precursor phenomena of thermoelastic martensite transformations of Fe 3 Pt have been studied by mechanical tests, X-ray diffractometry, transmission electron microscopy and neutron inelastic scattering measurements. The ordered austenite with an Ll 2 structure becomes soft markedly at temperatures below 200 K. It was also confirmed that the TA mode along [011] directions of the alloy became soft at zone boundaries of the reciprocal space with approaching to the transition temperature. The observed precursor phenomena are considered to be related to the thermoelastic fcc-fct martensite transformation. (orig.)

  14. Debye-Waller factors of fcc metals by the modified angular force model

    International Nuclear Information System (INIS)

    Kharoo, H.L.; Gupta, O.P.; Hemkar, M.P.

    1977-01-01

    A modified form of the non-central force model which takes account of the electron-ion interaction term of the Kreb's model in the Clark, Gazis and Wallis type angular forces is condidered to calculate the Debye-Waller exponents at different temperatures for five fcc metals: copper, silver, gold, aluminium and nickel. The results are compared with the available X-ray measurements in terms of the temperature parameter Y of the Debye-Waller factor, the Debye characteristic temperature thetasub(M) and the mean square displacement of the atoms. The theoretical results are found to be in reasonably satisfactory agreement with the experimental values. (orig.) [de

  15. FCC Rolling Textures Reviewed in the Light of Quantitative Comparisons between Simulated and Experimental Textures

    DEFF Research Database (Denmark)

    Wierzbanowski, Krzysztof; Wroński, Marcin; Leffers, Torben

    2014-01-01

    The crystallographic texture of metallic materials has a very strong effect on the properties of the materials. In the present article, we look at the rolling textures of fcc metals and alloys, where the classical problem is the existence of two different types of texture, the "copper-type texture......} slip without or with deformation twinning, but we also consider slip on other slip planes and slip by partial dislocations. We consistently make quantitative comparison of the simulation results and the experimental textures by means of a scalar correlation factor. We find that the development...

  16. Exploring the triplet parameters space to optimise the final focus of the FCC-hh

    CERN Document Server

    AUTHOR|(CDS)2141109; Abelleira, Jose; Seryi, Andrei; Cruz Alaniz, Emilia

    2017-01-01

    One of the main challenges when designing final focus systems of particle accelerators is maximising the beam stay clear in the strong quadrupole magnets of the inner triplet. Moreover it is desirable to keep the quadrupoles in the triplet as short as possible for space and costs reasons but also to reduce chromaticity and simplify corrections schemes. An algorithm that explores the triplet parameter space to optimise both these aspects was written. It uses thin lenses as a first approximation and MADX for more precise calculations. In cooperation with radiation studies, this algorithm was then applied to design an alternative triplet for the final focus of the Future Circular Collider (FCC-hh).

  17. Electronic Structure of the fcc Transition Metals Ir, Rh, Pt, and Pd

    DEFF Research Database (Denmark)

    Andersen, O. Krogh

    1970-01-01

    /atom)/Ry, respectively. Spin-orbit coupling is important for all four metals and the coupling parameter varies by 30% over the d bandwidth. Detailed comparisons with de Haas—van Alphen Fermi-surface dimensions have previously been presented and the agreement was very good. Comparison with measured electronic specific......We give a complete description of a relativistic augmented-plane-wave calculation of the band structures of the paramagnetic fcc transition metals Ir, Rh, Pt, and Pd. The width and position of the d band decrease in the sequence Ir, Pt, Rh, Pd; and N(EF)=13.8,23.2,18.7, and 32.7 (states...

  18. Thermodynamic Aspects of Homogeneous Nucleation Enhanced by Icosahedral Short Range Order in Liquid Fcc-Type Alloys

    Science.gov (United States)

    Rappaz, Michel; Kurtuldu, Güven

    2015-08-01

    We have recently shown that minute solute element additions to liquid metallic alloys can strongly influence the nucleation of the fcc phase and act as a grain refinement method. Electron back-scattered diffraction observations revealed a concomitant increase in the percentage of nearest neighbor (nn) grains that are in a twin relationship. Furthermore, multiple-twinned (MT) nn grain configurations with a fivefold symmetry around a common direction have been identified, an occurrence that can be explained when the symmetry of the icosahedron is accounted for. It was then conjectured that a new nucleation mechanism occurs in two steps: first, the formation of small icosahedral quasicrystals in the melt, followed by heteroepitaxy of the fcc phase on facets of these quasicrystals. In the present contribution, based on thermodynamics arguments, it is proposed that the first step occurs by spinodal decomposition of the liquid, in a manner similar to Guinier-Preston zones formation in solid state precipitation, while the second step is a transformation of these quasicrystal precursors into MT-fcc nanocrystals once the driving force for this transformation is sufficient to overcome the fcc-liquid interfacial energy and the elastic strains associated with MT-fcc nanoparticles. This explanation sets up guidelines for finding solute elements and composition ranges that favor this grain refinement mechanism.

  19. Role-separating ordering in social dilemmas controlled by topological frustration.

    Science.gov (United States)

    Amaral, Marco A; Perc, Matjaž; Wardil, Lucas; Szolnoki, Attila; da Silva Júnior, Elton J; da Silva, Jafferson K L

    2017-03-01

    ''Three is a crowd" is an old proverb that applies as much to social interactions as it does to frustrated configurations in statistical physics models. Accordingly, social relations within a triangle deserve special attention. With this motivation, we explore the impact of topological frustration on the evolutionary dynamics of the snowdrift game on a triangular lattice. This topology provides an irreconcilable frustration, which prevents anticoordination of competing strategies that would be needed for an optimal outcome of the game. By using different strategy updating protocols, we observe complex spatial patterns in dependence on payoff values that are reminiscent to a honeycomb-like organization, which helps to minimize the negative consequence of the topological frustration. We relate the emergence of these patterns to the microscopic dynamics of the evolutionary process, both by means of mean-field approximations and Monte Carlo simulations. For comparison, we also consider the same evolutionary dynamics on the square lattice, where of course the topological frustration is absent. However, with the deletion of diagonal links of the triangular lattice, we can gradually bridge the gap to the square lattice. Interestingly, in this case the level of cooperation in the system is a direct indicator of the level of topological frustration, thus providing a method to determine frustration levels in an arbitrary interaction network.

  20. Analog assessment of frustration tolerance: association with self-reported child abuse risk and physiological reactivity.

    Science.gov (United States)

    Rodriguez, Christina M; Russa, Mary Bower; Kircher, John C

    2015-08-01

    Although frustration has long been implicated in promoting aggression, the potential for poor frustration tolerance to function as a risk factor for physical child abuse risk has received minimal attention. Instead, much of the extant literature has examined the role of anger in physical abuse risk, relying on self-reports of the experience or expression of anger, despite the fact that this methodology is often acknowledged as vulnerable to bias. Therefore, the present investigation examined whether a more implicit, analog assessment of frustration tolerance specifically relevant to parenting would reveal an association with various markers of elevated physical child abuse risk in a series of samples that varied with regard to age, parenting status, and abuse risk. An analog task was designed to evoke parenting-relevant frustration: the task involved completing an unsolvable task while listening to a crying baby or a toddler's temper tantrum; time scores were generated to gauge participants' persistence in the task when encountering such frustration. Across these studies, low frustration tolerance was associated with increased physical child abuse potential, greater use of parent-child aggression in discipline encounters, dysfunctional disciplinary style, support for physical discipline use and physical discipline escalation, and increased heart rate. Future research directions that could better inform intervention and prevention programs are discussed, including working to clarify the processes underlying frustration intolerance and potential interactive influences that may exacerbate physical child abuse. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Random Process Theory Approach to Geometric Heterogeneous Surfaces: Effective Fluid-Solid Interaction

    Science.gov (United States)

    Khlyupin, Aleksey; Aslyamov, Timur

    2017-06-01

    Realistic fluid-solid interaction potentials are essential in description of confined fluids especially in the case of geometric heterogeneous surfaces. Correlated random field is considered as a model of random surface with high geometric roughness. We provide the general theory of effective coarse-grained fluid-solid potential by proper averaging of the free energy of fluid molecules which interact with the solid media. This procedure is largely based on the theory of random processes. We apply first passage time probability problem and assume the local Markov properties of random surfaces. General expression of effective fluid-solid potential is obtained. In the case of small surface irregularities analytical approximation for effective potential is proposed. Both amorphous materials with large surface roughness and crystalline solids with several types of fcc lattices are considered. It is shown that the wider the lattice spacing in terms of molecular diameter of the fluid, the more obtained potentials differ from classical ones. A comparison with published Monte-Carlo simulations was discussed. The work provides a promising approach to explore how the random geometric heterogeneity affects on thermodynamic properties of the fluids.

  2. Perceived levels of frustration during clinical situations in athletic training students.

    Science.gov (United States)

    Heinerichs, Scott; Curtis, Neil; Gardiner-Shires, Alison

    2014-01-01

    Athletic training students (ATSs) are involved in various situations during the clinical experience that may cause them to express levels of frustration. Understanding levels of frustration in ATSs is important because frustration can affect student learning, and the clinical experience is critical to their development as professionals. To explore perceived levels of frustration in ATSs during clinical situations and to determine if those perceptions differ based on sex. Cross-sectional study with a survey instrument. A total of 14 of 19 professional, undergraduate athletic training programs accredited by the Commission on Accreditation of Athletic Training Education in Pennsylvania. Of a possible 438 athletic training students, 318 (72.6%) completed the survey. The Athletic Training Student Frustration Inventory was developed and administered. The survey gathered demographic information and included 24 Likert-scale items centering on situations associated with the clinical experience. Descriptive statistics were computed on all items. The Mann-Whitney U was used to evaluate differences between male and female students. A higher level of frustration was perceived during the following clinical situations: lack of respect by student-athletes and coaching staffs, the demands of the clinical experience, inability of ATSs to perform or remember skills, and ATSs not having the opportunity to apply their skills daily. Higher levels of frustration were perceived in female than male ATSs in several areas. Understanding student frustration during clinical situations is important to better appreciate the clinical education experience. Low levels of this emotion are expected; however, when higher levels exist, learning can be affected. Whereas we cannot eliminate student frustrations, athletic training programs and preceptors need to be aware of this emotion in order to create an environment that is more conducive to learning.

  3. Perceived Levels of Frustration During Clinical Situations in Athletic Training Students

    Science.gov (United States)

    Heinerichs, Scott; Curtis, Neil; Gardiner-Shires, Alison

    2014-01-01

    Context: Athletic training students (ATSs) are involved in various situations during the clinical experience that may cause them to express levels of frustration. Understanding levels of frustration in ATSs is important because frustration can affect student learning, and the clinical experience is critical to their development as professionals. Objective:  To explore perceived levels of frustration in ATSs during clinical situations and to determine if those perceptions differ based on sex. Design:  Cross-sectional study with a survey instrument. Setting:  A total of 14 of 19 professional, undergraduate athletic training programs accredited by the Commission on Accreditation of Athletic Training Education in Pennsylvania. Patients or Other Participants:  Of a possible 438 athletic training students, 318 (72.6%) completed the survey. Main Outcomes Measure(s):  The Athletic Training Student Frustration Inventory was developed and administered. The survey gathered demographic information and included 24 Likert-scale items centering on situations associated with the clinical experience. Descriptive statistics were computed on all items. The Mann-Whitney U was used to evaluate differences between male and female students. Results:  A higher level of frustration was perceived during the following clinical situations: lack of respect by student-athletes and coaching staffs, the demands of the clinical experience, inability of ATSs to perform or remember skills, and ATSs not having the opportunity to apply their skills daily. Higher levels of frustration were perceived in female than male ATSs in several areas. Conclusions:  Understanding student frustration during clinical situations is important to better appreciate the clinical education experience. Low levels of this emotion are expected; however, when higher levels exist, learning can be affected. Whereas we cannot eliminate student frustrations, athletic training programs and preceptors need to be

  4. The Regulation of Induced Depression during a Frustrating Situation: Benefits of Expressive Suppression in Chinese Individuals

    Science.gov (United States)

    Ding, Nanxiang; Yang, Jiemin

    2014-01-01

    Background Studies from European-American cultures consistently reported that expressive suppression was associated with worse emotional consequence (e.g. depression) in comparison with acceptance. However, this conclusion may not apply to Chinese, as suppressing emotional displays to maintain relational harmony is culturally valued in East Asian countries. Thus, the present study examined the effects of suppression and acceptance on the depressive mood induced by a frustrating task in a Chinese sample. Method Sixty-four subjects were randomly assigned to one of three instructions: suppression, acceptance or no-regulation during a frustrating arithmetic task. The experience of depressive emotion and skin conductance response (SCR) were recorded during pre-frustration baseline, frustration induction and post-frustration recovery phases, respectively. Results Compared with the control and acceptance instructions, suppression instruction was associated with decreased depressive experiences and smaller SCR activity during frustration. There were no significant differences between acceptance and control groups in both subjective depression and SCR activity during frustration. Moreover, the suppression group showed a better emotional recovery after the frustrating task, in comparison with the acceptance and control groups. Correlation analyses verified that SCR reactivity was a reliable index of experienced depression during the frustration. Conclusions Expressive suppression is effective in reducing depressive experiences and depression-related physiological activity (SCR) when Chinese people are involved. By contrast, the acceptance of depressive emotion in Chinese people does not produce a similar regulation effect. These findings suggest that cultural context should be considered in understanding the emotional consequences of suppression and acceptance strategies. PMID:24827934

  5. Geometrical methods in learning theory

    International Nuclear Information System (INIS)

    Burdet, G.; Combe, Ph.; Nencka, H.

    2001-01-01

    The methods of information theory provide natural approaches to learning algorithms in the case of stochastic formal neural networks. Most of the classical techniques are based on some extremization principle. A geometrical interpretation of the associated algorithms provides a powerful tool for understanding the learning process and its stability and offers a framework for discussing possible new learning rules. An illustration is given using sequential and parallel learning in the Boltzmann machine

  6. Geometric Results for Compressible Magnetohydrodynamics

    OpenAIRE

    Arter, Wayne

    2013-01-01

    Recently, compressible magnetohydrodynamics (MHD) has been elegantly formulated in terms of Lie derivatives. This paper exploits the geometrical properties of the Lie bracket to give new insights into the properties of compressible MHD behaviour, both with and without feedback of the magnetic field on the flow. These results are expected to be useful for the solution of MHD equations in both tokamak fusion experiments and space plasmas.

