Geometrically Consistent Mesh Modification
Bonito, A.
2010-01-01
A new paradigm of adaptivity is to execute refinement, coarsening, and smoothing of meshes on manifolds with incomplete information about their geometry and yet preserve position and curvature accuracy. We refer to this collectively as geometrically consistent (GC) mesh modification. We discuss the concept of discrete GC, show the failure of naive approaches, and propose and analyze a simple algorithm that is GC and accuracy preserving. © 2010 Society for Industrial and Applied Mathematics.
Geometrical approach to fluid models
Kuvshinov, B. N.; Schep, T. J.
1997-01-01
Differential geometry based upon the Cartan calculus of differential forms is applied to investigate invariant properties of equations that describe the motion of continuous media. The main feature of this approach is that physical quantities are treated as geometrical objects. The geometrical
Geometrical approach to fluid models
Kuvshinov, B. N.; Schep, T. J.
1997-01-01
Differential geometry based upon the Cartan calculus of differential forms is applied to investigate invariant properties of equations that describe the motion of continuous media. The main feature of this approach is that physical quantities are treated as geometrical objects. The geometrical notio
The Minimal Geometric Deformation Approach Extended
Casadio, Roberto; da Rocha, Roldao
2015-01-01
The minimal geometric deformation approach was introduced in order to study the exterior space-time around spherically symmetric self-gravitating systems, like stars or similar astrophysical objects as well, in the Randall-Sundrum brane-world framework. A consistent extension of this approach is developed here, which contains modifications of both the time component and the radial component of a spherically symmetric metric. A modified Schwarzschild geometry is obtained as an example of its simplest application.
The minimal geometric deformation approach extended
Casadio, R.; Ovalle, J.; da Rocha, Roldão
2015-11-01
The minimal geometric deformation approach was introduced in order to study the exterior spacetime around spherically symmetric self-gravitating systems, such as stars or similar astrophysical objects, in the Randall-Sundrum brane-world framework. A consistent extension of this approach is developed here, which contains modifications of both the time component and the radial component of a spherically symmetric metric. A modified Schwarzschild geometry is obtained as an example of its simplest application, and a new solution that is potentially useful to describe stars in the brane-world is also presented.
A Geometric Approach to Noncommutative Principal Bundles
Wagner, Stefan
2011-01-01
From a geometrical point of view it is, so far, not sufficiently well understood what should be a "noncommutative principal bundle". Still, there is a well-developed abstract algebraic approach using the theory of Hopf algebras. An important handicap of this approach is the ignorance of topological and geometrical aspects. The aim of this thesis is to develop a geometrically oriented approach to the noncommutative geometry of principal bundles based on dynamical systems and the representation theory of the corresponding transformation group.
Geometric Derivation of Energy Consistent Shallow Water Equations
Blender, Richard
2016-01-01
The dynamical equations of the shallow water model are re-derived using conservation laws (CLs) for total energy and potential enstrophy. Different mechanisms, such as vortical flows and emission of gravity waves, emerge from different components of the CLs. The equations are constructed using exterior differential forms and self-adjoint operators and result in the sum of two Nambu brackets, one for the vortical flow and one for the wave-mean flow interaction, and a Poisson bracket representing the interaction between divergence and geostrophic imbalance. The advantages of this approach are the derivation of the equations from CLs and the direct derivation of their Hamiltonian and Nambu forms. The approach demonstrates that two CLs and three dynamical variables are sufficient to setup the shallow water model.
A new geometric approach to Sturmian words
Matomäki, Kaisa
2012-01-01
We introduce a new geometric approach to Sturmian words by means of a mapping that associates certain lines in the n x n -grid and sets of finite Sturmian words of length n. Using this mapping, we give new proofs of the formulas enumerating the finite Sturmian words and the palindromic finite Sturmian words of a given length. We also give a new proof for the well-known result that a factor of a Sturmian word has precisely two return words.
Geometric Approach to Lie Symmetry of Discrete Time Toda Equation
Institute of Scientific and Technical Information of China (English)
JIA Xiao-Yu; WANG Na
2009-01-01
By using the extended Harrison and Estabrook geometric approach,we investigate the Lie symmetry of discrete time Toda equation from the geometric point of view.Its one-dimensional continuous symmetry group is presented.
A new approach to hull consistency
Directory of Open Access Journals (Sweden)
Kolev Lubomir
2016-06-01
Full Text Available Hull consistency is a known technique to improve the efficiency of iterative interval methods for solving nonlinear systems describing steady-states in various circuits. Presently, hull consistency is checked in a scalar manner, i.e. successively for each equation of the nonlinear system with respect to a single variable. In the present poster, a new more general approach to implementing hull consistency is suggested which consists in treating simultaneously several equations with respect to the same number of variables.
A geometric approach to acyclic orientations
Ehrenborg, Richard
2009-01-01
The set of acyclic orientations of a connected graph with a given sink has a natural poset structure. We give a geometric proof of a result of Jim Propp: this poset is the disjoint union of distributive lattices.
Anisotropy without tensors: a novel approach using geometric algebra.
Matos, Sérgio A; Ribeiro, Marco A; Paiva, Carlos R
2007-11-12
The most widespread approach to anisotropic media is dyadic analysis. However, to get a geometrical picture of a dielectric tensor, one has to resort to a coordinate system for a matrix form in order to obtain, for example, the index-ellipsoid, thereby obnubilating the deeper coordinate-free meaning of anisotropy itself. To overcome these shortcomings we present a novel approach to anisotropy: using geometric algebra we introduce a direct geometrical interpretation without the intervention of any coordinate system. By applying this new approach to biaxial crystals we show the effectiveness and insight that geometric algebra can bring to the optics of anisotropic media.
A geometric approach to noncommutative principal torus bundles
DEFF Research Database (Denmark)
Wagner, Stefan
2013-01-01
for noncommutative algebras and say that a dynamical system (A, 핋n,α) is called a noncommutative principal 핋n-bundle, if localization leads to a trivial noncommutative principal 핋n-bundle. We prove that this approach extends the classical theory of principal torus bundles and present a bunch of (nontrivial......A (smooth) dynamical system with transformation group 핋n is a triple (A, 핋n,α), consisting of a unital locally convex algebra A, the n-torus 핋n and a group homomorphism α:핋n→Aut(A), which induces a (smooth) continuous action of 핋n on A. In this paper, we present a new, geometrically oriented...... approach to the noncommutative geometry of principal torus bundles based on such dynamical systems. Our approach is inspired by the classical setting: In fact, after recalling the definition of a trivial noncommutative principal torus bundle, we introduce a convenient (smooth) localization method...
A Geometric Approach to Fair Division
Barbanel, Julius
2010-01-01
We wish to divide a cake among some collection of people (who may have very different notions of the comparative value of pieces of cake) in a way that is both "fair" and "efficient." We explore the meaning of these terms, introduce two geometric tools to aid our analysis, and present a proof (due to Dietrich Weller) that establishes the existence…
Geometric Reductivity--A Quotient Space Approach
Sastry, Pramathanath
2010-01-01
We give another proof that a reductive algebraic group is geometrically reductive. We show that a quotient of the semi-stable locus (by a linear action of a reductive algebraic group on a projective scheme) exists, and from this Haboush's Theorem (Mumford's Conjecture) follows.
A Geometric Approach to Fair Division
Barbanel, Julius
2010-01-01
We wish to divide a cake among some collection of people (who may have very different notions of the comparative value of pieces of cake) in a way that is both "fair" and "efficient." We explore the meaning of these terms, introduce two geometric tools to aid our analysis, and present a proof (due to Dietrich Weller) that establishes the existence…
New geometric design consistency model based on operating speed profiles for road safety evaluation.
Camacho-Torregrosa, Francisco J; Pérez-Zuriaga, Ana M; Campoy-Ungría, J Manuel; García-García, Alfredo
2013-12-01
To assist in the on-going effort to reduce road fatalities as much as possible, this paper presents a new methodology to evaluate road safety in both the design and redesign stages of two-lane rural highways. This methodology is based on the analysis of road geometric design consistency, a value which will be a surrogate measure of the safety level of the two-lane rural road segment. The consistency model presented in this paper is based on the consideration of continuous operating speed profiles. The models used for their construction were obtained by using an innovative GPS-data collection method that is based on continuous operating speed profiles recorded from individual drivers. This new methodology allowed the researchers to observe the actual behavior of drivers and to develop more accurate operating speed models than was previously possible with spot-speed data collection, thereby enabling a more accurate approximation to the real phenomenon and thus a better consistency measurement. Operating speed profiles were built for 33 Spanish two-lane rural road segments, and several consistency measurements based on the global and local operating speed were checked. The final consistency model takes into account not only the global dispersion of the operating speed, but also some indexes that consider both local speed decelerations and speeds over posted speeds as well. For the development of the consistency model, the crash frequency for each study site was considered, which allowed estimating the number of crashes on a road segment by means of the calculation of its geometric design consistency. Consequently, the presented consistency evaluation method is a promising innovative tool that can be used as a surrogate measure to estimate the safety of a road segment.
Self-consistent Green's function approaches
Barbieri, Carlo
2016-01-01
We present the fundamental techniques and working equations of many-body Green's function theory for calculating ground state properties and the spectral strength. Green's function methods closely relate to other polynomial scaling approaches discussed in chapters~8 and ~10. However, here we aim directly at a global view of the many-fermion structure. We derive the working equations for calculating many-body propagators, using both the Algebraic Diagrammatic Construction technique and the self-consistent formalism at finite temperature. Their implementation is discussed, as well as the the inclusion of three-nucleon interactions. The self-consistency feature is essential to guarantee thermodynamic consistency. The paring and neutron matter models introduced in previous chapters are solved and compared with the other methods in this book.
A geometrical approach to structural change modeling
Stijepic, Denis
2013-01-01
We propose a model for studying the dynamics of economic structures. The model is based on qualitative information regarding structural dynamics, in particular, (a) the information on the geometrical properties of trajectories (and their domains) which are studied in structural change theory and (b) the empirical information from stylized facts of structural change. We show that structural change is path-dependent in this model and use this fact to restrict the number of future structural cha...
A Geometrical Approach to the Boundary Element Method
Auchmann, B; Rjasanow, S
2008-01-01
We introduce a geometric formulation of the boundary element method (BEM), using concepts of the discrete electromagnetic theory. Geometric BEM is closely related to Galerkin-BEM and to the generalized collocation scheme. It is easy to implement, accurate, and computationally efficient. We validate our approach with 2-D examples and give an outlook to 3-D results.
Parabolic non-diffracting beams: geometrical approach
Sosa-Sánchez, Citlalli Teresa; Silva-Ortigoza, Gilberto; Alejandro Juárez-Reyes, Salvador; de Jesús Cabrera-Rosas, Omar; Espíndola-Ramos, Ernesto; Julián-Macías, Israel; Ortega-Vidals, Paula
2017-08-01
The aim of this work is to present a geometrical characterization of parabolic non-diffracting beams. To this end, we compute the corresponding angular spectrum of the separable non-diffracting parabolic beams in order to determine the one-parameter family of solutions of the eikonal equation associated with this type of beam. Using this information, we compute the corresponding wavefronts and caustic, and find that qualitatively the caustic corresponds to the maximum of the intensity pattern and the wavefronts are deformations of conical surfaces.
A geometric approach to integrability conditions for Riccati equations
Directory of Open Access Journals (Sweden)
Arturo Ramos
2007-09-01
Full Text Available Several instances of integrable Riccati equations are analyzed from the geometric perspective of the theory of Lie systems. This provides us a unifying viewpoint for previous approaches.
Implicit quasilinear differential systems: a geometrical approach
Directory of Open Access Journals (Sweden)
Miguel C. Munoz-Lecanda
1999-04-01
Full Text Available This work is devoted to the study of systems of implicit quasilinear differential equations. In general, no set of initial conditions is admissible for the system. It is shown how to obtain a vector field whose integral curves are the solution of the system, thus reducing the system to one that is ordinary. Using geometrical techniques, we give an algorithmic procedure in order to solve these problems for systems of the form $A(xdot x =alpha (x$ with $A(x$ being a singular matrix. As particular cases, we recover some results of Hamiltonian and Lagrangian Mechanics. In addition, a detailed study of the symmetries of these systems is carried out. This algorithm is applied to several examples arising from technical applications related to control theory.
Geometrical approach to light in inhomogeneous media
Piwnicki, P
2002-01-01
Electromagnetism in an inhomogeneous dielectric medium at rest is described using the methods of differential geometry. In contrast to a general relativistic approach the electromagnetic fields are discussed in three-dimensional space only. The introduction of an appropriately chosen three-dimensional metric leads to a significant simplification of the description of light propagation in an inhomogeneous medium: light rays become geodesics of the metric and the field vectors are parallel transported along the rays. The new metric is connected to the usual flat space metric diag[1,1,1] via a conformal transformation leading to new, effective values of the medium parameters leading to an effective constant value of the index of refraction n=1. The corresponding index of refraction is thus constant and so is the effective velocity of light. Space becomes effectively empty but curved. All deviations from straight line propagation are now due to curvature. The approach is finally used for a discussion of the Riema...
Towards Automatic Validation and Healing of Citygml Models for Geometric and Semantic Consistency
Alam, N.; Wagner, D.; Wewetzer, M.; von Falkenhausen, J.; Coors, V.; Pries, M.
2013-09-01
A steadily growing number of application fields for large 3D city models have emerged in recent years. Like in many other domains, data quality is recognized as a key factor for successful business. Quality management is mandatory in the production chain nowadays. Automated domain-specific tools are widely used for validation of business-critical data but still common standards defining correct geometric modeling are not precise enough to define a sound base for data validation of 3D city models. Although the workflow for 3D city models is well-established from data acquisition to processing, analysis and visualization, quality management is not yet a standard during this workflow. Processing data sets with unclear specification leads to erroneous results and application defects. We show that this problem persists even if data are standard compliant. Validation results of real-world city models are presented to demonstrate the potential of the approach. A tool to repair the errors detected during the validation process is under development; first results are presented and discussed. The goal is to heal defects of the models automatically and export a corrected CityGML model.
A geometric approach to the Makeenko-Migdal equations
Energy Technology Data Exchange (ETDEWEB)
Gambini, R.; Griego, J. (Universidad de la Republica, Montevideo (Uruguay). Facultad de Humanidades y Ciencias Universidad de la Republica, Montevideo (Uruguay). Facultad de Ingenieria)
1991-03-14
A rigorous geometric approach of the Yang-Mills dynamics in loop space is developed using the algebraic structure of the group of loops. For the SU(N) gauge theory all the relevant constraints are explicitly introduced, obtaining a closed Makeenko-Migdal type equation when N=2. (orig.).
Hadronic and elementary multiplicity distributions in a geometrical approach
Valin, P; Menon, M J
2000-01-01
We construct the hadronic multiplicity distribution in terms of an elementary distribution (at given impact parameter) and the inelastic overlap function characterized by the observed BEL (Blacker-Edgier-Larger) behaviour. With suitable parametrizations for the elementary quantities, based on some geometrical arguments and the most recent data on e+e- annihilation, an excellent description of pp and p(bar)p inelastic multiplicity distributions at the highest energies is obtained. With this approach, we quantitatively correlate the violations of scalings in multiplicity distributions (Koba-Nielsen-Olesen) and elastic scattering (Geometrical) at high energies.
Optimal control of underactuated mechanical systems: A geometric approach
Colombo, Leonardo; Martín De Diego, David; Zuccalli, Marcela
2010-08-01
In this paper, we consider a geometric formalism for optimal control of underactuated mechanical systems. Our techniques are an adaptation of the classical Skinner and Rusk approach for the case of Lagrangian dynamics with higher-order constraints. We study a regular case where it is possible to establish a symplectic framework and, as a consequence, to obtain a unique vector field determining the dynamics of the optimal control problem. These developments will allow us to develop a new class of geometric integrators based on discrete variational calculus.
Optimal Control of Underactuated Mechanical Systems: A Geometric Approach
Colombo, L; Zuccalli, M
2009-01-01
In this paper, we consider a geometric formalism for optimal control of underactuated mechanical systems. Our techniques are an adaptation of the classical Skinner and Rusk approach for the case of Lagrangian dynamics with higher-order constraints. We study a regular case where it is possible to establish a symplectic framework and, as a consequence, to obtain a unique vector field determining the dynamics of the optimal control problem. These developments will allow us to develop a new class of geometric integrators based on discrete variational calculus.
Superlogic manifolds and geometric approach to quantum logic
da Costa, Newton; Kouneiher, Joseph
2016-10-01
The main purpose of this paper is to present a new approach to logic or what we will call superlogic. This approach constitutes a new way of looking at the connection between quantum mechanics and logic. It is a geometrization of the quantum logic. Note that this superlogic is not distributive reflecting a good propriety to describe quantum mechanics, non-commutative spaces and contains a nilpotent element.
Dietary ecology of Murinae (Muridae, Rodentia): a geometric morphometric approach.
Gómez Cano, Ana Rosa; Hernández Fernández, Manuel; Alvarez-Sierra, M Ángeles
2013-01-01
Murine rodents represent a highly diverse group, which displays great ecological versatility. In the present paper we analyse the relationship between dental morphology, on one hand, using geometric morphometrics based upon the outline of first upper molar and the dietary preference of extant murine genera, on the other. This ecomorphological study of extant murine rodents demonstrates that dietary groups can be distinguished with the use of a quantitative geometric morphometric approach based on first upper molar outline. A discriminant analysis of the geometric morphometric variables of the first upper molars enables us to infer the dietary preferences of extinct murine genera from the Iberian Peninsula. Most of the extinct genera were omnivore; only Stephanomys showed a pattern of dental morphology alike that of the herbivore genera.
Dietary ecology of Murinae (Muridae, Rodentia: a geometric morphometric approach.
Directory of Open Access Journals (Sweden)
Ana Rosa Gómez Cano
Full Text Available Murine rodents represent a highly diverse group, which displays great ecological versatility. In the present paper we analyse the relationship between dental morphology, on one hand, using geometric morphometrics based upon the outline of first upper molar and the dietary preference of extant murine genera, on the other. This ecomorphological study of extant murine rodents demonstrates that dietary groups can be distinguished with the use of a quantitative geometric morphometric approach based on first upper molar outline. A discriminant analysis of the geometric morphometric variables of the first upper molars enables us to infer the dietary preferences of extinct murine genera from the Iberian Peninsula. Most of the extinct genera were omnivore; only Stephanomys showed a pattern of dental morphology alike that of the herbivore genera.
On Consistency of Operational Transformation Approach
Directory of Open Access Journals (Sweden)
Aurel Randolph
2013-02-01
Full Text Available The Operational Transformation (OT approach, used in many collaborative editors, allows a group of users to concurrently update replicas of a shared object and exchange their updates in any order. The basic idea of this approach is to transform any received update operation before its execution on a replica of the object. This transformation aims to ensure the convergence of the different replicas of the object, even though the operations are executed in different orders. However, designing transformation functions for achieving convergence is a critical and challenging issue. Indeed, the transformation functions proposed in the literature are all revealed incorrect. In this paper, we investigate the existence of transformation functions for a shared string altered by insert and delete operations. From the theoretical point of view, two properties – named TP1 and TP2 – are necessary and sufficient to ensure convergence. Using controller synthesis technique, we show that there are some transformation functions which satisfy only TP1 for the basic signatures of insert and delete operations. As a matter of fact, it is impossible to meet both properties TP1 and TP2 with these simple signatures.
Dominance of quantum over classical correlations: entropic and geometric approach
Walczak, Zbigniew; Wintrowicz, Iwona; Zakrzewska, Katarzyna
2013-01-01
Recently, it has been shown that there exist quantum states for which quantum correlations dominate over classical correlations. Inspired by this observation, we investigate the problem of quantum correlations dominance for two-qubit Bell diagonal states in the Ollivier--Zurek paradigm, using both entropic and geometric approach to quantification of classical and quantum correlations. In particular, we estimate numerically the amount of two-qubit Bell diagonal states for which quantum correla...
Geometrical approach to central molecular chirality: a chirality selection rule
Capozziello, S.; Lattanzi, A
2004-01-01
Chirality is of primary importance in many areas of chemistry and has been extensively investigated since its discovery. We introduce here the description of central chirality for tetrahedral molecules using a geometrical approach based on complex numbers. According to this representation, for a molecule having n chiral centres, it is possible to define an index of chirality. Consequently a chirality selection rule has been derived which allows the characterization of a molecule as achiral, e...
Super-resolved imaging geometrical and diffraction approaches
2011-01-01
In this brief we review several approaches that provide super resolved imaging, overcoming the geometrical limitation of the detector as well as the diffraction effects set by the F number of the imaging lens. In order to obtain the super resolved enhancement, we use spatially non-uniform and/or random transmission structures to encode the image or the aperture planes. The desired resolution enhanced images are obtained by post-processing decoding of the captured data.
Modeling thermodynamic distance, curvature and fluctuations a geometric approach
Badescu, Viorel
2016-01-01
This textbook aims to briefly outline the main directions in which the geometrization of thermodynamics has been developed in the last decades. The textbook is accessible to people trained in thermal sciences but not necessarily with solid formation in mathematics. For this, in the first chapters a summary of the main mathematical concepts is made. In some sense, this makes the textbook self-consistent. The rest of the textbook consists of a collection of results previously obtained in this young branch of thermodynamics. The manner of presentation used throughout the textbook is adapted for ease of access of readers with education in natural and technical sciences.
A new set of basis functions for the discrete geometric approach
Codecasa, Lorenzo; Specogna, Ruben; Trevisan, Francesco
2010-09-01
By exploiting the geometric structure behind Maxwell's equations, the so called discrete geometric approach allows to translate the physical laws of electromagnetism into discrete relations, involving circulations and fluxes associated with the geometric elements of a pair of interlocked grids: the primal grid and the dual grid. To form a finite dimensional system of equations, discrete counterparts of the constitutive relations must be introduced in addition. They are referred to as constitutive matrices which must comply with precise properties (symmetry, positive definiteness, consistency) in order to guarantee the stability and consistency of the overall finite dimensional system of equations. The aim of this work is to introduce a general and efficient set of vector functions associated with the edges and faces of a polyhedral primal grids or of a dual grid obtained from the barycentric subdivision of the boundary of the primal grid; these vector functions comply with precise specifications which allow to construct stable and consistent discrete constitutive equations for the discrete geometric approach in the framework of an energetic method.
A geometric approach for radiation transport inside complex systems
Energy Technology Data Exchange (ETDEWEB)
Fumeron, S. [Groupe de Recherche en Ingenierie des Procedes et Systemes, Departement des Sciences Appliquees, Universite du Quebec a Chicoutimi, 555 Boulevard de l' Universite, Chicoutimi, PQ (Canada)]. E-mail: sebastien_fumeron@uqac.ca
2006-09-04
The aim of this Letter is to extend the phenomenological theory of radiation transfer to complex systems. For elastic or electromagnetic waves, one presents a geometrization of matter based on relativistic gravitation models. In this approach, particles experience material media as curved spacetimes, which locally affect the energetic processes. The general form of Clausius invariant is calculated and the curved radiative transfer equation is derived. An application to phonon transport in solids shows that the presence of a defect can amplify the elastic energy carried in particular directions of propagation.
D-brane superpotentials: Geometric and worldsheet approaches
Energy Technology Data Exchange (ETDEWEB)
Baumgartl, Marco, E-mail: m.baumgartl@physik.uni-muenchen.d [Arnold Sommerfeld Center, Ludwig-Maximilians-Universitaet, Theresienstr. 37, Muenchen 80333 (Germany); Excellence Cluster Universe, Technische Universitaet Muenchen, Boltzmannstr. 2, Garching 85748 (Germany); Brunner, Ilka, E-mail: ilka.brunner@physik.uni-muenchen.d [Arnold Sommerfeld Center, Ludwig-Maximilians-Universitaet, Theresienstr. 37, Muenchen 80333 (Germany); Excellence Cluster Universe, Technische Universitaet Muenchen, Boltzmannstr. 2, Garching 85748 (Germany); Soroush, Masoud, E-mail: masoud.soroush@physik.uni-muenchen.d [Arnold Sommerfeld Center, Ludwig-Maximilians-Universitaet, Theresienstr. 37, Muenchen 80333 (Germany); Excellence Cluster Universe, Technische Universitaet Muenchen, Boltzmannstr. 2, Garching 85748 (Germany)
2011-02-21
From the worldsheet perspective, the superpotential on a D-brane wrapping internal cycles of a Calabi-Yau manifold is given as a generating functional for disk correlation functions. On the other hand, from the geometric point of view, D-brane superpotentials are captured by certain chain integrals. In this work, we explicitly show for branes wrapping internal two-cycles how these two different approaches are related. More specifically, from the worldsheet point of view, D-branes at the Landau-Ginzburg point have a convenient description in terms of matrix factorizations. We use a formula derived by Kapustin and Li to explicitly evaluate disk correlators for families of D2-branes. On the geometry side, we then construct a three-chain whose period gives rise to the effective superpotential and show that the two expressions coincide. Finally, as an explicit example, we choose a particular compact Calabi-Yau hypersurface and compute the effective D2-brane superpotential in different branches of the open moduli space, in both geometric and worldsheet approaches.
NEW APPROACH FOR IMAGE REPRESENTATION BASED ON GEOMETRIC STRUCTURAL CONTENTS
Institute of Scientific and Technical Information of China (English)
Jia Xiaomeng; Wang Guoyu
2003-01-01
This paper presents a novel approach for representation of image contents based on edge structural features. Edge detection is carried out for an image in the pre-processing stage.For feature representation, edge pixels are grouped into a set of segments through geometrical partitioning of the whole edge image. Then the invariant feature vector is computed for each edge-pixel segment. Thereby the image is represented with a set of spatially distributed feature vectors, each of which describes the local pattern of edge structures. Matching of two images can be achieved by the correspondence of two sets of feature vectors. Without the difficulty of image segmentation and object extraction due to the complexity of the real world images, the proposed approach provides a simple and flexible description for the image with complex scene, in terms of structural features of the image content. Experiments with real images illustrate the effectiveness of this new method.
Geometrical approach to the evaluation of multileg Feynman diagrams
Energy Technology Data Exchange (ETDEWEB)
Davydychev, A.I. [Department of Physics, University of Mainz, Mainz (Germany); Delbourgo, R. [Physics Department, University of Tasmania, Hobart, Tasmania (Australia)
1998-10-01
A connection between one-loop N-point Feynman diagrams and certain geometrical quantities in non-Euclidean geometry is discussed. A geometrical way to calculate the corresponding Feynman integrals is considered. (author)
Geometric Approaches to Quadratic Equations from Other Times and Places.
Allaire, Patricia R.; Bradley, Robert E.
2001-01-01
Focuses on geometric solutions of quadratic problems. Presents a collection of geometric techniques from ancient Babylonia, classical Greece, medieval Arabia, and early modern Europe to enhance the quadratic equation portion of an algebra course. (KHR)
Approach to Weighted Geometric Evaluation Based on Projection Pursuit
Institute of Scientific and Technical Information of China (English)
Yang Shanlin; Wang Shuo; Gong Daning
2006-01-01
Weighted geometric evaluation approach based on Projection pursuit (PP) model is presented in this paper to optimize the choice of schemes. By using PP model, the multi-dimension evaluation index values of schemes can be synthesized into projection value with one dimension. The scheme with a bigger projection value is much better, so the schemes sample can be an optimized choice according to the projection value of each scheme. The modeling of PP based on accelerating genetic algorithm can predigest the realized process of projection pursuit technique, can overcome the shortcomings of large computation amount and the difficulty of computer programming in traditional projection pursuit methods, and can give a new method for application of projection pursuit technique to optimize choice of schemes by using weighted geometric evaluation. The analysis of an applied sample shows that applying PP model driven directly by samples data to optimize choice of schemes is both simple and feasible, that its projection values are relatively decentralized and profit decision-making, that its applicability and maneuverability are high. It can avoid the shortcoming of subjective weighing method, and its results are scientific and objective.
A Geometric Approach to the Six Trigonometric Ratios.
Bonsangue, Martin V.
1993-01-01
Geometric interpretations and derivations of the six trigonometric relationships are demonstrated. Selected for discussion are limiting values, geometric verification of trigonometric identities, a one-dimensional illustration of the Pythagorean relationships, and the geometric derivation of infinite-series relationships. (DE)
Some Asymptotic Inference in Multinomial Nonlinear Models (a Geometric Approach)
Institute of Scientific and Technical Information of China (English)
WEIBOCHENG
1996-01-01
A geometric framework is proposed for multinomlat nonlinear modelsbased on a modified vemlon of the geometric structure presented by Bates & Watts[4]. We use this geometric framework to study some asymptotic inference in terms ofcurvtures for multlnomial nonlinear models. Our previous results [15] for ordlnary nonlinear regression models are extended to multlnomlal nonlinear models.
A geometrical approach to degenerate scalar-tensor theories
Chagoya, Javier
2016-01-01
Degenerate scalar-tensor theories are recently proposed covariant theories of gravity coupled with a scalar field. Despite being characterised by higher order equations of motion, they do not propagate more than three degrees of freedom, thanks to the existence of constraints. We discuss a geometrical approach to degenerate scalar-tensor systems, and analyse its consequences. We show that some of these theories emerge as a certain limit of DBI Galileons. In absence of dynamical gravity, these systems correspond to scalar theories enjoying a symmetry which is different from Galileon invariance. The scalar theories have however problems concerning the propagation of fluctuations around a time dependent background. These issues can be tamed by breaking the symmetry by hand, or by minimally coupling the scalar with dynamical gravity in a way that leads to degenerate scalar-tensor systems. We show that distinct theories can be connected by a relation which generalizes Galileon duality, in certain cases also when g...
Geometric approach to viscous fingering on a cone
Miranda, J A
2003-01-01
We study fluid flow and the formation of viscous fingering patterns on a two-dimensional conical background space, defined as the conical Hele-Shaw cell. We approach the problem geometrically and study how the nontrivial topological structure of the conical cell affects the evolution of the interface separating two viscous fluids. We perform a perturbative weakly nonlinear analysis of the problem and derive a mode-coupling differential equation which describes fluid-fluid interface behaviour. Our nonlinear study predicts the formation of fingering structures in which fingers of different lengths compete and split at their tips. The shape of the emerging patterns show a significant sensitivity to variations in the cell's topological features, which can be monitored by changing the cone opening angle. We find that for increasingly larger values of the opening angle, finger competition is inhibited while finger tip-splitting is enhanced.
The Consistent Preferences Approach to Deductive Reasoning in Games
Asheim, Geir B
2006-01-01
"The Consistent Preferences Approach to Deductive Reasoning in Games" presents, applies, and synthesizes what my co-authors and I have called the 'consistent preferences' approach to deductive reasoning in games. Briefly described, this means that the object of the analysis is the ranking by each player of his own strategies, rather than his choice. The ranking can be required to be consistent (in different senses) with his beliefs about the opponent's ranking of her strategies. This can be contrasted to the usual 'rational choice' approach where a player's strategy choice is (in dif
A new approach toward geometrical concept of black hole thermodynamics
Energy Technology Data Exchange (ETDEWEB)
Hendi, Seyed Hossein [Shiraz University, Physics Department and Biruni Observatory, College of Sciences, Shiraz (Iran, Islamic Republic of); Research Institute for Astronomy and Astrophysics of Maragha (RIAAM), Maragha (Iran, Islamic Republic of); Panahiyan, Shahram; Panah, Behzad Eslam; Momennia, Mehrab [Shiraz University, Physics Department and Biruni Observatory, College of Sciences, Shiraz (Iran, Islamic Republic of)
2015-10-15
Motivated by the energy representation of Riemannian metric, in this paper we study different approaches toward the geometrical concept of black hole thermodynamics. We investigate thermodynamical Ricci scalar of Weinhold, Ruppeiner and Quevedo metrics and show that their number and location of divergences do not coincide with phase transition points arisen from heat capacity. Next, we introduce a new metric to solve these problems. We show that the denominator of the Ricci scalar of the new metric contains terms which coincide with different types of phase transitions. We elaborate the effectiveness of the new metric and shortcomings of the previous metrics with some examples. Furthermore, we find a characteristic behavior of the new thermodynamical Ricci scalar which enables one to distinguish two types of phase transitions. In addition, we generalize the new metric for the cases of more than two extensive parameters and show that in these cases the divergencies of thermodynamical Ricci scalar coincide with phase transition points of the heat capacity. (orig.)
The consistency approach for the quality control of vaccines.
Hendriksen, Coenraad; Arciniega, Juan L; Bruckner, Lukas; Chevalier, Michel; Coppens, Emmanuelle; Descamps, Johan; Duchêne, Michel; Dusek, David Michael; Halder, Marlies; Kreeftenberg, Hans; Maes, Alexandrine; Redhead, Keith; Ravetkar, Satish D; Spieser, Jean-Marc; Swam, Hanny
2008-01-01
Current lot release testing of conventional vaccines emphasizes quality control of the final product and is characterized by its extensive use of laboratory animals. This report, which is based on the outcome of an ECVAM (European Centre for Validation of Alternative Methods, Institute for Health and Consumer Protection, European Commission Joint Research Centre, Ispra, Italy) workshop, discusses the concept of consistency testing as an alternative approach for lot release testing. The consistency approach for the routine release of vaccines is based upon the principle that the quality of vaccines is a consequence of a quality system and of consistent production of lots with similar characteristics to those lots that have been shown to be safe and effective in humans or the target species. The report indicates why and under which circumstances this approach can be applied, the role of the different stakeholders, and the need for international harmonization. It also gives recommendations for its implementation.
A Nonparametric Approach to Estimate Classification Accuracy and Consistency
Lathrop, Quinn N.; Cheng, Ying
2014-01-01
When cut scores for classifications occur on the total score scale, popular methods for estimating classification accuracy (CA) and classification consistency (CC) require assumptions about a parametric form of the test scores or about a parametric response model, such as item response theory (IRT). This article develops an approach to estimate CA…
Geometric Programming Approach to an Interactive Fuzzy Inventory Problem
Directory of Open Access Journals (Sweden)
Nirmal Kumar Mandal
2011-01-01
Full Text Available An interactive multiobjective fuzzy inventory problem with two resource constraints is presented in this paper. The cost parameters and index parameters, the storage space, the budgetary cost, and the objective and constraint goals are imprecise in nature. These parameters and objective goals are quantified by linear/nonlinear membership functions. A compromise solution is obtained by geometric programming method. If the decision maker is not satisfied with this result, he/she may try to update the current solution to his/her satisfactory solution. In this way we implement man-machine interactive procedure to solve the problem through geometric programming method.
A Geometric Approach to Massive p-form Duality
Arias, P J; Pérez-Mosquera, J C; Arias, Pio J.; Leal, Lorenzo; Perez-Mosquera, Jean Carlos
2003-01-01
Massive theories of abelian p-forms are quantized in a generalized path-representation that leads to a description of the phase space in terms of a pair of dual non-local operators analogous to the Wilson Loop and the 't Hooft disorder operators. Special atention is devoted to the study of the duality between the Topologically Massive and the Self-Dual models in 2+1 dimensions. It is shown that these models share a geometric representation in which just one non local operator suffices to describe the observables. For the Proca model its geometric representation is constructed from two Self-Dual representations by direct product.
Geometric and Algebraic Approaches in the Concept of Complex Numbers
Panaoura, A.; Elia, I.; Gagatsis, A.; Giatilis, G.-P.
2006-01-01
This study explores pupils' performance and processes in tasks involving equations and inequalities of complex numbers requiring conversions from a geometric representation to an algebraic representation and conversions in the reverse direction, and also in complex numbers problem solving. Data were collected from 95 pupils of the final grade from…
Material inhomogeneities and their evolution a geometric approach
Epstein, Marcelo
2007-01-01
Presents a unified treatment of the inhomogeneity theory using some of the tools of modern differential geometry. This book deals with the geometrical description of uniform bodies and their homogeneity conditions. It also develops a theory of material evolution and discusses its relevance in various applied contexts.
A Geometric Fuzzy-Based Approach for Airport Clustering
Directory of Open Access Journals (Sweden)
Maria Nadia Postorino
2014-01-01
Full Text Available Airport classification is a common need in the air transport field due to several purposes—such as resource allocation, identification of crucial nodes, and real-time identification of substitute nodes—which also depend on the involved actors’ expectations. In this paper a fuzzy-based procedure has been proposed to cluster airports by using a fuzzy geometric point of view according to the concept of unit-hypercube. By representing each airport as a point in the given reference metric space, the geometric distance among airports—which corresponds to a measure of similarity—has in fact an intrinsic fuzzy nature due to the airport specific characteristics. The proposed procedure has been applied to a test case concerning the Italian airport network and the obtained results are in line with expectations.
