WorldWideScience

Sample records for geometrically coupled microdevices

  1. An optically guided microdevice comprising a nanowire

    2014-01-01

    The present invention relates to a microdevice (100) for emitting electromagnetic radiation onto an associated object. Simultaneous non-contact spatial control over the microdevice in terms of translational movement in three dimensions, and rotational movement around at least two axes, preferably...

  2. The Neumann Type Systems and Algebro-Geometric Solutions of a System of Coupled Integrable Equations

    Chen Jinbing; Qiao Zhijun

    2011-01-01

    A system of (1+1)-dimensional coupled integrable equations is decomposed into a pair of new Neumann type systems that separate the spatial and temporal variables for this system over a symplectic submanifold. Then, the Neumann type flows associated with the coupled integrable equations are integrated on the complex tour of a Riemann surface. Finally, the algebro-geometric solutions expressed by Riemann theta functions of the system of coupled integrable equations are obtained by means of the Jacobi inversion.

  3. Geometric beam coupling impedance of LHC secondary collimators

    Frasciello, Oscar; Tomassini, Sandro; Zobov, Mikhail; Salvant, Benoit; Grudiev, Alexej; Mounet, Nicolas

    2016-02-01

    The High Luminosity LHC project is aimed at increasing the LHC luminosity by an order of magnitude. One of the key ingredients to achieve the luminosity goal is the beam intensity increase. In order to keep beam instabilities under control and to avoid excessive power losses a careful design of new vacuum chamber components and an improvement of the present LHC impedance model are required. Collimators are among the major impedance contributors. Measurements with beam have revealed that the betatron coherent tune shifts were higher by about a factor of 2 with respect to the theoretical predictions based on the LHC impedance model up to 2012. In that model the resistive wall impedance has been considered as the dominating impedance contribution for collimators. By carefully simulating also their geometric impedance we have contributed to the update of the LHC impedance model, reaching also a better agreement between the measured and simulated betatron tune shifts. During the just ended LHC Long Shutdown I (LSI), TCS/TCT collimators were replaced by new devices embedding BPMs and TT2-111R ferrite blocks. We present here preliminary estimations of their broad-band impedance, showing that an increase of about 20% is expected in the kick factors with respect to previous collimators without BPMs.

  4. [An implantable micro-device using wireless power transmission for measuring aortic aneurysm sac pressure].

    Guo, Xudong; Ge, Bin; Wang, Wenxing

    2013-08-01

    In order to detect endoleaks after endovascular aneurysm repair (EVAR), we developed an implantable micro-device based on wireless power transmission to measure aortic aneurysm sac pressure. The implantable micro-device is composed of a miniature wireless pressure sensor, an energy transmitting coil, a data recorder and a data processing platform. Power transmission without interconnecting wires is performed by a transmitting coil and a receiving coil. The coupling efficiency of wireless power transmission depends on the coupling coefficient between the transmitting coil and the receiving coil. With theoretical analysis and experimental study, we optimized the geometry of the receiving coil to increase the coupling coefficient. In order to keep efficiency balance and satisfy the maximizing conditions, we designed a closed loop power transmission circuit, including a receiving voltage feedback module based on wireless communication. The closed loop improved the stability and reliability of transmission energy. The prototype of the micro-device has been developed and the experiment has been performed. The experiments showed that the micro-device was feasible and valid. For normal operation, the distance between the transmitting coil and the receiving coil is smaller than 8cm. Besides, the distance between the micro-device and the data recorder is within 50cm.

  5. The geometrical origin of the strain-twist coupling in double helices

    Olsen, Kasper; Bohr, Jakob

    2011-01-01

    A simple geometrical explanation for the counterintuitive phenomenon when twist leads to extension in double helices is presented. The coupling between strain and twist is investigated using a tubular description. It is shown that the relation between strain and rotation is universal and depends...

  6. Geometric quantum discord and Berry phase between two charge qubits coupled by a quantum transmission line

    Zhu Han-Jie; Zhang Guo-Feng

    2014-01-01

    Geometric quantum discord (GQD) and Berry phase between two charge qubits coupled by a quantum transmission line are investigated. We show how GQDs evolve and investigate their dependencies on the parameters of the system. We also calculate the energy and the Berry phase and compare them with GQD, finding that there are close connections between them. (general)

  7. Geometric detection of coupling directions by means of inter-system recurrence networks

    Feldhoff, Jan H.; Donner, Reik V.; Donges, Jonathan F.; Marwan, Norbert; Kurths, Jürgen

    2012-01-01

    We introduce a geometric method for identifying the coupling direction between two dynamical systems based on a bivariate extension of recurrence network analysis. Global characteristics of the resulting inter-system recurrence networks provide a correct discrimination for weakly coupled Rössler oscillators not yet displaying generalised synchronisation. Investigating two real-world palaeoclimate time series representing the variability of the Asian monsoon over the last 10,000 years, we observe indications for a considerable influence of the Indian summer monsoon on climate in Eastern China rather than vice versa. The proposed approach can be directly extended to studying K>2 coupled subsystems.

  8. Self-excited nonlinear plasma series resonance oscillations in geometrically symmetric capacitively coupled radio frequency discharges

    Donko, Z.; Schulze, J.; Czarnetzki, U.; Luggenhoelscher, D.

    2009-01-01

    At low pressures, nonlinear self-excited plasma series resonance (PSR) oscillations are known to drastically enhance electron heating in geometrically asymmetric capacitively coupled radio frequency discharges by nonlinear electron resonance heating (NERH). Here we demonstrate via particle-in-cell simulations that high-frequency PSR oscillations can also be excited in geometrically symmetric discharges if the driving voltage waveform makes the discharge electrically asymmetric. This can be achieved by a dual-frequency (f+2f) excitation, when PSR oscillations and NERH are turned on and off depending on the electrical discharge asymmetry, controlled by the phase difference of the driving frequencies

  9. The Influence of Geometric Coupling on the Whirl Flutter Stability in Tiltrotor Aircraft with Unsteady Aerodynamics

    Kim, Taeseong; Shin, SangJoon; Kim, Do-Hyung

    2012-01-01

    A further improvement is attempted of an existing analytical model for an accurate prediction of the aeroelastic stability of a tiltrotor aircraft. A rigid-bladed rotor structural model with the natural frequencies selected appropriately in both the flapping and lagging motions is used. The geome......A further improvement is attempted of an existing analytical model for an accurate prediction of the aeroelastic stability of a tiltrotor aircraft. A rigid-bladed rotor structural model with the natural frequencies selected appropriately in both the flapping and lagging motions is used....... The geometric coupling between the wing vertical bending and torsion is also included. The pitch-flap and pitch-lag couplings are also added. Three different aerodynamic models are combined with the structural model: two quasi-steady and one full unsteady aerodynamics models. Frequency domain analysis...... structural modes, especially between the lower frequency rotor modes and the wing modes, are observed from the frequency and damping prediction....

  10. On Geometric Probability, Holography, Shilov Boundaries and the Four Physical Coupling Constants of Nature

    Castro C.

    2005-07-01

    Full Text Available By recurring to Geometric Probability methods, it is shown that the coupling constants, αEM; αW; αC associated with Electromagnetism, Weak and the Strong (color force are given by the ratios of the ratios of the measures of the Shilov boundaries Q2=S1×RP1; Q3=S2×RP1; S5, respectively, with respect to the ratios of the measures μ[Q5]/μN[Q5] associated with the 5D conformally compactified real Minkowski spacetime ˉ M5 that has the same topology as the Shilov boundary Q5 of the 5 complex-dimensional poly-disc D5. The homogeneous symmetric complex domain D5=SO(5,2/SO(5×SO(2 corresponds to the conformal relativistic curved 10 real-dimensional phase space H10 associated with a particle moving in the 5D Anti de Sitter space AdS5. The geometric coupling constant associated to the gravitational force can also be obtained from the ratios of the measures involving Shilov boundaries. We also review our derivation of the observed vacuum energy density based on the geometry of de Sitter (Anti de Sitter spaces.

  11. Geometric coupling effects on the bifurcations of a flexible rotor response in active magnetic bearings

    Inayat-Hussain, Jawaid I.

    2009-01-01

    This work reports on a numerical investigation on the bifurcations of a flexible rotor response in active magnetic bearings taking into account the nonlinearity due to the geometric coupling of the magnetic actuators as well as that arising from the actuator forces that are nonlinear function of the coil current and the air gap. For the values of design and operating parameters of the rotor-bearing system investigated in this work, numerical results showed that the response of the rotor was always synchronous when the values of the geometric coupling parameter α were small. For relatively larger values of α, however, the response of the rotor displayed a rich variety of nonlinear dynamical phenomena including sub-synchronous vibrations of periods-2, -3, -6, -9, and -17, quasi-periodicity and chaos. Numerical results further revealed the co-existence of multiple attractors within certain ranges of the speed parameter Ω. In practical rotating machinery supported by active magnetic bearings, the possibility of synchronous rotor response to become non-synchronous or even chaotic cannot be ignored as preloads, fluid forces or other external excitation forces may cause the rotor's initial conditions to move from one basin of attraction to another. Non-synchronous and chaotic vibrations should be avoided as they induce fluctuating stresses that may lead to premature failure of the machinery's main components.

  12. Strong coupling in F-theory and geometrically non-Higgsable seven-branes

    James Halverson

    2017-06-01

    Full Text Available Geometrically non-Higgsable seven-branes carry gauge sectors that cannot be broken by complex structure deformation, and there is growing evidence that such configurations are typical in F-theory. We study strongly coupled physics associated with these branes. Axiodilaton profiles are computed using Ramanujan's theories of elliptic functions to alternative bases, showing explicitly that the string coupling is O(1 in the vicinity of the brane; that it sources nilpotent SL(2,Z monodromy and therefore the associated brane charges are modular; and that essentially all F-theory compactifications have regions with order one string coupling. It is shown that non-perturbative SU(3 and SU(2 seven-branes are related to weakly coupled counterparts with D7-branes via deformation-induced Hanany–Witten moves on (p,q string junctions that turn them into fundamental open strings; only the former may exist for generic complex structure. D3-brane near these and the Kodaira type II seven-branes probe Argyres–Douglas theories. The BPS states of slightly deformed theories are shown to be dyonic string junctions.

  13. Geometric phase of a central spin coupled to an antiferromagnetic environment

    Yuan Xiaozhong; Zhu Kadi; Goan, H.-S.

    2010-01-01

    Using the spin-wave approximation, we study the geometric phase (GP) of a central spin (signal qubit) coupled to an antiferromagnetic (AF) environment under the application of an external global magnetic field. The external magnetic field affects the GP of the qubit directly and also indirectly through its effect on the AF environment. We find that when the applied magnetic field is increased to the critical magnetic field point, the AF environment undergoes a spin-flop transition, a first-order phase transition, and at the same time the GP of the qubit changes abruptly to zero. This sensitive change of the GP of a signal qubit to the parameter change of a many-body environment near its critical point may serve as another efficient tool or witness to study the many-body phase transition. The influences of the AF environment temperature and crystal anisotropy field on the GP are also investigated.

  14. The geometrical origin of the strain-twist coupling in double helices

    Kasper Olsen

    2011-03-01

    Full Text Available A simple geometrical explanation for the counterintuitive phenomenon when twist leads to extension in double helices is presented. The coupling between strain and twist is investigated using a tubular description. It is shown that the relation between strain and rotation is universal and depends only on the pitch angle. For pitch angles below 39.4° strain leads to further winding, while for larger pitch angles strain leads to unwinding. The zero-twist structure, with a pitch angle of 39.4°, is at the unique point between winding and unwinding and independent of the mechanical properties of the double helix. The existence of zero-twist structures, i.e. structures that display neither winding, nor unwinding under strain is discussed. Close-packed double helices are shown to extend rather than shorten when twisted. Numerical estimates of this elongation upon winding are given for DNA, chromatin, and RNA.

  15. The strong coupling constant: its theoretical derivation from a geometric approach to hadron structure

    Recami, E.; Tonin-Zanchin, V.

    1991-01-01

    Since more than a decade, a bi-scale, unified approach to strong and gravitational interactions has been proposed, that uses the geometrical methods of general relativity, and yielded results similar to strong gravity theory's. We fix our attention, in this note, on hadron structure, and show that also the strong interaction strength α s, ordinarily called the (perturbative) coupling-constant square, can be evaluated within our theory, and found to decrease (increase) as the distance r decreases (increases). This yields both the confinement of the hadron constituents for large values of r, and their asymptotic freedom [for small values of r inside the hadron]: in qualitative agreement with the experimental evidence. In other words, our approach leads us, on a purely theoretical ground, to a dependence of α s on r which had been previously found only on phenomenological and heuristical grounds. We expect the above agreement to be also quantitative, on the basis of a few checks performed in this paper, and of further work of ours about calculating meson mass-spectra. (author)

  16. Geometric phase in a split-beam experiment measured with coupled neutron interference loops

    Hasegawa, Yuji; Zawisky, M.; Rauch, H.; Ioffe, A.

    1996-01-01

    A geometric phase factor is derived for a split-beam experiment as an example of cyclic evolutions. The geometric phase is given by one half of the solid angle independent of the spin of the beam. We observe this geometric phase with a two-loop neutron interferometer, where a reference beam can be added to the beam from one interference loop. All the experimental results show complete agreement with our theoretical treatment. (author)

  17. Quantum criticality of geometric phase in coupled optical cavity arrays under linear quench

    Sarkar, Sujit

    2013-01-01

    The atoms trapped in microcavities and interacting through the exchange of virtual photons can be modeled as an anisotropic Heisenberg spin-1/2 lattice. We study the dynamics of the geometric phase of this system under the linear quenching process of laser field detuning which shows the XX criticality of the geometric phase in presence of single Rabi frequency oscillation. We also study the quantum criticality for different quenching rate in the presence of single or two Rabi frequencies osci...

  18. Aeroelastic simulation of multi-MW wind turbines using a free vortex model coupled to a geometrically exact beam model

    Saverin, Joseph; Peukert, Juliane; Marten, David; Pechlivanoglou, George; Paschereit, Christian Oliver; Greenblatt, David

    2016-01-01

    The current paper investigates the aeroelastic modelling of large, flexible multi- MW wind turbine blades. Most current performance prediction tools make use of the Blade Element Momentum (BEM) model, based upon a number of simplifying assumptions that hold only under steady conditions. This is why a lifting line free vortex wake (LLFVW) algorithm is used here to accurately resolve unsteady wind turbine aerodynamics. A coupling to the structural analysis tool BeamDyn, based on geometrically exact beam theory, allows for time-resolved aeroelastic simulations with highly deflected blades including bend-twist, coupling. Predictions of blade loading and deformation for rigid and flexible blades are analysed with reference to different aerodynamic and structural approaches. The emergency shutdown procedure is chosen as an examplary design load case causing large deflections to place emphasis on the influence of structural coupling and demonstrate the necessity of high fidelity structural models. (paper)

  19. Detecting the multi-spin interaction of an XY spin chain by the geometric phase of a coupled qubit

    Zhang, Xiu-xing; Zhang, Ai-ping; Li, Fu-li

    2012-01-01

    We investigate geometric phase (GP) of a qubit symmetrically coupled to a XY spin chain with three-spin interaction in a transverse magnetic field. An analytical expression for the GP is found in the weak coupling limit. It is shown that the GP displays a sharp peak or dip around the quantum phase transition point of the spin chain. Without the three-spin interaction, the GP has a peak or dip around the critical point λ=1. If the three-spin interaction exists, the peak or dip position is obviously shifted away from the original position. This result reveals that the GP may be taken as an observable to detect both the existence and strength of multi-spin interaction in a spin chain. -- Highlights: ► Analytical expression for geometric phase (GP) of a qubit coupled to a spin chain is obtained. ► Relation between GP and multi-spin interaction is investigated. ► Detection of multi-spin interaction by means of GP is proposed.

  20. Geometrical modification transfer between specific meshes of each coupled physical codes. Application to the Jules Horowitz research reactor experimental devices

    Duplex, B.

    2011-01-01

    The CEA develops and uses scientific software, called physical codes, in various physical disciplines to optimize installation and experimentation costs. During a study, several physical phenomena interact, so a code coupling and some data exchanges between different physical codes are required. Each physical code computes on a particular geometry, usually represented by a mesh composed of thousands to millions of elements. This PhD Thesis focuses on the geometrical modification transfer between specific meshes of each coupled physical code. First, it presents a physical code coupling method where deformations are computed by one of these codes. Next, it discusses the establishment of a model, common to different physical codes, grouping all the shared data. Finally, it covers the deformation transfers between meshes of the same geometry or adjacent geometries. Geometrical modifications are discrete data because they are based on a mesh. In order to permit every code to access deformations and to transfer them, a continuous representation is computed. Two functions are developed, one with a global support, and the other with a local support. Both functions combine a simplification method and a radial basis function network. A whole use case is dedicated to the Jules Horowitz reactor. The effect of differential dilatations on experimental device cooling is studied. (author) [fr

  1. System for simultaneously measuring 6DOF geometric motion errors using a polarization maintaining fiber-coupled dual-frequency laser.

    Cui, Cunxing; Feng, Qibo; Zhang, Bin; Zhao, Yuqiong

    2016-03-21

    A novel method for simultaneously measuring six degree-of-freedom (6DOF) geometric motion errors is proposed in this paper, and the corresponding measurement instrument is developed. Simultaneous measurement of 6DOF geometric motion errors using a polarization maintaining fiber-coupled dual-frequency laser is accomplished for the first time to the best of the authors' knowledge. Dual-frequency laser beams that are orthogonally linear polarized were adopted as the measuring datum. Positioning error measurement was achieved by heterodyne interferometry, and other 5DOF geometric motion errors were obtained by fiber collimation measurement. A series of experiments was performed to verify the effectiveness of the developed instrument. The experimental results showed that the stability and accuracy of the positioning error measurement are 31.1 nm and 0.5 μm, respectively. For the straightness error measurements, the stability and resolution are 60 and 40 nm, respectively, and the maximum deviation of repeatability is ± 0.15 μm in the x direction and ± 0.1 μm in the y direction. For pitch and yaw measurements, the stabilities are 0.03″ and 0.04″, the maximum deviations of repeatability are ± 0.18″ and ± 0.24″, and the accuracies are 0.4″ and 0.35″, respectively. The stability and resolution of roll measurement are 0.29″ and 0.2″, respectively, and the accuracy is 0.6″.

  2. Geometric variations in high index-contrast waveguides, coupled mode theory in curvilinear coordinates.

    Skorobogatiy, Maksim; Jacobs, Steven; Johnson, Steven; Fink, Yoel

    2002-10-21

    Perturbation theory formulation of Maxwell's equations gives a theoretically elegant and computationally efficient way of describing small imperfections and weak interactions in electro-magnetic systems. It is generally appreciated that due to the discontinuous field boundary conditions in the systems employing high dielectric contrast profiles standard perturbation formulations fail when applied to the problem of shifted material boundaries. In this paper we developed a novel coupled mode and perturbation theory formulations for treating generic non-uniform (varying along the direction of propagation) perturbations of a waveguide cross-section based on Hamiltonian formulation of Maxwell equations in curvilinear coordinates. We show that our formulation is accurate and rapidly converges to an exact result when used in a coupled mode theory framework even for the high index-contrast discontinuous dielectric profiles. Among others, our formulation allows for an efficient numerical evaluation of induced PMD due to a generic distortion of a waveguide profile, analysis of mode filters, mode converters and other optical elements such as strong Bragg gratings, tapers, bends etc., and arbitrary combinations of thereof. To our knowledge, this is the first time perturbation and coupled mode theories are developed to deal with arbitrary non-uniform profile variations in high index-contrast waveguides.

  3. Innovative three-dimensional neutronics analyses directly coupled with cad models of geometrically complex fusion systems

    Sawan, M.; Wilson, P.; El-Guebaly, L.; Henderson, D.; Sviatoslavsky, G.; Bohm, T.; Kiedrowski, B.; Ibrahim, A.; Smith, B.; Slaybaugh, R.; Tautges, T.

    2007-01-01

    Fusion systems are, in general, geometrically complex requiring detailed three-dimensional (3-D) nuclear analysis. This analysis is required to address tritium self-sufficiency, nuclear heating, radiation damage, shielding, and radiation streaming issues. To facilitate such calculations, we developed an innovative computational tool that is based on the continuous energy Monte Carlo code MCNP and permits the direct use of CAD-based solid models in the ray-tracing. This allows performing the neutronics calculations in a model that preserves the geometrical details without any simplification, eliminates possible human error in modeling the geometry for MCNP, and allows faster design iterations. In addition to improving the work flow for simulating complex 3- D geometries, it allows a richer representation of the geometry compared to the standard 2nd order polynomial representation. This newly developed tool has been successfully tested for a detailed 40 degree sector benchmark of the International Thermonuclear Experimental Reactor (ITER). The calculations included determining the poloidal variation of the neutron wall loading, flux and nuclear heating in the divertor components, nuclear heating in toroidal field coils, and radiation streaming in the mid-plane port. The tool has been applied to perform 3-D nuclear analysis for several fusion designs including the ARIES Compact Stellarator (ARIES-CS), the High Average Power Laser (HAPL) inertial fusion power plant, and ITER first wall/shield (FWS) modules. The ARIES-CS stellarator has a first wall shape and a plasma profile that varies toroidally within each field period compared to the uniform toroidal shape in tokamaks. Such variation cannot be modeled analytically in the standard MCNP code. The impact of the complex helical geometry and the non-uniform blanket and divertor on the overall tritium breeding ratio and total nuclear heating was determined. In addition, we calculated the neutron wall loading variation in

  4. Geometric phase effects in low-energy dynamics near conical intersections: A study of the multidimensional linear vibronic coupling model

    Joubert-Doriol, Loïc; Ryabinkin, Ilya G.; Izmaylov, Artur F.

    2013-01-01

    In molecular systems containing conical intersections (CIs), a nontrivial geometric phase (GP) appears in the nuclear and electronic wave functions in the adiabatic representation. We study GP effects in nuclear dynamics of an N-dimensional linear vibronic coupling (LVC) model. The main impact of GP on low-energy nuclear dynamics is reduction of population transfer between the local minima of the LVC lower energy surface. For the LVC model, we proposed an isometric coordinate transformation that confines non-adiabatic effects within a two-dimensional subsystem interacting with an N − 2 dimensional environment. Since environmental modes do not couple electronic states, all GP effects originate from nuclear dynamics within the subsystem. We explored when the GP affects nuclear dynamics of the isolated subsystem, and how the subsystem-environment interaction can interfere with GP effects. Comparing quantum dynamics with and without GP allowed us to devise simple rules to determine significance of the GP for nuclear dynamics in this model

  5. A geometrical multi-scale numerical method for coupled hygro-thermo-mechanical problems in photovoltaic laminates.

    Lenarda, P; Paggi, M

    A comprehensive computational framework based on the finite element method for the simulation of coupled hygro-thermo-mechanical problems in photovoltaic laminates is herein proposed. While the thermo-mechanical problem takes place in the three-dimensional space of the laminate, moisture diffusion occurs in a two-dimensional domain represented by the polymeric layers and by the vertical channel cracks in the solar cells. Therefore, a geometrical multi-scale solution strategy is pursued by solving the partial differential equations governing heat transfer and thermo-elasticity in the three-dimensional space, and the partial differential equation for moisture diffusion in the two dimensional domains. By exploiting a staggered scheme, the thermo-mechanical problem is solved first via a fully implicit solution scheme in space and time, with a specific treatment of the polymeric layers as zero-thickness interfaces whose constitutive response is governed by a novel thermo-visco-elastic cohesive zone model based on fractional calculus. Temperature and relative displacements along the domains where moisture diffusion takes place are then projected to the finite element model of diffusion, coupled with the thermo-mechanical problem by the temperature and crack opening dependent diffusion coefficient. The application of the proposed method to photovoltaic modules pinpoints two important physical aspects: (i) moisture diffusion in humidity freeze tests with a temperature dependent diffusivity is a much slower process than in the case of a constant diffusion coefficient; (ii) channel cracks through Silicon solar cells significantly enhance moisture diffusion and electric degradation, as confirmed by experimental tests.

  6. Design of microdevices for long-term live cell imaging

    Chen, Huaying; Nordon, Robert E; Rosengarten, Gary; Li, Musen

    2012-01-01

    Advances in fluorescent live cell imaging provide high-content information that relates a cell's life events to its ancestors. An important requirement to track clonal growth and development is the retention of motile cells derived from an ancestor within the same microscopic field of view for days to weeks, while recording fluorescence images and controlling the mechanical and biochemical microenvironments that regulate cell growth and differentiation. The aim of this study was to design a microwell device for long-term, time-lapse imaging of motile cells with the specific requirements of (a) inoculating devices with an average of one cell per well and (b) retaining progeny of cells within a single microscopic field of view for extended growth periods. A two-layer PDMS microwell culture device consisting of a parallel-plate flow cell bonded on top of a microwell array was developed for cell capture and clonal culture. Cell deposition statistics were related to microwell geometry (plate separation and well depth) and the Reynolds number. Computational fluid dynamics was used to simulate flow in the microdevices as well as cell–fluid interactions. Analysis of the forces acting upon a cell was used to predict cell docking zones, which were confirmed by experimental observations. Cell–fluid dynamic interactions are important considerations for design of microdevices for long-term, live cell imaging. The analysis of force and torque balance provides a reasonable approximation for cell displacement forces. It is computationally less intensive compared to simulation of cell trajectories, and can be applied to a wide range of microdevice geometries to predict the cell docking behavior. (paper)

  7. Complex nonlinear dynamics in the limit of weak coupling of a system of microcantilevers connected by a geometrically nonlinear tunable nanomembrane.

    Jeong, Bongwon; Cho, Hanna; Keum, Hohyun; Kim, Seok; Michael McFarland, D; Bergman, Lawrence A; King, William P; Vakakis, Alexander F

    2014-11-21

    Intentional utilization of geometric nonlinearity in micro/nanomechanical resonators provides a breakthrough to overcome the narrow bandwidth limitation of linear dynamic systems. In past works, implementation of intentional geometric nonlinearity to an otherwise linear nano/micromechanical resonator has been successfully achieved by local modification of the system through nonlinear attachments of nanoscale size, such as nanotubes and nanowires. However, the conventional fabrication method involving manual integration of nanoscale components produced a low yield rate in these systems. In the present work, we employed a transfer-printing assembly technique to reliably integrate a silicon nanomembrane as a nonlinear coupling component onto a linear dynamic system with two discrete microcantilevers. The dynamics of the developed system was modeled analytically and investigated experimentally as the coupling strength was finely tuned via FIB post-processing. The transition from the linear to the nonlinear dynamic regime with gradual change in the coupling strength was experimentally studied. In addition, we observed for the weakly coupled system that oscillation was asynchronous in the vicinity of the resonance, thus exhibiting a nonlinear complex mode. We conjectured that the emergence of this nonlinear complex mode could be attributed to the nonlinear damping arising from the attached nanomembrane.

  8. Geometric phase effects in excited state dynamics through a conical intersection in large molecules: N-dimensional linear vibronic coupling model study

    Li, Jiaru; Joubert-Doriol, Loïc; Izmaylov, Artur F.

    2017-08-01

    We investigate geometric phase (GP) effects in nonadiabatic transitions through a conical intersection (CI) in an N-dimensional linear vibronic coupling (ND-LVC) model. This model allows for the coordinate transformation encompassing all nonadiabatic effects within a two-dimensional (2D) subsystem, while the other N - 2 dimensions form a system of uncoupled harmonic oscillators identical for both electronic states and coupled bi-linearly with the subsystem coordinates. The 2D subsystem governs ultra-fast nonadiabatic dynamics through the CI and provides a convenient model for studying GP effects. Parameters of the original ND-LVC model define the Hamiltonian of the transformed 2D subsystem and thus influence GP effects directly. Our analysis reveals what values of ND-LVC parameters can introduce symmetry breaking in the 2D subsystem that diminishes GP effects.

  9. Fabrication of microstructures and microdevices by the particle assemblage

    Kobayashi, Mikihiko; Shinya, Norio; Dan, Takehiro; Fudouzi, Hiroshi; Konno, Takeshi; Egashira, Mitsuru

    2001-08-01

    We aim to fabricate microstructure and microdevices by integrating and arranging powder particles, i.e., the particle assemblage. We have developed three assembling techniques of the particles. The details of the assembling techniques and samples of the assembled microstructures are introduced. A manipulator is developed to manipulate and to weld metal particles by using a tungsten probe. Nickel alloy particles of 50 micrometers were piled on a gold substrate by the manipulator, and a leaning tower of the particles is fabricated. The array of the leaning tower is considered to act as an actuator. For the integration of a great number of particles, we developed another method based on the principle with the xerography. An electron beam or an ion beam is irradiated on an insulating substrate. An electrified pattern is formed on the substrate by the doped electron or doped ion. Fine particles are attracted to the pattern by the electrostatic force. Thus, we can arrange particles by immersing the substrate in the suspension of particles. The third is a productive method of ordered mixture by the electrostatic force. A self- thermostatic heater is made from the composite particles of BaTiO3 and In produced by the method.

  10. Dynamic pull-in instability of geometrically nonlinear actuated micro-beams based on the modified couple stress theory

    Hamid M. Sedighi

    Full Text Available This paper investigates the dynamic pull-in instability of vibrating micro-beams undergoing large deflection under electrosatically actuation. The governing equation of motion is derived based on the modified couple stress theory. Homotopy Perturbation Method is employed to produce the high accuracy approximate solution as well as the second-order frequency- amplitude relationship. The nonlinear governing equation of micro beam vibrations predeformed by an electric field includes both even and odd nonlinearities. The influences of basic non-dimensional parameters on the pull-in instability as well as the natural frequency are studied. It is demonstrated that two terms in series expansions are sufficient to produce high accuracy solution of the micro-structure. The accuracy of proposed asymptotic approach is validated via numerical results. The phase portrait of the system exhibits periodic and homoclinic orbits.

  11. A multilayer microdevice for cell-based high-throughput drug screening

    Liu, Chong; Wang, Lei; Li, Jingmin; Ding, Xiping; Chunyu, Li; Xu, Zheng; Wang, Qi

    2012-01-01

    A multilayer polydimethylsiloxane microdevice for cell-based high-throughput drug screening is described in this paper. This established microdevice was based on a modularization method and it integrated a drug/medium concentration gradient generator (CGG), pneumatic microvalves and a cell culture microchamber array. The CGG was able to generate five steps of linear concentrations with the same outlet flow rate. The medium/drug flowed through CGG and then into the pear-shaped cell culture microchambers vertically. This vertical perfusion mode was used to reduce the impact of the shear stress on the physiology of cells induced by the fluid flow in the microchambers. Pear-shaped microchambers with two arrays of miropillars at each outlet were adopted in this microdevice, which were beneficial to cell distribution. The chemotherapeutics Cisplatin (DDP)-induced Cisplatin-resistant cell line A549/DDP apoptotic experiments were performed well on this platform. The results showed that this novel microdevice could not only provide well-defined and stable conditions for cell culture, but was also useful for cell-based high-throughput drug screening with less reagents and time consumption. (paper)

  12. Printing Functional 3D Microdevices by Laser-Induced Forward Transfer

    Luo, Jun; Pohl, R.; Qi, Lehua; Römer, G.R.B.E.; Sun, Chao; Lohse, Detlef; Visser, C.W.

    2017-01-01

    Slender, out-of-plane metal microdevices are made in a new spatial domain, by using laser-induced forward transfer (LIFT) of metals. Here, a thermocouple with a thickness of 10 µm and a height of 250 µm, consisting of platinum and gold pillars is demonstrated. Multimaterial LIFT enables

  13. Geometrical parton

    Ebata, T [Tohoku Univ., Sendai (Japan). Coll. of General Education

    1976-06-01

    The geometrical distribution inferred from the inelastic cross section is assumed to be proportional to the partial waves. The precocious scaling and the Q/sup 2/-dependence of various quantities are treated from the geometrical point of view. It is shown that the approximate conservation of the orbital angular momentum may be a very practical rule to understand the helicity structure of various hadronic and electromagnetic reactions. The rule can be applied to inclusive reactions as well. The model is also applied to large angle processes. Through the discussion, it is suggested that many peculiar properties of the quark-parton can be ascribed to the geometrical effects.

  14. Geometric Liouville gravity

    La, H.

    1992-01-01

    A new geometric formulation of Liouville gravity based on the area preserving diffeo-morphism is given and a possible alternative to reinterpret Liouville gravity is suggested, namely, a scalar field coupled to two-dimensional gravity with a curvature constraint

  15. Geometric analysis

    Bray, Hubert L; Mazzeo, Rafe; Sesum, Natasa

    2015-01-01

    This volume includes expanded versions of the lectures delivered in the Graduate Minicourse portion of the 2013 Park City Mathematics Institute session on Geometric Analysis. The papers give excellent high-level introductions, suitable for graduate students wishing to enter the field and experienced researchers alike, to a range of the most important areas of geometric analysis. These include: the general issue of geometric evolution, with more detailed lectures on Ricci flow and Kähler-Ricci flow, new progress on the analytic aspects of the Willmore equation as well as an introduction to the recent proof of the Willmore conjecture and new directions in min-max theory for geometric variational problems, the current state of the art regarding minimal surfaces in R^3, the role of critical metrics in Riemannian geometry, and the modern perspective on the study of eigenfunctions and eigenvalues for Laplace-Beltrami operators.

  16. Applicability of a geometrical model coupled to computed tomography to characterize the transport properties of porous materials: comparison with through diffusion experiments

    Chagneau, Aurelie; Claret, Francis; Made, Benoit; Tuckermann, Juergen; Enzmann, Frieder; Schaefer, Thorsten

    2012-01-01

    they contain a heavy element (Sr) that can easily be differentiated from the lighter matrix elements (Si, Al) by tomography. The diffusion columns used consist of two reservoirs, one containing the strontium and radiotracer and the other the sulfate or carbonate stock solutions, one at each end of a 5 cm long column. Before any precipitation experiments, the De and porosity of the materials are characterized by realizing diffusion profiles of tritiated water (HTO), and the results are compared to a geometrical model of the material based on computed tomography observations. For this purpose, the images obtained by CT are reconstructed in three dimensions and then processed by separating the porous material and the pore network. The 3D reconstruction of the pore network is directly implemented into a geometrical model, GeoDict, to calculate the different properties of the material (e.g. porosity, tortuosity, diffusivity). The results obtained by the two different experimental approaches compare fairly well. For example, the connected porosity of a column filled with silica beads of 40 to 70 μm particle size was estimated at 0.39 by HTO diffusion and at 0.40 to 0.45 by computed tomography coupled to GeoDict. Computed tomography is a simple yet efficient method, when coupled to a geometrical model, to record the evolution of porosity with time, and to accurately estimate the impact of clogging on the diffusion properties of porous materials, without disturbing the system. To this characterization method will be added in further steps post mortem analyses by microscopic methods, microprobe and synchrotron μ-tomography. In parallel, experiments in the presence of trivalent actinides are planned to compare the chemical speciation during secondary phase formation in compacted systems with data already available obtained in batch-type and mixed flow reactor (MFR) experiments. (authors)

  17. Postbuckling Investigations of Piezoelectric Microdevices Considering Damage Effects

    Sun, Zhigang; Wang, Xianqiao

    2014-01-01

    Piezoelectric material has been emerging as a popular building block in MEMS devices owing to its unique mechanical and electrical material properties. However, the reliability of MEMS devices under buckling deformation environments remains elusive and needs to be further explored. Based on the Talreja's tensor valued internal state damage variables as well as the Helmhotlz free energy of piezoelectric material, a constitutive model of piezoelectric materials with damage is presented. The Kachanvo damage evolution law under in-plane compressive loads is employed. The model is applied to the specific case of the postbuckling analysis of the piezoelectric plate with damage. Then, adopting von Karman's plate theory, the nonlinear governing equations of the piezoelectric plates with initial geometric deflection including damage effects under in-plane compressive loads are established. By using the finite difference method and the Newmark scheme, the damage evolution for damage accumulation is developed and the finite difference procedure for postbuckling equilibrium path is simultaneously employed. Numerical results show the postbuckling behaviors of initial flat and deflected piezoelectric plates with damage or no damage under different sets of electrical loading conditions. The effects of applied voltage, aspect ratio of plate, thick-span ratio of plate, damage as well as initial geometric deflections on the postbuckling behaviors of the piezoelectric plate are discussed. PMID:24618774

  18. Glucose-Responsive Implantable Polymeric Microdevices for "Smart" Insulin Therapy of Diabetes

    Chu, Michael Kok Loon

    Diabetes mellitus is a chronic illness manifested by improper blood glucose management, affecting over 350 million worldwide. As a result, all type 1 patients and roughly 20% of type 2 patients require exogenous insulin therapy to survive. Typically, daily multiple injections are taken to maintain normal glucose levels in response glucose spikes from meals. However, patient compliance and dosing accuracy can fluctuate with variation in meals, exercise, glucose metabolism or stress, leading to poor clinical outcomes. A 'smart', closed-loop insulin delivery system providing on-demand release kinetics responding to circulating glucose levels would be a boon for diabetes patients, replacing constant self monitoring and insulin. This thesis focuses on the development of a novel, 'smart' insulin microdevice that can provide on-demand insulin release in response to blood glucose levels. In the early stage, the feasibility of integrating a composite membrane with pH-responsive nanoparticles embedded in ethylcellulose membrane to provide pH-responsive in vitro release was examined and confirmed using a model drug, vitamin B12. In the second microdevice, glucose oxidase for generating pH signals from glucose oxidation, catalase and manganese dioxide nanoparticles, as peroxide scavengers, were used in a bioinorganic, albumin-based membrane cross-linked with a polydimethylsiloxane (PDMS) grid-microdevice system. This prototype device demonstrated insulin release in response to glucose levels in vitro and regulating plasma glucose in type 1 diabetic rats when implanted intraperitoneally. Advancement allowing for subcutaneous implantation and improved biocompatibility was achieved with surface modification of PDMS microdevices grafted with activated 20 kDa polyethylene glycol (PEG) chains, dramatically reducing immune response and local inflammation. When implanted subcutaneously in diabetic rats, glucose-responsive insulin delivery microdevices showed short and long

  19. Development of Cell Culture Microdevice Actuated by Piezoelectric Thin Films for Delivering Mechanical Vibratory Stimuli to Cells

    Yamada, Y; Umegaki, G; Kawashima, T; Nagai, M; Shibata, T; Masuzawa, T; Kimura, T; Kishida, A

    2012-01-01

    In order to realize a cell culture microdevice actuated by piezoelectric thin films for on-chip regulation of cell functions, this paper reported on a feasibility study by using the microdevice with KOH-etched cavities surrounded by four (111) sidewalls as microchambers in order to introduce cells to be cultured. As a result, the vibration characteristic of the PZT actuator was improved by using an electric field -150 kV/cm at 70 C for 30 min in poling process. A feasibility study on cell culture for delivering mechanical vibratory stimuli to cells revealed the microdevice could be applicable to the culture with actual biological cells. In addition, it was found that O 2 -plasma treated parylene-C process could be applicable for obtaining homogeneous surface of cell culture microdevice.

  20. Geometric metamorphosis.

    Niethammer, Marc; Hart, Gabriel L; Pace, Danielle F; Vespa, Paul M; Irimia, Andrei; Van Horn, John D; Aylward, Stephen R

    2011-01-01

    Standard image registration methods do not account for changes in image appearance. Hence, metamorphosis approaches have been developed which jointly estimate a space deformation and a change in image appearance to construct a spatio-temporal trajectory smoothly transforming a source to a target image. For standard metamorphosis, geometric changes are not explicitly modeled. We propose a geometric metamorphosis formulation, which explains changes in image appearance by a global deformation, a deformation of a geometric model, and an image composition model. This work is motivated by the clinical challenge of predicting the long-term effects of traumatic brain injuries based on time-series images. This work is also applicable to the quantification of tumor progression (e.g., estimating its infiltrating and displacing components) and predicting chronic blood perfusion changes after stroke. We demonstrate the utility of the method using simulated data as well as scans from a clinical traumatic brain injury patient.

  1. Deployable and Conformal Planar Micro-Devices: Design and Model Validation

    Jinda Zhuang

    2014-08-01

    Full Text Available We report a design concept for a deployable planar microdevice and the modeling and experimental validation of its mechanical behavior. The device consists of foldable membranes that are suspended between flexible stems and actuated by push-pull wires. Such a deployable device can be introduced into a region of interest in its compact “collapsed” state and then deployed to conformally cover a large two-dimensional surface area for minimally invasive biomedical operations and other engineering applications. We develop and experimentally validate theoretical models based on the energy minimization approach to examine the conformality and figures of merit of the device. The experimental results obtained using model contact surfaces agree well with the prediction and quantitatively highlight the importance of the membrane bending modulus in controlling surface conformality. The present study establishes an early foundation for the mechanical design of this and related deployable planar microdevice concepts.

  2. Residual stress measurement in a metal microdevice by micro Raman spectroscopy

    Song, Chang; Du, Liqun; Qi, Leijie; Li, Yu; Li, Xiaojun; Li, Yuanqi

    2017-01-01

    Large residual stress induced during the electroforming process cannot be ignored to fabricate reliable metal microdevices. Accurate measurement is the basis for studying the residual stress. Influenced by the topological feature size of micron scale in the metal microdevice, residual stress in it can hardly be measured by common methods. In this manuscript, a methodology is proposed to measure the residual stress in the metal microdevice using micro Raman spectroscopy (MRS). To estimate the residual stress in metal materials, micron sized β -SiC particles were mixed in the electroforming solution for codeposition. First, the calculated expression relating the Raman shifts to the induced biaxial stress for β -SiC was derived based on the theory of phonon deformation potentials and Hooke’s law. Corresponding micro electroforming experiments were performed and the residual stress in Ni–SiC composite layer was both measured by x-ray diffraction (XRD) and MRS methods. Then, the validity of the MRS measurements was verified by comparing with the residual stress measured by XRD method. The reliability of the MRS method was further validated by the statistical student’s t -test. The MRS measurements were found to have no systematic error in comparison with the XRD measurements, which confirm that the residual stresses measured by the MRS method are reliable. Besides that, the MRS method, by which the residual stress in a micro inertial switch was measured, has been confirmed to be a convincing experiment tool for estimating the residual stress in metal microdevice with micron order topological feature size. (paper)

  3. Residual stress measurement in a metal microdevice by micro Raman spectroscopy

    Song, Chang; Du, Liqun; Qi, Leijie; Li, Yu; Li, Xiaojun; Li, Yuanqi

    2017-10-01

    Large residual stress induced during the electroforming process cannot be ignored to fabricate reliable metal microdevices. Accurate measurement is the basis for studying the residual stress. Influenced by the topological feature size of micron scale in the metal microdevice, residual stress in it can hardly be measured by common methods. In this manuscript, a methodology is proposed to measure the residual stress in the metal microdevice using micro Raman spectroscopy (MRS). To estimate the residual stress in metal materials, micron sized β-SiC particles were mixed in the electroforming solution for codeposition. First, the calculated expression relating the Raman shifts to the induced biaxial stress for β-SiC was derived based on the theory of phonon deformation potentials and Hooke’s law. Corresponding micro electroforming experiments were performed and the residual stress in Ni-SiC composite layer was both measured by x-ray diffraction (XRD) and MRS methods. Then, the validity of the MRS measurements was verified by comparing with the residual stress measured by XRD method. The reliability of the MRS method was further validated by the statistical student’s t-test. The MRS measurements were found to have no systematic error in comparison with the XRD measurements, which confirm that the residual stresses measured by the MRS method are reliable. Besides that, the MRS method, by which the residual stress in a micro inertial switch was measured, has been confirmed to be a convincing experiment tool for estimating the residual stress in metal microdevice with micron order topological feature size.

  4. In situ electron microscopy studies of electromechanical behavior in metals at the nanoscale using a novel microdevice-based system

    Kang, Wonmo, E-mail: wonmo.kang.ctr.ks@nrl.navy.mil; Beniam, Iyoel; Qidwai, Siddiq M. [Naval Research Laboratory, Washington, DC 20375 (United States)

    2016-09-15

    Electrically assisted deformation (EAD) is an emerging technique to enhance formability of metals by applying an electric current through them. Despite its increasing importance in manufacturing applications, there is still an unresolved debate on the nature of the fundamental deformation mechanisms underlying EAD, mainly between electroplasticity (non-thermal effects) and resistive heating (thermal effects). This status is due to two critical challenges: (1) a lack of experimental techniques to directly observe fundamental mechanisms of material deformation during EAD, and (2) intrinsic coupling between electric current and Joule heating giving rise to unwanted thermally activated mechanisms. To overcome these challenges, we have developed a microdevice-based electromechanical testing system (MEMTS) to characterize nanoscale metal specimens in transmission electron microscopy (TEM). Our studies reveal that MEMTS eliminates the effect of Joule heating on material deformation, a critical advantage over macroscopic experiments, owing to its unique scale. For example, a negligible change in temperature (<0.02 °C) is predicted at ∼3500 A/mm{sup 2}. Utilizing the attractive features of MEMTS, we have directly investigated potential electron-dislocation interactions in single crystal copper (SCC) specimens that are simultaneously subjected to uniaxial loading and electric current density up to 5000 A/mm{sup 2}. Our in situ TEM studies indicate that for SCC, electroplasticity does not play a key role as no differences in dislocation activities, such as depinning and movement, are observed.

  5. Exogenous Gene Integration for Microalgal Cell Transformation Using a Nanowire-Incorporated Microdevice.

    Bae, Sunwoong; Park, Seunghye; Kim, Jung; Choi, Jong Seob; Kim, Kyung Hoon; Kwon, Donguk; Jin, EonSeon; Park, Inkyu; Kim, Do Hyun; Seo, Tae Seok

    2015-12-16

    Superior green algal cells showing high lipid production and rapid growth rate are considered as an alternative for the next generation green energy resources. To achieve the biomass based energy generation, transformed microalgae with superlative properties should be developed through genetic engineering. Contrary to the normal cells, microalgae have rigid cell walls, so that target gene delivery into cells is challengeable. In this study, we report a ZnO nanowire-incorporated microdevice for a high throughput microalgal transformation. The proposed microdevice was equipped with not only a ZnO nanowire in the microchannel for gene delivery into cells but also a pneumatic polydimethylsiloxane (PDMS) microvalve to modulate the cellular attachment and detachment from the nanowire. As a model, hygromycin B resistance gene cassette (Hyg3) was functionalized on the hydrothermally grown ZnO nanowires through a disulfide bond and released into green algal cells, Chlamydomonas reinhardtii, by reductive cleavage. During Hyg3 gene delivery, a monolithic PDMS membrane was bent down, so that algal cells were pushed down toward ZnO nanowires. The supply of vacuum in the pneumatic line made the PDMS membrane bend up, enabling the gene delivered algal cells to be recovered from the outlet of the microchannel. We successfully confirmed Hyg3 gene integrated in microalgae by amplifying the inserted gene through polymerase chain reaction (PCR) and DNA sequencing. The efficiency of the gene delivery to algal cells using the ZnO nanowire-incorporated microdevice was 6.52 × 10(4)- and 9.66 × 10(4)-fold higher than that of a traditional glass bead beating and electroporation.

  6. Geometric recursion

    Andersen, Jørgen Ellegaard; Borot, Gaëtan; Orantin, Nicolas

    We propose a general theory whose main component are functorial assignments ∑→Ω∑ ∈ E (∑), for a large class of functors E from a certain category of bordered surfaces (∑'s) to a suitable a target category of topological vector spaces. The construction is done by summing appropriate compositions...... as Poisson structures on the moduli space of flat connections. The theory has a wider scope than that and one expects that many functorial objects in low-dimensional geometry and topology should have a GR construction. The geometric recursion has various projections to topological recursion (TR) and we...... in particular show it retrieves all previous variants and applications of TR. We also show that, for any initial data for topological recursion, one can construct initial data for GR with values in Frobenius algebra-valued continuous functions on Teichmueller space, such that the ωg,n of TR are obtained...

  7. A parylene-filled-trench technique for thermal isolation in silicon-based microdevices

    Lei Yinhua; Wang Wei; Li Ting; Jin Yufeng; Zhang Haixia; Li Zhihong; Yu Huaiqiang; Luo Yingcun

    2009-01-01

    Microdevices prepared in a silicon substrate have been widely used in versatile fields due to the matured silicon-based microfabrication technique and the excellent physical properties of silicon material. However, the high thermal conductivity of silicon restricts its application in most thermal microdevices, especially devices comprising different temperature zones. In this work, a parylene-filled-trench technique was optimized to realize high-quality thermal isolation in silicon-based microdevices. Parylene C, a heat transfer barricading material, was deposited on parallel high-aspect-ratio trenches, which surrounded the isolated target zones. After removing the remnant silicon beneath the trenches by deep reactive ion etching from the back side, a high-quality heat transfer barrier was obtained. By using narrow trenches, only 5 µm thick parylene was required for a complete filling, which facilitated multi-layer interconnection thereafter. The parylene filling performance inside the high-aspect-ratio trench was optimized by two approaches: multiple etch–deposition cycling and trench profile controlling. A 4 × 6 array, in which each unit was kept at a constant temperature and was well thermally isolated individually, was achieved on a silicon substrate by using the present parylene-filled-trench technique. The preliminary experimental results indicated that the present parylene-filled-trench structure exhibited excellent thermal isolation performance, with a very low power requirement of 0.134 mW (K mm 2 ) −1 for heating the isolated silicon unit and a high thermal isolation efficiency of 72.5% between two adjacent units. Accompanied with high-quality isolation performance, the microdevices embedded the present parylene-filled-trench structure to retain a strong mechanical connection larger than 400 kPa between two isolated zones, which is very important for a high-reliability-required micro-electro-mechanical-system (MEMS) device. Considering its room

  8. (2+1)-维耦合的mKP方程的代数几何解%Algebro-Geometric Solutions to (2+1)-Dimensional Coupled Modified Kadomtsev-Petviashvili Equations

    杜殿楼; 杨潇

    2012-01-01

    A (2+1)-dimensional coupled modified Kadomtsev-Petviashvili (CMKP) equation is proposed, and its decomposition is derived by its Lax pair. Based on the theory of algebraic curve, an algebro-geometric solution of the CMKP equation is obtained.%提出一个(2+1)-维耦合的mKP(CMKP)方程,通过其Lax对,实现了该方程的分解.进一步借助代数曲线理论,给出其代数几何解.

  9. SU-8 based microdevices to study self-induced chemotaxis in 3D microenvironments

    Ayuso, Jose; Monge, Rosa; Llamazares, Guillermo; Moreno, Marco; Agirregabiria, Maria; Berganzo, Javier; Doblaré, Manuel; Ochoa, Iñaki; Fernandez, Luis

    2015-05-01

    Tissues are complex three-dimensional structures in which cell behaviour is frequently guided by chemotactic signals. Although starvation and nutrient restriction induce many different chemotactic processes, the recreation of such conditions in vitro remains difficult when using standard cell culture equipment. Recently, microfluidic techniques have arisen as powerful tools to mimic such physiological conditions. In this context, microfluidic three-dimensional cell culture systems require precise control of cell/hydrogel location because samples need to be placed within a microchamber without obstruction of surrounding elements. In this article, SU-8 is studied as structural material for the fabrication of complex cell culture devices due to its good mechanical properties, low gas permeability and sensor integration capacity. In particular, this manuscript presents a SU-8 based microdevice designed to create “self-induced” medium starvation, based on the combination of nutrient restriction and natural cell metabolism. Results show a natural migratory response towards nutrient source, showing how cells adapt to their own microenvironment modifications. The presented results demonstrate the SU-8 potential for microdevice fabrication applied to cell culture.