  7. Geometric monodromy - Semisimplicity and maximality

    NARCIS (Netherlands)

    Cadoret, Anna; Hui, Chun Yin; Tamagawa, Akio

    2017-01-01

    Let X be a connected scheme, smooth and separated over an alge- braically closed field k of characteristic p ≥ 0, let f: Y → X be a smooth proper morphism and x a geometric point on X. We prove that the tensor invariants of bounded length ≤ d of π1(X; x) acting on the étale cohomology groups H*(Yx;

  8. Riemannian geometry and geometric analysis

    CERN Document Server

    Jost, Jürgen

    2017-01-01

    This established reference work continues to provide its readers with a gateway to some of the most interesting developments in contemporary geometry. It offers insight into a wide range of topics, including fundamental concepts of Riemannian geometry, such as geodesics, connections and curvature; the basic models and tools of geometric analysis, such as harmonic functions, forms, mappings, eigenvalues, the Dirac operator and the heat flow method; as well as the most important variational principles of theoretical physics, such as Yang-Mills, Ginzburg-Landau or the nonlinear sigma model of quantum field theory. The present volume connects all these topics in a systematic geometric framework. At the same time, it equips the reader with the working tools of the field and enables her or him to delve into geometric research.  The 7th edition has been systematically reorganized and updated. Almost no page has been left unchanged. It also includes new material, for instance on symplectic geometry, as well as the B...

  9. Polar metals by geometric design

    Science.gov (United States)

    Kim, T. H.; Puggioni, D.; Yuan, Y.; Xie, L.; Zhou, H.; Campbell, N.; Ryan, P. J.; Choi, Y.; Kim, J.-W.; Patzner, J. R.; Ryu, S.; Podkaminer, J. P.; Irwin, J.; Ma, Y.; Fennie, C. J.; Rzchowski, M. S.; Pan, X. Q.; Gopalan, V.; Rondinelli, J. M.; Eom, C. B.

    2016-05-01

    Gauss’s law dictates that the net electric field inside a conductor in electrostatic equilibrium is zero by effective charge screening; free carriers within a metal eliminate internal dipoles that may arise owing to asymmetric charge distributions. Quantum physics supports this view, demonstrating that delocalized electrons make a static macroscopic polarization, an ill-defined quantity in metals—it is exceedingly unusual to find a polar metal that exhibits long-range ordered dipoles owing to cooperative atomic displacements aligned from dipolar interactions as in insulating phases. Here we describe the quantum mechanical design and experimental realization of room-temperature polar metals in thin-film ANiO3 perovskite nickelates using a strategy based on atomic-scale control of inversion-preserving (centric) displacements. We predict with ab initio calculations that cooperative polar A cation displacements are geometrically stabilized with a non-equilibrium amplitude and tilt pattern of the corner-connected NiO6 octahedra—the structural signatures of perovskites—owing to geometric constraints imposed by the underlying substrate. Heteroepitaxial thin-films grown on LaAlO3 (111) substrates fulfil the design principles. We achieve both a conducting polar monoclinic oxide that is inaccessible in compositionally identical films grown on (001) substrates, and observe a hidden, previously unreported, non-equilibrium structure in thin-film geometries. We expect that the geometric stabilization approach will provide novel avenues for realizing new multifunctional materials with unusual coexisting properties.

  10. The moderating role of goal orientation in the workload-frustration relationship.

    Science.gov (United States)

    Whinghter, L Jean; Cunningham, Christopher J L; Wang, Mo; Burnfield, Jennifer L

    2008-07-01

    Goal orientation was hypothesized to moderate the relationship between quantitative workload and frustration. Based on data from 460 graduate students, two forms of goal orientation moderated this relationship. Specifically, it was found that workload was positively related to frustration for people with high levels of avoiding goal orientation, but not for those with low levels of avoiding goal orientation. In addition, it was found that the positive effect of workload on frustration was weaker for people with high levels of mastery goal orientation than for those with low levels of mastery goal orientation. Both theoretical and practical implications of the current findings are discussed. Copyright (c) 2008 APA, all rights reserved.

  11. Magnetic dimerization in the frustrated spin ladder Li2Cu2O (SO4)2

    Science.gov (United States)

    Vaccarelli, O.; Rousse, G.; Saúl, A.; Radtke, G.

    2017-11-01

    The magnetic properties of Li2Cu2O (SO4)2 are investigated in the framework of density functional theory. In its high-temperature tetragonal structure, this compound appears as a rare material realization of a frustrated spin-1/2 two-leg ladder, where magnetic frustration arises from competing nearest and next-nearest interactions along the legs. Through a large magnetoelastic coupling, the triclinic distortion occurring around 125 K is shown to induce the formation of a staggered dimer structure, lifting most of the magnetic frustration.

  12. The Act of Giving and Frustration: An Analysis in Determination of Psychological Distance

    Directory of Open Access Journals (Sweden)

    Wagner Junior Ladeira

    2016-03-01

    Full Text Available This article aims to analyze a scenario of giving, within a time gap, can be influenced by the frustration of an unfulfilled goal. From an experimental plan was checking the indulgence with others and with the gift at Christmas (Study 1, the influence of own frustrations (Study 2 and others (Study 3. The results show that the increase (decrease of frustration with the layout for goal himself can generate indulgence (control at the time of giving both to himself as another person.

  13. Theoretical study of the structural stability for fcc-CHx phases using density functional theory

    Directory of Open Access Journals (Sweden)

    M Dadsetani

    2011-09-01

    Full Text Available  Recently, a new carbon modification, namly n-diamond, have been reported, whose structure is still a matter of debate. It is important to note that the synthesis of n-diamond was carried out in the presence of hydrogen or methan. In this work we evaluate the structural stability of five fcc-CHx phases by means of first-principle calculation. The total energy is obtained as a function of the isotropic, tetragonal and rhombohedral deformations for the bulk structures. First, we analyze the C2H (cuprite, CH (zincblende, CH (rocksalt and CH2 (fluorite structures.It is found that the four systems show a minimum in the total energy for the isotropic and rhombohedral deformations, but are unstable against tetragonal deformation. In the second part, we explore the structural stability of CH2 in the pyrite structure. We find that CH2 (pyrite with the hydrogen atoms defined by the internal parameter u=0.35 and a lattice parameter of 3.766 Å is elastically stable, providing a possible explanation for the experimental observation of fcc-carbon in materials prepared in the presence of hydrogen or methan. In final, we calculate density of states, band structure and EELS spectrum of CH2 (pyrite and compare them with n-diamond.

  14. Design of an Inductive Adder for the FCC injection kicker pulse generator

    Science.gov (United States)

    Woog, D.; Barnes, M. J.; Ducimetière, L.; Holma, J.; Kramer, T.

    2017-07-01

    The injection system for a 100 TeV centre-of-mass collider is an important part of the Future Circular Collider (FCC) study. Due to issues with conventional kicker systems, such as self-triggering and long term availability of thyratrons and limitations of HV-cables, innovative design changes are planned for the FCC injection kicker pulse generator. An inductive adder (IA) based on semiconductor (SC) switches is a promising technology for kicker systems. Its modular design, and the possibility of an active ripple suppression are significant advantages. Since the IA is a complex device, with multiple components whose characteristics are important, a detailed design study and construction of a prototype is necessary. This paper summarizes the system requirements and constraints, and describes the main components and design challenges of the prototype IA. It outlines the results from simulations and measurements on different magnetic core materials as well as on SC switches. The paper concludes on the design choices and progress for the prototype to be built at CERN.

  15. Diffusion coefficients of rare earth elements in fcc Fe: A first-principles study

    Science.gov (United States)

    Wang, Haiyan; Gao, Xueyun; Ren, Huiping; Chen, Shuming; Yao, Zhaofeng

    2018-01-01

    The diffusion data and corresponding detailed insights are particularly important for the understanding of the related kinetic processes in Fe based alloys, e.g. solute strengthening, phase transition, solution treatment etc. We present a density function theory study of the diffusivity of self and solutes (La, Ce, Y and Nb) in fcc Fe. The five-frequency model was employed to calculate the microscopic parameters in the correlation factors of the solute diffusion. The interactions of the solutes with the first nearest-neighbor vacancy (1nn) are all attractive, and can be well understood on the basis of the combination of the strain-relief effects and the electronic effects. It is found that among the investigated species, Ce is the fastest diffusing solute in fcc Fe matrix followed by Nb, and the diffusion coefficients of these two solutes are about an order of magnitude higher than that of Fe self-diffusion. And the results show that the diffusion coefficient of La is slightly higher than that of Y, and both species are comparable to that of Fe self-diffusion.

  16. Towards the conceptual design of the cryogenic system of the Future Circular Collider (FCC)

    Science.gov (United States)

    Chorowski, M.; Correia Rodrigues, H.; Delikaris, D.; Duda, P.; Haberstroh, C.; Holdener, F.; Klöppel, S.; Kotnig, C.; Millet, F.; Polinski, J.; Quack, H.; Tavian, L.

    2017-12-01

    Following the update of the European strategy in particle physics, CERN has undertaken an international study of possible future circular colliders beyond the LHC. The study considers several options for very high-energy hadron-hadron, electron-positron and hadron-electron colliders. From the cryogenics point of view, the most challenging option is the hadron-hadron collider (FCC-hh) for which the conceptual design of the cryogenic system is progressing. The FCC-hh cryogenic system will have to produce up to 120 kW at 1.8 K for the superconducting magnet cooling, 6 MW between 40 and 60 K for the beam-screen and thermal-shield cooling as well as 850 g/s between 40 and 290 K for the HTS current-lead cooling. The corresponding total entropic load represents about 1 MW equivalent at 4.5 K and this cryogenic system will be by far the largest ever designed. In addition, the total mass to be cooled down is about 250’000 t and an innovative cool-down process must be proposed. This paper will present the proposed cryogenic layout and architecture, the cooling principles of the main components, the corresponding cooling schemes, as well as the cryogenic plant arrangement and proposed process cycles. The corresponding required development plan for such challenging cryogenic system will be highlighted.

  17. Analysis of Process Variables via CFD to Evaluate the Performance of a FCC Riser

    Directory of Open Access Journals (Sweden)

    H. C. Alvarez-Castro

    2015-01-01

    Full Text Available Feedstock conversion and yield products are studied through a 3D model simulating the main reactor of the fluid catalytic cracking (FCC process. Computational fluid dynamic (CFD is used with Eulerian-Eulerian approach to predict the fluid catalytic cracking behavior. The model considers 12 lumps with catalyst deactivation by coke and poisoning by alkaline nitrides and polycyclic aromatic adsorption to estimate the kinetic behavior which, starting from a given feedstock, produces several cracking products. Different feedstock compositions are considered. The model is compared with sampling data at industrial operation conditions. The simulation model is able to represent accurately the products behavior for the different operating conditions considered. All the conditions considered were solved using a solver ANSYS CFX 14.0. The different operation process variables and hydrodynamic effects of the industrial riser of a fluid catalytic cracking (FCC are evaluated. Predictions from the model are shown and comparison with experimental conversion and yields products are presented; recommendations are drawn to establish the conditions to obtain higher product yields in the industrial process.

  18. NiFe epitaxial films with hcp and fcc structures prepared on bcc-Cr underlayers

    International Nuclear Information System (INIS)

    Higuchi, Jumpei; Ohtake, Mitsuru; Sato, Yoichi; Kirino, Fumiyoshi; Futamoto, Masaaki

    2011-01-01

    NiFe epitaxial films are prepared on Cr(211) bcc and Cr(100) bcc underlayers grown hetero-epitaxially on MgO single-crystal substrates by ultra-high vacuum rf magnetron sputtering. The film growth behavior and the crystallographic properties are studied by reflection high energy electron diffraction and pole figure X-ray diffraction. Metastable hcp-NiFe(11-bar 00) and hcp-NiFe(112-bar 0) crystals respectively nucleate on Cr(211) bcc and Cr(100) bcc underlayers, where the hcp-NiFe crystals are stabilized through hetero-epitaxial growth. The hcp-NiFe(11-bar 00) crystal is a single-crystal with the c-axis parallel to the substrate surface, whereas the hcp-NiFe(112-bar 0) crystal is a bi-crystal with the respective c-axes lying in plane and perpendicular each other. With increasing the film thickness, the hcp structure in the NiFe films starts to transform into more stable fcc structure by atomic displacement parallel to the hcp(0001) close packed plane. The resulting films consist of hcp and fcc crystals.

  19. Future Circular Collider Study (FCC) kick-off meeting | 12-15 February

    CERN Multimedia

    2014-01-01

    The kick-off meeting of the international "Future Circular Collider Study" (FCC) will take place in Geneva from 12 to 15 February 2014 at the University of Geneva, Unimail site. The programme and registration details can be found on the meeting's website. This meeting is the starting point of the five-year international "Future Circular Collider Study" (FCC). The main emphasis of the conceptual design study will be on a hadron collider with a centre-of-mass energy of the order of 100 TeV in a new tunnel with a 80-100 km circumference for the purposes of studying physics at the highest energies. The study will also include a lepton collider, as a potential intermediate step towards realisation of the hadron facility. Options for e-p scenarios will also be considered. The main purpose of this meeting is to discuss the study topics and to prepare international collaborations. The meeting is a public meeting with a registration deadline closing on Friday 31 Janua...