A Geometric Approach For Fully Automatic Chromosome Segmentation
Minaee, Shervin; Khalaj, Babak Hossein
2011-01-01
Chromosome segmentation is a fundamental task in human chromosome analysis. Most of previous methods for separation between touching chromosomes require human intervention. In this paper, a geometry based method is used for automatic chromosome segmentation. This method can be divided into two phases. In the first phase, chromosome clusters are detected using three geometric criteria and in the second phase chromosome clusters are separated using a proper cut line. However, most earlier methods do not work well with chromosome clusters that contain more than two chromosomes. Our method, on the other hand, has a high efficiency in separation of chromosome clusters in such scenarios. Another advantage of the proposed method is that it can easily apply to any type of images such as binary images. This is due to the fact that the proposed scheme uses the geometric features of chromosomes which are independent of the type of images. The performance of the proposed scheme is demonstrated on a database containing to...
An algebraic geometric approach to separation of variables
Schöbel, Konrad
2015-01-01
Konrad Schöbel aims to lay the foundations for a consequent algebraic geometric treatment of variable separation, which is one of the oldest and most powerful methods to construct exact solutions for the fundamental equations in classical and quantum physics. The present work reveals a surprising algebraic geometric structure behind the famous list of separation coordinates, bringing together a great range of mathematics and mathematical physics, from the late 19th century theory of separation of variables to modern moduli space theory, Stasheff polytopes and operads. "I am particularly impressed by his mastery of a variety of techniques and his ability to show clearly how they interact to produce his results.” (Jim Stasheff) Contents The Foundation: The Algebraic Integrability Conditions The Proof of Concept: A Complete Solution for the 3-Sphere The Generalisation: A Solution for Spheres of Arbitrary Dimension The Perspectives: Applications and Generalisations Target Groups Scientists in the fie...
Dynamics and Control of Humanoid Robots: A Geometrical Approach
Ivancevic, Vladimir G
2011-01-01
his paper reviews modern geometrical dynamics and control of humanoid robots. This general Lagrangian and Hamiltonian formalism starts with a proper definition of humanoid's configuration manifold, which is a set of all robot's active joint angles. Based on the `covariant force law', the general humanoid's dynamics and control are developed. Autonomous Lagrangian dynamics is formulated on the associated `humanoid velocity phase space', while autonomous Hamiltonian dynamics is formulated on the associated `humanoid momentum phase space'. Neural-like hierarchical humanoid control naturally follows this geometrical prescription. This purely rotational and autonomous dynamics and control is then generalized into the framework of modern non-autonomous biomechanics, defining the Hamiltonian fitness function. The paper concludes with several simulation examples. Keywords: Humanoid robots, Lagrangian and Hamiltonian formalisms, neural-like humanoid control, time-dependent biodynamics
A geometric approach to quantum control in projective hilbert spaces
Pastorello, Davide
2017-02-01
A quantum theory in a finite-dimensional Hilbert space can be formulated as a proper geometric Hamiltonian theory as explained in [2, 3, 7, 9]. From this point of view a quantum system can be described within a classical-like framework where quantum dynamics is represented by a Hamiltonian flow in the phase space given by a projective Hilbert space. This paper is devoted to investigating how the notion of an accessibility algebra from classical control theory can be applied within the geometric Hamiltonian formulation of quantum mechanics to study controllability of a quantum system. A new characterization of quantum controllability in terms of Killing vector fields w.r.t. the Fubini-Study metric on projective space is also discussed.
Margin Requirements and Portfolio Optimization: A Geometric Approach
Sheng Guo
2014-01-01
Using geometric illustrations, we investigate what implications of portfolio optimization in equilibrium can be generated by the simple mean-variance framework, under margin borrowing restrictions. First, we investigate the case of uniform marginability on all risky assets. It is shown that changing from unlimited borrowing to margin borrowing shifts the market portfolio to a riskier combination, accompanied by a higher risk premium and a lower price of risk. With the linear risk-return prefe...
A Wave-Optics Approach to Paraxial Geometrical Laws Based on Continuity at Boundaries
Linares, J.; Nistal, M. C.
2011-01-01
We present a derivation of the paraxial geometrical laws starting from a wave-optics approach, in particular by using simple continuity conditions of paraxial spherical waves at boundaries (discontinuities) between optical media. Paraxial geometrical imaging and magnification laws, under refraction and reflection at boundaries, are derived for…
Rahman, T.
2009-01-01
In this thesis, a finite element based perturbation approach is presented for geometrically nonlinear analysis of thin-walled structures. Geometrically nonlinear static and dynamic analyses are essential for this class of structures. Nowadays nonlinear analysis of thin-walled shell structures is oft
Urbanisation and 3d Spatial - a Geometric Approach
Duncan, E. E.; Rahman, A. Abdul
2013-09-01
Urbanisation creates immense competition for space, this may be attributed to an increase in population owing to domestic and external tourism. Most cities are constantly exploring all avenues in maximising its limited space. Hence, urban or city authorities need to plan, expand and use such three dimensional (3D) space above, on and below the city space. Thus, difficulties in property ownership and the geometric representation of the 3D city space is a major challenge. This research, investigates the concept of representing a geometric topological 3D spatial model capable of representing 3D volume parcels for man-made constructions above and below the 3D surface volume parcel. A review of spatial data models suggests that the 3D TIN (TEN) model is significant and can be used as a unified model. The concepts, logical and physical models of 3D TIN for 3D volumes using tetrahedrons as the base geometry is presented and implemented to show man-made constructions above and below the surface parcel within a user friendly graphical interface. Concepts for 3D topology and 3D analysis are discussed. Simulations of this model for 3D cadastre are implemented. This model can be adopted by most countries to enhance and streamline geometric 3D property ownership for urban centres. 3D TIN concept for spatial modelling can be adopted for the LA_Spatial part of the Land Administration Domain Model (LADM) (ISO/TC211, 2012), this satisfies the concept of 3D volumes.
A geometrical approach to two-dimensional Conformal Field Theory
Dijkgraaf, Robertus Henricus
1989-09-01
This thesis is organized in the following way. In Chapter 2 we will give a brief introduction to conformal field theory along the lines of standard quantum field theory, without any claims to originality. We introduce the important concepts of the stress-energy tensor, the Virasoro algebra, and primary fields. The general principles are demonstrated by fermionic and bosonic free field theories. This also allows us to discuss some general aspects of moduli spaces of CFT's. In particular, we describe in some detail the space of iiiequivalent toroidal comi)actificalions, giving examples of the quantum equivalences that we already mentioned. In Chapter 3 we will reconsider general quantum field theory from a more geometrical point of view, along the lines of the so-called operator formalism. Crucial to this approach will be the consideration of topology changing amplitudes. After a simple application to 2d topological theories, we proceed to give our second introduction to CFT, stressing the geometry behind it. In Chapter 4 the so-called rational conformal field theories are our object of study. These special CFT's have extended symmetries with only a finite number of representations. If an interpretation as non-linear sigma model exists, this extra symmetry can be seen as a kind of resonance effect due to the commensurability of the size of the string and the target space-time. The structure of rational CFT's is extremely rigid, and one of our results will be that the operator content of these models is—up to some discrete choices—completely determined by the symmetry algebra. The study of rational models is in its rigidity very analogous to finite group theory. In Chapter 5 this analogy is further pursued and substantiated. We will show how one can construct from general grounds rational conformal field theories from finite groups. These models are abstract versions of non-linear o-models describing string propagation on 'orbifoids.' An orbifold is a singular
A new geometric approach to blind source separation of bounded sources
Institute of Scientific and Technical Information of China (English)
Jinlong Zhang; Guoxu Zhou; Zuyuan Yang; Xiaoxin Liao
2009-01-01
Based on the minimum-range approach, a new geometric approach is proposed to deal with blind source separation in this paper. The new approach is the batch mode of the original minimum-range approach. Compared with the original approach, the optimization algo-rithm of the proposed approach needs no parameters and is more efficient and reliable. In addition, the extension of minimum-range-based approaches is discussed. The simulations show the efficiency of the proposed approach.
Clusters of Galaxies in a Weyl Geometric Approach to Gravity
Directory of Open Access Journals (Sweden)
Erhard Scholz
2016-01-01
Full Text Available A model for the dark halos of galaxy clusters, based on the Weyl geometric scalar tensor theory of gravity (WST with a MOND-like approximation, is proposed. It is uniquely determined by the baryonic mass distribution of hot gas and stars. A first heuristic check against empirical data for 19 clusters (2 of which are outliers, taken from the literature, shows encouraging results. Modulo a caveat resulting from different background theories (Einstein gravity plus ΛCDM versus WST, the total mass for 15 of the outlier reduced ensemble of 17 clusters seems to be predicted correctly (in the sense of overlapping 1σ error intervals.
Probabilistically Perfect Cloning of Two Pure States: Geometric Approach
Yerokhin, V.; Shehu, A.; Feldman, E.; Bagan, E.; Bergou, J. A.
2016-05-01
We solve the long-standing problem of making n perfect clones from m copies of one of two known pure states with minimum failure probability in the general case where the known states have arbitrary a priori probabilities. The solution emerges from a geometric formulation of the problem. This formulation reveals that cloning converges to state discrimination followed by state preparation as the number of clones goes to infinity. The convergence exhibits a phenomenon analogous to a second-order symmetry-breaking phase transition.
Algebro-geometric approach in the theory of integrable hydrodynamic type systems
Pavlov, Maxim V.
2006-01-01
The algebro-geometric approach for integrability of semi-Hamiltonian hydrodynamic type systems is presented. This method is significantly simplified for so-called symmetric hydrodynamic type systems. Plenty interesting and physically motivated examples are investigated.
Observer-based FDI for Gain Fault Detection in Ship Propulsion Benchmark:a Geometric Approach
Lootsma, T.F.; Izadi-Zamanabadi, Roozbeh; Nijmeijer, H.
2001-01-01
A geometric approach for input-affine nonlinear systems is briefly described and then applied to a ship propulsion benchmark. The obtained results are used to design a diagnostic nonlinear observer for successful FDI of the diesel engine gain fault
A geometric approach to the precession of compact binaries
Boyle, Michael; Pfeiffer, Harald P
2011-01-01
We propose a geometrical method to define a preferred reference frame for precessing binary systems. This minimal-rotation frame is aligned with the angular-momentum axis and fixes the rotation about that axis up to a constant angle, resulting in an essentially invariant frame. Gravitational waveforms decomposed in this frame are similarly invariant under rotations of the inertial frame and exhibit relatively smoothly varying phase. By contrast, earlier prescriptions for radiation-aligned frames induce extraneous features in the gravitational-wave phase which depend on the orientation of the inertial frame, which leads to fluctuations in the frequency and may compound to many gravitational-wave cycles. We suggest that the minimal-rotation frame provides a simplified framework for post-Newtonian approximations of precessing systems and describe the construction of analytical/numerical hybrid waveforms for such systems.
A Geometric Approach for Multi-Degree Spline
Institute of Scientific and Technical Information of China (English)
Xin Li; Zhang-Jin Huang; Zhao Liu
2012-01-01
Multi-degree spline (MD-spline for short) is a generalization of B-spline which comprises of polynomial segments of various degrees.The present paper provides a new definition for MD-spline curves in a geometric intuitive way based on an efficient and simple evaluation algorithm.MD-spline curves maintain various desirable properties of B-spline curves,such as convex hull,local support and variation diminishing properties.They can also be refined exactly with knot insertion.The continuity between two adjacent segments with different degrees is at least C1 and that between two adjacent segments of same degrees d is Cd-1.Benefited by the exact refinement algorithm,we also provide several operators for MD-spline curves,such as converting each curve segment into Bézier form,an efficient merging algorithm and a new curve subdivision scheme which allows different degrees for each segment.
Approximate Approaches to Geometric Corrections of High Resolution Satellite Imagery
Institute of Scientific and Technical Information of China (English)
SHI Wenzhong; Ahmed Shaker
2004-01-01
The exploitation of different non-rigorous mathematical models as opposed to the satellite rigorous models is discussed for geometric corrections and topographic/thematic maps production of high-resolution satellite imagery (HRSI). Furthermore, this paper focuses on the effects of the number of GCPs and the terrain elevation difference within the area covered by the images on the obtained ground points accuracy. From the research, it is obviously found that non-rigorous orientation and triangulation models can be used successfully in most cases for 2D rectification and 3D ground points determination without a camera model or the satellite ephemeris data. In addition, the accuracy up to the sub-pixel level in plane and about one pixel in elevation can be achieved with a modest number of GCPs.
An Intuitive Approach to Geometric Continuity for Parametric Curves and Surfaces (Extended Abstract)
Derose, T. D.; Barsky, B. A.
1985-01-01
The notion of geometric continuity is extended to an arbitrary order for curves and surfaces, and an intuitive development of constraints equations is presented that are necessary for it. The constraints result from a direct application of the univariate chain rule for curves, and the bivariate chain rule for surfaces. The constraints provide for the introduction of quantities known as shape parameters. The approach taken is important for several reasons: First, it generalizes geometric continuity to arbitrary order for both curves and surfaces. Second, it shows the fundamental connection between geometric continuity of curves and geometric continuity of surfaces. Third, due to the chain rule derivation, constraints of any order can be determined more easily than derivations based exclusively on geometric measures.
On the Robot Singularity: A Novel Geometric Approach
Directory of Open Access Journals (Sweden)
Man Bok Hong
2012-11-01
Full Text Available This paper addresses a novel geometric analysis method of the singularity and kinestatic characteristics of robots. For non‐redundant robots, there exist two uniquely determined Jacobians ‐ the screw‐based Jacobian and the reciprocal Jacobian. Here, it is shown that if some of the reciprocal products between the column screws of the two Jacobians are close to zero, the robot is in the vicinity of a singular configuration and the corresponding columns of the Jacobian are involved in the singularity. From this observation, an invariant measure of closeness to a singularity is presented using the reciprocal products. Furthermore, by considering the reciprocal products between the actuated joint screws and column screws of the Jacobian, this measure is extended so that the concept of the kinestatic characterization index is presented for parallel robots. Since it is defined as the ratio of reciprocal products from the uniqueness of the two Jacobians, it represents a unique invariant characteristic of robots. From the singularity analyses of the planar 4‐bar linkage and the 3‐DOF parallel manipulator with PRS‐serial chains, the validity of the proposed index is examined and the concept of a kinestatically balanced configuration is introduced as well.
Geometric approach to chaos in the classical dynamics of Abelian lattice gauge theory
Energy Technology Data Exchange (ETDEWEB)
Casetti, Lapo [Istituto Nazionale per la Fisica della Materia (INFM), Unita di Ricerca del Politecnico di Torino, Dipartimento di Fisica, Politecnico di Torino, Turin (Italy); Gatto, Raoul [Departement de Physique Theorique, Universite de Geneve, Geneva (Switzerland); Pettini, Marco [Osservatorio Astrofisico di Arcetri, Largo Enrico Fermi 5, Florence (Italy)
1999-04-23
A Riemannian geometrization of dynamics is used to study chaoticity in the classical Hamiltonian dynamics of a U(1) lattice gauge theory. This approach allows one to obtain analytical estimates of the largest Lyapunov exponent in terms of time averages of geometric quantities. These estimates are compared with the results of numerical simulations, and turn out to be very close to the values extrapolated for very large lattice sizes even when the geometric quantities are computed using small lattices. The scaling of the Lyapunov exponent {lambda} with the energy density {epsilon} is found to be well described by the law {lambda}{proportional_to}{epsilon}{sup 2}. (author)
Geometric approach to chaos in the classical dynamics of abelian lattice gauge theory
Casetti, L; Pettini, M; Casetti, Lapo; Gatto, Raoul; Pettini, Marco
1998-01-01
A Riemannian geometrization of dynamics is used to study chaoticity in the classical Hamiltonian dynamics of a U(1) lattice gauge theory. This approach allows one to obtain analytical estimates of the largest Lyapunov exponent in terms of time averages of geometric quantities. These estimates are compared with the results of numerical simulations, and turn out to be very close to the values extrapolated for very large lattice sizes even when the geometric quantities are computed using small lattices. The scaling of the Lyapunov exponent with the energy density is found to be well described by a quadratic power law.
A geometric approach to multi-view compressive imaging
Park, Jae Young; Wakin, Michael B.
2012-12-01
In this paper, we consider multi-view imaging problems in which an ensemble of cameras collect images describing a common scene. To simplify the acquisition and encoding of these images, we study the effectiveness of non-collaborative compressive sensing encoding schemes wherein each sensor directly and independently compresses its image using randomized measurements. After these measurements and also perhaps the camera positions are transmitted to a central node, the key to an accurate reconstruction is to fully exploit the joint correlation among the signal ensemble. To capture such correlations, we propose a geometric modeling framework in which the image ensemble is treated as a sampling of points from a low-dimensional manifold in the ambient signal space. Building on results that guarantee stable embeddings of manifolds under random measurements, we propose a "manifold lifting" algorithm for recovering the ensemble that can operate even without knowledge of the camera positions. We divide our discussion into two scenarios, the near-field and far-field cases, and describe how the manifold lifting algorithm could be applied to these scenarios. At the end of this paper, we present an in-depth case study of a far-field imaging scenario, where the aim is to reconstruct an ensemble of satellite images taken from different positions with limited but overlapping fields of view. In this case study, we demonstrate the impressive power of random measurements to capture single- and multi-image structure without explicitly searching for it, as the randomized measurement encoding in conjunction with the proposed manifold lifting algorithm can even outperform image-by-image transform coding.
Matrix Operator Approach to Quantum Evolution Operator and Geometric Phase
Kim, Sang Pyo; Soh, Kwang Sup
2012-01-01
The Moody-Shapere-Wilczek's adiabatic effective Hamiltonian and Lagrangian method is developed further into the matrix effective Hamiltonian (MEH) and Lagrangian (MEL) approach to a parameter-dependent quantum system. The matrix operator approach formulated in the product integral (PI) provides not only a method to find wave function efficiently in the MEH approach but also higher order corrections to the effective action systematically in the MEL approach, a la the Magnus expansion and the Kubo's cumulant expansion. A coupled quantum system of a light particle of harmonic oscillator is worked out, and as a by-product a new kind of gauge potential (Berry's connection) is found even for nondegenerate case (real eigenfunctions). Moreover, in the PI formulation the holonomy of the induced gauge potential is related to the Schlesinger's exact formula for the gauge field tensor. A superadiabatic expansion is also constructed and a generalized Dykhne formula, depending on the contour integrals of homotopy class of ...
Consistent analytic approach to the efficiency of collisional Penrose process
Harada, Tomohiro; Miyamoto, Umpei
2016-01-01
We propose a consistent analytic approach to the efficiency of collisional Penrose process in the vicinity of a maximally rotating Kerr black hole. We focus on a collision with arbitrarily high centre-of-mass energy, which occurs if either of the colliding particles has its angular momentum finetuned to the critical value to enter the horizon. We show that if the finetuned particle is ingoing on the collision, the upper limit of the efficiency is $(2+\\sqrt{3})(2-\\sqrt{2})\\simeq 2.186$, while if the finetuned particle is bounced back before the collision, the upper limit is $(2+\\sqrt{3})^{2}\\simeq 13.93$. Despite earlier claims, the former can be attained for inverse Compton scattering if the finetuned particle is massive and starts at rest at infinity, while the latter for various particle reactions, such as inverse Compton scattering and pair annihilation, if the finetuned particle is either massless or highly relativistic at infinity. We discuss difference between the present and earlier analyses.
Consistent analytic approach to the efficiency of collisional Penrose process
Harada, Tomohiro; Ogasawara, Kota; Miyamoto, Umpei
2016-07-01
We propose a consistent analytic approach to the efficiency of collisional Penrose process in the vicinity of a maximally rotating Kerr black hole. We focus on a collision with arbitrarily high center-of-mass energy, which occurs if either of the colliding particles has its angular momentum fine-tuned to the critical value to enter the horizon. We show that if the fine-tuned particle is ingoing on the collision, the upper limit of the efficiency is (2 +√{3 })(2 -√{2 })≃2.186 , while if the fine-tuned particle is bounced back before the collision, the upper limit is (2 +√{3 })2≃13.93 . Despite earlier claims, the former can be attained for inverse Compton scattering if the fine-tuned particle is massive and starts at rest at infinity, while the latter can be attained for various particle reactions, such as inverse Compton scattering and pair annihilation, if the fine-tuned particle is either massless or highly relativistic at infinity. We discuss the difference between the present and earlier analyses.
A Simple Geometric Approach to Approximating the Gini Coefficient
Kasper, Hirschel; Golden, John
2008-01-01
The author shows how a quick approximation of the Lorenz curve's Gini coefficient can be calculated empirically using numerical data presented in cumulative income quintiles. When the technique here was used to estimate 621 income quintile/Gini coefficient observations from the Deninger and Squire/World Bank data set, this approach performed…
Geometric approaches to the thermodynamics of black holes
Gruber, Christine; Quevedo, Hernando
2016-01-01
In this summary, we present the main topics of the talks presented in the parallel session "Black holes - 5" of the 14th Marcel Grossmann Meeting held in Rome, Italy in July 2015. We first present a short review of the main approaches used to understand thermodynamics by using differential geometry. Then, we present a brief summary of each presentation, including some general remarks and comments.
Symmetries of stochastic differential equations: A geometric approach
Energy Technology Data Exchange (ETDEWEB)
De Vecchi, Francesco C., E-mail: francesco.devecchi@unimi.it; Ugolini, Stefania, E-mail: stefania.ugolini@unimi.it [Dipartimento di Matematica, Università degli Studi di Milano, via Saldini 50, Milano (Italy); Morando, Paola, E-mail: paola.morando@unimi.it [DISAA, Università degli Studi di Milano, via Celoria 2, Milano (Italy)
2016-06-15
A new notion of stochastic transformation is proposed and applied to the study of both weak and strong symmetries of stochastic differential equations (SDEs). The correspondence between an algebra of weak symmetries for a given SDE and an algebra of strong symmetries for a modified SDE is proved under suitable regularity assumptions. This general approach is applied to a stochastic version of a two dimensional symmetric ordinary differential equation and to the case of two dimensional Brownian motion.
He, Xiaonian; Liu, Weixiang; Chen, Siping; Qin, Zhengdi
2015-01-01
In the field of ultrasonic imaging technology, the problem of geometric distortion is often encountered, especially in the ultrasonic near-field. In this study, a new approach is proposed to compensate for geometric distortion in the synthetic aperture ultrasonic imaging system. This approach is based on the synthetic aperture ultrasonic holographic B-scan (UHB) imaging system, which is a combination of ultrasonic holography based on the backward propagation principle and the conventional B-scan technique. To solve the geometric distortion problem, the operation of the spatial compression and resampling in the frequency domain are introduced. The main advantage of the approach is that the real holographic value can be calculated without distortion by using the spatial interpolation function after the spatial frequency compression. After the compensation for geometric distortion is performed, the synthetic aperture technique based on the backward propagation principle is then applied in the process of the two-dimensional numerical imaging reconstruction. Both the simulation and measurement experiment show that the approach is promising. The geometric distortion that is dependent on the wave front angle can be effectively compensated. The spatial resolution is practically uniform throughout the depth range and close to the theoretical limit in the experiments.
A wave-optics approach to paraxial geometrical laws based on continuity at boundaries
Liñares, J.; Nistal, M. C.
2011-09-01
We present a derivation of the paraxial geometrical laws starting from a wave-optics approach, in particular by using simple continuity conditions of paraxial spherical waves at boundaries (discontinuities) between optical media. Paraxial geometrical imaging and magnification laws, under refraction and reflection at boundaries, are derived for several instructive cases and without using Fresnel diffraction theory. The primary aim is to provide a complementary insight into the standard axiomatic approach of paraxial geometrical optics and likewise to allow the introduction of some wave imaging concepts, such as the transmittance function, with a notable didactic interest for advanced subjects such as Fourier optics. This approach provides a more homogeneous vision of classical optics in which the use of the optical field continuity conditions at a boundary is a usual requirement as is clearly seen, for example, in the case of the derivation of Fresnel formulas. The work is particularly intended for university physics teachers and pregraduate and first year postgraduate students.
Directory of Open Access Journals (Sweden)
Kurt E. Clothier
2010-01-01
Full Text Available This paper presents a geometric approach to solve the unknown joint angles required for the autonomous positioning of a robotic arm. A plethora of complex mathematical processes is reduced using basic trigonometric in the modeling of the robotic arm. This modeling and analysis approach is tested using a five-degree-of-freedom arm with a gripper style end effector mounted to an iRobot Create mobile platform. The geometric method is easily modifiable for similar robotic system architectures and provides the capability of local autonomy to a system which is very difficult to manually control.
A geometrical approach for automatic shape restoration of the left ventricle.
Directory of Open Access Journals (Sweden)
May-Ling Tan
Full Text Available This paper describes an automatic algorithm that uses a geometry-driven optimization approach to restore the shape of three-dimensional (3D left ventricular (LV models created from magnetic resonance imaging (MRI data. The basic premise is to restore the LV shape such that the LV epicardial surface is smooth after the restoration and that the general shape characteristic of the LV is not altered. The Maximum Principle Curvature (k1 and the Minimum Principle Curvature (k2 of the LV epicardial surface are used to construct a shape-based optimization objective function to restore the shape of a motion-affected LV via a dual-resolution semi-rigid deformation process and a free-form geometric deformation process. A limited memory quasi-Newton algorithm, L-BFGS-B, is then used to solve the optimization problem. The goal of the optimization is to achieve a smooth epicardial shape by iterative in-plane and through-plane translation of vertices in the LV model. We tested our algorithm on 30 sets of LV models with simulated motion artifact generated from a very smooth patient sample, and 20 in vivo patient-specific models which contain significant motion artifacts. In the 30 simulated samples, the Hausdorff distances with respect to the Ground Truth are significantly reduced after restoration, signifying that the algorithm can restore geometrical accuracy of motion-affected LV models. In the 20 in vivo patient-specific models, the results show that our method is able to restore the shape of LV models without altering the general shape of the model. The magnitudes of in-plane translations are also consistent with existing registration techniques and experimental findings.
TWO APPROACHES TO IMPROVING THE CONSISTENCY OF COMPLEMENTARY JUDGEMENT MATRIX
Institute of Scientific and Technical Information of China (English)
XuZeshui
2002-01-01
By the transformation relations between complementary judgement matrix and reciprocal judgement matrix ,this paper proposes two methods for improving the consistency of complementary judgement matrix and gives two simple practical iterative algorithms. These two algorithms are easy to implement on computer,and the modified complementary judgement matrices remain most information that original matrix contains. Thus the methods supplement and develop the theory and methodology for improving consistency of complementary judgement matrix.
Rao, D V; Brunetti, A; Gigante, G E; Takeda, T; Itai, Y; Akatsuka, T
2002-01-01
A new approach is developed to estimate the geometrical factors, solid angle approximation and geometrical efficiency for a system with experimental arrangements using X-ray tube and secondary target as an excitation source in order to produce the nearly monoenergetic K alpha radiation to excite the sample. The variation of the solid angle is studied by changing the radius and length of the collimators towards and away from the source and sample. From these values the variation of the total solid angle and geometrical efficiency is deduced and the optimum value is used for the experimental work. (authors)
Beggio, P C; Valin, P
2000-01-01
Starting from a short range expansion of the inelastic overlap function, capable of describing quite well the elastic pp and $\\bar{p}p$ scattering data, we obtain extensions to the inelastic channel, through unitarity and an impact parameter approach. Based on geometrical arguments we infer some characteristics of the elementary hadronic process and this allows an excellent description of the inclusive multiplicity distributions in $pp$ and $\\bar{p}p$ collisions. With this approach we quantitatively correlate the violations of both geometrical and KNO scaling in an analytical way. The physical picture from both channels is that the geometrical evolution of the hadronic constituents is principally reponsible for the energy dependence of the physical quantities rather than the dynamical (elementary) interaction itself.
The consistent histories approach to loop quantum cosmology
Craig, David A
2016-01-01
We review the application of the consistent (or decoherent) histories formulation of quantum theory to canonical loop quantum cosmology. Conventional quantum theory relies crucially on "measurements" to convert unrealized quantum potentialities into physical outcomes that can be assigned probabilities. In the early universe and other physical contexts in which there are no observers or measuring apparatus (or indeed, in any closed quantum system), what criteria determine which alternative outcomes may be realized and what their probabilities are? In the consistent histories formulation it is the vanishing of interference between the branch wave functions describing alternative histories -- as determined by the system's decoherence functional -- that determines which alternatives may be assigned probabilities. We describe the consistent histories formulation and how it may be applied to canonical loop quantum cosmology, describing in detail the application to homogeneous and isotropic cosmological models with ...
A Geometric Approach to Diagnosis Applied to A Ship Propulsion Problem
DEFF Research Database (Denmark)
Lootsma, T.F.; Izadi-Zamanabadi, Roozbeh; Nijmeijer, H.
A geometric approach to FDI diagnosis for input-affine nonlinear systems is briefly described and applied to a ship propulsion benchmark. The analysis method is used to examine the possibility of detecting and isolating predefined faults in the system. The considered faults cover sensor, actuator...
Branch dependence in the "consistent histories" approach to quantum mechanics
Müller, T
2005-01-01
In the consistent histories formalism one specifies a family of histories as an exhaustive set of pairwise exclusive descriptions of the dynamics of a quantum system. We define branching families of histories, which strike a middle ground between the two available mathematically precise definitions of families of histories, viz., product families and Isham's history projector operator formalism. The former are too narrow for applications, and the latter's generality comes at a certain cost, barring an intuitive reading of the ``histories''. Branching families retain the intuitiveness of product families, they allow for the interpretation of a history's weight as a probability, and they allow one to distinguish two kinds of coarse-graining. It is shown that for branching families, the ``consistency condition'' is not a precondition for assigning probabilities, but for a specific kind of coarse-graining.
A correlation consistency based multivariate alarm thresholds optimization approach.
Gao, Huihui; Liu, Feifei; Zhu, Qunxiong
2016-11-01
Different alarm thresholds could generate different alarm data, resulting in different correlations. A new multivariate alarm thresholds optimization methodology based on the correlation consistency between process data and alarm data is proposed in this paper. The interpretative structural modeling is adopted to select the key variables. For the key variables, the correlation coefficients of process data are calculated by the Pearson correlation analysis, while the correlation coefficients of alarm data are calculated by kernel density estimation. To ensure the correlation consistency, the objective function is established as the sum of the absolute differences between these two types of correlations. The optimal thresholds are obtained using particle swarm optimization algorithm. Case study of Tennessee Eastman process is given to demonstrate the effectiveness of proposed method.
The consistent histories approach to loop quantum cosmology
Craig, David A.
2016-06-01
We review the application of the consistent (or decoherent) histories formulation of quantum theory to canonical loop quantum cosmology. Conventional quantum theory relies crucially on “measurements” to convert unrealized quantum potentialities into physical outcomes that can be assigned probabilities. In the early universe and other physical contexts in which there are no observers or measuring apparatus (or indeed, in any closed quantum system), what criteria determine which alternative outcomes may be realized and what their probabilities are? In the consistent histories formulation it is the vanishing of interference between the branch wave functions describing alternative histories — as determined by the system’s decoherence functional — that determines which alternatives may be assigned probabilities. We describe the consistent histories formulation and how it may be applied to canonical loop quantum cosmology, describing in detail the application to homogeneous and isotropic cosmological models with scalar matter. We show how the theory may be used to make definite physical predictions in the absence of “observers”. As an application, we demonstrate how the theory predicts that loop quantum models “bounce” from large volume to large volume, while conventional “Wheeler-DeWitt”-quantized universes are invariably singular. We also briefly indicate the relation to other work.
Geometric-Phase approach to macroscopic polarization in lattice fermion models
Ortiz, Gerardo; Martin, Richard M.; Ordejón, Pablo
1996-03-01
The Geometric-Phase approach is a convenient way to calculate changes in the macroscopic polarization of an insulating system, based on the concept that the integrated current is connected to the phase of the wavefunction of interacting electrons. The method has provided a powerful mathematical scheme to study dielectric phenomena in correlated systems. We have applied these ideas to a variety of strongly correlated lattice fermion models in one and two dimensions; in particular, the 3-band Hubbard model in Cu-O planes in the parent compounds of High-Temperature superconductors. We analyze the information contained in the phase when a quantum transition takes place as one parameter of the hamiltonian is adiabatically changed. Previous results assume a correlated insulator in zero macroscopic electric field. In presence of such a singular perturbation there is no stable ground state. We present a way to overcome this problem, the main idea of which consists in constraining the manifold where the electrons move, i.e., the configuration space of the N identical particles.
A Secure Localization Approach against Wormhole Attacks Using Distance Consistency
Directory of Open Access Journals (Sweden)
Lou Wei
2010-01-01
Full Text Available Wormhole attacks can negatively affect the localization in wireless sensor networks. A typical wormhole attack can be launched by two colluding attackers, one of which sniffs packets at one point in the network and tunnels them through a wired or wireless link to another point, and the other relays them within its vicinity. In this paper, we investigate the impact of the wormhole attack on the localization and propose a novel distance-consistency-based secure localization scheme against wormhole attacks, which includes three phases of wormhole attack detection, valid locators identification and self-localization. The theoretical model is further formulated to analyze the proposed secure localization scheme. The simulation results validate the theoretical results and also demonstrate the effectiveness of our proposed scheme.
Geometric Form Drawing: A Perceptual-Motor Approach to Preventive Remediation (The Steiner Approach)
Ogletree, Earl J.
1975-01-01
Provided is a rationale for geometric form drawing developed by Rudolf Steiner as a tool to develop motor coordination, perceptual skills, and cognition for mentally retarded and perceptually handicapped children. (Author/CL)
Present State of the Art of Composite Fabric Forming: Geometrical and Mechanical Approaches
Directory of Open Access Journals (Sweden)
Abel Cherouat
2009-11-01
Full Text Available Continuous fibre reinforced composites are now firmly established engineering materials for the manufacture of components in the automotive and aerospace industries. In this respect, composite fabrics provide flexibility in the design manufacture. The ability to define the ply shapes and material orientation has allowed engineers to optimize the composite properties of the parts. The formulation of new numerical models for the simulation of the composite forming processes must allow for reduction in the delay in manufacturing and an optimization of costs in an integrated design approach. We propose two approaches to simulate the deformation of woven fabrics: geometrical and mechanical approaches.
Fuzzy Decision-Making Approach in Geometric Programming for a Single Item EOQ Model
Directory of Open Access Journals (Sweden)
Monalisha Pattnaik
2015-06-01
Full Text Available Background and methods: Fuzzy decision-making approach is allowed in geometric programming for a single item EOQ model with dynamic ordering cost and demand-dependent unit cost. The setup cost varies with the quantity produced/purchased and the modification of objective function with storage area in the presence of imprecisely estimated parameters are investigated. It incorporates all concepts of a fuzzy arithmetic approach, the quantity ordered, and demand per unit compares both fuzzy geometric programming technique and other models for linear membership functions. Results and conclusions: Investigation of the properties of an optimal solution allows developing an algorithm whose validity is illustrated through an example problem and the results discu ssed. Sensitivity analysis of the optimal solution is also studied with respect to changes in different parameter values.
A Geometric Approach to the Kronecker Problem I: The Two Row Case
Indian Academy of Sciences (India)
Bharat Adsul; K V Subrahmanyam
2008-05-01
Given two irreducible representations , of the symmetric group $S_d$, the Kronecker problem is to find an explicit rule, giving the multiplicity of an irreducible representation, , of $S_d$, in the tensor product of and . We propose a geometric approach to investigate this problem. We demonstrate its effectiveness by obtaining explicit formulas for the tensor product multiplicities, when the irreducible representations are parameterized by partitions with at most two rows.
Geometric Approaches for Reducing Burr Formation in Planar Milling by Avoiding Tool Exits
Dornfeld, David; Chu, Chih-Hsing
2005-01-01
One of the most effective methods for reducing milling exit burrs is to prevent the tool from exiting the workpiece. Exit here refers the condition in which a cutting edge is moving out of the workpiece while removing material. Only entrance burrs can occur under this circumstance, which are usually considered burr-free. This study proposes a set of geometric algorithms for avoiding tool exits in planar milling. Two distinct approaches are developed for tool path planning of 2-D polygons. The...
Polishing mechanism of light-initiated dental composite: Geometric optics approach.