  10. A review of microfabrication techniques and dielectrophoretic microdevices for particle manipulation and separation

    Li, M; Li, W H; Zhang, J; Alici, G; Wen, W

    2014-01-01

    The development of lab-on-a-chip (LOC) devices over the past decade has attracted growing interest. LOC devices aim to achieve the miniaturization, integration, automation and parallelization of biological and chemical assays. One of the applications, the ability to effectively and accurately manipulate and separate micro- and nano-scale particles in an aqueous solution, is particularly appealing in biological, chemical and medical fields. Among the technologies that have been developed and implemented in microfluidic microsystems for particle manipulation and separation (such as mechanical, inertial, hydrodynamic, acoustic, optical, magnetic and electrical methodologies), dielectrophoresis (DEP) may prove to be the most popular because of its label-free nature, ability to manipulate neutral bioparticles, analyse with high selectivity and sensitivity, compatibility with LOC devices, and easy and direct interface with electronics. The required spatial electric non-uniformities for the DEP effect can be generated by patterning microelectrode arrays within microchannels, or placing insulating obstacles within a microchannel and curving the microchannels. A wide variety of electrode- and insulator-based DEP microdevices have been developed, fabricated, and successfully employed to manipulate and separate bioparticles (i.e. DNA, proteins, bacteria, viruses, mammalian and yeast cells). This review provides an overview of the state-of-the-art of microfabrication techniques and of the structures of dielectrophoretic microdevices aimed towards different applications. The techniques used for particle manipulation and separation based on microfluidics are provided in this paper. In addition, we also present the theoretical background of DEP. (topical review)

  11. Reducing detrimental electrostatic effects in Casimir-force measurements and Casimir-force-based microdevices

    Xu, Jun; Klimchitskaya, G. L.; Mostepanenko, V. M.; Mohideen, U.

    2018-03-01

    It is well known that residual electrostatic forces create significant difficulties in precise measurements of the Casimir force and the wide use of Casimir-operated microdevices. We experimentally demonstrate that, with the help of Ar-ion cleaning of the surfaces, it is possible to make electrostatic effects negligibly small compared to the Casimir interaction. Our experimental setup consists of a dynamic atomic force microscope supplemented with an Ar-ion gun and argon reservoir. The residual potential difference between the Au-coated surfaces of a sphere and those of a plate was measured both before and after in situ Ar-ion cleaning. It is shown that this cleaning decreases the magnitude of the residual potential by up to an order of magnitude and makes it almost independent of the separation. The gradient of the Casimir force was measured using ordinary samples subjected to Ar-ion cleaning. The obtained results are shown to be in good agreement both with previous precision measurements using specially selected samples and with theoretical predictions of the Lifshitz theory. The conclusion is made that the suggested method of in situ Ar-ion cleaning is effective in reducing the electrostatic effects and therefore is a great resource for experiments on measuring the Casimir interaction and for Casimir-operated microdevices.

  12. Passive blood plasma separation at the microscale: a review of design principles and microdevices

    Tripathi, Siddhartha; Varun Kumar, Y V Bala; Joshi, Suhas S; Agrawal, Amit; Prabhakar, Amit

    2015-01-01

    Blood plasma separation is vital in the field of diagnostics and health care. Due to the inherent advantages obtained in the transition to microscale, the recent trend in these fields is a rapid shift towards the miniaturization of complex macro processes. Plasma separation in microdevices is one such process which has received extensive attention from researchers globally. Blood plasma separation techniques based on microfluidic platforms can be broadly classified into two categories. While active techniques utilize external force fields for separation, the passive techniques are dependent on biophysical effects, cell behavior, hydrodynamic forces and channel geometry for blood plasma separation. In general, passive separation methods are favored in comparison to active methods because they tend to avoid design complexities and are relatively easy to integrate with biosensors; additionally they are cost effective. Here we review passive separation techniques demonstrating separation and blood behavior at microscale. We present an extensive review of relevant biophysical laws, along with experimental details of various passive separation techniques and devices exploiting these physical effects. The relative performances, and the advantages and disadvantages of microdevices discussed in the literature, are compared and future challenges are brought about. (topical review)

  13. Geometrical interpretation of extended supergravity

    Townsend, P.K.; Nieuwenhuizen, P.van

    1977-01-01

    SO 2 extended supergravity is shown to be a geometrical theory, whose underlying gauge group is OSp(4,2). The couplings which gauge the SO 2 symmetry as well as the accompanying cosmological and masslike terms are directly obtained, and the usual SO 2 model is obtained after a Wigner-Inoenue group contraction. (Auth.)

  14. Couplings

    Stošić, Dušan; Auroux, Aline

    Basic principles of calorimetry coupled with other techniques are introduced. These methods are used in heterogeneous catalysis for characterization of acidic, basic and red-ox properties of solid catalysts. Estimation of these features is achieved by monitoring the interaction of various probe molecules with the surface of such materials. Overview of gas phase, as well as liquid phase techniques is given. Special attention is devoted to coupled calorimetry-volumetry method. Furthermore, the influence of different experimental parameters on the results of these techniques is discussed, since it is known that they can significantly influence the evaluation of catalytic properties of investigated materials.

  15. Mapping the Galvanic Corrosion of Three Metals Coupled with a Wire Beam Electrode: The Influence of Temperature and Relative Geometrical Position

    Liu, Yun-Fei; Liu, Shu-Fa; Duan, Jin-Zhuo

    2018-01-01

    The local electrochemical properties of galvanic corrosion for three coupled metals in a desalination plant were investigated with three wire-beam electrodes as wire sensors: aluminum brass (HAl77-2), titanium (TA2), and 316L stainless steel (316L SS). These electrodes were used with artificial seawater at different temperatures. The potential and current–density distributions of the three-metal coupled system are inhomogeneous. The HAl77-2 wire anodes were corroded in the three-metal coupled system. The TA2 wires acted as cathodes and were protected; the 316L SS wires acted as secondary cathodes. The temperature and electrode arrangement have important effects on the galvanic corrosion of the three-metal coupled system. The corrosion current of the HAl77-2 increased with temperature indicating enhanced anode corrosion at higher temperature. In addition, the corrosion of HAl77-2 was more significant when the HAl77-2 wires were located in the middle of the coupled system than with the other two metal arrangement styles. PMID:29495617

  16. Mapping the Galvanic Corrosion of Three Metals Coupled with a Wire Beam Electrode: The Influence of Temperature and Relative Geometrical Position.

    Ju, Hong; Yang, Yuan-Feng; Liu, Yun-Fei; Liu, Shu-Fa; Duan, Jin-Zhuo; Li, Yan

    2018-02-28

    The local electrochemical properties of galvanic corrosion for three coupled metals in a desalination plant were investigated with three wire-beam electrodes as wire sensors: aluminum brass (HAl77-2), titanium (TA2), and 316L stainless steel (316L SS). These electrodes were used with artificial seawater at different temperatures. The potential and current-density distributions of the three-metal coupled system are inhomogeneous. The HAl77-2 wire anodes were corroded in the three-metal coupled system. The TA2 wires acted as cathodes and were protected; the 316L SS wires acted as secondary cathodes. The temperature and electrode arrangement have important effects on the galvanic corrosion of the three-metal coupled system. The corrosion current of the HAl77-2 increased with temperature indicating enhanced anode corrosion at higher temperature. In addition, the corrosion of HAl77-2 was more significant when the HAl77-2 wires were located in the middle of the coupled system than with the other two metal arrangement styles.

  17. Mapping the Galvanic Corrosion of Three Metals Coupled with a Wire Beam Electrode: The Influence of Temperature and Relative Geometrical Position

    Hong Ju

    2018-02-01

    Full Text Available The local electrochemical properties of galvanic corrosion for three coupled metals in a desalination plant were investigated with three wire-beam electrodes as wire sensors: aluminum brass (HAl77-2, titanium (TA2, and 316L stainless steel (316L SS. These electrodes were used with artificial seawater at different temperatures. The potential and current–density distributions of the three-metal coupled system are inhomogeneous. The HAl77-2 wire anodes were corroded in the three-metal coupled system. The TA2 wires acted as cathodes and were protected; the 316L SS wires acted as secondary cathodes. The temperature and electrode arrangement have important effects on the galvanic corrosion of the three-metal coupled system. The corrosion current of the HAl77-2 increased with temperature indicating enhanced anode corrosion at higher temperature. In addition, the corrosion of HAl77-2 was more significant when the HAl77-2 wires were located in the middle of the coupled system than with the other two metal arrangement styles.

  18. A vacuum manifold for rapid world-to-chip connectivity of complex PDMS microdevices.

    Cooksey, Gregory A; Plant, Anne L; Atencia, Javier

    2009-05-07

    The lack of simple interfaces for microfluidic devices with a large number of inlets significantly limits production and utilization of these devices. In this article, we describe the fabrication of a reusable manifold that provides rapid world-to-chip connectivity. A vacuum network milled into a rigid manifold holds microdevices and prevents leakage of fluids injected into the device from ports in the manifold. A number of different manifold designs were explored, and all performed similarly, yielding an average of 100 kPa (15 psi) fluid holding pressure. The wide applicability of this manifold concept is demonstrated by interfacing with a 51-inlet microfluidic chip containing 144 chambers and hundreds of embedded pneumatic valves. Due to the speed of connectivity, the manifolds are ideal for rapid prototyping and are well suited to serve as "universal" interfaces.

  19. Coupling of c  =  ‑2 and c =\\frac{1}{2} and c  =  0 conformal field theories: the geometrical point of view

    Najafi, M. N.

    2018-04-01

    The coupling of the c  =  ‑2, c=\\frac{1}{2} and c  =  0 conformal field theories are numerically considered in this paper. As the prototypes of the couplings, (c_1=-2)\\oplus (c_2=0) and (c_1=-2)\\oplus (c_2=\\frac{1}{2}) , we consider the Bak–Tang–Weisenfeld (BTW) model on the 2D square critical site-percolation and the BTW model on Ising-correlated percolation lattices respectively. Some geometrical techniques are used to characterize the presumable conformal symmetry of the resultant systems. Based on the numerical analysis of the diffusivity parameter (κ) in the Schramm–Loewner evolution (SLE) theory we propose that the algebra of the central charges of the coupled models is closed. This result is based on the analysis of the conformal loop ensemble (CLE) analysis. The diffusivity parameter in each case is obtained by calculating the fractal dimension of loops (and the corresponding exponent of mean-square root distance), the direct SLE mapping method, the left passage probability and the winding angle analysis. More precisely we numerically show that the coupling (c_1=-2)\\oplus (c_2=\\frac{1}{2}) results to 2D self-avoiding walk (SAW) fixed point corresponding to c  =  0 conformal field theory, whereas the coupling (c_1=-2)\\oplus (c_2=0) results to the 2D critical Ising fixed point corresponding to the c=\\frac{1}{2} conformal field theory.

  20. On bivariate geometric distribution

    K. Jayakumar

    2013-05-01

    Full Text Available Characterizations of bivariate geometric distribution using univariate and bivariate geometric compounding are obtained. Autoregressive models with marginals as bivariate geometric distribution are developed. Various bivariate geometric distributions analogous to important bivariate exponential distributions like, Marshall-Olkin’s bivariate exponential, Downton’s bivariate exponential and Hawkes’ bivariate exponential are presented.

  1. Visualizing the Geometric Series.

    Bennett, Albert B., Jr.

    1989-01-01

    Mathematical proofs often leave students unconvinced or without understanding of what has been proved, because they provide no visual-geometric representation. Presented are geometric models for the finite geometric series when r is a whole number, and the infinite geometric series when r is the reciprocal of a whole number. (MNS)

  2. First-principles investigation of the dissociation and coupling of methane on small copper clusters: Interplay of collision dynamics and geometric and electronic effects

    Varghese, Jithin J.; Mushrif, Samir H., E-mail: shmushrif@ntu.edu.sg [School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459 (Singapore)

    2015-05-14

    Small metal clusters exhibit unique size and morphology dependent catalytic activity. The search for alternate minimum energy pathways and catalysts to transform methane to more useful chemicals and carbon nanomaterials led us to investigate collision induced dissociation of methane on small Cu clusters. We report here for the first time, the free energy barriers for the collision induced activation, dissociation, and coupling of methane on small Cu clusters (Cu{sub n} where n = 2–12) using ab initio molecular dynamics and metadynamics simulations. The collision induced activation of the stretching and bending vibrations of methane significantly reduces the free energy barrier for its dissociation. Increase in the cluster size reduces the barrier for dissociation of methane due to the corresponding increase in delocalisation of electron density within the cluster, as demonstrated using the electron localisation function topology analysis. This enables higher probability of favourable alignment of the C–H stretching vibration of methane towards regions of high electron density within the cluster and makes higher number of sites available for the chemisorption of CH{sub 3} and H upon dissociation. These characteristics contribute in lowering the barrier for dissociation of methane. Distortion and reorganisation of cluster geometry due to high temperature collision dynamics disturb electron delocalisation within them and increase the barrier for dissociation. Coupling reactions of CH{sub x} (x = 1–3) species and recombination of H with CH{sub x} have free energy barriers significantly lower than complete dehydrogenation of methane to carbon. Thus, competition favours the former reactions at high hydrogen saturation on the clusters.

  3. First-principles investigation of the dissociation and coupling of methane on small copper clusters: Interplay of collision dynamics and geometric and electronic effects

    Varghese, Jithin J.; Mushrif, Samir H.

    2015-01-01

    Small metal clusters exhibit unique size and morphology dependent catalytic activity. The search for alternate minimum energy pathways and catalysts to transform methane to more useful chemicals and carbon nanomaterials led us to investigate collision induced dissociation of methane on small Cu clusters. We report here for the first time, the free energy barriers for the collision induced activation, dissociation, and coupling of methane on small Cu clusters (Cu n where n = 2–12) using ab initio molecular dynamics and metadynamics simulations. The collision induced activation of the stretching and bending vibrations of methane significantly reduces the free energy barrier for its dissociation. Increase in the cluster size reduces the barrier for dissociation of methane due to the corresponding increase in delocalisation of electron density within the cluster, as demonstrated using the electron localisation function topology analysis. This enables higher probability of favourable alignment of the C–H stretching vibration of methane towards regions of high electron density within the cluster and makes higher number of sites available for the chemisorption of CH 3 and H upon dissociation. These characteristics contribute in lowering the barrier for dissociation of methane. Distortion and reorganisation of cluster geometry due to high temperature collision dynamics disturb electron delocalisation within them and increase the barrier for dissociation. Coupling reactions of CH x (x = 1–3) species and recombination of H with CH x have free energy barriers significantly lower than complete dehydrogenation of methane to carbon. Thus, competition favours the former reactions at high hydrogen saturation on the clusters

  4. A new geometrical gravitational theory

    Obata, T.; Chiba, J.; Oshima, H.

    1981-01-01

    A geometrical gravitational theory is developed. The field equations are uniquely determined apart from one unknown dimensionless parameter ω 2 . It is based on an extension of the Weyl geometry, and by the extension the gravitational coupling constant and the gravitational mass are made to be dynamical and geometrical. The fundamental geometrical objects in the theory are a metric gsub(μν) and two gauge scalars phi and psi. The theory satisfies the weak equivalence principle, but breaks the strong one generally. u(phi, psi) = phi is found out on the assumption that the strong one keeps holding good at least for bosons of low spins. Thus there is the simple correspondence between the geometrical objects and the gravitational objects. Since the theory satisfies the weak one, the inertial mass is also dynamical and geometrical in the same way as is the gravitational mass. Moreover, the cosmological term in the theory is a coscalar of power -4 algebraically made of psi and u(phi, psi), so it is dynamical, too. Finally spherically symmetric exact solutions are given. The permissible range of the unknown parameter ω 2 is experimentally determined by applying the solutions to the solar system. (author)

  5. Geometric Design Laboratory

    Federal Laboratory Consortium — Purpose: The mission of the Geometric Design Laboratory (GDL) is to support the Office of Safety Research and Development in research related to the geometric design...

  6. Low cost batch fabrication of microdevices using ultraviolet light-emitting diode photolithography technique

    Lee, Neam Heng; Swamy, Varghese; Ramakrishnan, Narayanan

    2016-01-01

    Solid-state technology has enabled the use of light-emitting diodes (LEDs) in lithography systems due to their low cost, low power requirement, and higher efficiency relative to the traditional mercury lamp. Uniform irradiance distribution is essential for photolithography to ensure the critical dimension (CD) of the feature fabricated. However, light illuminated from arrays of LEDs can have nonuniform irradiance distribution, which can be a problem when using LED arrays as a source to batch-fabricate multiple devices on a large wafer piece. In this study, the irradiance distribution of an UV LED array was analyzed, and the separation distance between light source and mask optimized to obtain maximum irradiance uniformity without the use of a complex lens. Further, employing a diffuser glass enhanced the fabrication process and the CD loss was minimized to an average of 300 nm. To assess the performance of the proposed technology, batch fabrication of surface acoustic wave devices on lithium niobate substrate was carried out, and all the devices exhibited identical insertion loss of -18 dB at a resonance frequency of 39.33 MHz. The proposed low-cost UV lithography setup can be adapted in academic laboratories for research and teaching on microdevices.

  7. Potentiodynamic polarization assays on magnetic materials for new medical micro-devices

    Pouponneau, P. [Ecole Polytechnique de Montreal, PQ (Canada). Nanorobotics Lab; Ecole Polytechnique de Montreal, PQ (Canada). Biomedical Engineering Inst., Laboratory for the Innovation and Analysis of Bioperformance; Savadogo, O.; Napporn, T. [Ecole Polytechnique de Montreal, Montreal, PQ (Canada). Laboratoire de nouveaux materiaux pour l' energie et l' electrochimie; Yahia, L' H. [Ecole Polytechnique de Montreal, PQ (Canada). Biomedical Engineering Inst., Laboratory for the Innovation and Analysis of Bioperformance; Martel, S. [Ecole Polytechnique de Montreal, PQ (Canada). Nanorobotics Lab

    2008-07-01

    This study investigated the corrosion behaviour of a terbium (Tb0.27Dy0.73Fe1.95) alloy and single crystal nickel (Ni-Mn-Ga) alloy smart magnetic materials (SMM), and Vacoflux 17 and Permendur iron-cobalt alloys. Previous studies have shown that the materials demonstrate a high potential for use in wireless medical microdevices controlled by magnetic fields. However, the Tb0.27Dy0.73Fe1.95 alloy has poor corrosion properties due to its high corrosion potential and corrosion current. Corrosion behaviour was investigated using potentiodynamic polarization measurements and scanning electron microscopy. The study showed that the surface of the alloy was impaired by cracks and holes. The single crystal Ni-Mn Ga alloy demonstrated higher corrosion resistance. The SMM were then embedded into a bio-compatible matrix to form composite with the Vacoflux 17 and Permendur alloys. The study showed that while the Vacoflux 17 surface was degraded by cracks and pits, the Permendur surface was uniformly corroded without pitting. The uniform corrosion was attributed to the formation of a stable passive layer. 4 refs., 3 figs.

  8. Rapid prototyping of multi-scale biomedical microdevices by combining additive manufacturing technologies.

    Hengsbach, Stefan; Lantada, Andrés Díaz

    2014-08-01

    The possibility of designing and manufacturing biomedical microdevices with multiple length-scale geometries can help to promote special interactions both with their environment and with surrounding biological systems. These interactions aim to enhance biocompatibility and overall performance by using biomimetic approaches. In this paper, we present a design and manufacturing procedure for obtaining multi-scale biomedical microsystems based on the combination of two additive manufacturing processes: a conventional laser writer to manufacture the overall device structure, and a direct-laser writer based on two-photon polymerization to yield finer details. The process excels for its versatility, accuracy and manufacturing speed and allows for the manufacture of microsystems and implants with overall sizes up to several millimeters and with details down to sub-micrometric structures. As an application example we have focused on manufacturing a biomedical microsystem to analyze the impact of microtextured surfaces on cell motility. This process yielded a relevant increase in precision and manufacturing speed when compared with more conventional rapid prototyping procedures.

  9. SMA Foils for MEMS: From Material Properties to the Engineering of Microdevices

    Kohl, Manfred; Ossmer, Hinnerk; Gueltig, Marcel; Megnin, Christof

    2018-03-01

    In the early nineties, microelectromechanical systems (MEMS) technology has been still in its infancy. As silicon (Si) is not a transducer material, it was clear at the very beginning that mechanically active materials had to be introduced to MEMS in order to enable functional microdevices with actuation capability beyond electrostatics. At that time, shape memory alloys (SMAs) have been available in bulk form, mainly as SMA wires and SMA plates. On the macro scale, these materials show highest work densities compared to other actuation principles in the order of 107 J/m3, which stimulated research on the integration of SMA to MEMS. Subsequently, two approaches for producing planar materials have been initiated (1) magnetron sputtering of SMA thin films and (2) the integration of rolled SMA foils, which both turned out to be very successful creating a paradigm change in microactuation technology. The following review covers important milestones of the research and development of SMA foil-based microactuators including materials characterization, design engineering, technology, and demonstrator development as well as first commercial products.

  10. SMA Foils for MEMS: From Material Properties to the Engineering of Microdevices

    Kohl, Manfred; Ossmer, Hinnerk; Gueltig, Marcel; Megnin, Christof

    2017-12-01

    In the early nineties, microelectromechanical systems (MEMS) technology has been still in its infancy. As silicon (Si) is not a transducer material, it was clear at the very beginning that mechanically active materials had to be introduced to MEMS in order to enable functional microdevices with actuation capability beyond electrostatics. At that time, shape memory alloys (SMAs) have been available in bulk form, mainly as SMA wires and SMA plates. On the macro scale, these materials show highest work densities compared to other actuation principles in the order of 107 J/m3, which stimulated research on the integration of SMA to MEMS. Subsequently, two approaches for producing planar materials have been initiated (1) magnetron sputtering of SMA thin films and (2) the integration of rolled SMA foils, which both turned out to be very successful creating a paradigm change in microactuation technology. The following review covers important milestones of the research and development of SMA foil-based microactuators including materials characterization, design engineering, technology, and demonstrator development as well as first commercial products.

  11. Two particle entanglement and its geometric duals

    Wasay, Muhammad Abdul [University of Agriculture, Department of Physics, Faisalabad (Pakistan); Quaid-i-Azam University Campus, National Centre for Physics, Islamabad (Pakistan); Bashir, Asma [University of Agriculture, Department of Physics, Faisalabad (Pakistan)

    2017-12-15

    We show that for a system of two entangled particles, there is a dual description to the particle equations in terms of classical theory of conformally stretched spacetime. We also connect these entangled particle equations with Finsler geometry. We show that this duality translates strongly coupled quantum equations in the pilot-wave limit to weakly coupled geometric equations. (orig.)

  12. Two particle entanglement and its geometric duals

    Wasay, Muhammad Abdul; Bashir, Asma

    2017-01-01

    We show that for a system of two entangled particles, there is a dual description to the particle equations in terms of classical theory of conformally stretched spacetime. We also connect these entangled particle equations with Finsler geometry. We show that this duality translates strongly coupled quantum equations in the pilot-wave limit to weakly coupled geometric equations. (orig.)

  13. Tetherless near-infrared control of brain activity in behaving animals using fully implantable upconversion microdevices.

    Wang, Ying; Lin, Xudong; Chen, Xi; Chen, Xian; Xu, Zhen; Zhang, Wenchong; Liao, Qinghai; Duan, Xin; Wang, Xin; Liu, Ming; Wang, Feng; He, Jufang; Shi, Peng

    2017-10-01

    Many nanomaterials can be used as sensors or transducers in biomedical research and they form the essential components of transformative novel biotechnologies. In this study, we present an all-optical method for tetherless remote control of neural activity using fully implantable micro-devices based on upconversion technology. Upconversion nanoparticles (UCNPs) were used as transducers to convert near-infrared (NIR) energy to visible light in order to stimulate neurons expressing different opsin proteins. In our setup, UCNPs were packaged in a glass micro-optrode to form an implantable device with superb long-term biocompatibility. We showed that remotely applied NIR illumination is able to reliably trigger spiking activity in rat brains. In combination with a robotic laser projection system, the upconversion-based tetherless neural stimulation technique was implemented to modulate brain activity in various regions, including the striatum, ventral tegmental area, and visual cortex. Using this system, we were able to achieve behavioral conditioning in freely moving animals. Notably, our microscale device was at least one order of magnitude smaller in size (∼100 μm in diameter) and two orders of magnitude lighter in weight (less than 1 mg) than existing wireless optogenetic devices based on light-emitting diodes. This feature allows simultaneous implantation of multiple UCNP-optrodes to achieve modulation of brain function to control complex animal behavior. We believe that this technology not only represents a novel practical application of upconversion nanomaterials, but also opens up new possibilities for remote control of neural activity in the brains of behaving animals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. A facile route for irreversible bonding of plastic-PDMS hybrid microdevices at room temperature.

    Tang, Linzhi; Lee, Nae Yoon

    2010-05-21

    Plastic materials do not generally form irreversible bonds with poly(dimethylsiloxane) (PDMS) regardless of oxygen plasma treatment and a subsequent thermal process. In this paper, we perform plastic-PDMS bonding at room temperature, mediated by the formation of a chemically robust amine-epoxy bond at the interfaces. Various plastic materials, such as poly(methylmethacrylate) (PMMA), polycarbonate (PC), polyimide (PI), and poly(ethylene terephthalate) (PET) were adopted as choices for plastic materials. Irrespective of the plastic materials used, the surfaces were successfully modified with amine and epoxy functionalities, confirmed by the surface characterizations such as water contact angle measurements and X-ray photoelectron spectroscopy (XPS), and chemically robust and irreversible bonding was successfully achieved within 1 h at room temperature. The bonding strengths of PDMS with PMMA and PC sheets were measured to be 180 and 178 kPa, respectively, and their assemblies containing microchannel structures endured up to 74 and 84 psi (510 and 579 kPa) of introduced compressed air, respectively, without destroying the microdevices, representing a robust and highly stable interfacial bonding. In addition to microchannel-molded PDMS bonded with flat plastic substrates, microchannel-embossed plastics were also bonded with a flat PDMS sheet, and both types of bonded assemblies displayed sufficiently robust bonding, tolerating an intense influx of liquid whose per-minute injection volume was nearly 1000 to 2000 times higher than the total internal volume of the microchannel used. In addition to observing the bonding performance, we also investigated the potential of surface amine and epoxy functionalities as durable chemical adhesives by observing their storage-time-dependent bonding performances.

  15. Solid-State Power Generating Microdevices for Distributed Space System Architectures

    Fleurial, J.-P.; Patel, J.; Snyder, G. J.; Huang, C.-K.; Averback, R.; Hill, C.; Chen, G.

    2001-01-01

    Deep space missions have a strong need for compact, high power density, reliable and long life electrical power generation and storage under extreme temperature conditions. Conventional power generating devices become inefficient at very low temperatures (temperatures lower than 200 K encountered during Mars missions for example) and rechargeable energy storage devices cannot be operated thereby limiting mission duration. At elevated temperatures (for example for planned solar probe or Venus lander missions), thin film interdiffusion destroys electronic devices used for generating and storing power. Solar power generation strongly depends upon the light intensity, which falls rapidly in deep interplanetary missions (beyond 5 AU), and in planetary missions in the sun shadow or in dusty environments (Mars, for example). Radioisotope thermoelectric generators (RTGs) have been successfully used for a number of deep space missions RTGs. However, their energy conversion efficiency and specific power characteristics are quite low, and this technology has been limited to relatively large systems (more than 100 W). The National Aeronautics and Space Administration (NASA) and the Jet Propulsion Laboratory (JPL) have been planning the use of much smaller spacecrafts that will incorporate a variety of microdevices and miniature vehicles such as microdetectors, microsensors, and microrovers. Except for electrochemical batteries and solar cells, there are currently no available miniaturized power sources. Novel technologies that will function reliably over a long duration mission (ten years and over), in harsh environments (temperature, pressure, and atmosphere) must be developed to enable the success of future space missions. It is also expected that such micropower sources could have a wide range of terrestrial applications, in particular when the limited lifetime and environmental limitations of batteries are key factors. Additional information is contained in the original

  16. Graphene geometric diodes for terahertz rectennas

    Zhu Zixu; Joshi, Saumil; Grover, Sachit; Moddel, Garret

    2013-01-01

    We demonstrate a new thin-film graphene diode called a geometric diode that relies on geometric asymmetry to provide rectification at 28 THz. The geometric diode is coupled to an optical antenna to form a rectenna that rectifies incoming radiation. This is the first reported graphene-based antenna-coupled diode working at 28 THz, and potentially at optical frequencies. The planar structure of the geometric diode provides a low RC time constant, on the order of 10 −15 s, required for operation at optical frequencies, and a low impedance for efficient power transfer from the antenna. Fabricated geometric diodes show asymmetric current–voltage characteristics consistent with Monte Carlo simulations for the devices. Rectennas employing the geometric diode coupled to metal and graphene antennas rectify 10.6 µm radiation, corresponding to an operating frequency of 28 THz. The graphene bowtie antenna is the first demonstrated functional antenna made using graphene. Its response indicates that graphene is a suitable terahertz resonator material. Applications for this terahertz diode include terahertz-wave and optical detection, ultra-high-speed electronics and optical power conversion. (paper)

  17. Three-dimensionally embedded indium tin oxide (ITO) films in photosensitive glass: a transparent and conductive platform for microdevices

    Beke, S.; Sugioka, K.; Midorikawa, K.; Koroesi, L.; Dekany, I.

    2011-01-01

    A new method for embedding transparent and conductive two- and three-dimensional microstructures in glass is presented. We show that the internal surface of hollow structures fabricated by femtosecond-laser direct writing inside the photosensitive glass can be coated by indium tin oxide (Sn-doped In 2 O 3 , ITO) using a sol-gel process. The idea of combining two transparent materials with different electrical properties, i.e., insulating and conductive, is very promising and hence it opens new prospects in manufacturing cutting edge microdevices, such as lab-on-a-chips (LOCs) and microelectromechanical systems (MEMS). (orig.)

  18. Geometric group theory

    Druţu, Cornelia

    2018-01-01

    The key idea in geometric group theory is to study infinite groups by endowing them with a metric and treating them as geometric spaces. This applies to many groups naturally appearing in topology, geometry, and algebra, such as fundamental groups of manifolds, groups of matrices with integer coefficients, etc. The primary focus of this book is to cover the foundations of geometric group theory, including coarse topology, ultralimits and asymptotic cones, hyperbolic groups, isoperimetric inequalities, growth of groups, amenability, Kazhdan's Property (T) and the Haagerup property, as well as their characterizations in terms of group actions on median spaces and spaces with walls. The book contains proofs of several fundamental results of geometric group theory, such as Gromov's theorem on groups of polynomial growth, Tits's alternative, Stallings's theorem on ends of groups, Dunwoody's accessibility theorem, the Mostow Rigidity Theorem, and quasiisometric rigidity theorems of Tukia and Schwartz. This is the f...

  19. Geometric and engineering drawing

    Morling, K

    2010-01-01

    The new edition of this successful text describes all the geometric instructions and engineering drawing information that are likely to be needed by anyone preparing or interpreting drawings or designs with plenty of exercises to practice these principles.

  20. Differential geometric structures

    Poor, Walter A

    2007-01-01

    This introductory text defines geometric structure by specifying parallel transport in an appropriate fiber bundle and focusing on simplest cases of linear parallel transport in a vector bundle. 1981 edition.

  1. Geometric ghosts and unitarity

    Ne'eman, Y.

    1980-09-01

    A review is given of the geometrical identification of the renormalization ghosts and the resulting derivation of Unitarity equations (BRST) for various gauges: Yang-Mills, Kalb-Ramond, and Soft-Group-Manifold

  2. The Spacetime Memory of Geometric Phases and Quantum Computing

    Binder, B

    2002-01-01

    Spacetime memory is defined with a holonomic approach to information processing, where multi-state stability is introduced by a non-linear phase-locked loop. Geometric phases serve as the carrier of physical information and geometric memory (of orientation) given by a path integral measure of curvature that is periodically refreshed. Regarding the resulting spin-orbit coupling and gauge field, the geometric nature of spacetime memory suggests to assign intrinsic computational properties to the electromagnetic field.

  3. Asymptotic and geometrical quantization

    Karasev, M.V.; Maslov, V.P.

    1984-01-01

    The main ideas of geometric-, deformation- and asymptotic quantizations are compared. It is shown that, on the one hand, the asymptotic approach is a direct generalization of exact geometric quantization, on the other hand, it generates deformation in multiplication of symbols and Poisson brackets. Besides investigating the general quantization diagram, its applications to the calculation of asymptotics of a series of eigenvalues of operators possessing symmetry groups are considered

  4. On geometrized gravitation theories

    Logunov, A.A.; Folomeshkin, V.N.

    1977-01-01

    General properties of the geometrized gravitation theories have been considered. Geometrization of the theory is realized only to the extent that by necessity follows from an experiment (geometrization of the density of the matter Lagrangian only). Aor a general case the gravitation field equations and the equations of motion for matter are formulated in the different Riemann spaces. A covariant formulation of the energy-momentum conservation laws is given in an arbitrary geometrized theory. The noncovariant notion of ''pseudotensor'' is not required in formulating the conservation laws. It is shown that in the general case (i.e., when there is an explicit dependence of the matter Lagrangian density on the covariant derivatives) a symmetric energy-momentum tensor of the matter is explicitly dependent on the curvature tensor. There are enlisted different geometrized theories that describe a known set of the experimental facts. The properties of one of the versions of the quasilinear geometrized theory that describes the experimental facts are considered. In such a theory the fundamental static spherically symmetrical solution has a singularity only in the coordinate origin. The theory permits to create a satisfactory model of the homogeneous nonstationary Universe

  5. Geometrical method of decoupling

    C. Baumgarten

    2012-12-01

    Full Text Available The computation of tunes and matched beam distributions are essential steps in the analysis of circular accelerators. If certain symmetries—like midplane symmetry—are present, then it is possible to treat the betatron motion in the horizontal, the vertical plane, and (under certain circumstances the longitudinal motion separately using the well-known Courant-Snyder theory, or to apply transformations that have been described previously as, for instance, the method of Teng and Edwards. In a preceding paper, it has been shown that this method requires a modification for the treatment of isochronous cyclotrons with non-negligible space charge forces. Unfortunately, the modification was numerically not as stable as desired and it was still unclear, if the extension would work for all conceivable cases. Hence, a systematic derivation of a more general treatment seemed advisable. In a second paper, the author suggested the use of real Dirac matrices as basic tools for coupled linear optics and gave a straightforward recipe to decouple positive definite Hamiltonians with imaginary eigenvalues. In this article this method is generalized and simplified in order to formulate a straightforward method to decouple Hamiltonian matrices with eigenvalues on the real and the imaginary axis. The decoupling of symplectic matrices which are exponentials of such Hamiltonian matrices can be deduced from this in a few steps. It is shown that this algebraic decoupling is closely related to a geometric “decoupling” by the orthogonalization of the vectors E[over →], B[over →], and P[over →], which were introduced with the so-called “electromechanical equivalence.” A mathematical analysis of the problem can be traced down to the task of finding a structure-preserving block diagonalization of symplectic or Hamiltonian matrices. Structure preservation means in this context that the (sequence of transformations must be symplectic and hence canonical. When

  6. Modelling of Impulsional pH Variations Using ChemFET-Based Microdevices: Application to Hydrogen Peroxide Detection

    Abdou Karim Diallo

    2014-02-01

    Full Text Available This work presents the modelling of impulsional pH variations in microvolume related to water-based electrolysis and hydrogen peroxide electrochemical oxidation using an Electrochemical Field Effect Transistor (ElecFET microdevice. This ElecFET device consists of a pH-Chemical FET (pH-ChemFET with an integrated microelectrode around the dielectric gate area in order to trigger electrochemical reactions. Combining oxidation/reduction reactions on the microelectrode, water self-ionization and diffusion properties of associated chemical species, the model shows that the sensor response depends on the main influential parameters such as: (i polarization parameters on the microelectrode, i.e., voltage (Vp and time (tp; (ii distance between the gate sensitive area and the microelectrode (d; and (iii hydrogen peroxide concentration ([H2O2]. The model developed can predict the ElecFET response behaviour and creates new opportunities for H2O2-based enzymatic detection of biomolecules.

  7. Dry fabrication of microdevices by the combination of focused ion beam and cryogenic deep reactive ion etching

    Chekurov, N; Tittonen, I; Grigoras, K; Sainiemi, L; Franssila, S; Peltonen, A

    2010-01-01

    In this paper, we demonstrate silicon microdevice fabrication by a combination of focused ion beam (FIB) and cryogenic deep reactive ion etching (DRIE). Applying FIB treatment only to a thin surface layer enables very high writing speed compared with FIB milling. The use of DRIE then defines the micro- and nanodevices utilizing the FIB-modified silicon as a mask. We demonstrate the ability to create patterns on highly 3D structures, which is extremely challenging by other nanofabrication methods. The alignment of optically made and FIB-defined patterns is also demonstrated. We also show that complete microelectromechanical systems (MEMS) can be fabricated by this method by presenting a double-ended tuning fork resonator as an example. Extremely short process time is achieved as the full fabrication cycle from mask design to electrical measurements can be completed during one working day.

  8. Geometric approximation algorithms

    Har-Peled, Sariel

    2011-01-01

    Exact algorithms for dealing with geometric objects are complicated, hard to implement in practice, and slow. Over the last 20 years a theory of geometric approximation algorithms has emerged. These algorithms tend to be simple, fast, and more robust than their exact counterparts. This book is the first to cover geometric approximation algorithms in detail. In addition, more traditional computational geometry techniques that are widely used in developing such algorithms, like sampling, linear programming, etc., are also surveyed. Other topics covered include approximate nearest-neighbor search, shape approximation, coresets, dimension reduction, and embeddings. The topics covered are relatively independent and are supplemented by exercises. Close to 200 color figures are included in the text to illustrate proofs and ideas.

  9. Geometrical optical illusionists.

    Wade, Nicholas J

    2014-01-01

    Geometrical optical illusions were given this title by Oppel in 1855. Variants on such small distortions of visual space were illustrated thereafter, many of which bear the names of those who first described them. Some original forms of the geometrical optical illusions are shown together with 'perceptual portraits' of those who described them. These include: Roget, Chevreul, Fick, Zöllner, Poggendorff, Hering, Kundt, Delboeuf Mach, Helmholtz, Hermann, von Bezold, Müller-Lyer, Lipps, Thiéry, Wundt, Münsterberg, Ebbinghaus, Titchener, Ponzo, Luckiesh, Sander, Ehrenstein, Gregory, Heard, White, Shepard, and. Lingelbach. The illusions are grouped under the headings of orientation, size, the combination of size and orientation, and contrast. Early theories of illusions, before geometrical optical illusions were so named, are mentioned briefly.

  10. Geometric considerations in magnetron sputtering

    Thornton, J.A.

    1982-01-01

    The recent development of high performance magnetron type discharge sources has greatly enhaced the range of coating applications where sputtering is a viable deposition process. Magnetron sources can provide high current densities and sputtering rates, even at low pressures. They have much reduced substrate heating rates and can be scaled to large sizes. Magnetron sputter coating apparatuses can have a variety of geometric and plasma configurations. The target geometry affects the emission directions of both the sputtered atoms and the energetic ions which are neutralized and reflected at the cathode. This fact, coupled with the long mean free particle paths which are prevalent at low pressures, can make the coating properties very dependent on the apparatus geometry. This paper reviews the physics of magnetron operation and discusses the influences of apparatus geometry on the use of magnetrons for rf sputtering and reactive sputtering, as well as on the microstructure and internal stresses in sputtered metallic coatings. (author) [pt

  11. A Geometric Dissection Problem

    Home; Journals; Resonance – Journal of Science Education; Volume 7; Issue 7. A Geometric Dissection Problem. M N Deshpande. Think It Over Volume 7 Issue 7 July 2002 pp 91-91. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/007/07/0091-0091. Author Affiliations.

  12. Geometric statistical inference

    Periwal, Vipul

    1999-01-01

    A reparametrization-covariant formulation of the inverse problem of probability is explicitly solved for finite sample sizes. The inferred distribution is explicitly continuous for finite sample size. A geometric solution of the statistical inference problem in higher dimensions is outlined

  13. Geometric Series via Probability

    Tesman, Barry

    2012-01-01

    Infinite series is a challenging topic in the undergraduate mathematics curriculum for many students. In fact, there is a vast literature in mathematics education research on convergence issues. One of the most important types of infinite series is the geometric series. Their beauty lies in the fact that they can be evaluated explicitly and that…

  14. Pragmatic geometric model evaluation

    Pamer, Robert

    2015-04-01

    Quantification of subsurface model reliability is mathematically and technically demanding as there are many different sources of uncertainty and some of the factors can be assessed merely in a subjective way. For many practical applications in industry or risk assessment (e. g. geothermal drilling) a quantitative estimation of possible geometric variations in depth unit is preferred over relative numbers because of cost calculations for different scenarios. The talk gives an overview of several factors that affect the geometry of structural subsurface models that are based upon typical geological survey organization (GSO) data like geological maps, borehole data and conceptually driven construction of subsurface elements (e. g. fault network). Within the context of the trans-European project "GeoMol" uncertainty analysis has to be very pragmatic also because of different data rights, data policies and modelling software between the project partners. In a case study a two-step evaluation methodology for geometric subsurface model uncertainty is being developed. In a first step several models of the same volume of interest have been calculated by omitting successively more and more input data types (seismic constraints, fault network, outcrop data). The positions of the various horizon surfaces are then compared. The procedure is equivalent to comparing data of various levels of detail and therefore structural complexity. This gives a measure of the structural significance of each data set in space and as a consequence areas of geometric complexity are identified. These areas are usually very data sensitive hence geometric variability in between individual data points in these areas is higher than in areas of low structural complexity. Instead of calculating a multitude of different models by varying some input data or parameters as it is done by Monte-Carlo-simulations, the aim of the second step of the evaluation procedure (which is part of the ongoing work) is to

  15. Dynamics in geometrical confinement

    Kremer, Friedrich

    2014-01-01

    This book describes the dynamics of low molecular weight and polymeric molecules when they are constrained under conditions of geometrical confinement. It covers geometrical confinement in different dimensionalities: (i) in nanometer thin layers or self supporting films (1-dimensional confinement) (ii) in pores or tubes with nanometric diameters (2-dimensional confinement) (iii) as micelles embedded in matrices (3-dimensional) or as nanodroplets.The dynamics under such conditions have been a much discussed and central topic in the focus of intense worldwide research activities within the last two decades. The present book discusses how the resulting molecular mobility is influenced by the subtle counterbalance between surface effects (typically slowing down molecular dynamics through attractive guest/host interactions) and confinement effects (typically increasing the mobility). It also explains how these influences can be modified and tuned, e.g. through appropriate surface coatings, film thicknesses or pore...

  16. Geometric group theory

    Bestvina, Mladen; Vogtmann, Karen

    2014-01-01

    Geometric group theory refers to the study of discrete groups using tools from topology, geometry, dynamics and analysis. The field is evolving very rapidly and the present volume provides an introduction to and overview of various topics which have played critical roles in this evolution. The book contains lecture notes from courses given at the Park City Math Institute on Geometric Group Theory. The institute consists of a set of intensive short courses offered by leaders in the field, designed to introduce students to exciting, current research in mathematics. These lectures do not duplicate standard courses available elsewhere. The courses begin at an introductory level suitable for graduate students and lead up to currently active topics of research. The articles in this volume include introductions to CAT(0) cube complexes and groups, to modern small cancellation theory, to isometry groups of general CAT(0) spaces, and a discussion of nilpotent genus in the context of mapping class groups and CAT(0) gro...

  17. Lectures in geometric combinatorics

    Thomas, Rekha R

    2006-01-01

    This book presents a course in the geometry of convex polytopes in arbitrary dimension, suitable for an advanced undergraduate or beginning graduate student. The book starts with the basics of polytope theory. Schlegel and Gale diagrams are introduced as geometric tools to visualize polytopes in high dimension and to unearth bizarre phenomena in polytopes. The heart of the book is a treatment of the secondary polytope of a point configuration and its connections to the state polytope of the toric ideal defined by the configuration. These polytopes are relatively recent constructs with numerous connections to discrete geometry, classical algebraic geometry, symplectic geometry, and combinatorics. The connections rely on Gr�bner bases of toric ideals and other methods from commutative algebra. The book is self-contained and does not require any background beyond basic linear algebra. With numerous figures and exercises, it can be used as a textbook for courses on geometric, combinatorial, and computational as...

  18. Geometric information provider platform

    Meisam Yousefzadeh

    2015-07-01

    Full Text Available Renovation of existing buildings is known as an essential stage in reduction of the energy loss. Considerable part of renovation process depends on geometric reconstruction of building based on semantic parameters. Following many research projects which were focused on parameterizing the energy usage, various energy modelling methods were developed during the last decade. On the other hand, by developing accurate measuring tools such as laser scanners, the interests of having accurate 3D building models are rapidly growing. But the automation of 3D building generation from laser point cloud or detection of specific objects in that is still a challenge.  The goal is designing a platform through which required geometric information can be efficiently produced to support energy simulation software. Developing a reliable procedure which extracts required information from measured data and delivers them to a standard energy modelling system is the main purpose of the project.

  19. Gravity, a geometrical course

    Frè, Pietro Giuseppe

    2013-01-01

    ‘Gravity, a Geometrical Course’ presents general relativity (GR) in a systematic and exhaustive way, covering three aspects that are homogenized into a single texture: i) the mathematical, geometrical foundations, exposed in a self consistent contemporary formalism, ii) the main physical, astrophysical and cosmological applications,  updated to the issues of contemporary research and observations, with glimpses on supergravity and superstring theory, iii) the historical development of scientific ideas underlying both the birth of general relativity and its subsequent evolution. The book is divided in two volumes.   Volume One is dedicated to the development of the theory and basic physical applications. It guides the reader from the foundation of special relativity to Einstein field equations, illustrating some basic applications in astrophysics. A detailed  account  of the historical and conceptual development of the theory is combined with the presentation of its mathematical foundations.  Differe...

  20. Geometric homology revisited

    Ruffino, Fabio Ferrari

    2013-01-01

    Given a cohomology theory, there is a well-known abstract way to define the dual homology theory using the theory of spectra. In [4] the author provides a more geometric construction of the homology theory, using a generalization of the bordism groups. Such a generalization involves in its definition the vector bundle modification, which is a particular case of the Gysin map. In this paper we provide a more natural variant of that construction, which replaces the vector bundle modification wi...

  1. Geometric measure theory

    Waerden, B

    1996-01-01

    From the reviews: "... Federer's timely and beautiful book indeed fills the need for a comprehensive treatise on geometric measure theory, and his detailed exposition leads from the foundations of the theory to the most recent discoveries. ... The author writes with a distinctive style which is both natural and powerfully economical in treating a complicated subject. This book is a major treatise in mathematics and is essential in the working library of the modern analyst." Bulletin of the London Mathematical Society.

  2. Developing geometrical reasoning

    Brown, Margaret; Jones, Keith; Taylor, Ron; Hirst, Ann

    2004-01-01

    This paper summarises a report (Brown, Jones & Taylor, 2003) to the UK Qualifications and Curriculum Authority of the work of one geometry group. The group was charged with developing and reporting on teaching ideas that focus on the development of geometrical reasoning at the secondary school level. The group was encouraged to explore what is possible both within and beyond the current requirements of the UK National Curriculum and the Key Stage 3 strategy, and to consider the whole atta...

  3. Geometrically Consistent Mesh Modification

    Bonito, A.

    2010-01-01

    A new paradigm of adaptivity is to execute refinement, coarsening, and smoothing of meshes on manifolds with incomplete information about their geometry and yet preserve position and curvature accuracy. We refer to this collectively as geometrically consistent (GC) mesh modification. We discuss the concept of discrete GC, show the failure of naive approaches, and propose and analyze a simple algorithm that is GC and accuracy preserving. © 2010 Society for Industrial and Applied Mathematics.

  4. Geometric theory of information

    2014-01-01

    This book brings together geometric tools and their applications for Information analysis. It collects current and many uses of in the interdisciplinary fields of Information Geometry Manifolds in Advanced Signal, Image & Video Processing, Complex Data Modeling and Analysis, Information Ranking and Retrieval, Coding, Cognitive Systems, Optimal Control, Statistics on Manifolds, Machine Learning, Speech/sound recognition, and natural language treatment which are also substantially relevant for the industry.

  5. Geometric leaf placement strategies

    Fenwick, J D; Temple, S W P; Clements, R W; Lawrence, G P; Mayles, H M O; Mayles, W P M

    2004-01-01

    Geometric leaf placement strategies for multileaf collimators (MLCs) typically involve the expansion of the beam's-eye-view contour of a target by a uniform MLC margin, followed by movement of the leaves until some point on each leaf end touches the expanded contour. Film-based dose-distribution measurements have been made to determine appropriate MLC margins-characterized through an index d 90 -for multileaves set using one particular strategy to straight lines lying at various angles to the direction of leaf travel. Simple trigonometric relationships exist between different geometric leaf placement strategies and are used to generalize the results of the film work into d 90 values for several different strategies. Measured d 90 values vary both with angle and leaf placement strategy. A model has been derived that explains and describes quite well the observed variations of d 90 with angle. The d 90 angular variations of the strategies studied differ substantially, and geometric and dosimetric reasoning suggests that the best strategy is the one with the least angular variation. Using this criterion, the best straightforwardly implementable strategy studied is a 'touch circle' approach for which semicircles are imagined to be inscribed within leaf ends, the leaves being moved until the semicircles just touch the expanded target outline

  6. Studies in geometric quantization

    Tuynman, G.M.

    1988-01-01

    This thesis contains five chapters, of which the first, entitled 'What is prequantization, and what is geometric quantization?', is meant as an introduction to geometric quantization for the non-specialist. The second chapter, entitled 'Central extensions and physics' deals with the notion of central extensions of manifolds and elaborates and proves the statements made in the first chapter. Central extensions of manifolds occur in physics as the freedom of a phase factor in the quantum mechanical state vector, as the phase factor in the prequantization process of classical mechanics and it appears in mathematics when studying central extension of Lie groups. In this chapter the connection between these central extensions is investigated and a remarkable similarity between classical and quantum mechanics is shown. In chapter three a classical model is given for the hydrogen atom including spin-orbit and spin-spin interaction. The method of geometric quantization is applied to this model and the results are discussed. In the final chapters (4 and 5) an explicit method to calculate the operators corresponding to classical observables is given when the phase space is a Kaehler manifold. The obtained formula are then used to quantise symplectic manifolds which are irreducible hermitian symmetric spaces and the results are compared with other quantization procedures applied to these manifolds (in particular to Berezin's quantization). 91 refs.; 3 tabs

  7. On the geometrization of electromagnetism by torsion

    Fonseca Neto, J.B. da.

    1984-01-01

    The possibility of electromagnetism geometrization using an four dimension Cartan geometry is investigated. The Lagrangian density which presents dual invariance for dyons electrodynamics formulated in term of two potentials is constructed. This theory by association of two potentials with track and with torsion pseudo-track and of the field with torsion covariant divergent is described. The minimum coupling of particle gravitational field of scalar and spinorial fields with dyon geometry theory by the minimum coupling of these fields with Cartan geometry was obtained. (author)

  8. Geometrical model of multiple production

    Chikovani, Z.E.; Jenkovszky, L.L.; Kvaratshelia, T.M.; Struminskij, B.V.

    1988-01-01

    The relation between geometrical and KNO-scaling and their violation is studied in a geometrical model of multiple production of hadrons. Predictions concerning the behaviour of correlation coefficients at future accelerators are given

  9. Geometric Computing for Freeform Architecture

    Wallner, J.; Pottmann, Helmut

    2011-01-01

    Geometric computing has recently found a new field of applications, namely the various geometric problems which lie at the heart of rationalization and construction-aware design processes of freeform architecture. We report on our work in this area

  10. Non-Markovian effect on the geometric phase of a dissipative qubit

    Chen Juanjuan; Tong Qingjun; An Junhong; Luo Honggang; Oh, C. H.

    2010-01-01

    We studied the geometric phase of a two-level atom coupled to an environment with Lorentzian spectral density. The non-Markovian effect on the geometric phase is explored analytically and numerically. In the weak coupling limit, the lowest order correction to the geometric phase is derived analytically and the general case is calculated numerically. It was found that the correction to the geometric phase is significantly large if the spectral width is small, and in this case the non-Markovian dynamics has a significant impact on the geometric phase. When the spectral width increases, the correction to the geometric phase becomes negligible, which shows the robustness of the geometric phase to the environmental white noises. The result is significant to the quantum information processing based on the geometric phase.