  20. Ab initio random structure search for 13-atom clusters of fcc elements

    International Nuclear Information System (INIS)

    Chou, J P; Hsing, C R; Wei, C M; Cheng, C; Chang, C M

    2013-01-01

    The 13-atom metal clusters of fcc elements (Al, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au) were studied by density functional theory calculations. The global minima were searched for by the ab initio random structure searching method. In addition to some new lowest-energy structures for Pd 13 and Au 13 , we found that the effective coordination numbers of the lowest-energy clusters would increase with the ratio of the dimer-to-bulk bond length. This correlation, together with the electronic structures of the lowest-energy clusters, divides the 13-atom clusters of these fcc elements into two groups (except for Au 13 , which prefers a two-dimensional structure due to the relativistic effect). Compact-like clusters that are composed exclusively of triangular motifs are preferred for elements without d-electrons (Al) or with (nearly) filled d-band electrons (Ni, Pd, Cu, Ag). Non-compact clusters composed mainly of square motifs connected by some triangular motifs (Rh, Ir, Pt) are favored for elements with unfilled d-band electrons. (paper)

  1. Effects of Co doping on the metamagnetic states in fcc Fe1-xCox

    Science.gov (United States)

    de Coss, Romeo; Ortiz-Chi, Filiberto

    2012-02-01

    It is well known that fcc-Fe have shows metamagnetism, with a low-spin state (LS) at small volume and and a high-spin state (HS) at large volume in the total-energy vs volume curve. In this work, we have studied the evolution of the metamagnetic states in the Fe1-xCox alloy as a function of Co concentration by means of first principles calculations. The ground state properties were obtained using the Full-Potential Linear Augmented Plane Waves method and the Generalized Gradient Approximation for the exchange-correlation functional. The alloying was modeled using the self-consistent virtual crystal approximation. The magnetic states are obtained from the total-energy as a function of the spin moment calculations, obtained using the Fixed Spin Moment methodology. For fcc-Fe, we found that the ground state corresponds to the LS state. Increasing the Co concentration the HS state decrease in energy. Thus, for x=0.05 the energy of the LS and HS states is practically the same, corresponding to a spin-glass state. The LS state is substituted by a paramagnetic state for x>0.3 of Co concentration. Interestingly, for the alloy with x˜0.35 the total-energy vs volume curve shows ``effective symmetry,'' which is expected to exhibit invar behavior.

  2. Low-cycle fatigue-cracking mechanisms in fcc crystalline materials

    Science.gov (United States)

    Zhang, P.; Qu, S.; Duan, Q. Q.; Wu, S. D.; Li, S. X.; Wang, Z. G.; Zhang, Z. F.

    2011-01-01

    The low-cycle fatigue (LCF) cracking behavior in various face-centered-cubic (fcc) crystalline materials, including Cu single crystals, bicrystals and polycrystals, Cu-Al and Cu-Zn alloys, ultrafine-grained (UFG) Al-Cu and Cu-Zn alloys, was systematically investigated and reviewed. In Cu single crystals, fatigue cracking always nucleates along slip bands and deformation bands. The large-angle grain boundary (GB) becomes the preferential site in bicrystals and polycrystals. In addition, fatigue cracking can also nucleate along slip bands and twin boundaries (TBs) in polycrystalline materials. However, shear bands and coarse deformation bands are observed to the preferential sites for fatigue cracking in UFG materials with a large number of GBs. Based on numerous observations on fatigue-cracking behavior, the fatigue-cracking mechanisms along slip bands, GBs, TBs, shear bands and deformation bands were systematically compared and classified into two types, i.e. shear crack and impingement crack. Finally, these fatigue-cracking behaviors are discussed in depth for a better understanding of their physical nature and the transition from intergranular to transgranular cracking in various fcc crystalline materials. These comprehensive results for fatigue damage mechanisms should significantly aid in obtaining the optimum design to further strengthen and toughen metallic materials in practice.

  3. Microstructure-sensitive modelling of dislocation creep in polycrystalline FCC alloys: Orowan theory revisited

    Energy Technology Data Exchange (ETDEWEB)

    Galindo-Nava, E.I., E-mail: eg375@cam.ac.uk; Rae, C.M.F.

    2016-01-10

    A new approach for modelling dislocation creep during primary and secondary creep in FCC metals is proposed. The Orowan equation and dislocation behaviour at the grain scale are revisited to include the effects of different microstructures such as the grain size and solute atoms. Dislocation activity is proposed to follow a jog-diffusion law. It is shown that the activation energy for cross-slip E{sub cs} controls dislocation mobility and the strain increments during secondary creep. This is confirmed by successfully comparing E{sub cs} with the experimentally determined activation energy during secondary creep in 5 FCC metals. It is shown that the inverse relationship between the grain size and dislocation creep is attributed to the higher number of strain increments at the grain level dominating their magnitude as the grain size decreases. An alternative approach describing solid solution strengthening effects in nickel alloys is presented, where the dislocation mobility is reduced by dislocation pinning around solute atoms. An analysis on the solid solution strengthening effects of typical elements employed in Ni-base superalloys is also discussed. The model results are validated against measurements of Cu, Ni, Ti and 4 Ni-base alloys for wide deformation conditions and different grain sizes.

  4. LatticeLibrary and BccFccRaycaster: Software for processing and viewing 3D data on optimal sampling lattices

    Directory of Open Access Journals (Sweden)

    Elisabeth Schold Linnér

    2016-01-01

    Full Text Available In this paper, we present LatticeLibrary, a C++ library for general processing of 2D and 3D images sampled on arbitrary lattices. The current implementation supports the Cartesian Cubic (CC, Body-Centered Cubic (BCC and Face-Centered Cubic (FCC lattices, and is designed to facilitate addition of other sampling lattices. We also introduce BccFccRaycaster, a plugin for the existing volume renderer Voreen, making it possible to view CC, BCC and FCC data, using different interpolation methods, with the same application. The plugin supports nearest neighbor and trilinear interpolation at interactive frame rates. These tools will enable further studies of the possible advantages of non-Cartesian lattices in a wide range of research areas.

  5. Motivation and frustration in cardiology trial participation: the patient perspective.

    Science.gov (United States)

    Meneguin, Silmara; Cesar, Luiz Antônio Machado

    2012-01-01

    The participation of humans in clinical cardiology trials remains essential, but little is known regarding participant perceptions of such studies. We examined the factors that motivated participation in such studies, as well as those that led to participant frustration. Patients who had participated in hypertension and coronary arterial disease (phases II, III, and IV) clinical trials were invited to answer a questionnaire. They were divided into two groups: Group I, which included participants in placebo-controlled clinical trials after randomization, and Group II, which included participants in clinical trials in which the tested treatment was compared to another drug after randomization and in which a placebo was used in the washout period. Eighty patients (47 patients in Group I and 33 patients in Group II) with different socio-demographic characteristics were interviewed. Approximately 60% of the patients were motivated to participate in the trial with the expectation of personal benefit. Nine participants (11.2%) expressed the desire to withdraw, which was due to their perception of risk during the testing in the clinical trial (Group I) and to the necessity of repeated returns to the institution (Group II). However, the patients did not withdraw due to fear of termination of hospital treatment. Although this study had a small patient sample, the possibility of receiving a benefit from the new tested treatment was consistently reported as a motivation to participate in the trials.

  6. Naloxone facilitates appetitive extinction and eliminates escape from frustration.

    Science.gov (United States)

    Norris, Jacob N; Pérez-Acosta, Andrés M; Ortega, Leonardo A; Papini, Mauricio R

    2009-11-01

    Two experiments tested the effects of opioid receptor blockage on behavior. In Experiment 1, rats reinforced for lever pressing with either sucrose or food pellets received treatment with saline, 2, and 10 mg/kg naloxone, i.p. (within-subject design). Naloxone 10 mg/kg increased response latency, but 2 mg/kg had no effect. When shifted to extinction (between-group design), naloxone (2 and 10 mg/kg) facilitated extinction relative to saline animals, after reinforcement with either sucrose or food pellets. In Experiment 2, after 10 sessions of access to 32% sucrose or an empty tube (between-group design), all rats were exposed to the empty tube while allowing them to jump over a barrier into a different compartment. Escape latencies were shorter for downshifted saline than for saline rats always given access to the empty tube. This escape-from-frustration effect was eliminated by naloxone (2 mg/kg, i.p.). Opioid blockage appears to reduce the value of alternative incentives.

  7. Nematic quantum liquid crystals of bosons in frustrated lattices

    Science.gov (United States)

    Zhu, Guanyu; Koch, Jens; Martin, Ivar

    2016-04-01

    The problem of interacting bosons in frustrated lattices is an intricate one due to the absence of a unique minimum in the single-particle dispersion where macroscopic number of bosons can condense. Here, we consider a family of tight-binding models with macroscopically degenerate lowest energy bands, separated from other bands by a gap. We predict the formation of exotic states that spontaneously break rotational symmetry at relatively low filling. These states belong to three nematic phases: Wigner crystal, supersolid, and superfluid. The Wigner crystal phase is established exactly at low filling. Supersolid and superfluid phases, at larger filling, are obtained by making use of a projection onto the flat band, construction of an appropriate Wannier basis, and subsequent mean-field treatment. The nematic superfluid that we predict is uniform in real space but has an anisotropic momentum distribution, providing a novel scenario for Bose condensation with an additional nematic order. Our findings open up a promising direction of studying microscopic quantum liquid crystalline phases of bosons.

  8. Phase transition and frustration in nuclear physics and astrophysics

    International Nuclear Information System (INIS)

    Hasnaoui, K.

    2008-10-01

    The thermodynamics of nuclear matter which constitutes the crust of proto-neutron stars and neutron stars is studied in this thesis. Obtaining information on the star matter thermodynamics will enhance the understanding of physical phenomena involved in the cooling of proto-neutron stars, and in the formation of type II supernovae. One of the main goals is to extract the star-matter phase diagram in order to determine if instabilities and/or critical points are present. The work is divided into two parts: in the first one classical approaches are developed, while the second one presents a quantum approach. The classical approaches are based on the Ising model and on the renormalisation group. They give us qualitative information on the phenomenology of phase transitions for star matter, and allow a discussion on the properties of the phase diagram under the generic phenomenon of Coulomb frustration. The quantum approach is based on a fermionic molecular dynamics model that we have developed from the density functional formalism, and numerically implemented using Skyrme forces optimized on neutron rich nuclei and neutron matter. This thesis work shows some first applications to the study the thermodynamics of finite nuclear systems, as well as nuclear structure calculations for light nuclei. A new formalism based on the molecular dynamics model is sketched which will ultimately allow treating the numerical quantum problem for the infinite star matter. (author)

  9. Voltage induced control and magnetoresistance of magnetically frustrated systems

    Science.gov (United States)

    Kalitsov, A.; Chshiev, M.; Canals, B.; Lacroix, C.

    2010-03-01

    The discovery of giant magnetoresistance [1] (GMR) in magnetic nanostructures has generated a new field of spin-based electronics (spintronics) [2]. This advent has considerably increased an interest in related phenomenon in bulk materials, colossal magnetoresistance [3] (CMR), which is several orders higher than GMR, and can be viewed as an ``intrinsic'' property of material. The CMR is typically observed in certain manganite compounds with characteristic magnetic fields of several Tesla. Such fields make them inappropriate for use in spintronic applications where appropriate scale should be about Oersteds. Here we promote magnetically frustrated (MF) bulk materials [4] as a possible alternative for spintronic applications with high magnetoresistance (MR) which can be controlled with relatively small voltages. We demonstrate that MR of MF systems may reach extremely high values and their magnetic configuration may be controlled by applied voltage. The proposed phenomenon is the bulk material analog of spin transfer torque [5] used in spin-valve structures. This work was supported by Nanosciences Foundation (France). [1] M. Baibich et al, Phys. Rev. Lett. 61, 2472 (1988); [2] S. Wolf, Science, 294, 1488 (2001); [3] S. Jin et al, Science, 264, 413 (1994); [4] J. Gardner et al, arXiv:0906.3661; [5] J. Slonczewski, JMMM 159, L1 (1996).

  10. Frustration-guided motion planning reveals conformational transitions in proteins.

    Science.gov (United States)

    Budday, Dominik; Fonseca, Rasmus; Leyendecker, Sigrid; van den Bedem, Henry

    2017-10-01

    Proteins exist as conformational ensembles, exchanging between substates to perform their function. Advances in experimental techniques yield unprecedented access to structural snapshots of their conformational landscape. However, computationally modeling how proteins use collective motions to transition between substates is challenging owing to a rugged landscape and large energy barriers. Here, we present a new, robotics-inspired motion planning procedure called dCC-RRT that navigates the rugged landscape between substates by introducing dynamic, interatomic constraints to modulate frustration. The constraints balance non-native contacts and flexibility, and instantaneously redirect the motion towards sterically favorable conformations. On a test set of eight proteins determined in two conformations separated by, on average, 7.5 Å root mean square deviation (RMSD), our pathways reduced the Cα atom RMSD to the goal conformation by 78%, outperforming peer methods. We then applied dCC-RRT to examine how collective, small-scale motions of four side-chains in the active site of cyclophilin A propagate through the protein. dCC-RRT uncovered a spatially contiguous network of residues linked by steric interactions and collective motion connecting the active site to a recently proposed, non-canonical capsid binding site 25 Å away, rationalizing NMR and multi-temperature crystallography experiments. In all, dCC-RRT can reveal detailed, all-atom molecular mechanisms for small and large amplitude motions. Source code and binaries are freely available at https://github.com/ExcitedStates/KGS/. © 2017 Wiley Periodicals, Inc.

  11. Effects of interfacial frustration in ferromagnet/antiferromagnet bilayers

    Science.gov (United States)

    Urazhdin, Sergei; Ma, Tianyu

    While the ferromagnet (F)/antiferromagnet (AF) bilayers have been extensively studied in the context of exchange bias, and more recently in the context of antiferromagnetic spintronics, the fundamental understanding of the nature of the magnetic state in this system is still a subject a debate. We will present measurements of magnetization aging in several F/AF systems based on AF=FeMn, CoO, and NiO, universally observed in all of these systems when AF layers are sufficiently thin. Quite generally, the aging curves are well-described by the power law with a small exponent. We show that the aging characteristics such as the dependence on temperature and the magnetic history are inconsistent with the Arrhenius activation, disproving the granular models of exchange bias. Furthermore, we show that the aging characteristics qualitatively change across the exchange bias blocking temperature, demonstrating that the latter is similar to the glass transition temperature, and is not simply of a characteristic activation temperature of the AF domains. We discuss the our findings in the context of frustration due to the random effective exchange field at the F/AF interface. supported by NSF DMR.