Chiang, Yu-Chih; Lai, Eddie Hsiang-Hua; Kunzelmann, Karl-Heinz
2016-12-01
For light-initiated dental hybrid composites, reinforcing particles are much stiffer than the matrix, which makes the surface rugged after inadequate polish and favors bacterial adhesion and biofilm redevelopment. The aim of the study was to investigate the polishing mechanism via the geometric optics approach. We defined the polishing abilities of six instruments using the obtained gloss values through the geometric optics approach (micro-Tri-gloss with 20°, 60°, and 85° measurement angles). The surface texture was validated using a field emission scanning electron microscope (FE-SEM). Based on the gloss values, we sorted polishing tools into three abrasive levels, and proposed polishing sequences to test the hypothesis that similar abrasive levels would leave equivalent gloss levels on dental composites. The three proposed, tested polishing sequences included: S1, Sof-Lex XT coarse disc, Sof-Lex XT fine disc, and OccluBrush; S2, Sof-Lex XT coarse disc, Prisma Gloss polishing paste, and OccluBrush; and S3, Sof-Lex XT coarse disc, Enhance finishing cups, and OccluBrush. S1 demonstrated significantly higher surface gloss than the other procedures (p geometric optic approach is an efficient and nondestructive method to characterize the polished surface of dental composites. Copyright © 2015. Published by Elsevier B.V.
The geometric approach to sets of ordinary differential equations and Hamiltonian dynamics
Estabrook, F. B.; Wahlquist, H. D.
1975-01-01
The calculus of differential forms is used to discuss the local integration theory of a general set of autonomous first order ordinary differential equations. Geometrically, such a set is a vector field V in the space of dependent variables. Integration consists of seeking associated geometric structures invariant along V: scalar fields, forms, vectors, and integrals over subspaces. It is shown that to any field V can be associated a Hamiltonian structure of forms if, when dealing with an odd number of dependent variables, an arbitrary equation of constraint is also added. Families of integral invariants are an immediate consequence. Poisson brackets are isomorphic to Lie products of associated CT-generating vector fields. Hamilton's variational principle follows from the fact that the maximal regular integral manifolds of a closed set of forms must include the characteristics of the set.
Identification of Bacillus strains by MALDI TOF MS using geometric approach
Starostin, Konstantin V.; Demidov, Evgeny A.; Bryanskaya, Alla V.; Efimov, Vadim M.; Rozanov, Alexey S.; Peltek, Sergey E.
2015-01-01
Microorganism identification by MALDI TOF mass-spectrometry is based on the comparison of the mass spectrum of the studied organism with those of reference strains. It is a rapid and reliable method. However, commercial databases and programs are mostly designed for identification of clinically important strains and can be used only for particular mass spectrometer models. The need for open platforms and reference databases is obvious. In this study we describe a geometric approach for microorganism identification by mass spectra and demonstrate its capabilities by analyzing 24 strains belonging to the Bacillus pumilus group. This method is based on representing mass spectra as points on a multidimensional space, which allows us to use geometric distances to compare the spectra. Delimitation of microorganisms performed by geometric approach correlates well with the results of molecular phylogenetic analysis and clustering using Biotyper 3.1. All three methods used allowed us to reliably divide the strains into two groups corresponding to closely related species, Bacillus pumilus and Bacillus altitudinis. The method developed by us will be implemented in a Web interface designed for using open reference databases for microorganism identification. The data is available at http://www.bionet.nsc.ru/mbl/database/database.html. PMID:26592761
Lynch, Jeffrey James; Cross, Peter; Heaton, Vivienne
2017-09-01
This research investigated the sexual dimorphism of the first human rib using geometric morphometric and metric approaches on a sample of 285 specimens containing European Americans and African Americans from the Hamann-Todd collection. Metric measurements were investigated for sexual dimorphism and ancestral differences using univariate statistics. Four type II landmarks and 40 sliding semi-landmarks were placed outlining the dorsal and ventral curvatures of the ribs. Landmark data were processed using Generalized Procrustes Analyses with Procrustes distance sliding, and the subsequent coordinates were investigated for sexual dimorphism and ancestral differences using Procrustes ANOVAs. Both geometric morphometric and metric data were analyzed using cross-validated discriminant function analyses to test the hypothesis that variables from both approaches can be combined to increase sex classification rate. European Americans had sex correctly classified as high as 88.05% and African Americans as high as 70.86% using a combination of metric and geometric morphometric variables. © 2017 American Academy of Forensic Sciences.
Identification of Bacillus strains by MALDI TOF MS using geometric approach
Starostin, Konstantin V.; Demidov, Evgeny A.; Bryanskaya, Alla V.; Efimov, Vadim M.; Rozanov, Alexey S.; Peltek, Sergey E.
2015-11-01
Microorganism identification by MALDI TOF mass-spectrometry is based on the comparison of the mass spectrum of the studied organism with those of reference strains. It is a rapid and reliable method. However, commercial databases and programs are mostly designed for identification of clinically important strains and can be used only for particular mass spectrometer models. The need for open platforms and reference databases is obvious. In this study we describe a geometric approach for microorganism identification by mass spectra and demonstrate its capabilities by analyzing 24 strains belonging to the Bacillus pumilus group. This method is based on representing mass spectra as points on a multidimensional space, which allows us to use geometric distances to compare the spectra. Delimitation of microorganisms performed by geometric approach correlates well with the results of molecular phylogenetic analysis and clustering using Biotyper 3.1. All three methods used allowed us to reliably divide the strains into two groups corresponding to closely related species, Bacillus pumilus and Bacillus altitudinis. The method developed by us will be implemented in a Web interface designed for using open reference databases for microorganism identification. The data is available at http://www.bionet.nsc.ru/mbl/database/database.html.
A discrete geometric approach to solving time independent Schrödinger equation
Specogna, Ruben; Trevisan, Francesco
2011-02-01
The time independent Schrödinger equation stems from quantum theory axioms as a partial differential equation. This work aims at providing a novel discrete geometric formulation of this equation in terms of integral variables associated with precise geometric elements of a pair of three-dimensional interlocked grids, one of them based on tetrahedra. We will deduce, in a purely geometric way, a computationally efficient discrete counterpart of the time independent Schrödinger equation in terms of a standard symmetric eigenvalue problem. Moreover boundary and interface conditions together with non homogeneity and anisotropy of the media involved are accounted for in a straightforward manner. This approach yields to a sensible computational advantage with respect to the finite element method, where a generalized eigenvalue problem has to be solved instead. Such a modeling tool can be used for analyzing a number of quantum phenomena in modern nano-structured devices, where the accounting of the real 3D geometry is a crucial issue.
Energy Conservation Law in Industrial Architecture: An Approach through Geometric Algebra
Directory of Open Access Journals (Sweden)
Juan C. Bravo
2016-09-01
Full Text Available Since 1892, the electrical engineering scientific community has been seeking a power theory for interpreting the power flow within electric networks under non-sinusoidal conditions. Although many power theories have been proposed regarding non-sinusoidal operation, an adequate solution is yet to be found. Using the framework based on complex algebra in non-sinusoidal circuit analysis (frequency domain, the verification of the energy conservation law is only possible in sinusoidal situations. In this case, reactive energy turns out to be proportional to the energy difference between the average electric and magnetic energies stored in the loads and its cancellation is mathematically trivial. However, in industrial architecture, apparent power definition of electric loads (non-sinusoidal conditions is inconsistent with the energy conservation law. Up until now, in the classical complex algebra approach, this goal is only valid in the case of purely resistive loads. Thus, in this paper, a new circuit analysis approach using geometric algebra is used to develop the most general proof of energy conservation in industrial building loads. In terms of geometric objects, this powerful tool calculates the voltage, current, and apparent power in electrical systems in non-sinusoidal, linear/nonlinear situations. In contrast to the traditional method developed by Steinmetz, the suggested powerful tool extends the concept of phasor to multivector-phasors and is performed in a new Generalized Complex Geometric Algebra structure (CGn, where Gn is the Clifford algebra in n-dimensional real space and C is the complex vector space. To conclude, a numerical example illustrates the clear advantages of the approach suggested in this paper.
A Geometrical Approach to Hojman Theorem of a Rotational Relativistic Birkhoffian System
Institute of Scientific and Technical Information of China (English)
ZHANGYi
2004-01-01
A geometrical approach to the Hojman theorem of a rotational relativistic Birkhoffian system is presented.The differential equations of motion of the system are established. According to the invariance of differential equations under infinitesimal transformation, the determining equations of Lie symmetry are constructed. A new conservation law of the system, called Hojman theorem, is obtained, which is the generalization of previous results given sequentially by Hojman, Zhang, and Luo et al. In terms of the theory of modern differential geometry a proof of the theorem is given.
From circular paths to elliptic orbits A geometric approach to Kepler's motion
González-Villanueva, A; Martínez y Romero, R P; Núñez-Yépez, H N; Salas-Brito, A L
1998-01-01
The hodograph, i.e. the path traced by a body in velocity space, was introduced by Hamilton in 1846 as an alternative for studying certain dynamical problems. The hodograph of the Kepler problem was then investigated and shown to be a circle, it was next used to investigate some other properties of the motion. We here propose a new method for tracing the hodograph and the corresponding configuration space orbit in Kepler's problem starting from the initial conditions given and trying to use no more than the methods of synthetic geometry in a sort of Newtonian approach. All of our geometric constructions require straight edge and compass only.
A geometric approach to regulator and tracker design for an aerospace plane
Van Buren, Mark A.; Mease, Kenneth D.
1991-01-01
The paper presents a nonlinear design approach drawing from singular perturbations, feedback linearization, and variable structure control, that leads to regulators with automatic gain scheduling which exhibit similar dynamic behavior over the entire flight envelope of the aerospace plane. Additionally, design approach provides for a systematic way to counter disturbance effects as well as modeling uncertainties. The unifying feature of the three nonlinear feedback control methodologies is that they all have a geometric interpretation. First, the translational dynamics are decomposed into reduced-order slow and fast dynamics by way of a formal singular perturbation analysis. After feedback linearization the fast dynamics are robustly stabilized via a variable structure control approach. The slow dynamics are stabilized using conventional proportional-integral compensation based on the nominal slow dynamics. A number of sample command and disturbance responses at opposite ends of the flight envelope are presented for a nonlinear aerospace plane model.
Energy Technology Data Exchange (ETDEWEB)
Veen, Berlinda J. van der; Younis, Imad Al [Leiden University Medical Centre, Department of Nuclear Medicine, Leiden (Netherlands); Ajmone-Marsan, Nina; Bax, Jeroen J. [Leiden University Medical Centre, Department of Cardiology, Leiden (Netherlands); Westenberg, Jos J.M.; Roos, Albert de [Leiden University Medical Centre, Department of Radiology, Leiden (Netherlands); Stokkel, Marcel P.M. [Antoni van Leeuwenhoek Hospital, Department of Nuclear Medicine, Netherlands Cancer Institute, Amsterdam (Netherlands)
2012-03-15
Left ventricular dyssynchrony may predict response to cardiac resynchronization therapy and may well predict adverse cardiac events. Recently, a geometrical approach for dyssynchrony analysis of myocardial perfusion scintigraphy (MPS) was introduced. In this study the feasibility of this geometrical method to detect dyssynchrony was assessed in a population with a normal MPS and in patients with documented ventricular dyssynchrony. For the normal population 80 patients (40 men and 40 women) with normal perfusion (summed stress score {<=}2 and summed rest score {<=}2) and function (left ventricular ejection fraction 55-80%) on MPS were selected; 24 heart failure patients with proven dyssynchrony on MRI were selected for comparison. All patients underwent a 2-day stress/rest MPS protocol. Perfusion, function and dyssynchrony parameters were obtained by the Corridor4DM software package (Version 6.1). For the normal population time to peak motion was 42.8 {+-} 5.1% RR cycle, SD of time to peak motion was 3.5 {+-} 1.4% RR cycle and bandwidth was 18.2 {+-} 6.0% RR cycle. No significant gender-related differences or differences between rest and post-stress acquisition were found for the dyssynchrony parameters. Discrepancies between the normal and abnormal populations were most profound for the mean wall motion (p value <0.001), SD of time to peak motion (p value <0.001) and bandwidth (p value <0.001). It is feasible to quantify ventricular dyssynchrony in MPS using the geometrical approach as implemented by Corridor4DM. (orig.)
MartiTracks: a geometrical approach for identifying geographical patterns of distribution.
Directory of Open Access Journals (Sweden)
Susy Echeverría-Londoño
Full Text Available Panbiogeography represents an evolutionary approach to biogeography, using rational cost-efficient methods to reduce initial complexity to locality data, and depict general distribution patterns. However, few quantitative, and automated panbiogeographic methods exist. In this study, we propose a new algorithm, within a quantitative, geometrical framework, to perform panbiogeographical analyses as an alternative to more traditional methods. The algorithm first calculates a minimum spanning tree, an individual track for each species in a panbiogeographic context. Then the spatial congruence among segments of the minimum spanning trees is calculated using five congruence parameters, producing a general distribution pattern. In addition, the algorithm removes the ambiguity, and subjectivity often present in a manual panbiogeographic analysis. Results from two empirical examples using 61 species of the genus Bomarea (2340 records, and 1031 genera of both plants and animals (100118 records distributed across the Northern Andes, demonstrated that a geometrical approach to panbiogeography is a feasible quantitative method to determine general distribution patterns for taxa, reducing complexity, and the time needed for managing large data sets.
Pourahmadian, Fatemeh; Haddar, Houssem
2016-01-01
A non-iterative waveform sensing approach is proposed toward (i) geometric reconstruction of penetrable fractures, and (ii) quantitative identification of their heterogeneous contact condition by seismic i.e. elastic waves. To this end, the fracture support $\\Gamma$ (which may be non-planar and unconnected) is first recovered without prior knowledge of the interfacial condition by way of the recently established approaches to non-iterative waveform tomography of heterogeneous fractures, e.g. the methods of generalized linear sampling and topological sensitivity. Given suitable approximation $\\breve\\Gamma$ of the fracture geometry, the jump in the displacement field across $\\breve\\Gamma$ i.e. the fracture opening displacement (FOD) profile is computed from remote sensory data via a regularized inversion of the boundary integral representation mapping the FOD to remote observations of the scattered field. Thus obtained FOD is then used as input for solving the traction boundary integral equation on $\\breve\\Gamm...
Rotskoff, Grant M.; Crooks, Gavin E.; Vanden-Eijnden, Eric
2017-01-01
Optimal control of nanomagnets has become an urgent problem for the field of spintronics as technological tools approach thermodynamically determined limits of efficiency. In complex, fluctuating systems, such as nanomagnetic bits, finding optimal protocols is challenging, requiring detailed information about the dynamical fluctuations of the controlled system. We provide a physically transparent derivation of a metric tensor for which the length of a protocol is proportional to its dissipation. This perspective simplifies nonequilibrium optimization problems by recasting them in a geometric language. We then describe a numerical method, an instance of geometric minimum action methods, that enables computation of geodesics even when the number of control parameters is large. We apply these methods to two models of nanomagnetic bits: a Landau-Lifshitz-Gilbert description of a single magnetic spin controlled by two orthogonal magnetic fields, and a two-dimensional Ising model in which the field is spatially controlled. These calculations reveal nontrivial protocols for bit erasure and reversal, providing important, experimentally testable predictions for ultra-low-power computing.
Sheynikhovich, Denis; Arleo, Angelo
2010-12-13
In contrast to predictions derived from the associative learning theory, a number of behavioral studies suggested the absence of competition between geometric cues and landmarks in some experimental paradigms. In parallel to these studies, neurobiological experiments suggested the existence of separate independent memory systems which may not always interact according to classic associative principles. In this paper we attempt to combine these two lines of research by proposing a model of spatial learning that is based on the theory of multiple memory systems. In our model, a place-based locale strategy uses activities of modeled hippocampal place cells to drive navigation to a hidden goal, while a stimulus-response taxon strategy, presumably mediated by the dorso-lateral striatum, learns landmark-approaching behavior. A strategy selection network, proposed to reside in the prefrontal cortex, implements a simple reinforcement learning rule to switch behavioral strategies. The model is used to reproduce the results of a behavioral experiment in which an interaction between a landmark and geometric cues was studied. We show that this model, built on the basis of neurobiological data, can explain the lack of competition between the landmark and geometry, potentiation of geometry learning by the landmark, and blocking. Namely, we propose that the geometry potentiation is a consequence of cooperation between memory systems during learning, while blocking is due to competition between the memory systems during action selection.
A geometric approach to modeling of four- and five-link planar snake-like robot
Directory of Open Access Journals (Sweden)
Tomáš Lipták
2016-10-01
Full Text Available The article deals with the issue of use of geometric mechanics tools in modelling nonholonomic systems. The introductory part of the article contains fiber bundle theory that we use at creating mathematical model of nonholonomic locomotion system with undulatory movement. Further the determination of general mathematical model for n-link snake-like robot is presented, where we used nonholonomic constraints. The relation between changes of shape and position variables was expressed using the local connection that was used to analyze and control system movement by vector fields. The effect of links number of snake-like robot on its mathematical model was investigated. The last part of this article consists of detailed description of modeling reconstruction equation for four- and five-link snake-like robot.
Khelouat, Samir
2012-06-01
This paper deals with the problem of detection and isolation of stator short-circuit failure in a single asynchronous machine using a geometric approach. After recalling the basis of the geometric approach for fault detection and isolation in nonlinear systems, we will study some structural properties which are fault detectability and isolation fault filter existence. We will then design filters for residual generation. We will consider two approaches: a two-filters structure and a single filter structure, both aiming at generating residuals which are sensitive to one fault and insensitive to the other faults. Some numerical tests will be presented to illustrate the efficiency of the method.
A multi objective geometric programming approach for electronic product pricing problem
Directory of Open Access Journals (Sweden)
Mohsen Fathollah Bayati
2011-07-01
Full Text Available Nowadays electronic commerce plays an important role in many business activities, operations, and transaction processing. The recent advances on e-businesses have created tremendous opportunities to increase profitability. This paper presents a multi-objective marketing planning model which simultaneously determines efficient marketing expenditure, service cost and product's selling price in two competitive markets. To solve the proposed model, we discuss a multi-objective geometric programming (GP approach based on compromise programming method. Since our proposed model is a signomial GP and global optimality is not guaranteed for the problem, we transform the model to posynomial form. Finally, the solution procedure is illustrated via a numerical example and a sensitivity analysis is presented.
Contraction of Information on Brain Wave Fluctuations by Information Geometrical Approach
Konno, Hidetoshi
2005-08-01
We will first propose a method of EEG signal identification with the use of the stochastic complex Ginzburg-Landau (CGL) equation having complex coefficients with the aid of the method of information geometrical approach to determine the system parameters. After the contracting information on the natures of fluctuations of amplitude and phase in the EEG signals on human scalp, we combine the information with other information such as complex measures like Higuchi's fractal dimension and multi-scale entropies. A new theory of unification of the information is also proposed. To exhibit the potentiality of our new method, we show the result of application of the theory and method to practical EEG data from elderly sound and demented people.
Error performance analysis in K-tier uplink cellular networks using a stochastic geometric approach
Afify, Laila H.
2015-09-14
In this work, we develop an analytical paradigm to analyze the average symbol error probability (ASEP) performance of uplink traffic in a multi-tier cellular network. The analysis is based on the recently developed Equivalent-in-Distribution approach that utilizes stochastic geometric tools to account for the network geometry in the performance characterization. Different from the other stochastic geometry models adopted in the literature, the developed analysis accounts for important communication system parameters and goes beyond signal-to-interference-plus-noise ratio characterization. That is, the presented model accounts for the modulation scheme, constellation type, and signal recovery techniques to model the ASEP. To this end, we derive single integral expressions for the ASEP for different modulation schemes due to aggregate network interference. Finally, all theoretical findings of the paper are verified via Monte Carlo simulations.
Annicchiarico, W
2001-01-01
Structural optimization is an engineering field which deal with the improvement of existing solutions or even more find new solutions that are better than the previous ones under some selected criterion. Shape optimization is a research area in this field and it is involved in developing new methodologies to find better structural design based on the shape as resistant element, as for example solutions with the less stress concentration zones and made with the minimum amount of material. The goal of this doctoral dissertation is to present and discuss a general structural shape optimization methodology able to optimize several structural systems or mechanical devices. The approach presented herein is based on global search optimization tools such as Genetic Algorithms and geometric design elements by means of beta-splines curves and surfaces representation. Finally the great versatility of the developed tool is presented and discussed with an application example.
Kim, Jae-Hean; Koo, Bon-Ki
2013-02-25
This paper presents a new linear framework to obtain 3D scene reconstruction and camera calibration simultaneously from uncalibrated images using scene geometry. Our strategy uses the constraints of parallelism, coplanarity, colinearity, and orthogonality. These constraints can be obtained in general man-made scenes frequently. This approach can give more stable results with fewer images and allow us to gain the results with only linear operations. In this paper, it is shown that all the geometric constraints used in the previous works performed independently up to now can be implemented easily in the proposed linear method. The study on the situations that cannot be dealt with by the previous approaches is also presented and it is shown that the proposed method being able to handle the cases is more flexible in use. The proposed method uses a stratified approach, in which affine reconstruction is performed first and then metric reconstruction. In this procedure, the additional constraints newly extracted in this paper have an important role for affine reconstruction in practical situations.
Life-times of quantum resonances through the Geometrical Phase Propagator Approach
Pavlou, G. E.; Karanikas, A. I.; Diakonos, F. K.
2016-12-01
We employ the recently introduced Geometric Phase Propagator Approach (GPPA) (Diakonos et al., 2012) to develop an improved perturbative scheme for the calculation of life times in driven quantum systems. This incorporates a resummation of the contributions of virtual processes starting and ending at the same state in the considered time interval. The proposed procedure allows for a strict determination of the conditions leading to finite life times in a general driven quantum system by isolating the resummed terms in the perturbative expansion contributing to their generation. To illustrate how the derived conditions apply in practice, we consider the effect of driving in a system with purely discrete energy spectrum, as well as in a system for which the eigenvalue spectrum contains a continuous part. We show that in the first case, when the driving contains a dense set of frequencies acting as a noise to the system, the corresponding bound states acquire a finite life time. When the energy spectrum contains also a continuum set of eigenvalues then the bound states, due to the driving, couple to the continuum and become quasi-bound resonances. The benchmark of this change is the appearance of a Fano-type peak in the associated transmission profile. In both cases the corresponding life-time can be efficiently estimated within the reformulated GPPA approach.
Institute of Scientific and Technical Information of China (English)
无
2008-01-01
The consistency measurement and weight estimation approach of the hybrid uncertain comparison matrix in the analytic hierarchy process (AHP) are studied. First, the decision-making satisfaction membership function is defined based on the decision making's allowable error. Then, the weight model based on the maximal satisfactory consistency idea is suggested, and the consistency index is put forward. Moreover, the weight distributing value model is developed to solve the decision making misleading problem since the multioptimization solutions in the former model. Finally, the weights are ranked based on the possibility degree approach to obtain the ultimate order.
Hot neutron matter from a Self-Consistent Green's Functions approach
Rios, A; Vidaña, I
2008-01-01
A systematic study of the microscopic and thermodynamical properties of pure neutron matter at finite temperature within the Self-Consistent Green's Function approach is performed. The model dependence of these results is analyzed by both comparing the results obtained with two different microscopic interactions, the CD-BONN and the Argonne V18 potentials, and by analyzing the results obtained with other approaches, such as the Brueckner--Hartree--Fock approximation, the variational approach and the virial expansion.
A differential-geometric approach to generalized linear models with grouped predictors
Augugliaro, Luigi; Mineo, Angelo M.; Wit, Ernst C.
2016-01-01
We propose an extension of the differential-geometric least angle regression method to perform sparse group inference in a generalized linear model. An efficient algorithm is proposed to compute the solution curve. The proposed group differential-geometric least angle regression method has important
SIMULATION EXPERIMENT ON LANDING SITE SELECTION USING A SIMPLE GEOMETRIC APPROACH
Directory of Open Access Journals (Sweden)
W. Zhao
2017-07-01
Full Text Available Safe landing is an important part of the planetary exploration mission. Even fine scale terrain hazards (such as rocks, small craters, steep slopes, which would not be accurately detected from orbital reconnaissance could also pose a serious risk on planetary lander or rover and scientific instruments on-board it. In this paper, a simple geometric approach on planetary landing hazard detection and safe landing site selection is proposed. In order to achieve full implementation of this algorithm, two easy-to-compute metrics are presented for extracting the terrain slope and roughness information. Unlike conventional methods which must do the robust plane fitting and elevation interpolation for DEM generation, in this work, hazards is identified through the processing directly on LiDAR point cloud. For safe landing site selection, a Generalized Voronoi Diagram is constructed. Based on the idea of maximum empty circle, the safest landing site can be determined. In this algorithm, hazards are treated as general polygons, without special simplification (e.g. regarding hazards as discrete circles or ellipses. So using the aforementioned method to process hazards is more conforming to the real planetary exploration scenario. For validating the approach mentioned above, a simulated planetary terrain model was constructed using volcanic ash with rocks in indoor environment. A commercial laser scanner mounted on a rail was used to scan the terrain surface at different hanging positions. The results demonstrate that fairly hazard detection capability and reasonable site selection was obtained compared with conventional method, yet less computational time and less memory usage was consumed. Hence, it is a feasible candidate approach for future precision landing selection on planetary surface.
Simulation Experiment on Landing Site Selection Using a Simple Geometric Approach
Zhao, W.; Tong, X.; Xie, H.; Jin, Y.; Liu, S.; Wu, D.; Liu, X.; Guo, L.; Zhou, Q.
2017-07-01
Safe landing is an important part of the planetary exploration mission. Even fine scale terrain hazards (such as rocks, small craters, steep slopes, which would not be accurately detected from orbital reconnaissance) could also pose a serious risk on planetary lander or rover and scientific instruments on-board it. In this paper, a simple geometric approach on planetary landing hazard detection and safe landing site selection is proposed. In order to achieve full implementation of this algorithm, two easy-to-compute metrics are presented for extracting the terrain slope and roughness information. Unlike conventional methods which must do the robust plane fitting and elevation interpolation for DEM generation, in this work, hazards is identified through the processing directly on LiDAR point cloud. For safe landing site selection, a Generalized Voronoi Diagram is constructed. Based on the idea of maximum empty circle, the safest landing site can be determined. In this algorithm, hazards are treated as general polygons, without special simplification (e.g. regarding hazards as discrete circles or ellipses). So using the aforementioned method to process hazards is more conforming to the real planetary exploration scenario. For validating the approach mentioned above, a simulated planetary terrain model was constructed using volcanic ash with rocks in indoor environment. A commercial laser scanner mounted on a rail was used to scan the terrain surface at different hanging positions. The results demonstrate that fairly hazard detection capability and reasonable site selection was obtained compared with conventional method, yet less computational time and less memory usage was consumed. Hence, it is a feasible candidate approach for future precision landing selection on planetary surface.
Korayem, M. H.; Hefzabad, R. N.; Homayooni, A.; Aslani, H.
2017-01-01
Carbon allotropes are used as nanocarriers for drug and cell delivery. To obtain an accurate result in the nanoscale, it is important to use a precise model. In this paper, a multiscale approach is presented to investigate the manipulation process of carbon allotropes based on atomic force microscopy (AFM). For this purpose, the AFM setup is separated into two parts with different sizes as macro field (MF) and nano field (NF). Using Kirchhoff's plate model, the cantilever (the main part of MF) is modeled. The molecular dynamics method is applied to model the NF part, and then the MF and NF are coupled with the multiscale algorithm. With this model, by considering the effect of size and shape, the manipulation of carbon allotropes is carried out. The manipulations of armchair CNTs and fullerenes are performed to study the diameter changing effects. The result shows that the manipulation and friction force increases by increasing the diameter. The result of the indentation depth for the armchair CNTs indicates that decreasing the diameter causes the indentation depth to reduce. Moreover, the manipulations of four kinds of carbon allotropes with the same number of atoms have been studied to investigate the geometrical effects. The shapes of these nanoparticles change from sphere to cylinder. The results illustrate that the manipulation and the friction force decrease as the nanoparticle shape varies from sphere to cylinder. The Von-Mises results demonstrate that by changing the nanoparticle shape from the spherical to the cylindrical form, the stress increases, although the manipulation force reduces.
Quantum thermal transport through anharmonic systems: A self-consistent approach
He, Dahai; Thingna, Juzar; Wang, Jian-Sheng; Li, Baowen
2016-10-01
We propose a feasible and effective approach to study quantum thermal transport through anharmonic systems. The main idea is to obtain an effective harmonic Hamiltonian for the anharmonic system by applying the self-consistent phonon theory. By using the effective harmonic Hamiltonian, we study thermal transport within the framework of the nonequilibrium Green's function method using the celebrated Caroli formula. We corroborate our quantum self-consistent approach by using the quantum master equation that can deal with anharmonicity exactly, but is limited to the weak system-bath coupling regime. Finally, in order to demonstrate its strength, we apply the quantum self-consistent approach to study thermal rectification in a weakly coupled two-segment anharmonic system.
2015-01-01
External morphology is commonly used to identify bats as well as to investigate flight and foraging behavior, typically relying on simple length and area measures or ratios. However, geometric morphometrics is increasingly used in the biological sciences to analyse variation in shape and discriminate among species and populations. Here we compare the ability of traditional versus geometric morphometric methods in discriminating between closely related bat species – in this case European horse...
Smart, John C.; Ethington, Corinna A.; Umbach, Paul D.
2009-01-01
This study examines the extent to which faculty members in the disparate academic environments of Holland's theory devote different amounts of time in their classes to alternative pedagogical approaches and whether such differences are comparable for those in "consistent" and "inconsistent" environments. The findings show wide variations in the…
Collins, Kathleen M. T.; Onwuegbuzie, Anthony J.
2013-01-01
The goal of this chapter is to recommend quality criteria to guide evaluators' selections of sampling designs when mixing approaches. First, we contextualize our discussion of quality criteria and sampling designs by discussing the concept of interpretive consistency and how it impacts sampling decisions. Embedded in this discussion are…
Smart, John C.; Ethington, Corinna A.; Umbach, Paul D.
2009-01-01
This study examines the extent to which faculty members in the disparate academic environments of Holland's theory devote different amounts of time in their classes to alternative pedagogical approaches and whether such differences are comparable for those in "consistent" and "inconsistent" environments. The findings show wide variations in the…
A finite element approach to self-consistent field theory calculations of multiblock polymers
Ackerman, David M; Fredrickson, Glenn H; Ganapathysubramanian, Baskar
2016-01-01
Self-consistent field theory (SCFT) has proven to be a powerful tool for modeling equilibrium microstructures of soft materials, particularly for multiblock polymers. A very successful approach to numerically solving the SCFT set of equations is based on using a spectral approach. While widely successful, this approach has limitations especially in the context of current technologically relevant applications. These limitations include non-trivial approaches for modeling complex geometries, difficulties in extending to non-periodic domains, as well as non-trivial extensions for spatial adaptivity. As a viable alternative to spectral schemes, we develop a finite element formulation of the SCFT paradigm for calculating equilibrium polymer morphologies. We discuss the formulation and address implementation challenges that ensure accuracy and efficiency. We explore higher order chain contour steppers that are efficiently implemented with Richardson Extrapolation. This approach is highly scalable and suitable for s...
Indian Academy of Sciences (India)
Mrinal Kumar Das; Mahadev Patgiri; N Nimai Singh
2005-12-01
We briefly outline the two popular approaches on radiative corrections to neutrino masses and mixing angles, and then carry out a detailed numerical analysis for a consistency check between them in MSSM. We find that the two approaches are nearly consistent with a discrepancy factor of 4.2% with running vacuum expectation value (VEV) (13% for scale-independent VEV) in mass eigenvalues at low-energy scale but the predictions on mixing angles are almost consistent. We check the stability of the three types of neutrino models, i.e., hierarchical, inverted hierarchical and degenerate models, under radiative corrections, using both approaches, and find consistent conclusions. The neutrino mass models which are found to be stable under radiative corrections in MSSM are the normal hierarchical model and the inverted hierarchical model with opposite CP parity. We also carry out numerical analysis on some important conjectures related to radiative corrections in the MSSM, viz., radiative magnification of solar and atmospheric mixings in the case of nearly degenerate model having same CP parity (MPR conjecture) and radiative generation of solar mass scale in exactly two-fold degenerate model with opposite CP parity and non-zero 3 (JM conjecture). We observe certain exceptions to these conjectures. We find a new result that both solar mass scale and 3 can be generated through radiative corrections at low energy scale. Finally the effect of scale-dependent vacuum expectation value in neutrino mass renormalisation is discussed.
APPROACHES TO GEOMETRIC DATA ANALYSIS ON BIG AREA ADDITIVELY MANUFACTURED (BAAM) PARTS
Energy Technology Data Exchange (ETDEWEB)
Dreifus, Gregory D [ORNL; Ally, Nadya R [ORNL; Post, Brian K [ORNL; Jin, Yuan [ORNL
2016-01-01
The promise of additive manufacturing is that a user can design and print complex geometries that are very difficult, if not impossible, to machine. The capabilities of 3D printing are restricted by a number of factors, including properties of the build material, time constraints, and geometric design restrictions. In this paper, a thorough accounting and study of the geometric restrictions that exist in the current iteration of additive manufacturing (AM) fused deposition modeling (FDM) technologies are discussed. Offline and online methodologies for collecting data sets for qualitative analysis of large scale AM, in particular Oak Ridge National Laboratory s (ORNL) big area additive manufacturing (BAAM) system, are summarized. In doing so, a survey of tools for designers and software developers is provided. In particular, strategies in which geometric data can be used as training sets for smarter AM technologies in the future are explained as well.
Computational morphology a computational geometric approach to the analysis of form
Toussaint, GT
1988-01-01
Computational Geometry is a new discipline of computer science that deals with the design and analysis of algorithms for solving geometric problems. There are many areas of study in different disciplines which, while being of a geometric nature, have as their main component the extraction of a description of the shape or form of the input data. This notion is more imprecise and subjective than pure geometry. Such fields include cluster analysis in statistics, computer vision and pattern recognition, and the measurement of form and form-change in such areas as stereology and developmental biolo
Miri, Mehdi; Naqavi, Ali; Khavasi, Amin; Mehrany, Khashayar; Khorasani, Sina; Rashidian, Bizhan
2008-12-15
The Goos-Haenchen shift of a totally reflected beam at the planar interface of two dielectric media, as if the incident beam is reflected from beneath the interface between the incident and transmitted media, has been geometrically associated with the penetration of the incident photons in the less-dense forbidden transmission region. This geometrical approach is here generalized to analytically calculate the Goos-Haenchen shift in one- and two-dimensional periodic structures. Several numerical examples are presented, and the obtained results are successfully tested against the well-known Artman's formula. The proposed approach is shown to be a fast, simple, and efficient method that can provide good physical insight to the nature of the phenomenon.
A self-consistent approach to the Wigner-Seitz treatment of soliton matter
Weber, U; Weber, Urban; Govern, Judith A. Mc
1998-01-01
We propose a self-consistant approach to the treatment of nuclear matter as a crystal of solitons in the Wigner-Seitz approximation. Specifically, we use a Bloch-like boundary condition on the quarks at the edge of a spherical cell which allows the dispersion relation for a given radius to be calculated self-consistently along with the meson fields; in previous work some ansatz for the dispersion relation has always been an input. Results in all models are very sensitive to the form of the dispersion relation, so our approach represents a significant advance. We apply the method to both the Friedberg Lee model and the chiral quark-meson model of Birse and Banerjee. Only the latter shows short range repulsion; in the former the transition to a quark plasma occurs at unrealistically low densities.
Self-consistent approach for Bose-condensed atoms in optical lattices
Directory of Open Access Journals (Sweden)
V.I. Yukalov
2013-06-01
Full Text Available Bose atoms in optical lattices are considered at low temperatures and weak interactions, when Bose-Einstein condensate is formed. A self-consistent approach, based on the use of a representative statistical ensemble, is employed, guaranteeing a gapless spectrum of collective excitations and the validity of conservation laws. In order to show that the approach is applicable to both weak and tight binding, the problem is treated in the Bloch as well as in the Wannier representations. Both these ways result in similar expressions that are compared for the self-consistent Hartree-Fock-Bogolubov approximation. A convenient general formula for the superfluid fraction of atoms in an optical lattice is derived.