  11. Geometric Constructions with the Computer.

    Chuan, Jen-chung

    The computer can be used as a tool to represent and communicate geometric knowledge. With the appropriate software, a geometric diagram can be manipulated through a series of animation that offers more than one particular snapshot as shown in a traditional mathematical text. Geometric constructions with the computer enable the learner to see and…

  12. FY05 LDRD Final Report A Computational Design Tool for Microdevices and Components in Pathogen Detection Systems

    Trebotich, D

    2006-02-07

    We have developed new algorithms to model complex biological flows in integrated biodetection microdevice components. The proposed work is important because the design strategy for the next-generation Autonomous Pathogen Detection System at LLNL is the microfluidic-based Biobriefcase, being developed under the Chemical and Biological Countermeasures Program in the Homeland Security Organization. This miniaturization strategy introduces a new flow regime to systems where biological flow is already complex and not well understood. Also, design and fabrication of MEMS devices is time-consuming and costly due to the current trial-and-error approach. Furthermore, existing devices, in general, are not optimized. There are several MEMS CAD capabilities currently available, but their computational fluid dynamics modeling capabilities are rudimentary at best. Therefore, we proposed a collaboration to develop computational tools at LLNL which will (1) provide critical understanding of the fundamental flow physics involved in bioMEMS devices, (2) shorten the design and fabrication process, and thus reduce costs, (3) optimize current prototypes and (4) provide a prediction capability for the design of new, more advanced microfluidic systems. Computational expertise was provided by Comp-CASC and UC Davis-DAS. The simulation work was supported by key experiments for guidance and validation at UC Berkeley-BioE.

  13. An integrated field-effect microdevice for monitoring membrane transport in Xenopus laevis oocytes via lateral proton diffusion.

    Daniel Felix Schaffhauser

    Full Text Available An integrated microdevice for measuring proton-dependent membrane activity at the surface of Xenopus laevis oocytes is presented. By establishing a stable contact between the oocyte vitelline membrane and an ion-sensitive field-effect (ISFET sensor inside a microperfusion channel, changes in surface pH that are hypothesized to result from facilitated proton lateral diffusion along the membrane were detected. The solute diffusion barrier created between the sensor and the active membrane area allowed detection of surface proton concentration free from interference of solutes in bulk solution. The proposed sensor mechanism was verified by heterologously expressing membrane transport proteins and recording changes in surface pH during application of the specific substrates. Experiments conducted on two families of phosphate-sodium cotransporters (SLC20 & SLC34 demonstrated that it is possible to detect phosphate transport for both electrogenic and electroneutral isoforms and distinguish between transport of different phosphate species. Furthermore, the transport activity of the proton/amino acid cotransporter PAT1 assayed using conventional whole cell electrophysiology correlated well with changes in surface pH, confirming the ability of the system to detect activity proportional to expression level.

  14. Geometric Algebra Computing

    Corrochano, Eduardo Bayro

    2010-01-01

    This book presents contributions from a global selection of experts in the field. This useful text offers new insights and solutions for the development of theorems, algorithms and advanced methods for real-time applications across a range of disciplines. Written in an accessible style, the discussion of all applications is enhanced by the inclusion of numerous examples, figures and experimental analysis. Features: provides a thorough discussion of several tasks for image processing, pattern recognition, computer vision, robotics and computer graphics using the geometric algebra framework; int

  15. Geometric multipartite entanglement measures

    Paz-Silva, Gerardo A.; Reina, John H.

    2007-01-01

    Within the framework of constructions for quantifying entanglement, we build a natural scenario for the assembly of multipartite entanglement measures based on Hopf bundle-like mappings obtained through Clifford algebra representations. Then, given the non-factorizability of an arbitrary two-qubit density matrix, we give an alternate quantity that allows the construction of two types of entanglement measures based on their arithmetical and geometrical averages over all pairs of qubits in a register of size N, and thus fully characterize its degree and type of entanglement. We find that such an arithmetical average is both additive and strongly super additive

  16. Geometric correlations and multifractals

    Amritkar, R.E.

    1991-07-01

    There are many situations where the usual statistical methods are not adequate to characterize correlations in the system. To characterize such situations we introduce mutual correlation dimensions which describe geometric correlations in the system. These dimensions allow us to distinguish between variables which are perfectly correlated with or without a phase lag, variables which are uncorrelated and variables which are partially correlated. We demonstrate the utility of our formalism by considering two examples from dynamical systems. The first example is about the loss of memory in chaotic signals and describes auto-correlations while the second example is about synchronization of chaotic signals and describes cross-correlations. (author). 19 refs, 6 figs

  17. Quantum trajectory approach to the geometric phase: open bipartite systems

    Yi, X X; Liu, D P; Wang, W

    2005-01-01

    Through the quantum trajectory approach, we calculate the geometric phase acquired by a bipartite system subjected to decoherence. The subsystems that compose the bipartite system interact with each other and then are entangled in the evolution. The geometric phase due to the quantum jump for both the bipartite system and its subsystems is calculated and analysed. As an example, we present two coupled spin-1/2 particles to detail the calculations

  18. Observation of the geometric phase using photon echoes

    Tian, Mingzhen; Reibel, Randy R.; Barber, Zeb W.; Fischer, Joe A.; Babbitt, Wm. Randall

    2003-01-01

    The geometric phase of an atomic system has been observed in V-type three-level barium atoms using photon echoes. The geometric phase results from a cyclic evolution of a two-level subsystem driven by a laser pulse. The phase change is observed on the echo field produced on a different subsystem that is coupled via the ground state to the driven subsystem. The measured geometric phase was half of the solid angle subtended by the Bloch vector along the driven evolution circuit. This evolution has the potential to form universal operations of quantum bits

  19. Fast geometric algorithms

    Noga, M.T.

    1984-01-01

    This thesis addresses a number of important problems that fall within the framework of the new discipline of Computational Geometry. The list of topics covered includes sorting and selection, convex hull algorithms, the L 1 hull, determination of the minimum encasing rectangle of a set of points, the Euclidean and L 1 diameter of a set of points, the metric traveling salesman problem, and finding the superrange of star-shaped and monotype polygons. The main theme of all the work was to develop a set of very fast state-of-the-art algorithms that supersede any rivals in terms of speed and ease of implementation. In some cases existing algorithms were refined; for others new techniques were developed that add to the present database of fast adaptive geometric algorithms. What emerges is a collection of techniques that is successful at merging modern tools developed in analysis of algorithms with those of classical geometry

  20. Geometrization of quantum physics

    Ol'khov, O.A.

    2009-01-01

    It is shown that the Dirac equation for a free particle can be considered as a description of specific distortion of the space Euclidean geometry (space topological defect). This approach is based on the possibility of interpretation of the wave function as vector realizing representation of the fundamental group of the closed topological space-time 4-manifold. Mass and spin appear to be topological invariants. Such a concept explains all so-called 'strange' properties of quantum formalism: probabilities, wave-particle duality, nonlocal instantaneous correlation between noninteracting particles (EPR-paradox) and so on. Acceptance of the suggested geometrical concept means rejection of atomistic concept where all matter is considered as consisting of more and more small elementary particles. There are no any particles a priory, before measurement: the notions of particles appear as a result of classical interpretation of the contact of the region of the curved space with a device

  1. Geometrization of quantum physics

    Ol'Khov, O. A.

    2009-12-01

    It is shown that the Dirac equation for free particle can be considered as a description of specific distortion of the space euclidean geometry (space topological defect). This approach is based on possibility of interpretation of the wave function as vector realizing representation of the fundamental group of the closed topological space-time 4-manifold. Mass and spin appear to be topological invariants. Such concept explains all so called “strange” properties of quantum formalism: probabilities, wave-particle duality, nonlocal instantaneous correlation between noninteracting particles (EPR-paradox) and so on. Acceptance of suggested geometrical concept means rejection of atomistic concept where all matter is considered as consisting of more and more small elementary particles. There is no any particles a priori, before measurement: the notions of particles appear as a result of classical interpretation of the contact of the region of the curved space with a device.

  2. Geometrical Image Transforms

    Havelka, Jan

    2008-01-01

    Tato diplomová práce se zabývá akcelerací geometrických transformací obrazu s využitím GPU a architektury NVIDIA (R) CUDA TM. Časově kritické části kódu jsou přesunuty na GPU a vykonány paralelně. Jedním z výsledků je demonstrační aplikace pro porovnání výkonnosti obou architektur: CPU, a GPU v kombinaci s CPU. Pro referenční implementaci jsou použity vysoce optimalizované algoritmy z knihovny OpenCV, od firmy Intel. This master's thesis deals with acceleration of geometrical image transfo...

  3. Macrodesign for microdevices: Polysilicon surface-micromachining technology, applications and issues

    Sniegowski, J.J. [Sandia National Labs., Albuquerque, NM (United States). Intelligent Micromachine Dept.

    1997-05-01

    The intent of this tutorial is to overview the technology of multi-level polysilicon surface micromachining, to present examples of devices which fully utilize this level of complexity, and to discuss what they believe to be significant issues which are not fully resolved. Following this intent, the tutorial consists of four sections. The first is an introduction and description of multi-level polysilicon surface micromachining and its potential benefits. Specifically, the inclusion of a third deposited layer of mechanical polysilicon greatly extends the degree of complexity available for micromechanism design. The second section introduces wafer planarization by CMP as a process tool for surface micromachining. The third section presents examples of actuated geared micromechanisms which require the multi-level fabrication process. Demonstration of actuation mechanisms coupled to external devices are illustrated. Finally, polysilicon surface micromachining fabrication technology has reached a level where many device designs, for the most part, can be embodied in the technology to produce a mechanical construct which provides the desired function. When designed properly, the fabricated mechanical element, if free to operate, will produce the desired function. However, one set of issues which can hinder or prevent operation are related to the post-fabricated device surfaces. These surface issues; namely, stiction, friction, and wear, are emphasized in the final section as a major hindrance to realizing the full potential of surface micromachined devices.

  4. Thermally robust and biomolecule-friendly room-temperature bonding for the fabrication of elastomer-plastic hybrid microdevices.

    Nguyen, T P O; Tran, B M; Lee, N Y

    2016-08-16

    Here, we introduce a simple and fast method for bonding a poly(dimethylsiloxane) (PDMS) silicone elastomer to different plastics. In this technique, surface modification and subsequent bonding processes are performed at room temperature. Furthermore, only one chemical is needed, and no surface oxidation step is necessary prior to bonding. This bonding method is particularly suitable for encapsulating biomolecules that are sensitive to external stimuli, such as heat or plasma treatment, and for embedding fracturable materials prior to the bonding step. Microchannel-fabricated PDMS was first oxidized by plasma treatment and reacted with aminosilane by forming strong siloxane bonds (Si-O-Si) at room temperature. Without the surface oxidation of the amine-terminated PDMS and plastic, the two heterogeneous substrates were brought into intimate physical contact and left at room temperature. Subsequently, aminolysis occurred, leading to the generation of a permanent seal via the formation of robust urethane bonds after only 5 min of assembling. Using this method, large-area (10 × 10 cm) bonding was successfully realized. The surface was characterized by contact angle measurements and X-ray photoelectron spectroscopy (XPS) analyses, and the bonding strength was analyzed by performing peel, delamination, leak, and burst tests. The bond strength of the PDMS-polycarbonate (PC) assembly was approximately 409 ± 6.6 kPa, and the assembly withstood the injection of a tremendous amount of liquid with the per-minute injection volume exceeding 2000 times its total internal volume. The thermal stability of the bonded microdevice was confirmed by performing a chamber-type multiplex polymerase chain reaction (PCR) of two major foodborne pathogens - Escherichia coli O157:H7 and Salmonella typhimurium - and assessing the possibility for on-site direct detection of PCR amplicons. This bonding method demonstrated high potential for the stable construction of closed microfluidic systems

  5. Coupling between chip based isotachophoresis and multi-collector inductively coupled plasma mass spectrometry for separation and measurement of lanthanides

    Vio, Laurent; Cretier, Gerard; Rocca, Jean-Louis; Chartier, Frederic; Geertsen, Valerie; Gourgiotis, Alkiviadis; Isnard, Helene; Morin, Pierre

    2012-01-01

    This paper presents the conception and fabrication of a micro-system for lanthanides separation and its coupling with a multi-collector inductively coupled plasma mass spectrometer for isotope ratio measurements. The lanthanides separation is based on the isotachophoresis technique and the micro-system conception has been adapted in order to fit with glove box limitations in view of future spent nuclear fuels analysis. The micro-device was tested by using a mixture of standard solutions of natural elements and the separation of 13 lanthanides was successfully performed. The micro-device was then coupled to a multi-collector inductively coupled plasma mass spectrometer for the on-line measurements of Nd and Sm isotope ratios. The isotopes of Nd and Sm were acquired online in multi-collection mode after separation of the two elements with an injection amount of 5 ng. Results obtained on the Nd and Sm isotope ratio measurements on transient signals are presented and discussed. (authors)

  6. A centrifugal direct recombinase polymerase amplification (direct-RPA) microdevice for multiplex and real-time identification of food poisoning bacteria.

    Choi, Goro; Jung, Jae Hwan; Park, Byung Hyun; Oh, Seung Jun; Seo, Ji Hyun; Choi, Jong Seob; Kim, Do Hyun; Seo, Tae Seok

    2016-06-21

    In this study, we developed a centrifugal direct recombinase polymerase amplification (direct-RPA) microdevice for multiplex and real-time identification of food poisoning bacteria contaminated milk samples. The microdevice was designed to contain identical triplicate functional units and each unit has four reaction chambers, thereby making it possible to perform twelve direct-RPA reactions simultaneously. The integrated microdevice consisted of two layers: RPA reagents were injected in the top layer, while spiked milk samples with food poisoning bacteria were loaded into sample reservoirs in the bottom layer. For multiplex bacterial detection, the target gene-specific primers and probes were dried in each reaction chamber. The introduced samples and reagents could be equally aliquoted and dispensed into each reaction chamber by centrifugal force, and then the multiplex direct-RPA reaction was executed. The target genes of bacteria spiked in milk could be amplified at 39 °C without a DNA extraction step by using the direct-RPA cocktails, which were a combination of a direct PCR buffer and RPA enzymes. As the target gene amplification proceeded, the increased fluorescence signals coming from the reaction chambers were recorded in real-time at an interval of 2 min. The entire process, including the sample distribution, the direct-RPA reaction, and the real-time analysis, was accomplished with a custom-made portable genetic analyzer and a miniaturized optical detector. Monoplex, duplex, and triplex food poisoning bacteria (Salmonella enterica, Escherichia coli O157:H7, and Vibrio parahaemolyticus) detection was successfully performed with a detection sensitivity of 4 cells per 3.2 μL of milk samples within 30 min. By implementing the direct-PRA on the miniaturized centrifugal microsystem, the on-site food poisoning bacteria analysis would be feasible with high speed, sensitivity, and multiplicity.

  7. Harmonic and geometric analysis

    Citti, Giovanna; Pérez, Carlos; Sarti, Alessandro; Zhong, Xiao

    2015-01-01

    This book presents an expanded version of four series of lectures delivered by the authors at the CRM. Harmonic analysis, understood in a broad sense, has a very wide interplay with partial differential equations and in particular with the theory of quasiconformal mappings and its applications. Some areas in which real analysis has been extremely influential are PDE's and geometric analysis. Their foundations and subsequent developments made extensive use of the Calderón–Zygmund theory, especially the Lp inequalities for Calderón–Zygmund operators (Beurling transform and Riesz transform, among others) and the theory of Muckenhoupt weights.  The first chapter is an application of harmonic analysis and the Heisenberg group to understanding human vision, while the second and third chapters cover some of the main topics on linear and multilinear harmonic analysis. The last serves as a comprehensive introduction to a deep result from De Giorgi, Moser and Nash on the regularity of elliptic partial differen...

  8. Regular Polygons and Geometric Series.

    Jarrett, Joscelyn A.

    1982-01-01

    Examples of some geometric illustrations of limits are presented. It is believed the limit concept is among the most important topics in mathematics, yet many students do not have good intuitive feelings for the concept, since it is often taught very abstractly. Geometric examples are suggested as meaningful tools. (MP)

  9. Geometric Invariants and Object Recognition.

    1992-08-01

    University of Chicago Press. Maybank , S.J. [1992], "The Projection of Two Non-coplanar Conics", in Geometric Invariance in Machine Vision, eds. J.L...J.L. Mundy and A. Zisserman, MIT Press, Cambridge, MA. Mundy, J.L., Kapur, .. , Maybank , S.J., and Quan, L. [1992a] "Geometric Inter- pretation of

  10. Transmuted Complementary Weibull Geometric Distribution

    Ahmed Z. A…fify

    2014-12-01

    Full Text Available This paper provides a new generalization of the complementary Weibull geometric distribution that introduced by Tojeiro et al. (2014, using the quadratic rank transmutation map studied by Shaw and Buckley (2007. The new distribution is referred to as transmuted complementary Weibull geometric distribution (TCWGD. The TCWG distribution includes as special cases the complementary Weibull geometric distribution (CWGD, complementary exponential geometric distribution(CEGD,Weibull distribution (WD and exponential distribution (ED. Various structural properties of the new distribution including moments, quantiles, moment generating function and RØnyi entropy of the subject distribution are derived. We proposed the method of maximum likelihood for estimating the model parameters and obtain the observed information matrix. A real data set are used to compare the ‡exibility of the transmuted version versus the complementary Weibull geometric distribution.

  11. Rapid, High-Throughput, and Direct Molecular Beacon Delivery to Human Cancer Cells Using a Nanowire-Incorporated and Pneumatic Pressure-Driven Microdevice.

    Kim, Kyung Hoon; Kim, Jung; Choi, Jong Seob; Bae, Sunwoong; Kwon, Donguk; Park, Inkyu; Kim, Do Hyun; Seo, Tae Seok

    2015-12-01

    Tracking and monitoring the intracellular behavior of mRNA is of paramount importance for understanding real-time gene expression in cell biology. To detect specific mRNA sequences, molecular beacons (MBs) have been widely employed as sensing probes. Although numerous strategies for MB delivery into the target cells have been reported, many issues such as the cytotoxicity of the carriers, dependence on the random probability of MB transfer, and critical cellular damage still need to be overcome. Herein, we have developed a nanowire-incorporated and pneumatic pressure-driven microdevice for rapid, high-throughput, and direct MB delivery to human breast cancer MCF-7 cells to monitor survivin mRNA expression. The proposed microdevice is composed of three layers: a pump-associated glass manifold layer, a monolithic polydimethylsiloxane (PDMS) membrane, and a ZnO nanowire-patterned microchannel layer. The MB is immobilized on the ZnO nanowires by disulfide bonding, and the glass manifold and PDMS membrane serve as a microvalve, so that the cellular attachment and detachment on the MB-coated nanowire array can be manipulated. The combination of the nanowire-mediated MB delivery and the microvalve function enable the transfer of MB into the cells in a controllable way with high cell viability and to detect survivin mRNA expression quantitatively after docetaxel treatment. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Corrosion study of iron-cobalt alloys for MRI-based propulsion embedded in untethered microdevices operating in the vascular network.

    Pouponneau, Pierre; Savadogo, Oumarou; Napporn, Teko; Yahia, L'hocine; Martel, Sylvain

    2010-04-01

    Our group have shown in an experiment performed in the carotid artery of a living swine that magnetic gradients generated by a clinical magnetic resonance imaging (MRI) system could propel and navigate untethered medical microdevices and micro-nanorobots in the human vasculature. The main problem with these devices is that the metal necessary for magnetic propulsion may corrode and induce cytotoxic effects. The challenge, then, is to find an alloy with low corrosion yet providing an adequate magnetization level for propulsion in often stringent physiological conditions. Because of their high magnetization, we studied the corrosion behavior of two iron-cobalt alloys, Permendur (49% Fe, 49% Co, 2% V) and Vacoflux 17 (81% Fe, 17% Co, 2% Cr), in physiological solution by potentiodynamic polarization assay, surface analysis, and corrosion electrolyte analysis. Both alloys exhibited low corrosion parameters such as a corrosion potential (E(corr)) of -0.57 V/SCE and E(corr) of -0.42 V/SCE for Vacoflux 17. The surface of Permendur samples was homogenously degraded. Vacoflux 17 surface was impaired by cracks and crevices. Both alloys had a stoichiometric dissolution in the electrolyte, and they released enough cobalt to induce cytotoxic effects. This study concluded that Fe-Co alloys could be used preferably in medical microdevices if they were coated so as not to come in contact with physiological solutions.

  13. Geometric inequalities for black holes

    Dain, Sergio

    2013-01-01

    Full text: A geometric inequality in General Relativity relates quantities that have both a physical interpretation and a geometrical definition. It is well known that the parameters that characterize the Kerr-Newman black hole satisfy several important geometric inequalities. Remarkably enough, some of these inequalities also hold for dynamical black holes. This kind of inequalities, which are valid in the dynamical and strong field regime, play an important role in the characterization of the gravitational collapse. They are closed related with the cosmic censorship conjecture. In this talk I will review recent results in this subject. (author)

  14. Geometric Computing for Freeform Architecture

    Wallner, J.

    2011-06-03

    Geometric computing has recently found a new field of applications, namely the various geometric problems which lie at the heart of rationalization and construction-aware design processes of freeform architecture. We report on our work in this area, dealing with meshes with planar faces and meshes which allow multilayer constructions (which is related to discrete surfaces and their curvatures), triangles meshes with circle-packing properties (which is related to conformal uniformization), and with the paneling problem. We emphasize the combination of numerical optimization and geometric knowledge.

  15. Optical traps with geometric aberrations

    Roichman, Yael; Waldron, Alex; Gardel, Emily; Grier, David G.

    2006-01-01

    We assess the influence of geometric aberrations on the in-plane performance of optical traps by studying the dynamics of trapped colloidal spheres in deliberately distorted holographic optical tweezers. The lateral stiffness of the traps turns out to be insensitive to moderate amounts of coma, astigmatism, and spherical aberration. Moreover holographic aberration correction enables us to compensate inherent shortcomings in the optical train, thereby adaptively improving its performance. We also demonstrate the effects of geometric aberrations on the intensity profiles of optical vortices, whose readily measured deformations suggest a method for rapidly estimating and correcting geometric aberrations in holographic trapping systems

  16. Geometric inequalities for black holes

    Dain, Sergio [Universidad Nacional de Cordoba (Argentina)

    2013-07-01

    Full text: A geometric inequality in General Relativity relates quantities that have both a physical interpretation and a geometrical definition. It is well known that the parameters that characterize the Kerr-Newman black hole satisfy several important geometric inequalities. Remarkably enough, some of these inequalities also hold for dynamical black holes. This kind of inequalities, which are valid in the dynamical and strong field regime, play an important role in the characterization of the gravitational collapse. They are closed related with the cosmic censorship conjecture. In this talk I will review recent results in this subject. (author)

  17. An extended geometric criterion for chaos in the Dicke model

    Li Jiangdan; Zhang Suying

    2010-01-01

    We extend HBLSL's (Horwitz, Ben Zion, Lewkowicz, Schiffer and Levitan) new Riemannian geometric criterion for chaotic motion to Hamiltonian systems of weak coupling of potential and momenta by defining the 'mean unstable ratio'. We discuss the Dicke model of an unstable Hamiltonian system in detail and show that our results are in good agreement with that of the computation of Lyapunov characteristic exponents.

  18. Do Lumped-Parameter Models Provide the Correct Geometrical Damping?

    Andersen, Lars

    response during excitation and the geometrical damping related to free vibrations of a hexagonal footing. The optimal order of a lumped-parameter model is determined for each degree of freedom, i.e. horizontal and vertical translation as well as torsion and rocking. In particular, the necessity of coupling...... between horizontal sliding and rocking is discussed....

  19. Geometric influences of a particle confined to a curved surface embedded in three-dimensional Euclidean space

    Wang, Yong-Long; Jiang, Hua; Zong, Hong-Shi

    2017-08-01

    In the spirit of the thin-layer quantization approach, we give the formula of the geometric influences of a particle confined to a curved surface embedded in three-dimensional Euclidean space. The geometric contributions can result from the reduced commutation relation between the acted function depending on normal variable and the normal derivative. According to the formula, we obtain the geometric potential, geometric momentum, geometric orbital angular momentum, geometric linear Rashba, and cubic Dresselhaus spin-orbit couplings. As an example, a truncated cone surface is considered. We find that the geometric orbital angular momentum can provide an azimuthal polarization for spin, and the sign of the geometric Dresselhaus spin-orbit coupling can be flipped through the inclination angle of generatrix.

  20. Discrete geometric structures for architecture

    Pottmann, Helmut

    2010-01-01

    . The talk will provide an overview of recent progress in this field, with a particular focus on discrete geometric structures. Most of these result from practical requirements on segmenting a freeform shape into planar panels and on the physical realization

  1. Geometric Rationalization for Freeform Architecture

    Jiang, Caigui

    2016-01-01

    The emergence of freeform architecture provides interesting geometric challenges with regards to the design and manufacturing of large-scale structures. To design these architectural structures, we have to consider two types of constraints. First

  2. Geometrical optics in general relativity

    Loinger, A.

    2006-01-01

    General relativity includes geometrical optics. This basic fact has relevant consequences that concern the physical meaning of the discontinuity surfaces propagated in the gravitational field - as it was first emphasized by Levi-Civita.

  3. Mobile Watermarking against Geometrical Distortions

    Jing Zhang

    2015-08-01

    Full Text Available Mobile watermarking robust to geometrical distortions is still a great challenge. In mobile watermarking, efficient computation is necessary because mobile devices have very limited resources due to power consumption. In this paper, we propose a low-complexity geometrically resilient watermarking approach based on the optimal tradeoff circular harmonic function (OTCHF correlation filter and the minimum average correlation energy Mellin radial harmonic (MACE-MRH correlation filter. By the rotation, translation and scale tolerance properties of the two kinds of filter, the proposed watermark detector can be robust to geometrical attacks. The embedded watermark is weighted by a perceptual mask which matches very well with the properties of the human visual system. Before correlation, a whitening process is utilized to improve watermark detection reliability. Experimental results demonstrate that the proposed watermarking approach is computationally efficient and robust to geometrical distortions.

  4. Geometric inequalities methods of proving

    Sedrakyan, Hayk

    2017-01-01

    This unique collection of new and classical problems provides full coverage of geometric inequalities. Many of the 1,000 exercises are presented with detailed author-prepared-solutions, developing creativity and an arsenal of new approaches for solving mathematical problems. This book can serve teachers, high-school students, and mathematical competitors. It may also be used as supplemental reading, providing readers with new and classical methods for proving geometric inequalities. .

  5. Geometric Mixing, Peristalsis, and the Geometric Phase of the Stomach.

    Arrieta, Jorge; Cartwright, Julyan H E; Gouillart, Emmanuelle; Piro, Nicolas; Piro, Oreste; Tuval, Idan

    2015-01-01

    Mixing fluid in a container at low Reynolds number--in an inertialess environment--is not a trivial task. Reciprocating motions merely lead to cycles of mixing and unmixing, so continuous rotation, as used in many technological applications, would appear to be necessary. However, there is another solution: movement of the walls in a cyclical fashion to introduce a geometric phase. We show using journal-bearing flow as a model that such geometric mixing is a general tool for using deformable boundaries that return to the same position to mix fluid at low Reynolds number. We then simulate a biological example: we show that mixing in the stomach functions because of the "belly phase," peristaltic movement of the walls in a cyclical fashion introduces a geometric phase that avoids unmixing.

  6. Geometric Mixing, Peristalsis, and the Geometric Phase of the Stomach.

    Jorge Arrieta

    Full Text Available Mixing fluid in a container at low Reynolds number--in an inertialess environment--is not a trivial task. Reciprocating motions merely lead to cycles of mixing and unmixing, so continuous rotation, as used in many technological applications, would appear to be necessary. However, there is another solution: movement of the walls in a cyclical fashion to introduce a geometric phase. We show using journal-bearing flow as a model that such geometric mixing is a general tool for using deformable boundaries that return to the same position to mix fluid at low Reynolds number. We then simulate a biological example: we show that mixing in the stomach functions because of the "belly phase," peristaltic movement of the walls in a cyclical fashion introduces a geometric phase that avoids unmixing.

  7. Geometric group theory an introduction

    Löh, Clara

    2017-01-01

    Inspired by classical geometry, geometric group theory has in turn provided a variety of applications to geometry, topology, group theory, number theory and graph theory. This carefully written textbook provides a rigorous introduction to this rapidly evolving field whose methods have proven to be powerful tools in neighbouring fields such as geometric topology. Geometric group theory is the study of finitely generated groups via the geometry of their associated Cayley graphs. It turns out that the essence of the geometry of such groups is captured in the key notion of quasi-isometry, a large-scale version of isometry whose invariants include growth types, curvature conditions, boundary constructions, and amenability. This book covers the foundations of quasi-geometry of groups at an advanced undergraduate level. The subject is illustrated by many elementary examples, outlooks on applications, as well as an extensive collection of exercises.

  8. Geometric procedures for civil engineers

    Tonias, Elias C

    2016-01-01

    This book provides a multitude of geometric constructions usually encountered in civil engineering and surveying practice.  A detailed geometric solution is provided to each construction as well as a step-by-step set of programming instructions for incorporation into a computing system. The volume is comprised of 12 chapters and appendices that may be grouped in three major parts: the first is intended for those who love geometry for its own sake and its evolution through the ages, in general, and, more specifically, with the introduction of the computer. The second section addresses geometric features used in the book and provides support procedures used by the constructions presented. The remaining chapters and the appendices contain the various constructions. The volume is ideal for engineering practitioners in civil and construction engineering and allied areas.

  9. The Effect of Bulk Tachyon Field on the Dynamics of Geometrical Tachyon

    Papantonopoulos, Eleftherios; Pappa, Ioanna; Zamarias, Vassilios

    2007-01-01

    We study the dynamics of the geometrical tachyon field on an unstable D3-brane in the background of a bulk tachyon field of a D3-brane solution of Type-0 string theory. We find that the geometrical tachyon potential is modified by a function of the bulk tachyon and inflation occurs at weak string coupling, where the bulk tachyon condenses, near the top of the geometrical tachyon potential. We also find a late accelerating phase when the bulk tachyon asymptotes to zero and the geometrical tachyon field reaches the minimum of the potential

  10. An introduction to geometrical physics

    Aldrovandi, R

    1995-01-01

    This book stresses the unifying power of the geometrical framework in bringing together concepts from the different areas of physics. Common underpinnings of optics, elasticity, gravitation, relativistic fields, particle mechanics and other subjects are underlined. It attempts to extricate the notion of space currently in the physical literature from the metric connotation.The book's goal is to present mathematical ideas associated with geometrical physics in a rather introductory language. Included are many examples from elementary physics and also, for those wishing to reach a higher level o

  11. Geometric scaling as traveling waves

    Munier, S.; Peschanski, R.

    2003-01-01

    We show the relevance of the nonlinear Fisher and Kolmogorov-Petrovsky-Piscounov (KPP) equation to the problem of high energy evolution of the QCD amplitudes. We explain how the traveling wave solutions of this equation are related to geometric scaling, a phenomenon observed in deep-inelastic scattering experiments. Geometric scaling is for the first time shown to result from an exact solution of nonlinear QCD evolution equations. Using general results on the KPP equation, we compute the velocity of the wave front, which gives the full high energy dependence of the saturation scale

  12. Asymptotic geometric analysis, part I

    Artstein-Avidan, Shiri

    2015-01-01

    The authors present the theory of asymptotic geometric analysis, a field which lies on the border between geometry and functional analysis. In this field, isometric problems that are typical for geometry in low dimensions are substituted by an "isomorphic" point of view, and an asymptotic approach (as dimension tends to infinity) is introduced. Geometry and analysis meet here in a non-trivial way. Basic examples of geometric inequalities in isomorphic form which are encountered in the book are the "isomorphic isoperimetric inequalities" which led to the discovery of the "concentration phenomen

  13. Geometric integration for particle accelerators

    Forest, Etienne

    2006-01-01

    This paper is a very personal view of the field of geometric integration in accelerator physics-a field where often work of the highest quality is buried in lost technical notes or even not published; one has only to think of Simon van der Meer Nobel prize work on stochastic cooling-unpublished in any refereed journal. So I reconstructed the relevant history of geometrical integration in accelerator physics as much as I could by talking to collaborators and using my own understanding of the field. The reader should not be too surprised if this account is somewhere between history, science and perhaps even fiction

  14. Geometrical spin symmetry and spin

    Pestov, I. B.

    2011-01-01

    Unification of General Theory of Relativity and Quantum Mechanics leads to General Quantum Mechanics which includes into itself spindynamics as a theory of spin phenomena. The key concepts of spindynamics are geometrical spin symmetry and the spin field (space of defining representation of spin symmetry). The essence of spin is the bipolar structure of geometrical spin symmetry induced by the gravitational potential. The bipolar structure provides a natural derivation of the equations of spindynamics. Spindynamics involves all phenomena connected with spin and provides new understanding of the strong interaction.

  15. Geometric integration for particle accelerators

    Forest, Étienne

    2006-05-01

    This paper is a very personal view of the field of geometric integration in accelerator physics—a field where often work of the highest quality is buried in lost technical notes or even not published; one has only to think of Simon van der Meer Nobel prize work on stochastic cooling—unpublished in any refereed journal. So I reconstructed the relevant history of geometrical integration in accelerator physics as much as I could by talking to collaborators and using my own understanding of the field. The reader should not be too surprised if this account is somewhere between history, science and perhaps even fiction.

  16. Lattice degeneracies of geometric fermions

    Raszillier, H.

    1983-05-01

    We give the minimal numbers of degrees of freedom carried by geometric fermions on all lattices of maximal symmetries in d = 2, 3, and 4 dimensions. These numbers are lattice dependent, but in the (free) continuum limit, part of the degrees of freedom have to escape to infinity by a Wilson mechanism built in, and 2sup(d) survive for any lattice. On self-reciprocal lattices we compare the minimal numbers of degrees of freedom of geometric fermions with the minimal numbers of naive fermions on these lattices and argue that these numbers are equal. (orig.)

  17. Geometrical effects in X-mode scattering

    Bretz, N.

    1986-10-01

    One technique to extend microwave scattering as a probe of long wavelength density fluctuations in magnetically confined plasmas is to consider the launching and scattering of extraordinary (X-mode) waves nearly perpendicular to the field. When the incident frequency is less than the electron cyclotron frequency, this mode can penetrate beyond the ordinary mode cutoff at the plasma frequency and avoid significant distortions from density gradients typical of tokamak plasmas. In the more familiar case, where the incident and scattered waves are ordinary, the scattering is isotropic perpendicular to the field. However, because the X-mode polarization depends on the frequency ratios and the ray angle to the magnetic field, the coupling between the incident and scattered waves is complicated. This geometrical form factor must be unfolded from the observed scattering in order to interpret the scattering due to density fluctuations alone. The geometrical factor is calculated here for the special case of scattering perpendicular to the magnetic field. For frequencies above the ordinary mode cutoff the scattering is relatively isotropic, while below cutoff there are minima in the forward and backward directions which go to zero at approximately half the ordinary mode cutoff density

  18. Geometric flows in Horava-Lifshitz gravity

    Bakas, Ioannis; Lust, Dieter; Petropoulos, Marios

    2010-01-01

    We consider instanton solutions of Euclidean Horava-Lifshitz gravity in four dimensions satisfying the detailed balance condition. They are described by geometric flows in three dimensions driven by certain combinations of the Cotton and Ricci tensors as well as the cosmological-constant term. The deformation curvature terms can have competing behavior leading to a variety of fixed points. The instantons interpolate between any two fixed points, which are vacua of topologically massive gravity with Lambda > 0, and their action is finite. Special emphasis is placed on configurations with SU(2) isometry associated with homogeneous but generally non-isotropic Bianchi IX model geometries. In this case, the combined Ricci-Cotton flow reduces to an autonomous system of ordinary differential equations whose properties are studied in detail for different couplings. The occurrence and stability of isotropic and anisotropic fixed points are investigated analytically and some exact solutions are obtained. The correspond...

  19. Height and Tilt Geometric Texture

    Andersen, Vedrana; Desbrun, Mathieu; Bærentzen, Jakob Andreas

    2009-01-01

    compromise between functionality and simplicity: it can efficiently handle and process geometric texture too complex to be represented as a height field, without having recourse to full blown mesh editing algorithms. The height-and-tilt representation proposed here is fully intrinsic to the mesh, making...

  20. In Defence of Geometrical Algebra

    Blasjo, V.N.E.

    The geometrical algebra hypothesis was once the received interpretation of Greek mathematics. In recent decades, however, it has become anathema to many. I give a critical review of all arguments against it and offer a consistent rebuttal case against the modern consensus. Consequently, I find that

  1. Geometric scaling in exclusive processes

    Munier, S.; Wallon, S.

    2003-01-01

    We show that according to the present understanding of the energy evolution of the observables measured in deep-inelastic scattering, the photon-proton scattering amplitude has to exhibit geometric scaling at each impact parameter. We suggest a way to test this experimentally at HERA. A qualitative analysis based on published data is presented and discussed. (orig.)

  2. Geometric quantization and general relativity

    Souriau, J.-M.

    1977-01-01

    The purpose of geometric quantization is to give a rigorous mathematical content to the 'correspondence principle' between classical and quantum mechanics. The main tools are borrowed on one hand from differential geometry and topology (differential manifolds, differential forms, fiber bundles, homology and cohomology, homotopy), on the other hand from analysis (functions of positive type, infinite dimensional group representations, pseudo-differential operators). Some satisfactory results have been obtained in the study of dynamical systems, but some fundamental questions are still waiting for an answer. The 'geometric quantization of fields', where some further well known difficulties arise, is still in a preliminary stage. In particular, the geometric quantization on the gravitational field is still a mere project. The situation is even more uncertain due to the fact that there is no experimental evidence of any quantum gravitational effect which could give us a hint towards what we are supposed to look for. The first level of both Quantum Theory, and General Relativity describes passive matter: influence by the field without being a source of it (first quantization and equivalence principle respectively). In both cases this is only an approximation (matter is always a source). But this approximation turns out to be the least uncertain part of the description, because on one hand the first quantization avoids the problems of renormalization and on the other hand the equivalence principle does not imply any choice of field equations (it is known that one can modify Einstein equations at short distances without changing their geometrical properties). (Auth.)

  3. Geometric origin of central charges

    Lukierski, J.; Rytel, L.

    1981-05-01

    The complete set of N(N-1) central charge generators for D=4 N-extended super Poincare algebra is obtained by suitable contraction of OSp (2N; 4) superalgebra. The superspace realizations of the spinorial generators with central charges are derived. The conjugate set of N(N-1) additional bosonic superspace coordinates is introduced in an unique and geometric way. (author)

  4. Vergence, Vision, and Geometric Optics

    Keating, Michael P.

    1975-01-01

    Provides a definition of vergence in terms of the curvature of the wave fronts, and gives examples to illustrate the advantages of this approach. The vergence treatment of geometrical optics provides both conceptual and algebraic advantages, particularly for the life science student, over the traditional object distance-image distance-focal length…

  5. Geometric phases and quantum computation

    Vedral, V.

    2005-01-01

    Full text: In my lectures I will talk about the notion of the geometric phase and explain its relevance for both fundamental quantum mechanics as well as quantum computation. The phase will be at first introduced via the idea of Pancharatnam which involves interference of three or more light beams. This notion will then be generalized to the evolving quantum systems. I will discuss both pure and mixed states as well as unitary and non-unitary evolutions. I will also show how the concept of the vacuum induced geometric phase arises in quantum optics. A simple measurement scheme involving a Mach Zehnder interferometer will be presented and will be used to illustrate all the concepts in the lecture. Finally, I will expose a simple generalization of the geometric phase to evolving degenerate states. This will be seen to lead to the possibility of universal quantum computation using geometric effects only. Moreover, this contains a promise of intrinsically fault tolerant quantum information processing, whose prospects will be outlined at the end of the lecture. (author)

  6. Cartan's geometrical structure of supergravity

    Baaklini, N.S.

    1977-06-01

    The geometrical partnership of the vierbein and the spin-3/2 field in the structure of the supergravity Lagrangian is emphasized. Both fields are introduced as component of the same matrix differential form. The only local symmetry of the theory is SL(2,C)

  7. Continuous-variable geometric phase and its manipulation for quantum computation in a superconducting circuit.

    Song, Chao; Zheng, Shi-Biao; Zhang, Pengfei; Xu, Kai; Zhang, Libo; Guo, Qiujiang; Liu, Wuxin; Xu, Da; Deng, Hui; Huang, Keqiang; Zheng, Dongning; Zhu, Xiaobo; Wang, H

    2017-10-20

    Geometric phase, associated with holonomy transformation in quantum state space, is an important quantum-mechanical effect. Besides fundamental interest, this effect has practical applications, among which geometric quantum computation is a paradigm, where quantum logic operations are realized through geometric phase manipulation that has some intrinsic noise-resilient advantages and may enable simplified implementation of multi-qubit gates compared to the dynamical approach. Here we report observation of a continuous-variable geometric phase and demonstrate a quantum gate protocol based on this phase in a superconducting circuit, where five qubits are controllably coupled to a resonator. Our geometric approach allows for one-step implementation of n-qubit controlled-phase gates, which represents a remarkable advantage compared to gate decomposition methods, where the number of required steps dramatically increases with n. Following this approach, we realize these gates with n up to 4, verifying the high efficiency of this geometric manipulation for quantum computation.

  8. Geometric Transformations in Engineering Geometry

    I. F. Borovikov

    2015-01-01

    Full Text Available Recently, for business purposes, in view of current trends and world experience in training engineers, research and faculty staff there has been a need to transform traditional courses of descriptive geometry into the course of engineering geometry in which the geometrical transformations have to become its main section. On the basis of critical analysis the paper gives suggestions to improve a presentation technique of this section both in the classroom and in academic literature, extend an application scope of geometrical transformations to solve the position and metric tasks and simulation of surfaces, as well as to design complex engineering configurations, which meet a number of pre-specified conditions.The article offers to make a number of considerable amendments to the terms and definitions used in the existing courses of descriptive geometry. It draws some conclusions and makes the appropriate proposals on feasibility of coordination in teaching the movement transformation in the courses of analytical and descriptive geometry. This will provide interdisciplinary team teaching and allow students to be convinced that a combination of analytical and graphic ways to solve geometric tasks is useful and reasonable.The traditional sections of learning courses need to be added with a theory of projective and bi-rational transformations. In terms of application simplicity and convenience it is enough to consider the central transformations when solving the applied tasks. These transformations contain a beam of sub-invariant (low-invariant straight lines on which the invariant curve induces non-involution and involution projectivities. The expediency of nonlinear transformations application is shown in the article by a specific example of geometric modeling of the interfacing surface "spar-blade".Implementation of these suggestions will contribute to a real transformation of a traditional course of descriptive geometry to the engineering geometry

  9. Destabilizing geometrical and bimaterial effects in frictional sliding

    Aldam, M.; Bar Sinai, Y.; Svetlizky, I.; Fineberg, J.; Brener, E.; Xu, S.; Ben-Zion, Y.; Bouchbinder, E.

    2017-12-01

    Asymmetry of the two blocks forming a fault plane, i.e. the lack of reflection symmetry with respect to the fault plane, either geometrical or material, gives rise to generic destabilizing effects associated with the elastodynamic coupling between slip and normal stress variations. While geometric asymmetry exists in various geophysical contexts, such as thrust faults and landslide systems, its effect on fault dynamics is often overlooked. In the first part of the talk, I will show that geometrical asymmetry alone can destabilize velocity-strengthening faults, which are otherwise stable. I will further show that geometrical asymmetry accounts for a significant weakening effect observed in rupture propagation and present laboratory data that support the theory. In the second part of the talk, I will focus on material asymmetry and discuss an unexpected property of the well-studied frictional bimaterial effect. I will show that while the bimaterial coupling between slip and normal stress variations is a monotonically increasing function of the bimaterial contrast, when it is coupled to interfacial shear stress perturbations through a friction law, various physical quantities exhibit a non-monotonic dependence on the bimaterial contrast. This non-monotonicity is demonstrated for the stability of steady-sliding and for unsteady rupture propagation in faults described by various friction laws (regularized Coulomb, slip-weakening, rate-and-state friction), using analytic and numerical tools. All in all, the importance of bulk asymmetry to interfacial fault dynamics is highlighted. [1] Michael Aldam, Yohai Bar-Sinai, Ilya Svetlizky, Efim A. Brener, Jay Fineberg, and Eran Bouchbinder. Frictional Sliding without Geometrical Reflection Symmetry. Phys. Rev. X, 6(4):041023, 2016. [2] Michael Aldam, Shiqing Xu, Efim A. Brener, Yehuda Ben-Zion, and Eran Bouchbinder. Non-monotonicity of the frictional bimaterial effect. arXiv:1707.01132, 2017.

  10. Control of the spin geometric phase in semiconductor quantum rings.

    Nagasawa, Fumiya; Frustaglia, Diego; Saarikoski, Henri; Richter, Klaus; Nitta, Junsaku

    2013-01-01

    Since the formulation of the geometric phase by Berry, its relevance has been demonstrated in a large variety of physical systems. However, a geometric phase of the most fundamental spin-1/2 system, the electron spin, has not been observed directly and controlled independently from dynamical phases. Here we report experimental evidence on the manipulation of an electron spin through a purely geometric effect in an InGaAs-based quantum ring with Rashba spin-orbit coupling. By applying an in-plane magnetic field, a phase shift of the Aharonov-Casher interference pattern towards the small spin-orbit-coupling regions is observed. A perturbation theory for a one-dimensional Rashba ring under small in-plane fields reveals that the phase shift originates exclusively from the modulation of a pure geometric-phase component of the electron spin beyond the adiabatic limit, independently from dynamical phases. The phase shift is well reproduced by implementing two independent approaches, that is, perturbation theory and non-perturbative transport simulations.

  11. Dual geometric-gauge field aspects of gravity

    Huei Peng; Wang, K.

    1992-01-01

    We propose that the geometric and standard gauge field aspects of gravity are equally essential for a complete description of gravity and can be reconciled. We show that this dualism of gravity resolves the dimensional Newtonian constant problem in both quantum gravity and unification schemes involving gravity (i.e., the Newtonian constant is no longer the coupling constant in the gauge aspect of gravity) and reveals the profound similarity between gravity and other fields. 23 refs., 3 tabs

  12. Approximate eigenvalue determination of geometrically frustrated magnetic molecules

    A.M. Läuchli

    2009-01-01

    Full Text Available Geometrically frustrated magnetic molecules have attracted a lot of interest in the field of molecular magnetism as well as frustrated Heisenberg antiferromagnets. In this article we demonstrate how an approximate diagonalization scheme can be used in order to obtain thermodynamic and spectroscopic information about frustrated magnetic molecules. To this end we theoretically investigate an antiferromagnetically coupled spin system with cuboctahedral structure modeled by an isotropic Heisenberg Hamiltonian.

  13. Highly dispersed Co0.5Zn0.5Fe2O4/polypyrrole nanocomposites for cost-effective, high-performance defluoridation using a magnetically controllable microdevice

    Wang, Gang; Shi, Guoying; Mu, Qinghui; Zhang, Qinghong; Wang, Hongzhi; Li, Yaogang

    2012-01-01

    Highlights: ► Highly dispersed CZFO/PPy nanocomposites are synthesized in microfluidic reactor. ► The as-synthesized nanocomposites behave as a high performance adsorbent. ► The magnetic microdevice has advantages over traditional methods for defluoridation. - Abstract: Highly dispersed Co 0.5 Zn 0.5 Fe 2 O 4 /polypyrrole (CZFO/PPy) nanocomposites with enhanced electromagnetic properties and large surface area were rapidly and controllably prepared using microfluidic reactors. A novel magnetically controllable microdevice using the new adsorbent in a highly dispersed form was assembled and used for fluoride adsorption. Compared with traditional adsorption methods, the device displayed high adsorption efficiency and capacity. The adsorbents were regenerated with no significant loss in defluoridation ability, which indicates that the device is a realistic and highly efficient alternative way of removing fluoride pollution at low cost.

  14. On chromatic and geometrical calibration

    Folm-Hansen, Jørgen

    1999-01-01

    The main subject of the present thesis is different methods for the geometrical and chromatic calibration of cameras in various environments. For the monochromatic issues of the calibration we present the acquisition of monochrome images, the classic monochrome aberrations and the various sources...... the correct interpolation method is described. For the chromatic issues of calibration we present the acquisition of colour and multi-spectral images, the chromatic aberrations and the various lens/camera based non-uniformities of the illumination of the image plane. It is described how the monochromatic...... to design calibration targets for both geometrical and chromatic calibration are described. We present some possible systematical errors on the detection of the objects in the calibration targets, if viewed in a non orthogonal angle, if the intensities are uneven or if the image blurring is uneven. Finally...

  15. Geometrical approach to tumor growth.

    Escudero, Carlos

    2006-08-01

    Tumor growth has a number of features in common with a physical process known as molecular beam epitaxy. Both growth processes are characterized by the constraint of growth development to the body border, and surface diffusion of cells and particles at the growing edge. However, tumor growth implies an approximate spherical symmetry that makes necessary a geometrical treatment of the growth equations. The basic model was introduced in a former paper [C. Escudero, Phys. Rev. E 73, 020902(R) (2006)], and in the present work we extend our analysis and try to shed light on the possible geometrical principles that drive tumor growth. We present two-dimensional models that reproduce the experimental observations, and analyze the unexplored three-dimensional case, for which interesting conclusions on tumor growth are derived.

  16. A geometrical interpretation of renormalisation group flow

    Dolan, B.P.

    1993-05-01

    The renormalisation group (RG) equation in D-dimensional Euclidean space, R D , is analysed from a geometrical point of view. A general form of the RG equation is derived which is applicable to composite operators as well tensor operators (on R D ) which may depend on the Euclidean metric. It is argued that physical N-point amplitudes should be interpreted as rank N co-variant tensors on the space of couplings, G, and that the RG equation can be viewed as an equation for Lie transport on G with respect to the vector field generated by the β-functions of the theory. In one sense it is nothing more than the definition of a Lie derivative. The source of the anomalous dimensions can be interpreted as being due to the change of the basis vectors on G under Lie transport. The RG equation acts as a bridge between Euclidean space and coupling constant space in that the effect on amplitudes of a diffeomorphism of R D (that of dilations) is completely equivalent to a diffeomorphism of G generated by the β-functions of the theory. A form of the RG equation for operators is also given. These ideas are developed in detail for the example of massive λΦ 4 theory in 4 dimensions. (orig.)

  17. Geometrical interpretation of optical absorption

    Monzon, J. J.; Barriuso, A. G.; Sanchez-Soto, L. L. [Departamento de Optica, Facultad de Fisica, Universidad Complutense, E-28040 Madrid (Spain); Montesinos-Amilibia, J. M. [Departamento de Geometria y Topologia, Facultad de Matematicas, Universidad Complutense, E-28040 Madrid (Spain)

    2011-08-15

    We reinterpret the transfer matrix for an absorbing system in very simple geometrical terms. In appropriate variables, the system appears as performing a Lorentz transformation in a (1 + 3)-dimensional space. Using homogeneous coordinates, we map that action on the unit sphere, which is at the realm of the Klein model of hyperbolic geometry. The effects of absorption appear then as a loxodromic transformation, that is, a rhumb line crossing all the meridians at the same angle.

  18. Parametric FEM for geometric biomembranes

    Bonito, Andrea; Nochetto, Ricardo H.; Sebastian Pauletti, M.

    2010-05-01

    We consider geometric biomembranes governed by an L2-gradient flow for bending energy subject to area and volume constraints (Helfrich model). We give a concise derivation of a novel vector formulation, based on shape differential calculus, and corresponding discretization via parametric FEM using quadratic isoparametric elements and a semi-implicit Euler method. We document the performance of the new parametric FEM with a number of simulations leading to dumbbell, red blood cell and toroidal equilibrium shapes while exhibiting large deformations.

  19. Geometrical methods in learning theory

    Burdet, G.; Combe, Ph.; Nencka, H.

    2001-01-01

    The methods of information theory provide natural approaches to learning algorithms in the case of stochastic formal neural networks. Most of the classical techniques are based on some extremization principle. A geometrical interpretation of the associated algorithms provides a powerful tool for understanding the learning process and its stability and offers a framework for discussing possible new learning rules. An illustration is given using sequential and parallel learning in the Boltzmann machine

  20. Geometrical approach to tumor growth

    Escudero, Carlos

    2006-01-01

    Tumor growth has a number of features in common with a physical process known as molecular beam epitaxy. Both growth processes are characterized by the constraint of growth development to the body border, and surface diffusion of cells/particles at the growing edge. However, tumor growth implies an approximate spherical symmetry that makes necessary a geometrical treatment of the growth equations. The basic model was introduced in a former article [C. Escudero, Phys. Rev. E 73, 020902(R) (200...