  12. Frustration in the energy landscapes of multidomain protein misfolding.

    Science.gov (United States)

    Zheng, Weihua; Schafer, Nicholas P; Wolynes, Peter G

    2013-01-29

    Frustration from strong interdomain interactions can make misfolding a more severe problem in multidomain proteins than in single-domain proteins. On the basis of bioinformatic surveys, it has been suggested that lowering the sequence identity between neighboring domains is one of nature's solutions to the multidomain misfolding problem. We investigate folding of multidomain proteins using the associative-memory, water-mediated, structure and energy model (AWSEM), a predictive coarse-grained protein force field. We find that reducing sequence identity not only decreases the formation of domain-swapped contacts but also decreases the formation of strong self-recognition contacts between β-strands with high hydrophobic content. The ensembles of misfolded structures that result from forming these amyloid-like interactions are energetically disfavored compared with the native state, but entropically favored. Therefore, these ensembles are more stable than the native ensemble under denaturing conditions, such as high temperature. Domain-swapped contacts compete with self-recognition contacts in forming various trapped states, and point mutations can shift the balance between the two types of interaction. We predict that multidomain proteins that lack these specific strong interdomain interactions should fold reliably.

  13. Effect of ZSM-5 on the production of reformulated gasoline. Comparison between FCC pilot plant and commercial results

    International Nuclear Information System (INIS)

    Lappas, A.A.; Iatridis, D.; Vasalos, I.A.; Phyxogios, G.

    1999-01-01

    One of the more interesting ways for production of light olefins and for minimization of Gasoline olefins is the use of catalytic additives in the FCC (fluid catalytic cracking) inventory. The most widely used additive for the FCC process is the ZSM-5 which is a shape selective zeolite. When this additive is added to FCC units, it boosts the yields of LPG's olefins at the expense of gasoline, while increasing gasoline RON. The addition of ZSM-5 offers a great flexibility to a refinery since, in a relatively simple and cheap way, it can increase the RON and produces higher yields of light olefins. For all the above reasons the last years more studies are carried out in order to investigate the effect of this additive. In study presented in this paper, main emphasis was given, for the investigation of the effect of ZSM- 5 addition on FCC product distribution and especially on gasoline olefins. Moreover, in the previous literature works the ZSM-5 influences were examined using mainly fixed bed reactors. In the present study the investigation was carried out in a FCC pilot plant. The additive was also added in a commercial FCC unit of a Greek refinery (Hellenic Aspropyrgos Refinery - HAR) and thus comparison results of commercial and pilot plant test are also presented. The above study is part of a research collaboration which exists the last 10 years between the laboratory of Environmental Fuels and hydrocarbons of Chemical Process Engineering Research Institute (LEFH/CPERI) and the main Greek refineries (HEL.PETROLEUM, Motor Oil Hellas Refinery). The target of this research collaboration is i) the development of technology for the production of reformulated fuels and hydrocarbons and ii) to assist the Greek refineries to face the new regulations for environmental friendly fuels

  14. The allure of the forbidden: breaking taboos, frustration, and attraction to violent video games.

    Science.gov (United States)

    Whitaker, Jodi L; Melzer, André; Steffgen, Georges; Bushman, Brad J

    2013-04-01

    Although people typically avoid engaging in antisocial or taboo behaviors, such as cheating and stealing, they may succumb in order to maximize their personal benefit. Moreover, they may be frustrated when the chance to commit a taboo behavior is withdrawn. The present study tested whether the desire to commit a taboo behavior, and the frustration from being denied such an opportunity, increases attraction to violent video games. Playing violent games allegedly offers an outlet for aggression prompted by frustration. In two experiments, some participants had no chance to commit a taboo behavior (cheating in Experiment 1, stealing in Experiment 2), others had a chance to commit a taboo behavior, and others had a withdrawn chance to commit a taboo behavior. Those in the latter group were most attracted to violent video games. Withdrawing the chance for participants to commit a taboo behavior increased their frustration, which in turn increased their attraction to violent video games.

  15. Job frustration in substance abuse counselors working with offenders in prisons versus community settings.

    Science.gov (United States)

    Perkins, Elizabeth B; Oser, Carrie B

    2014-06-01

    Substance abuse counselors who work with offenders are facing increasing caseloads, which puts them at higher risk of job frustration. The purpose of this study was to explore differences between substance abuse counselors employed in prison versus community settings in terms of level of organizational support and job frustration. This study also investigated whether organizational support was associated with job frustration after controlling for counselor characteristics and workplace setting. This was accomplished utilizing data that were collected from 267 counselors as part of the Criminal Justice Drug Abuse Treatment Studies research cooperative. Results indicated that counselors employed in community settings, as compared with those employed in prisons, are more likely to report higher levels of perceived organizational support. In addition, ordinal logistic regression results reveal that counselors who are non-White and have greater levels of organizational support have less job frustration, after controlling for counselor characteristics and workplace setting. The researches to practice implications are discussed.

  16. Frustration intolerance and unconditional self-acceptance as mediators of the relationship between perfectionism and depression

    Directory of Open Access Journals (Sweden)

    Stanković Sanda

    2015-01-01

    Full Text Available The aim of the present study was to further clarify the basic mechanism through which maladaptive perfectionism leads to depression, using the rational-emotive behavior therapy (REBT framework. Previous studies have shown that depression is not associated with high personal standards, but rather with the tendency to evaluate one’s self-worth based on the attainment of these standards, i.e. conditional self-acceptance. The goal of this study was to investigate for the first time the mediating role of frustration intolerance beliefs in this relationship, beyond and above the contribution of unconditional self-acceptance (USA beliefs. The sample consisted of 321 undergraduate students. Consistent with REBT theory, the structural equation modeling showed that both frustration intolerance and USA mediated the relationship between maladaptive perfectionism and dysphoria, with frustration intolerance beliefs being the stronger mediator. There was no evidence that maladaptive perfectionism influenced dysphoria independently of its effect on frustration intolerance and USA.

  17. Job Frustration in Substance Abuse Counselors Working with Offenders in Prisons Versus Community Settings

    Science.gov (United States)

    Perkins, Elizabeth B.; Oser, Carrie B.

    2014-01-01

    Substance abuse counselors who work with offenders are facing increasing caseloads which puts them at higher risk for job frustration. The purpose of this study was to explore differences between substance abuse counselors employed in prison versus community settings in terms of level of organizational support and job frustration. This study also investigated whether organizational support was associated with job frustration after controlling for counselor characteristics and workplace setting. This was accomplished utilizing data that was collected from 267 counselors as part of the Criminal Justice Drug Abuse Treatment Studies (CJ-DATS) research cooperative. Results indicated that counselors employed in community settings, as compared to those employed in prisons, are more likely to report higher levels of perceived organizational support. In addition, ordinal logistic regression results reveal that counselors who are non-white and have greater levels of organizational support have less job frustration, after controlling for counselor characteristics and workplace setting. The research to practice implications are discussed. PMID:23525175

  18. Post-communist democracy vs. totalitarianism: Contrasting patterns of need satisfaction and societal frustration.

    Czech Academy of Sciences Publication Activity Database

    Klicperová-Baker, Martina; Košťál, Jaroslav

    2017-01-01

    Roč. 50, č. 2 (2017), s. 99-111 ISSN 0967-067X R&D Projects: GA ČR GA15-11062S Grant - others:AV ČR(CZ) StrategieAV21/14 Program:StrategieAV Institutional support: RVO:68081740 Keywords : Totalitarianism * Post-communism * Frustration * Societal frustration * Democracy * Memory * Maslow * Hierarchy of needs Subject RIV: AN - Psychology OBOR OECD: Psychology (including human - machine relations) Impact factor: 0.607, year: 2016

  19. Anger under Control: Neural Correlates of Frustration as a Function of Trait Aggression

    OpenAIRE

    Pawliczek, Christina M.; Derntl, Birgit; Kellermann, Thilo; Gur, Ruben C.; Schneider, Frank; Habel, Ute

    2013-01-01

    Antisocial behavior and aggression are prominent symptoms in several psychiatric disorders including antisocial personality disorder. An established precursor to aggression is a frustrating event, which can elicit anger or exasperation, thereby prompting aggressive responses. While some studies have investigated the neural correlates of frustration and aggression, examination of their relation to trait aggression in healthy populations are rare. Based on a screening of 550 males, we formed tw...

  20. Post-communist democracy vs. totalitarianism: Contrasting patterns of need satisfaction and societal frustration.

    Czech Academy of Sciences Publication Activity Database

    Klicperová-Baker, Martina; Košťál, Jaroslav

    2017-01-01

    Roč. 50, č. 2 (2017), s. 99-111 ISSN 0967-067X R&D Projects: GA ČR GA15-11062S Grant - others:AV ČR(CZ) StrategieAV21/14 Program:StrategieAV Institutional support: RVO:68081740 Keywords : Totalitarianism * Post- communism * Frustration * Societal frustration * Democracy * Memory * Maslow * Hierarchy of needs Subject RIV: AN - Psychology OBOR OECD: Psychology (including human - machine relations) Impact factor: 0.607, year: 2016

  1. Geometric phase from dielectric matrix

    International Nuclear Information System (INIS)

    Banerjee, D.

    2005-10-01

    The dielectric property of the anisotropic optical medium is found by considering the polarized photon as two component spinor of spherical harmonics. The Geometric Phase of a polarized photon has been evaluated in two ways: the phase two-form of the dielectric matrix through a twist and the Pancharatnam phase (GP) by changing the angular momentum of the incident polarized photon over a closed triangular path on the extended Poincare sphere. The helicity in connection with the spin angular momentum of the chiral photon plays the key role in developing these phase holonomies. (author)

  2. Field guide to geometrical optics

    CERN Document Server

    Greivenkamp, John E

    2004-01-01

    This Field Guide derives from the treatment of geometrical optics that has evolved from both the undergraduate and graduate programs at the Optical Sciences Center at the University of Arizona. The development is both rigorous and complete, and it features a consistent notation and sign convention. This volume covers Gaussian imagery, paraxial optics, first-order optical system design, system examples, illumination, chromatic effects, and an introduction to aberrations. The appendices provide supplemental material on radiometry and photometry, the human eye, and several other topics.

  3. Geometric Computations On Indecisive Points

    DEFF Research Database (Denmark)

    Jørgensen, Allan Grønlund; Phillips, Jeff; Loffler, Maarten

    2011-01-01

    We study computing with indecisive point sets. Such points have spatial uncertainty where the true location is one of a finite number of possible locations. This data arises from probing distributions a few times or when the location is one of a few locations from a known database. In particular......, we study computing distributions of geometric functions such as the radius of the smallest enclosing ball and the diameter. Surprisingly, we can compute the distribution of the radius of the smallest enclosing ball exactly in polynomial time, but computing the same distribution for the diameter is #P...

  4. Geometric Rationalization for Freeform Architecture

    KAUST Repository

    Jiang, Caigui

    2016-06-20

    The emergence of freeform architecture provides interesting geometric challenges with regards to the design and manufacturing of large-scale structures. To design these architectural structures, we have to consider two types of constraints. First, aesthetic constraints are important because the buildings have to be visually impressive. Sec- ond, functional constraints are important for the performance of a building and its e cient construction. This thesis contributes to the area of architectural geometry. Specifically, we are interested in the geometric rationalization of freeform architec- ture with the goal of combining aesthetic and functional constraints and construction requirements. Aesthetic requirements typically come from designers and architects. To obtain visually pleasing structures, they favor smoothness of the building shape, but also smoothness of the visible patterns on the surface. Functional requirements typically come from the engineers involved in the construction process. For exam- ple, covering freeform structures using planar panels is much cheaper than using non-planar ones. Further, constructed buildings have to be stable and should not collapse. In this thesis, we explore the geometric rationalization of freeform archi- tecture using four specific example problems inspired by real life applications. We achieve our results by developing optimization algorithms and a theoretical study of the underlying geometrical structure of the problems. The four example problems are the following: (1) The design of shading and lighting systems which are torsion-free structures with planar beams based on quad meshes. They satisfy the functionality requirements of preventing light from going inside a building as shad- ing systems or reflecting light into a building as lighting systems. (2) The Design of freeform honeycomb structures that are constructed based on hex-dominant meshes with a planar beam mounted along each edge. The beams intersect without

  5. A history of geometrical methods

    CERN Document Server

    Coolidge, Julian Lowell

    2013-01-01

    Full and authoritative, this history of the techniques for dealing with geometric questions begins with synthetic geometry and its origins in Babylonian and Egyptian mathematics; reviews the contributions of China, Japan, India, and Greece; and discusses the non-Euclidean geometries. Subsequent sections cover algebraic geometry, starting with the precursors and advancing to the great awakening with Descartes; and differential geometry, from the early work of Huygens and Newton to projective and absolute differential geometry. The author's emphasis on proofs and notations, his comparisons betwe

  6. Strong-Weak Coupling Self-Duality and Dimensional Reduction in the Two-Dimensional p+ip Superconducting Arrays and Frustrated Magnets

    Science.gov (United States)

    Xu, Cenke; Moore, Joel

    2005-03-01

    We discuss models of superconducting arrays and frustrated magnets in two dimensions which show quantum phase transitions and self-dualities that are characteristic of one-dimensional problems. The first part of the talk explains how the geometric dependence of Josephson tunneling in time-reversal-breaking superconductors leads naturally to effective Hamiltonians containing four-point interactions rather than two-point interactions. This work was motivated by the observation of possible T-breaking p+ip order in Sr2RuO4, but similar four-point interactions appear in the 1/S expansion of certain standard models of frustrated magnetism. We show that many models on the square lattice with four-point interactions contain infinitely many gauge-like symmetries, and generalize the self-duality of the quantum Ising model in one dimension to related models in all higher dimensions. The existence of these nonperturbative self-dualities gives exact information on the phase diagram of the superconducting array models and on the phase transition between globally T-ordered and globally T-breaking states.

  7. The influence of anisotropy on the core structure of Shockley partial dislocations within FCC materials

    Science.gov (United States)

    Szajewski, B. A.; Hunter, A.; Luscher, D. J.; Beyerlein, I. J.