A Consistent Approach for Security Risk Assessments of Dams and Related Critical Infrastructure
2014-06-01
Risk Assessments of Dams and Related Critical Infrastructure J. Darrell Morgeson Jason A. Dechant Yev Kirpichevsky Yazmin Seda -Sanabria, U.S...Kirpichevsky Yazmin Seda -Sanabria, U.S. Army Corps of Engineers Enrique E. Matheu, U.S. Department of Homeland Security A Consistent Approach...for Security Risk Assessments of Dams and Related Critical Infrastructure James D. Morgeson1, Yazmin Seda -Sanabria2, Yevgeniy Kirpichevsky3, Jason A
Elia, Iliada; Gagatsis, Athanasios; Panaoura, Areti; Zachariades, Theodosis; Zoulinaki, Fotini
2009-01-01
The present study explores students' abilities in conversions between geometric and algebraic representations, in problem-solving situations involving the concept of "limit" and the interrelation of these abilities with students' constructed understanding of this concept. An attempt is also made to examine the impact of the…
Schmieder, Daniela A.; Benítez, Hugo A.; Borissov, Ivailo M.; Fruciano, Carmelo
2015-01-01
External morphology is commonly used to identify bats as well as to investigate flight and foraging behavior, typically relying on simple length and area measures or ratios. However, geometric morphometrics is increasingly used in the biological sciences to analyse variation in shape and discriminate among species and populations. Here we compare the ability of traditional versus geometric morphometric methods in discriminating between closely related bat species – in this case European horseshoe bats (Rhinolophidae, Chiroptera) – based on morphology of the wing, body and tail. In addition to comparing morphometric methods, we used geometric morphometrics to detect interspecies differences as shape changes. Geometric morphometrics yielded improved species discrimination relative to traditional methods. The predicted shape for the variation along the between group principal components revealed that the largest differences between species lay in the extent to which the wing reaches in the direction of the head. This strong trend in interspecific shape variation is associated with size, which we interpret as an evolutionary allometry pattern. PMID:25965335
Relational and geometric approaches to justifying the magnetic fields of astrophysical objects
Babenko, I. A.
We propose justification of the Sutherland hypotheses about origin of the magnetic fields of the Earth, Sun and other astrophysical objects as a part of the relational theory of space-time and interactions ("binary geometrophysics") and multidimensional geometrical models of physical interactions (like the Kaluza-Klein theories).
Directory of Open Access Journals (Sweden)
Daniela A Schmieder
Full Text Available External morphology is commonly used to identify bats as well as to investigate flight and foraging behavior, typically relying on simple length and area measures or ratios. However, geometric morphometrics is increasingly used in the biological sciences to analyse variation in shape and discriminate among species and populations. Here we compare the ability of traditional versus geometric morphometric methods in discriminating between closely related bat species--in this case European horseshoe bats (Rhinolophidae, Chiroptera--based on morphology of the wing, body and tail. In addition to comparing morphometric methods, we used geometric morphometrics to detect interspecies differences as shape changes. Geometric morphometrics yielded improved species discrimination relative to traditional methods. The predicted shape for the variation along the between group principal components revealed that the largest differences between species lay in the extent to which the wing reaches in the direction of the head. This strong trend in interspecific shape variation is associated with size, which we interpret as an evolutionary allometry pattern.
Schmieder, Daniela A; Benítez, Hugo A; Borissov, Ivailo M; Fruciano, Carmelo
2015-01-01
External morphology is commonly used to identify bats as well as to investigate flight and foraging behavior, typically relying on simple length and area measures or ratios. However, geometric morphometrics is increasingly used in the biological sciences to analyse variation in shape and discriminate among species and populations. Here we compare the ability of traditional versus geometric morphometric methods in discriminating between closely related bat species--in this case European horseshoe bats (Rhinolophidae, Chiroptera)--based on morphology of the wing, body and tail. In addition to comparing morphometric methods, we used geometric morphometrics to detect interspecies differences as shape changes. Geometric morphometrics yielded improved species discrimination relative to traditional methods. The predicted shape for the variation along the between group principal components revealed that the largest differences between species lay in the extent to which the wing reaches in the direction of the head. This strong trend in interspecific shape variation is associated with size, which we interpret as an evolutionary allometry pattern.
Elia, Iliada; Gagatsis, Athanasios; Panaoura, Areti; Zachariades, Theodosis; Zoulinaki, Fotini
2009-01-01
The present study explores students' abilities in conversions between geometric and algebraic representations, in problem-solving situations involving the concept of "limit" and the interrelation of these abilities with students' constructed understanding of this concept. An attempt is also made to examine the impact of the…
An optimization approach for extracting and encoding consistent maps in a shape collection
Huang, Qi-Xing
2012-11-01
We introduce a novel approach for computing high quality point-topoint maps among a collection of related shapes. The proposed approach takes as input a sparse set of imperfect initial maps between pairs of shapes and builds a compact data structure which implicitly encodes an improved set of maps between all pairs of shapes. These maps align well with point correspondences selected from initial maps; they map neighboring points to neighboring points; and they provide cycle-consistency, so that map compositions along cycles approximate the identity map. The proposed approach is motivated by the fact that a complete set of maps between all pairs of shapes that admits nearly perfect cycleconsistency are highly redundant and can be represented by compositions of maps through a single base shape. In general, multiple base shapes are needed to adequately cover a diverse collection. Our algorithm sequentially extracts such a small collection of base shapes and creates correspondences from each of these base shapes to all other shapes. These correspondences are found by global optimization on candidate correspondences obtained by diffusing initial maps. These are then used to create a compact graphical data structure from which globally optimal cycle-consistent maps can be extracted using simple graph algorithms. Experimental results on benchmark datasets show that the proposed approach yields significantly better results than state-of-theart data-driven shape matching methods. © 2012 ACM.
A self-consistent first-principle based approach to model carrier mobility in organic materials
Energy Technology Data Exchange (ETDEWEB)
Meded, Velimir; Friederich, Pascal; Symalla, Franz; Neumann, Tobias; Danilov, Denis; Wenzel, Wolfgang [Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)
2015-12-31
Transport through thin organic amorphous films, utilized in OLEDs and OPVs, has been a challenge to model by using ab-initio methods. Charge carrier mobility depends strongly on the disorder strength and reorganization energy, both of which are significantly affected by the details in environment of each molecule. Here we present a multi-scale approach to describe carrier mobility in which the materials morphology is generated using DEPOSIT, a Monte Carlo based atomistic simulation approach, or, alternatively by molecular dynamics calculations performed with GROMACS. From this morphology we extract the material specific hopping rates, as well as the on-site energies using a fully self-consistent embedding approach to compute the electronic structure parameters, which are then used in an analytic expression for the carrier mobility. We apply this strategy to compute the carrier mobility for a set of widely studied molecules and obtain good agreement between experiment and theory varying over several orders of magnitude in the mobility without any freely adjustable parameters. The work focuses on the quantum mechanical step of the multi-scale workflow, explains the concept along with the recently published workflow optimization, which combines density functional with semi-empirical tight binding approaches. This is followed by discussion on the analytic formula and its agreement with established percolation fits as well as kinetic Monte Carlo numerical approaches. Finally, we skatch an unified multi-disciplinary approach that integrates materials science simulation and high performance computing, developed within EU project MMM@HPC.
Directory of Open Access Journals (Sweden)
José Ignacio Rojas-Sola
2016-12-01
Full Text Available The present study shows the process followed in making the three-dimensional model and geometric documentation of a historical invention of the renowned Spanish engineer Agustin de Betancourt y Molina, which forms part of his rich legacy. Specifically, this was a wind machine for draining marshy ground, designed in 1789. The present research relies on the computer-aided design (CAD techniques using Autodesk Inventor Professional software, based on the scant information provided by the only two drawings of the machine, making it necessary to propose a number of dimensional and geometric hypotheses as well as a series of movement restrictions (degrees of freedom, to arrive at a consistent design. The results offer a functional design for this historic invention.
A finite element approach to self-consistent field theory calculations of multiblock polymers
Ackerman, David M.; Delaney, Kris; Fredrickson, Glenn H.; Ganapathysubramanian, Baskar
2017-02-01
Self-consistent field theory (SCFT) has proven to be a powerful tool for modeling equilibrium microstructures of soft materials, particularly for multiblock polymers. A very successful approach to numerically solving the SCFT set of equations is based on using a spectral approach. While widely successful, this approach has limitations especially in the context of current technologically relevant applications. These limitations include non-trivial approaches for modeling complex geometries, difficulties in extending to non-periodic domains, as well as non-trivial extensions for spatial adaptivity. As a viable alternative to spectral schemes, we develop a finite element formulation of the SCFT paradigm for calculating equilibrium polymer morphologies. We discuss the formulation and address implementation challenges that ensure accuracy and efficiency. We explore higher order chain contour steppers that are efficiently implemented with Richardson Extrapolation. This approach is highly scalable and suitable for systems with arbitrary shapes. We show spatial and temporal convergence and illustrate scaling on up to 2048 cores. Finally, we illustrate confinement effects for selected complex geometries. This has implications for materials design for nanoscale applications where dimensions are such that equilibrium morphologies dramatically differ from the bulk phases.
Espath, L. F R
2015-02-03
A numerical model to deal with nonlinear elastodynamics involving large rotations within the framework of the finite element based on NURBS (Non-Uniform Rational B-Spline) basis is presented. A comprehensive kinematical description using a corotational approach and an orthogonal tensor given by the exact polar decomposition is adopted. The state equation is written in terms of corotational variables according to the hypoelastic theory, relating the Jaumann derivative of the Cauchy stress to the Eulerian strain rate.The generalized-α method (Gα) method and Generalized Energy-Momentum Method with an additional parameter (GEMM+ξ) are employed in order to obtain a stable and controllable dissipative time-stepping scheme with algorithmic conservative properties for nonlinear dynamic analyses.The main contribution is to show that the energy-momentum conservation properties and numerical stability may be improved once a NURBS-based FEM in the spatial discretization is used. Also it is shown that high continuity can postpone the numerical instability when GEMM+ξ with consistent mass is employed; likewise, increasing the continuity class yields a decrease in the numerical dissipation. A parametric study is carried out in order to show the stability and energy budget in terms of several properties such as continuity class, spectral radius and lumped as well as consistent mass matrices.
DEFF Research Database (Denmark)
Baldi, P.; Blanke, Mogens; Castaldi, P.
2016-01-01
This paper presents a novel scheme for diagnosis of faults affecting the sensors measuring the satellite attitude, body angular velocity and flywheel spin rates as well as defects related to the control torques provided by satellite reaction wheels. A nonlinear geometric design is used to avoid...... on a detailed nonlinear satellite model with embedded disturbance description. The results document the efficacy of the proposed diagnosis scheme....
Baldi, P.; Blanke, Mogens; P. Castaldi; Mimmo, N.; S. Simani
2016-01-01
This paper presents a novel scheme for diagnosis of faults affecting the sensors measuring the satellite attitude, body angular velocity and flywheel spin rates as well as defects related to the control torques provided by satellite reaction wheels. A nonlinear geometric design is used to avoid that aerodynamic disturbance torques have unwanted influence on the residuals exploited for fault detection and isolation. Radial basis function neural networks are used to obtain fault estimation filt...
Directory of Open Access Journals (Sweden)
Steven E. Stemler
2004-03-01
Full Text Available This article argues that the general practice of describing interrater reliability as a single, unified concept is..at best imprecise, and at worst potentially misleading. Rather than representing a single concept, different..statistical methods for computing interrater reliability can be more accurately classified into one of three..categories based upon the underlying goals of analysis. The three general categories introduced and..described in this paper are: 1 consensus estimates, 2 consistency estimates, and 3 measurement estimates...The assumptions, interpretation, advantages, and disadvantages of estimates from each of these three..categories are discussed, along with several popular methods of computing interrater reliability coefficients..that fall under the umbrella of consensus, consistency, and measurement estimates. Researchers and..practitioners should be aware that different approaches to estimating interrater reliability carry with them..different implications for how ratings across multiple judges should be summarized, which may impact the..validity of subsequent study results.
Directory of Open Access Journals (Sweden)
Dhruba Das
2015-04-01
Full Text Available In this article, based on Zadeh’s extension principle we have apply the parametric programming approach to construct the membership functions of the performance measures when the interarrival time and the service time are fuzzy numbers based on the Baruah’s Randomness- Fuzziness Consistency Principle. The Randomness-Fuzziness Consistency Principle leads to defining a normal law of fuzziness using two different laws of randomness. In this article, two fuzzy queues FM/M/1 and M/FM/1 has been studied and constructed their membership functions of the system characteristics based on the aforesaid principle. The former represents a queue with fuzzy exponential arrivals and exponential service rate while the latter represents a queue with exponential arrival rate and fuzzy exponential service rate.
A MinMax self-consistent-field approach for auxiliary density functional theory
Köster, Andreas M.; del Campo, Jorge M.; Janetzko, Florian; Zuniga-Gutierrez, Bernardo
2009-03-01
A MinMax self-consistent-field (SCF) approach is derived in the framework of auxiliary density functional theory. It is shown that the SCF convergence can be guided by the fitting coefficients that arise from the variational fitting of the Coulomb potential. An in-core direct inversion of the iterative subspace (DIIS) algorithm is presented. Due to its reduced memory demand this new in-core DIIS method can be applied without overhead to very large systems with tens of thousands of basis and auxiliary functions. Due to the new DIIS error definition systems with fractional occupation numbers can be treated, too.
Energy Technology Data Exchange (ETDEWEB)
Jin, Jinshuang, E-mail: jsjin@hznu.edu.cn [Department of Physics, Hangzhou Normal University, Hangzhou 310036 (China); Li, Jun [Department of Physics, Hangzhou Normal University, Hangzhou 310036 (China); College of Physics and Electronic Engineering, Dezhou University, Dezhou 253023 (China); Liu, Yu [State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China); Li, Xin-Qi, E-mail: lixinqi@bnu.edu.cn [State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China); Department of Physics, Beijing Normal University, Beijing 100875 (China); Department of Chemistry, Hong Kong University of Science and Technology, Kowloon (Hong Kong); Yan, YiJing, E-mail: yyan@ust.hk [Department of Chemistry, Hong Kong University of Science and Technology, Kowloon (Hong Kong); Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026 (China)
2014-06-28
Beyond the second-order Born approximation, we propose an improved master equation approach to quantum transport under self-consistent Born approximation. The basic idea is to replace the free Green's function in the tunneling self-energy diagram by an effective reduced propagator under the Born approximation. This simple modification has remarkable consequences. It not only recovers the exact results for quantum transport through noninteracting systems under arbitrary voltages, but also predicts the challenging nonequilibrium Kondo effect. Compared to the nonequilibrium Green's function technique that formulates the calculation of specific correlation functions, the master equation approach contains richer dynamical information to allow more efficient studies for such as the shot noise and full counting statistics.
Jin, Jinshuang; Li, Jun; Liu, Yu; Li, Xin-Qi; Yan, YiJing
2014-06-28
Beyond the second-order Born approximation, we propose an improved master equation approach to quantum transport under self-consistent Born approximation. The basic idea is to replace the free Green's function in the tunneling self-energy diagram by an effective reduced propagator under the Born approximation. This simple modification has remarkable consequences. It not only recovers the exact results for quantum transport through noninteracting systems under arbitrary voltages, but also predicts the challenging nonequilibrium Kondo effect. Compared to the nonequilibrium Green's function technique that formulates the calculation of specific correlation functions, the master equation approach contains richer dynamical information to allow more efficient studies for such as the shot noise and full counting statistics.
Nikolova, Gergana; Toshev, Yuli
2008-01-01
On the basis of a representative anthropological investigation of 5290 individuals (2435 males and 2855 females) of the Bulgarian population at the age of 30-40 years (Yordanov et al. [1]) we proposed a 3D biomechanical model of human body of the average Bulgarian male and female and compared two different possible approaches to calculate analytically and to evaluate numerically the corresponding geometric and inertial characteristics of all the segments of the body. In the framework of the first approach, we calculated the positions of the centres of mass of the segments of human body as well as their inertial characteristics merely by using the initial original anthropometrical data, while in the second approach we adjusted the data by using the method based on regression equations. Wherever possible, we presented a comparison of our data with those available in the literature on other Caucasians and determined in which cases the use of which approach is more reliable.
Islam, Kamrul; Duke, Kajsa; Mustafy, Tanvir; Adeeb, Samer M; Ronsky, Janet L; El-Rich, Marwan
2015-01-01
The biomechanics of the patellofemoral (PF) joint is complex in nature, and the aetiology of such manifestations of PF instability as patellofemoral pain syndrome (PFPS) is still unclear. At this point, the particular factors affecting PFPS have not yet been determined. This study has two objectives: (1) The first is to develop an alternative geometric method using a three-dimensional (3D) registration technique and linear mapping to investigate the PF joint contact stress using an indirect measure: the depth of virtual penetration (PD) of the patellar cartilage surface into the femoral cartilage surface. (2) The second is to develop 3D PF joint models using the finite element analysis (FEA) to quantify in vivo cartilage contact stress and to compare the peak contact stress location obtained from the FE models with the location of the maximum PD. Magnetic resonance images of healthy and PFPS subjects at knee flexion angles of 15°, 30° and 45° during isometric loading have been used to develop the geometric models. The results obtained from both approaches demonstrated that the subjects with PFPS show higher PD and contact stresses than the normal subjects. Maximum stress and PD increase with flexion angle, and occur on the lateral side in healthy and on the medial side in PFPS subjects. It has been concluded that the alternative geometric method is reliable in addition to being computationally efficient compared with FEA, and has the potential to assess the mechanics of PFPS with an accuracy similar to the FEA.
Sadjadi, Seyed Jafar; Hamidi Hesarsorkh, Aghil; Mohammadi, Mehdi; Bonyadi Naeini, Ali
2014-08-01
Coordination and harmony between different departments of a company can be an important factor in achieving competitive advantage if the company corrects alignment between strategies of different departments. This paper presents an integrated decision model based on recent advances of geometric programming technique. The demand of a product considers as a power function of factors such as product's price, marketing expenditures, and consumer service expenditures. Furthermore, production cost considers as a cubic power function of outputs. The model will be solved by recent advances in convex optimization tools. Finally, the solution procedure is illustrated by numerical example.
DEFF Research Database (Denmark)
Baldi, P.; Blanke, Mogens; Castaldi, P.;
2016-01-01
This paper presents a novel scheme for diagnosis of faults affecting the sensors measuring the satellite attitude, body angular velocity and flywheel spin rates as well as defects related to the control torques provided by satellite reaction wheels. A nonlinear geometric design is used to avoid...... that aerodynamic disturbance torques have unwanted influence on the residuals exploited for fault detection and isolation. Radial basis function neural networks are used to obtain fault estimation filters that do not need a priori information about the fault internal models. Simulation results are based...... on a detailed nonlinear satellite model with embedded disturbance description. The results document the efficacy of the proposed diagnosis scheme....
Stabilization of systems with one degree of underactuation with energy shaping, a geometric approach
Gharesifard, Bahman
2010-01-01
A geometric formulation for stabilization of systems with one degree of underactuation which fully solves the energy shaping problem for these system is given. The results show that any linearly controllable simple mechanical system with one degree of underactuation is stabilizable by energy shaping, possibly via a closed-loop metric which is not necessarily positive-definite. An example of a system with one degree of underactuation is provided for which the stabilization by energy shaping method is not achievable using a positive-definite closed-loop metric.
Self-consistent Keldysh approach to quenches in the weakly interacting Bose-Hubbard model
Lo Gullo, N.; Dell'Anna, L.
2016-11-01
We present a nonequilibrium Green's-functional approach to study the dynamics following a quench in weakly interacting Bose-Hubbard model (BHM). The technique is based on the self-consistent solution of a set of equations which represents a particular case of the most general set of Hedin's equations for the interacting single-particle Green's function. We use the ladder approximation as a skeleton diagram for the two-particle scattering amplitude useful, through the self-energy in the Dyson equation, for finding the interacting single-particle Green's function. This scheme is then implemented numerically by a parallelized code. We exploit this approach to study the correlation propagation after a quench in the interaction parameter, for one and two dimensions. In particular, we show how our approach is able to recover the crossover from the ballistic to the diffusive regime by increasing the boson-boson interaction. Finally we also discuss the role of a thermal initial state on the dynamics both for one- and two-dimensional BHMs, finding that, surprisingly, at high temperature a ballistic evolution is restored.
Mokshin, A. V.
2015-04-01
The concept of time correlation functions is a very convenient theoretical tool in describing relaxation processes in multiparticle systems because, on one hand, correlation functions are directly related to experimentally measured quantities (for example, intensities in spectroscopic studies and kinetic coefficients via the Kubo-Green relation) and, on the other hand, the concept is also applicable beyond the equilibrium case. We show that the formalism of memory functions and the method of recurrence relations allow formulating a self-consistent approach for describing relaxation processes in classical multiparticle systems without needing a priori approximations of time correlation functions by model dependences and with the satisfaction of sum rules and other physical conditions guaranteed. We also demonstrate that the approach can be used to treat the simplest relaxation scenarios and to develop microscopic theories of transport phenomena in liquids, the propagation of density fluctuations in equilibrium simple liquids, and structure relaxation in supercooled liquids. This approach generalizes the mode-coupling approximation in the Götze-Leutheusser realization and the Yulmetyev-Shurygin correlation approximations.
Najarbashi, G.; Seifi, B.
2017-02-01
In this paper, we generalize the results of Oh (Phys Lett A 373:644-647, 2009) to Dzyaloshinskii-Moriya model under non-uniform external magnetic field to investigate the relation between entanglement, geometric phase (or Berry phase) and quantum phase transition. We use quaternionic representation to relate the geometric phase to the quantum phase transition. For small values of DM parameter, the Berry phase is more appropriate than the concurrence measure, while for large values, the concurrence is a good indicator to show the phase transition. On the other hand, by increasing the DM interaction the phase transition occurs for large values of anisotropy parameter. In addition, for small values of magnetic field the concurrence measure is appropriate indicator for quantum phase transition, but for large values of magnetic field the Berry phase shows a sharp changes in the phase transition points. The results show that the Berry phase and concurrence form a complementary system from phase transition point of view.
A probabilistic approach to randomness in geometric configuration of scalable origami structures
Liu, Ke; Paulino, Glaucio; Gardoni, Paolo
2015-03-01
Origami, an ancient paper folding art, has inspired many solutions to modern engineering challenges. The demand for actual engineering applications motivates further investigation in this field. Although rooted from the historic art form, many applications of origami are based on newly designed origami patterns to match the specific requirenments of an engineering problem. The application of origami to structural design problems ranges from micro-structure of materials to large scale deployable shells. For instance, some origami-inspired designs have unique properties such as negative Poisson ratio and flat foldability. However, origami structures are typically constrained by strict mathematical geometric relationships, which in reality, can be easily violated, due to, for example, random imperfections introduced during manufacturing, or non-uniform deformations under working conditions (e.g. due to non-uniform thermal effects). Therefore, the effects of uncertainties in origami-like structures need to be studied in further detail in order to provide a practical guide for scalable origami-inspired engineering designs. Through reliability and probabilistic analysis, we investigate the effect of randomness in origami structures on their mechanical properties. Dislocations of vertices of an origami structure have different impacts on different mechanical properties, and different origami designs could have different sensitivities to imperfections. Thus we aim to provide a preliminary understanding of the structural behavior of some common scalable origami structures subject to randomness in their geometric configurations in order to help transition the technology toward practical applications of origami engineering.
Wall-Corner Classification Using Sonar: A New Approach Based on Geometric Features
Directory of Open Access Journals (Sweden)
Ginés Benet
2010-11-01
Full Text Available Ultrasonic signals coming from rotary sonar sensors in a robot gives us several features about the environment. This enables us to locate and classify the objects in the scenario of the robot. Each object and reflector produces a series of peaks in the amplitude of the signal. The radial and angular position of the sonar sensor gives information about location and their amplitudes offer information about the nature of the surface. Early works showed that the amplitude can be modeled and used to classify objects with very good results at short distances—80% average success in classifying both walls and corners at distances less than 1.5 m. In this paper, a new set of geometric features derived from the amplitude analysis of the echo is presented. These features constitute a set of characteristics that can be used to improve the results of classification at distances from 1.5 m to 4 m. Also, a comparative study on classification algorithms widely used in pattern recognition techniques has been carried out for sensor distances ranging between 0.5 to 4 m, and with incidence angles ranging between 20º to 70º. Experimental results show an enhancement on the success in classification rates when these geometric features are considered.
Wall-corner classification using sonar: a new approach based on geometric features.
Martínez, Milagros; Benet, Ginés
2010-01-01
Ultrasonic signals coming from rotary sonar sensors in a robot gives us several features about the environment. This enables us to locate and classify the objects in the scenario of the robot. Each object and reflector produces a series of peaks in the amplitude of the signal. The radial and angular position of the sonar sensor gives information about location and their amplitudes offer information about the nature of the surface. Early works showed that the amplitude can be modeled and used to classify objects with very good results at short distances-80% average success in classifying both walls and corners at distances less than 1.5 m. In this paper, a new set of geometric features derived from the amplitude analysis of the echo is presented. These features constitute a set of characteristics that can be used to improve the results of classification at distances from 1.5 m to 4 m. Also, a comparative study on classification algorithms widely used in pattern recognition techniques has been carried out for sensor distances ranging between 0.5 to 4 m, and with incidence angles ranging between 20° to 70°. Experimental results show an enhancement on the success in classification rates when these geometric features are considered.
DEFF Research Database (Denmark)
Arndt, Channing; Mahrt, Kristi; Hussain, Azhar
The rights-based approach to development targets progress towards the realization of 30 articles set forth in the Universal Declaration of Human Rights. Progress is frequently measured using the multidimensional poverty index. While elegant and useful, the multidimensional poverty index...... is in reality inconsistent with the Universal Declaration of Human Rights principles of indivisibility, inalienability, and equality. We show that a first-order dominance methodology maintains consistency with basic principles, discuss the properties of the multidimensional poverty index and first......-order dominance, and apply the measures to 26 African countries. We conclude that the multidimensional poverty index and first-order dominance are useful complements that should be employed in tandem....
Dipole response in neutron-rich nuclei within self-consistent approaches using realistic potentials
Directory of Open Access Journals (Sweden)
Lo Iudice N.
2015-01-01
Full Text Available A nucleon-nucleon chiral potential with a corrective density dependent term simulating a three-body force is used in a self-consistent calculation of the dipole strength distribution in neutron-rich nuclei, with special attention to the low-lying spectra associated to the pygmy resonance. A Hartree-Fock-Bogoliubov basis is generated and adopted in Tamm-Dancoff and random-phase approximations and, then, in an equation of motion approach which includes a basis of two-phonon states. The direct use of the mentioned chiral potential improves the description of both giant and pygmy dipole modes with respect to other realistic interactions. Moreover, the inclusion of the two-phonon states induces a pronounced fragmentation of the giant resonance and enhances the density of the low-lying levels in the pygmy region in agreement with recent experiments.
A consistent approach for mixed detailed and statistical calculation of opacities in hot plasmas
Porcherot, Quentin; Gilleron, Franck; Blenski, Thomas
2011-01-01
Absorption and emission spectra of plasmas with multicharged-ions contain transition arrays with a huge number of coalescent electric-dipole (E1) lines, which are well suited for treatment by the unresolved transition array and derivative methods. But, some transition arrays show detailed features whose description requires diagonalization of the Hamiltonian matrix. We developed a hybrid opacity code, called SCORCG, which combines statistical approaches with fine-structure calculations consistently. Data required for the computation of detailed transition arrays (atomic configurations and atomic radial integrals) are calculated by the super-configuration code SCO (Super-Configuration Opacity), which provides an accurate description of the plasma screening effects on the wave-functions. Level energies as well as position and strength of spectral lines are computed by an adapted RCG routine of R. D. Cowan. The resulting code provides opacities for hot plasmas and can handle mid-Z elements. The code is also a po...
Self-consistent RPA and the time-dependent density matrix approach
Energy Technology Data Exchange (ETDEWEB)
Schuck, P. [Institut de Physique Nucleaire, Orsay (France); CNRS et Universite Joseph Fourier, Laboratoire de Physique et Modelisation des Milieux Condenses, Grenoble (France); Tohyama, M. [Kyorin University School of Medicine, Mitaka, Tokyo (Japan)
2016-10-15
The time-dependent density matrix (TDDM) or BBGKY (Bogoliubov, Born, Green, Kirkwood, Yvon) approach is decoupled and closed at the three-body level in finding a natural representation of the latter in terms of a quadratic form of two-body correlation functions. In the small amplitude limit an extended RPA coupled to an also extended second RPA is obtained. Since including two-body correlations means that the ground state cannot be a Hartree-Fock state, naturally the corresponding RPA is upgraded to Self-Consistent RPA (SCRPA) which was introduced independently earlier and which is built on a correlated ground state. SCRPA conserves all the properties of standard RPA. Applications to the exactly solvable Lipkin and the 1D Hubbard models show good performances of SCRPA and TDDM. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Liu, Zhaosen, E-mail: liuzhsnj@yahoo.com [Nanjing University of Information Science and Technology, Department of Applied Physics (China); Ian, Hou, E-mail: houian@umac.mo [University of Macau, Institute of Applied Physics and Materials Engineering, FST (China)
2016-01-15
We give a theoretical study on the magnetic properties of monolayer nanodisks with both Heisenberg exchange and Dzyaloshinsky–Moriya (DM) interactions. In particular, we survey the magnetic effects caused by anisotropy, external magnetic field, and disk size when DM interaction is present by means of a new quantum simulation method facilitated by a self-consistent algorithm based on mean field theory. This computational approach finds that uniaxial anisotropy and transversal magnetic field enhance the net magnetization as well as increase the transition temperature of the vortical phase while preserving the chiralities of the swirly magnetic structures, whereas when the strength of DM interaction is sufficiently strong for a given disk size, magnetic domains appear within the circularly bounded region, which vanish and give in to a single vortex when a transversal magnetic field is applied. The latter confirms the magnetic skyrmions induced by the magnetic field as observed in the experiments.
Posterior Consistency of the Bayesian Approach to Linear Ill-Posed Inverse Problems
Agapiou, Sergios; Stuart, Andrew M
2012-01-01
We consider a Bayesian nonparametric approach to a family of linear inverse problems in a separable Hilbert space setting, with Gaussian prior and noise distribution. A method of identifying the posterior distribution using its precision operator is presented. Working with the unbounded precision operator enables us to use partial differential equations (PDE) methodology to study posterior consistency in a frequentist sense, and in particular to obtain rates of contraction of the posterior distribution to a Dirac measure centered on the true solution. We show how these rates may be optimized by a choice of the scale parameter in the prior covariance operator. Our methods assume a relatively weak relation between the prior covariance operator, the forward operator and the noise covariance operator; more precisely, we assume that appropriate powers of these operators induce equivalent norms. We compare our results to known minimax rates of convergence in the case where the forward operator and the prior and noi...
Actuarial calculation for PSAK-24 purposes post-employment benefit using market-consistent approach
Effendie, Adhitya Ronnie
2015-12-01
In this paper we use a market-consistent approach to calculate present value of obligation of a companies' post-employment benefit in accordance with PSAK-24 (the Indonesian accounting standard). We set some actuarial assumption such as Indonesian TMI 2011 mortality tables for mortality assumptions, accumulated salary function for wages assumption, a scaled (to mortality) disability assumption and a pre-defined turnover rate for termination assumption. For economic assumption, we use binomial tree method with estimated discount rate as its average movement. In accordance with PSAK-24, the Projected Unit Credit method has been adapted to determine the present value of obligation (actuarial liability), so we use this method with a modification in its discount function.
A Consistent Approach to Falsifying Lambda-CDM with Rare Galaxy Clusters
Harrison, Ian
2013-01-01
We consider methods with which to answer the question "is any observed galaxy cluster too unusual for Lambda-CDM?" After emphasising that many previous attempts to answer this question have fallen foul of a statistical bias which causes them to overestimate the confidence levels to which Lambda-CDM can be ruled out, we outline a consistent approach to these rare clusters which allows the question to be answered. We explicitly separate the two procedures of first ranking clusters according to which appears 'most unusual' and secondly calculating the probability that such an unusual observation was made in a given cosmology. For the ranking procedure we define three properties of individual galaxy clusters, each of which are sensitive to changes in cluster populations arising from different modifications to the cosmological model. We use these properties to define the "equivalent mass at redshift zero" for a cluster - the mass of an equally unusual cluster today. This quantity is independent of the observationa...
Exciton spectrum of surface-corrugated quantum wells: the adiabatic self-consistent approach
Energy Technology Data Exchange (ETDEWEB)
Atenco A, N.; Perez R, F. [lnstituto de Fisica, Universidad Autonoma de Puebla, A.P. J-48, 72570 Puebla (Mexico); Makarov, N.M. [lnstituto de Ciencias, Universidad Autonoma de Puebla, Priv. 17 Norte No 3417, Col. San Miguel Hueyotlipan, 72050 Puebla (Mexico)
2005-07-01
A theory for calculating the relaxation frequency {nu} and the shift {delta} {omega} of exciton resonances in quantum wells with finite potential barriers and adiabatic surface disorder is developed. The adiabaticity implies that the correlation length R{sub C} for the well width fluctuations is much larger than the exciton radius a{sub 0} (R{sub C} >> a{sub 0}). Our theory is based on the self-consistent Green's function method, and therefore takes into account the inherent action of the exciton scattering on itself. The self-consistent approach is shown to describe quantitatively the sharp exciton resonance. It also gives the qualitatively correct resonance picture for the transition to the classical limit, as well as within the domain of the classical limit itself. We present and analyze results for h h-exciton in a GaAs quantum well with Al{sub 0.3} Ga{sub 0.7}As barriers. It is established that the self-consistency and finite height of potential barriers significantly influence on the line-shape of exciton resonances, and make the values of {nu} and {delta} {omega} be quite realistic. In particular, the relaxation frequency {nu} for the ground-state resonance has a broad, almost symmetric maximum near the resonance frequency {omega}{sub 0}, while the surface-induced resonance shift {delta} {omega} vanishes near {omega}{sub 0}, and has different signs on the sides of the exciton resonance. (Author) 43 refs., 4 figs.
On bifurcation delay: An alternative approach using Geometric Singular Perturbation Theory
Hsu, Ting-Hao
2017-02-01
To explain the phenomenon of bifurcation delay, which occurs in planar systems of the form x ˙ = ɛf (x , z , ɛ), z ˙ = g (x , z , ɛ) z, where f (x , 0 , 0) > 0 and g (x , 0 , 0) changes sign at least once on the x-axis, we use the Exchange Lemma in Geometric Singular Perturbation Theory to track the limiting behavior of the solutions. Using the trick of extending dimension to overcome the degeneracy at the turning point, we show that the limiting attracting and repulsion points are given by the well-known entry-exit function, and the minimum of z on the trajectory is of order exp (- 1 / ɛ). Also we prove smoothness of the return map up to arbitrary finite order in ɛ.
Computing the laser beam path in optical cavities: a geometric Newton's method based approach
Cuccato, Davide; Ortolan, Antonello; Beghi, Alessandro
2015-01-01
In the last decade, increasing attention has been drawn to high precision optical experiments, which push resolution and accuracy of the measured quantities beyond their current limits. This challenge requires to place optical elements (e.g. mirrors, lenses, etc.) and to steer light beams with sub-nanometer precision. Existing methods for beam direction computing in resonators, e.g. iterative ray tracing or generalized ray transfer matrices, are either computationally expensive or rely on overparametrized models of optical elements. By exploiting Fermat's principle, we develop a novel method to compute the steady-state beam configurations in resonant optical cavities formed by spherical mirrors, as a function of mirror positions and curvature radii. The proposed procedure is based on the geometric Newton method on matrix manifold, a tool with second order convergence rate that relies on a second order model of the cavity optical length. As we avoid coordinates to parametrize the beam position on mirror surfac...
Riemannian geometric approach to human arm dynamics, movement optimization, and invariance.
Biess, Armin; Flash, Tamar; Liebermann, Dario G
2011-03-01
We present a generally covariant formulation of human arm dynamics and optimization principles in Riemannian configuration space. We extend the one-parameter family of mean-squared-derivative (MSD) cost functionals from Euclidean to Riemannian space, and we show that they are mathematically identical to the corresponding dynamic costs when formulated in a Riemannian space equipped with the kinetic energy metric. In particular, we derive the equivalence of the minimum-jerk and minimum-torque change models in this metric space. Solutions of the one-parameter family of MSD variational problems in Riemannian space are given by (reparameterized) geodesic paths, which correspond to movements with least muscular effort. Finally, movement invariants are derived from symmetries of the Riemannian manifold. We argue that the geometrical structure imposed on the arm's configuration space may provide insights into the emerging properties of the movements generated by the motor system.