  1. Riemannian geometry and geometric analysis

    Jost, Jürgen

    2017-01-01

    This established reference work continues to provide its readers with a gateway to some of the most interesting developments in contemporary geometry. It offers insight into a wide range of topics, including fundamental concepts of Riemannian geometry, such as geodesics, connections and curvature; the basic models and tools of geometric analysis, such as harmonic functions, forms, mappings, eigenvalues, the Dirac operator and the heat flow method; as well as the most important variational principles of theoretical physics, such as Yang-Mills, Ginzburg-Landau or the nonlinear sigma model of quantum field theory. The present volume connects all these topics in a systematic geometric framework. At the same time, it equips the reader with the working tools of the field and enables her or him to delve into geometric research.  The 7th edition has been systematically reorganized and updated. Almost no page has been left unchanged. It also includes new material, for instance on symplectic geometry, as well as the B...

  2. Geometric mean for subspace selection.

    Tao, Dacheng; Li, Xuelong; Wu, Xindong; Maybank, Stephen J

    2009-02-01

    Subspace selection approaches are powerful tools in pattern classification and data visualization. One of the most important subspace approaches is the linear dimensionality reduction step in the Fisher's linear discriminant analysis (FLDA), which has been successfully employed in many fields such as biometrics, bioinformatics, and multimedia information management. However, the linear dimensionality reduction step in FLDA has a critical drawback: for a classification task with c classes, if the dimension of the projected subspace is strictly lower than c - 1, the projection to a subspace tends to merge those classes, which are close together in the original feature space. If separate classes are sampled from Gaussian distributions, all with identical covariance matrices, then the linear dimensionality reduction step in FLDA maximizes the mean value of the Kullback-Leibler (KL) divergences between different classes. Based on this viewpoint, the geometric mean for subspace selection is studied in this paper. Three criteria are analyzed: 1) maximization of the geometric mean of the KL divergences, 2) maximization of the geometric mean of the normalized KL divergences, and 3) the combination of 1 and 2. Preliminary experimental results based on synthetic data, UCI Machine Learning Repository, and handwriting digits show that the third criterion is a potential discriminative subspace selection method, which significantly reduces the class separation problem in comparing with the linear dimensionality reduction step in FLDA and its several representative extensions.

  3. Exact Solutions for Einstein's Hyperbolic Geometric Flow

    He Chunlei

    2008-01-01

    In this paper we investigate the Einstein's hyperbolic geometric flow and obtain some interesting exact solutions for this kind of flow. Many interesting properties of these exact solutions have also been analyzed and we believe that these properties of Einstein's hyperbolic geometric flow are very helpful to understanding the Einstein equations and the hyperbolic geometric flow

  4. Multiscale geometric modeling of macromolecules I: Cartesian representation

    Xia, Kelin; Feng, Xin; Chen, Zhan; Tong, Yiying; Wei, Guo-Wei

    2014-01-01

    This paper focuses on the geometric modeling and computational algorithm development of biomolecular structures from two data sources: Protein Data Bank (PDB) and Electron Microscopy Data Bank (EMDB) in the Eulerian (or Cartesian) representation. Molecular surface (MS) contains non-smooth geometric singularities, such as cusps, tips and self-intersecting facets, which often lead to computational instabilities in molecular simulations, and violate the physical principle of surface free energy minimization. Variational multiscale surface definitions are proposed based on geometric flows and solvation analysis of biomolecular systems. Our approach leads to geometric and potential driven Laplace-Beltrami flows for biomolecular surface evolution and formation. The resulting surfaces are free of geometric singularities and minimize the total free energy of the biomolecular system. High order partial differential equation (PDE)-based nonlinear filters are employed for EMDB data processing. We show the efficacy of this approach in feature-preserving noise reduction. After the construction of protein multiresolution surfaces, we explore the analysis and characterization of surface morphology by using a variety of curvature definitions. Apart from the classical Gaussian curvature and mean curvature, maximum curvature, minimum curvature, shape index, and curvedness are also applied to macromolecular surface analysis for the first time. Our curvature analysis is uniquely coupled to the analysis of electrostatic surface potential, which is a by-product of our variational multiscale solvation models. As an expository investigation, we particularly emphasize the numerical algorithms and computational protocols for practical applications of the above multiscale geometric models. Such information may otherwise be scattered over the vast literature on this topic. Based on the curvature and electrostatic analysis from our multiresolution surfaces, we introduce a new concept, the

  5. Multiscale geometric modeling of macromolecules I: Cartesian representation

    Xia, Kelin [Department of Mathematics, Michigan State University, MI 48824 (United States); Feng, Xin [Department of Computer Science and Engineering, Michigan State University, MI 48824 (United States); Chen, Zhan [Department of Mathematics, Michigan State University, MI 48824 (United States); Tong, Yiying [Department of Computer Science and Engineering, Michigan State University, MI 48824 (United States); Wei, Guo-Wei, E-mail: wei@math.msu.edu [Department of Mathematics, Michigan State University, MI 48824 (United States); Department of Biochemistry and Molecular Biology, Michigan State University, MI 48824 (United States)

    2014-01-15

    This paper focuses on the geometric modeling and computational algorithm development of biomolecular structures from two data sources: Protein Data Bank (PDB) and Electron Microscopy Data Bank (EMDB) in the Eulerian (or Cartesian) representation. Molecular surface (MS) contains non-smooth geometric singularities, such as cusps, tips and self-intersecting facets, which often lead to computational instabilities in molecular simulations, and violate the physical principle of surface free energy minimization. Variational multiscale surface definitions are proposed based on geometric flows and solvation analysis of biomolecular systems. Our approach leads to geometric and potential driven Laplace–Beltrami flows for biomolecular surface evolution and formation. The resulting surfaces are free of geometric singularities and minimize the total free energy of the biomolecular system. High order partial differential equation (PDE)-based nonlinear filters are employed for EMDB data processing. We show the efficacy of this approach in feature-preserving noise reduction. After the construction of protein multiresolution surfaces, we explore the analysis and characterization of surface morphology by using a variety of curvature definitions. Apart from the classical Gaussian curvature and mean curvature, maximum curvature, minimum curvature, shape index, and curvedness are also applied to macromolecular surface analysis for the first time. Our curvature analysis is uniquely coupled to the analysis of electrostatic surface potential, which is a by-product of our variational multiscale solvation models. As an expository investigation, we particularly emphasize the numerical algorithms and computational protocols for practical applications of the above multiscale geometric models. Such information may otherwise be scattered over the vast literature on this topic. Based on the curvature and electrostatic analysis from our multiresolution surfaces, we introduce a new concept, the

  6. Geometrically Induced Interactions and Bifurcations

    Binder, Bernd

    2010-01-01

    In order to evaluate the proper boundary conditions in spin dynamics eventually leading to the emergence of natural and artificial solitons providing for strong interactions and potentials with monopole charges, the paper outlines a new concept referring to a curvature-invariant formalism, where superintegrability is given by a special isometric condition. Instead of referring to the spin operators and Casimir/Euler invariants as the generator of rotations, a curvature-invariant description is introduced utilizing a double Gudermann mapping function (generator of sine Gordon solitons and Mercator projection) cross-relating two angular variables, where geometric phases and rotations arise between surfaces of different curvature. Applying this stereographic projection to a superintegrable Hamiltonian can directly map linear oscillators to Kepler/Coulomb potentials and/or monopoles with Pöschl-Teller potentials and vice versa. In this sense a large scale Kepler/Coulomb (gravitational, electro-magnetic) wave dynamics with a hyperbolic metric could be mapped as a geodesic vertex flow to a local oscillator singularity (Dirac monopole) with spherical metrics and vice versa. Attracting fixed points and dynamic constraints are given by special isometries with magic precession angles. The nonlinear angular encoding directly provides for a Shannon mutual information entropy measure of the geodesic phase space flow. The emerging monopole patterns show relations to spiral Fresnel holography and Berry/Aharonov-Bohm geometric phases subject to bifurcation instabilities and singularities from phase ambiguities due to a local (entropy) overload. Neutral solitons and virtual patterns emerging and mediating in the overlap region between charged or twisted holographic patterns are visualized and directly assigned to the Berry geometric phase revealing the role of photons, neutrons, and neutrinos binding repulsive charges in Coulomb, strong and weak interaction.

  7. Moving walls and geometric phases

    Facchi, Paolo, E-mail: paolo.facchi@ba.infn.it [Dipartimento di Fisica and MECENAS, Università di Bari, I-70126 Bari (Italy); INFN, Sezione di Bari, I-70126 Bari (Italy); Garnero, Giancarlo, E-mail: giancarlo.garnero@uniba.it [Dipartimento di Fisica and MECENAS, Università di Bari, I-70126 Bari (Italy); INFN, Sezione di Bari, I-70126 Bari (Italy); Marmo, Giuseppe [Dipartimento di Scienze Fisiche and MECENAS, Università di Napoli “Federico II”, I-80126 Napoli (Italy); INFN, Sezione di Napoli, I-80126 Napoli (Italy); Samuel, Joseph [Raman Research Institute, 560080 Bangalore (India)

    2016-09-15

    We unveil the existence of a non-trivial Berry phase associated to the dynamics of a quantum particle in a one dimensional box with moving walls. It is shown that a suitable choice of boundary conditions has to be made in order to preserve unitarity. For these boundary conditions we compute explicitly the geometric phase two-form on the parameter space. The unboundedness of the Hamiltonian describing the system leads to a natural prescription of renormalization for divergent contributions arising from the boundary.

  8. Geometric Topology and Shape Theory

    Segal, Jack

    1987-01-01

    The aim of this international conference the third of its type was to survey recent developments in Geometric Topology and Shape Theory with an emphasis on their interaction. The volume contains original research papers and carefully selected survey of currently active areas. The main topics and themes represented by the papers of this volume include decomposition theory, cell-like mappings and CE-equivalent compacta, covering dimension versus cohomological dimension, ANR's and LCn-compacta, homology manifolds, embeddings of continua into manifolds, complement theorems in shape theory, approximate fibrations and shape fibrations, fibered shape, exact homologies and strong shape theory.

  9. Geometric approach to soliton equations

    Sasaki, R.

    1979-09-01

    A class of nonlinear equations that can be solved in terms of nxn scattering problem is investigated. A systematic geometric method of exploiting conservation laws and related equations, the so-called prolongation structure, is worked out. The nxn problem is reduced to nsub(n-1)x(n-1) problems and finally to 2x2 problems, which have been comprehensively investigated recently by the author. A general method of deriving the infinite numbers of polynomial conservation laws for an nxn problem is presented. The cases of 3x3 and 2x2 problems are discussed explicitly. (Auth.)

  10. Geometric Rationalization for Freeform Architecture

    Jiang, Caigui

    2016-06-20

    The emergence of freeform architecture provides interesting geometric challenges with regards to the design and manufacturing of large-scale structures. To design these architectural structures, we have to consider two types of constraints. First, aesthetic constraints are important because the buildings have to be visually impressive. Sec- ond, functional constraints are important for the performance of a building and its e cient construction. This thesis contributes to the area of architectural geometry. Specifically, we are interested in the geometric rationalization of freeform architec- ture with the goal of combining aesthetic and functional constraints and construction requirements. Aesthetic requirements typically come from designers and architects. To obtain visually pleasing structures, they favor smoothness of the building shape, but also smoothness of the visible patterns on the surface. Functional requirements typically come from the engineers involved in the construction process. For exam- ple, covering freeform structures using planar panels is much cheaper than using non-planar ones. Further, constructed buildings have to be stable and should not collapse. In this thesis, we explore the geometric rationalization of freeform archi- tecture using four specific example problems inspired by real life applications. We achieve our results by developing optimization algorithms and a theoretical study of the underlying geometrical structure of the problems. The four example problems are the following: (1) The design of shading and lighting systems which are torsion-free structures with planar beams based on quad meshes. They satisfy the functionality requirements of preventing light from going inside a building as shad- ing systems or reflecting light into a building as lighting systems. (2) The Design of freeform honeycomb structures that are constructed based on hex-dominant meshes with a planar beam mounted along each edge. The beams intersect without

  11. Field guide to geometrical optics

    Greivenkamp, John E

    2004-01-01

    This Field Guide derives from the treatment of geometrical optics that has evolved from both the undergraduate and graduate programs at the Optical Sciences Center at the University of Arizona. The development is both rigorous and complete, and it features a consistent notation and sign convention. This volume covers Gaussian imagery, paraxial optics, first-order optical system design, system examples, illumination, chromatic effects, and an introduction to aberrations. The appendices provide supplemental material on radiometry and photometry, the human eye, and several other topics.

  12. Geometric phase from dielectric matrix

    Banerjee, D.

    2005-10-01

    The dielectric property of the anisotropic optical medium is found by considering the polarized photon as two component spinor of spherical harmonics. The Geometric Phase of a polarized photon has been evaluated in two ways: the phase two-form of the dielectric matrix through a twist and the Pancharatnam phase (GP) by changing the angular momentum of the incident polarized photon over a closed triangular path on the extended Poincare sphere. The helicity in connection with the spin angular momentum of the chiral photon plays the key role in developing these phase holonomies. (author)

  13. A history of geometrical methods

    Coolidge, Julian Lowell

    2013-01-01

    Full and authoritative, this history of the techniques for dealing with geometric questions begins with synthetic geometry and its origins in Babylonian and Egyptian mathematics; reviews the contributions of China, Japan, India, and Greece; and discusses the non-Euclidean geometries. Subsequent sections cover algebraic geometry, starting with the precursors and advancing to the great awakening with Descartes; and differential geometry, from the early work of Huygens and Newton to projective and absolute differential geometry. The author's emphasis on proofs and notations, his comparisons betwe

  14. Geometrical optics and optimal transport.

    Rubinstein, Jacob; Wolansky, Gershon

    2017-10-01

    The Fermat principle is generalized to a system of rays. It is shown that all the ray mappings that are compatible with two given intensities of a monochromatic wave, measured at two planes, are stationary points of a canonical functional, which is the weighted average of the actions of all the rays. It is further shown that there exist at least two stationary points for this functional, implying that in the geometrical optics regime the phase from intensity problem has inherently more than one solution. The caustic structures of all the possible ray mappings are analyzed. A number of simulations illustrate the theoretical considerations.

  15. On a Geometric Theory of Generalized Chiral Elasticity with Discontinuities

    Suhendro I.

    2008-01-01

    Full Text Available In this work we develop, in a somewhat extensive manner, a geometric theory of chiral elasticity which in general is endowed with geometric discontinuities (sometimes referred to as defects. By itself, the present theory generalizes both Cosserat and void elasticity theories to a certain extent via geometrization as well as by taking intoaccount the action of the electromagnetic field, i.e., the incorporation of the electromagnetic field into the description of the so-called microspin (chirality also forms the underlying structure of this work. As we know, the description of the electromagnetic field as a unified phenomenon requires four-dimensional space-time rather than three-dimensional space as its background. For this reason we embed the three-dimensional material space in four-dimensional space-time. This way, the electromagnetic spin is coupled to the non-electromagnetic microspin, both being parts of the completemicrospin to be added to the macrospin in the full description of vorticity. In short, our objective is to generalize the existing continuum theories by especially describing microspin phenomena in a fully geometric way.

  16. On a Geometric Theory of Generalized Chiral Elasticity with Discontinuities

    Suhendro I.

    2008-01-01

    Full Text Available In this work we develop, in a somewhat extensive manner, a geometric theory of chiral elasticity which in general is endowed with geometric discontinuities (sometimes re- ferred to as defects . By itself, the present theory generalizes both Cosserat and void elasticity theories to a certain extent via geometrization as well as by taking into ac- count the action of the electromagnetic field, i.e., the incorporation of the electromag- netic field into the description of the so-called microspin ( chirality also forms the un- derlying structure of this work. As we know, the description of the electromagnetic field as a unified phenomenon requires four-dimensional space-time rather than three- dimensional space as its background. For this reason we embed the three-dimensional material space in four-dimensional space-time. This way, the electromagnetic spin is coupled to the non-electromagnetic microspin, both being parts of the complete mi- crospin to be added to the macrospin in the full description of vorticity. In short, our objective is to generalize the existing continuum theories by especially describing mi- crospin phenomena in a fully geometric way.

  17. Non-stoquastic Hamiltonians in quantum annealing via geometric phases

    Vinci, Walter; Lidar, Daniel A.

    2017-09-01

    We argue that a complete description of quantum annealing implemented with continuous variables must take into account the non-adiabatic Aharonov-Anandan geometric phase that arises when the system Hamiltonian changes during the anneal. We show that this geometric effect leads to the appearance of non-stoquasticity in the effective quantum Ising Hamiltonians that are typically used to describe quantum annealing with flux qubits. We explicitly demonstrate the effect of this geometric non-stoquasticity when quantum annealing is performed with a system of one and two coupled flux qubits. The realization of non-stoquastic Hamiltonians has important implications from a computational complexity perspective, since it is believed that in many cases quantum annealing with stoquastic Hamiltonians can be efficiently simulated via classical algorithms such as Quantum Monte Carlo. It is well known that the direct implementation of non-stoquastic Hamiltonians with flux qubits is particularly challenging. Our results suggest an alternative path for the implementation of non-stoquasticity via geometric phases that can be exploited for computational purposes.

  18. Image understanding using geometric context

    Zhang, Xiaochun; Liu, Chuancai

    2017-07-01

    A Gibbs Sampler based topic model for image annotation, which takes into account the interaction between visual geometric context and related topic, is presented. Most of the existing topic models for scene annotation use segmentation-based algorithm. However, topic models using segmentation algorithm alone sometimes can produce erroneous results when used to annotate real-life scene pictures. Therefore, our algorithm makes use of peaks of image surface instead of segmentation regions. Existing approaches use SIFT algorithm and treat the peaks as round blob features. In this paper, the peaks are treated as anisotropic blob features, which models low level visual elements more precisely. In order to better utilize visual features, our model not only takes into consideration visual codeword, but also considers influence of visual properties to topic formation, such as orientation, width, length and color. The basic idea is based on the assumption that different topics will produce distinct visual appearance, and different visual appearance is helpful to distinguish topics. During the learning stage, each topic will be associated with a set of distributions of visual properties, which depicts appearance of the topic. This paper considers more geometric properties, which will reduce topic uncertainty and learn the images better. Tested with Corel5K, SAIAPR-TC12 and Espgame100k Datasets, our method performs moderately better than some state of the arts methods.

  19. Geometrical approach to fluid models

    Kuvshinov, B.N.; Schep, T.J.

    1997-01-01

    Differential geometry based upon the Cartan calculus of differential forms is applied to investigate invariant properties of equations that describe the motion of continuous media. The main feature of this approach is that physical quantities are treated as geometrical objects. The geometrical notion of invariance is introduced in terms of Lie derivatives and a general procedure for the construction of local and integral fluid invariants is presented. The solutions of the equations for invariant fields can be written in terms of Lagrange variables. A generalization of the Hamiltonian formalism for finite-dimensional systems to continuous media is proposed. Analogously to finite-dimensional systems, Hamiltonian fluids are introduced as systems that annihilate an exact two-form. It is shown that Euler and ideal, charged fluids satisfy this local definition of a Hamiltonian structure. A new class of scalar invariants of Hamiltonian fluids is constructed that generalizes the invariants that are related with gauge transformations and with symmetries (Noether). copyright 1997 American Institute of Physics

  20. Theoretical approach for plasma series resonance effect in geometrically symmetric dual radio frequency plasma

    Bora, B.; Bhuyan, H.; Favre, M.; Wyndham, E.; Chuaqui, H.

    2012-01-01

    Plasma series resonance (PSR) effect is well known in geometrically asymmetric capacitively couple radio frequency plasma. However, plasma series resonance effect in geometrically symmetric plasma has not been properly investigated. In this work, a theoretical approach is made to investigate the plasma series resonance effect and its influence on Ohmic and stochastic heating in geometrically symmetric discharge. Electrical asymmetry effect by means of dual frequency voltage waveform is applied to excite the plasma series resonance. The results show considerable variation in heating with phase difference between the voltage waveforms, which may be applicable in controlling the plasma parameters in such plasma.

  1. The geometric β-function in curved space-time under operator regularization

    Agarwala, Susama [Mathematical Institute, Oxford University, Oxford OX2 6GG (United Kingdom)

    2015-06-15

    In this paper, I compare the generators of the renormalization group flow, or the geometric β-functions, for dimensional regularization and operator regularization. I then extend the analysis to show that the geometric β-function for a scalar field theory on a closed compact Riemannian manifold is defined on the entire manifold. I then extend the analysis to find the generator of the renormalization group flow to conformally coupled scalar-field theories on the same manifolds. The geometric β-function in this case is not defined.

  2. The geometric β-function in curved space-time under operator regularization

    Agarwala, Susama

    2015-01-01

    In this paper, I compare the generators of the renormalization group flow, or the geometric β-functions, for dimensional regularization and operator regularization. I then extend the analysis to show that the geometric β-function for a scalar field theory on a closed compact Riemannian manifold is defined on the entire manifold. I then extend the analysis to find the generator of the renormalization group flow to conformally coupled scalar-field theories on the same manifolds. The geometric β-function in this case is not defined

  3. Geometrical charged-particle optics

    Rose, Harald

    2012-01-01

    This second edition is an extended version of the first edition of Geometrical Charged-Particle Optics. The updated reference monograph is intended as a guide for researchers and graduate students who are seeking a comprehensive treatment of the design of instruments and beam-guiding systems of charged particles and their propagation in electromagnetic fields. Wave aspects are included in this edition for explaining electron holography, the Aharanov-Bohm effect and the resolution of electron microscopes limited by diffraction. Several methods for calculating the electromagnetic field are presented and procedures are outlined for calculating the properties of systems with arbitrarily curved axis. Detailed methods are presented for designing and optimizing special components such as aberration correctors, spectrometers, energy filters monochromators, ion traps, electron mirrors and cathode lenses. In particular, the optics of rotationally symmetric lenses, quadrupoles, and systems composed of these elements are...

  4. Geometrical setting of solid mechanics

    Fiala, Zdenek

    2011-01-01

    Highlights: → Solid mechanics within the Riemannian symmetric manifold GL (3, R)/O (3, R). → Generalized logarithmic strain. → Consistent linearization. → Incremental principle of virtual power. → Time-discrete approximation. - Abstract: The starting point in the geometrical setting of solid mechanics is to represent deformation process of a solid body as a trajectory in a convenient space with Riemannian geometry, and then to use the corresponding tools for its analysis. Based on virtual power of internal stresses, we show that such a configuration space is the (globally) symmetric space of symmetric positive-definite real matrices. From this unifying point of view, we shall analyse the logarithmic strain, the stress rate, as well as linearization and intrinsic integration of corresponding evolution equation.

  5. Geometric Methods in Physics XXXV

    Odzijewicz, Anatol; Previato, Emma

    2018-01-01

    This book features a selection of articles based on the XXXV Białowieża Workshop on Geometric Methods in Physics, 2016. The series of Białowieża workshops, attended by a community of experts at the crossroads of mathematics and physics, is a major annual event in the field. The works in this book, based on presentations given at the workshop, are previously unpublished, at the cutting edge of current research, typically grounded in geometry and analysis, and with applications to classical and quantum physics. In 2016 the special session "Integrability and Geometry" in particular attracted pioneers and leading specialists in the field. Traditionally, the Białowieża Workshop is followed by a School on Geometry and Physics, for advanced graduate students and early-career researchers, and the book also includes extended abstracts of the lecture series.

  6. Geometric Operators on Boolean Functions

    Frisvad, Jeppe Revall; Falster, Peter

    In truth-functional propositional logic, any propositional formula represents a Boolean function (according to some valuation of the formula). We describe operators based on Decartes' concept of constructing coordinate systems, for translation of a propositional formula to the image of a Boolean...... function. With this image of a Boolean function corresponding to a propositional formula, we prove that the orthogonal projection operator leads to a theorem describing all rules of inference in propositional reasoning. In other words, we can capture all kinds of inference in propositional logic by means...... of a few geometric operators working on the images of Boolean functions. The operators we describe, arise from the niche area of array-based logic and have previously been tightly bound to an array-based representation of Boolean functions. We redefine the operators in an abstract form to make them...

  7. Geometric solitons of Hamiltonian flows on manifolds

    Song, Chong, E-mail: songchong@xmu.edu.cn [School of Mathematical Sciences, Xiamen University, Xiamen 361005 (China); Sun, Xiaowei, E-mail: sunxw@cufe.edu.cn [School of Applied Mathematics, Central University of Finance and Economics, Beijing 100081 (China); Wang, Youde, E-mail: wyd@math.ac.cn [Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190 (China)

    2013-12-15

    It is well-known that the LIE (Locally Induction Equation) admit soliton-type solutions and same soliton solutions arise from different and apparently irrelevant physical models. By comparing the solitons of LIE and Killing magnetic geodesics, we observe that these solitons are essentially decided by two families of isometries of the domain and the target space, respectively. With this insight, we propose the new concept of geometric solitons of Hamiltonian flows on manifolds, such as geometric Schrödinger flows and KdV flows for maps. Moreover, we give several examples of geometric solitons of the Schrödinger flow and geometric KdV flow, including magnetic curves as geometric Schrödinger solitons and explicit geometric KdV solitons on surfaces of revolution.

  8. Operational geometric phase for mixed quantum states

    Andersson, O; Heydari, H

    2013-01-01

    The geometric phase has found a broad spectrum of applications in both classical and quantum physics, such as condensed matter and quantum computation. In this paper, we introduce an operational geometric phase for mixed quantum states, based on spectral weighted traces of holonomies, and we prove that it generalizes the standard definition of the geometric phase for mixed states, which is based on quantum interferometry. We also introduce higher order geometric phases, and prove that under a fairly weak, generically satisfied, requirement, there is always a well-defined geometric phase of some order. Our approach applies to general unitary evolutions of both non-degenerate and degenerate mixed states. Moreover, since we provide an explicit formula for the geometric phase that can be easily implemented, it is particularly well suited for computations in quantum physics. (paper)

  9. Geometrical factors in the perception of sacredness

    Costa, Marco; Bonetti, Leonardo

    2016-01-01

    Geometrical and environmental factors in the perception of sacredness, dominance, and attractiveness were assessed by 137 participants in five tests. In the first test, a two-alternative forced-choice paradigm was used to test the perception of sacredness, dominance, and attractiveness in geometr......Geometrical and environmental factors in the perception of sacredness, dominance, and attractiveness were assessed by 137 participants in five tests. In the first test, a two-alternative forced-choice paradigm was used to test the perception of sacredness, dominance, and attractiveness...... in geometrical figures differing in shape, verticality, size, and symmetry. Verticality, symmetry, and convexity were found to be important factors in the perception of sacredness. In the second test, participants had to mark the point inside geometrical surfaces that was perceived as most sacred, dominant....... Geometrical factors in the perception of sacredness, dominance, and attractiveness were largely overlapping....

  10. Guide to Geometric Algebra in Practice

    Dorst, Leo

    2011-01-01

    This highly practical "Guide to Geometric Algebra in Practice" reviews algebraic techniques for geometrical problems in computer science and engineering, and the relationships between them. The topics covered range from powerful new theoretical developments, to successful applications, and the development of new software and hardware tools. This title: provides hands-on review exercises throughout the book, together with helpful chapter summaries; presents a concise introductory tutorial to conformal geometric algebra (CGA) in the appendices; examines the application of CGA for the d

  11. Assisted inflation from geometric tachyon

    Panigrahi, Kamal L.; Singh, Harvendra

    2007-01-01

    We study the effect of rolling of N D3-branes in the vicinity of NS5-branes. We find out that this system coupled with the four dimensional gravity gives the slow roll assisted inflation of the scalar field theory. Once again this expectation is exactly similar to that of N-tachyon assisted inflation on unstable D-branes

  12. An immuno-wall microdevice exhibits rapid and sensitive detection of IDH1-R132H mutation specific to grade II and III gliomas

    Yamamichi, Akane; Kasama, Toshihiro; Ohka, Fumiharu; Suzuki, Hiromichi; Kato, Akira; Motomura, Kazuya; Hirano, Masaki; Ranjit, Melissa; Chalise, Lushun; Kurimoto, Michihiro; Kondo, Goro; Aoki, Kosuke; Kaji, Noritada; Tokeshi, Manabu; Matsubara, Toshio; Senga, Takeshi; Kaneko, Mika K.; Suzuki, Hidenori; Hara, Masahito; Wakabayashi, Toshihiko; Baba, Yoshinobu; Kato, Yukinari; Natsume, Atsushi

    2016-01-01

    World Health Organization grade II and III gliomas most frequently occur in the central nervous system (CNS) in adults. Gliomas are not circumscribed; tumor edges are irregular and consist of tumor cells, normal brain tissue, and hyperplastic reactive glial cells. Therefore, the tumors are not fully resectable, resulting in recurrence, malignant progression, and eventual death. Approximately 69-80% of grade II and III gliomas harbor mutations in the isocitrate dehydrogenase 1 gene (IDH1), of which 83-90% are found to be the IDH1-R132H mutation. Detection of the IDH1-R132H mutation should help in the differential diagnosis of grade II and III gliomas from other types of CNS tumors and help determine the boundary between the tumor and normal brain tissue. In this study, we established a highly sensitive antibody-based device, referred to as the immuno-wall, to detect the IDH1-R132H mutation in gliomas. The immuno-wall causes an immunoreaction in microchannels fabricated using a photo-polymerizing polymer. This microdevice enables the analysis of the IDH1 status with a small sample within 15 min with substantially high sensitivity. Our results suggested that 10% content of the IDH1-R132H mutation in a sample of 0.33 μl volume, with 500 ng protein, or from 500 cells is theoretically sufficient for the analysis. The immuno-wall device will enable the rapid and highly sensitive detection of the IDH1-R132H mutation in routine clinical practice.

  13. Geometrical and Graphical Solutions of Quadratic Equations.

    Hornsby, E. John, Jr.

    1990-01-01

    Presented are several geometrical and graphical methods of solving quadratic equations. Discussed are Greek origins, Carlyle's method, von Staudt's method, fixed graph methods and imaginary solutions. (CW)

  14. Discrete geometric structures for architecture

    Pottmann, Helmut

    2010-06-13

    The emergence of freeform structures in contemporary architecture raises numerous challenging research problems, most of which are related to the actual fabrication and are a rich source of research topics in geometry and geometric computing. The talk will provide an overview of recent progress in this field, with a particular focus on discrete geometric structures. Most of these result from practical requirements on segmenting a freeform shape into planar panels and on the physical realization of supporting beams and nodes. A study of quadrilateral meshes with planar faces reveals beautiful relations to discrete differential geometry. In particular, we discuss meshes which discretize the network of principal curvature lines. Conical meshes are among these meshes; they possess conical offset meshes at a constant face/face distance, which in turn leads to a supporting beam layout with so-called torsion free nodes. This work can be generalized to a variety of multilayer structures and laid the ground for an adapted curvature theory for these meshes. There are also efforts on segmenting surfaces into planar hexagonal panels. Though these are less constrained than planar quadrilateral panels, this problem is still waiting for an elegant solution. Inspired by freeform designs in architecture which involve circles and spheres, we present a new kind of triangle mesh whose faces\\' in-circles form a packing, i.e., the in-circles of two triangles with a common edge have the same contact point on that edge. These "circle packing (CP) meshes" exhibit an aesthetic balance of shape and size of their faces. They are closely tied to sphere packings on surfaces and to various remarkable structures and patterns which are of interest in art, architecture, and design. CP meshes constitute a new link between architectural freeform design and computational conformal geometry. Recently, certain timber structures motivated us to study discrete patterns of geodesics on surfaces. This

  15. Geometric asymmetry driven Janus micromotors

    Zhao, Guanjia; Pumera, Martin

    2014-09-01

    The production and application of nano-/micromotors is of great importance. In order for the motors to work, asymmetry in their chemical composition or physical geometry must be present if no external asymmetric field is applied. In this paper, we present a ``coconut'' micromotor made of platinum through the partial or complete etching of the silica templates. It was shown that although both the inner and outer surfaces are made of the same material (Pt), motion of the structure can be observed as the convex surface is capable of generating oxygen bubbles. This finding shows that not only the chemical asymmetry of the micromotor, but also its geometric asymmetry can lead to fast propulsion of the motor. Moreover, a considerably higher velocity can be seen for partially etched coconut structures than the velocities of Janus or fully etched, shell-like motors. These findings will have great importance on the design of future micromotors.The production and application of nano-/micromotors is of great importance. In order for the motors to work, asymmetry in their chemical composition or physical geometry must be present if no external asymmetric field is applied. In this paper, we present a ``coconut'' micromotor made of platinum through the partial or complete etching of the silica templates. It was shown that although both the inner and outer surfaces are made of the same material (Pt), motion of the structure can be observed as the convex surface is capable of generating oxygen bubbles. This finding shows that not only the chemical asymmetry of the micromotor, but also its geometric asymmetry can lead to fast propulsion of the motor. Moreover, a considerably higher velocity can be seen for partially etched coconut structures than the velocities of Janus or fully etched, shell-like motors. These findings will have great importance on the design of future micromotors. Electronic supplementary information (ESI) available: Additional SEM images, data analysis, Videos S

  16. Information geometric methods for complexity

    Felice, Domenico; Cafaro, Carlo; Mancini, Stefano

    2018-03-01

    Research on the use of information geometry (IG) in modern physics has witnessed significant advances recently. In this review article, we report on the utilization of IG methods to define measures of complexity in both classical and, whenever available, quantum physical settings. A paradigmatic example of a dramatic change in complexity is given by phase transitions (PTs). Hence, we review both global and local aspects of PTs described in terms of the scalar curvature of the parameter manifold and the components of the metric tensor, respectively. We also report on the behavior of geodesic paths on the parameter manifold used to gain insight into the dynamics of PTs. Going further, we survey measures of complexity arising in the geometric framework. In particular, we quantify complexity of networks in terms of the Riemannian volume of the parameter space of a statistical manifold associated with a given network. We are also concerned with complexity measures that account for the interactions of a given number of parts of a system that cannot be described in terms of a smaller number of parts of the system. Finally, we investigate complexity measures of entropic motion on curved statistical manifolds that arise from a probabilistic description of physical systems in the presence of limited information. The Kullback-Leibler divergence, the distance to an exponential family and volumes of curved parameter manifolds, are examples of essential IG notions exploited in our discussion of complexity. We conclude by discussing strengths, limits, and possible future applications of IG methods to the physics of complexity.

  17. Geometrical aspects of quantum spaces

    Ho, P.M.

    1996-01-01

    Various geometrical aspects of quantum spaces are presented showing the possibility of building physics on quantum spaces. In the first chapter the authors give the motivations for studying noncommutative geometry and also review the definition of a Hopf algebra and some general features of the differential geometry on quantum groups and quantum planes. In Chapter 2 and Chapter 3 the noncommutative version of differential calculus, integration and complex structure are established for the quantum sphere S 1 2 and the quantum complex projective space CP q (N), on which there are quantum group symmetries that are represented nonlinearly, and are respected by all the aforementioned structures. The braiding of S q 2 and CP q (N) is also described. In Chapter 4 the quantum projective geometry over the quantum projective space CP q (N) is developed. Collinearity conditions, coplanarity conditions, intersections and anharmonic ratios is described. In Chapter 5 an algebraic formulation of Reimannian geometry on quantum spaces is presented where Riemannian metric, distance, Laplacian, connection, and curvature have their quantum counterparts. This attempt is also extended to complex manifolds. Examples include the quantum sphere, the complex quantum projective space and the two-sheeted space. The quantum group of general coordinate transformations on some quantum spaces is also given

  18. Yang Mills instantons, geometrical aspects

    Stora, R.

    1977-09-01

    The word instanton has been coined by analogy with the word soliton. They both refer to solutions of elliptic non linear field equations with boundary conditions at infinity (of euclidean space time in the first case, euclidean space in the second case) lying on the set of classical vacua in such a way that stable topological properties emerge, susceptible to survive quantum effects, if those are small. Under this assumption, instantons are believed to be relevant to the description of tunnelling effects between classical vacua and signal some characteristics of the vacuum at the quantum level, whereas solitons should be associated with particles, i.e. discrete points in the mass spectrum. In one case the euclidean action is finite, in the other case, the energy is finite. From the mathematical point of view, the geometrical phenomena associated with the existence of solitons have forced physicists to learn rudiments of algebraic topology. The study of euclidean classical Yang Mills fields involves naturally mathematical items falling under the headings: differential geometry (fibre bundles, connections); differential topology (characteristic classes, index theory) and more recently algebraic geometry. These notes are divided as follows: a first section is devoted to a description of the physicist's views; a second section is devoted to the mathematician's vie

  19. Geometric Reasoning for Automated Planning

    Clement, Bradley J.; Knight, Russell L.; Broderick, Daniel

    2012-01-01

    An important aspect of mission planning for NASA s operation of the International Space Station is the allocation and management of space for supplies and equipment. The Stowage, Configuration Analysis, and Operations Planning teams collaborate to perform the bulk of that planning. A Geometric Reasoning Engine is developed in a way that can be shared by the teams to optimize item placement in the context of crew planning. The ISS crew spends (at the time of this writing) a third or more of their time moving supplies and equipment around. Better logistical support and optimized packing could make a significant impact on operational efficiency of the ISS. Currently, computational geometry and motion planning do not focus specifically on the optimized orientation and placement of 3D objects based on multiple distance and containment preferences and constraints. The software performs reasoning about the manipulation of 3D solid models in order to maximize an objective function based on distance. It optimizes for 3D orientation and placement. Spatial placement optimization is a general problem and can be applied to object packing or asset relocation.

  20. Simulating geometrically complex blast scenarios

    Ian G. Cullis

    2016-04-01

    Full Text Available The effects of blast waves generated by energetic and non-energetic sources are of continuing interest to the ballistics research community. Modern conflicts are increasingly characterised by asymmetric urban warfare, with improvised explosive devices (IEDs often playing a dominant role on the one hand and an armed forces requirement for minimal collateral effects from their weapons on the other. These problems are characterised by disparate length- and time-scales and may also be governed by complex physics. There is thus an increasing need to be able to rapidly assess and accurately predict the effects of energetic blast in topologically complex scenarios. To this end, this paper presents a new QinetiQ-developed advanced computational package called EAGLE-Blast, which is capable of accurately resolving the generation, propagation and interaction of blast waves around geometrically complex shapes such as vehicles and buildings. After a brief description of the numerical methodology, various blast scenario simulations are described and the results compared with experimental data to demonstrate the validation of the scheme and its ability to describe these complex scenarios accurately and efficiently. The paper concludes with a brief discussion on the use of the code in supporting the development of algorithms for fast running engineering models.

  1. Generalized Geometric Quantum Speed Limits

    Diego Paiva Pires

    2016-06-01

    Full Text Available The attempt to gain a theoretical understanding of the concept of time in quantum mechanics has triggered significant progress towards the search for faster and more efficient quantum technologies. One of such advances consists in the interpretation of the time-energy uncertainty relations as lower bounds for the minimal evolution time between two distinguishable states of a quantum system, also known as quantum speed limits. We investigate how the nonuniqueness of a bona fide measure of distinguishability defined on the quantum-state space affects the quantum speed limits and can be exploited in order to derive improved bounds. Specifically, we establish an infinite family of quantum speed limits valid for unitary and nonunitary evolutions, based on an elegant information geometric formalism. Our work unifies and generalizes existing results on quantum speed limits and provides instances of novel bounds that are tighter than any established one based on the conventional quantum Fisher information. We illustrate our findings with relevant examples, demonstrating the importance of choosing different information metrics for open system dynamics, as well as clarifying the roles of classical populations versus quantum coherences, in the determination and saturation of the speed limits. Our results can find applications in the optimization and control of quantum technologies such as quantum computation and metrology, and might provide new insights in fundamental investigations of quantum thermodynamics.

  2. Geometric structure of percolation clusters.

    Xu, Xiao; Wang, Junfeng; Zhou, Zongzheng; Garoni, Timothy M; Deng, Youjin

    2014-01-01

    We investigate the geometric properties of percolation clusters by studying square-lattice bond percolation on the torus. We show that the density of bridges and nonbridges both tend to 1/4 for large system sizes. Using Monte Carlo simulations, we study the probability that a given edge is not a bridge but has both its loop arcs in the same loop and find that it is governed by the two-arm exponent. We then classify bridges into two types: branches and junctions. A bridge is a branch iff at least one of the two clusters produced by its deletion is a tree. Starting from a percolation configuration and deleting the branches results in a leaf-free configuration, whereas, deleting all bridges produces a bridge-free configuration. Although branches account for ≈43% of all occupied bonds, we find that the fractal dimensions of the cluster size and hull length of leaf-free configurations are consistent with those for standard percolation configurations. By contrast, we find that the fractal dimensions of the cluster size and hull length of bridge-free configurations are given by the backbone and external perimeter dimensions, respectively. We estimate the backbone fractal dimension to be 1.643 36(10).

  3. Geometric Phase Generated Optical Illusion.

    Yue, Fuyong; Zang, Xiaofei; Wen, Dandan; Li, Zile; Zhang, Chunmei; Liu, Huigang; Gerardot, Brian D; Wang, Wei; Zheng, Guoxing; Chen, Xianzhong

    2017-09-12

    An optical illusion, such as "Rubin's vase", is caused by the information gathered by the eye, which is processed in the brain to give a perception that does not tally with a physical measurement of the stimulus source. Metasurfaces are metamaterials of reduced dimensionality which have opened up new avenues for flat optics. The recent advancement in spin-controlled metasurface holograms has attracted considerate attention, providing a new method to realize optical illusions. We propose and experimentally demonstrate a metasurface device to generate an optical illusion. The metasurface device is designed to display two asymmetrically distributed off-axis images of "Rubin faces" with high fidelity, high efficiency and broadband operation that are interchangeable by controlling the helicity of the incident light. Upon the illumination of a linearly polarized light beam, the optical illusion of a 'vase' is perceived. Our result provides an intuitive demonstration of the figure-ground distinction that our brains make during the visual perception. The alliance between geometric metasurface and the optical illusion opens a pathway for new applications related to encryption, optical patterning, and information processing.

  4. Geometrical scaling, furry branching and minijets

    Hwa, R.C.

    1988-01-01

    Scaling properties and their violations in hadronic collisions are discussed in the framework of the geometrical branching model. Geometrical scaling supplemented by Furry branching characterizes the soft component, while the production of jets specifies the hard component. Many features of multiparticle production processes are well described by this model. 21 refs

  5. Geometric integrators for stochastic rigid body dynamics

    Tretyakov, Mikhail

    2016-01-05

    Geometric integrators play an important role in simulating dynamical systems on long time intervals with high accuracy. We will illustrate geometric integration ideas within the stochastic context, mostly on examples of stochastic thermostats for rigid body dynamics. The talk will be mainly based on joint recent work with Rusland Davidchak and Tom Ouldridge.

  6. Geometric integrators for stochastic rigid body dynamics

    Tretyakov, Mikhail

    2016-01-01

    Geometric integrators play an important role in simulating dynamical systems on long time intervals with high accuracy. We will illustrate geometric integration ideas within the stochastic context, mostly on examples of stochastic thermostats for rigid body dynamics. The talk will be mainly based on joint recent work with Rusland Davidchak and Tom Ouldridge.

  7. Geometric phases in discrete dynamical systems

    Cartwright, Julyan H.E., E-mail: julyan.cartwright@csic.es [Instituto Andaluz de Ciencias de la Tierra, CSIC–Universidad de Granada, E-18100 Armilla, Granada (Spain); Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada, E-18071 Granada (Spain); Piro, Nicolas, E-mail: nicolas.piro@epfl.ch [École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne (Switzerland); Piro, Oreste, E-mail: piro@imedea.uib-csic.es [Departamento de Física, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain); Tuval, Idan, E-mail: ituval@imedea.uib-csic.es [Mediterranean Institute for Advanced Studies, CSIC–Universitat de les Illes Balears, E-07190 Mallorca (Spain)

    2016-10-14

    In order to study the behaviour of discrete dynamical systems under adiabatic cyclic variations of their parameters, we consider discrete versions of adiabatically-rotated rotators. Parallelling the studies in continuous systems, we generalize the concept of geometric phase to discrete dynamics and investigate its presence in these rotators. For the rotated sine circle map, we demonstrate an analytical relationship between the geometric phase and the rotation number of the system. For the discrete version of the rotated rotator considered by Berry, the rotated standard map, we further explore this connection as well as the role of the geometric phase at the onset of chaos. Further into the chaotic regime, we show that the geometric phase is also related to the diffusive behaviour of the dynamical variables and the Lyapunov exponent. - Highlights: • We extend the concept of geometric phase to maps. • For the rotated sine circle map, we demonstrate an analytical relationship between the geometric phase and the rotation number. • For the rotated standard map, we explore the role of the geometric phase at the onset of chaos. • We show that the geometric phase is related to the diffusive behaviour of the dynamical variables and the Lyapunov exponent.

  8. Geometrical optics and the diffraction phenomenon

    Timofeev, Aleksandr V

    2005-01-01

    This note outlines the principles of the geometrical optics of inhomogeneous waves whose description necessitates the use of complex values of the wave vector. Generalizing geometrical optics to inhomogeneous waves permits including in its scope the analysis of the diffraction phenomenon. (methodological notes)

  9. Solving Absolute Value Equations Algebraically and Geometrically

    Shiyuan, Wei

    2005-01-01

    The way in which students can improve their comprehension by understanding the geometrical meaning of algebraic equations or solving algebraic equation geometrically is described. Students can experiment with the conditions of the absolute value equation presented, for an interesting way to form an overall understanding of the concept.

  10. Complex magnetic monopoles, geometric phases and quantum evolution in the vicinity of diabolic and exceptional points

    Nesterov, Alexander I; Aceves de la Cruz, F

    2008-01-01

    We consider the geometric phase and quantum tunneling in the vicinity of diabolic and exceptional points. We show that the geometric phase associated with the degeneracy points is defined by the flux of complex magnetic monopoles. In the limit of weak coupling, the leading contribution to the real part of the geometric phase is given by the flux of the Dirac monopole plus a quadrupole term, and the expansion of the imaginary part starts with a dipole-like field. For a two-level system governed by a generic non-Hermitian Hamiltonian, we derive a formula to compute the non-adiabatic, complex, geometric phase by integrating over the complex Bloch sphere. We apply our results to study a dissipative two-level system driven by a periodic electromagnetic field and show that, in the vicinity of the exceptional point, the complex geometric phase behaves like a step-function. Studying the tunneling process near and at the exceptional point, we find two different regimes: coherent and incoherent. The coherent regime is characterized by Rabi oscillations, with a one-sheeted hyperbolic monopole emerging in this region of the parameters. The two-sheeted hyperbolic monopole is associated with the incoherent regime. We show that the dissipation results in a series of pulses in the complex geometric phase which disappear when the dissipation dies out. Such a strong coupling effect of the environment is beyond the conventional adiabatic treatment of the Berry phase

  11. Charge as the Stereographic Projection of Geometric Precession on Pseudospheres

    Binder, B

    2002-01-01

    In this paper geometric phases (Berry and Aharonov-Bohm) are generalized to nonlinear topological phase fields on pseudospheres, where the coordinate vector field is parallel transported along the signal/soliton vector field with Levi--Civita connection. Projective $PSL(2,{\\Bbb R})$ symmetry describes the relativistic self-interacting bosonic sine-Gordon field. A Coulomb potential can be induced as the stereographic projection of a harmonic oscillator potential mapping angles or phases to distances and vice versa resulting in mutual coupling with a generalized coupling constant given by a nonlinear iteration. With single-valuedness requirement in 137-gonal symmetry it fits within a few ppb uncertainty to the Sommerfeld fine structure constant.

  12. Black Hole Entropy from Indistinguishable Quantum Geometric Excitations

    Abhishek Majhi

    2016-01-01

    Full Text Available In loop quantum gravity the quantum geometry of a black hole horizon consists of discrete nonperturbative quantum geometric excitations (or punctures labeled by spins, which are responsible for the quantum area of the horizon. If these punctures are compared to a gas of particles, then the spins associated with the punctures can be viewed as single puncture area levels analogous to single particle energy levels. Consequently, if we assume these punctures to be indistinguishable, the microstate count for the horizon resembles that of Bose-Einstein counting formula for gas of particles. For the Bekenstein-Hawking area law to follow from the entropy calculation in the large area limit, the Barbero-Immirzi parameter (γ approximately takes a constant value. As a by-product, we are able to speculate the state counting formula for the SU(2 quantum Chern-Simons theory coupled to indistinguishable sources in the weak coupling limit.

  13. Geometrical formulation of the conformal Ward identity

    Kachkachi, M.

    2002-08-01

    In this paper we use deep ideas in complex geometry that proved to be very powerful in unveiling the Polyakov measure on the moduli space of Riemann surfaces and lead to obtain the partition function of perturbative string theory for 2, 3, 4 loops. Indeed, a geometrical interpretation of the conformal Ward identity in two dimensional conformal field theory is proposed: the conformal anomaly is interpreted as a deformation of the complex structure of the basic Riemann surface. This point of view is in line with the modern trend of geometric quantizations that are based on deformations of classical structures. Then, we solve the conformal Ward identity by using this geometrical formalism. (author)

  14. Initial singularity and pure geometric field theories

    Wanas, M. I.; Kamal, Mona M.; Dabash, Tahia F.

    2018-01-01

    In the present article we use a modified version of the geodesic equation, together with a modified version of the Raychaudhuri equation, to study initial singularities. These modified equations are used to account for the effect of the spin-torsion interaction on the existence of initial singularities in cosmological models. Such models are the results of solutions of the field equations of a class of field theories termed pure geometric. The geometric structure used in this study is an absolute parallelism structure satisfying the cosmological principle. It is shown that the existence of initial singularities is subject to some mathematical (geometric) conditions. The scheme suggested for this study can be easily generalized.

  15. SOME PROPERTIES OF GEOMETRIC DEA MODELS

    Ozren Despić

    2013-02-01

    Full Text Available Some specific geometric data envelopment analysis (DEA models are well known to the researchers in DEA through so-called multiplicative or log-linear efficiency models. Valuable properties of these models were noted by several authors but the models still remain somewhat obscure and rarely used in practice. The purpose of this paper is to show from a mathematical perspective where the geometric DEA fits in relation to the classical DEA, and to provide a brief overview of some benefits in using geometric DEA in practice of decision making and/or efficiency measurement.

  16. Refined geometric transition and qq-characters

    Kimura, Taro; Mori, Hironori; Sugimoto, Yuji

    2018-01-01

    We show the refinement of the prescription for the geometric transition in the refined topological string theory and, as its application, discuss a possibility to describe qq-characters from the string theory point of view. Though the suggested way to operate the refined geometric transition has passed through several checks, it is additionally found in this paper that the presence of the preferred direction brings a nontrivial effect. We provide the modified formula involving this point. We then apply our prescription of the refined geometric transition to proposing the stringy description of doubly quantized Seiberg-Witten curves called qq-characters in certain cases.

  17. A Geometrical View of Higgs Effective Theory

    CERN. Geneva

    2016-01-01

    A geometric formulation of Higgs Effective Field Theory (HEFT) is presented. Experimental observables are given in terms of geometric invariants of the scalar sigma model sector such as the curvature of the scalar field manifold M. We show how the curvature can be measured experimentally via Higgs cross-sections, W_L scattering, and the S parameter. The one-loop action of HEFT is given in terms of geometric invariants of M. The distinction between the Standard Model (SM) and HEFT is whether M is flat or curved, with the curvature a signal of the scale of new physics.

  18. Geometrical analysis of the interacting boson model

    Dieperink, A.E.L.

    1983-01-01

    The Interacting Boson Model is considered, in relation with geometrical models and the application of mean field techniques to algebraic models, in three lectures. In the first, several methods are reviewed to establish a connection between the algebraic formulation of collective nuclear properties in terms of the group SU(6) and the geometric approach. In the second lecture the geometric interpretation of new degrees of freedom that arise in the neutron-proton IBA is discussed, and in the third one some further applications of algebraic techniques to the calculation of static and dynamic collective properties are presented. (U.K.)

  19. Lectures on geometrical properties of nuclei

    Myers, W.D.