    2018-01-01

    Both theoretical and numerical models of dislocations often necessitate the assumption of elastic isotropy to retain analytical tractability in addition to reducing computational load. As dislocation based models evolve towards physically realistic material descriptions, the assumption of elastic isotropy becomes increasingly worthy of examination. We present an analytical dislocation model for calculating the full dissociated core structure of dislocations within anisotropic face centered cubic (FCC) crystals as a function of the degree of material elastic anisotropy, two misfit energy densities on the γ-surface ({γ }{{isf}}, {γ }{{usf}}) and the remaining elastic constants. Our solution is independent of any additional features of the γ-surface. Towards this pursuit, we first demonstrate that the dependence of the anisotropic elasticity tensor on the orientation of the dislocation line within the FCC crystalline lattice is small and may be reasonably neglected for typical materials. With this approximation, explicit analytic solutions for the anisotropic elasticity tensor {B} for both nominally edge and screw dislocations within an FCC crystalline lattice are devised, and employed towards defining a set of effective isotropic elastic constants which reproduce fully anisotropic results, however do not retain the bulk modulus. Conversely, Hill averaged elastic constants which both retain the bulk modulus and reasonably approximate the dislocation core structure are employed within subsequent numerical calculations. We examine a wide range of materials within this study, and the features of each partial dislocation core are sufficiently localized that application of discrete linear elasticity accurately describes the separation of each partial dislocation core. In addition, the local features (the partial dislocation core distribution) are well described by a Peierls-Nabarro dislocation model. We develop a model for the displacement profile which depends upon

  8. Frustrated ground state in the metallic Ising antiferromagnet Nd2Ni2In

    Energy Technology Data Exchange (ETDEWEB)

    Sala, G.; Mašková, S.; Stone, M. B.

    2017-10-01

    We use inelastic neutron scattering measurements to examine the inter-metallic Ising anti-ferromagnet \\NNI. The dynamical structure factor displays a spectrum with multiple crystal field excitations. These crystal field excitations consist of a set of four transitions covering a range of energies between $4$ and $80$ meV. The analysis of the crystalline electric field scheme confirms the Ising nature of the spins and their orientation as proposed by previous studies. We characterize \\NNI~as a large moment intermetallic antiferromagnet with the potential to support a geometrically frustrated Shastry-Sutherland lattice.

  9. Effect of Frustration on Brain Activation Pattern in Subjects with Different Temperament

    Science.gov (United States)

    Bierzynska, Maria; Bielecki, Maksymilian; Marchewka, Artur; Debowska, Weronika; Duszyk, Anna; Zajkowski, Wojciech; Falkiewicz, Marcel; Nowicka, Anna; Strelau, Jan; Kossut, Malgorzata

    2016-01-01

    In spite of the prevalence of frustration in everyday life, very few neuroimaging studies were focused on this emotional state. In the current study we aimed to examine effects of frustration on brain activity while performing a well-learned task in participants with low and high tolerance for arousal. Prior to the functional magnetic resonance imaging session, the subjects underwent 2 weeks of Braille reading training. Frustration induction was obtained by using a novel highly difficult tactile task based on discrimination of Braille-like raised dots patterns and negative feedback. Effectiveness of this procedure has been confirmed in a pilot study using galvanic skin response and questionnaires. Brain activation pattern during tactile discrimination task before and after frustration were compared directly. Results revealed changes in brain activity in structures mostly reported in acute stress studies: striatum, cingulate cortex, insula, middle frontal gyrus and precuneus and in structures engaged in tactile Braille discrimination: SI and SII. Temperament type affected activation pattern. Subjects with low tolerance for arousal showed higher activation in the posterior cingulate gyrus, precuneus, and inferior parietal lobule than high reactivity group. Even though performance in the discrimination trials following frustration was unaltered, we observed increased activity of primary and secondary somatosensory cortex processing the tactile information. We interpret this effect as an indicator of additional involvement required to counteract the effects of frustration. PMID:26793136

  10. Effect of Frustration on Brain Activation Pattern in Subjects with Different Temperament.

    Science.gov (United States)

    Bierzynska, Maria; Bielecki, Maksymilian; Marchewka, Artur; Debowska, Weronika; Duszyk, Anna; Zajkowski, Wojciech; Falkiewicz, Marcel; Nowicka, Anna; Strelau, Jan; Kossut, Malgorzata

    2015-01-01

    In spite of the prevalence of frustration in everyday life, very few neuroimaging studies were focused on this emotional state. In the current study we aimed to examine effects of frustration on brain activity while performing a well-learned task in participants with low and high tolerance for arousal. Prior to the functional magnetic resonance imaging session, the subjects underwent 2 weeks of Braille reading training. Frustration induction was obtained by using a novel highly difficult tactile task based on discrimination of Braille-like raised dots patterns and negative feedback. Effectiveness of this procedure has been confirmed in a pilot study using galvanic skin response and questionnaires. Brain activation pattern during tactile discrimination task before and after frustration were compared directly. Results revealed changes in brain activity in structures mostly reported in acute stress studies: striatum, cingulate cortex, insula, middle frontal gyrus and precuneus and in structures engaged in tactile Braille discrimination: SI and SII. Temperament type affected activation pattern. Subjects with low tolerance for arousal showed higher activation in the posterior cingulate gyrus, precuneus, and inferior parietal lobule than high reactivity group. Even though performance in the discrimination trials following frustration was unaltered, we observed increased activity of primary and secondary somatosensory cortex processing the tactile information. We interpret this effect as an indicator of additional involvement required to counteract the effects of frustration.

  11. Effect of frustration on brain activation pattern in subjects with different temperament.

    Directory of Open Access Journals (Sweden)

    Maria eBierzynska

    2016-01-01

    Full Text Available In spite of the prevalence of frustration in everyday life, very few neuroimaging studies were focused on this emotional state. In the current study we aimed to examine effects of frustration on brain activity while performing a well-learned task in participants with low and high tolerance for arousal. Prior to the functional magnetic resonance imaging (fMRI session, the subjects underwent two weeks of Braille reading training. Frustration induction was obtained by using a novel highly difficult tactile task based on discrimination of Braille-like raised dots patterns and negative feedback. Effectiveness of this procedure has been confirmed in a pilot study using galvanic skin response (GSR and questionnaires. Brain activation pattern during tactile discrimination task before and after frustration were compared directly. Results revealed changes in brain activity in structures mostly reported in acute stress studies: striatum, cingulate cortex, insula, middle frontal gyrus and precuneus and in structures engaged in tactile Braille discrimination: SI and SII. Temperament type affected activation pattern. Subjects with low tolerance for arousal showed higher activation in the posterior cingulate gyrus, precuneus and inferior parietal lobule (IPL than high reactivity group. Even though performance in the discrimination trials following frustration was unaltered, we observed increased activity of primary and secondary somatosensory cortex processing the tactile information. We interpret this effect as an indicator of additional involvement required to counteract the effects of frustration.

  12. Approximating frustration scores in complex networks via perturbed Laplacian spectra

    Science.gov (United States)

    Savol, Andrej J.; Chennubhotla, Chakra S.

    2015-12-01

    Systems of many interacting components, as found in physics, biology, infrastructure, and the social sciences, are often modeled by simple networks of nodes and edges. The real-world systems frequently confront outside intervention or internal damage whose impact must be predicted or minimized, and such perturbations are then mimicked in the models by altering nodes or edges. This leads to the broad issue of how to best quantify changes in a model network after some type of perturbation. In the case of node removal there are many centrality metrics which associate a scalar quantity with the removed node, but it can be difficult to associate the quantities with some intuitive aspect of physical behavior in the network. This presents a serious hurdle to the application of network theory: real-world utility networks are rarely altered according to theoretic principles unless the kinetic impact on the network's users are fully appreciated beforehand. In pursuit of a kinetically interpretable centrality score, we discuss the f-score, or frustration score. Each f-score quantifies whether a selected node accelerates or inhibits global mean first passage times to a second, independently selected target node. We show that this is a natural way of revealing the dynamical importance of a node in some networks. After discussing merits of the f-score metric, we combine spectral and Laplacian matrix theory in order to quickly approximate the exact f-score values, which can otherwise be expensive to compute. Following tests on both synthetic and real medium-sized networks, we report f-score runtime improvements over exact brute force approaches in the range of 0 to 400 % with low error (<3 % ).

  13. Image understanding using geometric context

    Science.gov (United States)

    Zhang, Xiaochun; Liu, Chuancai

    2017-07-01

    A Gibbs Sampler based topic model for image annotation, which takes into account the interaction between visual geometric context and related topic, is presented. Most of the existing topic models for scene annotation use segmentation-based algorithm. However, topic models using segmentation algorithm alone sometimes can produce erroneous results when used to annotate real-life scene pictures. Therefore, our algorithm makes use of peaks of image surface instead of segmentation regions. Existing approaches use SIFT algorithm and treat the peaks as round blob features. In this paper, the peaks are treated as anisotropic blob features, which models low level visual elements more precisely. In order to better utilize visual features, our model not only takes into consideration visual codeword, but also considers influence of visual properties to topic formation, such as orientation, width, length and color. The basic idea is based on the assumption that different topics will produce distinct visual appearance, and different visual appearance is helpful to distinguish topics. During the learning stage, each topic will be associated with a set of distributions of visual properties, which depicts appearance of the topic. This paper considers more geometric properties, which will reduce topic uncertainty and learn the images better. Tested with Corel5K, SAIAPR-TC12 and Espgame100k Datasets, our method performs moderately better than some state of the arts methods.

  14. Superferromagnetism in mechanically alloyed fcc Fe23Cu77 with bimodal cluster size distribution

    International Nuclear Information System (INIS)

    Silva, N J O; Amaral, J S; Amaral, V S; Costa, B F O; Le Caer, G

    2009-01-01

    Magnetic measurements, x-ray diffraction and Moessbauer spectroscopy were used to characterize a nanostructured fcc Fe 23 Cu 77 at.% alloy prepared by high-energy ball-milling, addressing in particular the effect of clustering on the nature of the interacting magnetic entities. The interpretation of magnetization measurements leads to the conclusion that grains, whose mean size is ∼16 nm, contain two populations of magnetic Fe-rich nanoclusters with a bimodal size distribution. These two sets of clusters contain about 14 and 400 Fe atoms and have magnetic moments of 30 μ B and 860 μ B , respectively. The inter-cluster ferromagnetic interactions that lead to superferromagnetism with a Curie temperature T C ∼220 K can be described by a mean field determined by the smaller clusters only, which account for 90% of the magnetization.

  15. Strong screening by lattice confinement and resultant fusion reaction rates in fcc metals

    Science.gov (United States)

    Prados-Estévez, F. M.; Subashiev, A. V.; Nee, H. H.

    2017-09-01

    The effects of electronic screening on the cross sections and reactivities for the nuclear reactions between light nuclei in Pd and Ni is studied. We consider the applicability of the theory of thermonuclear burning in stars to the D-D nuclear reaction in metals. The screening model based on the mean field potential of the electron cloud in the metal plasma is used. We discuss the specifics of the screening for the H (D) atoms embedded in vacancies and divacancies. High concentration of hydrogen isotopes segregated to monovacancies and divacancies in face-centered cubic (fcc) metals such as Ni and Pd with densities of ∼ 6 ×1023atom /cm3 , makes the hydrogen cluster a favorable active site for the fusion reaction. Still the observation of a nuclear reaction requires an accumulation of energy in D nuclei of at least several eV, which is far above what can be achieved in the thermal heating experiments.

  16. Indium-defect interactions in FCC and BCC metals studied using the modified embedded atom method

    Energy Technology Data Exchange (ETDEWEB)

    Zacate, M. O., E-mail: zacatem1@nku.edu [Northern Kentucky University, Department of Physics, Geology, and Engineering Technology (United States)

    2016-12-15

    With the aim of developing a transferable potential set capable of predicting defect formation, defect association, and diffusion properties in a wide range of intermetallic compounds, the present study was undertaken to test parameterization strategies for determining empirical pair-wise interaction parameters in the modified embedded atom method (MEAM) developed by Baskes and coworkers. This report focuses on indium-solute and indium-vacancy interactions in FCC and BCC metals, for which a large set of experimental data obtained from perturbed angular correlation measurements is available for comparison. Simulation results were found to be in good agreement with experimental values after model parameters had been adjusted to reproduce as best as possible the following two sets of quantities: (1) lattice parameters, formation enthalpies, and bulk moduli of hypothetical equiatomic compounds with the NaCl crystal structure determined using density functional theory and (2) dilute solution enthalpies in metals as predicted by Miedema’s semi-empirical model.

  17. Martensitic fcc-to-hcp transformations in solid xenon under pressure: a first-principles study.

    Science.gov (United States)

    Kim, Eunja; Nicol, Malcolm; Cynn, Hyunchae; Yoo, Choong-Shik

    2006-01-27

    First-principles calculations reveal that the fcc-to-hcp pressure-induced transformation in solid xenon proceeds through two mechanisms between 5 and 70 GPa. The dynamics of the phase transition involves a sluggish stacking-disorder growth at lower pressures (path I) that changes to a path involving an orthorhombic distortion at higher pressures (path II). The switchover is governed by a delicate interplay of energetics (enthalpy of the system for the structural stability) and kinetics (energy barrier for the transition). The two types of martensitic transformations involved in this pressure-induced structural transformation are a twinned martensitic transition at lower pressures and a slipped martensitic transition at higher pressures.

  18. Proton cross-talk and losses in the dispersion suppressor regions at the FCC-hh

    CERN Document Server

    AUTHOR|(CDS)2100784; Appleby, Robert Barrie; Krainer, Alexander; Langner, Andy Sven; Abelleira, Jose

    2017-01-01

    Protons that collide at the interaction points of the FCC-hh may contribute to the background in the subsequent detector. Due to the high luminosity of the proton beams this may be of concern. Using DPMJET-III to model 50 TeV proton-proton collisions, tracking studies have been performed with PTC and MERLIN in order to gauge the elastic and inelastic proton cross-talk. High arc losses, particularly in the dispersion suppressor regions, have been revealed. These losses originate mainly from particles with a momentum deviation, either from interaction with a primary collimator in the betatron cleaning insertion, or from the proton-proton collisions. This issue can be mitigated by introducing additional collimators in the dispersion suppressor region. The specific design, lattice integration, and the effect of these collimators on cross-talk is assessed.