Directory of Open Access Journals (Sweden)
D. L. Bricker
1997-01-01
Full Text Available The problem of assigning cell probabilities to maximize a multinomial likelihood with order restrictions on the probabilies and/or restrictions on the local odds ratios is modeled as a posynomial geometric program (GP, a class of nonlinear optimization problems with a well-developed duality theory and collection of algorithms. (Local odds ratios provide a measure of association between categorical random variables. A constrained multinomial MLE example from the literature is solved, and the quality of the solution is compared with that obtained by the iterative method of El Barmi and Dykstra, which is based upon Fenchel duality. Exploiting the proximity of the GP model of MLE problems to linear programming (LP problems, we also describe as an alternative, in the absence of special-purpose GP software, an easily implemented successive LP approximation method for solving this class of MLE problems using one of the readily available LP solvers.
Inclinations of small quiet-Sun magnetic features based on a new geometric approach
Jafarzadeh, S; Lagg, A; Rubio, L R Bellot; van Noort, M; Feller, A; Danilovic, S
2014-01-01
High levels of horizontal magnetic flux have been reported in the quiet-Sun internetwork, often based on Stokes profile inversions. Here we introduce a new method for deducing the inclination of magnetic elements and use it to test magnetic field inclinations from inversions. We determine accurate positions of a set of small, bright magnetic elements in high spatial resolution images sampling different photospheric heights obtained by the Sunrise balloon-borne solar observatory. Together with estimates of the formation heights of the employed spectral bands, these provide us with the inclinations of the magnetic features. We also compute the magnetic inclination angle of the same magnetic features from the inversion of simultaneously recorded Stokes parameters. Our new, geometric method returns nearly vertical fields (average inclination of around 14 deg with a relatively narrow distribution having a standard deviation of 6 deg). In strong contrast to this, the traditionally used inversions give almost horizo...
Stellar Open Clusters' Membership Probabilities: an N-Dimensional Geometrical Approach
Sampedro, Laura
2016-01-01
We present a new geometrical method aimed at determining the members of open clusters. The methodology estimates, in an N-dimensional space, the membership probabilities by means of the distances between every star and the cluster central overdensity. It can handle different sets of variables, which have to satisfy the simple condition of being more densely distributed for the cluster members than for the field stars (as positions, proper motions, radial velocities and/or parallaxes are). Unlike other existing techniques, this fact makes the method more flexible and so can be easily applied to different datasets. To quantify how the method identifies the clus- ter members, we design series of realistic simulations recreating sky regions in both position and proper motion subspaces populated by clusters and field stars. The re- sults, using different simulated datasets (N = 1, 2 and 4 variables), show that the method properly recovers a very high fraction of simulated cluster members, with a low number of misc...
Energy Technology Data Exchange (ETDEWEB)
Pozdniakov, Sergey; Tsang, Chin-Fu
2004-01-02
In this paper, we consider an approach for estimating the effective hydraulic conductivity of a 3D medium with a binary distribution of local hydraulic conductivities. The medium heterogeneity is represented by a combination of matrix medium conductivity with spatially distributed sets of inclusions. Estimation of effective conductivity is based on a self-consistent approach introduced by Shvidler (1985). The tensor of effective hydraulic conductivity is calculated numerically by using a simple system of equations for the main diagonal elements. Verification of the method is done by comparison with theoretical results for special cases and numerical results of Desbarats (1987) and our own numerical modeling. The method was applied to estimating the effective hydraulic conductivity of a 2D and 3D fractured porous medium. The medium heterogeneity is represented by a combination of matrix conductivity and a spatially distributed set of highly conductive fractures. The tensor of effective hydraulic conductivity is calculated for parallel- and random-oriented sets of fractures. The obtained effective conductivity values coincide with Romm's (1966) and Snow's (1969) theories for infinite fracture length. These values are also physically acceptable for the sparsely-fractured-medium case with low fracture spatial density and finite fracture length. Verification of the effective hydraulic conductivity obtained for a fractured porous medium is done by comparison with our own numerical modeling for a 3D case and with Malkovsky and Pek's (1995) results for a 2D case.
A four-step approach to evaluate mixtures for consistency with dose addition.
Hertzberg, Richard C; Pan, Yi; Li, Ruosha; Haber, Lynne T; Lyles, Robert H; Herr, David W; Moser, Virginia C; Simmons, Jane Ellen
2013-11-16
Mixture risk assessment is often hampered by the lack of dose-response information on the mixture being assessed, forcing reliance on component formulas such as dose addition. We present a four-step approach for evaluating chemical mixture data for consistency with dose addition for use in supporting a component based mixture risk assessment. Following the concepts in the U.S. EPA mixture risk guidance (U.S. EPA, 2000a,b), toxicological interaction for a defined mixture (all components known) is departure from a clearly articulated definition of component additivity. For the common approach of dose additivity, the EPA guidance identifies three desirable characteristics, foremost of which is that the component chemicals are toxicologically similar. The other two characteristics are empirical: the mixture components have toxic potencies that are fixed proportions of each other (throughout the dose range of interest), and the mixture dose term in the dose additive prediction formula, which we call the combined prediction model (CPM), can be represented by a linear combination of the component doses. A consequent property of the proportional toxic potencies is that the component chemicals must share a common dose-response model, where only the dose coefficients depend on the chemical components. A further consequence is that the mixture data must be described by the same mathematical function ("mixture model") as the components, but with a distinct coefficient for the total mixture dose. The mixture response is predicted from the component dose-response curves by using the dose additive CPM and the prediction is then compared with the observed mixture results. The four steps are to evaluate: (1) toxic proportionality by determining how well the CPM matches the single chemical models regarding mean and variance; (2) fit of the mixture model to the mixture data; (3) agreement between the mixture data and the CPM prediction; and (4) consistency between the CPM and the
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
In this paper, a geometric approach to fault detection and isolation (FDI) is applied to a Multiple-Input Multiple-Output (MIMO) model of a frame and the FDI results are compared to the ones obtained in the Single-Input Single-Output (SISO), Multiple-Input Single-Output (MISO), and Single-Input Multiple-Output (SIMO) cases. A proper distance function based on parameters obtained from parametric system identification method is used in the geometric approach. ARX (Auto Regressive with eXogenous input) and VARX (Vector ARX) models with 12 parameters are used in all of the above-mentioned models. The obtained results reveal that by increasing the number of inputs, the classification errors reduce, even in the case of applying only one of the inputs in the computations. Furthermore, increasing the number of measured outputs in the FDI scheme results in decreasing classification errors. Also, it is shown that by using probabilistic space in the distance function, fault diagnosis scheme has better performance in comparison with the deterministic one.
Numerical Approach of the Influence of Geometric Properties on the Absorbing in Photonic Crystal
Directory of Open Access Journals (Sweden)
A. Merabti
2016-10-01
Full Text Available In the proposed study, an investigation has been carried out in order to find a material efficient structure, capable of harnessing maximum solar spectrum. A material efficient structure designed using a one dimensional photonic crystal (1D PC for amorphous silicon. Silicon material is used as it leads to environmental friendly design. The principal objective of this study is to maximize the photon absorption, keeping reflection to a minimum. The influence of geometric parameters on the absorption is studied by using the Finite element method (FEM. The results show that the absorption is affected by the geometry parameters. The optimum parameters of the proposed structure are period (a 480 nm, a filling factor (ff 50 % and depth (d 150 nm. The increase of absorption in the lower region where the wavelengths are around 480 nm, is explained by the reduction of the effective index resulting from the structure of the absorbent layer. For wavelengths between 480 nm and 600 nm, the absorption is directly related to existing Fabry-Perot modes within the absorbent layer. Creating additional absorption peaks at wavelengths above about 600 nm weakly absorbed normally comes from the coupling of the incident light with slow Bloch modes of PC located above the light line.
Lalis, Aude; Evin, Allowen; Janier, Marc; Koivogui, Lamine; Denys, Christiane
2015-11-01
The commensal rodent Mastomys natalensis is the natural reservoir of Lassa arenavirus (LASV), which causes hemorrhagic fever in West Africa. To study a possible effect of the virus on phenotypic and genotypic variation of its persistently infected host, we compared LASV-positive and non-infected wild-caught M. natalensis. The LASV effects on the phenotypic variation were explored using standard external morphometric measurements, geometric morphometric analyses of the cranial size and shape, and brain case volume. The genetic variability of M. natalensis specimens was assessed using 9 polymorphic microsatellite markers. Independent of sex and age, LASV-infected animals had smaller external body measurements, reproductive organs, skull size and brain case volume. Cranial shape differences between the 2 groups are represented by a lateral constriction of the entire skull. The genetic variability revealed consanguinity only among the LASV-positive rodents. We hypothesize that growth impairment may result in a selective disadvantage for LASV-infected M. natalensis, leading to a preferably commensal lifestyle in areas where the LAVS is endemic and, thereby, increasing the risk of LASV transmission to humans. © 2015 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and Wiley Publishing Asia Pty Ltd.
Shazman, Shula; Elber, Gershon; Mandel-Gutfreund, Yael
2011-09-01
Protein nucleic acid interactions play a critical role in all steps of the gene expression pathway. Nucleic acid (NA) binding proteins interact with their partners, DNA or RNA, via distinct regions on their surface that are characterized by an ensemble of chemical, physical and geometrical properties. In this study, we introduce a novel methodology based on differential geometry, commonly used in face recognition, to characterize and predict NA binding surfaces on proteins. Applying the method on experimentally solved three-dimensional structures of proteins we successfully classify double-stranded DNA (dsDNA) from single-stranded RNA (ssRNA) binding proteins, with 83% accuracy. We show that the method is insensitive to conformational changes that occur upon binding and can be applicable for de novo protein-function prediction. Remarkably, when concentrating on the zinc finger motif, we distinguish successfully between RNA and DNA binding interfaces possessing the same binding motif even within the same protein, as demonstrated for the RNA polymerase transcription-factor, TFIIIA. In conclusion, we present a novel methodology to characterize protein surfaces, which can accurately tell apart dsDNA from an ssRNA binding interfaces. The strength of our method in recognizing fine-tuned differences on NA binding interfaces make it applicable for many other molecular recognition problems, with potential implications for drug design.
Self-consistent hydrodynamic approach to nanoplasmonics: Resonance shifts and spill-out effects
Toscano, Giuseppe; Evers, Ferdinand; Xu, Hongxing; Mortensen, N Asger; Wubs, Martijn
2014-01-01
The standard hydrodynamic Drude model with hard-wall boundary conditions can give accurate quantitative predictions for the optical response of noble-metal nanoparticles. However, it is less accurate for other metallic nanosystems, where surface effects due to electron density spill-out in free space cannot be neglected. Here we address the fundamental question whether the description of surface effects in plasmonics necessarily requires a fully quantum-mechanical approach, such as time-dependent density-functional theory (TD-DFT), that goes beyond an effective Drude-type model. We present a more general formulation of the hydrodynamic model for the inhomogeneous electron gas, which additionally includes gradients of the electron density in the energy functional. In doing so, we arrive at a Self-Consistent Hydrodynamic Model (SC-HDM), where spill-out emerges naturally. We find a redshift for the optical response of Na nanowires, and a blueshift for Ag nanowires, which are both in quantitative agreement with e...
Konana, Prabhudev; Gupta, Alok; Whinston, Andrew B.
1997-01-01
A pure 'technological' solution to network quality problems is incomplete since any benefits from new technologies are offset by the demand from exponentially growing electronic commerce ad data-intensive applications. SInce an economic paradigm is implicit in electronic commerce, we propose a 'market-system' approach to improve quality of service. Quality of service for digital products takes on a different meaning since users view quality of service differently and value information differently. We propose a framework for electronic commerce that is based on an economic paradigm and mass-customization, and works as a wide-area distributed management system. In our framework, surrogate-servers act as intermediaries between information provides and end- users, and arrange for consistent and predictable information delivery through 'digital contracts.' These contracts are negotiated and priced based on economic principles. Surrogate servers pre-fetched, through replication, information from many different servers and consolidate based on demand expectations. In order to recognize users' requirements and process requests accordingly, real-time databases are central to our framework. We also propose that multimedia information be separated into slowly changing and rapidly changing data streams to improve response time requirements. Surrogate- servers perform the tasks of integration of these data streams that is transparent to end-users.
Baldi, Pietro; Blanke, Mogens; Castaldi, Paolo; Mimmo, Nicola; Simani, Silvio
2016-01-01
This paper suggests a novel diagnosis scheme for detection, isolation and estimation of faults affecting satellite reaction wheels. Both spin rate measurements and actuation torque defects are dealt with. The proposed system consists of a fault detection and isolation module composed by a bank of residual filters organized in a generalized scheme, followed by a fault estimation module consisting of a bank of adaptive estimation filters. The residuals are decoupled from aerodynamic disturbance...
Qaradaghi, Mohammed
techniques that can provide more flexibility and inclusiveness in the decision making process, such as Multi-Criteria Decision Making (MCDM) methods. However, it can be observed that the MCDM literature: 1) is primarily focused on suggesting certain MCDM techniques to specific problems without providing sufficient evidence for their selection, 2) is inadequate in addressing MCDM in E&P portfolio selection and prioritization compared with other fields, and 3) does not address prioritizing brownfields (i.e., developed oilfields). This research study aims at addressing the above drawbacks through combining three MCDM methods (i.e., AHP, PROMETHEE and TOPSIS) into a single decision making tool that can support optimal oilfield portfolio investment decisions by helping determine the share of each oilfield of the total development resources allocated. Selecting these methods is reinforced by a pre-deployment and post-deployment validation framework. In addition, this study proposes a two-dimensional consistency test to verify the output coherence or prioritization stability of the MCDM methods in comparison with an intuitive approach. Nine scenarios representing all possible outcomes of the internal and external consistency tests are further proposed to reach a conclusion. The methodology is applied to a case study of six major oilfields in Iraq to generate percentage shares of each oilfield of a total production target that is in line with Iraq's aspiration to increase oil production. However, the methodology is intended to be applicable to other E&P portfolio investment prioritization scenarios by taking the specific contextual characteristics into consideration.
DEFF Research Database (Denmark)
Baldi, P.; Blanke, Mogens; Castaldi, P.
2015-01-01
This paper suggests a novel diagnosis scheme for detection, isolation and estimation of faults affecting satellite reaction wheels. Both spin rate measurements and actuation torque defects are dealt with. The proposed system consists of a fault detection and isolation module composed by a bank...
Functional morphology and integration of corvid skulls – a 3D geometric morphometric approach
Directory of Open Access Journals (Sweden)
Gunz Philipp
2009-01-01
Full Text Available Abstract Background Sympatric corvid species have evolved differences in nesting, habitat choice, diet and foraging. Differences in the frequency with which corvid species use their repertoire of feeding techniques is expected to covary with bill-shape and with the frontal binocular field. Species that frequently probe are expected to have a relatively longer bill and more sidewise oriented orbits in contrast to species that frequently peck. We tested this prediction by analyzing computed tomography scans of skulls of six corvid species by means of three-dimensional geometric morphometrics. We (1 explored patterns of major variation using principal component analysis, (2 compared within and between species relationships of size and shape and (3 quantitatively compared patterns of morphological integration between bill and cranium by means of partial least squares (singular warp analysis. Results Major shape variation occurs at the bill, in the orientation of orbits, in the position of the foramen magnum and in the angle between bill and cranium. The first principal component correlated positively with centroid-size, but within-species allometric relationships differed markedly. Major covariation between the bill and cranium lies in the difference in orbit orientation relative to bill-length and in the angle between bill and cranium. Conclusion Corvid species show pronounced differences in skull shape, which covary with foraging mode. Increasing bill-length, bill-curvature and sidewise orientation of the eyes is associated with an increase in the observed frequency in probing (vice versa in pecking. Hence, the frequency of probing, bill-length, bill-curvature and sidewise orientation of the eyes is progressively increased from jackdaw, to Eurasian jay, to black-billed magpie, to hooded crow, to rook and to common raven (when feeding on carcasses is considered as probing. Our results on the morphological integration suggest that most of the
Institute of Scientific and Technical Information of China (English)
马杭
2002-01-01
With the aid of the properties of the hypersingular kernels,a geometric conversion approach was presented in this paper.The conversion leads to a general approach for the accurate and reliable numerical evaluation of the hypersingular surface boundary integrals encountered in a variety of applications with boundary element method.Based on the conversion,the hypersingularity in the boundary integrals could be lowered by one order,resulting in the simplification of the computer code.Moreover,an integral transformation was introduced to damp out the nearly singular behavior of the kernels by the distance function defined in the local polar coordinate system for the nearly hypersingular case.The approach is simple to use,which can be inserted readily to computer code,thus getting rid of the dull routine deduction of formulae before the numerical implementatins,as the expressions of these kernels are in general complicated.The numerical examples were gien in three-dimensional elasticity,verifying the effectiveness of the proposed approach,which makes it possible to observe numerically the behavior of the boundary integral values with hypersingular kernels across the boundary.
Directory of Open Access Journals (Sweden)
N. Jafferi
2009-09-01
Full Text Available This paper focuses on the geometrical design of active noise control (ANC in free- field propagation medium. The development and performance assessment uses genetic optimisation techniques to arrange system components so as to satisfy several performance requirements, such as physical extent of cancellation, controller design restriction and system stability. The ANC system design can be effectively addressed if it is considered as multi – objective optimisation problems. The multi-objective genetic algorithms (MOGAs are well suited to the design of an ANC system and the approach used for it is based on a multi - objective method, with which the physical extent of cancellation and relative stability assessment are dealt with simultaneously.
Directory of Open Access Journals (Sweden)
Srinivas Bulusu
2016-06-01
Full Text Available An operational consistency model for real-time dynamic traffic assignment (DTA applications seeks to correct the time-dependent path assignment within a rolling horizon scheme. This study extends an existing consistency framework to develop a hierarchy for the time-dependent path set based upon their relative importance to ensuring consistency. Using the analytic hierarchy process, the eigenvalue associated with a path is identified as the parameter which enables the rank ordering of paths. The ability to identify a subset of dominant paths relative to enhancing consistency enhances the computational viability of the consistency framework for real-time implementation and has significant practical implications. Additionally, it provides insights on the complex dynamics that are inherent to the operational consistency problem.
Aghasi, Alireza; Miller, Eric L; Ramsburg, C Andrew; Abriola, Linda M
2013-01-01
This paper presents a new joint inversion approach to shape-based inverse problems. Given two sets of data from distinct physical models, the main objective is to obtain a unified characterization of inclusions within the spatial domain of the physical properties to be reconstructed. Although our proposed method generally applies to many types of inversion problems, the main motivation here is to characterize subsurface contaminant source-zones by processing down gradient hydrological data and cross-gradient electrical resistance tomography (ERT) observations. Inspired by Newton's method for multi-objective optimization, we present an iterative inversion scheme that suggests taking descent steps that can simultaneously reduce both data-model misfit terms. Such an approach, however, requires solving a non-smooth convex problem at every iteration, which is computationally expensive for a pixel-based inversion over the whole domain. Instead, we employ a parametric level set (PaLS) technique that substantially re...
DEFF Research Database (Denmark)
Hansen, Anders L.; Lund, Erik; Pinho, Silvestre T.
2009-01-01
In this paper a hierarchical FE approach is utilized to simulate delamination in a composite plate loaded in uni-axial compression. Progressive delamination is modelled by use of cohesive interface elements that are automatically embedded. The non-linear problem is solved quasi-statically in which...... the interaction between material degradation and structural instability is solved iteratively. The effect of fibre bridging is studied numerically and in-plane failure is predicted using physically based failure criteria....
Le-Duc, Thang; Ho-Huu, Vinh; Nguyen-Thoi, Trung; Nguyen-Quoc, Hung
2016-12-01
In recent years, various types of magnetorheological brakes (MRBs) have been proposed and optimized by different optimization algorithms that are integrated in commercial software such as ANSYS and Comsol Multiphysics. However, many of these optimization algorithms often possess some noteworthy shortcomings such as the trap of solutions at local extremes, or the limited number of design variables or the difficulty of dealing with discrete design variables. Thus, to overcome these limitations and develop an efficient computation tool for optimal design of the MRBs, an optimization procedure that combines differential evolution (DE), a gradient-free global optimization method with finite element analysis (FEA) is proposed in this paper. The proposed approach is then applied to the optimal design of MRBs with different configurations including conventional MRBs and MRBs with coils placed on the side housings. Moreover, to approach a real-life design, some necessary design variables of MRBs are considered as discrete variables in the optimization process. The obtained optimal design results are compared with those of available optimal designs in the literature. The results reveal that the proposed method outperforms some traditional approaches.
Directory of Open Access Journals (Sweden)
Jonathan D. Krieger
2014-08-01
Full Text Available Premise of the study: I present a protocol for creating geometric leaf shape metrics to facilitate widespread application of geometric morphometric methods to leaf shape measurement. Methods and Results: To quantify circularity, I created a novel shape metric in the form of the vector between a circle and a line, termed geometric circularity. Using leaves from 17 fern taxa, I performed a coordinate-point eigenshape analysis to empirically identify patterns of shape covariation. I then compared the geometric circularity metric to the empirically derived shape space and the standard metric, circularity shape factor. Conclusions: The geometric circularity metric was consistent with empirical patterns of shape covariation and appeared more biologically meaningful than the standard approach, the circularity shape factor. The protocol described here has the potential to make geometric morphometrics more accessible to plant biologists by generalizing the approach to developing synthetic shape metrics based on classic, qualitative shape descriptors.
Krieger, Jonathan D
2014-08-01
I present a protocol for creating geometric leaf shape metrics to facilitate widespread application of geometric morphometric methods to leaf shape measurement. • To quantify circularity, I created a novel shape metric in the form of the vector between a circle and a line, termed geometric circularity. Using leaves from 17 fern taxa, I performed a coordinate-point eigenshape analysis to empirically identify patterns of shape covariation. I then compared the geometric circularity metric to the empirically derived shape space and the standard metric, circularity shape factor. • The geometric circularity metric was consistent with empirical patterns of shape covariation and appeared more biologically meaningful than the standard approach, the circularity shape factor. The protocol described here has the potential to make geometric morphometrics more accessible to plant biologists by generalizing the approach to developing synthetic shape metrics based on classic, qualitative shape descriptors.
A Scoping Review of Scoping Reviews: Advancing the Approach and Enhancing the Consistency
Pham, Mai T.; Rajic, Andrijana; Greig, Judy D.; Sargeant, Jan M.; Papadopoulos, Andrew; McEwen, Scott A.
2014-01-01
Background: The scoping review has become an increasingly popular approach for synthesizing research evidence. It is a relatively new approach for which a universal study definition or definitive procedure has not been established. The purpose of this scoping review was to provide an overview of scoping reviews in the literature. Methods: A…
Mullineux, G; Hicks, B J; Berry, C
2012-04-28
Understanding what happens in terms of delamination during buckling of laminate materials is of importance across a range of engineering sectors. Normally concern is that the strength of the material is not significantly impaired. Carton-board is a material with a laminate structure and, in the initial creation of carton nets, the board is creased in order to weaken the structure. This means that when the carton is eventually folded into its three-dimensional form, correct folding occurs along the weakened crease lines. Understanding what happens during creasing and folding is made difficult by the nonlinear nature of the material properties. This paper considers a simplified approach which extends the idea of minimizing internal energy so that the effects of delamination can be handled. This allows a simulation which reproduces the form of buckling-delamination observed in practice and the form of the torque-rotation relation.
Mortari, F.; Zlatanova, S.; Liu, L.; Clementini, E.
2014-04-01
Over the past few years Personal Navigation Systems have become an established tool for route planning, but they are mainly designed for outdoor environments. Indoor navigation is still a challenging research area for several reasons: positioning is not very accurate, users can freely move between the interior boundaries of buildings, path network construction process may not be easy and straightforward due to complexity of indoor space configurations. Therefore the creation of a good network is essential for deriving overall connectivity of a building and for representing position of objects within the environment. This paper reviews current approaches to automatic derivation of route graphs for indoor navigation and discusses some of their limitations. Then, it introduces a novel algorithmic strategy for extracting a 3D connectivity graph for indoor navigation based on 2D floor plans.
Linear stochastic systems a geometric approach to modeling, estimation and identification
Lindquist, Anders
2015-01-01
This book presents a treatise on the theory and modeling of second-order stationary processes, including an exposition on selected application areas that are important in the engineering and applied sciences. The foundational issues regarding stationary processes dealt with in the beginning of the book have a long history, starting in the 1940s with the work of Kolmogorov, Wiener, Cramér and his students, in particular Wold, and have since been refined and complemented by many others. Problems concerning the filtering and modeling of stationary random signals and systems have also been addressed and studied, fostered by the advent of modern digital computers, since the fundamental work of R.E. Kalman in the early 1960s. The book offers a unified and logically consistent view of the subject based on simple ideas from Hilbert space geometry and coordinate-free thinking. In this framework, the concepts of stochastic state space and state space modeling, based on the notion of the conditional independence of pas...
Arevalo, L.; Wu, D.; Jacobson, B.
2013-08-01
The main propose of this paper is to present a physical model of long air gap electrical discharges under positive switching impulses. The development and progression of discharges in long air gaps are attributable to two intertwined physical phenomena, namely, the leader channel and the streamer zone. Experimental studies have been used to develop empirical and physical models capable to represent the streamer zone and the leader channel. The empirical ones have led to improvements in the electrical design of high voltage apparatus and insulation distances, but they cannot take into account factors associated with fundamental physics and/or the behavior of materials. The physical models have been used to describe and understand the discharge phenomena of laboratory and lightning discharges. However, because of the complex simulations necessary to reproduce real cases, they are not in widespread use in the engineering of practical applications. Hence, the aim of the work presented here is to develop a model based on physics of the discharge capable to validate and complement the existing engineering models. The model presented here proposes a new geometrical approximation for the representation of the streamer and the calculation of the accumulated electrical charge. The model considers a variable streamer region that changes with the temporal and spatial variations of the electric field. The leader channel is modeled using the non local thermo-equilibrium equations. Furthermore, statistical delays before the inception of the first corona, and random distributions to represent the tortuous nature of the path taken by the leader channel were included based on the behavior observed in experimental tests, with the intention of ensuring the discharge behaved in a realistic manner. For comparison purposes, two different gap configurations were simulated. A reasonable agreement was found between the physical model and the experimental test results.
Analysis of epistatic interactions and fitness landscapes using a new geometric approach
Directory of Open Access Journals (Sweden)
Elena Santiago F
2007-04-01
Full Text Available Abstract Background Understanding interactions between mutations and how they affect fitness is a central problem in evolutionary biology that bears on such fundamental issues as the structure of fitness landscapes and the evolution of sex. To date, analyses of fitness landscapes have focused either on the overall directional curvature of the fitness landscape or on the distribution of pairwise interactions. In this paper, we propose and employ a new mathematical approach that allows a more complete description of multi-way interactions and provides new insights into the structure of fitness landscapes. Results We apply the mathematical theory of gene interactions developed by Beerenwinkel et al. to a fitness landscape for Escherichia coli obtained by Elena and Lenski. The genotypes were constructed by introducing nine mutations into a wild-type strain and constructing a restricted set of 27 double mutants. Despite the absence of mutants higher than second order, our analysis of this genotypic space points to previously unappreciated gene interactions, in addition to the standard pairwise epistasis. Our analysis confirms Elena and Lenski's inference that the fitness landscape is complex, so that an overall measure of curvature obscures a diversity of interaction types. We also demonstrate that some mutations contribute disproportionately to this complexity. In particular, some mutations are systematically better than others at mixing with other mutations. We also find a strong correlation between epistasis and the average fitness loss caused by deleterious mutations. In particular, the epistatic deviations from multiplicative expectations tend toward more positive values in the context of more deleterious mutations, emphasizing that pairwise epistasis is a local property of the fitness landscape. Finally, we determine the geometry of the fitness landscape, which reflects many of these biologically interesting features. Conclusion A full
OLIVE PASTE CONSISTENCY AS A CONTROL PARAMETER FOR OIL EXTRACTION: A PRELIMINARY APPROACH
Directory of Open Access Journals (Sweden)
Piernicola Masella
2008-09-01
Full Text Available Malaxation is a critical step of olive oil extraction process as it can largely affect the extraction yield along with product quality. At present, malaxation control is based upon accumulated empirical results and the experience of the operators. There are evidences that this method rarely point out the olive-paste state suitable for oil extraction. The paper reports the results of a laboratory investigation aimed to verify the feasibility of using the olive paste consistency variation during malaxation as a parameter representing the right state for oil extraction. Olive pastes consistency evaluation was performed with a rotational rheometer. Oil extraction yield was evaluated by means of an extractability index (EI determined by laboratory centrifugation of the paste. The effect of different malaxation time and pastes humidity was investigated. Both malaxation time and humidity increments involve significant decrements of paste consistency and a simultaneous increase of EI. A good linear correlation among paste consistency and EI has been found, i.e. a large proportion of EI variance, about 90%, can be explained in terms of paste consistency variation during malaxation. The availability of a measurable parameter representing the paste state suitable for oil extraction could allow to implement a “closed-loop” control system for extraction yield maximization.
Geometric Simulation Approach for Grading and Assessing the Thermostability of CALBs
Directory of Open Access Journals (Sweden)
B. Senthilkumar
2016-01-01
Full Text Available Candida antarctica lipase B (CALB is a known stable and highly active enzyme used widely in biodiesel synthesis. In this work, the stability of native (4K6G and mutant (4K5Q CALB was studied through various structural parameters using conformational sampling approach. The contours of polar surface area and surface area of mutant CALB were 11357.67 Å2 and 30007.4 Å2, respectively, showing an enhanced stability compared to native CALB with a statistically significant P value of < 0.0001. Moreover, simulated thermal denaturation of CALB, a process involving dilution of hydrogen bond, significantly shielded against different intervals of energy application in mutant CALB revealing its augmentation of structural rigidity against native CALB. Finally, computational docking analysis showed an increase in the binding affinity of CALB and its substrate (triglyceride in mutant CALB with Atomic Contact Energy (ACE of −91.23 kcal/mol compared to native CALB (ACE of −70.3 kcal/mol. The computational observations proposed that the use of mutant CALB (4K5Q could serve as a best template for production of biodiesel in the future. Additionally, it can also be used as a template to identify efficient thermostable lipases through further mutations.
Colliding with G2 near the Galactic Centre: a geometrical approach
Marcos, R de la Fuente
2013-01-01
The object G2 will pass within nearly 100 au from Sgr A* in 2014. Due to its very short periapse, the study of the dynamical evolution of this object in the short-term future may offer some insight into the region surrounding the supermassive black hole at the centre of the Galaxy. With this scenario in mind, it has recently been proposed by Bartos et al. (arXiv:1302.3220) that, prior to its perinigricon, G2 will likely experience multiple encounters with members of the black hole and neutron star populations believed to orbit near the Galactic Centre. Here, we further explore this possibility and study the general case for collisions with the G2 object using the latest orbital solutions provided by Phifer et al. (arXiv:1304.5280) and Gillessen et al., (arXiv:1306.1374) and a Monte Carlo approach to estimate the minimum orbit intersection distance (MOID) with G2 as a function of the orbital parameters of the incoming body. Our results indicate that encounters at distances closer than 100 au started to become ...
Yu, Zhaoyuan; Yuan, Linwang; Luo, Wen; Feng, Linyao; Lv, Guonian
2015-12-30
Passive infrared (PIR) motion detectors, which can support long-term continuous observation, are widely used for human motion analysis. Extracting all possible trajectories from the PIR sensor networks is important. Because the PIR sensor does not log location and individual information, none of the existing methods can generate all possible human motion trajectories that satisfy various spatio-temporal constraints from the sensor activation log data. In this paper, a geometric algebra (GA)-based approach is developed to generate all possible human trajectories from the PIR sensor network data. Firstly, the representation of the geographical network, sensor activation response sequences and the human motion are represented as algebraic elements using GA. The human motion status of each sensor activation are labeled using the GA-based trajectory tracking. Then, a matrix multiplication approach is developed to dynamically generate the human trajectories according to the sensor activation log and the spatio-temporal constraints. The method is tested with the MERL motion database. Experiments show that our method can flexibly extract the major statistical pattern of the human motion. Compared with direct statistical analysis and tracklet graph method, our method can effectively extract all possible trajectories of the human motion, which makes it more accurate. Our method is also likely to provides a new way to filter other passive sensor log data in sensor networks.
Wibirama, Sunu; Mahesa, Rizki R.; Nugroho, Hanung A.; Hamamoto, Kazuhiko
2017-02-01
Remote eye trackers with consumer price have been used for various applications on flat computer screen. On the other hand, 3D gaze tracking in physical environment has been useful for visualizing gaze behavior, robots controller, and assistive technology. Instead of using affordable remote eye trackers, 3D gaze tracking in physical environment has been performed using corporate-level head mounted eye trackers, limiting its practical usage to niche user. In this research, we propose a novel method to estimate 3D gaze using consumer-level remote eye tracker. We implement geometric approach to obtain 3D point of gaze from binocular lines-of-sight. Experimental results show that the proposed method yielded low errors of 3.47+/-3.02 cm, 3.02+/-1.34 cm, and 2.57+/-1.85 cm in X, Y , and Z dimensions, respectively. The proposed approach may be used as a starting point for designing interaction method in 3D physical environment.
Directory of Open Access Journals (Sweden)
Zhaoyuan Yu
2015-12-01
Full Text Available Passive infrared (PIR motion detectors, which can support long-term continuous observation, are widely used for human motion analysis. Extracting all possible trajectories from the PIR sensor networks is important. Because the PIR sensor does not log location and individual information, none of the existing methods can generate all possible human motion trajectories that satisfy various spatio-temporal constraints from the sensor activation log data. In this paper, a geometric algebra (GA-based approach is developed to generate all possible human trajectories from the PIR sensor network data. Firstly, the representation of the geographical network, sensor activation response sequences and the human motion are represented as algebraic elements using GA. The human motion status of each sensor activation are labeled using the GA-based trajectory tracking. Then, a matrix multiplication approach is developed to dynamically generate the human trajectories according to the sensor activation log and the spatio-temporal constraints. The method is tested with the MERL motion database. Experiments show that our method can flexibly extract the major statistical pattern of the human motion. Compared with direct statistical analysis and tracklet graph method, our method can effectively extract all possible trajectories of the human motion, which makes it more accurate. Our method is also likely to provides a new way to filter other passive sensor log data in sensor networks.
Geometrical Bioelectrodynamics
Ivancevic, Vladimir G
2008-01-01
This paper proposes rigorous geometrical treatment of bioelectrodynamics, underpinning two fast-growing biomedical research fields: bioelectromagnetism, which deals with the ability of life to produce its own electromagnetism, and bioelectromagnetics, which deals with the effect on life from external electromagnetism. Keywords: Bioelectrodynamics, exterior geometrical machinery, Dirac-Feynman quantum electrodynamics, functional electrical stimulation
Consistency analysis of subspace identification methods based on a linear regression approach
DEFF Research Database (Denmark)
Knudsen, Torben
2001-01-01
In the literature results can be found which claim consistency for the subspace method under certain quite weak assumptions. Unfortunately, a new result gives a counter example showing inconsistency under these assumptions and then gives new more strict sufficient assumptions which however does n...
Directory of Open Access Journals (Sweden)
L.S. Ferreira
2016-02-01
Full Text Available Proton radioactivity from deformed nuclei is described for the first time by a self-consistent calculation based on covariant relativistic density functionals derived from meson exchange and point coupling models. The calculation provides an important new test to these interactions at the limits of stability, since the mixing of different angular momenta in the single particle wave functions is probed.
A Bayesian Decision-Theoretic Approach to Logically-Consistent Hypothesis Testing
Directory of Open Access Journals (Sweden)
Gustavo Miranda da Silva
2015-09-01
Full Text Available This work addresses an important issue regarding the performance of simultaneous test procedures: the construction of multiple tests that at the same time are optimal from a statistical perspective and that also yield logically-consistent results that are easy to communicate to practitioners of statistical methods. For instance, if hypothesis A implies hypothesis B, is it possible to create optimal testing procedures that reject A whenever they reject B? Unfortunately, several standard testing procedures fail in having such logical consistency. Although this has been deeply investigated under a frequentist perspective, the literature lacks analyses under a Bayesian paradigm. In this work, we contribute to the discussion by investigating three rational relationships under a Bayesian decision-theoretic standpoint: coherence, invertibility and union consonance. We characterize and illustrate through simple examples optimal Bayes tests that fulfill each of these requisites separately. We also explore how far one can go by putting these requirements together. We show that although fairly intuitive tests satisfy both coherence and invertibility, no Bayesian testing scheme meets the desiderata as a whole, strengthening the understanding that logical consistency cannot be combined with statistical optimality in general. Finally, we associate Bayesian hypothesis testing with Bayes point estimation procedures. We prove the performance of logically-consistent hypothesis testing by means of a Bayes point estimator to be optimal only under very restrictive conditions.