    1975-11-01

    Material concerning the geometrical properties of nuclei is drawn from a number of different sources. The leptodermous nature of nuclear density distributions and potential wells is used to draw together the various geometrical properties of these systems and to provide a unified means for their description. Extensive use is made of expansions of radial properties in terms of the surface diffuseness. A strong case is made for the use of convolution as a geometrical ansatz for generating diffuse surface distributions because of the number of simplifications that arise which are of practical importance. 7 figures

  20. Stock price prediction using geometric Brownian motion

    Farida Agustini, W.; Restu Affianti, Ika; Putri, Endah RM

    2018-03-01

    Geometric Brownian motion is a mathematical model for predicting the future price of stock. The phase that done before stock price prediction is determine stock expected price formulation and determine the confidence level of 95%. On stock price prediction using geometric Brownian Motion model, the algorithm starts from calculating the value of return, followed by estimating value of volatility and drift, obtain the stock price forecast, calculating the forecast MAPE, calculating the stock expected price and calculating the confidence level of 95%. Based on the research, the output analysis shows that geometric Brownian motion model is the prediction technique with high rate of accuracy. It is proven with forecast MAPE value ≤ 20%.

  1. X-ray geometrical smoothing effect in indirect x-ray-drive implosion

    Mochizuki, Takayasu; Sakabe, Shuji; Yamanaka, Chiyoe

    1983-01-01

    X-ray geometrical smoothing effect in indirect X-ray drive pellet implosion for inertial confinement fusion has been numerically analyzed. Attainable X-ray driven ablation pressure has been found to be coupled with X-ray irradiation uniformity. (author)

  2. Transition curves for highway geometric design

    Kobryń, Andrzej

    2017-01-01

    This book provides concise descriptions of the various solutions of transition curves, which can be used in geometric design of roads and highways. It presents mathematical methods and curvature functions for defining transition curves. .

  3. Geometrical scaling of jet fragmentation photons

    Hattori, Koichi, E-mail: koichi.hattori@riken.jp [RIKEN BNL Research Center, Brookhaven National Laboratory, Upton NY 11973 (United States); Theoretical Research Division, Nishina Center, RIKEN, Wako, Saitama 351-0198 (Japan); McLerran, Larry, E-mail: mclerran@bnl.gov [RIKEN BNL Research Center, Brookhaven National Laboratory, Upton NY 11973 (United States); Physics Dept., Bdg. 510A, Brookhaven National Laboratory, Upton, NY-11973 (United States); Physics Dept., China Central Normal University, Wuhan (China); Schenke, Björn, E-mail: bschenke@bnl.gov [Physics Dept., Bdg. 510A, Brookhaven National Laboratory, Upton, NY-11973 (United States)

    2016-12-15

    We discuss jet fragmentation photons in ultrarelativistic heavy-ion collisions. We argue that, if the jet distribution satisfies geometrical scaling and an anisotropic spectrum, these properties are transferred to photons during the jet fragmentation.

  4. Geometric U-folds in four dimensions

    Lazaroiu, C. I.; Shahbazi, C. S.

    2018-01-01

    We describe a general construction of geometric U-folds compatible with a non-trivial extension of the global formulation of four-dimensional extended supergravity on a differentiable spin manifold. The topology of geometric U-folds depends on certain flat fiber bundles which encode how supergravity fields are globally glued together. We show that smooth non-trivial U-folds of this type can exist only in theories where both the scalar and space-time manifolds have non-trivial fundamental group and in addition the scalar map of the solution is homotopically non-trivial. Consistency with string theory requires smooth geometric U-folds to be glued using subgroups of the effective discrete U-duality group, implying that the fundamental group of the scalar manifold of such solutions must be a subgroup of the latter. We construct simple examples of geometric U-folds in a generalization of the axion-dilaton model of \

  5. 5th Dagstuhl Seminar on Geometric Modelling

    Brunnett, Guido; Farin, Gerald; Goldman, Ron

    2004-01-01

    In 19 articles presented by leading experts in the field of geometric modelling the state-of-the-art on representing, modeling, and analyzing curves, surfaces as well as other 3-dimensional geometry is given. The range of applications include CAD/CAM-systems, computer graphics, scientific visualization, virtual reality, simulation and medical imaging. The content of this book is based on selected lectures given at a workshop held at IBFI Schloss Dagstuhl, Germany. Topics treated are: – curve and surface modelling – non-manifold modelling in CAD – multiresolution analysis of complex geometric models – surface reconstruction – variational design – computational geometry of curves and surfaces – 3D meshing – geometric modelling for scientific visualization – geometric models for biomedical applications

  6. The perception of geometrical structure from congruence

    Lappin, Joseph S.; Wason, Thomas D.

    1989-01-01

    The principle function of vision is to measure the environment. As demonstrated by the coordination of motor actions with the positions and trajectories of moving objects in cluttered environments and by rapid recognition of solid objects in varying contexts from changing perspectives, vision provides real-time information about the geometrical structure and location of environmental objects and events. The geometric information provided by 2-D spatial displays is examined. It is proposed that the geometry of this information is best understood not within the traditional framework of perspective trigonometry, but in terms of the structure of qualitative relations defined by congruences among intrinsic geometric relations in images of surfaces. The basic concepts of this geometrical theory are outlined.

  7. Mechanisms of geometrical seismic attenuation

    Igor B. Morozov

    2011-07-01

    Full Text Available In several recent reports, we have explained the frequency dependence of the apparent seismic quality-factor (Q observed in many studies according to the effects of geometrical attenuation, which was defined as the zero-frequency limit of the temporal attenuation coefficient. In particular, geometrical attenuation was found to be positive for most waves traveling within the lithosphere. Here, we present three theoretical models that illustrate the origin of this geometrical attenuation, and we investigate the causes of its preferential positive values. In addition, we discuss the physical basis and limitations of both the conventional and new attenuation models. For waves in media with slowly varying properties, geometrical attenuation is caused by variations in the wavefront curvature, which can be both positive (for defocusing and negative (for focusing. In media with velocity/density contrasts, incoherent reflectivity leads to geometrical-attenuation coefficients which are proportional to the mean squared reflectivity and are always positive. For «coherent» reflectivity, the geometrical attenuation is approximately zero, and the attenuation process can be described according to the concept of «scattering Q». However, the true meaning of this parameter is in describing the mean reflectivity within the medium, and not that of the traditional resonator quality factor known in mechanics. The general conclusion from these models is that non-zero and often positive levels of geometrical attenuation are common in realistic, heterogeneous media, both observationally and theoretically. When transformed into the conventional Q-factor form, this positive geometrical attenuation leads to Q values that quickly increase with frequency. These predictions show that the positive frequency-dependent Q observed in many datasets might represent artifacts of the transformations of the attenuation coefficients into Q.

  1. Exponentiated Lomax Geometric Distribution: Properties and Applications

    Amal Soliman Hassan

    2017-09-01

    Full Text Available In this paper, a new four-parameter lifetime distribution, called the exponentiated Lomax geometric (ELG is introduced. The new lifetime distribution contains the Lomax geometric and exponentiated Pareto geometric as new sub-models. Explicit algebraic formulas of probability density function, survival and hazard functions are derived. Various structural properties of the new model are derived including; quantile function, Re'nyi entropy, moments, probability weighted moments, order statistic, Lorenz and Bonferroni curves. The estimation of the model parameters is performed by maximum likelihood method and inference for a large sample is discussed. The flexibility and potentiality of the new model in comparison with some other distributions are shown via an application to a real data set. We hope that the new model will be an adequate model for applications in various studies.

  2. Normed algebras and the geometric series test

    Robert Kantrowitz

    2017-11-01

    Full Text Available The purpose of this article is to survey a class of normed algebras that share many central features of Banach algebras, save for completeness. The likeness of these algebras to Banach algebras derives from the fact that the geometric series test is valid, whereas the lack of completeness points to the failure of the absolute convergence test for series in the algebra. Our main result is a compendium of conditions that are all equivalent to the validity of the geometric series test for commutative unital normed algebras. Several examples in the final section showcase some incomplete normed algebras for which the geometric series test is valid, and still others for which it is not.

  3. Geometric function theory in higher dimension

    2017-01-01

    The book collects the most relevant outcomes from the INdAM Workshop “Geometric Function Theory in Higher Dimension” held in Cortona on September 5-9, 2016. The Workshop was mainly devoted to discussions of basic open problems in the area, and this volume follows the same line. In particular, it offers a selection of original contributions on Loewner theory in one and higher dimensions, semigroups theory, iteration theory and related topics. Written by experts in geometric function theory in one and several complex variables, it focuses on new research frontiers in this area and on challenging open problems. The book is intended for graduate students and researchers working in complex analysis, several complex variables and geometric function theory.

  4. EARLY HISTORY OF GEOMETRIC PROBABILITY AND STEREOLOGY

    Magdalena Hykšová

    2012-03-01

    Full Text Available The paper provides an account of the history of geometric probability and stereology from the time of Newton to the early 20th century. It depicts the development of two parallel ways: on one hand, the theory of geometric probability was formed with minor attention paid to other applications than those concerning spatial chance games. On the other hand, practical rules of the estimation of area or volume fraction and other characteristics, easily deducible from geometric probability theory, were proposed without the knowledge of this branch. A special attention is paid to the paper of J.-É. Barbier published in 1860, which contained the fundamental stereological formulas, but remained almost unnoticed both by mathematicians and practicians.

  5. Geometric optimization and sums of algebraic functions

    Vigneron, Antoine E.

    2014-01-01

    We present a new optimization technique that yields the first FPTAS for several geometric problems. These problems reduce to optimizing a sum of nonnegative, constant description complexity algebraic functions. We first give an FPTAS for optimizing such a sum of algebraic functions, and then we apply it to several geometric optimization problems. We obtain the first FPTAS for two fundamental geometric shape-matching problems in fixed dimension: maximizing the volume of overlap of two polyhedra under rigid motions and minimizing their symmetric difference. We obtain the first FPTAS for other problems in fixed dimension, such as computing an optimal ray in a weighted subdivision, finding the largest axially symmetric subset of a polyhedron, and computing minimum-area hulls.

  6. Understanding geometric algebra for electromagnetic theory

    Arthur, John W

    2011-01-01

    "This book aims to disseminate geometric algebra as a straightforward mathematical tool set for working with and understanding classical electromagnetic theory. It's target readership is anyone who has some knowledge of electromagnetic theory, predominantly ordinary scientists and engineers who use it in the course of their work, or postgraduate students and senior undergraduates who are seeking to broaden their knowledge and increase their understanding of the subject. It is assumed that the reader is not a mathematical specialist and is neither familiar with geometric algebra or its application to electromagnetic theory. The modern approach, geometric algebra, is the mathematical tool set we should all have started out with and once the reader has a grasp of the subject, he or she cannot fail to realize that traditional vector analysis is really awkward and even misleading by comparison"--Provided by publisher.

  7. Spherical projections and liftings in geometric tomography

    Goodey, Paul; Kiderlen, Markus; Weil, Wolfgang

    2011-01-01

    We consider a variety of integral transforms arising in Geometric Tomography. It will be shown that these can be put into a common framework using spherical projection and lifting operators. These operators will be applied to support functions and surface area measures of convex bodies and to rad......We consider a variety of integral transforms arising in Geometric Tomography. It will be shown that these can be put into a common framework using spherical projection and lifting operators. These operators will be applied to support functions and surface area measures of convex bodies...... and to radial functions of star bodies. We then investigate averages of lifted projections and show that they correspond to self-adjoint intertwining operators. We obtain formulas for the eigenvalues of these operators and use them to ascertain circumstances under which tomographic measurements determine...... the original bodies. This approach via mean lifted projections leads us to some unexpected relationships between seemingly disparate geometric constructions....

  8. The effect of photometric and geometric context on photometric and geometric lightness effects.

    Lee, Thomas Y; Brainard, David H

    2014-01-24

    We measured the lightness of probe tabs embedded at different orientations in various contextual images presented on a computer-controlled stereo display. Two background context planes met along a horizontal roof-like ridge. Each plane was a graphic rendering of a set of achromatic surfaces with the simulated illumination for each plane controlled independently. Photometric context was varied by changing the difference in simulated illumination intensity between the two background planes. Geometric context was varied by changing the angle between them. We parsed the data into separate photometric effects and geometric effects. For fixed geometry, varying photometric context led to linear changes in both the photometric and geometric effects. Varying geometric context did not produce a statistically reliable change in either the photometric or geometric effects.

  9. Sudan-decoding generalized geometric Goppa codes

    Heydtmann, Agnes Eileen

    2003-01-01

    Generalized geometric Goppa codes are vector spaces of n-tuples with entries from different extension fields of a ground field. They are derived from evaluating functions similar to conventional geometric Goppa codes, but allowing evaluation in places of arbitrary degree. A decoding scheme...... for these codes based on Sudan's improved algorithm is presented and its error-correcting capacity is analyzed. For the implementation of the algorithm it is necessary that the so-called increasing zero bases of certain spaces of functions are available. A method to obtain such bases is developed....

  10. The geometric phase in quantum physics

    Bohm, A.

    1993-03-01

    After an explanatory introduction, a quantum system in a classical time-dependent environment is discussed; an example is a magnetic moment in a classical magnetic field. At first, the general abelian case is discussed in the adiabatic approximation. Then the geometric phase for nonadiabatic change of the environment (Anandan--Aharonov phase) is introduced, and after that general cyclic (nonadiabatic) evolution is discussed. The mathematics of fiber bundles is introduced, and some of its results are used to describe the relation between the adiabatic Berry phase and the geometric phase for general cyclic evolution of a pure state. The discussion is restricted to the abelian, U(1) phase

  11. Geometric modular action and transformation groups

    Summers, S.J.

    1996-01-01

    We study a weak form of geometric modular action, which is naturally associated with transformation groups of partially ordered sets and which provides these groups with projective representations. Under suitable conditions it is shown that these groups are implemented by point transformations of topological spaces serving as models for space-times, leading to groups which may be interpreted as symmetry groups of the space-times. As concrete examples, it is shown that the Poincare group and the de Sitter group can be derived from this condition of geometric modular action. Further consequences and examples are discussed. (orig.)

  12. Geometrical methods for power network analysis

    Bellucci, Stefano; Tiwari, Bhupendra Nath [Istituto Nazioneale di Fisica Nucleare, Frascati, Rome (Italy). Lab. Nazionali di Frascati; Gupta, Neeraj [Indian Institute of Technology, Kanpur (India). Dept. of Electrical Engineering

    2013-02-01

    Uses advanced geometrical methods to analyse power networks. Provides a self-contained and tutorial introduction. Includes a fully worked-out example for the IEEE 5 bus system. This book is a short introduction to power system planning and operation using advanced geometrical methods. The approach is based on well-known insights and techniques developed in theoretical physics in the context of Riemannian manifolds. The proof of principle and robustness of this approach is examined in the context of the IEEE 5 bus system. This work addresses applied mathematicians, theoretical physicists and power engineers interested in novel mathematical approaches to power network theory.

  13. Aspects of the geometrical approach to supermanifolds

    Rogers, A.

    1984-01-01

    Various topics in the theory and application of the geometrical approach to supermanifolds are discussed. The construction of the superspace used in supergravity over an arbitrary spacetime manifold is described. Super Lie groups and their relation to graded Lie algebras (and more general structures referred to as 'graded Lie modules') are discussed, with examples. Certain supermanifolds, allowed in the geometric approach (using the fine topology), but having no analogue in the algebraic approach, are discussed. Finally lattice supersymmetry, and its relation to the differential geometry of supermanifolds, is discussed. (orig.)

  14. Geometrical superresolved imaging using nonperiodic spatial masking.

    Borkowski, Amikam; Zalevsky, Zeev; Javidi, Bahram

    2009-03-01

    The resolution of every imaging system is limited either by the F-number of its optics or by the geometry of its detection array. The geometrical limitation is caused by lack of spatial sampling points as well as by the shape of every sampling pixel that generates spectral low-pass filtering. We present a novel approach to overcome the low-pass filtering that is due to the shape of the sampling pixels. The approach combines special algorithms together with spatial masking placed in the intermediate image plane and eventually allows geometrical superresolved imaging without relation to the actual shape of the pixels.

  15. Workshop on Topology and Geometric Group Theory

    Fowler, James; Lafont, Jean-Francois; Leary, Ian

    2016-01-01

    This book presents articles at the interface of two active areas of research: classical topology and the relatively new field of geometric group theory. It includes two long survey articles, one on proofs of the Farrell–Jones conjectures, and the other on ends of spaces and groups. In 2010–2011, Ohio State University (OSU) hosted a special year in topology and geometric group theory. Over the course of the year, there were seminars, workshops, short weekend conferences, and a major conference out of which this book resulted. Four other research articles complement these surveys, making this book ideal for graduate students and established mathematicians interested in entering this area of research.

  16. Geometric model of topological insulators from the Maxwell algebra

    Palumbo, Giandomenico

    2017-11-01

    We propose a novel geometric model of time-reversal-invariant topological insulators in three dimensions in presence of an external electromagnetic field. Their gapped boundary supports relativistic quantum Hall states and is described by a Chern-Simons theory, where the gauge connection takes values in the Maxwell algebra. This represents a non-central extension of the Poincaré algebra and takes into account both the Lorentz and magnetic-translation symmetries of the surface states. In this way, we derive a relativistic version of the Wen-Zee term and we show that the non-minimal coupling between the background geometry and the electromagnetic field in the model is in agreement with the main properties of the relativistic quantum Hall states in the flat space.

  17. Geometric Model of Topological Insulators from the Maxwell Algebra

    Palumbo, Giandomenico

    I propose a novel geometric model of time-reversal-invariant topological insulators in three dimensions in presence of an external electromagnetic field. Their gapped boundary supports relativistic quantum Hall states and is described by a Chern-Simons theory, where the gauge connection takes values in the Maxwell algebra. This represents a non-central extension of the Poincare' algebra and takes into account both the Lorentz and magnetic-translation symmetries of the surface states. In this way, I derive a relativistic version of the Wen-Zee term and I show that the non-minimal coupling between the background geometry and the electromagnetic field in the model is in agreement with the main properties of the relativistic quantum Hall states in the flat space. This work is part of the DITP consortium, a program of the Netherlands Organisation for Scientific Research (NWO) that is funded by the Dutch Ministry of Education, Culture and Science (OCW).

  18. Dynamics beyond uniform hyperbolicity a global geometric and probabilistic perspective

    Bonatti, Christian; Viana, Marcelo

    2005-01-01

    The notion of uniform hyperbolicity, introduced by Steve Smale in the early sixties, unified important developments and led to a remarkably successful theory for a large class of systems: uniformly hyperbolic systems often exhibit complicated evolution which, nevertheless, is now rather well understood, both geometrically and statistically.Another revolution has been taking place in the last couple of decades, as one tries to build a global theory for "most" dynamical systems, recovering as much as possible of the conclusions of the uniformly hyperbolic case, in great generality. This book aims to put such recent developments in a unified perspective, and to point out open problems and likely directions for further progress. It is aimed at researchers, both young and senior, willing to get a quick, yet broad, view of this part of dynamics. Main ideas, methods, and results are discussed, at variable degrees of depth, with references to the original works for details and complementary information.

  19. Spatial non-adiabatic passage using geometric phases

    Benseny, Albert; Busch, Thomas [Okinawa Institute of Science and Technology Graduate University, Quantum Systems Unit, Okinawa (Japan); Kiely, Anthony; Ruschhaupt, Andreas [University College Cork, Department of Physics, Cork (Ireland); Zhang, Yongping [Okinawa Institute of Science and Technology Graduate University, Quantum Systems Unit, Okinawa (Japan); Shanghai University, Department of Physics, Shanghai (China)

    2017-12-15

    Quantum technologies based on adiabatic techniques can be highly effective, but often at the cost of being very slow. Here we introduce a set of experimentally realistic, non-adiabatic protocols for spatial state preparation, which yield the same fidelity as their adiabatic counterparts, but on fast timescales. In particular, we consider a charged particle in a system of three tunnel-coupled quantum wells, where the presence of a magnetic field can induce a geometric phase during the tunnelling processes. We show that this leads to the appearance of complex tunnelling amplitudes and allows for the implementation of spatial non-adiabatic passage. We demonstrate the ability of such a system to transport a particle between two different wells and to generate a delocalised superposition between the three traps with high fidelity in short times. (orig.)

  20. Theoretical frameworks for the learning of geometrical reasoning

    Jones, Keith

    1998-01-01

    With the growth in interest in geometrical ideas it is important to be clear about the nature of geometrical reasoning and how it develops. This paper provides an overview of three theoretical frameworks for the learning of geometrical reasoning: the van Hiele model of thinking in geometry, Fischbein’s theory of figural concepts, and Duval’s cognitive model of geometrical reasoning. Each of these frameworks provides theoretical resources to support research into the development of geometrical...

  1. Impossible Geometric Constructions: A Calculus Writing Project

    Awtrey, Chad

    2013-01-01

    This article discusses a writing project that offers students the opportunity to solve one of the most famous geometric problems of Greek antiquity; namely, the impossibility of trisecting the angle [pi]/3. Along the way, students study the history of Greek geometry problems as well as the life and achievements of Carl Friedrich Gauss. Included is…

  2. Rejuvenating Allen's Arc with the Geometric Mean.

    Phillips, William A.

    1994-01-01

    Contends that, despite ongoing criticism, Allen's arc elasticity formula remains entrenched in the microeconomics principles curriculum. Reviews the evolution and continuing scrutiny of the formula. Argues that the use of the geometric mean offers pedagogical advantages over the traditional arithmetic mean approach. (CFR)

  3. Geometric Models for Collaborative Search and Filtering

    Bitton, Ephrat

    2011-01-01

    This dissertation explores the use of geometric and graphical models for a variety of information search and filtering applications. These models serve to provide an intuitive understanding of the problem domains and as well as computational efficiencies to our solution approaches. We begin by considering a search and rescue scenario where both…

  4. Geometric Abstract Art and Public Health Data

    2016-10-18

    Dr. Salaam Semaan, a CDC behavioral scientist, discusses the similarities between geometric abstract art and public health data analysis.  Created: 10/18/2016 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 10/18/2016.

  5. Geometric phase topology in weak measurement

    Samlan, C. T.; Viswanathan, Nirmal K.

    2017-12-01

    The geometric phase visualization proposed by Bhandari (R Bhandari 1997 Phys. Rep. 281 1-64) in the ellipticity-ellipse orientation basis of the polarization ellipse of light is implemented to understand the geometric aspects of weak measurement. The weak interaction of a pre-selected state, acheived via spin-Hall effect of light (SHEL), results in a spread in the polarization ellipticity (η) or ellipse orientation (χ) depending on the resulting spatial or angular shift, respectively. The post-selection leads to the projection of the η spread in the complementary χ basis results in the appearance of a geometric phase with helical phase topology in the η - χ parameter space. By representing the weak measurement on the Poincaré sphere and using Jones calculus, the complex weak value and the geometric phase topology are obtained. This deeper understanding of the weak measurement process enabled us to explore the techniques’ capabilities maximally, as demonstrated via SHEL in two examples—external reflection at glass-air interface and transmission through a tilted half-wave plate.

  6. Geometrical tile design for complex neighborhoods.

    Czeizler, Eugen; Kari, Lila

    2009-01-01

    Recent research has showed that tile systems are one of the most suitable theoretical frameworks for the spatial study and modeling of self-assembly processes, such as the formation of DNA and protein oligomeric structures. A Wang tile is a unit square, with glues on its edges, attaching to other tiles and forming larger and larger structures. Although quite intuitive, the idea of glues placed on the edges of a tile is not always natural for simulating the interactions occurring in some real systems. For example, when considering protein self-assembly, the shape of a protein is the main determinant of its functions and its interactions with other proteins. Our goal is to use geometric tiles, i.e., square tiles with geometrical protrusions on their edges, for simulating tiled paths (zippers) with complex neighborhoods, by ribbons of geometric tiles with simple, local neighborhoods. This paper is a step toward solving the general case of an arbitrary neighborhood, by proposing geometric tile designs that solve the case of a "tall" von Neumann neighborhood, the case of the f-shaped neighborhood, and the case of a 3 x 5 "filled" rectangular neighborhood. The techniques can be combined and generalized to solve the problem in the case of any neighborhood, centered at the tile of reference, and included in a 3 x (2k + 1) rectangle.

  7. Geometric Representations for Discrete Fourier Transforms

    Cambell, C. W.

    1986-01-01

    Simple geometric representations show symmetry and periodicity of discrete Fourier transforms (DFT's). Help in visualizing requirements for storing and manipulating transform value in computations. Representations useful in any number of dimensions, but particularly in one-, two-, and three-dimensional cases often encountered in practice.

  8. Geometric Series and Computers--An Application.

    McNerney, Charles R.

    1983-01-01

    This article considers the sum of a finite geometric series as applied to numeric data storage in the memory of an electronic digital computer. The presentation is viewed as relevant to programing in several languages and removes some of the mystique associated with syntax constraints that any language imposes. (MP)

  9. Geometric Transformations in Middle School Mathematics Textbooks

    Zorin, Barbara

    2011-01-01

    This study analyzed treatment of geometric transformations in presently available middle grades (6, 7, 8) student mathematics textbooks. Fourteen textbooks from four widely used textbook series were evaluated: two mainline publisher series, Pearson (Prentice Hall) and Glencoe (Math Connects); one National Science Foundation (NSF) funded curriculum…

  10. Geometric calibration of ERS satellite SAR images

    Mohr, Johan Jacob; Madsen, Søren Nørvang

    2001-01-01

    Geometric calibration of the European Remote Sensing (ERS) Satellite synthetic aperture radar (SAR) slant range images is important in relation to mapping areas without ground reference points and also in relation to automated processing. The relevant SAR system parameters are discussed...

  11. Non-crossing geometric steiner arborescences

    Kostitsyna, I.; Speckmann, B.; Verbeek, K.A.B.; Okamoto, Yoshio; Tokuyama, Takeshi

    2017-01-01

    Motivated by the question of simultaneous embedding of several flow maps, we consider the problem of drawing multiple geometric Steiner arborescences with no crossings in the rectilinear and in the angle-restricted setting. When terminal-to-root paths are allowed to turn freely, we show that two

  12. On Kaehler's geometric description of dirac fields

    Goeckeler, M.; Joos, H.

    1983-12-01

    A differential geometric generalization of the Dirac equation due to E. Kaehler seems to be an appropriate starting point for the lattice approximation of matter fields. It is the purpose of this lecture to illustrate several aspects of this approach. (orig./HSI)

  13. Robust Geometric Control of a Distillation Column

    Kymmel, Mogens; Andersen, Henrik Weisberg

    1987-01-01

    A frequency domain method, which makes it possible to adjust multivariable controllers with respect to both nominal performance and robustness, is presented. The basic idea in the approach is that the designer assigns objectives such as steady-state tracking, maximum resonance peaks, bandwidth, m...... is used to examine and improve geometric control of a binary distillation column....

  14. Geometric Algorithms for Part Orienting and Probing

    Panahi, F.

    2015-01-01

    In this thesis, detailed solutions are presented to several problems dealing with geometric shape and orientation of an object in the field of robotics and automation. We first have considered a general model for shape variations that allows variation along the entire boundary of an object, both in

  15. Non-equilibrium current via geometric scatterers

    Exner, Pavel; Neidhardt, H.; Tater, Miloš; Zagrebnov, V. A.

    2014-01-01

    Roč. 47, č. 39 (2014), s. 395301 ISSN 1751-8113 R&D Projects: GA ČR(CZ) GA14-06818S Institutional support: RVO:61389005 Keywords : non-equilibrioum steady states * geometric scatterer * Landauer-Buttiker formula Subject RIV: BE - Theoretical Physics Impact factor: 1.583, year: 2014

  16. Geometrical scaling in high energy hadron collisions

    Kundrat, V.; Lokajicek, M.V.

    1984-06-01

    The concept of geometrical scaling for high energy elastic hadron scattering is analyzed and its basic equations are solved in a consistent way. It is shown that they are applicable to a rather small interval of momentum transfers, e.g. maximally for |t| 2 for pp scattering at the ISR energies. (author)

  17. Geometrical efficiency in computerized tomography: generalized model

    Costa, P.R.; Robilotta, C.C.

    1992-01-01

    A simplified model for producing sensitivity and exposure profiles in computerized tomographic system was recently developed allowing the forecast of profiles behaviour in the rotation center of the system. The generalization of this model for some point of the image plane was described, and the geometrical efficiency could be evaluated. (C.G.C.)

  18. Can EPR non-locality be geometrical?

    Ne'eman, Y.

    1995-01-01

    The presence in Quantum Mechanics of non-local correlations is one of the two fundamentally non-intuitive features of that theory. The non-local correlations themselves fall into two classes: EPR and Geometrical. The non-local characteristics of the geometrical type are well-understood and are not suspected of possibly generating acausal features, such as faster-than-light propagation of information. This has especially become true since the emergence of a geometrical treatment for the relevant gauge theories, i.e. Fiber Bundle geometry, in which the quantum non-localities are seen to correspond to pure homotopy considerations. This aspect is reviewed in section 2. Contrary-wise, from its very conception, the EPR situation was felt to be paradoxical. It has been suggested that the non-local features of EPR might also derive from geometrical considerations, like all other non-local characteristics of QM. In[7], one of the authors was able to point out several plausibility arguments for this thesis, emphasizing in particular similarities between the non-local correlations provided by any gauge field theory and those required by the preservation of the quantum numbers of the original EPR state-vector, throughout its spatially-extended mode. The derivation was, however, somewhat incomplete, especially because of the apparent difference between, on the one hand, the closed spatial loops arising in the analysis of the geometrical non-localities, from Aharonov-Bohm and Berry phases to magnetic monopoles and instantons, and on the other hand, in the EPR case, the open line drawn by the positions of the two moving decay products of the disintegrating particle. In what follows, the authors endeavor to remove this obstacle and show that as in all other QM non-localities, EPR is somehow related to closed loops, almost involving homotopy considerations. They develop this view in section 3

  19. A GEOMETRICAL HEIGHT SCALE FOR SUNSPOT PENUMBRAE

    Puschmann, K. G.; Ruiz Cobo, B.; MartInez Pillet, V.

    2010-01-01

    Inversions of spectropolarimetric observations of penumbral filaments deliver the stratification of different physical quantities in an optical depth scale. However, without establishing a geometrical height scale, their three-dimensional geometrical structure cannot be derived. This is crucial in understanding the correct spatial variation of physical properties in the penumbral atmosphere and to provide insights into the mechanism capable of explaining the observed penumbral brightness. The aim of this work is to determine a global geometrical height scale in the penumbra by minimizing the divergence of the magnetic field vector and the deviations from static equilibrium as imposed by a force balance equation that includes pressure gradients, gravity, and the Lorentz force. Optical depth models are derived from the inversion of spectropolarimetric data of an active region observed with the Solar Optical Telescope on board the Hinode satellite. We use a genetic algorithm to determine the boundary condition for the inference of geometrical heights. The retrieved geometrical height scale permits the evaluation of the Wilson depression at each pixel and the correlation of physical quantities at each height. Our results fit into the uncombed penumbral scenario, i.e., a penumbra composed of flux tubes with channeled mass flow and with a weaker and more horizontal magnetic field as compared with the background field. The ascending material is hotter and denser than their surroundings. We do not find evidence of overturning convection or field-free regions in the inner penumbral area analyzed. The penumbral brightness can be explained by the energy transfer of the ascending mass carried by the Evershed flow, if the physical quantities below z = -75 km are extrapolated from the results of the inversion.

  20. THEORETICAL RESEARCH ON HYDRODYNAMICS OF A GEOMETRIC SPAR IN FREQUENCY- AND TIME-DOMAINS

    WANG Ying; YANG Jian-min; HU Zhi-qiang; XIAO Long-fei

    2008-01-01

    Considering the coupling effects of the vessel and its riser and mooring system, hydrodynamic analyses of a geometric spar were performed both in frequency- and time-domains. Based on the boundary element method, the 3-D panel model of the geometric spar and the related free water surface model were established, and the first-order and second-order difference-frequency wave loads and other hydrodynamic coefficients were calculated. Frequency domain analysis of the motion Response Amplitude Operators (RAO) and Quadratic Transfer Functions (QTF) and time domain analysis of the response series and spectra in an extreme wave condition were conducted for the coupled system with the mooring lines and risers involved. These analyses were further validated by the physical model test results.

  1. Geometric description of images as topographic maps

    Caselles, Vicent

    2010-01-01

    This volume discusses the basic geometric contents of an image and presents a tree data structure to handle those contents efficiently. The nodes of the tree are derived from connected components of level sets of the intensity, while the edges represent inclusion information. Grain filters, morphological operators simplifying these geometric contents, are analyzed and several applications to image comparison and registration, and to edge and corner detection, are presented. The mathematically inclined reader may be most interested in Chapters 2 to 6, which generalize the topological Morse description to continuous or semicontinuous functions, while mathematical morphologists may more closely consider grain filters in Chapter 3. Computer scientists will find algorithmic considerations in Chapters 6 and 7, the full justification of which may be found in Chapters 2 and 4 respectively. Lastly, all readers can learn more about the motivation for this work in the image processing applications presented in Chapter 8...

  2. Towards a theory of geometric graphs

    Pach, Janos

    2004-01-01

    The early development of graph theory was heavily motivated and influenced by topological and geometric themes, such as the Konigsberg Bridge Problem, Euler's Polyhedral Formula, or Kuratowski's characterization of planar graphs. In 1936, when Denes Konig published his classical Theory of Finite and Infinite Graphs, the first book ever written on the subject, he stressed this connection by adding the subtitle Combinatorial Topology of Systems of Segments. He wanted to emphasize that the subject of his investigations was very concrete: planar figures consisting of points connected by straight-line segments. However, in the second half of the twentieth century, graph theoretical research took an interesting turn. In the most popular and most rapidly growing areas (the theory of random graphs, Ramsey theory, extremal graph theory, algebraic graph theory, etc.), graphs were considered as abstract binary relations rather than geometric objects. Many of the powerful techniques developed in these fields have been su...

  3. Plasmon Geometric Phase and Plasmon Hall Shift

    Shi, Li-kun; Song, Justin C. W.

    2018-04-01

    The collective plasmonic modes of a metal comprise a simple pattern of oscillating charge density that yields enhanced light-matter interaction. Here we unveil that beneath this familiar facade plasmons possess a hidden internal structure that fundamentally alters its dynamics. In particular, we find that metals with nonzero Hall conductivity host plasmons with an intricate current density configuration that sharply departs from that of ordinary zero Hall conductivity metals. This nontrivial internal structure dramatically enriches the dynamics of plasmon propagation, enabling plasmon wave packets to acquire geometric phases as they scatter. At boundaries, these phases accumulate allowing plasmon waves that reflect off to experience a nonreciprocal parallel shift. This plasmon Hall shift, tunable by Hall conductivity as well as plasmon wavelength, displaces the incident and reflected plasmon trajectories and can be readily probed by near-field photonics techniques. Anomalous plasmon geometric phases dramatically enrich the nanophotonics toolbox, and yield radical new means for directing plasmonic beams.

  4. Geometric mechanics of periodic pleated origami.

    Wei, Z Y; Guo, Z V; Dudte, L; Liang, H Y; Mahadevan, L

    2013-05-24

    Origami structures are mechanical metamaterials with properties that arise almost exclusively from the geometry of the constituent folds and the constraint of piecewise isometric deformations. Here we characterize the geometry and planar and nonplanar effective elastic response of a simple periodically folded Miura-ori structure, which is composed of identical unit cells of mountain and valley folds with four-coordinated ridges, defined completely by two angles and two lengths. We show that the in-plane and out-of-plane Poisson's ratios are equal in magnitude, but opposite in sign, independent of material properties. Furthermore, we show that effective bending stiffness of the unit cell is singular, allowing us to characterize the two-dimensional deformation of a plate in terms of a one-dimensional theory. Finally, we solve the inverse design problem of determining the geometric parameters for the optimal geometric and mechanical response of these extreme structures.

  5. Geometric methods in PDE’s

    Manfredini, Maria; Morbidelli, Daniele; Polidoro, Sergio; Uguzzoni, Francesco

    2015-01-01

    The analysis of PDEs is a prominent discipline in mathematics research, both in terms of its theoretical aspects and its relevance in applications. In recent years, the geometric properties of linear and nonlinear second order PDEs of elliptic and parabolic type have been extensively studied by many outstanding researchers. This book collects contributions from a selected group of leading experts who took part in the INdAM meeting "Geometric methods in PDEs", on the occasion of the 70th birthday of Ermanno Lanconelli. They describe a number of new achievements and/or the state of the art in their discipline of research, providing readers an overview of recent progress and future research trends in PDEs. In particular, the volume collects significant results for sub-elliptic equations, potential theory and diffusion equations, with an emphasis on comparing different methodologies and on their implications for theory and applications. .

  6. A Practical Guide to Experimental Geometrical Optics

    Garbovskiy, Yuriy A.; Glushchenko, Anatoliy V.

    2017-12-01

    Preface; 1. Markets of optical materials, components, accessories, light sources and detectors; 2. Introduction to optical experiments: light producing, light managing, light detection and measuring; 3. Light detectors based on semiconductors: photoresistors, photodiodes in a photo-galvanic regime. Principles of operation and measurements; 4. Linear light detectors based on photodiodes; 5. Basic laws of geometrical optics: experimental verification; 6. Converging and diverging thin lenses; 7. Thick lenses; 8. Lens systems; 9. Simple optical instruments I: the eye and the magnifier, eyepieces and telescopes; 10. Simple optical instruments II: light illuminators and microscope; 11. Spherical mirrors; 12. Introduction to optical aberrations; 13. Elements of optical radiometry; 14. Cylindrical lenses and vials; 15. Methods of geometrical optics to measure refractive index; 16. Dispersion of light and prism spectroscope; 17. Elements of computer aided optical design; Index.

  7. Coated sphere scattering by geometric optics approximation.

    Mengran, Zhai; Qieni, Lü; Hongxia, Zhang; Yinxin, Zhang

    2014-10-01

    A new geometric optics model has been developed for the calculation of light scattering by a coated sphere, and the analytic expression for scattering is presented according to whether rays hit the core or not. The ray of various geometric optics approximation (GOA) terms is parameterized by the number of reflections in the coating/core interface, the coating/medium interface, and the number of chords in the core, with the degeneracy path and repeated path terms considered for the rays striking the core, which simplifies the calculation. For the ray missing the core, the various GOA terms are dealt with by a homogeneous sphere. The scattering intensity of coated particles are calculated and then compared with those of Debye series and Aden-Kerker theory. The consistency of the results proves the validity of the method proposed in this work.

  8. Geometrical Description of fractional quantum Hall quasiparticles

    Park, Yeje; Yang, Bo; Haldane, F. D. M.

    2012-02-01

    We examine a description of fractional quantum Hall quasiparticles and quasiholes suggested by a recent geometrical approach (F. D. M. Haldane, Phys. Rev. Lett. 108, 116801 (2011)) to FQH systems, where the local excess electric charge density in the incompressible state is given by a topologically-quantized ``guiding-center spin'' times the Gaussian curvature of a ``guiding-center metric tensor'' that characterizes the local shape of the correlation hole around electrons in the fluid. We use a phenomenological energy function with two ingredients: the shear distortion energy of area-preserving distortions of the fluid, and a local (short-range) approximation to the Coulomb energy of the fluctuation of charge density associated with the Gaussian curvature. Quasiparticles and quasiholes of the 1/3 Laughlin state are modeled as ``punctures'' in the incompressible fluid which then relax by geometric distortion which generates Gaussian curvature, giving rise to the charge-density profile around the topological excitation.

  9. The geometric Hopf invariant and surgery theory

    Crabb, Michael

    2017-01-01

    Written by leading experts in the field, this monograph provides homotopy theoretic foundations for surgery theory on higher-dimensional manifolds. Presenting classical ideas in a modern framework, the authors carefully highlight how their results relate to (and generalize) existing results in the literature. The central result of the book expresses algebraic surgery theory in terms of the geometric Hopf invariant, a construction in stable homotopy theory which captures the double points of immersions. Many illustrative examples and applications of the abstract results are included in the book, making it of wide interest to topologists. Serving as a valuable reference, this work is aimed at graduate students and researchers interested in understanding how the algebraic and geometric topology fit together in the surgery theory of manifolds. It is the only book providing such a wide-ranging historical approach to the Hopf invariant, double points and surgery theory, with many results old and new. .

  10. Geometric modeling in probability and statistics

    Calin, Ovidiu

    2014-01-01

    This book covers topics of Informational Geometry, a field which deals with the differential geometric study of the manifold probability density functions. This is a field that is increasingly attracting the interest of researchers from many different areas of science, including mathematics, statistics, geometry, computer science, signal processing, physics and neuroscience. It is the authors’ hope that the present book will be a valuable reference for researchers and graduate students in one of the aforementioned fields. This textbook is a unified presentation of differential geometry and probability theory, and constitutes a text for a course directed at graduate or advanced undergraduate students interested in applications of differential geometry in probability and statistics. The book contains over 100 proposed exercises meant to help students deepen their understanding, and it is accompanied by software that is able to provide numerical computations of several information geometric objects. The reader...

  11. Geometrical dynamics of Born-Infeld objects

    Cordero, Ruben [Departamento de Fisica, Escuela Superior de Fisica y Matematicas del I.P.N., Unidad Adolfo Lopez Mateos, Edificio 9, 07738 Mexico, D.F. (Mexico); Molgado, Alberto [Facultad de Ciencias, Universidad de Colima, Bernal DIaz del Castillo 340, Col. Villas San Sebastian, Colima (Mexico); Rojas, Efrain [Facultad de Fisica e Inteligencia Artificial, Universidad Veracruzana, 91000 Xalapa, Veracruz (Mexico)

    2007-03-21

    We present a geometrically inspired study of the dynamics of Dp-branes. We focus on the usual non-polynomial Dirac-Born-Infeld action for the worldvolume swept out by the brane in its evolution in general background spacetimes. We emphasize the form of the resulting equations of motion which are quite simple and resemble Newton's second law, complemented with a conservation law for a worldvolume bicurrent. We take a closer look at the classical Hamiltonian analysis which is supported by the ADM framework of general relativity. The constraints and their algebra are identified as well as the geometrical role they play in phase space. In order to illustrate our results, we review the dynamics of a D1-brane immersed in a AdS{sub 3} x S{sup 3} background spacetime. We exhibit the mechanical properties of Born-Infeld objects paving the way to a consistent quantum formulation.

  12. Geometrical dynamics of Born-Infeld objects

    Cordero, Ruben; Molgado, Alberto; Rojas, Efrain

    2007-01-01

    We present a geometrically inspired study of the dynamics of Dp-branes. We focus on the usual non-polynomial Dirac-Born-Infeld action for the worldvolume swept out by the brane in its evolution in general background spacetimes. We emphasize the form of the resulting equations of motion which are quite simple and resemble Newton's second law, complemented with a conservation law for a worldvolume bicurrent. We take a closer look at the classical Hamiltonian analysis which is supported by the ADM framework of general relativity. The constraints and their algebra are identified as well as the geometrical role they play in phase space. In order to illustrate our results, we review the dynamics of a D1-brane immersed in a AdS 3 x S 3 background spacetime. We exhibit the mechanical properties of Born-Infeld objects paving the way to a consistent quantum formulation

  13. A practical guide to experimental geometrical optics

    Garbovskiy, Yuriy A

    2017-01-01

    A concise, yet deep introduction to experimental, geometrical optics, this book begins with fundamental concepts and then develops the practical skills and research techniques routinely used in modern laboratories. Suitable for students, researchers and optical engineers, this accessible text teaches readers how to build their own optical laboratory and to design and perform optical experiments. It uses a hands-on approach which fills a gap between theory-based textbooks and laboratory manuals, allowing the reader to develop their practical skills in this interdisciplinary field, and also explores the ways in which this knowledge can be applied to the design and production of commercial optical devices. Including supplementary online resources to help readers track and evaluate their experimental results, this text is the ideal companion for anyone with a practical interest in experimental geometrical optics.

  14. Geometrically controlled snapping transitions in shells with curved creases.

    Bende, Nakul Prabhakar; Evans, Arthur A; Innes-Gold, Sarah; Marin, Luis A; Cohen, Itai; Hayward, Ryan C; Santangelo, Christian D

    2015-09-08

    Curvature and mechanics are intimately connected for thin materials, and this coupling between geometry and physical properties is readily seen in folded structures from intestinal villi and pollen grains to wrinkled membranes and programmable metamaterials. While the well-known rules and mechanisms behind folding a flat surface have been used to create deployable structures and shape transformable materials, folding of curved shells is still not fundamentally understood. Shells naturally deform by simultaneously bending and stretching, and while this coupling gives them great stability for engineering applications, it makes folding a surface of arbitrary curvature a nontrivial task. Here we discuss the geometry of folding a creased shell, and demonstrate theoretically the conditions under which it may fold smoothly. When these conditions are violated we show, using experiments and simulations, that shells undergo rapid snapping motion to fold from one stable configuration to another. Although material asymmetry is a proven mechanism for creating this bifurcation of stability, for the case of a creased shell, the inherent geometry itself serves as a barrier to folding. We discuss here how two fundamental geometric concepts, creases and curvature, combine to allow rapid transitions from one stable state to another. Independent of material system and length scale, the design rule that we introduce here explains how to generate snapping transitions in arbitrary surfaces, thus facilitating the creation of programmable multistable materials with fast actuation capabilities.

  15. Fast decoding algorithms for geometric coded apertures

    Byard, Kevin

    2015-01-01

    Fast decoding algorithms are described for the class of coded aperture designs known as geometric coded apertures which were introduced by Gourlay and Stephen. When compared to the direct decoding method, the algorithms significantly reduce the number of calculations required when performing the decoding for these apertures and hence speed up the decoding process. Experimental tests confirm the efficacy of these fast algorithms, demonstrating a speed up of approximately two to three orders of magnitude over direct decoding.

  16. Geometrical framework for robust portfolio optimization

    Bazovkin, Pavel

    2014-01-01

    We consider a vector-valued multivariate risk measure that depends on the user's profile given by the user's utility. It is constructed on the basis of weighted-mean trimmed regions and represents the solution of an optimization problem. The key feature of this measure is convexity. We apply the measure to the portfolio selection problem, employing different measures of performance as objective functions in a common geometrical framework.

  17. Geometric measure theory a beginner's guide

    Morgan, Frank

    1995-01-01

    Geometric measure theory is the mathematical framework for the study of crystal growth, clusters of soap bubbles, and similar structures involving minimization of energy. Morgan emphasizes geometry over proofs and technicalities, and includes a bibliography and abundant illustrations and examples. This Second Edition features a new chapter on soap bubbles as well as updated sections addressing volume constraints, surfaces in manifolds, free boundaries, and Besicovitch constant results. The text will introduce newcomers to the field and appeal to mathematicians working in the field.

  18. Geometrical Aspects of non-gravitational interactions

    Roldan, Omar; Barros Jr, C. C.

    2016-01-01

    In this work we look for a geometric description of non-gravitational forces. The basic ideas are proposed studying the interaction between a punctual particle and an electromagnetic external field. For this purpose, we introduce the concept of proper space-time, that allow us to describe this interaction in a way analogous to the one that the general relativity theory does for gravitation. The field equations that define this geometry are similar to the Einstein's equations, where in general...

  19. Chirality: a relational geometric-physical property.

    Gerlach, Hans

    2013-11-01

    The definition of the term chirality by Lord Kelvin in 1893 and 1904 is analyzed by taking crystallography at that time into account. This shows clearly that chirality is a relational geometric-physical property, i.e., two relations between isometric objects are possible: homochiral or heterochiral. In scientific articles the relational term chirality is often mistaken for the two valued measure for the individual (absolute) sense of chirality, an arbitrary attributive term. © 2013 Wiley Periodicals, Inc.

  20. Geometric (Berry) phases in neutron molecular spectroscopy

    Lovesey, S.W.

    1992-02-01

    A theory of neutron scattering by nuclei in a molecule, accompanied by an electronic transition, is formulated with attention to gauge potentials and geometric phases in the Born-Oppenheimer scheme. Non-degenerate and nearly degenerate electronic levels are considered. For nearly degenerate levels it is shown that, the cross-section is free of the singular structure which characterizes the corresponding gauge potential for the phase, and much larger than for well separated electronic states. (author)

  1. Geometric continuum regularization of quantum field theory

    Halpern, M.B.

    1989-01-01

    An overview of the continuum regularization program is given. The program is traced from its roots in stochastic quantization, with emphasis on the examples of regularized gauge theory, the regularized general nonlinear sigma model and regularized quantum gravity. In its coordinate-invariant form, the regularization is seen as entirely geometric: only the supermetric on field deformations is regularized, and the prescription provides universal nonperturbative invariant continuum regularization across all quantum field theory. 54 refs

  2. Graph Treewidth and Geometric Thickness Parameters

    Dujmović, Vida; Wood, David R.

    2005-01-01

    Consider a drawing of a graph $G$ in the plane such that crossing edges are coloured differently. The minimum number of colours, taken over all drawings of $G$, is the classical graph parameter "thickness". By restricting the edges to be straight, we obtain the "geometric thickness". By further restricting the vertices to be in convex position, we obtain the "book thickness". This paper studies the relationship between these parameters and treewidth. Our first main result states that for grap...

  3. Geometric morphometric footprint analysis of young women

    Domjanic, Jacqueline; Fieder, Martin; Seidler, Horst; Mitteroecker, Philipp

    2013-01-01

    Background Most published attempts to quantify footprint shape are based on a small number of measurements. We applied geometric morphometric methods to study shape variation of the complete footprint outline in a sample of 83 adult women. Methods The outline of the footprint, including the toes, was represented by a comprehensive set of 85 landmarks and semilandmarks. Shape coordinates were computed by Generalized Procrustes Analysis. Results The first four principal components represented t...

  4. Geometrical characterization of micro end milling tools

    Borsetto, Francesca; Bariani, Paolo; Bissacco, Giuliano

    2005-01-01

    Performance of the milling process is directly affected by the accuracy of tool geometry. Development of methods suitable for dimensional characterization of such tools, with low measurement uncertainties is therefore of relevance. The present article focuses on the geometrical characterization...... of a flat micro end milling tool with a nominal mill diameter of 200 microns. An experimental investigation was carried out involving two different non-contact systems...

  5. Geometric Measure Theory and Minimal Surfaces

    Bombieri, Enrico

    2011-01-01

    W.K. ALLARD: On the first variation of area and generalized mean curvature.- F.J. ALMGREN Jr.: Geometric measure theory and elliptic variational problems.- E. GIUSTI: Minimal surfaces with obstacles.- J. GUCKENHEIMER: Singularities in soap-bubble-like and soap-film-like surfaces.- D. KINDERLEHRER: The analyticity of the coincidence set in variational inequalities.- M. MIRANDA: Boundaries of Caciopoli sets in the calculus of variations.- L. PICCININI: De Giorgi's measure and thin obstacles.

  6. Geometrical optics in correlated imaging systems

    Cao Dezhong; Xiong Jun; Wang Kaige

    2005-01-01

    We discuss the geometrical optics of correlated imaging for two kinds of spatial correlations corresponding, respectively, to a classical thermal light source and a quantum two-photon entangled source. Due to the different features in the second-order spatial correlation, the two sources obey different imaging equations. The quantum entangled source behaves as a mirror, whereas the classical thermal source looks like a phase-conjugate mirror in the correlated imaging

  7. Nociones de geometría vectorial

    Ospina Arteaga, Omar Evelio

    1990-01-01

    Las presentes notas de geometría vectorial pretenden ser una ayuda para los estudiantes que se inician en el tema de vectores y deberá ser complementado con ejercicios sobre el tema. Este texto contiene temas de interés tales como: Espacios euclidianos, Distancian entre dos puntos, Concepto de vector, Igualdad de vectores, entre otros relacionados con el estudio de vectores.

  8. Geometrical Determinants of Neuronal Actin Waves

    Tomba, Caterina; Bra?ni, C?line; Bugnicourt, Ghislain; Cohen, Floriane; Friedrich, Benjamin M.; Gov, Nir S.; Villard, Catherine

    2017-01-01

    Hippocampal neurons produce in their early stages of growth propagative, actin-rich dynamical structures called actin waves. The directional motion of actin waves from the soma to the tip of neuronal extensions has been associated with net forward growth, and ultimately with the specification of neurites into axon and dendrites. Here, geometrical cues are used to control actin wave dynamics by constraining neurons on adhesive stripes of various widths. A key observable, the average time betwe...