  19. Surface segregation of the metal impurity to the (1 0 0) surface of fcc metals

    Science.gov (United States)

    Zhang, Jian-Min; Wang, Bo; Xu, Ke-Wei

    2007-10-01

    The surface segregation energies for a single metal impurity to the (100) surface of nine fcc metals (Cu, Ag, Au, Ni, Pd, Pt, Rh, Al and Ir) have been calculated using the MAEAM and molecular dynamics (MD) simulation. The results show that the effect of the surface is down to the fourth-layer and an oscillatory or monotonic damping (|E_1|>|E_2|>|E_3|>|E_4|) phenomenon in segregation energy has been obtained. The absolute value of the segregation energy E_1 for a single impurity in the first atomic layer is much higher than that in the nether layers. Thus, whether the surface segregation will work or not is mainly determined by E_1 which is in good relation to the differences in surface energy between the impurity and host crystals Δ Q=Q_{imp}-Q_{hos}. So we conclude that an impurity with lower surface energy will segregate to the surface of the host with higher surface energy.

  20. Betatron-collimation Studies for Heavy Ions in the FCC-hh

    CERN Multimedia

    Logothetis Agaliotis, Efstathios

    2018-01-01

    One of the biggest challenges in the design of the FCC-hh is the collimation system. From LHC experience it is known that a collimation system optimized for proton cleaning has a significantly reduced efficiency for heavy ions. The study presented in this contribution evaluates the betatron-collimation efficiency for the heavy-ion operation with lead nuclei at a beam energy of 50 Z TeV in the system designed for proton operation. The fragmentation processes of the main beam particles in the primary collimator are simulated with FLUKA and fragments are individually tracked with SixTrack until being lost in the downstream aperture. In this way a first-impact loss-map is obtained, identifying locations where high energy deposition are to be expected. This provides a first-level assessment of feasibility and allows to include countermeasures in the conceptual accelerator design.

  1. Towards an improved physical understanding of dynamic plasticity in FCC metals

    Science.gov (United States)

    Lea, Lewis; Jardine, Andrew

    2017-06-01

    Above true strain rates of 104 s-1, FCC metals begin to exhibit a rapid increase in strength. Attempts at modelling this transition have led to two general theories as to the underlying mechanisms. Firstly, the drift velocity of the dislocations imparting strain has been proposed to become limited by viscous-like scattering with phonons in the metal. Meanwhile, other authors have proposed that the ever reducing timescale of slip gives rise to changes in the evolution of dislocation structure. Regardless of the chosen mathematical framework, the fundamental natures of the two proposed mechanisms provide testable qualitative predictions about material behaviour. In this study we will perform a variety of Hopkinson bar experiments on a OFHC grade copper to provide insight into which of these two mechanisms provides the most sound basis for developing reliable models of high rate metal plasticity. EPSRC.

  2. Onset of Magnetic Order in fcc-Fe Films on Cu(100)

    Science.gov (United States)

    Razee, S. S.; Staunton, J. B.; Szunyogh, L.; Gyorffy, B. L.

    2002-04-01

    On the basis of an ab initio theory of metallic magnetism in layered materials, we investigate the onset of magnetic order in thin (2-8 layers) fcc-Fe films on and embedded in Cu(100) substrates. In particular, we find an oscillatory dependence of the Curie temperatures on embedding depth, in excellent agreement with experimental data. The thermally induced spin fluctuations are treated within a mean-field disordered local moment picture and give rise to layer-dependent ``local exchange splittings'' in the electronic structure even in the paramagnetic phase. These features determine the magnetic intralayer and interlayer interactions which are strongly influenced by the presence and extent of the Cu cap.

  3. Localization in small fcc-particles with surface irregularities and disorder

    International Nuclear Information System (INIS)

    Bucher, J.P.; Bloomfield, L.A.

    1991-01-01

    A numerical eigenvector analysis is used to investigate Anderson localization in small fcc-particles of N = 309 and N = 147 atoms. Special attention is given to the way size and surface roughness of the particles influence the localization behavior. States begin to localize in a non-exponential regime several lattice spacings from the center of localization and finally converge to a fully exponentially-localized regime for strong disorder. For smooth surface particles, it is found that the states localize first at the band bottom and a mobility edge can clearly be defined for increasing disorder. This doesn't seem to be the case for the rougher particles, where the band middle and the band bottom show similar behavior towards localization. Although particles with surface irregularities show an onset of localization for smaller values of the disorder than smooth particles, the localization length is greater. (orig.)

  4. Physics at the FCC-hh, a 100 TeV pp collider

    CERN Document Server

    2017-01-01

    A 100 TeV pp collider is under consideration, by the high-energy physics community, as an important step for the future development of our field, following the completion of the LHC and High-luminosity LHC physics programmes. In particular, CERN is considering 100 TeV pp collisions as the key target of a Future Circular Collider facility, built around a 100 km tunnel and designed to deliver pp, e+e- and ep collisions, in addition to a programme with heavy ion beams and with the injector complex. CERN is coordinating an international study tasked with the completion, by the end of 2018, of a Conceptual Design Report (CDR) for this facility. This document presents the first results of the assessment of the physics potential of the hadronic part of this research programme (FCC-hh).

  5. A common magnetic origin for the Invar effects in fcc iron-based ferromagnets

    Science.gov (United States)

    Hooley, Chris; Liot, Francois

    2011-03-01

    Using first-principles calculations, in conjunction with Ising magnetism, we undertake a theoretical study to elucidate the origin of the experimentally observed Invar effects in disordered fcc iron-based ferromagnets. First, we show that our theory can account for the Invar effects in iron-nickel alloys, the anomalies being driven by the magnetic contributions to the average free energies. Second, we present evidence indicating that the relationship between thermal expansion and magnetism is essentially the same in all the studied alloys, including those which display the Invar effect and those which do not. Hence we propose that magnetism plays a crucial role in determining whether a system exhibits normal thermal expansion, the Invar effect, or something else. The crucial determining factor is the rate at which the relative orientation of the local magnetic moments of nearest-neighbor iron atoms fluctuates as the system is heated.

  6. Lepton polarization asymmetries in rare semi-tauonic b → s exclusive decays at FCC- ee

    Science.gov (United States)

    Kamenik, J. F.; Monteil, S.; Semkiv, A.; Silva, L. Vale

    2017-10-01

    We consider measurements of exclusive rare semi-tauonic b-hadron decays, mediated by the b → s τ ^+ τ ^- transition, at a future high-energy circular electron-positron collider (FCC- ee). We argue that the high boosts of b-hadrons originating from on-shell Z boson decays allow for a full reconstruction of the decay kinematics in hadronic τ decay modes (up to discrete ambiguities). This, together with the potentially large statistics of Z→ b\\bar{b}, opens the door for the experimental determination of τ polarizations in these rare b-hadron decays. In the light of the current experimental situation on lepton flavor universality in rare semileptonic B decays, we discuss the complementary short-distance physics information carried by the τ polarizations and suggest suitable theoretically clean observables in the form of single- and double-τ polarization asymmetries.

  7. Anatomy of topological surface states: Exact solutions from destructive interference on frustrated lattices

    Science.gov (United States)

    Kunst, Flore K.; Trescher, Maximilian; Bergholtz, Emil J.

    2017-08-01

    The hallmark of topological phases is their robust boundary signature whose intriguing properties—such as the one-way transport on the chiral edge of a Chern insulator and the sudden disappearance of surface states forming open Fermi arcs on the surfaces of Weyl semimetals—are impossible to realize on the surface alone. Yet, despite the glaring simplicity of noninteracting topological bulk Hamiltonians and their concomitant energy spectrum, the detailed study of the corresponding surface states has essentially been restricted to numerical simulation. In this work, however, we show that exact analytical solutions of both topological and trivial surface states can be obtained for generic tight-binding models on a large class of geometrically frustrated lattices in any dimension without the need for fine-tuning of hopping amplitudes. Our solutions derive from local constraints tantamount to destructive interference between neighboring layer lattices perpendicular to the surface and provide microscopic insights into the structure of the surface states that enable analytical calculation of many desired properties including correlation functions, surface dispersion, Berry curvature, and the system size dependent gap closing, which necessarily occurs when the spatial localization switches surface. This further provides a deepened understanding of the bulk-boundary correspondence. We illustrate our general findings on a large number of examples in two and three spatial dimensions. Notably, we derive exact chiral Chern insulator edge states on the spin-orbit-coupled kagome lattice, and Fermi arcs relevant for recently synthesized slabs of pyrochlore-based Eu2Ir2O7 and Nd2Ir2O7 , which realize an all-in-all-out spin configuration, as well as for spin-ice-like two-in-two-out and one-in-three-out configurations, which are both relevant for Pr2Ir2O7 . Remarkably, each of the pyrochlore examples exhibit clearly resolved Fermi arcs although only the one

  8. 47 CFR Appendix 1 to Part 97 - Places Where the Amateur Service is Regulated by the FCC

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Places Where the Amateur Service is Regulated...) SAFETY AND SPECIAL RADIO SERVICES AMATEUR RADIO SERVICE Pt. 97, App. 1 Appendix 1 to Part 97—Places Where the Amateur Service is Regulated by the FCC In ITU Region 2, the amateur service is regulated by the...

  9. Synthesis and characterization of branched fcc/hcp ruthenium nanostructures and their catalytic activity in ammonia borane hydrolysis

    KAUST Repository

    AlYami, Noktan

    2018-01-30

    Several systems have shown the ability to stabilize uncommon crystal structures during the synthesis of metallic nanoparticles. By tailoring the nanoparticle crystal structure, the physical and chemical properties of the particles can also be controlled. Herein, we first synthesized branched nanoparticles of mixed hcp/fcc ruthenium, which were formed using tungsten carbonyl [W(CO)6] as both a reducing agent and a source of carbon monoxide. The branched particles were formed from multiple particulates off a central core. High-resolution transmission electron microscopy (HRTEM) clearly showed that the branched structures consisted of aligned hcp crystal domains, a mixture of fcc and hcp crystal domains with several defects and misalignments, and particles that contained multiple cores and branches. Branched particles were also formed with molybdenum carbonyl [Mo(CO)6], and faceted particles of hcp and fcc particles were formed with Re2(CO)10 as a carbon monoxide source. Without metal carbonyls, small particles of spherical hcp ruthenium were produced, and their size could be controlled by the selection of the precursor. The ruthenium nanoparticles were tested for ammonia borane hydrolysis; the branched nanoparticles were more reactive for catalytic hydrogen evolution than the faceted hcp/fcc nanoparticles or the spherical hcp nanoparticles. This work showcases the potential of crystal phase engineering of transition metal nanoparticles by different carbon monoxide precursors for tailoring their catalytic reactivity.

  10. Catalytic cracking of Arabian Light VGO over novel zeolites as FCC catalyst additives for maximizing propylene yield

    Czech Academy of Sciences Publication Activity Database

    Hussain, A. I.; Aitani, A.; Kubů, Martin; Čejka, Jiří; Al-Khattaf, S.

    2016-01-01

    Roč. 167, MAR 2016 (2016), s. 226-239 ISSN 0016-2361 R&D Projects: GA ČR GBP106/12/G015 Institutional support: RVO:61388955 Keywords : catalytic cracking * FCC additives * 10-ring zeolites Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.601, year: 2016

  11. Elemental vacancy diffusion database from high-throughput first-principles calculations for fcc and hcp structures

    International Nuclear Information System (INIS)

    Angsten, Thomas; Mayeshiba, Tam; Wu, Henry; Morgan, Dane

    2014-01-01

    This work demonstrates how databases of diffusion-related properties can be developed from high-throughput ab initio calculations. The formation and migration energies for vacancies of all adequately stable pure elements in both the face-centered cubic (fcc) and hexagonal close packing (hcp) crystal structures were determined using ab initio calculations. For hcp migration, both the basal plane and z-direction nearest-neighbor vacancy hops were considered. Energy barriers were successfully calculated for 49 elements in the fcc structure and 44 elements in the hcp structure. These data were plotted against various elemental properties in order to discover significant correlations. The calculated data show smooth and continuous trends when plotted against Mendeleev numbers. The vacancy formation energies were plotted against cohesive energies to produce linear trends with regressed slopes of 0.317 and 0.323 for the fcc and hcp structures respectively. This result shows the expected increase in vacancy formation energy with stronger bonding. The slope of approximately 0.3, being well below that predicted by a simple fixed bond strength model, is consistent with a reduction in the vacancy formation energy due to many-body effects and relaxation. Vacancy migration barriers are found to increase nearly linearly with increasing stiffness, consistent with the local expansion required to migrate an atom. A simple semi-empirical expression is created to predict the vacancy migration energy from the lattice constant and bulk modulus for fcc systems, yielding estimates with errors of approximately 30%. (paper)

  12. 75 FR 42376 - Proposed Information Collection; Comment Request; NTIA/FCC Web-based Frequency Coordination System

    Science.gov (United States)

    2010-07-21

    ... Information Collection; Comment Request; NTIA/FCC Web- based Frequency Coordination System AGENCY: National.... Abstract The National Telecommunications and Information Administration (NTIA) hosts a Web-based system...) bands that are shared on a co-primary basis by federal and non-federal users. The Web-based system...

  13. 78 FR 49480 - Proposed Information Collection; Comment Request; NTIA/FCC Web-based Frequency Coordination System

    Science.gov (United States)

    2013-08-14

    ... Information Collection; Comment Request; NTIA/FCC Web- based Frequency Coordination System AGENCY: National... INFORMATION: I. Abstract The National Telecommunications and Information Administration (NTIA) hosts a web-based system that collects specific identification information (e.g., company name, location and...