Locally self-consistent Green’s function approach to the electronic structure problem
DEFF Research Database (Denmark)
Abrikosov, I.A.; Simak, S.I.; Johansson, B.;
1997-01-01
The locally self-consistent Green's function (LSGF) method is an order-N method for calculation of the electronic structure of systems with an arbitrary distribution of atoms of different kinds on an underlying crystal lattice. For each atom Dyson's equation is used to solve the electronic multiple...
Energy Technology Data Exchange (ETDEWEB)
Ferreira, L.S., E-mail: flidia@tecnico.ulisboa.pt [Center of Physics and Engineering of Advanced Materials, CeFEMA, and Departamento de Física, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, P1049-001 Lisbon (Portugal); Maglione, E. [Dipartimento di Fisica e Astronomia “G. Galilei”, Via Marzolo 8, I-35131 Padova (Italy); Istituto Nazionale di Fisica Nucleare, Padova (Italy); Ring, P. [Physik Department der Technischen Universität München, D-85748 Garching (Germany)
2016-02-10
Proton radioactivity from deformed nuclei is described for the first time by a self-consistent calculation based on covariant relativistic density functionals derived from meson exchange and point coupling models. The calculation provides an important new test to these interactions at the limits of stability, since the mixing of different angular momenta in the single particle wave functions is probed.
Human Pose Estimation from Silhouettes. A Consistent Approach Using Distance Level Sets
Sminchisescu, C.; Telea, A.
2002-01-01
We present a novel similarity measure (likelihood) for estimating three-dimensional human pose from image silhouettes in model-based vision applications. One of the challenges in such approaches is the construction of a model-to-image likelihood that truly reflects the good configurations of the pro
Jha, Sanjeev Kumar
2013-01-01
A downscaling approach based on multiple-point geostatistics (MPS) is presented. The key concept underlying MPS is to sample spatial patterns from within training images, which can then be used in characterizing the relationship between different variables across multiple scales. The approach is used here to downscale climate variables including skin surface temperature (TSK), soil moisture (SMOIS), and latent heat flux (LH). The performance of the approach is assessed by applying it to data derived from a regional climate model of the Murray-Darling basin in southeast Australia, using model outputs at two spatial resolutions of 50 and 10 km. The data used in this study cover the period from 1985 to 2006, with 1985 to 2005 used for generating the training images that define the relationships of the variables across the different spatial scales. Subsequently, the spatial distributions for the variables in the year 2006 are determined at 10 km resolution using the 50 km resolution data as input. The MPS geostatistical downscaling approach reproduces the spatial distribution of TSK, SMOIS, and LH at 10 km resolution with the correct spatial patterns over different seasons, while providing uncertainty estimates through the use of multiple realizations. The technique has the potential to not only bridge issues of spatial resolution in regional and global climate model simulations but also in feature sharpening in remote sensing applications through image fusion, filling gaps in spatial data, evaluating downscaled variables with available remote sensing images, and aggregating/disaggregating hydrological and groundwater variables for catchment studies.
Object Oriented Approach to Consistent Implementation of Meshless and Classical FEM
Directory of Open Access Journals (Sweden)
Albert Seidl
2006-02-01
Full Text Available Numerical experiments show that the full potential of the Finite Element Method (FEM can be exploited by combination of classical with meshless FEM. A class structure for flexible consistent implementation of both methods is presented. Fully automatized 3D mesh-generation still constitutes a serious problem in software development concerning FEM. In the recent years various methods of meshless FEM have been developed as an alternative to overcome this problem. In this work meshless and classical FEM have been implemented. A further objective of this work is to implement different classical and meshless methods together with an appropriate mesh/point-set generation method. An appropriate class structure for realizing this in a consistent manner with classical FEM is developed and implemented in C++. The performance of the discussed methods was tested with problems relevant in electrical and civil engineering i.e. static electrical field calculations (Poison equation and elasticity problems.
De Mattia, Fabrizio; Chapsal, Jean-Michel; Descamps, Johan; Halder, Marlies; Jarrett, Nicholas; Kross, Imke; Mortiaux, Frederic; Ponsar, Cecile; Redhead, Keith; McKelvie, Jo; Hendriksen, Coenraad
2011-01-01
Current batch release testing of established vaccines emphasizes quality control of the final product and is often characterized by extensive use of animals. This report summarises the discussions of a joint ECVAM/EPAA workshop on the applicability of the consistency approach for routine release of human and veterinary vaccines and its potential to reduce animal use. The consistency approach is based upon thorough characterization of the vaccine during development and the principle that the quality of subsequent batches is the consequence of the strict application of a quality system and of a consistent production of batches. The concept of consistency of production is state-of-the-art for new-generation vaccines, where batch release is mainly based on non-animal methods. There is now the opportunity to introduce the approach into established vaccine production, where it has the potential to replace in vivo tests with non-animal tests designed to demonstrate batch quality while maintaining the highest quality standards. The report indicates how this approach may be further developed for application to established human and veterinary vaccines and emphasizes the continuing need for co-ordination and harmonization. It also gives recommendations for work to be undertaken in order to encourage acceptance and implementation of the consistency approach.
Geometric and unipotent crystals
Berenstein, Arkady; Kazhdan, David
1999-01-01
In this paper we introduce geometric crystals and unipotent crystals which are algebro-geometric analogues of Kashiwara's crystal bases. Given a reductive group G, let I be the set of vertices of the Dynkin diagram of G and T be the maximal torus of G. The structure of a geometric G-crystal on an algebraic variety X consists of a rational morphism \\gamma:X-->T and a compatible family e_i:G_m\\times X-->X, i\\in I of rational actions of the multiplicative group G_m satisfying certain braid-like ...
Self-consistent mode-coupling approach to one-dimensional heat transport.
Delfini, Luca; Lepri, Stefano; Livi, Roberto; Politi, Antonio
2006-06-01
In the present Rapid Communication we present an analytical and numerical solution of the self-consistent mode-coupling equations for the problem of heat conductivity in one-dimensional systems. Such a solution leads us to propose a different scenario to accommodate the known results obtained so far for this problem. More precisely, we conjecture that the universality class is determined by the leading order of the nonlinear interaction potential. Moreover, our analysis allows us to determine the memory kernel, whose expression puts on a more firm basis the previously conjectured connection between anomalous heat conductivity and anomalous diffusion.
A Thermodynamically-consistent FBA-based Approach to Biogeochemical Reaction Modeling
Shapiro, B.; Jin, Q.
2015-12-01
Microbial rates are critical to understanding biogeochemical processes in natural environments. Recently, flux balance analysis (FBA) has been applied to predict microbial rates in aquifers and other settings. FBA is a genome-scale constraint-based modeling approach that computes metabolic rates and other phenotypes of microorganisms. This approach requires a prior knowledge of substrate uptake rates, which is not available for most natural microbes. Here we propose to constrain substrate uptake rates on the basis of microbial kinetics. Specifically, we calculate rates of respiration (and fermentation) using a revised Monod equation; this equation accounts for both the kinetics and thermodynamics of microbial catabolism. Substrate uptake rates are then computed from the rates of respiration, and applied to FBA to predict rates of microbial growth. We implemented this method by linking two software tools, PHREEQC and COBRA Toolbox. We applied this method to acetotrophic methanogenesis by Methanosarcina barkeri, and compared the simulation results to previous laboratory observations. The new method constrains acetate uptake by accounting for the kinetics and thermodynamics of methanogenesis, and predicted well the observations of previous experiments. In comparison, traditional methods of dynamic-FBA constrain acetate uptake on the basis of enzyme kinetics, and failed to reproduce the experimental results. These results show that microbial rate laws may provide a better constraint than enzyme kinetics for applying FBA to biogeochemical reaction modeling.
Directory of Open Access Journals (Sweden)
Hans-Jörg Rheinberger
2011-06-01
Full Text Available It is generally accepted that the development of the modern sciences is rooted in experiment. Yet for a long time, experimentation did not occupy a prominent role, neither in philosophy nor in history of science. With the 'practical turn' in studying the sciences and their history, this has begun to change. This paper is concerned with systems and cultures of experimentation and the consistencies that are generated within such systems and cultures. The first part of the paper exposes the forms of historical and structural coherence that characterize the experimental exploration of epistemic objects. In the second part, a particular experimental culture in the life sciences is briefly described as an example. A survey will be given of what it means and what it takes to analyze biological functions in the test tube.
A self-consistent GW approach to the van der Waals potential for a helium dimer.
Shoji, Toru; Kuwahara, Riichi; Ono, Shota; Ohno, Kaoru
2016-09-21
van der Waals interaction between two helium (He) atoms is studied by calculating the total energy as a function of the He-He distance within the self-consistent GW approximation, which is expected to behave correctly in the long wavelength limit. In the Born-Oppenheimer (BO) approximation, the pair potential curve has its minimum value at 2.87 Å, which is somewhat larger than the local density approximation result, 2.40 Å, and is closer to previous quantum chemistry results. The expectation value for the interatomic distance, calculated by solving the Schrödinger equation for the two nuclei problem using the BO potential energy curve, is 30 Å, which is smaller but of the same order as previous experimental and theoretical results.
Dipole response in 208Pb within a self-consistent multiphonon approach
Knapp, F.; Lo Iudice, N.; Veselý, P.; Andreozzi, F.; De Gregorio, G.; Porrino, A.
2015-11-01
Background: The electric dipole strength detected around the particle threshold and commonly associated with the pygmy dipole resonance offers unique information on neutron skin and symmetry energy, and is of astrophysical interest. The nature of such a resonance is still under debate. Purpose: We intend to describe the giant and pygmy resonances in 208Pb by enhancing their fragmentation with respect to the random-phase approximation. Method: We adopt the equation of motion phonon method to perform a fully self-consistent calculation in a space spanned by one-phonon and two-phonon basis states using an optimized chiral two-body potential. A phenomenological density-dependent term, derived from a contact three-body force, is added to get single-particle spectra more realistic than the ones obtained by using the chiral potential only. The calculation takes into full account the Pauli principle and is free of spurious center-of-mass admixtures. Results: We obtain a fair description of the giant resonance and obtain a dense low-lying spectrum in qualitative agreement with the experimental data. The transition densities as well as the phonon and particle-hole composition of the most strongly excited states support the pygmy nature of the low-lying resonance. Finally, we obtain realistic values for the dipole polarizability and the neutron skin radius. Conclusions: The results emphasize the role of the two-phonon states in enhancing the fragmentation of the strength in the giant resonance region and at low energy, consistently with experiments. For a more detailed agreement with the data, the calculation suggests the inclusion of the three-phonon states as well as a fine tuning of the single-particle spectrum to be obtained by a refinement of the nuclear potential.
Liu, Jun Jie; Dolev, Maya Bar; Celik, Yeliz; Wettlaufer, J S; Braslavsky, Ido
2012-01-01
The melting of pure axisymmetric ice crystals has been described previously by us within the framework of so-called geometric crystal growth. Nonequilibrium ice crystal shapes evolving in the presence of hyperactive antifreeze proteins (hypAFPs) are experimentally observed to assume ellipsoidal geometries ("lemon" or "rice" shapes). To analyze such shapes we harness the underlying symmetry of hexagonal ice Ih and extend two-dimensional geometric models to three-dimensions to reproduce the experimental dissolution process. The geometrical model developed will be useful as a quantitative test of the mechanisms of interaction between hypAFPs and ice.
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
The student group possibilistic uncertainty in the van Hiele process of geometric reasoning is considered as the student group capacity for obtaining geometric information. Hence, the student group capacity for obtaining geometric information can be measured by the total possibilistic uncertainty T(r) of an ordered possibility distribution. The capacities of three student groups are found by calculating the total possibilistic uncertainties of these groups. These capacity values set an expectation of future group performance. Future research indications of how the total possibilistic uncertainty may be applied to other models of learning and development will help to establish it as a viable measure in educational psychology.
Directory of Open Access Journals (Sweden)
Trunev A. P.
2014-05-01
Full Text Available In this article we have investigated the solutions of Maxwell's equations, Navier-Stokes equations and the Schrödinger associated with the solutions of Einstein's equations for empty space. It is shown that in some cases the geometric instability leading to turbulence on the mechanism of alternating viscosity, which offered by N.N. Yanenko. The mechanism of generation of matter from dark energy due to the geometric turbulence in the Big Bang has been discussed
Martínez-Guerra, Rafael; Gómez-Cortés, Gian Carlo
2015-01-01
This book provides a general overview of several concepts of synchronization and brings together related approaches to secure communication in chaotic systems. This is achieved using a combination of analytic, algebraic, geometrical and asymptotical methods to tackle the dynamical feedback stabilization problem. In particular, differential-geometric and algebraic differential concepts reveal important structural properties of chaotic systems and serve as guide for the construction of design procedures for a wide variety of chaotic systems. The basic differential algebraic and geometric concepts are presented in the first few chapters in a novel way as design tools, together with selected experimental studies demonstrating their importance. The subsequent chapters treat recent applications. Written for graduate students in applied physical sciences, systems engineers, and applied mathematicians interested in synchronization of chaotic systems and in secure communications, this self-contained text requires only...
Dipole response in 208Pb within a self-consistent multiphonon approach
Knapp, F; Vesely, P; Andreozzi, F; De Gregorio, G; Porrino, A
2015-01-01
Background: The electric dipole strength detected around the particle threshold and commonly associated to the pygmy dipole resonance offers a unique information on neutron skin and symmetry energy, and is of astrophysical interest. The nature of such a resonance is still under debate. Purpose: We intend to describe the giant and pygmy resonances in 208 Pb by enhancing their fragmentation with respect to the random-phase approximation. Method: We adopt the equation of motion phonon method to perform a fully self-consistent calculation in a space spanned by one-phonon and two-phonon basis states using an optimized chiral two-body potential. A phenomenological density dependent term, derived from a contact three-body force, is added in order to get single-particle spectra more realistic than the ones obtained by using the chiral potential only. The calculation takes into full account the Pauli principle and is free of spurious center of mass admixtures. Results: We obtain a fair description of the giant resonan...
Energy Technology Data Exchange (ETDEWEB)
Samanta, Kousik [Department of Chemistry, Rice University, Houston, TX 77005 (United States); Yeager, Danny L. [Department of Chemistry, Texas A and M University, College Station, TX 77843 (United States)
2015-01-22
Resonances are temporarily bound states which lie in the continuum part of the Hamiltonian. If the electronic coordinates of the Hamiltonian are scaled (“dilated”) by a complex parameter, η = αe{sup iθ} (α, θ real), then its complex eigenvalues represent the scattering states (resonant and non-resonant) while the eigenvalues corresponding to the bound states and the ionization and the excitation thresholds remain real and unmodified. These make the study of these transient species amenable to the bound state methods. We developed a quadratically convergent multiconfigurational self-consistent field method (MCSCF), a well-established bound-state technique, combined with a dilated Hamiltonian to investigate resonances. This is made possible by the adoption of a second quantization algebra suitable for a set of “complex conjugate biorthonormal” spin orbitals and a modified step-length constraining algorithm to control the walk on the complex energy hypersurface while searching for the stationary point using a multidimensional Newton-Raphson scheme. We present our computational results for the {sup 2}PBe{sup −} shape resonances using two different computationally efficient methods that utilize complex scaled MCSCF (i.e., CMCSCF). These two methods are to straightforwardly use CMCSCF energy differences and to obtain energy differences using an approximation to the complex multiconfigurational electron propagator. It is found that, differing from previous computational studies by others, there are actually two {sup 2}PBe{sup −} shape resonances very close in energy. In addition, N{sub 2} resonances are examined using one of these methods.
A consistent approach to CO{sub 2} storage capacity estimation for deep saline formations
Energy Technology Data Exchange (ETDEWEB)
Dose, T. [DEA Mineraloel AG, Hamburg (Germany)
2008-10-23
Whereas the methodology of assessing pore volume is well established, a consistent methodology for calculating the pore volume efficiency (PVE) needs to be applied, e.g., as proposed in this paper. (1) Numerical simulations show, that CO{sub 2} storage sites are not restricted to geologic traps like anticlines. Also synclines and flat structures provide feasible storage structures, as long as no shortcut to the surface like leaking faults or wells exist. (2) Among active forces induced by CO{sub 2} injection, differential injection pressure and static pressure increase may turn out to be critical. This can lead to overlap with capillary displacement pressure, fracturing pressure, and exceeding the fault friction limit. (3) If differential injection pressure turns out to be critical, this can be balanced technically. Fault slippage can be avoided by selecting appropriate sites. (4) For the CO{sub 2} storage system to stay in balance, it is required that the static pressure increase stays below the capillary displacement pressure. (5) With this limiting conditions, scenarios show PVEs of 0.1-0.65% for a hydraulic system, mostly dependant on caprock quality and total compressibility. (6) Likely several possible storage sites exist for a hydraulic system. It is almost sure that the sum of the local storage potential will exceed the storage potential of the hydraulic system. (7) Regional pressure effects of CO{sub 2} storage can be significant. Different storage sites injecting at high rates into the same hydraulic system will need large distances between them. (9) Due to likely interference of storage sites and other fluid operations within a hydraulic system, close cooperations between operators may become necessary. (orig.)
Geometrical effective action and Wilsonian flows
Pawlowski, J M
2003-01-01
A gauge invariant flow equation is derived by applying a Wilsonian momentum cut-off to gauge invariant field variables. The construction makes use of the geometrical effective action for gauge theories in the Vilkovisky-DeWitt framework. The approach leads to modified Nielsen identities that pose non-trivial constraints on consistent truncations. We also evaluate the relation of the present approach to gauge fixed formulations as well as discussing possible applications.
Angel, Christine Marie
2012-01-01
This study is a comparison of the descriptive tagging practices among library, archive, and museum professionals using an inter-indexing consistency approach. The first purpose of this study was to determine the extent of the similarities and differences among professional groups when assigning descriptive tags to a wide variety of objects that…
Wan, Li; Xu, Shixin; Liao, Maijia; Liu, Chun; Sheng, Ping
2014-01-01
In this work, we treat the Poisson-Nernst-Planck (PNP) equations as the basis for a consistent framework of the electrokinetic effects. The static limit of the PNP equations is shown to be the charge-conserving Poisson-Boltzmann (CCPB) equation, with guaranteed charge neutrality within the computational domain. We propose a surface potential trap model that attributes an energy cost to the interfacial charge dissociation. In conjunction with the CCPB, the surface potential trap can cause a surface-specific adsorbed charge layer σ. By defining a chemical potential μ that arises from the charge neutrality constraint, a reformulated CCPB can be reduced to the form of the Poisson-Boltzmann equation, whose prediction of the Debye screening layer profile is in excellent agreement with that of the Poisson-Boltzmann equation when the channel width is much larger than the Debye length. However, important differences emerge when the channel width is small, so the Debye screening layers from the opposite sides of the channel overlap with each other. In particular, the theory automatically yields a variation of σ that is generally known as the "charge regulation" behavior, attendant with predictions of force variation as a function of nanoscale separation between two charged surfaces that are in good agreement with the experiments, with no adjustable or additional parameters. We give a generalized definition of the ζ potential that reflects the strength of the electrokinetic effect; its variations with the concentration of surface-specific and surface-nonspecific salt ions are shown to be in good agreement with the experiments. To delineate the behavior of the electro-osmotic (EO) effect, the coupled PNP and Navier-Stokes equations are solved numerically under an applied electric field tangential to the fluid-solid interface. The EO effect is shown to exhibit an intrinsic time dependence that is noninertial in its origin. Under a step-function applied electric field, a
Geometric Number Systems and Spinors
Sobczyk, Garret
2015-01-01
The real number system is geometrically extended to include three new anticommuting square roots of plus one, each such root representing the direction of a unit vector along the orthonormal coordinate axes of Euclidean 3-space. The resulting geometric (Clifford) algebra provides a geometric basis for the famous Pauli matrices which, in turn, proves the consistency of the rules of geometric algebra. The flexibility of the concept of geometric numbers opens the door to new understanding of the nature of space-time, and of Pauli and Dirac spinors as points on the Riemann sphere, including Lorentz boosts.
Algebro-geometric approach for a centrally extended Uq[sl(2|2)] R-matrix
Martins, M. J.
2017-04-01
In this paper we investigate the algebraic geometric nature of a solution of the Yang-Baxter equation based on the quantum deformation of the centrally extended sl (2 | 2) superalgebra proposed by Beisert and Koroteev [1]. We derive an alternative representation for the R-matrix in which the matrix elements are given in terms of rational functions depending on weights sited on a degree six surface. For generic gauge the weights geometry are governed by a genus one ruled surface while for a symmetric gauge choice the weights lie instead on a genus five curve. We have written down the polynomial identities satisfied by the R-matrix entries needed to uncover the corresponding geometric properties. For arbitrary gauge the R-matrix geometry is argued to be birational to the direct product CP1 ×CP1 × A where A is an Abelian surface. For the symmetric gauge we present evidences that the geometric content is that of a surface of general type lying on the so-called Severi line with irregularity two and geometric genus nine. We discuss potential geometric degenerations when the two free couplings are restricted to certain one-dimensional subspaces.
Muniz Oliva, Waldyr
2002-01-01
Geometric Mechanics here means mechanics on a pseudo-riemannian manifold and the main goal is the study of some mechanical models and concepts, with emphasis on the intrinsic and geometric aspects arising in classical problems. The first seven chapters are written in the spirit of Newtonian Mechanics while the last two ones as well as two of the four appendices describe the foundations and some aspects of Special and General Relativity. All the material has a coordinate free presentation but, for the sake of motivation, many examples and exercises are included in order to exhibit the desirable flavor of physical applications.
Ebert, Johannes; Frankenberger, Roland; Petschelt, Anselm
2012-02-01
A new approach to fill tunnel preparations with composites of two different consistencies is presented. Removal of caries through a narrow access space and reliably filling this cavity are the two main problems with tunnel-prepared teeth. Caries removal can be supplemented by the use of hand instruments, especially curettes, but filling the lesion with composite of a single consistency is problematic. Flowable composite alone does not create enough pressure to place the filling material into shallow extensions of the lesion; packable composite does not flow well enough. A solution for this problem may be a dual-consistency technique: flowable composite is placed, followed by packable composite, with no light curing in between. The flowable composite is pressed into small details of the cavity by the pressure created by the packable composite.
Spałek, J; Zegrodnik, M
2013-10-30
The intrasite and intersite spin-triplet pairing gaps induced by interband Hund's rule coupling and their correlations are analyzed in the doubly degenerate Hubbard Hamiltonian. To include the effect of correlations, the statistically consistent Gutzwiller approximation is used. In this approach the consistency means that the averages calculated from the self-consistent equations and those determined variationally coincide with each other. Emphasis is put on the solution for which the average particle number is conserved when carrying out the Gutzwiller projection. This method leads to a stable equal-spin paired state in the so-called repulsive interactions limit (U > 3J) in the regime of moderate correlations. The interband hybridization introduces an inequivalence of the bands which, above a critical magnitude, suppresses the paired state due to both the Fermi-wavevector mismatch for the Cooper pair and the interband hopping allowed by the Pauli principle.
Mohamed Abouelyazied Abdallh, Ahmed; Crevecoeur, Guillaume; Dupré, Luc
2011-01-01
The magnetic properties of the magnetic circuit of an electromagnetic device (EMD) can be identified by solving an inverse problem, where sets of measurements are properly interpreted using a forward numerical model of the device. However, the uncertainties of the geometrical parameter values in the forward model result in recovery errors in the reconstructed material parameter values. This paper proposes a novel inverse approach technique, in which the propagations of the uncertainties in th...
Non-critical string, Liouville theory and geometric bootstrap hypothesis
Hadasz, L; Hadasz, Leszek; Jaskolski, Zbigniew
2003-01-01
Basing on the standard construction of critical string amplitudes we analyze properties of the longitudinal sector of the non-critical Nambu-Goto string. We demonstrate that it cannot be described by standard (in the sense of BPZ) conformal field theory. As an alternative we propose a new version of the geometric approach to Liouville theory and formulate its basic consistency condition - the geometric bootstrap equation.
Paas, Fred G.W.C.; van Merrienboer, Jeroen J.G.; van Merrienboer, J.J.G.
1994-01-01
Four computer-based training strategies for geometrical problem solving in the domain of computer numerically controlled machinery programming were studied with regard to their effects on training performance, transfer performance, and cognitive load. A low- and a high-variability conventional
Krieger, Jonathan D.
2014-01-01
• Premise of the study: I present a protocol for creating geometric leaf shape metrics to facilitate widespread application of geometric morphometric methods to leaf shape measurement. • Methods and Results: To quantify circularity, I created a novel shape metric in the form of the vector between a circle and a line, termed geometric circularity. Using leaves from 17 fern taxa, I performed a coordinate-point eigenshape analysis to empirically identify patterns of shape covariation. I then compared the geometric circularity metric to the empirically derived shape space and the standard metric, circularity shape factor. • Conclusions: The geometric circularity metric was consistent with empirical patterns of shape covariation and appeared more biologically meaningful than the standard approach, the circularity shape factor. The protocol described here has the potential to make geometric morphometrics more accessible to plant biologists by generalizing the approach to developing synthetic shape metrics based on classic, qualitative shape descriptors. PMID:25202647
Chisolm, Eric
2012-01-01
This is an introduction to geometric algebra, an alternative to traditional vector algebra that expands on it in two ways: 1. In addition to scalars and vectors, it defines new objects representing subspaces of any dimension. 2. It defines a product that's strongly motivated by geometry and can be taken between any two objects. For example, the product of two vectors taken in a certain way represents their common plane. This system was invented by William Clifford and is more commonly known as Clifford algebra. It's actually older than the vector algebra that we use today (due to Gibbs) and includes it as a subset. Over the years, various parts of Clifford algebra have been reinvented independently by many people who found they needed it, often not realizing that all those parts belonged in one system. This suggests that Clifford had the right idea, and that geometric algebra, not the reduced version we use today, deserves to be the standard "vector algebra." My goal in these notes is to describe geometric al...
Ercolessi, E; Morandi, G; Mukunda, N
2001-01-01
We analyze the geometric aspects of unitary evolution of general states for a multilevel quantum system by exploiting the structure of coadjoint orbits in the unitary group Lie algebra. Using the same method in the case of SU(3) we study the effect of degeneracies on geometric phases for three-level systems. This is shown to lead to a highly nontrivial generalization of the result for two-level systems in which degeneracy results in a "monopole" structure in parameter space. The rich structures that arise are related to the geometry of adjoint orbits in SU(3). The limiting case of a two-level degeneracy in a three-level system is shown to lead to the known monopole structure.
Energy Technology Data Exchange (ETDEWEB)
Cooper, W. James [Washington State Univ., Pullman, WA (United States); Albertson, R Craig [Univ. of Massachusetts, Amherst, MA (United States); Jacob, Rick E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Westneat, Mark W. [Field Museum of Natural History, Chicago, IL (United States)
2014-12-01
Here we present a re-description of Abudefduf luridus and reassign it to the genus Similiparma. We supplement traditional diagnoses and descriptions of this species with quantitative anatomical data collected from a family-wide geometric morphometric analysis of head morphology (44 species representing all 30 damselfish genera) and data from cranial micro-CT scans of fishes in the genus Similiparma. The use of geometric morphometric analyses (and other methods of shape analysis) permits detailed comparisons between the morphology of specific taxa and the anatomical diversity that has arisen in an entire lineage. This provides a particularly useful supplement to traditional description methods and we recommend the use of such techniques by systematists. Similiparma and its close relatives constitute a branch of the damselfish phylogenetic tree that predominantly inhabits rocky reefs in the Atlantic and Eastern Pacific, as opposed to the more commonly studied damselfishes that constitute a large portion of the ichthyofauna on all coral-reef communities.
Wellens, Thomas; Jalabert, Rodolfo A.
2016-10-01
We develop a self-consistent theory describing the spin and spatial electron diffusion in the impurity band of doped semiconductors under the effect of a weak spin-orbit coupling. The resulting low-temperature spin-relaxation time and diffusion coefficient are calculated within different schemes of the self-consistent framework. The simplest of these schemes qualitatively reproduces previous phenomenological developments, while more elaborate calculations provide corrections that approach the values obtained in numerical simulations. The results are universal for zinc-blende semiconductors with electron conductance in the impurity band, and thus they are able to account for the measured spin-relaxation times of materials with very different physical parameters. From a general point of view, our theory opens a new perspective for describing the hopping dynamics in random quantum networks.
Energy Technology Data Exchange (ETDEWEB)
Nekrasov, I. A., E-mail: nekrasov@iep.uran.ru; Pavlov, N. S.; Sadovskii, M. V. [Russian Academy of Sciences, Institute for Electrophysics, Ural Branch (Russian Federation)
2013-04-15
We discuss the recently proposed LDA' + DMFT approach providing a consistent parameter-free treatment of the so-called double counting problem arising within the LDA + DMFT hybrid computational method for realistic strongly correlated materials. In this approach, the local exchange-correlation portion of the electron-electron interaction is excluded from self-consistent LDA calculations for strongly correlated electronic shells, e.g., d-states of transition metal compounds. Then, the corresponding double-counting term in the LDA' + DMFT Hamiltonian is consistently set in the local Hartree (fully localized limit, FLL) form of the Hubbard model interaction term. We present the results of extensive LDA' + DMFT calculations of densities of states, spectral densities, and optical conductivity for most typical representatives of two wide classes of strongly correlated systems in the paramagnetic phase: charge transfer insulators (MnO, CoO, and NiO) and strongly correlated metals (SrVO{sub 3} and Sr{sub 2}RuO{sub 4}). It is shown that for NiO and CoO systems, the LDA' + DMFT approach qualitatively improves the conventional LDA + DMFT results with the FLL type of double counting, where CoO and NiO were obtained to be metals. Our calculations also include transition-metal 4s-states located near the Fermi level, missed in previous LDA + DMFT studies of these monoxides. General agreement with optical and the X-ray experiments is obtained. For strongly correlated metals, the LDA' + DMFT results agree well with the earlier LDA + DMFT calculations and existing experiments. However, in general, LDA' + DMFT results give better quantitative agreement with experimental data for band gap sizes and oxygen-state positions compared to the conventional LDA + DMFT method.
Nekrasov, I. A.; Pavlov, N. S.; Sadovskii, M. V.
2013-04-01
We discuss the recently proposed LDA' + DMFT approach providing a consistent parameter-free treatment of the so-called double counting problem arising within the LDA + DMFT hybrid computational method for realistic strongly correlated materials. In this approach, the local exchange-correlation portion of the electron-electron interaction is excluded from self-consistent LDA calculations for strongly correlated electronic shells, e.g., d-states of transition metal compounds. Then, the corresponding double-counting term in the LDA' + DMFT Hamiltonian is consistently set in the local Hartree (fully localized limit, FLL) form of the Hubbard model interaction term. We present the results of extensive LDA' + DMFT calculations of densities of states, spectral densities, and optical conductivity for most typical representatives of two wide classes of strongly correlated systems in the paramagnetic phase: charge transfer insulators (MnO, CoO, and NiO) and strongly correlated metals (SrVO3 and Sr2RuO4). It is shown that for NiO and CoO systems, the LDA' + DMFT approach qualitatively improves the conventional LDA + DMFT results with the FLL type of double counting, where CoO and NiO were obtained to be metals. Our calculations also include transition-metal 4 s-states located near the Fermi level, missed in previous LDA + DMFT studies of these monoxides. General agreement with optical and the X-ray experiments is obtained. For strongly correlated metals, the LDA' + DMFT results agree well with the earlier LDA + DMFT calculations and existing experiments. However, in general, LDA' + DMFT results give better quantitative agreement with experimental data for band gap sizes and oxygen-state positions compared to the conventional LDA + DMFT method.
Nedeljkovic, N. N.; Božnic, D. K.; Dojcilovic, R. J.; Pajovic, J. D.
2010-07-01
The self-consistent procedure for the analysis of the ionization dynamics of slow hydrogenlike Rydberg atoms approaching solid surface in a weak electric field has been developed. The complex energy eigenvalue problem is solved in the critical region of the ion-surface distances R using an etalon equation method. The problem of motion of a representative member of the atomic beam is resolved by including the R-dependent expression for the perpendicular velocity into the expression for the ionization probability iteratively. The results of the procedure were employed to calculate the averaged ionization probabilities which were compared to the available experimental results.
Yuan, Yao-Ming; Jiang, Rui; Hu, Mao-Bin; Wu, Qing-Song; Wang, Ruili
2009-06-01
In this paper, we have investigated traffic flow characteristics in a traffic system consisting of a mixture of adaptive cruise control (ACC) vehicles and manual-controlled (manual) vehicles, by using a hybrid modelling approach. In the hybrid approach, (i) the manual vehicles are described by a cellular automaton (CA) model, which can reproduce different traffic states (i.e., free flow, synchronised flow, and jam) as well as probabilistic traffic breakdown phenomena; (ii) the ACC vehicles are simulated by using a car-following model, which removes artificial velocity fluctuations due to intrinsic randomisation in the CA model. We have studied the traffic breakdown probability from free flow to congested flow, the phase transition probability from synchronised flow to jam in the mixed traffic system. The results are compared with that, where both ACC vehicles and manual vehicles are simulated by CA models. The qualitative and quantitative differences are indicated.
In Defence of Geometrical Algebra
Blasjo, V.N.E.
2016-01-01
The geometrical algebra hypothesis was once the received interpretation of Greek mathematics. In recent decades, however, it has become anathema to many. I give a critical review of all arguments against it and offer a consistent rebuttal case against the modern consensus. Consequently, I find that the geometrical algebra interpretation should be reinstated as a viable historical hypothesis.
Dziedzic, Jacek; Mao, Yuezhi; Shao, Yihan; Ponder, Jay; Head-Gordon, Teresa; Head-Gordon, Martin; Skylaris, Chris-Kriton
2016-09-01
We present a novel quantum mechanical/molecular mechanics (QM/MM) approach in which a quantum subsystem is coupled to a classical subsystem described by the AMOEBA polarizable force field. Our approach permits mutual polarization between the QM and MM subsystems, effected through multipolar electrostatics. Self-consistency is achieved for both the QM and MM subsystems through a total energy minimization scheme. We provide an expression for the Hamiltonian of the coupled QM/MM system, which we minimize using gradient methods. The QM subsystem is described by the onetep linear-scaling DFT approach, which makes use of strictly localized orbitals expressed in a set of periodic sinc basis functions equivalent to plane waves. The MM subsystem is described by the multipolar, polarizable force field AMOEBA, as implemented in tinker. Distributed multipole analysis is used to obtain, on the fly, a classical representation of the QM subsystem in terms of atom-centered multipoles. This auxiliary representation is used for all polarization interactions between QM and MM, allowing us to treat them on the same footing as in AMOEBA. We validate our method in tests of solute-solvent interaction energies, for neutral and charged molecules, demonstrating the simultaneous optimization of the quantum and classical degrees of freedom. Encouragingly, we find that the inclusion of explicit polarization in the MM part of QM/MM improves the agreement with fully QM calculations.
Liang, Yufeng; Vinson, John; Pemmaraju, Sri; Drisdell, Walter S.; Shirley, Eric L.; Prendergast, David
2017-03-01
Constrained-occupancy delta-self-consistent-field (Δ SCF ) methods and many-body perturbation theories (MBPT) are two strategies for obtaining electronic excitations from first principles. Using the two distinct approaches, we study the O 1 s core excitations that have become increasingly important for characterizing transition-metal oxides and understanding strong electronic correlation. The Δ SCF approach, in its current single-particle form, systematically underestimates the pre-edge intensity for chosen oxides, despite its success in weakly correlated systems. By contrast, the Bethe-Salpeter equation within MBPT predicts much better line shapes. This motivates one to reexamine the many-electron dynamics of x-ray excitations. We find that the single-particle Δ SCF approach can be rectified by explicitly calculating many-electron transition amplitudes, producing x-ray spectra in excellent agreement with experiments. This study paves the way to accurately predict x-ray near-edge spectral fingerprints for physics and materials science beyond the Bethe-Salpether equation.