  9. Multiphase flow in geometrically simple fracture intersections

    Basagaoglu, H.; Meakin, P.; Green, C.T.; Mathew, M.; ,

    2006-01-01

    A two-dimensional lattice Boltzmann (LB) model with fluid-fluid and solid-fluid interaction potentials was used to study gravity-driven flow in geometrically simple fracture intersections. Simulated scenarios included fluid dripping from a fracture aperture, two-phase flow through intersecting fractures and thin-film flow on smooth and undulating solid surfaces. Qualitative comparisons with recently published experimental findings indicate that for these scenarios the LB model captured the underlying physics reasonably well.

  10. The Geometric Nonlinear Generalized Brazier Effect

    Nikolajsen, Jan Ánike; Lauridsen, Peter Riddersholm; Damkilde, Lars

    2016-01-01

    that the generalized Brazier effect is a local effect not influencing the overall mechanical behavior of the structure significantly. The offset is a nonlinear geometric beam-type Finite Element calculation, which takes into account the large displacements and rotations. The beam-type model defines the stresses which...... mainly are in the direction of the beam axis. The generalized Brazier effect is calculated as a linear load case based on these stresses....

  11. Time as a geometric property of space

    James Michael Chappell

    2016-11-01

    Full Text Available The proper description of time remains a key unsolved problem in science. Newton conceived of time as absolute and universal which it `flows equably without relation to anything external'}. In the nineteenth century, the four-dimensional algebraic structure of the quaternions developed by Hamilton, inspired him to suggest that they could provide a unified representation of space and time. With the publishing of Einstein's theory of special relativity these ideas then lead to the generally accepted Minkowski spacetime formulation in 1908. Minkowski, though, rejected the formalism of quaternions suggested by Hamilton and adopted rather an approach using four-vectors. The Minkowski framework is indeed found to provide a versatile formalism for describing the relationship between space and time in accordance with Einstein's relativistic principles, but nevertheless fails to provide more fundamental insights into the nature of time itself. In order to answer this question we begin by exploring the geometric properties of three-dimensional space that we model using Clifford geometric algebra, which is found to contain sufficient complexity to provide a natural description of spacetime. This description using Clifford algebra is found to provide a natural alternative to the Minkowski formulation as well as providing new insights into the nature of time. Our main result is that time is the scalar component of a Clifford space and can be viewed as an intrinsic geometric property of three-dimensional space without the need for the specific addition of a fourth dimension.

  12. Ricci flow and geometrization of 3-manifolds

    Morgan, John W

    2010-01-01

    This book is based on lectures given at Stanford University in 2009. The purpose of the lectures and of the book is to give an introductory overview of how to use Ricci flow and Ricci flow with surgery to establish the Poincar� Conjecture and the more general Geometrization Conjecture for 3-dimensional manifolds. Most of the material is geometric and analytic in nature; a crucial ingredient is understanding singularity development for 3-dimensional Ricci flows and for 3-dimensional Ricci flows with surgery. This understanding is crucial for extending Ricci flows with surgery so that they are defined for all positive time. Once this result is in place, one must study the nature of the time-slices as the time goes to infinity in order to deduce the topological consequences. The goal of the authors is to present the major geometric and analytic results and themes of the subject without weighing down the presentation with too many details. This book can be read as an introduction to more complete treatments of ...

  13. Salt bridges: geometrically specific, designable interactions.

    Donald, Jason E; Kulp, Daniel W; DeGrado, William F

    2011-03-01

    Salt bridges occur frequently in proteins, providing conformational specificity and contributing to molecular recognition and catalysis. We present a comprehensive analysis of these interactions in protein structures by surveying a large database of protein structures. Salt bridges between Asp or Glu and His, Arg, or Lys display extremely well-defined geometric preferences. Several previously observed preferences are confirmed, and others that were previously unrecognized are discovered. Salt bridges are explored for their preferences for different separations in sequence and in space, geometric preferences within proteins and at protein-protein interfaces, co-operativity in networked salt bridges, inclusion within metal-binding sites, preference for acidic electrons, apparent conformational side chain entropy reduction on formation, and degree of burial. Salt bridges occur far more frequently between residues at close than distant sequence separations, but, at close distances, there remain strong preferences for salt bridges at specific separations. Specific types of complex salt bridges, involving three or more members, are also discovered. As we observe a strong relationship between the propensity to form a salt bridge and the placement of salt-bridging residues in protein sequences, we discuss the role that salt bridges might play in kinetically influencing protein folding and thermodynamically stabilizing the native conformation. We also develop a quantitative method to select appropriate crystal structure resolution and B-factor cutoffs. Detailed knowledge of these geometric and sequence dependences should aid de novo design and prediction algorithms. Copyright © 2010 Wiley-Liss, Inc.

  14. Geometric phase effects in ultracold chemistry

    Hazra, Jisha; Naduvalath, Balakrishnan; Kendrick, Brian K.

    2016-05-01

    In molecules, the geometric phase, also known as Berry's phase, originates from the adiabatic transport of the electronic wavefunction when the nuclei follow a closed path encircling a conical intersection between two electronic potential energy surfaces. It is demonstrated that the inclusion of the geometric phase has an important effect on ultracold chemical reaction rates. The effect appears in rotationally and vibrationally resolved integral cross sections as well as cross sections summed over all product quantum states. It arises from interference between scattering amplitudes of two reaction pathways: a direct path and a looping path that encircle the conical intersection between the two lowest adiabatic electronic potential energy surfaces. Illustrative results are presented for the O+ OH --> H+ O2 reaction and for hydrogen exchange in H+ H2 and D+HD reactions. It is also qualitatively demonstrated that the geometric phase effect can be modulated by applying an external electric field allowing the possibility of quantum control of chemical reactions in the ultracold regime. This work was supported in part by NSF Grant PHY-1505557 (N.B.) and ARO MURI Grant No. W911NF-12-1-0476 (N.B.).

  15. Edit propagation using geometric relationship functions

    Guerrero, Paul; Jeschke, Stefan; Wimmer, Michael; Wonka, Peter

    2014-01-01

    We propose a method for propagating edit operations in 2D vector graphics, based on geometric relationship functions. These functions quantify the geometric relationship of a point to a polygon, such as the distance to the boundary or the direction to the closest corner vertex. The level sets of the relationship functions describe points with the same relationship to a polygon. For a given query point, we first determine a set of relationships to local features, construct all level sets for these relationships, and accumulate them. The maxima of the resulting distribution are points with similar geometric relationships. We show extensions to handle mirror symmetries, and discuss the use of relationship functions as local coordinate systems. Our method can be applied, for example, to interactive floorplan editing, and it is especially useful for large layouts, where individual edits would be cumbersome. We demonstrate populating 2D layouts with tens to hundreds of objects by propagating relatively few edit operations. © 2014 ACM 0730-0301/2014/03- ART15 $15.00.

  16. Geometric transitions on non-Kaehler manifolds

    Knauf, A.

    2007-01-01

    We study geometric transitions on the supergravity level using the basic idea of an earlier paper (M. Becker et al., 2004), where a pair of non-Kaehler backgrounds was constructed, which are related by a geometric transition. Here we embed this idea into an orientifold setup. The non-Kaehler backgrounds we obtain in type IIA are non-trivially fibered due to their construction from IIB via T-duality with Neveu-Schwarz flux. We demonstrate that these non-Kaehler manifolds are not half-flat and show that a symplectic structure exists on them at least locally. We also review the construction of new non-Kaehler backgrounds in type I and heterotic theory. They are found by a series of T- and S-duality and can be argued to be related by geometric transitions as well. A local toy model is provided that fulfills the flux equations of motion in IIB and the torsional relation in heterotic theory, and that is consistent with the U-duality relating both theories. For the heterotic theory we also propose a global solution that fulfills the torsional relation because it is similar to the Maldacena-Nunez background. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  17. Edit propagation using geometric relationship functions

    Guerrero, Paul

    2014-04-15

    We propose a method for propagating edit operations in 2D vector graphics, based on geometric relationship functions. These functions quantify the geometric relationship of a point to a polygon, such as the distance to the boundary or the direction to the closest corner vertex. The level sets of the relationship functions describe points with the same relationship to a polygon. For a given query point, we first determine a set of relationships to local features, construct all level sets for these relationships, and accumulate them. The maxima of the resulting distribution are points with similar geometric relationships. We show extensions to handle mirror symmetries, and discuss the use of relationship functions as local coordinate systems. Our method can be applied, for example, to interactive floorplan editing, and it is especially useful for large layouts, where individual edits would be cumbersome. We demonstrate populating 2D layouts with tens to hundreds of objects by propagating relatively few edit operations. © 2014 ACM 0730-0301/2014/03- ART15 $15.00.

  18. Geometric phase modulation for stellar interferometry

    Roy, M.; Boschung, B.; Tango, W.J.; Davis, J.

    2002-01-01

    Full text: In a long baseline optical interferometer, the fringe visibility is normally measured by modulation of the optical path difference between the two arms of the instruments. To obtain accurate measurements, the spectral bandwidth must be narrow, limiting the sensitivity of the technique. The application of geometric phase modulation technique to stellar interferometry has been proposed by Tango and Davis. Modulation of the geometric phase has the potential for improving the sensitivity of optical interferometers, and specially the Sydney University Stellar Interferometer (SUSI), by allowing broad band modulation of the light signals. This is because a modulator that changes the geometric phase of the signal is, in principle, achromatic. Another advantage of using such a phase modulator is that it can be placed in the common path traversed by the two orthogonally polarized beams emerging from the beam combiner in a stellar interferometer. Thus the optical components of the modulator do not have to be interferometric quality and could be relatively easily introduced into SUSI. We have investigated the proposed application in a laboratory-based experiment using a Mach-Zehnder interferometer with white-light source. This can be seen as a small model of an amplitude stellar interferometer where the light source takes the place of the distant star and two corner mirrors replaces the entrance pupils of the stellar interferometer

  19. Plasma geometric optics analysis and computation

    Smith, T.M.

    1983-01-01

    Important practical applications in the generation, manipulation, and diagnosis of laboratory thermonuclear plasmas have created a need for elaborate computational capabilities in the study of high frequency wave propagation in plasmas. A reduced description of such waves suitable for digital computation is provided by the theory of plasma geometric optics. The existing theory is beset by a variety of special cases in which the straightforward analytical approach fails, and has been formulated with little attention to problems of numerical implementation of that analysis. The standard field equations are derived for the first time from kinetic theory. A discussion of certain terms previously, and erroneously, omitted from the expansion of the plasma constitutive relation is given. A powerful but little known computational prescription for determining the geometric optics field in the neighborhood of caustic singularities is rigorously developed, and a boundary layer analysis for the asymptotic matching of the plasma geometric optics field across caustic singularities is performed for the first time with considerable generality. A proper treatment of birefringence is detailed, wherein a breakdown of the fundamental perturbation theory is identified and circumvented. A general ray tracing computer code suitable for applications to radiation heating and diagnostic problems is presented and described

  20. Entrepreneurial Couples

    Dahl, Michael S.; Van Praag, Mirjam; Thompson, Peter

    2015-01-01

    We study possible motivations for co-entreprenurial couples to start up a joint firm, using a sample of 1,069 Danish couples that established a joint enterprise between 2001 and 2010. We compare their pre-entry characteristics, firm performance and post-dissolution private and financial outcomes...

  1. Strongly correlated states of a small cold-atom cloud from geometric gauge fields

    Julia-Diaz, B.; Dagnino, D.; Barberan, N.; Guenter, K. J.; Dalibard, J.; Grass, T.; Lewenstein, M.

    2011-01-01

    Using exact diagonalization for a small system of cold bosonic atoms, we analyze the emergence of strongly correlated states in the presence of an artificial magnetic field. This gauge field is generated by a laser beam that couples two internal atomic states, and it is related to Berry's geometrical phase that emerges when an atom follows adiabatically one of the two eigenstates of the atom-laser coupling. Our approach allows us to go beyond the adiabatic approximation, and to characterize the generalized Laughlin wave functions that appear in the strong magnetic-field limit.

  2. Strongly correlated states of a small cold-atom cloud from geometric gauge fields

    Julia-Diaz, B. [Dept. ECM, Facultat de Fisica, U. Barcelona, E-08028 Barcelona (Spain); ICFO-Institut de Ciencies Fotoniques, Parc Mediterrani de la Tecnologia, E-08860 Barcelona (Spain); Dagnino, D.; Barberan, N. [Dept. ECM, Facultat de Fisica, U. Barcelona, E-08028 Barcelona (Spain); Guenter, K. J.; Dalibard, J. [Laboratoire Kastler Brossel, CNRS, UPMC, Ecole Normale Superieure, 24 rue Lhomond, F-75005 Paris (France); Grass, T. [ICFO-Institut de Ciencies Fotoniques, Parc Mediterrani de la Tecnologia, E-08860 Barcelona (Spain); Lewenstein, M. [ICFO-Institut de Ciencies Fotoniques, Parc Mediterrani de la Tecnologia, E-08860 Barcelona (Spain); ICREA-Institucio Catalana de Recerca i Estudis Avancats, E-08010 Barcelona (Spain)

    2011-11-15

    Using exact diagonalization for a small system of cold bosonic atoms, we analyze the emergence of strongly correlated states in the presence of an artificial magnetic field. This gauge field is generated by a laser beam that couples two internal atomic states, and it is related to Berry's geometrical phase that emerges when an atom follows adiabatically one of the two eigenstates of the atom-laser coupling. Our approach allows us to go beyond the adiabatic approximation, and to characterize the generalized Laughlin wave functions that appear in the strong magnetic-field limit.

  3. Sudden transitions and scaling behavior of geometric quantum correlation for two qubits in quantum critical environments at finite temperature

    Luo, Da-Wei; Xu, Jing-Bo

    2014-01-01

    We investigate the phenomenon of sudden transitions in geometric quantum correlation of two qubits in spin chain environments at finite temperature. It is shown that when only one qubit is coupled to the spin environment, the geometric discord exhibits a double sudden transition behavior, which is closely related to the quantum criticality of the spin chain environment. When two qubits are uniformly coupled to a common spin chain environment, the geometric discord is found to display a sudden transition behavior whereby the system transits from pure classical decoherence to pure quantum decoherence. Moreover, an interesting scaling behavior is revealed for the frozen time, and we also present a scheme to prolong the time during which the discord remains constant by applying bang–bang pulses. (paper)

  4. The Geometric Phase in Quantum Systems

    Pascazio, S

    2003-01-01

    The discovery of the geometric phase is one of the most interesting and intriguing findings of the last few decades. It led to a deeper understanding of the concept of phase in quantum mechanics and motivated a surge of interest in fundamental quantum mechanical issues, disclosing unexpected applications in very diverse fields of physics. Although the key ideas underlying the existence of a purely geometrical phase had already been proposed in 1956 by Pancharatnam, it was Michael Berry who revived this issue 30 years later. The clarity of Berry's seminal paper, in 1984, was extraordinary. Research on the topic flourished at such a pace that it became difficult for non-experts to follow the many different theoretical ideas and experimental proposals which ensued. Diverse concepts in independent areas of mathematics, physics and chemistry were being applied, for what was (and can still be considered) a nascent arena for theory, experiments and technology. Although collections of papers by different authors appeared in the literature, sometimes with ample introductions, surprisingly, to the best of my knowledge, no specific and exhaustive book has ever been written on this subject. The Geometric Phase in Quantum Systems is the first thorough book on geometric phases and fills an important gap in the physical literature. Other books on the subject will undoubtedly follow. But it will take a fairly long time before other authors can cover that same variety of concepts in such a comprehensive manner. The book is enjoyable. The choice of topics presented is well balanced and appropriate. The appendices are well written, understandable and exhaustive - three rare qualities. I also find it praiseworthy that the authors decided to explicitly carry out most of the calculations, avoiding, as much as possible, the use of the joke 'after a straightforward calculation, one finds...' This was one of the sentences I used to dislike most during my undergraduate studies. A student is

  5. Geometric Approaches to Quadratic Equations from Other Times and Places.

    Allaire, Patricia R.; Bradley, Robert E.

    2001-01-01

    Focuses on geometric solutions of quadratic problems. Presents a collection of geometric techniques from ancient Babylonia, classical Greece, medieval Arabia, and early modern Europe to enhance the quadratic equation portion of an algebra course. (KHR)

  6. Some Hermite–Hadamard Type Inequalities for Geometrically Quasi ...

    Abstract. In the paper, we introduce a new concept 'geometrically quasi-convex function' and establish some Hermite–Hadamard type inequalities for functions whose derivatives are of geometric quasi-convexity.

  7. Fluid-structure interaction computations for geometrically resolved rotor simulations using CFD

    Heinz, Joachim Christian; Sørensen, Niels N.; Zahle, Frederik

    2016-01-01

    fluid dynamics (CFD) solver EllipSys3D. The paper shows that the implemented loose coupling scheme, despite a non-conservative force transfer, maintains a sufficient numerical stability and a second-order time accuracy. The use of a strong coupling is found to be redundant. In a first test case......This paper presents a newly developed high-fidelity fluid–structure interaction simulation tool for geometrically resolved rotor simulations of wind turbines. The tool consists of a partitioned coupling between the structural part of the aero-elastic solver HAWC2 and the finite volume computational......, the newly developed coupling between HAWC2 and EllipSys3D (HAWC2CFD) is utilized to compute the aero-elastic response of the NREL 5-MW reference wind turbine (RWT) under normal operational conditions. A comparison with the low-fidelity but state-of-the-art aero-elastic solver HAWC2 reveals a very good...

  8. Nonadiabatic geometrical quantum gates in semiconductor quantum dots

    Solinas, Paolo; Zanghi, Nino; Zanardi, Paolo; Rossi, Fausto

    2003-01-01

    In this paper, we study the implementation of nonadiabatic geometrical quantum gates with in semiconductor quantum dots. Different quantum information enconding (manipulation) schemes exploiting excitonic degrees of freedom are discussed. By means of the Aharanov-Anandan geometrical phase, one can avoid the limitations of adiabatic schemes relying on adiabatic Berry phase; fast geometrical quantum gates can be, in principle, implemented

  9. The representations of Lie groups and geometric quantizations

    Zhao Qiang

    1998-01-01

    In this paper we discuss the relation between representations of Lie groups and geometric quantizations. A series of representations of Lie groups are constructed by geometric quantization of coadjoint orbits. Particularly, all representations of compact Lie groups, holomorphic discrete series of representations and spherical representations of reductive Lie groups are constructed by geometric quantizations of elliptic and hyperbolic coadjoint orbits. (orig.)

  10. Identifying and Fostering Higher Levels of Geometric Thinking

    Škrbec, Maja; Cadež, Tatjana Hodnik

    2015-01-01

    Pierre M. Van Hiele created five levels of geometric thinking. We decided to identify the level of geometric thinking in the students in Slovenia, aged 9 to 11 years. The majority of students (60.7%) are at the transition between the zero (visual) level and the first (descriptive) level of geometric thinking. Nearly a third (31.7%) of students is…

  11. Entrepreneurial Couples

    Dahl, Michael S.; Van Praag, Mirjam; Thompson, Peter

    with a selected set of comparable firms and couples. We find evidence that couples often establish a business together because one spouse – most commonly the female – has limited outside opportunities in the labor market. However, the financial benefits for each of the spouses, and especially the female......We study possible motivations for co-entrepenurial couples to start up a joint firm, using a sample of 1,069 Danish couples that established a joint enterprise between 2001 and 2010. We compare their pre-entry characteristics, firm performance and postdissolution private and financial outcomes......, are larger in co-entrepreneurial firms, both during the life of the business and post-dissolution. The start-up of co-entrepreneurial firms seems therefore a sound investment in the human capital of both spouses as well as in the reduction of income inequality in the household. We find no evidence of non...

  12. Entrepreneurial Couples

    Dahl, Michael S.; Van Praag, Mirjam; Thompson, Peter

    with a selected set of comparable firms and couples. We find evidence that couples often establish a business together because one spouse - most commonly the female - has limited outside opportunities in the labor market. However, the financial benefits for each of the spouses, and especially the female......We study possible motivations for co-entrepenurial couples to start up a joint firm, us-ing a sample of 1,069 Danish couples that established a joint enterprise between 2001 and 2010. We compare their pre-entry characteristics, firm performance and post-dissolution private and financial outcomes......, are larger in co-entrepreneurial firms, both during the life of the business and post-dissolution. The start-up of co-entrepreneurial firms seems therefore a sound in-vestment in the human capital of both spouses as well as in the reduction of income inequality in the household. We find no evidence of non...

  13. Acoustic wave coupled magnetoelectric effect

    Gao, J.S.; Zhang, N.

    2016-01-01

    Magnetoelectric (ME) coupling by acoustic waveguide was developed. Longitudinal and transversal ME effects of larger than 44 and 6 (V cm −1 Oe −1 ) were obtained with the waveguide-coupled ME device, respectively. Several resonant points were observed in the range of frequency lower than 47 kHz. Analysis showed that the standing waves in the waveguide were responsible for those resonances. The frequency and size dependence of the ME effects were investigated. A resonant condition about the geometrical size of the waveguide was obtained. Theory and experiments showed the resonant frequencies were closely influenced by the diameter and length of the waveguide. A series of double-peak curves of longitudinal magnetoelectric response were obtained, and their significance was discussed initially. - Highlights: • Magnetoelectric (ME) coupling by acoustic waveguide was developed. • The frequency and size dependence of the ME effects were investigated. • A resonant condition about the geometrical size of the waveguide was obtained. • A series of double-peak curves of longitudinal magnetoelectric response were obtained, and their significance was discussed initially.

  14. Optimization of biotechnological systems through geometric programming

    Torres Nestor V

    2007-09-01

    Full Text Available Abstract Background In the past, tasks of model based yield optimization in metabolic engineering were either approached with stoichiometric models or with structured nonlinear models such as S-systems or linear-logarithmic representations. These models stand out among most others, because they allow the optimization task to be converted into a linear program, for which efficient solution methods are widely available. For pathway models not in one of these formats, an Indirect Optimization Method (IOM was developed where the original model is sequentially represented as an S-system model, optimized in this format with linear programming methods, reinterpreted in the initial model form, and further optimized as necessary. Results A new method is proposed for this task. We show here that the model format of a Generalized Mass Action (GMA system may be optimized very efficiently with techniques of geometric programming. We briefly review the basics of GMA systems and of geometric programming, demonstrate how the latter may be applied to the former, and illustrate the combined method with a didactic problem and two examples based on models of real systems. The first is a relatively small yet representative model of the anaerobic fermentation pathway in S. cerevisiae, while the second describes the dynamics of the tryptophan operon in E. coli. Both models have previously been used for benchmarking purposes, thus facilitating comparisons with the proposed new method. In these comparisons, the geometric programming method was found to be equal or better than the earlier methods in terms of successful identification of optima and efficiency. Conclusion GMA systems are of importance, because they contain stoichiometric, mass action and S-systems as special cases, along with many other models. Furthermore, it was previously shown that algebraic equivalence transformations of variables are sufficient to convert virtually any types of dynamical models into

  15. Geometric derivation of the quantum speed limit

    Jones, Philip J.; Kok, Pieter

    2010-01-01

    The Mandelstam-Tamm and Margolus-Levitin inequalities play an important role in the study of quantum-mechanical processes in nature since they provide general limits on the speed of dynamical evolution. However, to date there has been only one derivation of the Margolus-Levitin inequality. In this paper, alternative geometric derivations for both inequalities are obtained from the statistical distance between quantum states. The inequalities are shown to hold for unitary evolution of pure and mixed states, and a counterexample to the inequalities is given for evolution described by completely positive trace-preserving maps. The counterexample shows that there is no quantum speed limit for nonunitary evolution.

  16. A geometric form of the canonical commutation

    Guz, W.

    1987-01-01

    Some aspects of a geometric approach to quantum theory, in which the quantum-mechanical position and momentum operators are represented by covariant derivatives, are here developed. Here, the previously estabilished formalism of Caianiello and his co-workers is extended to the case of an integrable almost complex Hermitian manifold. The general theory is then applied to the two-dimensional case, where the structure of the 'quantum geometry' induced in the manifold by the quantum-mechanical CCR can be explicitly determined

  17. Geometrical scaling vs factorizable eikonal models

    Kiang, D

    1975-01-01

    Among various theoretical explanations or interpretations for the experimental data on the differential cross-sections of elastic proton-proton scattering at CERN ISR, the following two seem to be most remarkable: A) the excellent agreement of the Chou-Yang model prediction of d sigma /dt with data at square root s=53 GeV, B) the general manifestation of geometrical scaling (GS). The paper confronts GS with eikonal models with factorizable opaqueness, with special emphasis on the Chou-Yang model. (12 refs).

  18. On geometrical splitting in nonanalog Monte Carlo

    Lux, I.

    1985-01-01

    A very general geometrical procedure is considered, and it is shown how the free flights, the statistical weights and the contribution of particles participating in splitting are to be chosen in order to reach unbiased estimates in games where the transition kernels are nonanalog. Equations governing the second moment of the score and the number of flights to be stimulated are derived. It is shown that the post-splitting weights of the fragments are to be chosen equal to reach maximum gain in variance. Conditions are derived under which the expected number of flights remains finite. Simplified example illustrate the optimization of the procedure (author)

  19. Projective geometry for polarization in geometric quantization

    Campbell, P.; Dodson, C.T.J.

    1976-12-01

    It is important to know the extent to which the procedure of geometric quantization depends on a choice of polarization of the symplectic manifold that is the classical phase space. Published results have so far been restricted to real and transversal polarizations. Here we also consider these cases by presenting a formulation in terms of projective geometry. It turns out that there is a natural characterization of real transversal polarizations and maps among them using projective concepts. We give explicit constructions for Rsup(2n)

  20. Irreducible geometric subgroups of classical algebraic groups

    Burness, Timothy C; Testerman, Donna M

    2016-01-01

    Let G be a simple classical algebraic group over an algebraically closed field K of characteristic p \\ge 0 with natural module W. Let H be a closed subgroup of G and let V be a non-trivial irreducible tensor-indecomposable p-restricted rational KG-module such that the restriction of V to H is irreducible. In this paper the authors classify the triples (G,H,V) of this form, where H is a disconnected maximal positive-dimensional closed subgroup of G preserving a natural geometric structure on W.

  1. Geometric and numerical foundations of movements

    Mansard, Nicolas; Lasserre, Jean-Bernard

    2017-01-01

    This book aims at gathering roboticists, control theorists, neuroscientists, and mathematicians, in order to promote a multidisciplinary research on movement analysis. It follows the workshop “ Geometric and Numerical Foundations of Movements ” held at LAAS-CNRS in Toulouse in November 2015[1]. Its objective is to lay the foundations for a mutual understanding that is essential for synergetic development in motion research. In particular, the book promotes applications to robotics --and control in general-- of new optimization techniques based on recent results from real algebraic geometry.

  2. Geometric Algebra Techniques in Flux Compactifications

    Coman, Ioana Alexandra; Lazaroiu, Calin Iuliu; Babalic, Elena Mirela

    2016-01-01

    We study “constrained generalized Killing (s)pinors,” which characterize supersymmetric flux compactifications of supergravity theories. Using geometric algebra techniques, we give conceptually clear and computationally effective methods for translating supersymmetry conditions into differential and algebraic constraints on collections of differential forms. In particular, we give a synthetic description of Fierz identities, which are an important ingredient of such problems. As an application, we show how our approach can be used to efficiently treat N=1 compactification of M-theory on eight manifolds and prove that we recover results previously obtained in the literature.

  3. Geometric Total Variation for Texture Deformation

    Bespalov, Dmitriy; Dahl, Anders Lindbjerg; Shokoufandeh, Ali

    2010-01-01

    In this work we propose a novel variational method that we intend to use for estimating non-rigid texture deformation. The method is able to capture variation in grayscale images with respect to the geometry of its features. Our experimental evaluations demonstrate that accounting for geometry...... of features in texture images leads to significant improvements in localization of these features, when textures undergo geometrical transformations. Accurate localization of features in the presense of unkown deformations is a crucial property for texture characterization methods, and we intend to expoit...

  4. Universal geometrical module for MARS program

    Talanov, V.V.

    1992-01-01

    Geometrical program module for modeling hadron and electromagnetic cascades, which accomplishes comparison of physical coordinates with the particle current state of one of the auxilliary cells, is described. The whole medium wherein the particles are tracked, is divided into a certain number of auxilliary cells. The identification algorithm of the cell, through which the particle trajectory passes, is considered in detail. The described algorithm for cell identification was developed for the MARS program and realized in form of a set of subprograms written in the FORTRAN language. 4 refs., 1 tab

  5. Geometrical optics model of Mie resonances

    Roll; Schweiger

    2000-07-01

    The geometrical optics model of Mie resonances is presented. The ray path geometry is given and the resonance condition is discussed with special emphasis on the phase shift that the rays undergo at the surface of the dielectric sphere. On the basis of this model, approximate expressions for the positions of first-order resonances are given. Formulas for the cavity mode spacing are rederived in a simple manner. It is shown that the resonance linewidth can be calculated regarding the cavity losses. Formulas for the mode density of Mie resonances are given that account for the different width of resonances and thus may be adapted to specific experimental situations.

  6. Electronic and geometric structures of calcium metaborates

    Baranovskij, V.I.; Lopatin, S.I.; Sizov, V.V.

    2000-01-01

    Calculations of geometric structure, vibration frequencies, ionization potentials and atomization energies of CaBO 2 and CaB 2 O 4 molecules were made. It is shown that linear conformations of the molecules are the most stable ones. In the metaborates studied calcium atom coordination with oxygen is a monodentate one, meanwhile CaB 2 O 4 can be considered as a Ca 2+ compound, whereas CaBO 2 - as a Ca + compound, which explains similarity of the molecule (from the viewpoint of its geometry, spectral and energy characteristics) to alkaline metal metaborates [ru

  7. Geometric and Texture Inpainting by Gibbs Sampling

    Gustafsson, David Karl John; Pedersen, Kim Steenstrup; Nielsen, Mads

    2007-01-01

    . In this paper we use the well-known FRAME (Filters, Random Fields and Maximum Entropy) for inpainting. We introduce a temperature term in the learned FRAME Gibbs distribution. By sampling using different temperature in the FRAME Gibbs distribution, different contents of the image are reconstructed. We propose...... a two step method for inpainting using FRAME. First the geometric structure of the image is reconstructed by sampling from a cooled Gibbs distribution, then the stochastic component is reconstructed by sample froma heated Gibbs distribution. Both steps in the reconstruction process are necessary...

  8. Geometric interpretation of optimal iteration strategies

    Jones, R.B.

    1977-01-01

    The relationship between inner and outer iteration errors is extremely complex, and even formal description of total error behavior is difficult. Inner and outer iteration error propagation is analyzed in a variational formalism for a reactor model describing multidimensional, one-group theory. In a generalization the work of Akimov and Sabek, the number of inner iterations performed during each outer serial that minimizes the total computation time is determined. The generalized analysis admits a geometric interpretation of total error behavior. The results can be applied to both transport and diffusion theory computer methods. 1 figure

  9. Fundamentos de geometría euclidiana

    Salazar Salazar, Luis Álvaro

    1984-01-01

    Este texto no pretende hacer un desfile monótono de definiciones, teoremas, demostraciones o corolarios sino que procurará hacer entender las definiciones, interpretar los enunciados de los principales teoremas y aplicarlos en la solución de algunos problemas. Tampoco se busca negar la importancia de las demostraciones de los teoremas y sus repercusiones en el desarrollo intelectual del lector, teniendo en cuenta que la geometrí­a es la matemática por excelencia, entendiéndose por esto que la...

  10. Femtosecond pulse shaping using the geometric phase.

    Gökce, Bilal; Li, Yanming; Escuti, Michael J; Gundogdu, Kenan

    2014-03-15

    We demonstrate a femtosecond pulse shaper that utilizes polarization gratings to manipulate the geometric phase of an optical pulse. This unique approach enables circular polarization-dependent shaping of femtosecond pulses. As a result, it is possible to create coherent pulse pairs with orthogonal polarizations in a 4f pulse shaper setup, something until now that, to our knowledge, was only achieved via much more complex configurations. This approach could be used to greatly simplify and enhance the functionality of multidimensional spectroscopy and coherent control experiments, in which multiple coherent pulses are used to manipulate quantum states in materials of interest.

  11. Toroidal Precession as a Geometric Phase

    J.W. Burby and H. Qin

    2012-09-26

    Toroidal precession is commonly understood as the orbit-averaged toroidal drift of guiding centers in axisymmetric and quasisymmetric configurations. We give a new, more natural description of precession as a geometric phase effect. In particular, we show that the precession angle arises as the holonomy of a guiding center's poloidal trajectory relative to a principal connection. The fact that this description is physically appropriate is borne out with new, manifestly coordinate-independent expressions for the precession angle that apply to all types of orbits in tokamaks and quasisymmetric stellarators alike. We then describe how these expressions may be fruitfully employed in numerical calculations of precession.

  12. Moduli stabilization in non-geometric backgrounds

    Becker, Katrin; Becker, Melanie; Vafa, Cumrun; Walcher, Johannes

    2007-01-01

    Type II orientifolds based on Landau-Ginzburg models are used to describe moduli stabilization for flux compactifications of type II theories from the world-sheet CFT point of view. We show that for certain types of type IIB orientifolds which have no Kaehler moduli and are therefore intrinsically non-geometric, all moduli can be explicitly stabilized in terms of fluxes. The resulting four-dimensional theories can describe Minkowski as well as anti-de Sitter vacua. This construction provides the first string vacuum with all moduli frozen and leading to a 4D Minkowski background

  13. In the realm of the geometric transitions

    Alexander, Stephon; Becker, Katrin; Becker, Melanie; Dasgupta, Keshav; Knauf, Anke; Tatar, Radu

    2005-01-01

    We complete the duality cycle by constructing the geometric transition duals in the type IIB, type I and heterotic theories. We show that in the type IIB theory the background on the closed string side is a Kaehler deformed conifold, as expected, even though the mirror type IIA backgrounds are non-Kaehler (both before and after the transition). On the other hand, the type I and heterotic backgrounds are non-Kaehler. Therefore, on the heterotic side these backgrounds give rise to new torsional manifolds that have not been studied before. We show the consistency of these backgrounds by verifying the torsional equation

  14. ERC Workshop on Geometric Partial Differential Equations

    Novaga, Matteo; Valdinoci, Enrico

    2013-01-01

    This book is the outcome of a conference held at the Centro De Giorgi of the Scuola Normale of Pisa in September 2012. The aim of the conference was to discuss recent results on nonlinear partial differential equations, and more specifically geometric evolutions and reaction-diffusion equations. Particular attention was paid to self-similar solutions, such as solitons and travelling waves, asymptotic behaviour, formation of singularities and qualitative properties of solutions. These problems arise in many models from Physics, Biology, Image Processing and Applied Mathematics in general, and have attracted a lot of attention in recent years.

  15. Geometric phases for mixed states during cyclic evolutions

    Fu Libin; Chen Jingling

    2004-01-01

    The geometric phases of cyclic evolutions for mixed states are discussed in the framework of unitary evolution. A canonical 1-form is defined whose line integral gives the geometric phase, which is gauge invariant. It reduces to the Aharonov and Anandan phase in the pure state case. Our definition is consistent with the phase shift in the proposed experiment (Sjoeqvist et al 2000 Phys. Rev. Lett. 85 2845) for a cyclic evolution if the unitary transformation satisfies the parallel transport condition. A comprehensive geometric interpretation is also given. It shows that the geometric phases for mixed states share the same geometric sense with the pure states

  16. Lie group model neuromorphic geometric engine for real-time terrain reconstruction from stereoscopic aerial photos

    Tsao, Thomas R.; Tsao, Doris

    1997-04-01

    In the 1980's, neurobiologist suggested a simple mechanism in primate visual cortex for maintaining a stable and invariant representation of a moving object. The receptive field of visual neurons has real-time transforms in response to motion, to maintain a stable representation. When the visual stimulus is changed due to motion, the geometric transform of the stimulus triggers a dual transform of the receptive field. This dual transform in the receptive fields compensates geometric variation in the stimulus. This process can be modelled using a Lie group method. The massive array of affine parameter sensing circuits will function as a smart sensor tightly coupled to the passive imaging sensor (retina). Neural geometric engine is a neuromorphic computing device simulating our Lie group model of spatial perception of primate's primal visual cortex. We have developed the computer simulation and experimented on realistic and synthetic image data, and performed a preliminary research of using analog VLSI technology for implementation of the neural geometric engine. We have benchmark tested on DMA's terrain data with their result and have built an analog integrated circuit to verify the computational structure of the engine. When fully implemented on ANALOG VLSI chip, we will be able to accurately reconstruct a 3D terrain surface in real-time from stereoscopic imagery.

  17. Geometrical Lagrangian for a Supersymmetric Yang-Mills Theory on the Group Manifold

    Borges, M. F.

    2002-01-01

    Perhaps one of the main features of Einstein's General Theory of Relativity is that spacetime is not flat itself but curved. Nowadays, however, many of the unifying theories like superstrings on even alternative gravity theories such as teleparalell geometric theories assume flat spacetime for their calculations. This article, an extended account of an earlier author's contribution, it is assumed a curved group manifold as a geometrical background from which a Lagrangian for a supersymmetric N=2, d=5 Yang-Mills - SYM, N=2, d=5 - is built up. The spacetime is a hypersurface embedded in this geometrical scenario, and the geometrical action here obtained can be readily coupled to the five-dimensional supergravity action. The essential idea that underlies this work has its roots in the Einstein-Cartan formulation of gravity and in the 'group manifold approach to gravity and supergravity theories'. The group SYM, N=2, d=5, turns out to be the direct product of supergravity and a general gauge group G:G=GxSU(2,2/1)-bar

  18. Flat-field response and geometric distortion measurements of optical streak cameras

    Montgomery, D.S.; Drake, R.P.; Jones, B.A.; Wiedwald, J.D.

    1987-08-01

    To accurately measure pulse amplitude, shape, and relative time histories of optical signals with an optical streak camera, it is necessary to correct each recorded image for spatially-dependent gain nonuniformity and geometric distortion. Gain nonuniformities arise from sensitivity variations in the streak-tube photocathode, phosphor screen, image-intensifier tube, and image recording system. These nonuniformities may be severe, and have been observed to be on the order of 100% for some LLNL optical streak cameras. Geometric distortion due to optical couplings, electron-optics, and sweep nonlinearity not only affects pulse position and timing measurements, but affects pulse amplitude and shape measurements as well. By using a 1.053-μm, long-pulse, high-power laser to generate a spatially and temporally uniform source as input to the streak camera, the combined effects of flat-field response and geometric distortion can be measured under the normal dynamic operation of cameras with S-1 photocathodes. Additionally, by using the same laser system to generate a train of short pulses that can be spatially modulated at the input of the streak camera, we can effectively create a two-dimensional grid of equally-spaced pulses. This allows a dynamic measurement of the geometric distortion of the streak camera. We will discuss the techniques involved in performing these calibrations, will present some of the measured results for LLNL optical streak cameras, and will discuss software methods to correct for these effects. 6 refs., 6 figs

  19. Geometric reconstruction methods for electron tomography

    Alpers, Andreas, E-mail: alpers@ma.tum.de [Zentrum Mathematik, Technische Universität München, D-85747 Garching bei München (Germany); Gardner, Richard J., E-mail: Richard.Gardner@wwu.edu [Department of Mathematics, Western Washington University, Bellingham, WA 98225-9063 (United States); König, Stefan, E-mail: koenig@ma.tum.de [Zentrum Mathematik, Technische Universität München, D-85747 Garching bei München (Germany); Pennington, Robert S., E-mail: robert.pennington@uni-ulm.de [Center for Electron Nanoscopy, Technical University of Denmark, DK-2800 Kongens Lyngby (Denmark); Boothroyd, Chris B., E-mail: ChrisBoothroyd@cantab.net [Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Jülich, D-52425 Jülich (Germany); Houben, Lothar, E-mail: l.houben@fz-juelich.de [Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Jülich, D-52425 Jülich (Germany); Dunin-Borkowski, Rafal E., E-mail: rdb@fz-juelich.de [Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Jülich, D-52425 Jülich (Germany); Joost Batenburg, Kees, E-mail: Joost.Batenburg@cwi.nl [Centrum Wiskunde and Informatica, NL-1098XG, Amsterdam, The Netherlands and Vision Lab, Department of Physics, University of Antwerp, B-2610 Wilrijk (Belgium)

    2013-05-15

    Electron tomography is becoming an increasingly important tool in materials science for studying the three-dimensional morphologies and chemical compositions of nanostructures. The image quality obtained by many current algorithms is seriously affected by the problems of missing wedge artefacts and non-linear projection intensities due to diffraction effects. The former refers to the fact that data cannot be acquired over the full 180° tilt range; the latter implies that for some orientations, crystalline structures can show strong contrast changes. To overcome these problems we introduce and discuss several algorithms from the mathematical fields of geometric and discrete tomography. The algorithms incorporate geometric prior knowledge (mainly convexity and homogeneity), which also in principle considerably reduces the number of tilt angles required. Results are discussed for the reconstruction of an InAs nanowire. - Highlights: ► Four algorithms for electron tomography are introduced that utilize prior knowledge. ► Objects are assumed to be homogeneous; convexity and regularity is also discussed. ► We are able to reconstruct slices of a nanowire from as few as four projections. ► Algorithms should be selected based on the specific reconstruction task at hand.

  20. Implicit face prototype learning from geometric information.

    Or, Charles C-F; Wilson, Hugh R

    2013-04-19

    There is evidence that humans implicitly learn an average or prototype of previously studied faces, as the unseen face prototype is falsely recognized as having been learned (Solso & McCarthy, 1981). Here we investigated the extent and nature of face prototype formation where observers' memory was tested after they studied synthetic faces defined purely in geometric terms in a multidimensional face space. We found a strong prototype effect: The basic results showed that the unseen prototype averaged from the studied faces was falsely identified as learned at a rate of 86.3%, whereas individual studied faces were identified correctly 66.3% of the time and the distractors were incorrectly identified as having been learned only 32.4% of the time. This prototype learning lasted at least 1 week. Face prototype learning occurred even when the studied faces were further from the unseen prototype than the median variation in the population. Prototype memory formation was evident in addition to memory formation of studied face exemplars as demonstrated in our models. Additional studies showed that the prototype effect can be generalized across viewpoints, and head shape and internal features separately contribute to prototype formation. Thus, implicit face prototype extraction in a multidimensional space is a very general aspect of geometric face learning. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. A geometric viewpoint on generalized hydrodynamics

    Benjamin Doyon

    2018-01-01

    Full Text Available Generalized hydrodynamics (GHD is a large-scale theory for the dynamics of many-body integrable systems. It consists of an infinite set of conservation laws for quasi-particles traveling with effective (“dressed” velocities that depend on the local state. We show that these equations can be recast into a geometric dynamical problem. They are conservation equations with state-independent quasi-particle velocities, in a space equipped with a family of metrics, parametrized by the quasi-particles' type and speed, that depend on the local state. In the classical hard rod or soliton gas picture, these metrics measure the free length of space as perceived by quasi-particles; in the quantum picture, they weigh space with the density of states available to them. Using this geometric construction, we find a general solution to the initial value problem of GHD, in terms of a set of integral equations where time appears explicitly. These integral equations are solvable by iteration and provide an extremely efficient solution algorithm for GHD.

  2. Geometrical analysis of cytochrome c unfolding

    Urie, Kristopher G.; Pletneva, Ekaterina; Gray, Harry B.; Winkler, Jay R.; Kozak, John J.

    2011-01-01

    A geometrical model has been developed to study the unfolding of iso-1 cytochrome c. The model draws on the crystallographic data reported for this protein. These data were used to calculate the distance between specific residues in the folded state, and in a sequence of extended states defined by n = 3, 5, 7, 9, 11, 13, and 15 residue units. Exact calculations carried out for each of the 103 residues in the polypeptide chain demonstrate that different regions of the chain have different unfolding histories. Regions where there is a persistence of compact structures can be identified, and this geometrical characterization is fully consistent with analyses of time-resolved fluorescence energy-transfer (TrFET) data using dansyl-derivatized cysteine side-chain probes at positions 39, 50, 66, 85, and 99. The calculations were carried out assuming that different regions of the polypeptide chain unfold synchronously. To test this assumption, lattice Monte Carlo simulations were performed to study systematically the possible importance of asynchronicity. Calculations show that small departures from synchronous dynamics can arise if displacements of residues in the main body of the chain are much more sluggish than near-terminal residues.

  3. GEOMETRIC AND RADIOMETRIC EVALUATION OF RASAT IMAGES

    A. Cam

    2016-06-01

    Full Text Available RASAT, the second remote sensing satellite of Turkey, was designed and assembled, and also is being operated by TÜBİTAK Uzay (Space Technologies Research Institute (Ankara. RASAT images in various levels are available free-of-charge via Gezgin portal for Turkish citizens. In this paper, the images in panchromatic (7.5 m GSD and RGB (15 m GSD bands in various levels were investigated with respect to its geometric and radiometric characteristics. The first geometric analysis is the estimation of the effective GSD as less than 1 pixel for radiometrically processed level (L1R of both panchromatic and RGB images. Secondly, 2D georeferencing accuracy is estimated by various non-physical transformation models (similarity, 2D affine, polynomial, affine projection, projective, DLT and GCP based RFM reaching sub-pixel accuracy using minimum 39 and maximum 52 GCPs. The radiometric characteristics are also investigated for 8 bits, estimating SNR between 21.8-42.2, and noise 0.0-3.5 for panchromatic and MS images for L1R when the sea is masked to obtain the results for land areas. The analysis show that RASAT images satisfies requirements for various applications. The research is carried out in Zonguldak test site which is mountainous and partly covered by dense forest and urban areas.

  4. Geometric Modelling of Octagonal Lamp Poles

    Chan, T. O.; Lichti, D. D.

    2014-06-01

    Lamp poles are one of the most abundant highway and community components in modern cities. Their supporting parts are primarily tapered octagonal cones specifically designed for wind resistance. The geometry and the positions of the lamp poles are important information for various applications. For example, they are important to monitoring deformation of aged lamp poles, maintaining an efficient highway GIS system, and also facilitating possible feature-based calibration of mobile LiDAR systems. In this paper, we present a novel geometric model for octagonal lamp poles. The model consists of seven parameters in which a rotation about the z-axis is included, and points are constrained by the trigonometric property of 2D octagons after applying the rotations. For the geometric fitting of the lamp pole point cloud captured by a terrestrial LiDAR, accurate initial parameter values are essential. They can be estimated by first fitting the points to a circular cone model and this is followed by some basic point cloud processing techniques. The model was verified by fitting both simulated and real data. The real data includes several lamp pole point clouds captured by: (1) Faro Focus 3D and (2) Velodyne HDL-32E. The fitting results using the proposed model are promising, and up to 2.9 mm improvement in fitting accuracy was realized for the real lamp pole point clouds compared to using the conventional circular cone model. The overall result suggests that the proposed model is appropriate and rigorous.

  5. Geometric correction of APEX hyperspectral data

    Vreys Kristin

    2016-03-01

    Full Text Available Hyperspectral imagery originating from airborne sensors is nowadays widely used for the detailed characterization of land surface. The correct mapping of the pixel positions to ground locations largely contributes to the success of the applications. Accurate geometric correction, also referred to as “orthorectification”, is thus an important prerequisite which must be performed prior to using airborne imagery for evaluations like change detection, or mapping or overlaying the imagery with existing data sets or maps. A so-called “ortho-image” provides an accurate representation of the earth’s surface, having been adjusted for lens distortions, camera tilt and topographic relief. In this paper, we describe the different steps in the geometric correction process of APEX hyperspectral data, as applied in the Central Data Processing Center (CDPC at the Flemish Institute for Technological Research (VITO, Mol, Belgium. APEX ortho-images are generated through direct georeferencing of the raw images, thereby making use of sensor interior and exterior orientation data, boresight calibration data and elevation data. They can be referenced to any userspecified output projection system and can be resampled to any output pixel size.

  6. Geometric-optical illusions at isoluminance.

    Hamburger, Kai; Hansen, Thorsten; Gegenfurtner, Karl R

    2007-12-01

    The idea of a largely segregated processing of color and form was initially supported by observations that geometric-optical illusions vanish under isoluminance. However, this finding is inconsistent with some psychophysical studies and also with physiological evidence showing that color and luminance are processed together by largely overlapping sets of neurons in the LGN, in V1, and in extrastriate areas. Here we examined the strength of nine geometric-optical illusions under isoluminance (Delboeuf, Ebbinghaus, Hering, Judd, Müller-Lyer, Poggendorff, Ponzo, Vertical, Zöllner). Subjects interactively manipulated computer-generated line drawings to counteract the illusory effect. In all cases, illusions presented under isoluminance (both for colors drawn from the cardinal L-M or S-(L+M) directions of DKL color space) were as effective as the luminance versions (both for high and low contrast). The magnitudes of the illusion effects were highly correlated across subjects for the different conditions. In two additional experiments we determined that the strong illusions observed under isoluminance were not due to individual deviations from the photometric point of isoluminance or due to chromatic aberrations. Our findings show that our conscious percept is affected similarly for both isoluminance and luminance conditions, suggesting that the joint processing for chromatic and luminance defined contours may extend well beyond early visual areas.

  7. Geometrical basis for the Standard Model

    Potter, Franklin

    1994-02-01

    The robust character of the Standard Model is confirmed. Examination of its geometrical basis in three equivalent internal symmetry spaces-the unitary plane C 2, the quaternion space Q, and the real space R 4—as well as the real space R 3 uncovers mathematical properties that predict the physical properties of leptons and quarks. The finite rotational subgroups of the gauge group SU(2) L × U(1) Y generate exactly three lepton families and four quark families and reveal how quarks and leptons are related. Among the physical properties explained are the mass ratios of the six leptons and eight quarks, the origin of the left-handed preference by the weak interaction, the geometrical source of color symmetry, and the zero neutrino masses. The ( u, d) and ( c, s) quark families team together to satisfy the triangle anomaly cancellation with the electron family, while the other families pair one-to-one for cancellation. The spontaneously broken symmetry is discrete and needs no Higgs mechanism. Predictions include all massless neutrinos, the top quark at 160 GeV/ c 2, the b' quark at 80 GeV/ c 2, and the t' quark at 2600 GeV/ c 2.

  8. New developments in geometric dynamic recrystallization

    Kassner, M.E.; Barrabes, S.R.

    2005-01-01

    The concept of geometric dynamic recrystallization (GDX) originated in 1980s with work on elevated-temperature deformation aluminum to large strains. In this case, substantial grain refinement occurs through a process of grain elongation and thinning leading to a dramatic increase in grain boundary area. The grain boundaries become serrated as a result of subgrain (low angle) boundary formation. Pinching off and annihilation of high-angle grain boundaries occurs as the original grains thin to about twice the subgrain diameter to and a 'steady-state' structure. This concept has since been carefully verified in pure Al, as well as Al-Mg alloys deforming in the three-power regime. Large strain deformation of Al single crystals is also consistent with the concept. Also, data in the literature on large strain deformation of a bcc iron alloy are consistent with GDX. Recent experiments on α-zirconium show that GDX applies to this hcp metal. Thus, it appears that GDX is a general phenomenon that can lead to grain refinement in the absence of any discontinuous dynamic recrystallization (DRX) or continuous dynamic recrystallization (CDX). A discussion of continuous dynamic recrystallization and geometric necessary boundaries in relation to GDX will also be discussed. This may be particularly relevant to severe plastic deformation such as rolling and equal-channel angular pressing where dramatic increases in the number of high-angle boundaries are observed

  9. Geometric reconstruction methods for electron tomography

    Alpers, Andreas; Gardner, Richard J.; König, Stefan; Pennington, Robert S.; Boothroyd, Chris B.; Houben, Lothar; Dunin-Borkowski, Rafal E.; Joost Batenburg, Kees

    2013-01-01

    Electron tomography is becoming an increasingly important tool in materials science for studying the three-dimensional morphologies and chemical compositions of nanostructures. The image quality obtained by many current algorithms is seriously affected by the problems of missing wedge artefacts and non-linear projection intensities due to diffraction effects. The former refers to the fact that data cannot be acquired over the full 180° tilt range; the latter implies that for some orientations, crystalline structures can show strong contrast changes. To overcome these problems we introduce and discuss several algorithms from the mathematical fields of geometric and discrete tomography. The algorithms incorporate geometric prior knowledge (mainly convexity and homogeneity), which also in principle considerably reduces the number of tilt angles required. Results are discussed for the reconstruction of an InAs nanowire. - Highlights: ► Four algorithms for electron tomography are introduced that utilize prior knowledge. ► Objects are assumed to be homogeneous; convexity and regularity is also discussed. ► We are able to reconstruct slices of a nanowire from as few as four projections. ► Algorithms should be selected based on the specific reconstruction task at hand

  10. The effect of SF6 addition in a Cl2/Ar inductively coupled plasma for deep titanium etching

    Laudrel, E.; Tillocher, T.; Meric, Y.; Lefaucheux, P.; Boutaud, B.; Dussart, R.