  14. Cemento adicionado con un residuo del proceso de craqueo catalítico (FCC: hidratación y microestructura

    Directory of Open Access Journals (Sweden)

    Silvia Izquierdo

    2013-08-01

    Full Text Available El presente trabajo estudia el efecto de la incorporación de un residuo procedente de la industria petroquímica denominado catalizador gastado del craqueo catalítico (FCC en la hidratación y microestructura de pastas cementicias. Se utilizan como materiales de referencia, además del cemento portland (OPC, dos tipos de adición de alto desempeño, metacaolín (MK y humo de sílice (HS. La caracterización de los productos de hidratación se realizó por medio de difracción de rayos X (DRX, análisis termogravimétrico (TG, microscopia electrónica de barrido (SEM y resonancia magnética nuclear (NMR. Se complementa este estudio con la evaluación de la resistencia mecánica a compresión de morteros a edad hasta de 90 días. Los resultados indican que los principales productos de hidratación en las pastas adicionadas con FCC son silicato cálcico hidratado (CSH, aluminatos cálcicos hidratados (CAH y silicoaluminatos cálcicos hidratados (CASH. Pastas con 10% de FCC reportan un consumo de cal del 61% a edad de 360 días de curado, valor muy superior al reportado por las adiciones de MK y HS en la misma proporción, esto indica una mayor reactividad del FCC, que incluso se manifiesta a edades tempranas. Cabe anotar que, considerando el factor de dilución, la incorporación de un 10% de FCC como reemplazo del cemento contribuye a la resistencia del material adicionado en órdenes de hasta un 30%. Esto es un indicativo del uso potencial de este residuo como material suplementario en mezclas cementicias.

  15. Geometrical charged-particle optics

    CERN Document Server

    Rose, Harald

    2012-01-01

    This second edition is an extended version of the first edition of Geometrical Charged-Particle Optics. The updated reference monograph is intended as a guide for researchers and graduate students who are seeking a comprehensive treatment of the design of instruments and beam-guiding systems of charged particles and their propagation in electromagnetic fields. Wave aspects are included in this edition for explaining electron holography, the Aharanov-Bohm effect and the resolution of electron microscopes limited by diffraction. Several methods for calculating the electromagnetic field are presented and procedures are outlined for calculating the properties of systems with arbitrarily curved axis. Detailed methods are presented for designing and optimizing special components such as aberration correctors, spectrometers, energy filters monochromators, ion traps, electron mirrors and cathode lenses. In particular, the optics of rotationally symmetric lenses, quadrupoles, and systems composed of these elements are...

  16. Geometric Operators on Boolean Functions

    DEFF Research Database (Denmark)

    Frisvad, Jeppe Revall; Falster, Peter

    In truth-functional propositional logic, any propositional formula represents a Boolean function (according to some valuation of the formula). We describe operators based on Decartes' concept of constructing coordinate systems, for translation of a propositional formula to the image of a Boolean...... function. With this image of a Boolean function corresponding to a propositional formula, we prove that the orthogonal projection operator leads to a theorem describing all rules of inference in propositional reasoning. In other words, we can capture all kinds of inference in propositional logic by means...... of a few geometric operators working on the images of Boolean functions. The operators we describe, arise from the niche area of array-based logic and have previously been tightly bound to an array-based representation of Boolean functions. We redefine the operators in an abstract form to make them...

  17. Geometrical charged-particle optics

    CERN Document Server

    Rose, Harald H

    2009-01-01

    This reference monograph covers all theoretical aspects of modern geometrical charged-particle optics. It is intended as a guide for researchers, who are involved in the design of electron optical instruments and beam-guiding systems for charged particles, and as a tutorial for graduate students seeking a comprehensive treatment. Procedures for calculating the properties of systems with arbitrarily curved axes are outlined in detail and methods are discussed for designing and optimizing special components such as aberration correctors, spectrometers, energy filters, monochromators, ion traps, electron mirrors and cathode lenses. Also addressed is the design of novel electron optical components enabling sub-Angstroem spatial resolution and sub-0.1eV energy resolution. Relativistic motion and spin precession of the electron is treated in a concise way by employing a covariant five-dimensional procedure.

  18. Geometric Methods in Physics XXXV

    CERN Document Server

    Odzijewicz, Anatol; Previato, Emma

    2018-01-01

    This book features a selection of articles based on the XXXV Białowieża Workshop on Geometric Methods in Physics, 2016. The series of Białowieża workshops, attended by a community of experts at the crossroads of mathematics and physics, is a major annual event in the field. The works in this book, based on presentations given at the workshop, are previously unpublished, at the cutting edge of current research, typically grounded in geometry and analysis, and with applications to classical and quantum physics. In 2016 the special session "Integrability and Geometry" in particular attracted pioneers and leading specialists in the field. Traditionally, the Białowieża Workshop is followed by a School on Geometry and Physics, for advanced graduate students and early-career researchers, and the book also includes extended abstracts of the lecture series.

  19. Geometric algebra in plasma electrodynamics

    Science.gov (United States)

    Resendes, D. P.; Resendes

    2013-10-01

    Geometric algebra (GA) is a recent broad mathematical framework incorporating synthetic and coordinate geometry, complex variables, quarternions, vector analysis, matrix algebra, spinors, tensors, and differential forms. It has been claimed to be a unified language for physics. GA is presented in the context of the Maxwell-Plasma system. In this formalism the divergence and curl differential operators are united in a single vector derivative, which is invertible, in the form of a first-order Green function. The four Maxwell equations can be combined into a single equation (for homogeneous and constant media) or into two equations involving the invertible vector derivative for more complex media. GA is applied to simple examples to illustrate the compactness of the notation and coordinate-free computations.

  20. An experimental study of factors associated with driver frustration and overtaking intentions.

    Science.gov (United States)

    Kinnear, Neale; Helman, Shaun; Wallbank, Caroline; Grayson, Graham

    2015-06-01

    This study examined directly the impact of various factors associated with driving on 'A-class' roads in the United Kingdom (specifically length of platoon, proportion of heavy goods vehicles (HGVs), speed and opportunities for overtaking) on self-reported frustration and overtaking intentions. The impact of situational variables (being under time pressure, and time behind a slower moving platoon) were also examined, as was the association between frustration and self-reported overtaking intentions. 183 members of the public from the areas around Perth and Inverness, Scotland took part in the study. Participants viewed simulated 'driver's viewpoint' clips representing all the combinations of the experimental variables (except time pressure, which was a between-groups variable, and time behind platoon, which was examined separately in four specific clips). After each clip, participants responded on a paper questionnaire as to the level of frustration they would feel for a given clip, and the likelihood that at some point during the clip they would have attempted an overtake manoeuvre. The findings show that the links between traffic variables such as speed and platoon length, and behaviourally-relevant variables such as frustration and overtaking intentions, are not simple. Although there are broad and predictable effects of speed and platoon length (lower speeds and longer platoons leading to greater frustration) these are mediated by other variables, and it is not always the case that more frustration leads to more intention to overtake. Analysis of driver attitudes identified three clusters (low, medium and high risk drivers) and suggests that higher risk drivers' levels of frustration are more affected by situational changes than those of lower risk drivers. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Geometric solitons of Hamiltonian flows on manifolds

    Energy Technology Data Exchange (ETDEWEB)

    Song, Chong, E-mail: songchong@xmu.edu.cn [School of Mathematical Sciences, Xiamen University, Xiamen 361005 (China); Sun, Xiaowei, E-mail: sunxw@cufe.edu.cn [School of Applied Mathematics, Central University of Finance and Economics, Beijing 100081 (China); Wang, Youde, E-mail: wyd@math.ac.cn [Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190 (China)

    2013-12-15

    It is well-known that the LIE (Locally Induction Equation) admit soliton-type solutions and same soliton solutions arise from different and apparently irrelevant physical models. By comparing the solitons of LIE and Killing magnetic geodesics, we observe that these solitons are essentially decided by two families of isometries of the domain and the target space, respectively. With this insight, we propose the new concept of geometric solitons of Hamiltonian flows on manifolds, such as geometric Schrödinger flows and KdV flows for maps. Moreover, we give several examples of geometric solitons of the Schrödinger flow and geometric KdV flow, including magnetic curves as geometric Schrödinger solitons and explicit geometric KdV solitons on surfaces of revolution.

  2. Magnetic frustration, short-range correlations and the role of the paramagnetic Fermi surface of PdCrO2

    Science.gov (United States)

    Billington, David; Ernsting, David; Millichamp, Thomas E.; Lester, Christopher; Dugdale, Stephen B.; Kersh, David; Duffy, Jonathan A.; Giblin, Sean R.; Taylor, Jonathan W.; Manuel, Pascal; Khalyavin, Dmitry D.; Takatsu, Hiroshi

    2015-01-01

    Frustrated interactions exist throughout nature, with examples ranging from protein folding through to frustrated magnetic interactions. Whilst magnetic frustration is observed in numerous electrically insulating systems, in metals it is a rare phenomenon. The interplay of itinerant conduction electrons mediating interactions between localised magnetic moments with strong spin-orbit coupling is likely fundamental to these systems. Therefore, knowledge of the precise shape and topology of the Fermi surface is important in any explanation of the magnetic behaviour. PdCrO2, a frustrated metallic magnet, offers the opportunity to examine the relationship between magnetic frustration, short-range magnetic order and Fermi surface topology. By mapping the short-range order in reciprocal space and experimentally determining the electronic structure, we have identified the dual role played by the Cr electrons in which the itinerant ones on the nested paramagnetic Fermi surface mediate the frustrated magnetic interactions between local moments. PMID:26206589

  3. Geometric Analogue of Holographic Reduced Representation

    OpenAIRE

    Aerts, Diederik; Czachor, Marek; De Moor, Bart

    2007-01-01

    Holographic reduced representations (HRR) are based on superpositions of convolution-bound $n$-tuples, but the $n$-tuples cannot be regarded as vectors since the formalism is basis dependent. This is why HRR cannot be associated with geometric structures. Replacing convolutions by geometric products one arrives at reduced representations analogous to HRR but interpretable in terms of geometry. Variable bindings occurring in both HRR and its geometric analogue mathematically correspond to two ...

  4. Guide to Geometric Algebra in Practice

    CERN Document Server

    Dorst, Leo

    2011-01-01

    This highly practical "Guide to Geometric Algebra in Practice" reviews algebraic techniques for geometrical problems in computer science and engineering, and the relationships between them. The topics covered range from powerful new theoretical developments, to successful applications, and the development of new software and hardware tools. This title: provides hands-on review exercises throughout the book, together with helpful chapter summaries; presents a concise introductory tutorial to conformal geometric algebra (CGA) in the appendices; examines the application of CGA for the d

  5. Interaction effect of work excitement and work frustration on the professional commitment of nurses in Taiwan.

    Science.gov (United States)

    Chang, Yuan-Ping; Wang, Hsiu-Hung; Huang, Shan; Wang, Huang-I

    2014-03-01

    The current shortage of professional nurses in Taiwan both undermines hospital quality of care and raises hospitals' human resource management costs. Few studies have concurrently investigated the interaction effect between professional commitment and, respectively, the positive and negative work attitudes of nurses. Results of this investigation may help improve strategies designed to raise nurse retention rates. This study used the interaction effects of work excitement and work frustration to assess their influence on the professional commitment of nurses. This study was conducted at one hospital in southern Taiwan and used a cross-sectional design with self-administrated questionnaires. Seven hundred thirty-five nurses completed and submitted valid questionnaires (valid response rate: 68.5%). Exploratory and confirmatory factor analysis confirmed the reliability and validity of the three measurement models of work excitement, work frustration, and professional commitment. Correlation and hierarchical regression analysis verified the direct and interaction effects with the correlations among the three measured variables. Work frustration was higher than work excitement among participants (M = 2.72, SD = 0.71 vs. M = 2.26, SD = 0.62). The mean participant score for professional commitment was 2.72 (SD = 0.45) on a 4-point Likert scale. There was a significant and positive correlation between work excitement and professional commitment and a significant and negative correlation between work frustration and professional commitment. High work frustration had a negative effect on professional commitment, whereas high work excitement had a higher positive effect on professional commitment. The two-way interaction between work excitement and frustration was statistically significant in explaining the effects of professional commitment (p frustrating. Although work excitement has been shown as having a greater influence on professional commitment when nurses experienced

  6. Geometrical and Graphical Solutions of Quadratic Equations.

    Science.gov (United States)

    Hornsby, E. John, Jr.

    1990-01-01

    Presented are several geometrical and graphical methods of solving quadratic equations. Discussed are Greek origins, Carlyle's method, von Staudt's method, fixed graph methods and imaginary solutions. (CW)

  7. Geometric Aspects of Iterated Matrix Multiplication

    DEFF Research Database (Denmark)

    Gesmundo, Fulvio

    2016-01-01

    This paper studies geometric properties of the Iterated Matrix Multiplication polynomial and the hypersurface that it defines. We focus on geometric aspects that may be relevant for complexity theory such as the symmetry group of the polynomial, the dual variety and the Jacobian loci of the hyper......This paper studies geometric properties of the Iterated Matrix Multiplication polynomial and the hypersurface that it defines. We focus on geometric aspects that may be relevant for complexity theory such as the symmetry group of the polynomial, the dual variety and the Jacobian loci...

  8. Work-related frustration among senior nurses at a medical centre.

    Science.gov (United States)

    Wang, Pei-Hern; Ku, Yan-Chiou; Chen, Chi-Chi; Jeang, Shiow-Rong; Chou, Frank Huang-Chih

    2016-07-01

    To investigate the levels and causes of work-related frustration among senior nurses. Role changes and the associated expectations and setbacks faced by senior middle-aged nurses can easily result in low morale. Therefore, working setbacks experienced by senior nurses must be investigated. A cross-sectional questionnaire study. Purposive sampling was used to select questionnaire recipients. In total, 482 senior nurses completed and returned a structured questionnaire. The predictive factors for frustration at work among senior nurses included age, service unit, and the impact of sleep disorders, which jointly explained 54% of the variance. In particular, age and service unit were important predictive factors for frustration at work. Senior nurses had medium-to-low scores for frustration at work and did not perceive a high level of frustration. The outpatient departments and other medical departments in this sector should provide a reasonable system of incentives and promotion opportunities if they are to retain their most senior and experienced nurses. The results of this study could serve as a reference for hospital administrations. © 2016 John Wiley & Sons Ltd.