Sevimli, Eyup
2016-08-01
This study aims to evaluate the consistency of teaching content with teaching approaches in calculus on the basis of lecturers' views. In this sense, the structures of the examples given in two commonly used calculus textbooks, both in traditional and reform classrooms, are compared. The content analysis findings show that the examples in both textbooks are presented in a rather formal language and generally highlight procedural knowledge. And, even though the examples in the reform book chosen are structured using multiple representations, only a small number of them incorporated the usage of instructional technology. The lecturers' views which were gathered indicated that, although, on the one hand, the example structures of the traditional textbook largely overlapped with the characteristics of the traditional approach, the example structures of the reform textbook, on the other hand, were found to be inconsistent with the characteristics of the reform approach, especially with regard to its environment and knowledge components. At the end of the paper, some suggestions for further studies are provided for book authors and researchers.
Omisore, Olatunji Mumini; Han, Shipeng; Ren, Lingxue; Zhang, Nannan; Ivanov, Kamen; Elazab, Ahmed; Wang, Lei
2017-08-01
Snake-like robot is an emerging form of serial-link manipulator with the morphologic design of biological snakes. The redundant robot can be used to assist medical experts in accessing internal organs with minimal or no invasion. Several snake-like robotic designs have been proposed for minimal invasive surgery, however, the few that were developed are yet to be fully explored for clinical procedures. This is due to lack of capability for full-fledged spatial navigation. In rare cases where such snake-like designs are spatially flexible, there exists no inverse kinematics (IK) solution with both precise control and fast response. In this study, we proposed a non-iterative geometric method for solving IK of lead-module of a snake-like robot designed for therapy or ablation of abdominal tumors. The proposed method is aimed at providing accurate and fast IK solution for given target points in the robot's workspace. n-1 virtual points (VPs) were geometrically computed and set as coordinates of intermediary joints in an n-link module. Suitable joint angles that can place the end-effector at given target points were then computed by vectorizing coordinates of the VPs, in addition to coordinates of the base point, target point, and tip of the first link in its default pose. The proposed method is applied to solve IK of two-link and redundant four-link modules. Both two-link and four-link modules were simulated with Robotics Toolbox in Matlab 8.3 (R2014a). Implementation result shows that the proposed method can solve IK of the spatially flexible robot with minimal error values. Furthermore, analyses of results from both modules show that the geometric method can reach 99.21 and 88.61% of points in their workspaces, respectively, with an error threshold of 1 mm. The proposed method is non-iterative and has a maximum execution time of 0.009 s. This paper focuses on solving IK problem of a spatially flexible robot which is part of a developmental project for abdominal
Directory of Open Access Journals (Sweden)
Syed Asif Ali Shah
2011-01-01
Full Text Available Assorted analytical methods have been proposed for evaluating the performance of a slotted ring network. This paper proposes MGM (Matrix Geometric Method to analyze the station buffer of a slotted ring for DT (Discrete-Time queueing. The slotted ring is analyzed for infinite station buffer as a late arrival DT system. Utilizing the characteristics of 2-D Markov chain, various performance measures are validated with their corresponding results such as, throughput and MPAD (Mean Packet Access Delay as well as the packet rejection probability for finite station buffer. The presented results prove efficacy of the method.
Campolo, Domenico; Widjaja, Ferdinan; Xu, Hong; Ang, Wei Tech; Burdet, Etienne
2013-04-01
This work introduces a coordinate-independent method to analyse movement variability of tasks performed with hand-held tools, such as a pen or a surgical scalpel. We extend the classical uncontrolled manifold (UCM) approach by exploiting the geometry of rigid body motions, used to describe tool configurations. In particular, we analyse variability during a static pointing task with a hand-held tool, where subjects are asked to keep the tool tip in steady contact with another object. In this case the tool is redundant with respect to the task, as subjects control position/orientation of the tool, i.e. 6 degrees-of-freedom (dof), to maintain the tool tip position (3dof) steady. To test the new method, subjects performed a pointing task with and without arm support. The additional dof introduced in the unsupported condition, injecting more variability into the system, represented a resource to minimise variability in the task space via coordinated motion. The results show that all of the seven subjects channeled more variability along directions not directly affecting the task (UCM), consistent with previous literature but now shown in a coordinate-independent way. Variability in the unsupported condition was only slightly larger at the endpoint but much larger in the UCM.
Directory of Open Access Journals (Sweden)
Valeria P. Diawol
2015-03-01
Full Text Available Crustacean growth studies typically use modal analysis rather than focusing on the growth of individuals. In the present work, we use geometric morphometrics to determine how organism shape and size varies during the life of the freshwater crab, Aegla uruguayana Schmitt, 1942. A total of 66 individuals from diverse life cycle stages were examined daily and each exuvia was recorded. Digital images of the dorsal region of the cephalothorax were obtained for each exuvia and were subsequently used to record landmark configurations. Moult increment and intermoult period were estimated for each crab. Differences in shape between crabs of different sizes (allometry and sexes (sexual dimorphism; SD were observed. Allometry was registered among specimens; however, SD was not statistically significant between crabs of a given size. The intermoult period increased as size increased, but the moult frequency was similar between the sexes. Regarding ontogeny, juveniles had short and blunt rostrum, robust forehead region, and narrow cephalothorax. Unlike juveniles crabs, adults presented a well-defined anterior and posterior cephalothorax region. The rostrum was long and stylised and the forehead narrow. Geometric morphometric methods were highly effective for the analysis of aeglid-individual- growth and avoided excessive handling of individuals through exuvia analysis.
Energy Technology Data Exchange (ETDEWEB)
Steiner, M.; Hornung, L.; Mundigl, S.; Kirchner, G. [Federal Office for Radiation Protection, Salzgitter, (Germany)
2006-07-01
International organisations, including ICRP, IAEA and UNSCEAR, and the international scientific community are currently engaged in work on the protection of non-human species against ionising radiation as a complement to the existing framework centred on humans. The basic ideas and conceptual approaches developed during the last decade substantially agree with each other. The EC funded FASSET project (Framework for Assessment of Environmental Impact) summarizes and reviews the current knowledge of radiation effects on biota, provides basic dosimetric models for fauna and flora and suggests an assessment framework. Protection of the environment against ionising radiation, on the one hand, aims to close a conceptual gap in radiation protection. Therefore, current frameworks for environmental protection conceptually follow radiation protection of man. On the other hand, preservation of natural resources, habitats and the biological diversity are common objectives of environmental protection against radioactive as well as chemical pollutants, suggesting an integrated approach based on the fundamental ideas of conventional environmental protection. In essence, a conceptual framework encompassing protection of man as well as of fauna and flora against chemical and radioactive pollutants would be highly desirable in view of coherence, consistency and transparency. Such an umbrella concept communicates the positive message that similar issues are treated in a conceptually similar manner, thus facilitating scientific justification and public communication and increasing acceptance. This paper discusses different concepts and approaches to radiation protection of man, radiation protection of non-human biota and environmental protection against chemical pollutants, identifies common principles and differences, addresses conflicting requirements and evaluates the feasibility and limitations of such an encompassing framework. (authors)
Sun, Hui; Wen, Jiayi; Zhao, Yanxiang; Li, Bo; McCammon, J Andrew
2015-12-28
Dielectric boundary based implicit-solvent models provide efficient descriptions of coarse-grained effects, particularly the electrostatic effect, of aqueous solvent. Recent years have seen the initial success of a new such model, variational implicit-solvent model (VISM) [Dzubiella, Swanson, and McCammon Phys. Rev. Lett. 96, 087802 (2006) and J. Chem. Phys. 124, 084905 (2006)], in capturing multiple dry and wet hydration states, describing the subtle electrostatic effect in hydrophobic interactions, and providing qualitatively good estimates of solvation free energies. Here, we develop a phase-field VISM to the solvation of charged molecules in aqueous solvent to include more flexibility. In this approach, a stable equilibrium molecular system is described by a phase field that takes one constant value in the solute region and a different constant value in the solvent region, and smoothly changes its value on a thin transition layer representing a smeared solute-solvent interface or dielectric boundary. Such a phase field minimizes an effective solvation free-energy functional that consists of the solute-solvent interfacial energy, solute-solvent van der Waals interaction energy, and electrostatic free energy described by the Poisson-Boltzmann theory. We apply our model and methods to the solvation of single ions, two parallel plates, and protein complexes BphC and p53/MDM2 to demonstrate the capability and efficiency of our approach at different levels. With a diffuse dielectric boundary, our new approach can describe the dielectric asymmetry in the solute-solvent interfacial region. Our theory is developed based on rigorous mathematical studies and is also connected to the Lum-Chandler-Weeks theory (1999). We discuss these connections and possible extensions of our theory and methods.
Institute of Scientific and Technical Information of China (English)
SHI De-Heng; SUN Jin-Feng; MA Heng; ZHU Zun-Lue; YANG Xiang-Dong
2007-01-01
To quantify the changes of the geometric shielding effect in a molecule as the incident electron energy varies,we present an empirical fraction, which represents the total cross section (TCS) contributions of shielded atoms in a molecule at different energies. Using this empirical fraction, a new formulation of the additivity rule is proposed. Using this new additivity rule, the TCSs for electron scattering by CO2, C2H2, C6H12 (cyclo-hexane) and CsH16 (cyclo-octane) are calculated in the range 50-5000 eV. Here the atomic cross sections are derived from the experimental TCS results of simple molecules (H2, O2, CO). The quantitative TCSs are compared with those obtained by experiments and other theories, and good agreement is attained over a wide energy range.
Institute of Scientific and Technical Information of China (English)
Jiahuan Wu; Jianlin Wang; Tao Yu; Liqiang Zhao
2014-01-01
The approaches to discrete approximation of Pareto front using multi-objective evolutionary algorithms have the problems of heavy computation burden, long running time and missing Pareto optimal points. In order to overcome these problems, an approach to continuous approximation of Pareto front using geometric support vector regression is presented. The regression model of the small size approximate discrete Pareto front is constructed by geometric support vector regression modeling and is described as the approximate continuous Pareto front. In the process of geometric support vector regression modeling, considering the distribution characteristic of Pareto optimal points, the separable augmented training sample sets are constructed by shifting original training sample points along multiple coordinated axes. Besides, an interactive decision-making (DM) procedure, in which the continuous approximation of Pareto front and decision-making is performed interactive-ly, is designed for improving the accuracy of the preferred Pareto optimal point. The correctness of the continuous approximation of Pareto front is demonstrated with a typical multi-objective optimization problem. In addition, combined with the interactive decision-making procedure, the continuous approximation of Pareto front is applied in the multi-objective optimization for an industrial fed-batch yeast fermentation process. The experi-mental results show that the generated approximate continuous Pareto front has good accuracy and complete-ness. Compared with the multi-objective evolutionary algorithm with large size population, a more accurate preferred Pareto optimal point can be obtained from the approximate continuous Pareto front with less compu-tation and shorter running time. The operation strategy corresponding to the final preferred Pareto optimal point generated by the interactive DM procedure can improve the production indexes of the fermentation process effectively.
Consistence of Network Filtering Rules
Institute of Scientific and Technical Information of China (English)
SHE Kun; WU Yuancheng; HUANG Juncai; ZHOU Mingtian
2004-01-01
The inconsistence of firewall/VPN(Virtual Private Network) rule makes a huge maintainable cost.With development of Multinational Company,SOHO office,E-government the number of firewalls/VPN will increase rapidly.Rule table in stand-alone or network will be increased in geometric series accordingly.Checking the consistence of rule table manually is inadequate.A formal approach can define semantic consistence,make a theoretic foundation of intelligent management about rule tables.In this paper,a kind of formalization of host rules and network ones for auto rule-validation based on SET theory were proporsed and a rule validation scheme was defined.The analysis results show the superior performance of the methods and demonstrate its potential for the intelligent management based on rule tables.
Mihalache, Daniela; Giuşcă, Simona Eliza; Balan, Raluca; Amălinei, Cornelia; Grigoraş, Adriana; Căruntu, Irina Draga
2014-01-01
This study focuses on the analysis of geometric descriptors that can be applied in breast cytology, and their correlation with the qualitative features, with the aim to underline the differences between the benign and malignant cell profile. The morphometric investigation was performed on smears obtained by fine needle aspiration, 10 cases (group 1) diagnosed as benign and 10 cases (group 2) as malignant. For group 2, the malignancy was histopathologically confirmed on the surgical resection specimen. The sequence of automated operation, previously reported by us, permitted the extraction of the following geometrical descriptors: cytoplasmic area, nuclear area, nucleo-cytoplasmic ratio, equivalent diameter and form factor. We analyzed the differences between the benign and malignant morphometric features, and the correlation between the malignant morphometric features and cytological, respectively histological grading. Statistically significant difference in cytoplasmic areas, nuclear areas, value of nucleo-cytoplasmic ratio and equivalent diameter was noted between group I and II. For the form factor, we did not register statistically significant differences. For group 2, the correlation between the morphometric features and cytological grading revealed that the nuclear area is the most valuable descriptor, due to the significant differences between the three successive grades of cytological severity, followed by the cytoplasmic area and equivalent diameter, their numerical values presenting significant differences between cytological grade 1 and 3, and 2 and 3, respectively. The statistical analysis between the morphometric features and histological grading showed that nuclear area and equivalent diameter are the most viable indicators, due to the significant differences present between the three successive grades of pathologic severity, followed by cytoplasmic area (significant differences only for grade 2 versus 3) and for nucleo-cytoplasmic ratio (significant
Clark, Charles R; McKee, Richard H; Freeman, James J; Swick, Derek; Mahagaokar, Suneeta; Pigram, Glenda; Roberts, Linda G; Smulders, Chantal J; Beatty, Patrick W
2013-12-01
The process streams refined from petroleum crude oil for use in petroleum products are among those designated by USEPA as UVCB substances (unknown or variable composition, complex reaction products and biological materials). They are identified on global chemical inventories with unique Chemical Abstract Services (CAS) numbers and names. The chemical complexity of most petroleum substances presents challenges when evaluating their hazards and can result in differing evaluations due to the varying level of hazardous constituents and differences in national chemical control regulations. Global efforts to harmonize the identification of chemical hazards are aimed at promoting the use of consistent hazard evaluation criteria. This paper discusses a systematic approach for the health hazard evaluation of petroleum substances using chemical categories and the United Nations (UN) Globally Harmonized System (GHS) of classification and labeling. Also described are historical efforts to characterize the hazard of these substances and how they led to the development of categories, the identification of potentially hazardous constituents which should be considered, and a summary of the toxicology of the major petroleum product groups. The use of these categories can increase the utility of existing data, provide better informed hazard evaluations, and reduce the amount of animal testing required.
Grimes, Thomas V.; Wilson, Angela K.; DeYonker, Nathan J.; Cundari, Thomas R.
2007-10-01
The correlation consistent composite approach (ccCA) was applied to the prediction of reaction barrier heights (i.e., transition state energy relative to reactants and products) for a standard benchmark set of reactions comprised of both hydrogen transfer reactions and nonhydrogen transfer reactions (i.e., heavy-atom transfer, SN2, and unimolecular reactions). The ccCA method was compared against G3B for the same set of reactions. Error metrics indicate that ccCA achieves "chemical accuracy" with a mean unsigned error (MUE) of 0.89kcal/mol with respect to the benchmark data for barrier heights; G3B has a mean unsigned error of 1.94kcal/mol. Further, the greater accuracy of ccCA for predicted reaction barriers is compared to other benchmarked literature methods, including density functional (BB1K, MUE =1.16kcal/mol) and wavefunction-based [QCISD(T), MUE =1.10kcal/mol] methods.
Energy Technology Data Exchange (ETDEWEB)
Gawand, Hemangi Laxman [Homi Bhabha National Institute, Computer Section, BARC, Mumbai (India); Bhattacharjee, A. K. [Reactor Control Division, BARC, Mumbai (India); Roy, Kallol [BHAVINI, Kalpakkam (India)
2017-04-15
In industrial plants such as nuclear power plants, system operations are performed by embedded controllers orchestrated by Supervisory Control and Data Acquisition (SCADA) software. A targeted attack (also termed a control aware attack) on the controller/SCADA software can lead a control system to operate in an unsafe mode or sometimes to complete shutdown of the plant. Such malware attacks can result in tremendous cost to the organization for recovery, cleanup, and maintenance activity. SCADA systems in operational mode generate huge log files. These files are useful in analysis of the plant behavior and diagnostics during an ongoing attack. However, they are bulky and difficult for manual inspection. Data mining techniques such as least squares approximation and computational methods can be used in the analysis of logs and to take proactive actions when required. This paper explores methodologies and algorithms so as to develop an effective monitoring scheme against control aware cyber attacks. It also explains soft computation techniques such as the computational geometric method and least squares approximation that can be effective in monitor design. This paper provides insights into diagnostic monitoring of its effectiveness by attack simulations on a four-tank model and using computation techniques to diagnose it. Cyber security of instrumentation and control systems used in nuclear power plants is of paramount importance and hence could be a possible target of such applications.
Tabassum, Hina
2014-07-01
This paper presents a novel framework to derive the statistics of the interference considering dedicated and shared spectrum access for uplink transmission in two-tier small cell networks such as the macrocell-femtocell networks. The framework exploits the distance distributions from geometric probability theory to characterize the uplink interference while considering a traditional grid-model set-up for macrocells along with the randomly deployed femtocells. The derived expressions capture the impact of path-loss, composite shadowing and fading, uniform and non-uniform traffic loads, spatial distribution of femtocells, and partial and full spectral reuse among femtocells. Considering dedicated spectrum access, first, we derive the statistics of co-tier interference incurred at both femtocell and macrocell base stations (BSs) from a single interferer by approximating generalized- K composite fading distribution with the tractable Gamma distribution. We then derive the distribution of the number of interferers considering partial spectral reuse and moment generating function (MGF) of the cumulative interference for both partial and full spectral reuse scenarios. Next, we derive the statistics of the cross-tier interference at both femtocell and macrocell BSs considering shared spectrum access. Finally, we utilize the derived expressions to analyze the capacity in both dedicated and shared spectrum access scenarios. The derived expressions are validated by the Monte Carlo simulations. Numerical results are generated to assess the feasibility of shared and dedicated spectrum access in femtocells under varying traffic load and spectral reuse scenarios. © 2014 IEEE.
Cucchi, Thomas; Dai, Lingling; Balasse, Marie; Zhao, Chunqing; Gao, Jiangtao; Hu, Yaowu; Yuan, Jing; Vigne, Jean-Denis
2016-01-01
Pigs have played a major role in the economic, social and symbolic systems of China since the Early Neolithic more than 8,000 years ago. However, the interaction between the history of pig domestication and transformations in Chinese society since then, have not been fully explored. In this paper, we investigated the co-evolution from the earliest farming communities through to the new political and economic models of state-like societies, up to the Chinese Empire, using 5,000 years of archaeological records from the Xiawanggang (XWG) and Xinzhai (XZ) sites (Henan Province). To trace the changes of pig populations against husbandry practices, we combined the geometric morphometric analysis of dental traits with a study of the stable carbon and nitrogen isotope ratios from bone collagen. The domestication process intensified during the Neolithic Yangshao, prompted by greater selective pressure and/or better herd control against wild introgression. After that, pig farming, in XWG, relied on local livestock and a gradual change of husbandry practices overtime. This was characterized by a gentle increase in millet foddering and animal protein intake, until a complete change over to household management during the Han dynasty. The only rupture in this steady trend of husbandry occurred during the Longshan period, with the appearance of small sized and idiosyncratic pigs with specific feeding practices (relying on millet and household scraps). From three exploratory hypothesis, we explored the possibility of anti-elite pig production in XWG during the Longshan period, as a means to resist incorporation into a new economic model promoting intensified domestic production. This exploratory hypothesis is the most suitable to our dataset; however, numerous areas need to be explored further in order to adequately document the role of pigs in the rise of China's complex societies.
Werneburg, Ingmar; Wilson, Laura A B; Parr, William C H; Joyce, Walter G
2015-03-01
The unique ability of modern turtles to retract their head and neck into the shell through a side-necked (pleurodiran) or hidden-necked (cryptodiran) motion is thought to have evolved independently in crown turtles. The anatomical changes that led to the vertebral shapes of modern turtles, however, are still poorly understood. Here we present comprehensive geometric morphometric analyses that trace turtle vertebral evolution and reconstruct disparity across phylogeny. Disparity of vertebral shape was high at the dawn of turtle evolution and decreased after the modern groups evolved, reflecting a stabilization of morphotypes that correspond to the two retraction modes. Stem turtles, which had a very simple mode of retraction, the lateral head tuck, show increasing flexibility of the neck through evolution towards a pleurodiran-like morphotype. The latter was the precondition for evolving pleurodiran and cryptodiran vertebrae. There is no correlation between the construction of formed articulations in the cervical centra and neck mobility. An increasing mobility between vertebrae, associated with changes in vertebral shape, resulted in a more advanced ability to retract the neck. In this regard, we hypothesize that the lateral tucking retraction of stem turtles was not only the precondition for pleurodiran but also of cryptodiran retraction. For the former, a kink in the middle third of the neck needed to be acquired, whereas for the latter modification was necessary between the eighth cervical vertebra and first thoracic vertebra. Our paper highlights the utility of 3D shape data, analyzed in a phylogenetic framework, to examine the magnitude and mode of evolutionary modifications to vertebral morphology. By reconstructing and visualizing ancestral anatomical shapes, we provide insight into the anatomical features underlying neck retraction mode, which is a salient component of extant turtle classification. © The Author(s) 2014. Published by Oxford University Press
Frè, Pietro Giuseppe
2013-01-01
‘Gravity, a Geometrical Course’ presents general relativity (GR) in a systematic and exhaustive way, covering three aspects that are homogenized into a single texture: i) the mathematical, geometrical foundations, exposed in a self consistent contemporary formalism, ii) the main physical, astrophysical and cosmological applications, updated to the issues of contemporary research and observations, with glimpses on supergravity and superstring theory, iii) the historical development of scientific ideas underlying both the birth of general relativity and its subsequent evolution. The book is divided in two volumes. Volume One is dedicated to the development of the theory and basic physical applications. It guides the reader from the foundation of special relativity to Einstein field equations, illustrating some basic applications in astrophysics. A detailed account of the historical and conceptual development of the theory is combined with the presentation of its mathematical foundations. Differe...
Bestvina, Mladen; Vogtmann, Karen
2014-01-01
Geometric group theory refers to the study of discrete groups using tools from topology, geometry, dynamics and analysis. The field is evolving very rapidly and the present volume provides an introduction to and overview of various topics which have played critical roles in this evolution. The book contains lecture notes from courses given at the Park City Math Institute on Geometric Group Theory. The institute consists of a set of intensive short courses offered by leaders in the field, designed to introduce students to exciting, current research in mathematics. These lectures do not duplicate standard courses available elsewhere. The courses begin at an introductory level suitable for graduate students and lead up to currently active topics of research. The articles in this volume include introductions to CAT(0) cube complexes and groups, to modern small cancellation theory, to isometry groups of general CAT(0) spaces, and a discussion of nilpotent genus in the context of mapping class groups and CAT(0) gro...
Consistent matter couplings for Plebanski gravity
Tennie, Felix
2010-01-01
We develop a scheme for the minimal coupling of all standard types of tensor and spinor field matter to Plebanski gravity. This theory is a geometric reformulation of vacuum general relativity in terms of two-form frames and connection one-forms, and provides a covariant basis for various quantization approaches. Using the spinor formalism we prove the consistency of the newly proposed matter coupling by demonstrating the full equivalence of Plebanski gravity plus matter to Einstein--Cartan gravity. As a byproduct we also show the consistency of some previous suggestions for matter actions.
Consistent matter couplings for Plebanski gravity
Tennie, Felix; Wohlfarth, Mattias N. R.
2010-11-01
We develop a scheme for the minimal coupling of all standard types of tensor and spinor field matter to Plebanski gravity. This theory is a geometric reformulation of vacuum general relativity in terms of two-form frames and connection one-forms, and provides a covariant basis for various quantization approaches. Using the spinor formalism we prove the consistency of the newly proposed matter coupling by demonstrating the full equivalence of Plebanski gravity plus matter to Einstein-Cartan gravity. As a by-product we also show the consistency of some previous suggestions for matter actions.
Mobile Watermarking against Geometrical Distortions
Directory of Open Access Journals (Sweden)
Jing Zhang
2015-08-01
Full Text Available Mobile watermarking robust to geometrical distortions is still a great challenge. In mobile watermarking, efficient computation is necessary because mobile devices have very limited resources due to power consumption. In this paper, we propose a low-complexity geometrically resilient watermarking approach based on the optimal tradeoff circular harmonic function (OTCHF correlation filter and the minimum average correlation energy Mellin radial harmonic (MACE-MRH correlation filter. By the rotation, translation and scale tolerance properties of the two kinds of filter, the proposed watermark detector can be robust to geometrical attacks. The embedded watermark is weighted by a perceptual mask which matches very well with the properties of the human visual system. Before correlation, a whitening process is utilized to improve watermark detection reliability. Experimental results demonstrate that the proposed watermarking approach is computationally efficient and robust to geometrical distortions.
Scale effect and geometric shapes of grains
Institute of Scientific and Technical Information of China (English)
GUO Hui; GUO Xing-ming
2007-01-01
The rule-of-mixture approach has become one of the widely spread ways to investigate the mechanical properties of nano-materials and nano-structures, and it is very important for the simulation results to exactly compute phase volume fractions. The nanocrystalline (NC) materials are treated as three-phase composites consisting of grain core phase, grain boundary (GB) phase and triple junction phase, and a two-dimensional three-phase mixture regular polygon model is established to investigate the scale effect of mechanical properties of NC materials due to the geometrical polyhedron characteristics of crystal grain. For different multi-sided geometrical shapes of grains, the corresponding regular polygon model is adopted to obtain more precise phase volume fractions and exactly predict the mechanical properties of NC materials.
Geometric phases in graphitic cones
Energy Technology Data Exchange (ETDEWEB)
Furtado, Claudio [Departamento de Fisica, CCEN, Universidade Federal da Paraiba, Cidade Universitaria, 58051-970 Joao Pessoa, PB (Brazil)], E-mail: furtado@fisica.ufpb.br; Moraes, Fernando [Departamento de Fisica, CCEN, Universidade Federal da Paraiba, Cidade Universitaria, 58051-970 Joao Pessoa, PB (Brazil); Carvalho, A.M. de M [Departamento de Fisica, Universidade Estadual de Feira de Santana, BR116-Norte, Km 3, 44031-460 Feira de Santana, BA (Brazil)
2008-08-04
In this Letter we use a geometric approach to study geometric phases in graphitic cones. The spinor that describes the low energy states near the Fermi energy acquires a phase when transported around the apex of the cone, as found by a holonomy transformation. This topological result can be viewed as an analogue of the Aharonov-Bohm effect. The topological analysis is extended to a system with n cones, whose resulting configuration is described by an effective defect00.
Geometric inequalities methods of proving
Sedrakyan, Hayk
2017-01-01
This unique collection of new and classical problems provides full coverage of geometric inequalities. Many of the 1,000 exercises are presented with detailed author-prepared-solutions, developing creativity and an arsenal of new approaches for solving mathematical problems. This book can serve teachers, high-school students, and mathematical competitors. It may also be used as supplemental reading, providing readers with new and classical methods for proving geometric inequalities. .
Lloyd, Seth
2012-01-01
This letter analyzes the limits that quantum mechanics imposes on the accuracy to which spacetime geometry can be measured. By applying the fundamental physical bounds to measurement accuracy to ensembles of clocks and signals moving in curved spacetime -- e.g., the global positioning system -- I derive a covariant version of the quantum geometric limit: the total number of ticks of clocks and clicks of detectors that can be contained in a four volume of spacetime of radius r and temporal extent t is less than or equal to rt/\\pi x_P t_P, where x_P, t_P are the Planck length and time. The quantum geometric limit bounds the number of events or `ops' that can take place in a four-volume of spacetime: each event is associated with a Planck-scale area. Conversely, I show that if each quantum event is associated with such an area, then Einstein's equations must hold. The quantum geometric limit is consistent with and complementary to the holographic bound which limits the number of bits that can exist within a spat...
Directory of Open Access Journals (Sweden)
Salvador Gigena
2014-01-01
Full Text Available The use of differential equations methods in the approach, treatment, and solution of problems in diverse areas of geometry, particularly in affine differential geometry is well known and prolific, where they have proven to be quite fruitful when it comes to the obtainment of definite results. It is perhaps lesser known that the same kind of those very same methods has been and is currently being used to treat developments in some specific areas of applied sciences, such as the theory of shells where, similarly, they can be proven to be quite effective as well. In this paper we precisely show that such is the case in two particular, related instances: the historic approach of the classical, Euclidean part of the theory pursued by Fritz John, in the past century, and the more recent expositions that we ourselves have dedicated to the affine counterpart of the theory.
Directory of Open Access Journals (Sweden)
Shruti eGopal
2016-03-01
Full Text Available Identification of functionally connected regions while at rest has been at the forefront of research focusing on understanding interactions between different brain regions. Studies have utilized a variety of approaches including seed based as well as data-driven approaches to identifying such networks. Most such techniques involve differentiating groups based on group mean measures. There has been little work focused on differences in spatial characteristics of resting fMRI data. We present a method to identify between group differences in the variability in the cluster characteristics of network regions within components estimated via independent vector analysis (IVA. IVA is a blind source separation approach shown to perform well in capturing individual subject variability within a group model. We evaluate performance of the approach using simulations and then apply to a relatively large schizophrenia data set (82 schizophrenia patients and 89 healthy controls. We postulate that group differences in the intra-network distributional characteristics of resting state network voxel intensities might indirectly capture important distinctions between the brain function of healthy and clinical populations. Results demonstrate that specific areas of the brain, superior and middle temporal gyrus that are involved in language and recognition of emotions, show greater component level variance in amplitude weights for schizophrenia patients than healthy controls. Statistically significant correlation between component level spatial variance and component volume was observed in 19 of the 27 non-artifactual components implying an evident relationship between the two parameters. Additionally, the greater spread in the distance of the cluster peak of a component from the centroid in schizophrenia patients compared to healthy controls was observed for seven components. These results indicate that there is hidden potential in exploring variance and possibly
Young, Hsu-Wen Vincent; Hsu, Ke-Hsin; Pham, Van-Truong; Tran, Thi-Thao; Lo, Men-Tzung
2017-09-01
A new method for signal decomposition is proposed and tested. Based on self-consistent nonlinear wave equations with self-sustaining physical mechanisms in mind, the new method is adaptive and particularly effective for dealing with synthetic signals consisting of components of multiple time scales. By formulating the method into an optimization problem and developing the corresponding algorithm and tool, we have proved its usefulness not only for analyzing simulated signals, but, more importantly, also for real clinical data.
Study on geometric approach of SVM algorithm SK algorithm analysis and study%SVM的几何方法——SK类思路的研究
Institute of Scientific and Technical Information of China (English)
常振华; 陈伯成; 李英杰; 刘文煌; 闫学为
2011-01-01
The geometric approach of the Support Vector Machine(SVM) is a kind of geometric way to find the solution to the problem of the SVM algorithm. Based on its geometric characters,the SK(Schlesinger-Kozinec) algorithm is studied intuitively. It briefly sums up the two convex hulls,based on their relative positions, into five categories,and makes sure their optimizing position got in each computing is mostly at the hull vertices or boundary,it can get to the boundary(the optimization place of the computing) at the first computation.The manual single-step simulation results show that the projection is not always successful for such kind of algorithms in many cases,though it can't affect the computing result,but can weaken the algorithm efficiency. Based on the analysis,it demonstrates two improving ways for the soft SK algorithm(Backward-SK and Forward-SK methods),and makes some simulation for comparing. The simulation results show that the improved method computing results are almost same as the SK and soft SK ones,but the computing process of improved one is more intuitive.%支持向量机(Support Vector Machine,SVM)的几何方法是一种基于SVM计算过程中几何意义出发的求解方法.利用其几何特点,比较直观地对其基本算法的构建过程进行了分析.两凸包相对位置可以简要地归纳成5类,且在该类算法迭代过程最优点多在顶点和边界上,该类算法在第一次迭代就可能达到边界(最优点);该类算法的手动单步模拟计结果揭示:很多情况下,该类算法迭代过程的投影并不成功,虽不影响解法的最终结果,但会影响迭代效率:基于几何的分析,给出软SK软算法的两种改进思路(Backward-SK和Forward-SK思路),并进行了仿真比较计算.实验表明,该方法计算效果与原思路相似,但是计算过程理解更加直观.
Letterman, Roger G; DeYonker, Nathan J; Burkey, Theodore J; Webster, Charles Edwin
2016-12-22
Acquisition of highly accurate energetic data for chromium-containing molecules and various chromium carbonyl complexes is a major step toward calibrating bond energies and thermal isomerization energies from mechanisms for Cr-centered photochromic materials being developed in our laboratories. The performance of six density functionals in conjunction with seven basis sets, utilizing Gaussian-type orbitals, has been evaluated for the calculation of gas-phase enthalpies of formation and enthalpies of reaction at 298.15 K on various chromium-containing systems. Nineteen molecules were examined: Cr(CO)6, Cr(CO)5, Cr(CO)5(C2H4), Cr(CO)5(C2ClH3), Cr(CO)5(cis-(C2Cl2H2)), Cr(CO)5(gem-(C2Cl2H2)), Cr(CO)5(trans-(C2Cl2H2)), Cr(CO)5(C2Cl3H), Cr(CO)5(C2Cl4), CrO2, CrF2, CrCl2, CrCl4, CrBr2, CrBr4, CrOCl2, CrO2Cl2, CrOF2, and CrO2F2. The performance of 69 density functionals in conjunction with a single basis set utilizing Slater-type orbitals (STO) and a zeroth-order relativistic approximation was also evaluated for the same test set. Values derived from density functional theory were compared to experimental values where available, or values derived from the correlation consistent composite approach (ccCA). When all reactions were considered, the functionals that exhibited the smallest mean absolute deviations (MADs, in kcal mol(-1)) from ccCA-derived values were B97-1 (6.9), VS98 (9.0), and KCIS (9.4) in conjunction with quadruple-ζ STO basis sets and B97-1 (9.3) in conjunction with cc-pVTZ basis sets. When considering only the set of gas-phase reaction enthalpies (ΔrH°gas), the functional that exhibited the smallest MADs from ccCA-derived values were B97-1 in conjunction with cc-pVTZ basis sets (9.1) and PBEPBE in conjunction with polarized valence triple-ζ basis set/effective core potential combination for Cr and augmented and multiple polarized triple-ζ Pople style basis sets (9.5). Also of interest, certainly because of known cancellation of errors, PBEPBE with the
Ashburn, J R; Ashburn, James R.; Colvert, Paul M.
2006-01-01
We introduce a Bayesian mean-value approach for ranking all college football teams using only win-loss data. This approach is unique in that the prior distribution necessary to handle undefeated and winless teams is calculated self-consistently. Furthermore, we will show statistics supporting the validity of the prior distribution. Finally, a brief comparison with other football rankings will be presented.
Tiwari, Mayank; Gupta, Bhupendra
2016-07-01
We propose an image noise removal method based on spatial gradient based bilateral filter and smooth filtering. Our method consist two step process; in first step, for a given noisy image we extract all of its patches and apply our newly developed spatial gradient based bilateral filter on each patch and get an reference image; in second step we perform smooth filtering on each pixel of the reference image. Experimental results show that our method is consistent and comparable or better than state-of-the-art.
Geometric constraint solving with geometric transformation
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
This paper proposes two algorithms for solving geometric constraint systems. The first algorithm is for constrained systems without loops and has linear complexity. The second algorithm can solve constraint systems with loops. The latter algorithm is of quadratic complexity and is complete for constraint problems about simple polygons. The key to it is to combine the idea of graph based methods for geometric constraint solving and geometric transformations coming from rule-based methods.
Directory of Open Access Journals (Sweden)
Scott M. Hardie
2014-02-01
Full Text Available Hand preference is often viewed as a troublesome variable in psychological research, with left-handers routinely excluded from studies. Contrary to this, a body of evidence has shown hand preference to be a useful variable when examining human behaviour. A recent review argues that the most effective way of using handedness as a variable, is a comparison between individuals who use their dominant hand for virtually all manual activities (consistent handers versus those who use their other hand for at least one activity (inconsistent handers. The authors contend that researchers should only focus on degree of handedness rather than direction of preference (left versus right. However, we argue that the field suffers from a number of methodological and empirical issues. These include a lack of consensus in choice of cut-off point to divide consistent and inconsistent categories and importantly a paucity of data from left-handers. Consequentially, researchers predominantly compare inconsistent versus consistent right-handers, largely linked to memory, cognition and language. Other research on response style and personality measures shows robust direction of handedness effects. The present study examines both strength and direction of handedness on self-reported Behavioural Inhibition System (BIS and Activation System (BAS scores, using evidence from a large (N=689 dataset including more than 200 left-handers. There were degree of handedness effects on BIS and BAS-Fun Seeking, but effects are largely driven by differences between consistent left-handers and other groups. Choice of cut-off point substantively influenced results, and suggests that unless a suitable sample of left-handers is included, researchers clarify that their degree of handedness effects are applicable only to right-handers. We concur that strength of hand preference is an important variable but caution that differences related to consistency may not be identical in right and left-handers.