    2018-05-01

    Titanium is a material of interest for the biomedical field and more particularly for body implantable devices. Titanium deep etching by plasma was carried out in an inductively coupled plasma with a chlorine-based chemistry for the fabrication of titanium-based microdevices. Bulk titanium etch rate was first studied in Cl2/Ar plasma mixture versus the source power and the self-bias voltage. The plasma was characterized by Langmuir probe and by optical emission spectroscopy. The addition of SF6 in the plasma mixture was investigated. Titanium etch rate was optimized and reached a value of 2.4 µm · min-1. The nickel hard mask selectivity was also enhanced. The etched titanium surface roughness was reduced significantly.

  11. Geometric size optimization and behavior analysis of a dual-cooled annular fuel

    Deng Yangbin; Wu Yingwei; Zhang Dalin; Tian Wenxi; Qiu Suizheng; Su Guanghui; Zhang Weixu; Wu Junmei

    2014-01-01

    The dual-cooled annular fuel is one of the innovative fuel concepts, which allows substantial power density increase while maintaining safety margins comparing with that used in currently operating PWRs. In this study, a thermal-hydraulic calculation code, on the basis of inner and outer cooling balance theory, was independently developed to optimize the geometric size of dual-cooled annular fuel elements. The optimization results show that the fuel element with the optimal geometric sizes presents fantastic symmetry in temperature distribution. The optimized geometric sizes agree well with the sizes obtained by MIT (Massachusetts Institute of Technology), which on the other side validates the code reliability and accuracy as well. In addition, a thermo-mechanical-burnup coupling code was developed to study the thermodynamic and mechanical characteristics of fuel elements with considering the irradiation and burnup effects. This coupling program was applied to perform the behavior analysis of annular fuels. The calculation results show that, when the power density increases on the order of up to 50%, the dual-cooled annular fuel elements have much lower fuel temperature and much less fission gas release comparing with conventional fuel rods. Furthermore, the results indicate that the thicknesses of inner and outer gas gap cannot remain the same with the burnup increasing due to the mechanical deformations of fuel pellets and claddings, which results in significantly asymmetric temperature distribution especially at the last phase of burnup. (author)

  12. Impact of microstructure evolution on the difference between geometric and reactive surface areas in natural chalk

    Yang, Y.; Bruns, S.; Stipp, S. L. S.; Sørensen, H. O.

    2018-05-01

    The coupling between flow and mineral dissolution drives the evolution of many natural and engineered flow systems. Pore surface changes as microstructure evolves but this transient behaviour has traditionally been difficult to model. We combined a reactor network model with experimental, greyscale tomography data to establish the morphological grounds for differences among geometric, reactive and apparent surface areas in dissolving chalk. This approach allowed us to study the effects of initial geometry and macroscopic flow rate independently. The simulations showed that geometric surface, which represents a form of local transport heterogeneity, increases in an imposed flow field, even when the porous structure is chemically homogeneous. Hence, the fluid-reaction coupling leads to solid channelisation, which further results in fluid focusing and an increase in geometric surface area. Fluid focusing decreases the area of reactive surface and the residence time of reactant, both contribute to the over-normalisation of reaction rate. In addition, the growing and merging of microchannels, near the fluid entrance, contribute to the macroscopic, fast initial dissolution rate of rocks.

  13. GEOMETRIC QUALITY ASSESSMENT OF LIDAR DATA BASED ON SWATH OVERLAP

    A. Sampath

    2016-06-01

    Full Text Available This paper provides guidelines on quantifying the relative horizontal and vertical errors observed between conjugate features in the overlapping regions of lidar data. The quantification of these errors is important because their presence quantifies the geometric quality of the data. A data set can be said to have good geometric quality if measurements of identical features, regardless of their position or orientation, yield identical results. Good geometric quality indicates that the data are produced using sensor models that are working as they are mathematically designed, and data acquisition processes are not introducing any unforeseen distortion in the data. High geometric quality also leads to high geolocation accuracy of the data when the data acquisition process includes coupling the sensor with geopositioning systems. Current specifications (e.g. Heidemann 2014 do not provide adequate means to quantitatively measure these errors, even though they are required to be reported. Current accuracy measurement and reporting practices followed in the industry and as recommended by data specification documents also potentially underestimate the inter-swath errors, including the presence of systematic errors in lidar data. Hence they pose a risk to the user in terms of data acceptance (i.e. a higher potential for Type II error indicating risk of accepting potentially unsuitable data. For example, if the overlap area is too small or if the sampled locations are close to the center of overlap, or if the errors are sampled in flat regions when there are residual pitch errors in the data, the resultant Root Mean Square Differences (RMSD can still be small. To avoid this, the following are suggested to be used as criteria for defining the inter-swath quality of data: a Median Discrepancy Angle b Mean and RMSD of Horizontal Errors using DQM measured on sloping surfaces c RMSD for sampled locations from flat areas (defined as areas with less than 5

  14. Scaffold library for tissue engineering: a geometric evaluation.

    Chantarapanich, Nattapon; Puttawibul, Puttisak; Sucharitpwatskul, Sedthawatt; Jeamwatthanachai, Pongnarin; Inglam, Samroeng; Sitthiseripratip, Kriskrai

    2012-01-01

    Tissue engineering scaffold is a biological substitute that aims to restore, to maintain, or to improve tissue functions. Currently available manufacturing technology, that is, additive manufacturing is essentially applied to fabricate the scaffold according to the predefined computer aided design (CAD) model. To develop scaffold CAD libraries, the polyhedrons could be used in the scaffold libraries development. In this present study, one hundred and nineteen polyhedron models were evaluated according to the established criteria. The proposed criteria included considerations on geometry, manufacturing feasibility, and mechanical strength of these polyhedrons. CAD and finite element (FE) method were employed as tools in evaluation. The result of evaluation revealed that the close-cellular scaffold included truncated octahedron, rhombicuboctahedron, and rhombitruncated cuboctahedron. In addition, the suitable polyhedrons for using as open-cellular scaffold libraries included hexahedron, truncated octahedron, truncated hexahedron, cuboctahedron, rhombicuboctahedron, and rhombitruncated cuboctahedron. However, not all pore size to beam thickness ratios (PO:BT) were good for making the open-cellular scaffold. The PO:BT ratio of each library, generating the enclosed pore inside the scaffold, was excluded to avoid the impossibility of material removal after the fabrication. The close-cellular libraries presented the constant porosity which is irrespective to the different pore sizes. The relationship between PO:BT ratio and porosity of open-cellular scaffold libraries was displayed in the form of Logistic Power function. The possibility of merging two different types of libraries to produce the composite structure was geometrically evaluated in terms of the intersection index and was mechanically evaluated by means of FE analysis to observe the stress level. The couples of polyhedrons presenting low intersection index and high stress level were excluded. Good couples for

  15. Scaffold Library for Tissue Engineering: A Geometric Evaluation

    Nattapon Chantarapanich

    2012-01-01

    Full Text Available Tissue engineering scaffold is a biological substitute that aims to restore, to maintain, or to improve tissue functions. Currently available manufacturing technology, that is, additive manufacturing is essentially applied to fabricate the scaffold according to the predefined computer aided design (CAD model. To develop scaffold CAD libraries, the polyhedrons could be used in the scaffold libraries development. In this present study, one hundred and nineteen polyhedron models were evaluated according to the established criteria. The proposed criteria included considerations on geometry, manufacturing feasibility, and mechanical strength of these polyhedrons. CAD and finite element (FE method were employed as tools in evaluation. The result of evaluation revealed that the close-cellular scaffold included truncated octahedron, rhombicuboctahedron, and rhombitruncated cuboctahedron. In addition, the suitable polyhedrons for using as open-cellular scaffold libraries included hexahedron, truncated octahedron, truncated hexahedron, cuboctahedron, rhombicuboctahedron, and rhombitruncated cuboctahedron. However, not all pore size to beam thickness ratios (PO : BT were good for making the open-cellular scaffold. The PO : BT ratio of each library, generating the enclosed pore inside the scaffold, was excluded to avoid the impossibility of material removal after the fabrication. The close-cellular libraries presented the constant porosity which is irrespective to the different pore sizes. The relationship between PO : BT ratio and porosity of open-cellular scaffold libraries was displayed in the form of Logistic Power function. The possibility of merging two different types of libraries to produce the composite structure was geometrically evaluated in terms of the intersection index and was mechanically evaluated by means of FE analysis to observe the stress level. The couples of polyhedrons presenting low intersection index and high stress

  16. Effects of Electrode Distances on Geometric Structure and Electronic Transport Properties of Molecular 4,4'-Bipyridine Junction

    Li Zongliang; Zou Bin; Wang Chuankui; Luo Yi

    2006-01-01

    Influences of electrode distances on geometric structure of molecule and on electronic transport properties of molecular junctions have been investigated by means of a generalized quantum chemical approach based on the elastic scattering Green's function method. Numerical results show that, for organic molecule 4,4'-bipyridine, the geometric structure of the molecule especially the dihedral angle between the two pyridine rings is sensitive to the distances between the two electrodes. The currents of the molecular junction are taken nonlinearly increase with the increase of the bias. Shortening the distance of the metallic electrodes will result in stronger coupling and larger conductance

  17. Geometric entanglement in topologically ordered states

    Orús, Román; Wei, Tzu-Chieh; Buerschaper, Oliver; Nest, Maarten Van den

    2014-01-01

    Here we investigate the connection between topological order and the geometric entanglement, as measured by the logarithm of the overlap between a given state and its closest product state of blocks. We do this for a variety of topologically ordered systems such as the toric code, double semion, colour code and quantum double models. As happens for the entanglement entropy, we find that for sufficiently large block sizes the geometric entanglement is, up to possible sub-leading corrections, the sum of two contributions: a bulk contribution obeying a boundary law times the number of blocks and a contribution quantifying the underlying pattern of long-range entanglement of the topologically ordered state. This topological contribution is also present in the case of single-spin blocks in most cases, and constitutes an alternative characterization of topological order for these quantum states based on a multipartite entanglement measure. In particular, we see that the topological term for the two-dimensional colour code is twice as much as the one for the toric code, in accordance with recent renormalization group arguments (Bombin et al 2012 New J. Phys. 14 073048). Motivated by these results, we also derive a general formalism to obtain upper- and lower-bounds to the geometric entanglement of states with a non-Abelian group symmetry, and which we explicitly use to analyse quantum double models. Furthermore, we also provide an analysis of the robustness of the topological contribution in terms of renormalization and perturbation theory arguments, as well as a numerical estimation for small systems. Some of the results in this paper rely on the ability to disentangle single sites from the quantum state, which is always possible for the systems that we consider. Additionally we relate our results to the behaviour of the relative entropy of entanglement in topologically ordered systems, and discuss a number of numerical approaches based on tensor networks that could be

  18. Modern Geometric Methods of Distance Determination

    Thévenin, Frédéric; Falanga, Maurizio; Kuo, Cheng Yu; Pietrzyński, Grzegorz; Yamaguchi, Masaki

    2017-11-01

    Building a 3D picture of the Universe at any distance is one of the major challenges in astronomy, from the nearby Solar System to distant Quasars and galaxies. This goal has forced astronomers to develop techniques to estimate or to measure the distance of point sources on the sky. While most distance estimates used since the beginning of the 20th century are based on our understanding of the physics of objects of the Universe: stars, galaxies, QSOs, the direct measures of distances are based on the geometric methods as developed in ancient Greece: the parallax, which has been applied to stars for the first time in the mid-19th century. In this review, different techniques of geometrical astrometry applied to various stellar and cosmological (Megamaser) objects are presented. They consist in parallax measurements from ground based equipment or from space missions, but also in the study of binary stars or, as we shall see, of binary systems in distant extragalactic sources using radio telescopes. The Gaia mission will be presented in the context of stellar physics and galactic structure, because this key space mission in astronomy will bring a breakthrough in our understanding of stars, galaxies and the Universe in their nature and evolution with time. Measuring the distance to a star is the starting point for an unbiased description of its physics and the estimate of its fundamental parameters like its age. Applying these studies to candles such as the Cepheids will impact our large distance studies and calibration of other candles. The text is constructed as follows: introducing the parallax concept and measurement, we shall present briefly the Gaia satellite which will be the future base catalogue of stellar astronomy in the near future. Cepheids will be discussed just after to demonstrate the state of the art in distance measurements in the Universe with these variable stars, with the objective of 1% of error in distances that could be applied to our closest

  19. Geometric treatment of electromagnetic phenomena in conducting materials: variational principles

    BadIa-Majos, A [Departamento de Fisica de la Materia Condensada-ICMA, Universidad de Zaragoza (Spain); Carinena, J F [Departamento de Fisica Teorica, Universidad de Zaragoza (Spain); Lopez, C [Departamento de Matematicas, Universidad de Alcala de Henares (Spain)

    2006-11-24

    The dynamical equations of an electromagnetic field coupled with a conducting material are studied. The properties of the interaction are described by a classical field theory with tensorial material laws in spacetime geometry. We show that the main features of superconducting response emerge in a natural way within the covariance, gauge invariance and variational formulation requirements. In particular, the Ginzburg-Landau theory follows straightforwardly from the London equations when fundamental symmetry properties are considered. Unconventional properties, such as the interaction of superconductors with electrostatic fields are naturally introduced in the geometric theory, at a phenomenological level. The BCS background is also suggested by macroscopic fingerprints of the internal symmetries. It is also shown that dissipative conducting behaviour may be approximately treated in a variational framework after breaking covariance for adiabatic processes. Thus, nonconservative laws of interaction are formulated by a purely spatial variational principle, in a quasi-stationary time discretized evolution. This theory justifies a class of nonfunctional phenomenological principles, introduced for dealing with exotic conduction properties of matter (BadIa and Lopez 2001 Phys. Rev. Lett. 87 127004)

  20. Matter couplings in supergravity theories

    Bagger, J.A.

    1983-01-01

    The N = 1 supersymmetric nonlinear sigma model is coupled to supergravity. The results are expressed in the language of Kahler geometry. Topological considerations constrain the scalar fields to lie on a Kahler manifold of restricted type, or a Hodge manifold. For topologically nontrivial manifolds, this leads to the quantization of Newton's constant in terms of the scalar self-coupling. The isometries of the N = 1 model are gauged. This gives a geometrical picture of what might be called the gauge invariant supersymmetric nonlinear sigma model. It also provides a new interpretation of the Fayet-Iliopoulos D-term. The gauge invariant supersymmetric nonlinear sigma model is coupled to N = 1 supergravity. This leads to a deeper understanding of the connections between supergravity, R-invariance and the Fayet-Iliopoulos D-term. It also provides a foundation for phenomenological studies of supergravity theories. Finally, the N = 2 supersymmetric nonlinear sigma model is coupled to supergravity. The scalar fields are found to lie on a negatively curved quaternionic manifold. This implies that matter self-couplings that are allowed in N = 2 supersymmetry are forbidden in N = 2 supergravity, and vice versa

  1. Geometric methods for discrete dynamical systems

    Easton, Robert W

    1998-01-01

    This book looks at dynamics as an iteration process where the output of a function is fed back as an input to determine the evolution of an initial state over time. The theory examines errors which arise from round-off in numerical simulations, from the inexactness of mathematical models used to describe physical processes, and from the effects of external controls. The author provides an introduction accessible to beginning graduate students and emphasizing geometric aspects of the theory. Conley''s ideas about rough orbits and chain-recurrence play a central role in the treatment. The book will be a useful reference for mathematicians, scientists, and engineers studying this field, and an ideal text for graduate courses in dynamical systems.

  2. Gauge field vacuum structure in geometrical aspect

    Konopleva, N.P.

    2003-01-01

    Vacuum conception is one of the main conceptions of quantum field theory. Its meaning in classical field theory is also very profound. In this case the vacuum conception is closely connected with ideas of the space-time geometry. The global and local geometrical space-time conceptions lead to different vacuum definitions and therefore to different ways of physical theory construction. Some aspects of the gauge field vacuum structure are analyzed. It is shown that in the gauge field theory the vacuum Einstein equation solutions describe the relativistic vacuum as common vacuum of all gauge fields and its sources. Instantons (both usual and hyperbolical) are regarded as nongravitating matter, because they have zero energy-momentum tensors and correspond to vacuum Einstein equations

  3. Geometrical scaling in charm structure function ratios

    Boroun, G.R.; Rezaei, B.

    2014-01-01

    By using a Laplace-transform technique, we solve the next-to-leading-order master equation for charm production and derive a compact formula for the ratio R c =F L cc ¯ /F 2 cc ¯ , which is useful for extracting the charm structure function from the reduced charm cross section, in particular, at DESY HERA, at small x. Our results show that this ratio is independent of x at small x. In this method of determining the ratios, we apply geometrical scaling in charm production in deep inelastic scattering (DIS). Our analysis shows that the renormalization scales have a sizable impact on the ratio R c at high Q 2 . Our results for the ratio of the charm structure functions are in a good agreement with some phenomenological models

  4. On the Distribution of Random Geometric Graphs

    Badiu, Mihai Alin; Coon, Justin P.

    2018-01-01

    as a measure of the graph’s topological uncertainty (or information content). Moreover, the distribution is also relevant for determining average network performance or designing protocols. However, a major impediment in deducing the graph distribution is that it requires the joint probability distribution......Random geometric graphs (RGGs) are commonly used to model networked systems that depend on the underlying spatial embedding. We concern ourselves with the probability distribution of an RGG, which is crucial for studying its random topology, properties (e.g., connectedness), or Shannon entropy...... of the n(n − 1)/2 distances between n nodes randomly distributed in a bounded domain. As no such result exists in the literature, we make progress by obtaining the joint distribution of the distances between three nodes confined in a disk in R 2. This enables the calculation of the probability distribution...

  5. A Geometrical Approach to Bell's Theorem

    Rubincam, David Parry

    2000-01-01

    Bell's theorem can be proved through simple geometrical reasoning, without the need for the Psi function, probability distributions, or calculus. The proof is based on N. David Mermin's explication of the Einstein-Podolsky-Rosen-Bohm experiment, which involves Stern-Gerlach detectors which flash red or green lights when detecting spin-up or spin-down. The statistics of local hidden variable theories for this experiment can be arranged in colored strips from which simple inequalities can be deduced. These inequalities lead to a demonstration of Bell's theorem. Moreover, all local hidden variable theories can be graphed in such a way as to enclose their statistics in a pyramid, with the quantum-mechanical result lying a finite distance beneath the base of the pyramid.

  6. Geometric covers, graph orientations, counter games

    Berglin, Edvin

    -directed graph is dynamic (can be altered by some outside actor), some orientations may need to be reversed in order to maintain the low out-degree. We present a new algorithm that is simpler than earlier work, yet matches or outperforms the efficiency of these results with very few exceptions. Counter games...... example is Line Cover, also known as Point-Line Cover, where a set of points in a geometric space are to be covered by placing a restricted number of lines. We present new FPT algorithms for the sub-family Curve Cover (which includes Line Cover), as well as for Hyperplane Cover restricted to R 3 (i...... are a type of abstract game played over a set of counters holding values, and these values may be moved between counters according to some set of rules. Typically they are played between two players: the adversary who tries to concentrate the greatest value possible in a single counter, and the benevolent...

  7. Geometric Properties of Grassmannian Frames for and

    Benedetto John J

    2006-01-01

    Full Text Available Grassmannian frames are frames satisfying a min-max correlation criterion. We translate a geometrically intuitive approach for two- and three-dimensional Euclidean space ( and into a new analytic method which is used to classify many Grassmannian frames in this setting. The method and associated algorithm decrease the maximum frame correlation, and hence give rise to the construction of specific examples of Grassmannian frames. Many of the results are known by other techniques, and even more generally, so that this paper can be viewed as tutorial. However, our analytic method is presented with the goal of developing it to address unresovled problems in -dimensional Hilbert spaces which serve as a setting for spherical codes, erasure channel modeling, and other aspects of communications theory.

  8. Geometric extension through Schwarzschild r = 0

    Lynden-Bell, D.; Katz, J.; Hebrew Univ., Jerusalem

    1990-01-01

    Singularities in space-time are not necessarily cancers in the manifold but can herald interesting topological change in the space-time at places where there are several different tangent Minkowski spaces. Most discussions of gravitational collapse cease when space-time becomes singular. In the 'hour-glass' universe we have an example where the singularity develops in empty space; here we give a geometrical extension through the singularity in which geodesics that enter it emerge into a new space. The result extends Schwarzschild space and is periodic in 'extended' Penrose coordinates. There is a topological singularity but no mass at r = 0. The extension is mildly nonanalytic but unique. It is based on the concept that time does not stop and that empty space-times which develop singularities must still have zero Ricci tensors even where the Riemann tensor becomes infinite. (author)

  9. Time Series Analysis Using Geometric Template Matching.

    Frank, Jordan; Mannor, Shie; Pineau, Joelle; Precup, Doina

    2013-03-01

    We present a novel framework for analyzing univariate time series data. At the heart of the approach is a versatile algorithm for measuring the similarity of two segments of time series called geometric template matching (GeTeM). First, we use GeTeM to compute a similarity measure for clustering and nearest-neighbor classification. Next, we present a semi-supervised learning algorithm that uses the similarity measure with hierarchical clustering in order to improve classification performance when unlabeled training data are available. Finally, we present a boosting framework called TDEBOOST, which uses an ensemble of GeTeM classifiers. TDEBOOST augments the traditional boosting approach with an additional step in which the features used as inputs to the classifier are adapted at each step to improve the training error. We empirically evaluate the proposed approaches on several datasets, such as accelerometer data collected from wearable sensors and ECG data.

  10. Random broadcast on random geometric graphs

    Bradonjic, Milan [Los Alamos National Laboratory; Elsasser, Robert [UNIV OF PADERBORN; Friedrich, Tobias [ICSI/BERKELEY; Sauerwald, Tomas [ICSI/BERKELEY

    2009-01-01

    In this work, we consider the random broadcast time on random geometric graphs (RGGs). The classic random broadcast model, also known as push algorithm, is defined as: starting with one informed node, in each succeeding round every informed node chooses one of its neighbors uniformly at random and informs it. We consider the random broadcast time on RGGs, when with high probability: (i) RGG is connected, (ii) when there exists the giant component in RGG. We show that the random broadcast time is bounded by {Omicron}({radical} n + diam(component)), where diam(component) is a diameter of the entire graph, or the giant component, for the regimes (i), or (ii), respectively. In other words, for both regimes, we derive the broadcast time to be {Theta}(diam(G)), which is asymptotically optimal.

  11. Fluid mechanics a geometrical point of view

    Rajeev, S G

    2018-01-01

    Fluid Mechanics: A Geometrical Point of View emphasizes general principles of physics illustrated by simple examples in fluid mechanics. Advanced mathematics (e.g., Riemannian geometry and Lie groups) commonly used in other parts of theoretical physics (e.g. General Relativity or High Energy Physics) are explained and applied to fluid mechanics. This follows on from the author's book Advanced Mechanics (Oxford University Press, 2013). After introducing the fundamental equations (Euler and Navier-Stokes), the book provides particular cases: ideal and viscous flows, shocks, boundary layers, instabilities, and transients. A restrained look at integrable systems (KdV) leads into a formulation of an ideal fluid as a hamiltonian system. Arnold's deep idea, that the instability of a fluid can be understood using the curvature of the diffeomorphism group, will be explained. Leray's work on regularity of Navier-Stokes solutions, and the modern developments arising from it, will be explained in language for physicists...

  12. Noncyclic geometric changes of quantum states

    Kult, David; Sjoeqvist, Erik; Aaberg, Johan

    2006-01-01

    Non-Abelian quantum holonomies, i.e., unitary state changes solely induced by geometric properties of a quantum system, have been much under focus in the physics community as generalizations of the Abelian Berry phase. Apart from being a general phenomenon displayed in various subfields of quantum physics, the use of holonomies has lately been suggested as a robust technique to obtain quantum gates; the building blocks of quantum computers. Non-Abelian holonomies are usually associated with cyclic changes of quantum systems, but here we consider a generalization to noncyclic evolutions. We argue that this open-path holonomy can be used to construct quantum gates. We also show that a structure of partially defined holonomies emerges from the open-path holonomy. This structure has no counterpart in the Abelian setting. We illustrate the general ideas using an example that may be accessible to tests in various physical systems

  13. Geometrically weighted semiconductor Frisch grid radiation spectrometers

    McGregor, D.S. [Dept. of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109-2104 (United States); Rojeski, R.A. [Etec Systems, Inc., 26460 Corporate Ave., Hayward, CA 94545 (United States); He, Z. [Dept. of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109-2104 (United States); Wehe, D.K. [Dept. of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109-2104 (United States); Driver, M. [eV Products, 375 Saxonburg Blvd., Saxonburg, PA 16056 (United States); Blakely, M. [eV Products, 375 Saxonburg Blvd., Saxonburg, PA 16056 (United States)

    1999-02-11

    A new detector geometry is described with relatively high gamma ray energy resolution at room temperature. The device uses the geometric weighting effect, the small pixel effect and the Frisch grid effect to produce high gamma ray energy resolution. The design is simple and easy to construct. The device performs as a gamma ray spectrometer without the need for pulse shape rejection or correction, and it requires only one signal output to any commercially available charge sensitive preamplifier. The device operates very well with conventional NIM electronic systems. Presently, room temperature (23 deg. C) energy resolutions of 2.68% FWHM at 662 keV and 2.45% FWHM at 1.332 MeV have been measured with a 1 cm{sup 3} prism shaped CdZnTe device.

  14. Hydrodynamical winds from a geometrically thin disk

    Fukue, Jun

    1989-01-01

    Hydrodynamical winds emanating from the surface of a geometrically thin disk under the gravitational field of the central object are examined. The attention is focused on the transonic nature of the flow. For a given configuration of streamlines, the flow fields are divided into three regions: the inner region where the gas near the disk plane is gravitationally bound to form a corona; the intermediate wind region where multiple critical points appear and the gas flows out from the disk passing through critical points; and the outer region where the gas is unbound to escape to infinity without passing through critical points. This behavior of disk winds is due to the shape of the gravitational potential of the central object along the streamline and due to the energy source distribution at the flow base on the disk plane where the potential in finite. (author)

  15. Point- and curve-based geometric conflation

    Ló pez-Vá zquez, C.; Manso Callejo, M.A.

    2013-01-01

    Geometric conflation is the process undertaken to modify the coordinates of features in dataset A in order to match corresponding ones in dataset B. The overwhelming majority of the literature considers the use of points as features to define the transformation. In this article we present a procedure to consider one-dimensional curves also, which are commonly available as Global Navigation Satellite System (GNSS) tracks, routes, coastlines, and so on, in order to define the estimate of the displacements to be applied to each object in A. The procedure involves three steps, including the partial matching of corresponding curves, the computation of some analytical expression, and the addition of a correction term in order to satisfy basic cartographic rules. A numerical example is presented. © 2013 Copyright Taylor and Francis Group, LLC.

  16. Two solvable problems of planar geometrical optics.

    Borghero, Francesco; Bozis, George

    2006-12-01

    In the framework of geometrical optics we consider a two-dimensional transparent inhomogeneous isotropic medium (dispersive or not). We show that (i) for any family belonging to a certain class of planar monoparametric families of monochromatic light rays given in the form f(x,y)=c of any definite color and satisfying a differential condition, all the refractive index profiles n=n(x,y) allowing for the creation of the given family can be found analytically (inverse problem) and that (ii) for any member of a class of two-dimensional refractive index profiles n=n(x,y) satisfying a differential condition, all the compatible families of light rays can be found analytically (direct problem). We present appropriate examples.

  17. Rayleigh's hypothesis and the geometrical optics limit.

    Elfouhaily, Tanos; Hahn, Thomas

    2006-09-22

    The Rayleigh hypothesis (RH) is often invoked in the theoretical and numerical treatment of rough surface scattering in order to decouple the analytical form of the scattered field. The hypothesis stipulates that the scattered field away from the surface can be extended down onto the rough surface even though it is formed by solely up-going waves. Traditionally this hypothesis is systematically used to derive the Volterra series under the small perturbation method which is equivalent to the low-frequency limit. In this Letter we demonstrate that the RH also carries the high-frequency or the geometrical optics limit, at least to first order. This finding has never been explicitly derived in the literature. Our result comforts the idea that the RH might be an exact solution under some constraints in the general case of random rough surfaces and not only in the case of small-slope deterministic periodic gratings.

  18. Robust topology optimization accounting for geometric imperfections

    Schevenels, M.; Jansen, M.; Lombaert, Geert

    2013-01-01

    performance. As a consequence, the actual structure may be far from optimal. In this paper, a robust approach to topology optimization is presented, taking into account two types of geometric imperfections: variations of (1) the crosssections and (2) the locations of structural elements. The first type...... is modeled by means of a scalar non-Gaussian random field, which is represented as a translation process. The underlying Gaussian field is simulated by means of the EOLE method. The second type of imperfections is modeled as a Gaussian vector-valued random field, which is simulated directly by means...... of the EOLE method. In each iteration of the optimization process, the relevant statistics of the structural response are evaluated by means of a Monte Carlo simulation. The proposed methodology is successfully applied to a test problem involving the design of a compliant mechanism (for the first type...

  19. Random geometric graphs with general connection functions

    Dettmann, Carl P.; Georgiou, Orestis

    2016-03-01

    In the original (1961) Gilbert model of random geometric graphs, nodes are placed according to a Poisson point process, and links formed between those within a fixed range. Motivated by wireless ad hoc networks "soft" or "probabilistic" connection models have recently been introduced, involving a "connection function" H (r ) that gives the probability that two nodes at distance r are linked (directly connect). In many applications (not only wireless networks), it is desirable that the graph is connected; that is, every node is linked to every other node in a multihop fashion. Here the connection probability of a dense network in a convex domain in two or three dimensions is expressed in terms of contributions from boundary components for a very general class of connection functions. It turns out that only a few quantities such as moments of the connection function appear. Good agreement is found with special cases from previous studies and with numerical simulations.

  20. Geometric regularizations and dual conifold transitions

    Landsteiner, Karl; Lazaroiu, Calin I.

    2003-01-01

    We consider a geometric regularization for the class of conifold transitions relating D-brane systems on noncompact Calabi-Yau spaces to certain flux backgrounds. This regularization respects the SL(2,Z) invariance of the flux superpotential, and allows for computation of the relevant periods through the method of Picard-Fuchs equations. The regularized geometry is a noncompact Calabi-Yau which can be viewed as a monodromic fibration, with the nontrivial monodromy being induced by the regulator. It reduces to the original, non-monodromic background when the regulator is removed. Using this regularization, we discuss the simple case of the local conifold, and show how the relevant field-theoretic information can be extracted in this approach. (author)

  1. Degenerated shell element for geometrically nonlinear analysis of thin-walled piezoelectric active structures

    Marinković, D; Köppe, H; Gabbert, U

    2008-01-01

    Active piezoelectric thin-walled structures, especially those with a notably higher membrane than bending stiffness, are susceptible to large rotations and transverse deflections. Recent investigations conducted by a number of researchers have shown that the predicted behavior of piezoelectric structures can be significantly influenced by the assumption of large displacements and rotations of the structure, thus demanding a geometrically nonlinear formulation in order to investigate it. This paper offers a degenerated shell element and a simplified formulation that relies on small incremental steps for the geometrically nonlinear analysis of piezoelectric composite structures. A set of purely mechanical static cases is followed by a set of piezoelectric coupled static cases, both demonstrating the applicability of the proposed formulation

  2. Geometrical Aspects During Formation of Compact Aggregates of Red Blood Cells

    Cardoso A.V.

    2002-01-01

    Full Text Available In the past forty years considerable progress has been achieved on the knowledge of human blood as a non-Newtonian shear-thinning suspension, whose initial state, that is at rest (stasis or at very low shear rates, has a gel-like internal structure which is destroyed as shear stress increases. The main goal of this communication is to describe the role of geometrical aspects during RBC (red blood cell aggregate formation, growth and compaction on naturally aggregate (porcine blood and non-aggregate (bovine blood samples. We consider how these aspects coupled with tension equilibrium are decisive to transform red cell linear roleaux to three-dimensional aggregates or clusters. Geometrical aspects are also crucial on the compaction of red blood cell aggregates. These densely packed aggregates could precipitate out of blood- either as dangerous deposits on arterial walls, or as clots which travel in suspension until they block some crucial capillary.

  3. Geometrical origin of tricritical points of various U(1) lattice models

    Janke, W.; Kleiert, H.

    1989-01-01

    The authors review the dual relationship between various compact U(1) lattice models and Abelian Higgs models, the latter being the disorder field theories of line-like topological excitations in the system. The authors point out that the predicted first-order transitions in the Abelian Higgs models (Coleman-Weinberg mechanism) are, in three dimensions, in contradiction with direct numerical investigations in the compact U(1) formulation since these yield continuous transitions in the major part of the phase diagram. In four dimensions, there are indications from Monte Carlo data for a similar situation. Concentrating on the strong-coupling expansion in terms of geometrical objects, surfaces or lines, with certain statistical weights, the authors present semi-quantitative arguments explaining the observed cross-over from first-order to continuous transitions by the balance between the lowest two weights (2:1 ratio) of these geometrical objects

  4. Geometrical resonance effects in thin superconducting films

    Nedellec, P.

    1977-01-01

    Electron tunneling density of states measurements on thick and clear superconducting films (S 1 ) backed by films in the normal or superconducting state (S 2 ) show geometrical resonance effects associated with the spatial variation of Δ(x), the pair potential, near the interface S 1 -S 2 . The present understanding of this so-called 'Tomasch effect' is described. The dispersion relation and the nature of excitations in the superconducting state are introduced. It is shown that the introduction of Green functions give a general description of the superconducting state. The notion of Andreev scattering at the S 1 -S 2 interface is presented and connect the geometrical resonance effects to interference process between excitations. The different physical parameters involved are defined and used in the discussion of some experimental results: the variation of the period in energy with the superconducting thickness is connected to the renormalized group velocity of excitations traveling perpendicular to the film. The role of the barrier potential at the interface on the Tomasch effect is described. The main results discussed are: the decrease of the amplitude of the Tomasch structures with energy is due to the loss of the mixed electron-hole character of the superconducting excitations far away from the Fermi level; the variation of the pair potential at the interface is directly related to the amplitude of the oscillations; the tunneling selectivity is an important parameter as the amplitude as well as the phase of the oscillations are modified depending on the value of the selectivity; the phase of the Tomasch oscillations is different for an abrupt change of Δ at the interface and for a smooth variation. An ambiguity arises due to the interplay between these parameters. Finally, some experiments, which illustrate clearly the predicted effects are described [fr

  5. COMPARISON OF METHODS FOR GEOMETRIC CAMERA CALIBRATION

    J. Hieronymus

    2012-09-01

    Full Text Available Methods for geometric calibration of cameras in close-range photogrammetry are established and well investigated. The most common one is based on test-fields with well-known pattern, which are observed from different directions. The parameters of a distortion model are calculated using bundle-block-adjustment-algorithms. This methods works well for short focal lengths, but is essentially more problematic to use with large focal lengths. Those would require very large test-fields and surrounding space. To overcome this problem, there is another common method for calibration used in remote sensing. It employs measurements using collimator and a goniometer. A third calibration method uses diffractive optical elements (DOE to project holograms of well known pattern. In this paper these three calibration methods are compared empirically, especially in terms of accuracy. A camera has been calibrated with those methods mentioned above. All methods provide a set of distortion correction parameters as used by the photogrammetric software Australis. The resulting parameter values are very similar for all investigated methods. The three sets of distortion parameters are crosscompared against all three calibration methods. This is achieved by inserting the gained distortion parameters as fixed input into the calibration algorithms and only adjusting the exterior orientation. The RMS (root mean square of the remaining image coordinate residuals are taken as a measure of distortion correction quality. There are differences resulting from the different calibration methods. Nevertheless the measure is small for every comparison, which means that all three calibration methods can be used for accurate geometric calibration.

  6. A Geometric Representation of Collective Attention Flows.

    Peiteng Shi

    Full Text Available With the fast development of Internet and WWW, "information overload" has become an overwhelming problem, and collective attention of users will play a more important role nowadays. As a result, knowing how collective attention distributes and flows among different websites is the first step to understand the underlying dynamics of attention on WWW. In this paper, we propose a method to embed a large number of web sites into a high dimensional Euclidean space according to the novel concept of flow distance, which both considers connection topology between sites and collective click behaviors of users. With this geometric representation, we visualize the attention flow in the data set of Indiana university clickstream over one day. It turns out that all the websites can be embedded into a 20 dimensional ball, in which, close sites are always visited by users sequentially. The distributions of websites, attention flows, and dissipations can be divided into three spherical crowns (core, interim, and periphery. 20% popular sites (Google.com, Myspace.com, Facebook.com, etc. attracting 75% attention flows with only 55% dissipations (log off users locate in the central layer with the radius 4.1. While 60% sites attracting only about 22% traffics with almost 38% dissipations locate in the middle area with radius between 4.1 and 6.3. Other 20% sites are far from the central area. All the cumulative distributions of variables can be well fitted by "S"-shaped curves. And the patterns are stable across different periods. Thus, the overall distribution and the dynamics of collective attention on websites can be well exhibited by this geometric representation.

  7. A Geometric Representation of Collective Attention Flows.

    Shi, Peiteng; Huang, Xiaohan; Wang, Jun; Zhang, Jiang; Deng, Su; Wu, Yahui

    2015-01-01

    With the fast development of Internet and WWW, "information overload" has become an overwhelming problem, and collective attention of users will play a more important role nowadays. As a result, knowing how collective attention distributes and flows among different websites is the first step to understand the underlying dynamics of attention on WWW. In this paper, we propose a method to embed a large number of web sites into a high dimensional Euclidean space according to the novel concept of flow distance, which both considers connection topology between sites and collective click behaviors of users. With this geometric representation, we visualize the attention flow in the data set of Indiana university clickstream over one day. It turns out that all the websites can be embedded into a 20 dimensional ball, in which, close sites are always visited by users sequentially. The distributions of websites, attention flows, and dissipations can be divided into three spherical crowns (core, interim, and periphery). 20% popular sites (Google.com, Myspace.com, Facebook.com, etc.) attracting 75% attention flows with only 55% dissipations (log off users) locate in the central layer with the radius 4.1. While 60% sites attracting only about 22% traffics with almost 38% dissipations locate in the middle area with radius between 4.1 and 6.3. Other 20% sites are far from the central area. All the cumulative distributions of variables can be well fitted by "S"-shaped curves. And the patterns are stable across different periods. Thus, the overall distribution and the dynamics of collective attention on websites can be well exhibited by this geometric representation.

  8. Advances on geometric flux optical design method

    García-Botella, Ángel; Fernández-Balbuena, Antonio Álvarez; Vázquez, Daniel

    2017-09-01

    Nonimaging optics is focused on the study of methods to design concentrators or illuminators systems. It can be included in the area of photometry and radiometry and it is governed by the laws of geometrical optics. The field vector method, which starts with the definition of the irradiance vector E, is one of the techniques used in nonimaging optics. Called "Geometrical flux vector" it has provide ideal designs. The main property of this model is, its ability to estimate how radiant energy is transferred by the optical system, from the concepts of field line, flux tube and pseudopotential surface, overcoming traditional raytrace methods. Nevertheless this model has been developed only at an academic level, where characteristic optical parameters are ideal not real and the studied geometries are simple. The main objective of the present paper is the application of the vector field method to the analysis and design of real concentration and illumination systems. We propose the development of a calculation tool for optical simulations by vector field, using algorithms based on Fermat`s principle, as an alternative to traditional tools for optical simulations by raytrace, based on reflection and refraction law. This new tool provides, first, traditional simulations results: efficiency, illuminance/irradiance calculations, angular distribution of light- with lower computation time, photometrical information needs about a few tens of field lines, in comparison with million rays needed nowadays. On the other hand the tool will provides new information as vector field maps produced by the system, composed by field lines and quasipotential surfaces. We show our first results with the vector field simulation tool.

  9. Geometric Phases for Mixed States in Trapped Ions

    Lu Hongxia

    2006-01-01

    The generalization of geometric phase from the pure states to the mixed states may have potential applications in constructing geometric quantum gates. We here investigate the mixed state geometric phases and visibilities of the trapped ion system in both non-degenerate and degenerate cases. In the proposed quantum system, the geometric phases are determined by the evolution time, the initial states of trapped ions, and the initial states of photons. Moreover, special periods are gained under which the geometric phases do not change with the initial states changing of photon parts in both non-degenerate and degenerate cases. The high detection efficiency in the ion trap system implies that the mixed state geometric phases proposed here can be easily tested.

  10. Forward error correction based on algebraic-geometric theory

    A Alzubi, Jafar; M Chen, Thomas

    2014-01-01

    This book covers the design, construction, and implementation of algebraic-geometric codes from Hermitian curves. Matlab simulations of algebraic-geometric codes and Reed-Solomon codes compare their bit error rate using different modulation schemes over additive white Gaussian noise channel model. Simulation results of Algebraic-geometric codes bit error rate performance using quadrature amplitude modulation (16QAM and 64QAM) are presented for the first time and shown to outperform Reed-Solomon codes at various code rates and channel models. The book proposes algebraic-geometric block turbo codes. It also presents simulation results that show an improved bit error rate performance at the cost of high system complexity due to using algebraic-geometric codes and Chase-Pyndiah’s algorithm simultaneously. The book proposes algebraic-geometric irregular block turbo codes (AG-IBTC) to reduce system complexity. Simulation results for AG-IBTCs are presented for the first time.

  11. Geometric convergence of some two-point Pade approximations

    Nemeth, G.

    1983-01-01

    The geometric convergences of some two-point Pade approximations are investigated on the real positive axis and on certain infinite sets of the complex plane. Some theorems concerning the geometric convergence of Pade approximations are proved, and bounds on geometric convergence rates are given. The results may be interesting considering the applications both in numerical computations and in approximation theory. As a specific case, the numerical calculations connected with the plasma dispersion function may be performed. (D.Gy.)

  12. Geometrical intuition and the learning and teaching of geometry

    Fujita, Taro; Jones, Keith; Yamamoto, Shinya

    2004-01-01

    Intuition is often regarded as essential in the learning of geometry, but how such skills might be effectively developed in students remains an open question. This paper reviews the role and importance of geometrical intuition and suggests it involves the skills to create and manipulate geometrical figures in the mind, to see geometrical properties, to relate images to concepts and theorems in geometry, and decide where and how to start when solving problems in geometry. Based on these theore...

  13. From the geometric quantization to conformal field theory

    Alekseev, A.; Shatashvili, S.

    1990-01-01

    Investigation of 2d conformal field theory in terms of geometric quantization is given. We quantize the so-called model space of the compact Lie group, Virasoro group and Kac-Moody group. In particular, we give a geometrical interpretation of the Virasoro discrete series and explain that this type of geometric quantization reproduces the chiral part of CFT (minimal models, 2d-gravity, WZNW theory). In the appendix we discuss the relation between classical (constant) r-matrices and this geometrical approach. (orig.)

  14. A Color Image Watermarking Scheme Resistant against Geometrical Attacks

    Y. Xing

    2010-04-01

    Full Text Available The geometrical attacks are still a problem for many digital watermarking algorithms at present. In this paper, we propose a watermarking algorithm for color images resistant to geometrical distortions (rotation and scaling. The singular value decomposition is used for watermark embedding and extraction. The log-polar map- ping (LPM and phase correlation method are used to register the position of geometrical distortion suffered by the watermarked image. Experiments with different kinds of color images and watermarks demonstrate that the watermarking algorithm is robust to common image processing attacks, especially geometrical attacks.

  15. Geometric phases for nonlinear coherent and squeezed states

    Yang Dabao; Chen Ying; Chen Jingling; Zhang Fulin

    2011-01-01

    The geometric phases for standard coherent states which are widely used in quantum optics have attracted considerable attention. Nevertheless, few physicists consider the counterparts of nonlinear coherent states, which are useful in the description of the motion of a trapped ion. In this paper, the non-unitary and non-cyclic geometric phases for two nonlinear coherent and one squeezed states are formulated, respectively. Moreover, some of their common properties are discussed, such as gauge invariance, non-locality and nonlinear effects. The nonlinear functions have dramatic impacts on the evolution of the corresponding geometric phases. They speed the evolution up or down. So this property may have an application in controlling or measuring geometric phase. For the squeezed case, when the squeezed parameter r → ∞, the limiting value of the geometric phase is also determined by a nonlinear function at a given time and angular velocity. In addition, the geometric phases for standard coherent and squeezed states are obtained under a particular condition. When the time evolution undergoes a period, their corresponding cyclic geometric phases are achieved as well. And the distinction between the geometric phases of the two coherent states may be regarded as a geometric criterion.

  16. An Introduction to Geometric Algebra with some Preliminary Thoughts on the Geometric Meaning of Quantum Mechanics

    Horn, Martin Erik

    2014-01-01

    It is still a great riddle to me why Wolfgang Pauli and P.A.M. Dirac had not fully grasped the meaning of their own mathematical constructions. They invented magnificent, fantastic and very important mathematical features of modern physics, but they only delivered half of the interpretations of their own inventions. Of course, Pauli matrices and Dirac matrices represent operators, which Pauli and Dirac discussed in length. But this is only part of the true meaning behind them, as the non-commutative ideas of Grassmann, Clifford, Hamilton and Cartan allow a second, very far reaching interpretation of Pauli and Dirac matrices. An introduction to this alternative interpretation will be discussed. Some applications of this view on Pauli and Dirac matrices are given, e.g. a geometric algebra picture of the plane wave solution of the Maxwell equation, a geometric algebra picture of special relativity, a toy model of SU(3) symmetry, and some only very preliminary thoughts about a possible geometric meaning of quantum mechanics

  17. Efficient Geometric Sound Propagation Using Visibility Culling

    Chandak, Anish

    2011-07-01

    Simulating propagation of sound can improve the sense of realism in interactive applications such as video games and can lead to better designs in engineering applications such as architectural acoustics. In this thesis, we present geometric sound propagation techniques which are faster than prior methods and map well to upcoming parallel multi-core CPUs. We model specular reflections by using the image-source method and model finite-edge diffraction by using the well-known Biot-Tolstoy-Medwin (BTM) model. We accelerate the computation of specular reflections by applying novel visibility algorithms, FastV and AD-Frustum, which compute visibility from a point. We accelerate finite-edge diffraction modeling by applying a novel visibility algorithm which computes visibility from a region. Our visibility algorithms are based on frustum tracing and exploit recent advances in fast ray-hierarchy intersections, data-parallel computations, and scalable, multi-core algorithms. The AD-Frustum algorithm adapts its computation to the scene complexity and allows small errors in computing specular reflection paths for higher computational efficiency. FastV and our visibility algorithm from a region are general, object-space, conservative visibility algorithms that together significantly reduce the number of image sources compared to other techniques while preserving the same accuracy. Our geometric propagation algorithms are an order of magnitude faster than prior approaches for modeling specular reflections and two to ten times faster for modeling finite-edge diffraction. Our algorithms are interactive, scale almost linearly on multi-core CPUs, and can handle large, complex, and dynamic scenes. We also compare the accuracy of our sound propagation algorithms with other methods. Once sound propagation is performed, it is desirable to listen to the propagated sound in interactive and engineering applications. We can generate smooth, artifact-free output audio signals by applying

  18. Study into Point Cloud Geometric Rigidity and Accuracy of TLS-Based Identification of Geometric Bodies

    Klapa, Przemyslaw; Mitka, Bartosz; Zygmunt, Mariusz

    2017-12-01

    Capability of obtaining a multimillion point cloud in a very short time has made the Terrestrial Laser Scanning (TLS) a widely used tool in many fields of science and technology. The TLS accuracy matches traditional devices used in land surveying (tacheometry, GNSS - RTK), but like any measurement it is burdened with error which affects the precise identification of objects based on their image in the form of a point cloud. The point’s coordinates are determined indirectly by means of measuring the angles and calculating the time of travel of the electromagnetic wave. Each such component has a measurement error which is translated into the final result. The XYZ coordinates of a measuring point are determined with some uncertainty and the very accuracy of determining these coordinates is reduced as the distance to the instrument increases. The paper presents the results of examination of geometrical stability of a point cloud obtained by means terrestrial laser scanner and accuracy evaluation of solids determined using the cloud. Leica P40 scanner and two different settings of measuring points were used in the tests. The first concept involved placing a few balls in the field and then scanning them from various sides at similar distances. The second part of measurement involved placing balls and scanning them a few times from one side but at varying distances from the instrument to the object. Each measurement encompassed a scan of the object with automatic determination of its position and geometry. The desk studies involved a semiautomatic fitting of solids and measurement of their geometrical elements, and comparison of parameters that determine their geometry and location in space. The differences of measures of geometrical elements of balls and translations vectors of the solids centres indicate the geometrical changes of the point cloud depending on the scanning distance and parameters. The results indicate the changes in the geometry of scanned objects

  19. OSCILLATING FILAMENTS. I. OSCILLATION AND GEOMETRICAL FRAGMENTATION

    Gritschneder, Matthias; Heigl, Stefan; Burkert, Andreas, E-mail: gritschm@usm.uni-muenchen.de [University Observatory Munich, LMU Munich, Scheinerstrasse 1, D-81679 Munich (Germany)

    2017-01-10

    We study the stability of filaments in equilibrium between gravity and internal as well as external pressure using the grid-based AMR code RAMSES. A homogeneous, straight cylinder below a critical line mass is marginally stable. However, if the cylinder is bent, such as with a slight sinusoidal perturbation, an otherwise stable configuration starts to oscillate, is triggered into fragmentation, and collapses. This previously unstudied behavior allows a filament to fragment at any given scale, as long as it has slight bends. We call this process “geometrical fragmentation.” In our realization, the spacing between the cores matches the wavelength of the sinusoidal perturbation, whereas up to now, filaments were thought to be only fragmenting on the characteristic scale set by the mass-to-line ratio. Using first principles, we derive the oscillation period as well as the collapse timescale analytically. To enable a direct comparison with observations, we study the line-of-sight velocity for different inclinations. We show that the overall oscillation pattern can hide the infall signature of cores.

  20. Exploring Eucladoceros ecomorphology using geometric morphometrics.

    Curran, Sabrina C

    2015-01-01

    An increasingly common method for reconstructing paleoenvironmental parameters of hominin sites is ecological functional morphology (ecomorphology). This study provides a geometric morphometric study of cervid rearlimb morphology as it relates to phylogeny, size, and ecomorphology. These methods are then applied to an extinct Pleistocene cervid, Eucladoceros, which is found in some of the earliest hominin-occupied sites in Eurasia. Variation in cervid postcranial functional morphology associated with different habitats can be summarized as trade-offs between joint stability versus mobility and rapid movement versus power-generation. Cervids in open habitats emphasize limb stability to avoid joint dislocation during rapid flight from predators. Closed-adapted cervids require more joint mobility to rapidly switch directions in complex habitats. Two skeletal features (of the tibia and calcaneus) have significant phylogenetic signals, while two (the femur and third phalanx) do not. Additionally, morphology of two of these features (tibia and third phalanx) were correlated with body size. For the tibial analysis (but not the third phalanx) this correlation was ameliorated when phylogeny was taken into account. Eucladoceros specimens from France and Romania fall on the more open side of the habitat continuum, a result that is at odds with reconstructions of their diet as browsers, suggesting that they may have had a behavioral regime unlike any extant cervid. © 2014 Wiley Periodicals, Inc.

  1. Optimization of Gad Pattern with Geometrical Weight

    Chang, Do Ik; Woo, Hae Seuk; Choi, Seong Min

    2009-01-01

    The prevailing burnable absorber for domestic nuclear power plants is a gad fuel rod which is used for the partial control of excess reactivity and power peaking. The radial peaking factor, which is one of the critical constraints for the plant safety depends largely on the number of gad bearing rods and the location of gad rods within fuel assembly. Also the concentration of gad, UO 2 enrichment in the gad fuel rod, and fuel lattice type play important roles for the resultant radial power peaking. Since fuel is upgraded periodically and longer fuel cycle management requires more burnable absorbers or higher gad weight percent, it is required frequently to search for the optimized gad patterns, i.e., the distribution of gad fuel rods within assembly, for the various fuel environment and fuel management changes. In this study, the gad pattern optimization algorithm with respect to radial power peaking factor using geometrical weight is proposed for a single gad weight percent, in which the candidates of the optimized gad pattern are determined based on the weighting of the gad rod location and the guide tube. Also the pattern evaluation is performed systematically to determine the optimal gad pattern for the various situation

  2. Geometrical optimization of the dense plasma focus

    Lee, S.; Chen, Y.H.