  9. Emergent inequality and self-organized social classes in a network of power and frustration

    Science.gov (United States)

    Mahault, Benoit; Saxena, Avadh

    2017-01-01

    We propose a simple agent-based model on a network to conceptualize the allocation of limited wealth among more abundant expectations at the interplay of power, frustration, and initiative. Concepts imported from the statistical physics of frustrated systems in and out of equilibrium allow us to compare subjective measures of frustration and satisfaction to collective measures of fairness in wealth distribution, such as the Lorenz curve and the Gini index. We find that a completely libertarian, law-of-the-jungle setting, where every agent can acquire wealth from or lose wealth to anybody else invariably leads to a complete polarization of the distribution of wealth vs. opportunity. This picture is however dramatically ameliorated when hard constraints are imposed over agents in the form of a limiting network of transactions. There, an out of equilibrium dynamics of the networks, based on a competition between power and frustration in the decision-making of agents, leads to network coevolution. The ratio of power and frustration controls different dynamical regimes separated by kinetic transitions and characterized by drastically different values of equality. It also leads, for proper values of social initiative, to the emergence of three self-organized social classes, lower, middle, and upper class. Their dynamics, which appears mostly controlled by the middle class, drives a cyclical regime of dramatic social changes. PMID:28212440

  10. Emergent inequality and self-organized social classes in a network of power and frustration.

    Science.gov (United States)

    Mahault, Benoit; Saxena, Avadh; Nisoli, Cristiano

    2017-01-01

    We propose a simple agent-based model on a network to conceptualize the allocation of limited wealth among more abundant expectations at the interplay of power, frustration, and initiative. Concepts imported from the statistical physics of frustrated systems in and out of equilibrium allow us to compare subjective measures of frustration and satisfaction to collective measures of fairness in wealth distribution, such as the Lorenz curve and the Gini index. We find that a completely libertarian, law-of-the-jungle setting, where every agent can acquire wealth from or lose wealth to anybody else invariably leads to a complete polarization of the distribution of wealth vs. opportunity. This picture is however dramatically ameliorated when hard constraints are imposed over agents in the form of a limiting network of transactions. There, an out of equilibrium dynamics of the networks, based on a competition between power and frustration in the decision-making of agents, leads to network coevolution. The ratio of power and frustration controls different dynamical regimes separated by kinetic transitions and characterized by drastically different values of equality. It also leads, for proper values of social initiative, to the emergence of three self-organized social classes, lower, middle, and upper class. Their dynamics, which appears mostly controlled by the middle class, drives a cyclical regime of dramatic social changes.

  11. Discrete geometric structures for architecture

    KAUST Repository

    Pottmann, Helmut

    2010-06-13

    The emergence of freeform structures in contemporary architecture raises numerous challenging research problems, most of which are related to the actual fabrication and are a rich source of research topics in geometry and geometric computing. The talk will provide an overview of recent progress in this field, with a particular focus on discrete geometric structures. Most of these result from practical requirements on segmenting a freeform shape into planar panels and on the physical realization of supporting beams and nodes. A study of quadrilateral meshes with planar faces reveals beautiful relations to discrete differential geometry. In particular, we discuss meshes which discretize the network of principal curvature lines. Conical meshes are among these meshes; they possess conical offset meshes at a constant face/face distance, which in turn leads to a supporting beam layout with so-called torsion free nodes. This work can be generalized to a variety of multilayer structures and laid the ground for an adapted curvature theory for these meshes. There are also efforts on segmenting surfaces into planar hexagonal panels. Though these are less constrained than planar quadrilateral panels, this problem is still waiting for an elegant solution. Inspired by freeform designs in architecture which involve circles and spheres, we present a new kind of triangle mesh whose faces\\' in-circles form a packing, i.e., the in-circles of two triangles with a common edge have the same contact point on that edge. These "circle packing (CP) meshes" exhibit an aesthetic balance of shape and size of their faces. They are closely tied to sphere packings on surfaces and to various remarkable structures and patterns which are of interest in art, architecture, and design. CP meshes constitute a new link between architectural freeform design and computational conformal geometry. Recently, certain timber structures motivated us to study discrete patterns of geodesics on surfaces. This

  12. Study of the physics potential of the FCC-hh machine to measure the coupling of the Higgs boson to b quarks

    CERN Document Server

    Rodríguez, Arturo

    2016-01-01

    The FCC project as well as the Pythia + Delphes analysis within the FCC software are introduced. The ROOT analysis carried out to reconstruct main observables, such the invariant mass of the bb system, transverse mass and momentum of the W boson together with the lepton pT and distribution is explained. The resulting reconstructed invariant mass of the bb system showed a peak near the 125 GeV in correspondence with the Higgs boson. Future steps towards estimating the physics potential of the FCC-hh machine in this channel are discussed.

  13. Frustration of Intent in the Wealth Transmission Process

    Directory of Open Access Journals (Sweden)

    Melanie B. Leslie

    2014-04-01

    Full Text Available In recent decades, the so-called “nonprobate revolution” has taken hold in the United States. Where the probate court once controlled the distribution of property on death, an individual can now avoid the expense and delay of probate by using a variety of mechanisms, such as revocable living trusts and “payable on death” designations attached to savings and retirement accounts. Although the nonprobate system often works well, it has generated unanticipated costs that U.S. law has yet to satisfactorily address. When people experience changes in life circumstances – such as marriage, divorce or death of a beneficiary -- but fail to take adequate steps to modify their nonprobate designations, the law does not enable courts to effectuate a deceased’s probable intent. Unlike wills law, which prioritizes intent effectuation over other concerns, current legal rules governing nonprobate accounts and mechanisms value efficiency and institutional convenience. In addition, the ease and relative secrecy with which non-probate assets are executed can make it much easier for an overreaching friend or relative to take advantage of an elderly person who lacks capacity or to exercise undue influence. As a result of these problems, estates are increasingly being distributed in ways that frustrate the intent of the deceased. En las últimas décadas, la llamada "revolución no testamentaria " se ha afianzado en los Estados Unidos. Anteriormente, los juzgados testamentarios controlaban la distribución de las propiedades tras el fallecimiento de un individuo. Hoy en día, por el contrario, un individuo puede evitar el gasto y la demora de los testamentos, utilizando diversos mecanismos, como fideicomisos revocables en vida, o designaciones “pagaderas tras la muerte” asociados a cuentas de ahorro y pensiones. Aunque generalmente el sistema no testamentario funciona bien, ha generado costos imprevistos que la legislación de EE.UU. todavía debe

  14. Information geometric methods for complexity

    Science.gov (United States)

    Felice, Domenico; Cafaro, Carlo; Mancini, Stefano

    2018-03-01

    Research on the use of information geometry (IG) in modern physics has witnessed significant advances recently. In this review article, we report on the utilization of IG methods to define measures of complexity in both classical and, whenever available, quantum physical settings. A paradigmatic example of a dramatic change in complexity is given by phase transitions (PTs). Hence, we review both global and local aspects of PTs described in terms of the scalar curvature of the parameter manifold and the components of the metric tensor, respectively. We also report on the behavior of geodesic paths on the parameter manifold used to gain insight into the dynamics of PTs. Going further, we survey measures of complexity arising in the geometric framework. In particular, we quantify complexity of networks in terms of the Riemannian volume of the parameter space of a statistical manifold associated with a given network. We are also concerned with complexity measures that account for the interactions of a given number of parts of a system that cannot be described in terms of a smaller number of parts of the system. Finally, we investigate complexity measures of entropic motion on curved statistical manifolds that arise from a probabilistic description of physical systems in the presence of limited information. The Kullback-Leibler divergence, the distance to an exponential family and volumes of curved parameter manifolds, are examples of essential IG notions exploited in our discussion of complexity. We conclude by discussing strengths, limits, and possible future applications of IG methods to the physics of complexity.

  15. Generalized Geometric Quantum Speed Limits

    Science.gov (United States)

    Pires, Diego Paiva; Cianciaruso, Marco; Céleri, Lucas C.; Adesso, Gerardo; Soares-Pinto, Diogo O.

    2016-04-01

    The attempt to gain a theoretical understanding of the concept of time in quantum mechanics has triggered significant progress towards the search for faster and more efficient quantum technologies. One of such advances consists in the interpretation of the time-energy uncertainty relations as lower bounds for the minimal evolution time between two distinguishable states of a quantum system, also known as quantum speed limits. We investigate how the nonuniqueness of a bona fide measure of distinguishability defined on the quantum-state space affects the quantum speed limits and can be exploited in order to derive improved bounds. Specifically, we establish an infinite family of quantum speed limits valid for unitary and nonunitary evolutions, based on an elegant information geometric formalism. Our work unifies and generalizes existing results on quantum speed limits and provides instances of novel bounds that are tighter than any established one based on the conventional quantum Fisher information. We illustrate our findings with relevant examples, demonstrating the importance of choosing different information metrics for open system dynamics, as well as clarifying the roles of classical populations versus quantum coherences, in the determination and saturation of the speed limits. Our results can find applications in the optimization and control of quantum technologies such as quantum computation and metrology, and might provide new insights in fundamental investigations of quantum thermodynamics.

  16. Generalized Geometric Quantum Speed Limits

    Directory of Open Access Journals (Sweden)

    Diego Paiva Pires

    2016-06-01

    Full Text Available The attempt to gain a theoretical understanding of the concept of time in quantum mechanics has triggered significant progress towards the search for faster and more efficient quantum technologies. One of such advances consists in the interpretation of the time-energy uncertainty relations as lower bounds for the minimal evolution time between two distinguishable states of a quantum system, also known as quantum speed limits. We investigate how the nonuniqueness of a bona fide measure of distinguishability defined on the quantum-state space affects the quantum speed limits and can be exploited in order to derive improved bounds. Specifically, we establish an infinite family of quantum speed limits valid for unitary and nonunitary evolutions, based on an elegant information geometric formalism. Our work unifies and generalizes existing results on quantum speed limits and provides instances of novel bounds that are tighter than any established one based on the conventional quantum Fisher information. We illustrate our findings with relevant examples, demonstrating the importance of choosing different information metrics for open system dynamics, as well as clarifying the roles of classical populations versus quantum coherences, in the determination and saturation of the speed limits. Our results can find applications in the optimization and control of quantum technologies such as quantum computation and metrology, and might provide new insights in fundamental investigations of quantum thermodynamics.

  17. Geometric Phase Generated Optical Illusion.

    Science.gov (United States)

    Yue, Fuyong; Zang, Xiaofei; Wen, Dandan; Li, Zile; Zhang, Chunmei; Liu, Huigang; Gerardot, Brian D; Wang, Wei; Zheng, Guoxing; Chen, Xianzhong

    2017-09-12

    An optical illusion, such as "Rubin's vase", is caused by the information gathered by the eye, which is processed in the brain to give a perception that does not tally with a physical measurement of the stimulus source. Metasurfaces are metamaterials of reduced dimensionality which have opened up new avenues for flat optics. The recent advancement in spin-controlled metasurface holograms has attracted considerate attention, providing a new method to realize optical illusions. We propose and experimentally demonstrate a metasurface device to generate an optical illusion. The metasurface device is designed to display two asymmetrically distributed off-axis images of "Rubin faces" with high fidelity, high efficiency and broadband operation that are interchangeable by controlling the helicity of the incident light. Upon the illumination of a linearly polarized light beam, the optical illusion of a 'vase' is perceived. Our result provides an intuitive demonstration of the figure-ground distinction that our brains make during the visual perception. The alliance between geometric metasurface and the optical illusion opens a pathway for new applications related to encryption, optical patterning, and information processing.

  18. Geometric aspects of ordering phenomena

    Science.gov (United States)

    Cugliandolo, Leticia F.

    2017-01-01

    A macroscopic system prepared in a disordered phase and quenched across a second-order phase transition into an ordered phase undergoes a coarsening process whereby it orders locally in one of the equilibrium states. The study of the evolution of the morphology of the ordered structures in two dimensions has recently unveiled two interesting and generic features. On the one hand, the dynamics first approach a critical percolating state via the growth of a new lengthscale and satisfying scaling properties with respect to it. The time needed to reach the critical percolating state diverges with the system size, though more weakly than the equilibration time. On the other hand, once the critical percolating structures established, the geometrical and statistical properties at larger scales than the one established by the usual dynamic growing length remain the ones of critical percolation. These observations are common to different microscopic dynamics (single spin flip, local and non-local spin exchange, voter) in pure or weakly disordered systems. We discuss these results and we refer to the relevant publications for details. xml:lang="fr"

  19. Simulating geometrically complex blast scenarios

    Directory of Open Access Journals (Sweden)

    Ian G. Cullis

    2016-04-01

    Full Text Available The effects of blast waves generated by energetic and non-energetic sources are of continuing interest to the ballistics research community. Modern conflicts are increasingly characterised by asymmetric urban warfare, with improvised explosive devices (IEDs often playing a dominant role on the one hand and an armed forces requirement for minimal collateral effects from their weapons on the other. These problems are characterised by disparate length- and time-scales and may also be governed by complex physics. There is thus an increasing need to be able to rapidly assess and accurately predict the effects of energetic blast in topologically complex scenarios. To this end, this paper presents a new QinetiQ-developed advanced computational package called EAGLE-Blast, which is capable of accurately resolving the generation, propagation and interaction of blast waves around geometrically complex shapes such as vehicles and buildings. After a brief description of the numerical methodology, various blast scenario simulations are described and the results compared with experimental data to demonstrate the validation of the scheme and its ability to describe these complex scenarios accurately and efficiently. The paper concludes with a brief discussion on the use of the code in supporting the development of algorithms for fast running engineering models.

  20. Geometrical aspects of quantum spaces

    International Nuclear Information System (INIS)

    Ho, P.M.

    1996-01-01

    Various geometrical aspects of quantum spaces are presented showing the possibility of building physics on quantum spaces. In the first chapter the authors give the motivations for studying noncommutative geometry and also review the definition of a Hopf algebra and some general features of the differential geometry on quantum groups and quantum planes. In Chapter 2 and Chapter 3 the noncommutative version of differential calculus, integration and complex structure are established for the quantum sphere S 1 2 and the quantum complex projective space CP q (N), on which there are quantum group symmetries that are represented nonlinearly, and are respected by all the aforementioned structures. The braiding of S q 2 and CP q (N) is also described. In Chapter 4 the quantum projective geometry over the quantum projective space CP q (N) is developed. Collinearity conditions, coplanarity conditions, intersections and anharmonic ratios is described. In Chapter 5 an algebraic formulation of Reimannian geometry on quantum spaces is presented where Riemannian metric, distance, Laplacian, connection, and curvature have their quantum counterparts. This attempt is also extended to complex manifolds. Examples include the quantum sphere, the complex quantum projective space and the two-sheeted space. The quantum group of general coordinate transformations on some quantum spaces is also given