    1982-01-01

    A 12 kJ DPF device with a periodic time of 12μsec, UMDPF1 has been optimized geometrically to produce a higher neutron yield of 1.5x10 9 at 10 torr filling pressure than from the same device before optimization. With the same optimization procedure a faster DPF device with a periodic time of 3.7μsec, UMDPF2, of the same energy has also been optimized to give a peak neutron yield of 6.3x10 9 at 16 torr filling pressure. Experimental evidence shows that over and above the increase in neutron production due to an increase in current according to the Isup(3.3) scaling law, a faster current rise time may have an additional effect of enhancement in neutron production. The outcome of this project is that a new high pressure regime of 16 torr with an enhanced neutron yield of 6.3x10 9 and improved yield reproducibility for an input energy of 12 kJ has thus been established. There is every reason to believe that this optimization procedure can be extended to other DPF devices. (author)

  3. Geometric perturbation theory and plasma physics

    Omohundro, S.M.

    1985-01-01

    Modern differential geometric techniques are used to unify the physical asymptotics underlying mechanics, wave theory, and statistical mechanics. The approach gives new insights into the structure of physical theories and is suited to the needs of modern large-scale computer simulation and symbol manipulation systems. A coordinate-free formulation of non-singular perturbation theory is given, from which a new Hamiltonian perturbation structure is derived and related to the unperturbed structure in five different ways. The theory of perturbations in the presence of symmetry is developed, and the method of averaging is related to reduction by a circle-group action. The pseudo-forces and magnetic Poisson bracket terms due to reduction are given a natural asymptotic interpretation. Similar terms due to changing reference frames are related to the method of variation of parameters, which is also given a Hamiltonian formulation. These methods are used to answer a long-standing question posed by Kruskal about nearly periodic systems. The answer leads to a new secular perturbation theory that contains no adhoc elements, which is then applied to gyromotion. Eikonal wave theory is given a Hamiltonian formulation that generalizes Whitham's Lagrangian approach. The evolution of wave action density on ray phase space is given a Hamiltonian structure using a Lie-Poisson bracket. The relationship between dissipative and Hamiltonian systems is discussed. A theory motivated by free electron lasers gives new restrictions on the change of area of projected parallelepipeds under canonical transformations

  4. Geometric Model of a Coronal Cavity

    Kucera, Therese A.; Gibson, S. E.; Ratawicki, D.; Dove, J.; deToma, G.; Hao, J.; Hudson, H. S.; Marque, C.; McIntosh, P. S.; Reeves, K. K.; hide

    2010-01-01

    We observed a coronal cavity from August 8-18 2007 during a multi-instrument observing campaign organized under the auspices of the International Heliophysical Year (IHY). Here we present initial efforts to model the cavity with a geometrical streamer-cavity model. The model is based the white-light streamer mode] of Gibson et a]. (2003 ), which has been enhanced by the addition of a cavity and the capability to model EUV and X-ray emission. The cavity is modeled with an elliptical cross-section and Gaussian fall-off in length and width inside the streamer. Density and temperature can be varied in the streamer and cavity and constrained via comparison with data. Although this model is purely morphological, it allows for three-dimensional, multi-temperature analysis and characterization of the data, which can then provide constraints for future physical modeling. Initial comparisons to STEREO/EUVI images of the cavity and streamer show that the model can provide a good fit to the data. This work is part of the effort of the International Space Science Institute International Team on Prominence Cavities

  5. Geometrically based optimization for extracranial radiosurgery

    Liu Ruiguo; Wagner, Thomas H; Buatti, John M; Modrick, Joseph; Dill, John; Meeks, Sanford L

    2004-01-01

    For static beam conformal intracranial radiosurgery, geometry of the beam arrangement dominates overall dose distribution. Maximizing beam separation in three dimensions decreases beam overlap, thus maximizing dose conformality and gradient outside of the target volume. Webb proposed arrangements of isotropically convergent beams that could be used as the starting point for a radiotherapy optimization process. We have developed an extracranial radiosurgery optimization method by extending Webb's isotropic beam arrangements to deliverable beam arrangements. This method uses an arrangement of N maximally separated converging vectors within the space available for beam delivery. Each bouquet of isotropic beam vectors is generated by a random sampling process that iteratively maximizes beam separation. Next, beam arrangement is optimized for critical structure avoidance while maintaining minimal overlap between beam entrance and exit pathways. This geometrically optimized beam set can then be used as a template for either conformal beam or intensity modulated extracranial radiosurgery. Preliminary results suggest that using this technique with conformal beam planning provides high plan conformality, a steep dose gradient outside of the tumour volume and acceptable critical structure avoidance in the majority of clinical cases

  6. Geometrical properties of a 'snowflake' divertor

    Ryutov, D. D.

    2007-01-01

    Using a simple set of poloidal field coils, one can reach the situation in which the null of the poloidal magnetic field in the divertor region is of second order, not of first order as in the usual X-point divertor. Then, the separatrix in the vicinity of the null point splits the poloidal plane not into four sectors, but into six sectors, making the whole structure look like a snowflake (hence the name). This arrangement allows one to spread the heat load over a much broader area than in the case of a standard divertor. A disadvantage of this configuration is that it is topologically unstable, and, with the current in the plasma varying with time, it would switch either to the standard X-point mode, or to the mode with two X-points close to each other. To avoid this problem, it is suggested to have a current in the divertor coils that is roughly 5% higher than in an ''optimum'' regime (the one in which a snowflake separatrix is formed). In this mode, the configuration becomes stable and can be controlled by varying the current in the divertor coils in concert with the plasma current; on the other hand, a strong flaring of the scrape-off layer still remains in force. Geometrical properties of this configuration are analyzed. Potential advantages and disadvantages of this scheme are discussed

  7. Geometrical shock dynamics for magnetohydrodynamic fast shocks

    Mostert, W.; Pullin, D. I.; Samtaney, Ravi; Wheatley, V.

    2016-01-01

    We describe a formulation of two-dimensional geometrical shock dynamics (GSD) suitable for ideal magnetohydrodynamic (MHD) fast shocks under magnetic fields of general strength and orientation. The resulting area–Mach-number–shock-angle relation is then incorporated into a numerical method using pseudospectral differentiation. The MHD-GSD model is verified by comparison with results from nonlinear finite-volume solution of the complete ideal MHD equations applied to a shock implosion flow in the presence of an oblique and spatially varying magnetic field ahead of the shock. Results from application of the MHD-GSD equations to the stability of fast MHD shocks in two dimensions are presented. It is shown that the time to formation of triple points for both perturbed MHD and gas-dynamic shocks increases as (Formula presented.), where (Formula presented.) is a measure of the initial Mach-number perturbation. Symmetry breaking in the MHD case is demonstrated. In cylindrical converging geometry, in the presence of an azimuthal field produced by a line current, the MHD shock behaves in the mean as in Pullin et al. (Phys. Fluids, vol. 26, 2014, 097103), but suffers a greater relative pressure fluctuation along the shock than the gas-dynamic shock. © 2016 Cambridge University Press

  8. Geometric effects of ICMEs on geomagnetic storms

    Cho, KyungSuk; Lee, Jae-Ok

    2017-04-01

    It has been known that the geomagnetic storm is occurred by the interaction between the Interplanetary Coronal Mass Ejection (ICME) and the Earth's magnetosphere; especially, the southward Bz component of ICME is thought as the main trigger. In this study, we investigate the relationship between Dst index and solar wind conditions; which are the southward Bz, electric field (VBz), and time integral of electric field as well as ICME parameters derived from toroidal fitting model in order to find what is main factor to the geomagnetic storm. We also inspect locations of Earth in ICMEs to understand the geometric effects of the Interplanetary Flux Ropes (IFRs) on the geomagnetic storms. Among 59 CDAW ICME lists, we select 30 IFR events that are available by the toroidal fitting model and classify them into two sub-groups: geomagnetic storms associated with the Magnetic Clouds (MCs) and the compression regions ahead of the MCs (sheath). The main results are as follows: (1) The time integral of electric field has a higher correlation coefficient (cc) with Dst index than the other parameters: cc=0.85 for 25 MC events and cc=0.99 for 5 sheath events. (2) The sheath associated intense storms (Dst ≤-100nT) having usually occur at flank regions of ICMEs while the MC associated intense storms occur regardless of the locations of the Earth in ICMEs. The strength of a geomagnetic storm strongly depends on electric field of IFR and durations of the IFR passages through the Earth.

  9. Quantum adiabatic approximation and the geometric phase

    Mostafazadeh, A.

    1997-01-01

    A precise definition of an adiabaticity parameter ν of a time-dependent Hamiltonian is proposed. A variation of the time-dependent perturbation theory is presented which yields a series expansion of the evolution operator U(τ)=summation scr(l) U (scr(l)) (τ) with U (scr(l)) (τ) being at least of the order ν scr(l) . In particular, U (0) (τ) corresponds to the adiabatic approximation and yields Berry close-quote s adiabatic phase. It is shown that this series expansion has nothing to do with the 1/τ expansion of U(τ). It is also shown that the nonadiabatic part of the evolution operator is generated by a transformed Hamiltonian which is off-diagonal in the eigenbasis of the initial Hamiltonian. This suggests the introduction of an adiabatic product expansion for U(τ) which turns out to yield exact expressions for U(τ) for a large number of quantum systems. In particular, a simple application of the adiabatic product expansion is used to show that for the Hamiltonian describing the dynamics of a magnetic dipole in an arbitrarily changing magnetic field, there exists another Hamiltonian with the same eigenvectors for which the Schroedinger equation is exactly solvable. Some related issues concerning geometric phases and their physical significance are also discussed. copyright 1997 The American Physical Society

  10. Geometric investigation of a gaming active device

    Menna, Fabio; Remondino, Fabio; Battisti, Roberto; Nocerino, Erica

    2011-07-01

    3D imaging systems are widely available and used for surveying, modeling and entertainment applications, but clear statements regarding their characteristics, performances and limitations are still missing. The VDI/VDE and the ASTME57 committees are trying to set some standards but the commercial market is not reacting properly. Since many new users are approaching these 3D recording methodologies, clear statements and information clarifying if a package or system satisfies certain requirements before investing are fundamental for those users who are not really familiar with these technologies. Recently small and portable consumer-grade active sensors came on the market, like TOF rangeimaging cameras or low-cost triangulation-based range sensor. A quite interesting active system was produced by PrimeSense and launched on the market thanks to the Microsoft Xbox project with the name of Kinect. The article reports the geometric investigation of the Kinect active sensors, considering its measurement performances, the accuracy of the retrieved range data and the possibility to use it for 3D modeling application.

  11. GEOMETRICAL CHARACTERIZATION OF MICRO END MILLING TOOLS

    Borsetto, Francesca; Bariani, Paolo

    The milling process is one of the most common metal removal operation used in industry. This machining process is well known since the beginning of last century and has experienced, along the years, many improvements of the basic technology, as concerns tools, machine tools, coolants/lubricants, ......The milling process is one of the most common metal removal operation used in industry. This machining process is well known since the beginning of last century and has experienced, along the years, many improvements of the basic technology, as concerns tools, machine tools, coolants....../lubricants, milling strategies and controls. Moreover the accuracy of tool geometry directly affects the performance of the milling process influencing the dimensional tolerances of the machined part, the surface topography, the chip formation, the cutting forces and the tool-life. The dimensions of certain...... geometrical details, as for instance the cutting edge radius, are determined by characteristics of the manufacturing process, tool material, coating etc. While for conventional size end mills the basic tool manufacturing process is well established, the reduction of the size of the tools required...

  12. Mathematical methods in geometrization of coal field

    Shurygin, D. N.; Kalinchenko, V. M.; Tkachev, V. A.; Tretyak, A. Ya

    2017-10-01

    In the work, the approach to increase overall performance of collieries on the basis of an increase in accuracy of geometrization of coal thicknesses is considered. The sequence of stages of mathematical modelling of spatial placing of indicators of a deposit taking into account allocation of homogeneous sites of thickness and an establishment of quantitative interrelations between mountain-geological indicators of coal layers is offered. As a uniform mathematical method for modelling of various interrelations, it is offered to use a method of the group accounting of arguments (MGUA), one of versions of the regressive analysis. This approach can find application during delimitation between geological homogeneous sites of coal thicknesses in the form of a linear discriminant function. By an example of division into districts of a mine field in the conditions of mine “Sadkinsky” (East Donbass), the use of the complex approach for forecasting of zones of the small amplitude of disturbance of a coal layer on the basis of the discriminant analysis and MGUA is shown.

  13. Cepheids Geometrical Distances Using Space Interferometry

    Marengo, M.; Karovska, M.; Sasselov, D. D.; Sanchez, M.

    2004-05-01

    A space based interferometer with a sub-milliarcsecond resolution in the UV-optical will provide a new avenue for the calibration of primary distance indicators with unprecedented accuracy, by allowing very accurate and stable measurements of Cepheids pulsation amplitudes at wavelengths not accessible from the ground. Sasselov & Karovska (1994) have shown that interferometers allow very accurate measurements of Cepheids distances by using a ``geometric'' variant of the Baade-Wesselink method. This method has been succesfully applied to derive distances and radii of nearby Cepheids using ground-based near-IR and optical interferometers, within a 15% accuracy level. Our study shows that the main source of error in these measurements is due to the perturbing effects of the Earth atmosphere, which is the limiting factor in the interferometer stability. A space interferometer will not suffer from this intrinsic limitations, and can potentially lead to improve astronomical distance measurements by an order of magnitude in precision. We discuss here the technical requirements that a space based facility will need to carry out this project, allowing distance measurements within a few percent accuracy level. We will finally discuss how a sub-milliarcsecond resolution will allow the direct distance determination for hundreds of galactic sources, and provide a substantial improvement in the zero-point of the Cepheid distance scale.

  14. Geometric modeling for computer aided design

    Schwing, James L.; Olariu, Stephen

    1995-01-01

    The primary goal of this grant has been the design and implementation of software to be used in the conceptual design of aerospace vehicles particularly focused on the elements of geometric design, graphical user interfaces, and the interaction of the multitude of software typically used in this engineering environment. This has resulted in the development of several analysis packages and design studies. These include two major software systems currently used in the conceptual level design of aerospace vehicles. These tools are SMART, the Solid Modeling Aerospace Research Tool, and EASIE, the Environment for Software Integration and Execution. Additional software tools were designed and implemented to address the needs of the engineer working in the conceptual design environment. SMART provides conceptual designers with a rapid prototyping capability and several engineering analysis capabilities. In addition, SMART has a carefully engineered user interface that makes it easy to learn and use. Finally, a number of specialty characteristics have been built into SMART which allow it to be used efficiently as a front end geometry processor for other analysis packages. EASIE provides a set of interactive utilities that simplify the task of building and executing computer aided design systems consisting of diverse, stand-alone, analysis codes. Resulting in a streamlining of the exchange of data between programs reducing errors and improving the efficiency. EASIE provides both a methodology and a collection of software tools to ease the task of coordinating engineering design and analysis codes.

  15. Digital polarization holography advancing geometrical phase optics.

    De Sio, Luciano; Roberts, David E; Liao, Zhi; Nersisyan, Sarik; Uskova, Olena; Wickboldt, Lloyd; Tabiryan, Nelson; Steeves, Diane M; Kimball, Brian R

    2016-08-08

    Geometrical phase or the fourth generation (4G) optics enables realization of optical components (lenses, prisms, gratings, spiral phase plates, etc.) by patterning the optical axis orientation in the plane of thin anisotropic films. Such components exhibit near 100% diffraction efficiency over a broadband of wavelengths. The films are obtained by coating liquid crystalline (LC) materials over substrates with patterned alignment conditions. Photo-anisotropic materials are used for producing desired alignment conditions at the substrate surface. We present and discuss here an opportunity of producing the widest variety of "free-form" 4G optical components with arbitrary spatial patterns of the optical anisotropy axis orientation with the aid of a digital spatial light polarization converter (DSLPC). The DSLPC is based on a reflective, high resolution spatial light modulator (SLM) combined with an "ad hoc" optical setup. The most attractive feature of the use of a DSLPC for photoalignment of nanometer thin photo-anisotropic coatings is that the orientation of the alignment layer, and therefore of the fabricated LC or LC polymer (LCP) components can be specified on a pixel-by-pixel basis with high spatial resolution. By varying the optical magnification or de-magnification the spatial resolution of the photoaligned layer can be adjusted to an optimum for each application. With a simple "click" it is possible to record different optical components as well as arbitrary patterns ranging from lenses to invisible labels and other transparent labels that reveal different images depending on the side from which they are viewed.

  16. Austerity and geometric structure of field theories

    Kheyfets, A.

    1986-01-01

    The relation between the austerity idea and the geometric structure of the three basic field theories - electrodynamics, Yang-Mills theory, and general relativity - is studied. One of the most significant manifestations of the austerity idea in field theories is thought to be expressed by the boundary of a boundary principle (BBP). The BBP says that almost all content of the field theories can be deduced from the topological identity of delta dot produced with delta = 0 used twice, at the 1-2-3-dimensional level (providing the homogeneous field equations), and at the 2-3-4-dimensional level (providing the conservation laws for the source currents). There are some difficulties in this line of thought due to the apparent lack of universality in application of the BBP to the three basic modern field theories above. This dissertation: (a) analyzes the difficulties by means of algebraic topology, integration theory, and modern differential geometry based on the concepts of principal bundles and Ehresmann connections: (b) extends the BBP to the unified Kaluza-Klein theory; (c) reformulates the inhomogeneous field equations and the BBP in terms of E. Cartan moment of rotation, in the way universal for the three theories and compatible with the original austerity idea; and (d) underlines the important role of the soldering structure on spacetime, and indicates that the future development of the austerity idea would involve the generalized theories

  17. Geometric Methods in Physics : XXXIII Workshop

    Bieliavsky, Pierre; Odzijewicz, Anatol; Schlichenmaier, Martin; Voronov, Theodore

    2015-01-01

    This book presents a selection of papers based on the XXXIII Białowieża Workshop on Geometric Methods in Physics, 2014. The Białowieża Workshops are among the most important meetings in the field and attract researchers from both mathematics and physics. The articles gathered here are mathematically rigorous and have important physical implications, addressing the application of geometry in classical and quantum physics. Despite their long tradition, the workshops remain at the cutting edge of ongoing research. For the last several years, each Białowieża Workshop has been followed by a School on Geometry and Physics, where advanced lectures for graduate students and young researchers are presented; some of the lectures are reproduced here. The unique atmosphere of the workshop and school is enhanced by its venue, framed by the natural beauty of the Białowieża forest in eastern Poland. The volume will be of interest to researchers and graduate students in mathematical physics, theoretical physics and m...

  18. Geometrical shock dynamics for magnetohydrodynamic fast shocks

    Mostert, W.

    2016-12-12

    We describe a formulation of two-dimensional geometrical shock dynamics (GSD) suitable for ideal magnetohydrodynamic (MHD) fast shocks under magnetic fields of general strength and orientation. The resulting area–Mach-number–shock-angle relation is then incorporated into a numerical method using pseudospectral differentiation. The MHD-GSD model is verified by comparison with results from nonlinear finite-volume solution of the complete ideal MHD equations applied to a shock implosion flow in the presence of an oblique and spatially varying magnetic field ahead of the shock. Results from application of the MHD-GSD equations to the stability of fast MHD shocks in two dimensions are presented. It is shown that the time to formation of triple points for both perturbed MHD and gas-dynamic shocks increases as (Formula presented.), where (Formula presented.) is a measure of the initial Mach-number perturbation. Symmetry breaking in the MHD case is demonstrated. In cylindrical converging geometry, in the presence of an azimuthal field produced by a line current, the MHD shock behaves in the mean as in Pullin et al. (Phys. Fluids, vol. 26, 2014, 097103), but suffers a greater relative pressure fluctuation along the shock than the gas-dynamic shock. © 2016 Cambridge University Press

  19. Geometric Methods in Physics : XXXII Workshop

    Bieliavsky, Pierre; Odesskii, Alexander; Odzijewicz, Anatol; Schlichenmaier, Martin; Voronov, Theodore; Geometric Methods in Physics

    2014-01-01

    The Białowieża Workshops on Geometric Methods in Physics, which are hosted in the unique setting of the Białowieża natural forest in Poland, are among the most important meetings in the field. Every year some 80 to 100 participants from both the mathematics and physics world join to discuss new developments and to exchange ideas. The current volume was produced on the occasion of the 32nd meeting in 2013. It is now becoming a tradition that the Workshop is followed by a School on Geometry and Physics, which consists of advanced lectures for graduate students and young researchers. Selected speakers at the 2013 Workshop were asked to contribute to this book, and their work was supplemented by additional review articles. The selection shows that, despite its now long tradition, the workshop remains at the cutting edge of research. The 2013 Workshop also celebrated the 75th birthday of Daniel Sternheimer, and on this occasion the discussion mainly focused on his contributions to mathematical physics such as ...

  20. Geometrical Determinants of Neuronal Actin Waves.

    Tomba, Caterina; Braïni, Céline; Bugnicourt, Ghislain; Cohen, Floriane; Friedrich, Benjamin M; Gov, Nir S; Villard, Catherine

    2017-01-01

    Hippocampal neurons produce in their early stages of growth propagative, actin-rich dynamical structures called actin waves. The directional motion of actin waves from the soma to the tip of neuronal extensions has been associated with net forward growth, and ultimately with the specification of neurites into axon and dendrites. Here, geometrical cues are used to control actin wave dynamics by constraining neurons on adhesive stripes of various widths. A key observable, the average time between the production of consecutive actin waves, or mean inter-wave interval (IWI), was identified. It scales with the neurite width, and more precisely with the width of the proximal segment close to the soma. In addition, the IWI is independent of the total number of neurites. These two results suggest a mechanistic model of actin wave production, by which the material conveyed by actin waves is assembled in the soma until it reaches the threshold leading to the initiation and propagation of a new actin wave. Based on these observations, we formulate a predictive theoretical description of actin wave-driven neuronal growth and polarization, which consistently accounts for different sets of experiments.

  1. Induced subgraph searching for geometric model fitting

    Xiao, Fan; Xiao, Guobao; Yan, Yan; Wang, Xing; Wang, Hanzi

    2017-11-01

    In this paper, we propose a novel model fitting method based on graphs to fit and segment multiple-structure data. In the graph constructed on data, each model instance is represented as an induced subgraph. Following the idea of pursuing the maximum consensus, the multiple geometric model fitting problem is formulated as searching for a set of induced subgraphs including the maximum union set of vertices. After the generation and refinement of the induced subgraphs that represent the model hypotheses, the searching process is conducted on the "qualified" subgraphs. Multiple model instances can be simultaneously estimated by solving a converted problem. Then, we introduce the energy evaluation function to determine the number of model instances in data. The proposed method is able to effectively estimate the number and the parameters of model instances in data severely corrupted by outliers and noises. Experimental results on synthetic data and real images validate the favorable performance of the proposed method compared with several state-of-the-art fitting methods.

  2. An improved geometric algorithm for calculating the topology of lattice gauge fields

    Pugh, D.J.R.; Teper, M.; Oxford Univ.

    1989-01-01

    We implement the algorithm of Phillips and Stone on a hypercubic, periodic lattice and show that at currently accessible couplings the SU(2) topological charge so calculated is dominated by short-distance fluctuations. We propose and test an improvement to rid the measure of such lattice artifacts. We find that the improved algorithm produces a topological susceptibility that is consistent with that obtained by the alternative cooling method, thus resolving the controversial discrepancy between geometric and cooling methods. We briefly discuss the reasons for this and point out that our improvement is likely to be particularly effective when applied to the case of SU(3). (orig.)

  3. A tentative purely geometrical Machian framework for describing gravity and inertia

    Goldoni, R

    1979-03-03

    A purely geometrical framework for implementing Machian ideas about inertia is proposed. Only coupling constants that are dimensionless in natural units are introduced, and the gravitational field equations for cosmological units are identical to Einstein's equations in any nonvacuum cosmology. It is suggested that the cosmos in this framework be identified with a superuniverse model in which the background structure is homogeneous and isotropic, while the observable universe is represented by one of the local inhomogeneities of the background. Experimental tests of the proposed model are briefly discussed.

  4. Field of view of limitations in see-through HMD using geometric waveguides.

    DeHoog, Edward; Holmstedt, Jason; Aye, Tin

    2016-08-01

    Geometric waveguides are being integrated into head-mounted display (HMD) systems, where having see-through capability in a compact, lightweight form factor is required. We developed methods for determining the field of view (FOV) of such waveguide HMD systems and have analytically derived the FOV for waveguides using planar and curved geometries. By using real ray-tracing methods, we are able to show how the geometry and index of refraction of the waveguide, as well as the properties of the coupling optics, impact the FOV. Use of this analysis allows one to determine the maximum theoretical FOV of a planar or curved waveguide-based system.

  5. A new Weyl-like tensor of geometric origin

    Vishwakarma, Ram Gopal

    2018-04-01

    A set of new tensors of purely geometric origin have been investigated, which form a hierarchy. A tensor of a lower rank plays the role of the potential for the tensor of one rank higher. The tensors have interesting mathematical and physical properties. The highest rank tensor of the hierarchy possesses all the geometrical properties of the Weyl tensor.

  6. Multiscale Path Metrics for the Analysis of Discrete Geometric Structures

    2017-11-30

    Report: Multiscale Path Metrics for the Analysis of Discrete Geometric Structures The views, opinions and/or findings contained in this report are those...Analysis of Discrete Geometric Structures Report Term: 0-Other Email: tomasi@cs.duke.edu Distribution Statement: 1-Approved for public release

  7. Aspects of random geometric graphs : Pursuit-evasion and treewidth

    Li, A.

    2015-01-01

    In this thesis, we studied two aspects of random geometric graphs: pursuit-evasion and treewidth. We first studied one pursuit-evasion game: Cops and Robbers. This game, which dates back to 1970s, are studied extensively in recent years. We investigate this game on random geometric graphs, and get

  8. Geometric calculus: a new computational tool for Riemannian geometry

    Moussiaux, A.; Tombal, P.

    1988-01-01

    We compare geometric calculus applied to Riemannian geometry with Cartan's exterior calculus method. The correspondence between the two methods is clearly established. The results obtained by a package written in an algebraic language and doing general manipulations on multivectors are compared. We see that the geometric calculus is as powerful as exterior calculus

  9. Geometric Aspects of Quantum Mechanics and Quantum Entanglement

    Chruscinski, Dariusz

    2006-01-01

    It is shown that the standard non-relativistic Quantum Mechanics gives rise to elegant and rich geometrical structures. The space of quantum states is endowed with nontrivial Fubini-Study metric which is responsible for the 'peculiarities' of the quantum world. We show that there is also intricate connection between geometrical structures and quantum entanglement

  10. Off-Diagonal Geometric Phase in a Neutron Interferometer Experiment

    Hasegawa, Y.; Loidl, R.; Baron, M.; Badurek, G.; Rauch, H.

    2001-01-01

    Off-diagonal geometric phases acquired by an evolution of a 1/2 -spin system have been observed by means of a polarized neutron interferometer. We have successfully measured the off-diagonal phase for noncyclic evolutions even when the diagonal geometric phase is undefined. Our data confirm theoretical predictions and the results illustrate the significance of the off-diagonal phase

  11. A fast method for linear waves based on geometrical optics

    Stolk, C.C.

    2009-01-01

    We develop a fast method for solving the one-dimensional wave equation based on geometrical optics. From geometrical optics (e.g., Fourier integral operator theory or WKB approximation) it is known that high-frequency waves split into forward and backward propagating parts, each propagating with the

  12. Calculation of the geometrical intensity on an image surface

    Seppala, L.G.

    1975-01-01

    Laser fusion experiments involve the focusing of high power laser beams onto fuel pellets. The geometrical intensity is of interest in the cases where the laser is focused to the center of the pellet. Analytic expressions and ray trace methods for evaluating the geometrical intensity are presented

  13. A Framework for Assessing Reading Comprehension of Geometric Construction Texts

    Yang, Kai-Lin; Li, Jian-Lin

    2018-01-01

    This study investigates one issue related to reading mathematical texts by presenting a two-dimensional framework for assessing reading comprehension of geometric construction texts. The two dimensions of the framework were formulated by modifying categories of reading literacy and drawing on key elements of geometric construction texts. Three…

  14. Active Learning Environment with Lenses in Geometric Optics

    Tural, Güner

    2015-01-01

    Geometric optics is one of the difficult topics for students within physics discipline. Students learn better via student-centered active learning environments than the teacher-centered learning environments. So this study aimed to present a guide for middle school teachers to teach lenses in geometric optics via active learning environment…

  15. Geometric control theory and sub-Riemannian geometry

    Boscain, Ugo; Gauthier, Jean-Paul; Sarychev, Andrey; Sigalotti, Mario

    2014-01-01

    This volume presents recent advances in the interaction between Geometric Control Theory and sub-Riemannian geometry. On the one hand, Geometric Control Theory used the differential geometric and Lie algebraic language for studying controllability, motion planning, stabilizability and optimality for control systems. The geometric approach turned out to be fruitful in applications to robotics, vision modeling, mathematical physics etc. On the other hand, Riemannian geometry and its generalizations, such as  sub-Riemannian, Finslerian  geometry etc., have been actively adopting methods developed in the scope of geometric control. Application of these methods  has led to important results regarding geometry of sub-Riemannian spaces, regularity of sub-Riemannian distances, properties of the group  of diffeomorphisms of sub-Riemannian manifolds, local geometry and equivalence of distributions and sub-Riemannian structures, regularity of the Hausdorff volume.

  16. Emergent Newtonian dynamics and the geometric origin of mass

    D’Alessio, Luca; Polkovnikov, Anatoli

    2014-01-01

    We consider a set of macroscopic (classical) degrees of freedom coupled to an arbitrary many-particle Hamiltonian system, quantum or classical. These degrees of freedom can represent positions of objects in space, their angles, shape distortions, magnetization, currents and so on. Expanding their dynamics near the adiabatic limit we find the emergent Newton’s second law (force is equal to the mass times acceleration) with an extra dissipative term. In systems with broken time reversal symmetry there is an additional Coriolis type force proportional to the Berry curvature. We give the microscopic definition of the mass tensor. The mass tensor is related to the non-equal time correlation functions in equilibrium and describes the dressing of the slow degree of freedom by virtual excitations in the system. In the classical (high-temperature) limit the mass tensor is given by the product of the inverse temperature and the Fubini–Study metric tensor determining the natural distance between the eigenstates of the Hamiltonian. For free particles this result reduces to the conventional definition of mass. This finding shows that any mass, at least in the classical limit, emerges from the distortions of the Hilbert space highlighting deep connections between any motion (not necessarily in space) and geometry. We illustrate our findings with four simple examples. -- Highlights: •Derive the macroscopic Newton’s equation from the microscopic many-particle Schrödinger’s equation. •Deep connection between geometry and dynamics. •Geometrical interpretation of the mass of macroscopic object as deformation of Hilbert space. •Microscopic expression for mass and friction tensors

  17. Solution of Inverse Kinematics for 6R Robot Manipulators With Offset Wrist Based on Geometric Algebra.

    Fu, Zhongtao; Yang, Wenyu; Yang, Zhen

    2013-08-01

    In this paper, we present an efficient method based on geometric algebra for computing the solutions to the inverse kinematics problem (IKP) of the 6R robot manipulators with offset wrist. Due to the fact that there exist some difficulties to solve the inverse kinematics problem when the kinematics equations are complex, highly nonlinear, coupled and multiple solutions in terms of these robot manipulators stated mathematically, we apply the theory of Geometric Algebra to the kinematic modeling of 6R robot manipulators simply and generate closed-form kinematics equations, reformulate the problem as a generalized eigenvalue problem with symbolic elimination technique, and then yield 16 solutions. Finally, a spray painting robot, which conforms to the type of robot manipulators, is used as an example of implementation for the effectiveness and real-time of this method. The experimental results show that this method has a large advantage over the classical methods on geometric intuition, computation and real-time, and can be directly extended to all serial robot manipulators and completely automatized, which provides a new tool on the analysis and application of general robot manipulators.

  18. GEOMETRICAL PARAMETERS OF EGGS IN BIRD SYSTEMATICS

    I. S. Mityay

    2014-12-01

    Full Text Available Our ideas are based on the following assumptions. Egg as a standalone system is formed within another system, which is the body of the female. Both systems are implemented on the basis of a common genetic code. In this regard, for example, the dendrogram constructed by morphological criteria eggs should be approximately equal to those constructed by other molecular or morphological criteria adult birds. It should be noted that the dendrogram show only the degree of genetic similarity of taxa, therefore, the identity of materials depends on the number of analyzed criteria and their quality, ie, they should be the backbone. The greater the number of system-features will be included in the analysis and in one other case, the like are dendrogram. In other cases, we will have a fragmentary similarity, which is also very important when dealing with controversial issues. The main message of our research was to figure out the eligibility of usage the morphological characteristics of eggs as additional information in taxonomy and phylogeny of birds. Our studies show that the shape parameters of bird eggs show a stable attachment to certain types of birds and complex traits are species-specific. Dendrogram and diagrams built by the quantitative value of these signs, exhibit significant similarity with the dendrogram constructed by morphological, comparative anatomy, paleontology and molecular criteria for adult birds. This suggests the possibility of using morphological parameters eggs as additional information in dealing with taxonomy and phylogeny of birds. Keywords: oology, geometrical parameters of eggs, bird systematics

  19. Geometric perturbation theory and plasma physics

    Omohundro, S.M.

    1985-04-04

    Modern differential geometric techniques are used to unify the physical asymptotics underlying mechanics, wave theory and statistical mechanics. The approach gives new insights into the structure of physical theories and is suited to the needs of modern large-scale computer simulation and symbol manipulation systems. A coordinate-free formulation of non-singular perturbation theory is given, from which a new Hamiltonian perturbation structure is derived and related to the unperturbed structure. The theory of perturbations in the presence of symmetry is developed, and the method of averaging is related to reduction by a circle group action. The pseudo-forces and magnetic Poisson bracket terms due to reduction are given a natural asymptotic interpretation. Similar terms due to changing reference frames are related to the method of variation of parameters, which is also given a Hamiltonian formulation. These methods are used to answer a question about nearly periodic systems. The answer leads to a new secular perturbation theory that contains no ad hoc elements. Eikonal wave theory is given a Hamiltonian formulation that generalizes Whitham's Lagrangian approach. The evolution of wave action density on ray phase space is given a Hamiltonian structure using a Lie-Poisson bracket. The relationship between dissipative and Hamiltonian systems is discussed. A new type of attractor is defined which attracts both forward and backward in time and is shown to occur in infinite-dimensional Hamiltonian systems with dissipative behavior. The theory of Smale horseshoes is applied to gyromotion in the neighborhood of a magnetic field reversal and the phenomenon of reinsertion in area-preserving horseshoes is introduced. The central limit theorem is proved by renormalization group techniques. A natural symplectic structure for thermodynamics is shown to arise asymptotically from the maximum entropy formalism.

  20. Geometric perturbation theory and plasma physics

    Omohundro, S.M.

    1985-01-01

    Modern differential geometric techniques are used to unify the physical asymptotics underlying mechanics, wave theory and statistical mechanics. The approach gives new insights into the structure of physical theories and is suited to the needs of modern large-scale computer simulation and symbol manipulation systems. A coordinate-free formulation of non-singular perturbation theory is given, from which a new Hamiltonian perturbation structure is derived and related to the unperturbed structure. The theory of perturbations in the presence of symmetry is developed, and the method of averaging is related to reduction by a circle group action. The pseudo-forces and magnetic Poisson bracket terms due to reduction are given a natural asymptotic interpretation. Similar terms due to changing reference frames are related to the method of variation of parameters, which is also given a Hamiltonian formulation. These methods are used to answer a question about nearly periodic systems. The answer leads to a new secular perturbation theory that contains no ad hoc elements. Eikonal wave theory is given a Hamiltonian formulation that generalizes Whitham's Lagrangian approach. The evolution of wave action density on ray phase space is given a Hamiltonian structure using a Lie-Poisson bracket. The relationship between dissipative and Hamiltonian systems is discussed. A new type of attractor is defined which attracts both forward and backward in time and is shown to occur in infinite-dimensional Hamiltonian systems with dissipative behavior. The theory of Smale horseshoes is applied to gyromotion in the neighborhood of a magnetic field reversal and the phenomenon of reinsertion in area-preserving horseshoes is introduced. The central limit theorem is proved by renormalization group techniques. A natural symplectic structure for thermodynamics is shown to arise asymptotically from the maximum entropy formalism

  1. Geometrization and Generalization of the Kowalevski Top

    Dragović, Vladimir

    2010-08-01

    A new view on the Kowalevski top and the Kowalevski integration procedure is presented. For more than a century, the Kowalevski 1889 case, has attracted full attention of a wide community as the highlight of the classical theory of integrable systems. Despite hundreds of papers on the subject, the Kowalevski integration is still understood as a magic recipe, an unbelievable sequence of skillful tricks, unexpected identities and smart changes of variables. The novelty of our present approach is based on our four observations. The first one is that the so-called fundamental Kowalevski equation is an instance of a pencil equation of the theory of conics which leads us to a new geometric interpretation of the Kowalevski variables w, x 1, x 2 as the pencil parameter and the Darboux coordinates, respectively. The second is observation of the key algebraic property of the pencil equation which is followed by introduction and study of a new class of discriminantly separable polynomials. All steps of the Kowalevski integration procedure are now derived as easy and transparent logical consequences of our theory of discriminantly separable polynomials. The third observation connects the Kowalevski integration and the pencil equation with the theory of multi-valued groups. The Kowalevski change of variables is now recognized as an example of a two-valued group operation and its action. The final observation is surprising equivalence of the associativity of the two-valued group operation and its action to the n = 3 case of the Great Poncelet Theorem for pencils of conics.

  2. Geometrical charged-particle optics. 2. ed.

    Rose, Harald

    2013-01-01

    Provides a unique theoretical treatment of charged-particle optics. Displays novel unpublished results on several topics. Provides insight into the properties of charged-particle devices. Treats wave optical properties of the electron. Presents the resolution limit of electron microscopes and novel theoretical treatment of the Stern-Gerlach effect. This second edition is an extended version of the first edition of Geometrical Charged-Particle Optics. The updated reference monograph is intended as a guide for researchers and graduate students who are seeking a comprehensive treatment of the design of instruments and beam-guiding systems of charged particles and their propagation in electromagnetic fields. Wave aspects are included in this edition for explaining electron holography, the Aharanov-Bohm effect and the resolution of electron microscopes limited by diffraction. Several methods for calculating the electromagnetic field are presented and procedures are outlined for calculating the properties of systems with arbitrarily curved axis. Detailed methods are presented for designing and optimizing special components such as aberration correctors, spectrometers, energy filters monochromators, ion traps, electron mirrors and cathode lenses. In particular, the optics of rotationally symmetric lenses, quadrupoles, and systems composed of these elements are discussed extensively. Beam properties such as emittance, brightness, transmissivity and the formation of caustics are outlined. Relativistic motion and spin precession of the electron are treated in a covariant way by introducing the Lorentz-invariant universal time and by extending Hamilton's principle from three to four spatial dimensions where the laboratory time is considered as the fourth pseudo-spatial coordinate. Using this procedure and introducing the self action of the electron, its accompanying electromagnetic field and its radiation field are calculated for arbitrary motion. In addition, the Stern

  3. Dark coupling

    Gavela, M.B.; Hernández, D.; Honorez, L. Lopez; Mena, O.; Rigolin, S.

    2009-01-01

    The two dark sectors of the universe—dark matter and dark energy—may interact with each other. Background and linear density perturbation evolution equations are developed for a generic coupling. We then establish the general conditions necessary to obtain models free from non-adiabatic instabilities. As an application, we consider a viable universe in which the interaction strength is proportional to the dark energy density. The scenario does not exhibit ''phantom crossing'' and is free from instabilities, including early ones. A sizeable interaction strength is compatible with combined WMAP, HST, SN, LSS and H(z) data. Neutrino mass and/or cosmic curvature are allowed to be larger than in non-interacting models. Our analysis sheds light as well on unstable scenarios previously proposed

  4. Angular momentum coupling in atom-atom collisions

    Grosser, J.

    1986-01-01

    The coupling between the electronic angular momentum and the rotating atom-atom axis in the initial or the final phase of an atom-atom collision is discussed, making use of the concepts of radial and rotational (Coriolis) coupling between different molecular states. The description is based on a limited number of well-understood approximations, and it allows an illustrative geometric representation of the transition from the body fixed to the space fixed motion of the electrons. (orig.)

  5. Dynamics of seed magnetic island formation due to geometrically coupled perturbations

    Hegna, C.C.; Callen, J.D.; LaHaye, R.J.

    1998-06-01

    Seed magnetic island formation due to a dynamically growing external source in toroidal confinement devices is modeled as an initial value forced reconnection problem. For an external source whose amplitude grows on a time scale quickly compared to the Sweet-Parker time of resistive magnetohydrodynamics, the induced reconnection is characterized by a current sheet and a reconnected flux amplitude which lags in time the source amplitude. This suggests that neoclassical tearing modes, whose excitation requires a seed magnetic island, are more difficult to cause in high Lundquist number plasmas

  6. Geometric constructions for repulsive gravity and quantization

    Hohmann, Manuel

    2010-11-01

    In this thesis we present two geometric theories designed to extend general relativity. It can be seen as one of the aims of such theories to model the observed accelerating expansion of the universe as a gravitational phenomenon, or to provide a mathematical structure for the formulation of quantum field theories on curved spacetimes and quantum gravity. This thesis splits into two parts: In the first part we consider multimetric gravity theories containing N>1 standard model copies which interact only gravitationally and repel each other in the Newtonian limit. The dynamics of each of the standard model copies is governed by its own metric tensor. We show that the antisymmetric case, in which the mutual repulsion between the different matter sectors is of equal strength compared to the attractive gravitational force within each sector, is prohibited by a no-go theorem for N=2. We further show that this theorem does not hold for N>2 by explicitly constructing an antisymmetric multimetric repulsive gravity theory. We then examine several properties of this theory. Most notably, we derive a simple cosmological model and show that the accelerating expansion of the late universe can indeed be explained by the mutual repulsion between the different matter sectors. We further present a simple model for structure formation and show that our model leads to the formation of filament-like structures and voids. Finally, we show that multimetric repulsive gravity is compatible with high-precision solar system data using the parametrized post-Newtonian formalism. In the second part of the thesis we propose a mathematical model of quantum spacetime as an infinite-dimensional manifold locally homeomorphic to an appropriate Schwartz space. This extends and unifies both the standard function space construction of quantum mechanics and the differentiable manifold structure of classical spacetime. In this picture we demonstrate that classical spacetime emerges as a finite

  7. Geometric constructions for repulsive gravity and quantization

    Hohmann, Manuel

    2010-11-15

    In this thesis we present two geometric theories designed to extend general relativity. It can be seen as one of the aims of such theories to model the observed accelerating expansion of the universe as a gravitational phenomenon, or to provide a mathematical structure for the formulation of quantum field theories on curved spacetimes and quantum gravity. This thesis splits into two parts: In the first part we consider multimetric gravity theories containing N>1 standard model copies which interact only gravitationally and repel each other in the Newtonian limit. The dynamics of each of the standard model copies is governed by its own metric tensor. We show that the antisymmetric case, in which the mutual repulsion between the different matter sectors is of equal strength compared to the attractive gravitational force within each sector, is prohibited by a no-go theorem for N=2. We further show that this theorem does not hold for N>2 by explicitly constructing an antisymmetric multimetric repulsive gravity theory. We then examine several properties of this theory. Most notably, we derive a simple cosmological model and show that the accelerating expansion of the late universe can indeed be explained by the mutual repulsion between the different matter sectors. We further present a simple model for structure formation and show that our model leads to the formation of filament-like structures and voids. Finally, we show that multimetric repulsive gravity is compatible with high-precision solar system data using the parametrized post-Newtonian formalism. In the second part of the thesis we propose a mathematical model of quantum spacetime as an infinite-dimensional manifold locally homeomorphic to an appropriate Schwartz space. This extends and unifies both the standard function space construction of quantum mechanics and the differentiable manifold structure of classical spacetime. In this picture we demonstrate that classical spacetime emerges as a finite

  8. Colors and geometric forms in the work process information coding

    Čizmić Svetlana

    2006-01-01

    Full Text Available The aim of the research was to establish the meaning of the colors and geometric shapes in transmitting information in the work process. The sample of 100 students connected 50 situations which could be associated with regular tasks in the work process with 12 colors and 4 geometric forms in previously chosen color. Based on chosen color-geometric shape-situation regulation, the idea of the research was to find out regularities in coding of information and to examine if those regularities can provide meaningful data assigned to each individual code and to explain which codes are better and applicable represents of examined situations.

  9. Quantum renormalization group approach to geometric phases in spin chains

    Jafari, R.

    2013-01-01

    A relation between geometric phases and criticality of spin chains are studied using the quantum renormalization-group approach. I have shown how the geometric phase evolve as the size of the system becomes large, i.e., the finite size scaling is obtained. The renormalization scheme demonstrates how the first derivative of the geometric phase with respect to the field strength diverges at the critical point and maximum value of the first derivative, and its position, scales with the exponent of the system size

  10. Implementation and efficiency of two geometric stiffening approaches

    Lugris, Urbano; Naya, Miguel A.; Perez, Jose A.; Cuadrado, Javier

    2008-01-01

    When the modeling of flexible bodies is required in multibody systems, the floating frame of reference formulations are probably the most efficient methods available. In the case of beams undergoing high speed rotations, the geometric stiffening effect can appear due to geometric nonlinearities, and it is often not captured by the aforementioned methods, since it is common to linearize the elastic forces assuming small deformations. The present work discusses the implementation of different existing methods developed to consider such geometric nonlinearities within a floating frame of reference formulation in natural coordinates, making emphasis on the relation between efficiency and accuracy of the resulting algorithms, seeking to provide practical criteria of use

  11. Geometric phase of neutrinos: Differences between Dirac and Majorana neutrinos

    Capolupo, A.; Giampaolo, S. M.; Hiesmayr, B. C.; Vitiello, G.

    2018-05-01

    We analyze the non-cyclic geometric phase for neutrinos. We find that the geometric phase and the total phase associated to the mixing phenomenon provide a theoretical tool to distinguish between Dirac and Majorana neutrinos. Our results hold for neutrinos propagating in vacuum and through the matter. We feed the values of the experimental parameters in our formulas in order to make contact with experiments. Although it remains an open question how the geometric phase of neutrinos could be detected, our theoretical results may open new scenarios in the investigation of the neutrino nature.

  12. Geometric transitions, flops and non-Kahler manifolds: I

    Becker, Melanie; Dasgupta, Keshav; Knauf, Anke; Tatar, Radu

    2004-01-01

    We construct a duality cycle which provides a complete supergravity description of geometric transitions in type II theories via a flop in M-theory. This cycle connects the different supergravity descriptions before and after the geometric transitions. Our construction reproduces many of the known phenomena studied earlier in the literature and allows us to describe some new and interesting aspects in a simple and elegant fashion. A precise supergravity description of new torsional manifolds that appear on the type IIA side with branes and fluxes and the corresponding geometric transition are obtained. A local description of new G2 manifolds that are circle fibrations over non-Kahler manifolds is presented

  13. A Timoshenko Piezoelectric Beam Finite Element with Consistent Performance Irrespective of Geometric and Material Configurations

    Litesh N. Sulbhewar

    Full Text Available Abstract The conventional Timoshenko piezoelectric beam finite elements based on First-order Shear Deformation Theory (FSDT do not maintain the accuracy and convergence consistently over the applicable range of material and geometric properties. In these elements, the inaccuracy arises due to the induced potential effects in the transverse direction and inefficiency arises due to the use of independently assumed linear polynomial interpolation of the field variables in the longitudinal direction. In this work, a novel FSDT-based piezoelectric beam finite element is proposed which is devoid of these deficiencies. A variational formulation with consistent through-thickness potential is developed. The governing equilibrium equations are used to derive the coupled field relations. These relations are used to develop a polynomial interpolation scheme which properly accommodates the bending-extension, bending-shear and induced potential couplings to produce accurate results in an efficient manner. It is noteworthy that this consistently accurate and efficient beam finite element uses the same nodal variables as of conventional FSDT formulations available in the literature. Comparison of numerical results proves the consistent accuracy and efficiency of the proposed formulation irrespective of geometric and material configurations, unlike the conventional formulations.

  14. Geometric phases and quantum correlations of superconducting two-qubit system with dissipative effect

    Xue, Liyuan; Yu, Yanxia; Cai, Xiaoya; Pan, Hui; Wang, Zisheng

    2016-01-01

    Highlights: • We find that the Pancharatnam phases include the information of quantum correlations. • We show that the sudden died and alive phenomena of quantum entanglement is original in the transition of Pancharatnam phase. • We find that the faster the Pancharatnam phases change, the slower the quantum correlations decay. • We find that a subspace of quantum entanglement can exist in the Y-state. • Our results provide a useful approach experimentally to implement the time-dependent geometric quantum computation. - Abstract: We investigate time-dependent Pancharatnam phases and the relations between such geometric phases and quantum correlations, i.e., quantum discord and concurrence, of superconducting two-qubit coupling system in dissipative environment with the mixture effects of four different eigenstates of density matrix. We find that the time-dependent Pancharatnam phases not only keep the motion memory of such a two-qubit system, but also include the information of quantum correlations. We show that the sudden died and alive phenomena of quantum entanglement are intrinsic in the transition of Pancharatnam phase in the X-state and the complex oscillations of Pancharatnam phase in the Y-state. The faster the Pancharatnam phases change, the slower the quantum correlations decay. In particular, we find that a subspace of quantum entanglement can exist in the Y-state by choosing suitable coupling parameters between two-qubit system and its environment, or initial conditions.

  15. Geometrical frustration in the ferromagnetic pyrochlore Ho2Ti2O7

    Harris, M.J.; Bramwell, S.T.; McMorrow, D.F.

    1997-01-01

    We report a detailed study of the pyrochlore Ho2Ti2O7, in which the magnetic ions (Ho3+) are ferromagnetically coupled with J similar to 1 K. We show that the presence of local Ising anisotropy leads to a geometrically frustrated ground state, preventing long-range magnetic order down to at least 0...

  16. Proof in geometry with "mistakes in geometric proofs"

    Fetisov, A I

    2006-01-01

    This single-volume compilation of 2 books explores the construction of geometric proofs. It offers useful criteria for determining correctness and presents examples of faulty proofs that illustrate common errors. 1963 editions.

  17. Multipartite geometric entanglement in finite size XY model

    Blasone, Massimo; Dell' Anno, Fabio; De Siena, Silvio; Giampaolo, Salvatore Marco; Illuminati, Fabrizio, E-mail: blasone@sa.infn.i [Dipartimento di Matematica e Informatica, Universita degli Studi di Salerno, Via Ponte don Melillo, I-84084 Fisciano (Italy)

    2009-06-01

    We investigate the behavior of the multipartite entanglement in the finite size XY model by means of the hierarchical geometric measure of entanglement. By selecting specific components of the hierarchy, we study both global entanglement and genuinely multipartite entanglement.

  18. The geometrical theory of diffraction for axially symmetric reflectors

    Rusch, W.; Sørensen, O.

    1975-01-01

    The geometrical theory of diffraction (GTD) (cf. [1], for example) may be applied advantageously to many axially symmetric reflector antenna geometries. The material in this communication presents analytical, computational, and experimental results for commonly encountered reflector geometries...

  19. Remarks on the geometric quantization of the Kepler problem

    Gaeta, G.; Spera, M.

    1988-01-01

    The geometric quantization of the (three-dimensional) Kepler problem is readily obtained from the one of the harmonic oscillator using a Segre map. The physical meaning of the latter is discussed. (orig.)

  20. geometric models for lateritic soil stabilized with cement

    user

    stabilized lateritic soil and also to develop geometric models. The compaction, California .... on how effective limited field data are put to use in decision-making. ..... silicates was described as the most important phase of cement and the ...