Dijkstra, J.J.; Meeussen, J.C.L.; Sloot, van der H.A.; Comans, R.N.J.
2008-01-01
To improve the long-term environmental risk assessment of waste applications, a predictive "multi-surface" modelling approach has been developed to simultaneously predict the leaching and reactive transport of a broad range of major and trace elements (i.e., pH, Na, Al, Fe, Ca, SO4, Mg, Si, PO4, CO3
Dijkstra, J.J.; Meeussen, J.C.L.; Sloot, van der H.A.; Comans, R.N.J.
2008-01-01
To improve the long-term environmental risk assessment of waste applications, a predictive "multi-surface" modelling approach has been developed to simultaneously predict the leaching and reactive transport of a broad range of major and trace elements (i.e., pH, Na, Al, Fe, Ca, SO4, Mg, Si, PO4, CO3
Geometric Complexity Theory: Introduction
Sohoni, Ketan D Mulmuley Milind
2007-01-01
These are lectures notes for the introductory graduate courses on geometric complexity theory (GCT) in the computer science department, the university of Chicago. Part I consists of the lecture notes for the course given by the first author in the spring quarter, 2007. It gives introduction to the basic structure of GCT. Part II consists of the lecture notes for the course given by the second author in the spring quarter, 2003. It gives introduction to invariant theory with a view towards GCT. No background in algebraic geometry or representation theory is assumed. These lecture notes in conjunction with the article \\cite{GCTflip1}, which describes in detail the basic plan of GCT based on the principle called the flip, should provide a high level picture of GCT assuming familiarity with only basic notions of algebra, such as groups, rings, fields etc.
Viapiana, Agnieszka; Struck-Lewicka, Wiktoria; Konieczynski, Pawel; Wesolowski, Marek; Kaliszan, Roman
2016-01-01
Chamomile has been used as an herbal medication since ancient times and is still popular because it contains various bioactive phytochemicals that could provide therapeutic effects. In this study, a simple and reliable HPLC method was developed to evaluate the quality consistency of nineteen chamomile samples through establishing a chromatographic fingerprint, quantification of phenolic compounds and determination of antioxidant activity. For fingerprint analysis, 12 peaks were selected as the common peaks to evaluate the similarities of commercial samples of chamomile obtained from different manufacturers. A similarity analysis was performed to assess the similarity/dissimilarity of chamomile samples where values varied from 0.868 to 0.990 what indicating that samples from different manufacturers were consistent. Additionally, simultaneous quantification of five phenolic acids (gallic, caffeic, syringic, p-coumaric, ferulic) and four flavonoids (rutin, myricetin, quercetin and keampferol) was performed to interpret the quality consistency. In quantitative analysis, the nine individual phenolic compounds showed good regression (r > 0.9975). Inter- and intra-day precisions for all analyzed compounds expressed as relative standard deviation (CV) ranged from 0.05% to 3.12%. Since flavonoids and other polyphenols are commonly recognized as natural antioxidants, the antioxidant activity of chamomile samples was evaluated using 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity and ferric reducing/antioxidant power (FRAP) assay. Correlation analysis was used to assess the relationship between antioxidant activity and phenolic composition, and multivariate analysis (PCA and HCA) were applied to distinguish chamomile samples. Results shown in the study indicate high similarity of chamomile samples among them, widely spread in the market and commonly used by people as infusions or teas, as well as that there were no statistically significant differences among
Viapiana, Agnieszka; Struck-Lewicka, Wiktoria; Konieczynski, Pawel; Wesolowski, Marek; Kaliszan, Roman
2016-01-01
Chamomile has been used as an herbal medication since ancient times and is still popular because it contains various bioactive phytochemicals that could provide therapeutic effects. In this study, a simple and reliable HPLC method was developed to evaluate the quality consistency of nineteen chamomile samples through establishing a chromatographic fingerprint, quantification of phenolic compounds and determination of antioxidant activity. For fingerprint analysis, 12 peaks were selected as the common peaks to evaluate the similarities of commercial samples of chamomile obtained from different manufacturers. A similarity analysis was performed to assess the similarity/dissimilarity of chamomile samples where values varied from 0.868 to 0.990 what indicating that samples from different manufacturers were consistent. Additionally, simultaneous quantification of five phenolic acids (gallic, caffeic, syringic, p-coumaric, ferulic) and four flavonoids (rutin, myricetin, quercetin and keampferol) was performed to interpret the quality consistency. In quantitative analysis, the nine individual phenolic compounds showed good regression (r > 0.9975). Inter- and intra-day precisions for all analyzed compounds expressed as relative standard deviation (CV) ranged from 0.05% to 3.12%. Since flavonoids and other polyphenols are commonly recognized as natural antioxidants, the antioxidant activity of chamomile samples was evaluated using 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity and ferric reducing/antioxidant power (FRAP) assay. Correlation analysis was used to assess the relationship between antioxidant activity and phenolic composition, and multivariate analysis (PCA and HCA) were applied to distinguish chamomile samples. Results shown in the study indicate high similarity of chamomile samples among them, widely spread in the market and commonly used by people as infusions or teas, as well as that there were no statistically significant differences among
Edrisi, Siroos; Bidhendi, Norollah Kasiri; Haghighi, Maryam
2017-01-01
Effective thermal conductivity of the porous media was modeled based on a self-consistent method. This model estimates the heat transfer between insulator surface and air cavities accurately. In this method, the pore size and shape, the temperature gradient and other thermodynamic properties of the fluid was taken into consideration. The results are validated by experimental data for fire bricks used in cracking furnaces at the olefin plant of Maroon petrochemical complexes well as data published for polyurethane foam (synthetic polymers) IPTM and IPM. The model predictions present a good agreement against experimental data with thermal conductivity deviating <1 %.
Directory of Open Access Journals (Sweden)
Agnieszka Viapiana
2016-10-01
Full Text Available Chamomile has been used as an herbal medication since ancient times and is still popular because it contains various bioactive phytochemicals that could provide therapeutic effects. In this study, a simple and reliable HPLC method was developed to evaluate the quality consistency of nineteen chamomile samples through establishing a chromatographic fingerprint, quantification of phenolic compounds and determination of antioxidant activity. For fingerprint analysis, 12 peaks were selected as the common peaks to evaluate the similarities of commercial samples of chamomile obtained from different manufacturers. A similarity analysis was performed to assess the similarity/dissimilarity of chamomile samples where values varied from 0.868 to 0.990 what indicating that samples from different manufacturers were consistent. Additionally, simultaneous quantification of five phenolic acids (gallic, caffeic, syringic, p-coumaric, ferulic and four flavonoids (rutin, myricetin, quercetin and keampferol was performed to interpret the quality consistency. In quantitative analysis, the nine individual phenolic compounds showed good regression (r > 0.9975. Inter- and intra-day precisions for all analysed compounds expressed as relative standard deviation (CV ranged from 0.05% to 3.12%. Since flavonoids and other polyphenols are commonly recognised as natural antioxidants, the antioxidant activity of chamomile samples was evaluated using 1,1-diphenyl-2-picrylhydrazyl (DPPH radical scavenging activity and ferric reducing/antioxidant power (FRAP assay. Correlation analysis was used to assess the relationship between antioxidant activity and phenolic composition, and multivariate analysis (PCA and HCA were applied to distinguish chamomile samples. Results shown in the study indicate high similarity of chamomile samples among them, widely spread in the market and commonly used by people as infusions or teas, as well as that there were no statistically significant
DEFF Research Database (Denmark)
Staunstrup, Jørgen
1998-01-01
This paper proposes that Interface Consistency is an important issue for the development of modular designs. Byproviding a precise specification of component interfaces it becomes possible to check that separately developedcomponents use a common interface in a coherent matter thus avoiding a very...... significant source of design errors. Awide range of interface specifications are possible, the simplest form is a syntactical check of parameter types.However, today it is possible to do more sophisticated forms involving semantic checks....
Self-Consistent MUSIC: An approach to the localization of true brain interactions from EEG/MEG data.
Shahbazi, Forooz; Ewald, Arne; Nolte, Guido
2015-05-15
MUltiple SIgnal Classification (MUSIC) is a standard localization method which is based on the idea of dividing the vector space of the data into two subspaces: signal subspace and noise subspace. The brain, divided into several grid points, is scanned entirely and the grid point with the maximum consistency with the signal subspace is considered as the source location. In one of the MUSIC variants called Recursively Applied and Projected MUSIC (RAP-MUSIC), multiple iterations are proposed in order to decrease the location estimation uncertainties introduced by subspace estimation errors. In this paper, we suggest a new method called Self-Consistent MUSIC (SC-MUSIC) which extends RAP-MUSIC to a self-consistent algorithm. This method, SC-MUSIC, is based on the idea that the presence of several sources has a bias on the localization of each source. This bias can be reduced by projecting out all other sources mutually rather than iteratively. While the new method is applicable in all situations when MUSIC is applicable we will study here the localization of interacting sources using the imaginary part of the cross-spectrum due to the robustness of this measure to the artifacts of volume conduction. For an odd number of sources this matrix is rank deficient similar to covariance matrices of fully correlated sources. In such cases MUSIC and RAP-MUSIC fail completely while the new method accurately localizes all sources. We present results of the method using simulations of odd and even number of interacting sources in the presence of different noise levels. We compare the method with three other source localization methods: RAP-MUSIC, dipole fit and MOCA (combined with minimum norm estimate) through simulations. SC-MUSIC shows substantial improvement in the localization accuracy compared to these methods. We also show results for real MEG data of a single subject in the resting state. Four sources are localized in the sensorimotor area at f=11Hz which is the expected
In Defence of Geometrical Algebra
Blasjo, V.N.E.
2016-01-01
The geometrical algebra hypothesis was once the received interpretation of Greek mathematics. In recent decades, however, it has become anathema to many. I give a critical review of all arguments against it and offer a consistent rebuttal case against the modern consensus. Consequently, I find that
Wysokiński, Marcin M; Spałek, Jozef
2014-02-01
We discuss the Hubbard model in an applied magnetic field and analyze the properties of neutral spin-[Formula: see text] fermions within the so-called statistically consistent Gutzwiller approximation. The magnetization curve reproduces in a semiquantitative manner the experimental data for liquid (3)He in the regime of moderate correlations and in the presence of a small number of vacant cells, modeled by a non-half-filled band situation, when a small number of vacancies (∼5%) is introduced in the virtual fcc lattice. We also present the results for the magnetic susceptibility and the specific heat, in which a metamagnetic-like behavior is also singled out in a non-half-filled band case.
Bordin, Lorenzo; Creminelli, Paolo; Mirbabayi, Mehrdad; Noreña, Jorge
2017-03-01
We argue that isotropic scalar fluctuations in solid inflation are adiabatic in the super-horizon limit. During the solid phase this adiabatic mode has peculiar features: constant energy-density slices and comoving slices do not coincide, and their curvatures, parameterized respectively by ζ and Script R, both evolve in time. The existence of this adiabatic mode implies that Maldacena's squeezed limit consistency relation holds after angular average over the long mode. The correlation functions of a long-wavelength spherical scalar mode with several short scalar or tensor modes is fixed by the scaling behavior of the correlators of short modes, independently of the solid inflation action or dynamics of reheating.
Directory of Open Access Journals (Sweden)
Ahmad El Sayed
2014-01-01
Full Text Available A lifted H2/N2 turbulent jet flame issuing into a vitiated coflow is investigated using the conditional moment closure. The conditional velocity (CV and the conditional scalar dissipation rate (CSDR submodels are chosen such that they are fully consistent with the moments of the presumed β probability density function (PDF. The CV is modelled using the PDF-gradient diffusion model. Two CSDR submodels based on the double integration of the homogeneous and inhomogeneous mixture fraction PDF transport equations are implemented. The effect of CSDR modelling is investigated over a range of coflow temperatures (Tc and the stabilisation mechanism is determined from the analysis of the transport budgets and the history of radical build-up ahead of the stabilisation height. For all Tc, the balance between chemistry, axial convection, and micromixing, and the absence of axial diffusion upstream of the stabilisation height indicate that the flame is stabilized by autoignition. This conclusion is confirmed from the rapid build-up of HO2 ahead of H, O, and OH. The inhomogeneous CSDR modelling yields higher dissipation levels at the most reactive mixture fraction, which results in longer ignition delays and larger liftoff heights. The effect of the spurious sources arising from homogeneous modelling is found to be small but nonnegligible, mostly notably within the flame zone.
Cha, Shi-Cho; Chang, Hsiang-Meng
Federated identity and access management (FIAM) systems enable a user to access services provided by various organizations seamlessly. In FIAM systems, service providers normally stipulate that their users show assertions issued by allied parties to use their services as well as determine user privileges based on attributes in the assertions. However, the integrity of the attributes is important under certain circumstances. In such a circumstance, all released assertions should reflect modifications made to user attributes. Despite the ability to adopt conventional certification revocation technologies, including CRL or OCSP, to revoke an assertion and request the corresponding user to obtain a new assertion, re-issuing an entirely new assertion if only one attribute, such as user location or other environmental information, is changed would be inefficient. Therefore, this work presents a self-adaptive framework to achieve consistency in federated identity and access management systems (SAFIAM). In SAFIAM, an identity provider (IdP), which authenticates users and provides user attributes, should monitor access probabilities according to user attributes. The IdP can then adopt the most efficient means of ensuring data integrity of attributes based on related access probabilities. While Internet-based services emerge daily that have various access probabilities with respect to their user attributes, the proposed self-adaptive framework significantly contributes to efforts to streamline the use of FIAM systems.
Federal Laboratory Consortium — Purpose: The mission of the Geometric Design Laboratory (GDL) is to support the Office of Safety Research and Development in research related to the geometric design...
On Geometric Infinite Divisibility
Sandhya, E.; Pillai, R. N.
2014-01-01
The notion of geometric version of an infinitely divisible law is introduced. Concepts parallel to attraction and partial attraction are developed and studied in the setup of geometric summing of random variables.
Directory of Open Access Journals (Sweden)
Fivos ePanetsos
2011-07-01
Full Text Available Most work on visual prostheses has centred on developing retinal or cortical devices. However, when retinal implants are not feasible, neuroprostheses could be implanted in the lateral geniculate nucleus of the thalamus (LGN, the intermediate relay station of visual information from the retina to the visual cortex (V1. The objective of the present study was to determine the types of artificial stimuli that when delivered to the visual thalamus can generate reliable responses of the cortical neurons similar to those obtained when the eye perceives a visual image. Visual stimuli {Si} were presented to one eye of an experimental animal and both, the thalamic {RThi} and cortical responses {RV1i} to such stimuli were recorded. Electrical patterns {RThi*} resembling {RThi} were then injected into the visual thalamus to obtain cortical responses {RV1i*} similar to {RV1i}. Visually- and electrically-generated V1 responses were compared.Results: During the course of this work we: (i characterised the response of V1 neurons to visual stimuli according to response magnitude, duration, spiking rate and the distribution of interspike intervals; (ii experimentally tested the dependence of V1 responses on stimulation parameters such as intensity, frequency, duration, etc. and determined the ranges of these parameters generating the desired cortical activity; (iii identified similarities between responses of V1 useful to compare the naturally and artificially generated neuronal activity of V1; and (iv by modifying the stimulation parameters, we generated artificial V1 responses similar to those elicited by visual stimuli.Generation of predictable and consistent phosphenes by means of artificial stimulation of the LGN is important for the feasibility of visual prostheses. Here we proved that electrical stimuli to the LGN can generate V1 neural responses that resemble those elicited by natural visual stimuli.
Bidimensionality and Geometric Graphs
Fomin, Fedor V; Saurabh, Saket
2011-01-01
In this paper we use several of the key ideas from Bidimensionality to give a new generic approach to design EPTASs and subexponential time parameterized algorithms for problems on classes of graphs which are not minor closed, but instead exhibit a geometric structure. In particular we present EPTASs and subexponential time parameterized algorithms for Feedback Vertex Set, Vertex Cover, Connected Vertex Cover, Diamond Hitting Set, on map graphs and unit disk graphs, and for Cycle Packing and Minimum-Vertex Feedback Edge Set on unit disk graphs. Our results are based on the recent decomposition theorems proved by Fomin et al [SODA 2011], and our algorithms work directly on the input graph. Thus it is not necessary to compute the geometric representations of the input graph. To the best of our knowledge, these results are previously unknown, with the exception of the EPTAS and a subexponential time parameterized algorithm on unit disk graphs for Vertex Cover, which were obtained by Marx [ESA 2005] and Alber and...
Height and Tilt Geometric Texture
DEFF Research Database (Denmark)
Andersen, Vedrana; Desbrun, Mathieu; Bærentzen, Jakob Andreas
2009-01-01
We propose a new intrinsic representation of geometric texture over triangle meshes. Our approach extends the conventional height field texture representation by incorporating displacements in the tangential plane in the form of a normal tilt. This texture representation offers a good practical...... compromise between functionality and simplicity: it can efficiently handle and process geometric texture too complex to be represented as a height field, without having recourse to full blown mesh editing algorithms. The height-and-tilt representation proposed here is fully intrinsic to the mesh, making...
Asymptotic geometric analysis, part I
Artstein-Avidan, Shiri
2015-01-01
The authors present the theory of asymptotic geometric analysis, a field which lies on the border between geometry and functional analysis. In this field, isometric problems that are typical for geometry in low dimensions are substituted by an "isomorphic" point of view, and an asymptotic approach (as dimension tends to infinity) is introduced. Geometry and analysis meet here in a non-trivial way. Basic examples of geometric inequalities in isomorphic form which are encountered in the book are the "isomorphic isoperimetric inequalities" which led to the discovery of the "concentration phenomen
Geometric Computing Based on Computerized Descriptive Geometric
Institute of Scientific and Technical Information of China (English)
YU Hai-yan; HE Yuan-Jun
2011-01-01
Computer-aided Design （CAD）, video games and other computer graphic related technology evolves substantial processing to geometric elements. A novel geometric computing method is proposed with the integration of descriptive geometry, math and computer algorithm. Firstly, geometric elements in general position are transformed to a special position in new coordinate system. Then a 3D problem is projected to new coordinate planes. Finally, according to 2D/3D correspondence principle in descriptive geometry, the solution is constructed computerized drawing process with ruler and compasses. In order to make this method a regular operation, a two-level pattern is established. Basic Layer is a set algebraic packaged function including about ten Primary Geometric Functions （PGF） and one projection transformation. In Application Layer, a proper coordinate is established and a sequence of PGFs is sought for to get the final results. Examples illustrate the advantages of our method on dimension reduction, regulatory and visual computing and robustness.
Geometrically Consistent Stereoscopic Image Editing Using Patch-Based Synthesis.
Luo, Sheng-Jie; Sun, Ying-Tse; Shen, I-Chao; Chen, Bing-Yu; Chuang, Yung-Yu
2015-01-01
This paper presents a patch-based synthesis framework for stereoscopic image editing. The core of the proposed method builds upon a patch-based optimization framework with two key contributions: First, we introduce a depth-dependent patch-pair similarity measure for distinguishing and better utilizing image contents with different depth structures. Second, a joint patch-pair search is proposed for properly handling the correlation between two views. The proposed method successfully overcomes two main challenges of editing stereoscopic 3D media: (1) maintaining the depth interpretation, and (2) providing controllability of the scene depth. The method offers patch-based solutions to a wide variety of stereoscopic image editing problems, including depth-guided texture synthesis, stereoscopic NPR, paint by depth, content adaptation, and 2D to 3D conversion. Several challenging cases are demonstrated to show the effectiveness of the proposed method. The results of user studies also show that the proposed method produces stereoscopic images with good stereoscopics and visual quality.
Geometrical splitting and reduction of Feynman diagrams
Davydychev, Andrei I.
2016-10-01
A geometrical approach to the calculation of N-point Feynman diagrams is reviewed. It is shown that the geometrical splitting yields useful connections between Feynman integrals with different momenta and masses. It is demonstrated how these results can be used to reduce the number of variables in the occurring functions.
The geometric semantics of algebraic quantum mechanics.
Cruz Morales, John Alexander; Zilber, Boris
2015-08-06
In this paper, we will present an ongoing project that aims to use model theory as a suitable mathematical setting for studying the formalism of quantum mechanics. We argue that this approach provides a geometric semantics for such a formalism by means of establishing a (non-commutative) duality between certain algebraic and geometric objects.
Rule-based transformations for geometric modelling
Directory of Open Access Journals (Sweden)
Thomas Bellet
2011-02-01
Full Text Available The context of this paper is the use of formal methods for topology-based geometric modelling. Topology-based geometric modelling deals with objects of various dimensions and shapes. Usually, objects are defined by a graph-based topological data structure and by an embedding that associates each topological element (vertex, edge, face, etc. with relevant data as their geometric shape (position, curve, surface, etc. or application dedicated data (e.g. molecule concentration level in a biological context. We propose to define topology-based geometric objects as labelled graphs. The arc labelling defines the topological structure of the object whose topological consistency is then ensured by labelling constraints. Nodes have as many labels as there are different data kinds in the embedding. Labelling constraints ensure then that the embedding is consistent with the topological structure. Thus, topology-based geometric objects constitute a particular subclass of a category of labelled graphs in which nodes have multiple labels.
Rule-based transformations for geometric modelling
Bellet, Thomas; Gall, Pascale Le; 10.4204/EPTCS.48.5
2011-01-01
The context of this paper is the use of formal methods for topology-based geometric modelling. Topology-based geometric modelling deals with objects of various dimensions and shapes. Usually, objects are defined by a graph-based topological data structure and by an embedding that associates each topological element (vertex, edge, face, etc.) with relevant data as their geometric shape (position, curve, surface, etc.) or application dedicated data (e.g. molecule concentration level in a biological context). We propose to define topology-based geometric objects as labelled graphs. The arc labelling defines the topological structure of the object whose topological consistency is then ensured by labelling constraints. Nodes have as many labels as there are different data kinds in the embedding. Labelling constraints ensure then that the embedding is consistent with the topological structure. Thus, topology-based geometric objects constitute a particular subclass of a category of labelled graphs in which nodes hav...
Aydin, Umit; Dogrusoz, Yesim Serinagaoglu
2011-09-01
In this article, we aimed to reduce the effects of geometric errors and measurement noise on the inverse problem of Electrocardiography (ECG) solutions. We used the Kalman filter to solve the inverse problem in terms of epicardial potential distributions. The geometric errors were introduced into the problem via wrong determination of the size and location of the heart in simulations. An error model, which is called the enhanced error model (EEM), was modified to be used in inverse problem of ECG to compensate for the geometric errors. In this model, the geometric errors are modeled as additive Gaussian noise and their noise variance is added to the measurement noise variance. The Kalman filter method includes a process noise component, whose variance should also be estimated along with the measurement noise. To estimate these two noise variances, two different algorithms were used: (1) an algorithm based on residuals, (2) expectation maximization algorithm. The results showed that it is important to use the correct noise variances to obtain accurate results. The geometric errors, if ignored in the inverse solution procedure, yielded incorrect epicardial potential distributions. However, even with a noise model as simple as the EEM, the solutions could be significantly improved.
Translating cosmological special relativity into geometric algebra
Horn, Martin Erik
2012-11-01
Geometric algebra and Clifford algebra are important tools to describe and analyze the physics of the world we live in. Although there is enormous empirical evidence that we are living in four dimensional spacetime, mathematical worlds of higher dimensions can be used to present the physical laws of our world in an aesthetical and didactical more appealing way. In physics and mathematics education we are therefore confronted with the question how these high dimensional spaces should be taught. But as an immediate confrontation of students with high dimensional compactified spacetimes would expect too much from them at the beginning of their university studies, it seems reasonable to approach the mathematics and physics of higher dimensions step by step. The first step naturally is the step from four dimensional spacetime of special relativity to a five dimensional spacetime world. As a toy model for this artificial world cosmological special relativity, invented by Moshe Carmeli, can be used. This five dimensional non-compactified approach describes a spacetime which consists not only of one time dimension and three space dimensions. In addition velocity is regarded as a fifth dimension. This model very probably will not represent physics correctly. But it can be used to discuss and analyze the consequences of an additional dimension in a clear and simple way. Unfortunately Carmeli has formulated cosmological special relativity in standard vector notation. Therefore a translation of cosmological special relativity into the mathematical language of Grassmann and Clifford (Geometric algebra) is given and the physics of cosmological special relativity is discussed.
Geometrization of Trace Formulas
Frenkel, Edward
2010-01-01
Following our joint work arXiv:1003.4578 with Robert Langlands, we make the first steps toward developing geometric methods for analyzing trace formulas in the case of the function field of a curve defined over a finite field. We also suggest a conjectural framework of geometric trace formulas for curves defined over the complex field, which exploits the categorical version of the geometric Langlands correspondence.
Localized Geometric Query Problems
Augustine, John; Maheshwari, Anil; Nandy, Subhas C; Roy, Sasanka; Sarvattomananda, Swami
2011-01-01
A new class of geometric query problems are studied in this paper. We are required to preprocess a set of geometric objects $P$ in the plane, so that for any arbitrary query point $q$, the largest circle that contains $q$ but does not contain any member of $P$, can be reported efficiently. The geometric sets that we consider are point sets and boundaries of simple polygons.
A physics perspective on geometric Langlands duality
Schlesinger, Karl-Georg
2009-01-01
We review the approach to the geometric Langlands program for algebraic curves via S-duality of an N=4 supersymmetric four dimensional gauge theory, initiated by Kapustin and Witten in 2006. We sketch some of the central further developments. Placing this four dimensional gauge theory into a six dimensional framework, as advocated by Witten, holds the promise to lead to a formulation which makes geometric Langlands duality a manifest symmetry (like coavariance in differential geometry). Furthermore, it leads to an approach toward geometric Langlands duality for algebraic surfaces, reproducing and extending the recent results of Braverman and Finkelberg.
Robin, C; Arteaga, D Peña; Berger, J -F
2015-01-01
Although self-consistent multi-configuration methods have been used for decades to address the description of atomic and molecular many-body systems, only a few trials have been made in the context of nuclear structure. This work aims at the development of such an approach to describe in a unified way various types of correlations in nuclei, in a self-consistent manner where the mean-field is improved as correlations are introduced. The goal is to reconcile the usually set apart Shell-Model and Self-Consistent Mean-Field methods. This approach is referred as "variational multiparticle-multihole configuration mixing method". It is based on a double variational principle which yields a set of two coupled equations that determine at the same time the expansion coefficients of the many-body wave function and the single particle states. The formalism is derived and discussed in a general context, starting from a three-body Hamiltonian. Links to existing many-body techniques such as the formalism of Green's functio...
Exploring New Geometric Worlds
Nirode, Wayne
2015-01-01
When students work with a non-Euclidean distance formula, geometric objects such as circles and segment bisectors can look very different from their Euclidean counterparts. Students and even teachers can experience the thrill of creative discovery when investigating these differences among geometric worlds. In this article, the author describes a…
Consistent model driven architecture
Niepostyn, Stanisław J.
2015-09-01
The goal of the MDA is to produce software systems from abstract models in a way where human interaction is restricted to a minimum. These abstract models are based on the UML language. However, the semantics of UML models is defined in a natural language. Subsequently the verification of consistency of these diagrams is needed in order to identify errors in requirements at the early stage of the development process. The verification of consistency is difficult due to a semi-formal nature of UML diagrams. We propose automatic verification of consistency of the series of UML diagrams originating from abstract models implemented with our consistency rules. This Consistent Model Driven Architecture approach enables us to generate automatically complete workflow applications from consistent and complete models developed from abstract models (e.g. Business Context Diagram). Therefore, our method can be used to check practicability (feasibility) of software architecture models.
Geometric hashing and object recognition
Stiller, Peter F.; Huber, Birkett
1999-09-01
We discuss a new geometric hashing method for searching large databases of 2D images (or 3D objects) to match a query built from geometric information presented by a single 3D object (or single 2D image). The goal is to rapidly determine a small subset of the images that potentially contain a view of the given object (or a small set of objects that potentially match the item in the image). Since this must be accomplished independent of the pose of the object, the objects and images, which are characterized by configurations of geometric features such as points, lines and/or conics, must be treated using a viewpoint invariant formulation. We are therefore forced to characterize these configurations in terms of their 3D and 2D geometric invariants. The crucial relationship between the 3D geometry and its 'residual' in 2D is expressible as a correspondence (in the sense of algebraic geometry). Computing a set of generating equations for the ideal of this correspondence gives a complete characterization of the view of independent relationships between an object and all of its possible images. Once a set of generators is in hand, it can be used to devise efficient recognition algorithms and to give an efficient geometric hashing scheme. This requires exploiting the form and symmetry of the equations. The result is a multidimensional access scheme whose efficiency we examine. Several potential directions for improving this scheme are also discussed. Finally, in a brief appendix, we discuss an alternative approach to invariants for generalized perspective that replaces the standard invariants by a subvariety of a Grassmannian. The advantage of this is that one can circumvent many annoying general position assumptions and arrive at invariant equations (in the Plucker coordinates) that are more numerically robust in applications.
Oyedepo, Gbenga A; Wilson, Angela K
2010-08-26
The correlation consistent Composite Approach, ccCA [ Deyonker , N. J. ; Cundari , T. R. ; Wilson , A. K. J. Chem. Phys. 2006 , 124 , 114104 ] has been demonstrated to predict accurate thermochemical properties of chemical species that can be described by a single configurational reference state, and at reduced computational cost, as compared with ab initio methods such as CCSD(T) used in combination with large basis sets. We have developed three variants of a multireference equivalent of this successful theoretical model. The method, called the multireference correlation consistent composite approach (MR-ccCA), is designed to predict the thermochemical properties of reactive intermediates, excited state species, and transition states to within chemical accuracy (e.g., 1 kcal/mol for enthalpies of formation) of reliable experimental values. In this study, we have demonstrated the utility of MR-ccCA: (1) in the determination of the adiabatic singlet-triplet energy separations and enthalpies of formation for the ground states for a set of diradicals and unsaturated compounds, and (2) in the prediction of energetic barriers to internal rotation, in ethylene and its heavier congener, disilene. Additionally, we have utilized MR-ccCA to predict the enthalpies of formation of the low-lying excited states of all the species considered. MR-ccCA is shown to give quantitative results without reliance upon empirically derived parameters, making it suitable for application to study novel chemical systems with significant nondynamical correlation effects.
Gauge Theoretic Aspects of the Geometric Langlands Correspondence
Elliott, Chris
In their revolutionary 2006 paper, Kapustin and Witten described a fascinating bridge between geometric representation theory and the quantum theory of supersymmetric gauge fields. They explained how, by performing a suitable topological twist, one can obtain categories of sheaves on moduli stacks of holomorphic and flat G-bundles as categories of boundary conditions in supersymmetric gauge theories, and why the physical phenomenon of S-duality should yield a conjectural equivalence of categories known as the geometric Langlands correspondence. In this thesis, I begin to make some of the structures introduced by Kapustin-Witten and other theoretical physicists mathematically rigorous, with the eventual aim of systematically using the huge amount of structure possessed by the panoply of supersymmetric gauge theories in the theoretical physics literature to draw new insights about geometric representation theory. The present work consists of two distinct approaches. Firstly I give a construction of a generalization of abelian gauge theories using the mathematical structure of a factorization algebra, and explain how S-duality for these theories can be described as a version of the Fourier transform. Then, I explain how to construct classical supersymmetric gauge theories using derived algebraic geometry, introduce an appropriate notion of twisting for such theories, and prove that the twists introduced by Kapustin and Witten yield the moduli stacks of interest for the geometric Langlands correspondence.
Geometrical Phases in Quantum Mechanics
Christian, Joy Julius
In quantum mechanics, the path-dependent geometrical phase associated with a physical system, over and above the familiar dynamical phase, was initially discovered in the context of adiabatically changing environments. Subsequently, Aharonov and Anandan liberated this phase from the original formulation of Berry, which used Hamiltonians, dependent on curves in a classical parameter space, to represent the cyclic variations of the environments. Their purely quantum mechanical treatment, independent of Hamiltonians, instead used the non-trivial topological structure of the projective space of one-dimensional subspaces of an appropriate Hilbert space. The geometrical phase, in their treatment, results from a parallel transport of the time-dependent pure quantum states along a curve in this space, which is endowed with an abelian connection. Unlike Berry, they were able to achieve this without resort to an adiabatic approximation or to a time-independent eigenvalue equation. Prima facie, these two approaches are conceptually quite different. After a review of both approaches, an exposition bridging this apparent conceptual gap is given; by rigorously analyzing a model composite system, it is shown that, in an appropriate correspondence limit, the Berry phase can be recovered as a special case from the Aharonov-Anandan phase. Moreover, the model composite system is used to show that Berry's correction to the traditional Born-Oppenheimer energy spectra indeed brings the spectra closer to the exact results. Then, an experimental arrangement to measure geometrical phases associated with cyclic and non-cyclic variations of quantum states of an entangled composite system is proposed, utilizing the fundamental ideas of the recently opened field of two-particle interferometry. This arrangement not only resolves the controversy regarding the true nature of the phases associated with photon states, but also unequivocally predicts experimentally accessible geometrical phases in a
Guiding light via geometric phases
Slussarenko, Sergei; Jisha, Chandroth P; Piccirillo, Bruno; Santamato, Enrico; Assanto, Gaetano; Marrucci, Lorenzo
2015-01-01
Known methods for transverse confinement and guidance of light can be grouped into a few basic mechanisms, the most common being metallic reflection, total internal reflection and photonic-bandgap (or Bragg) reflection. All of them essentially rely on changes of the refractive index, that is on scalar properties of light. Recently, processes based on "geometric Berry phases", such as manipulation of polarization states or deflection of spinning-light rays, have attracted considerable interest in the contexts of singular optics and structured light. Here, we disclose a new approach to light waveguiding, using geometric Berry phases and exploiting polarization states and their handling. This can be realized in structured three-dimensional anisotropic media, in which the optic axis lies orthogonal to the propagation direction and is modulated along it and across the transverse plane, so that the refractive index remains constant but a phase distortion can be imposed on a beam. In addition to a complete theoretic...
Geometric and engineering drawing
Morling, K
2010-01-01
The new edition of this successful text describes all the geometric instructions and engineering drawing information that are likely to be needed by anyone preparing or interpreting drawings or designs with plenty of exercises to practice these principles.
Differential geometric structures
Poor, Walter A
2007-01-01
This introductory text defines geometric structure by specifying parallel transport in an appropriate fiber bundle and focusing on simplest cases of linear parallel transport in a vector bundle. 1981 edition.
Bledsoe, Gloria J
1987-01-01
The game of "Guess What" is described as a stimulating vehicle for students to consider the unifying or distinguishing features of geometric figures. Teaching suggestions as well as the gameboard are provided. (MNS)
Geometric continuum mechanics and induced beam theories
R Eugster, Simon
2015-01-01
This research monograph discusses novel approaches to geometric continuum mechanics and introduces beams as constraint continuous bodies. In the coordinate free and metric independent geometric formulation of continuum mechanics as well as for beam theories, the principle of virtual work serves as the fundamental principle of mechanics. Based on the perception of analytical mechanics that forces of a mechanical system are defined as dual quantities to the kinematical description, the virtual work approach is a systematic way to treat arbitrary mechanical systems. Whereas this methodology is very convenient to formulate induced beam theories, it is essential in geometric continuum mechanics when the assumptions on the physical space are relaxed and the space is modeled as a smooth manifold. The book addresses researcher and graduate students in engineering and mathematics interested in recent developments of a geometric formulation of continuum mechanics and a hierarchical development of induced beam theories.
Robin, C.; Pillet, N.; Peña Arteaga, D.; Berger, J.-F.
2016-02-01
Background: Although self-consistent multiconfiguration methods have been used for decades to address the description of atomic and molecular many-body systems, only a few trials have been made in the context of nuclear structure. Purpose: This work aims at the development of such an approach to describe in a unified way various types of correlations in nuclei in a self-consistent manner where the mean-field is improved as correlations are introduced. The goal is to reconcile the usually set-apart shell-model and self-consistent mean-field methods. Method: This approach is referred to as "variational multiparticle-multihole configuration mixing method." It is based on a double variational principle which yields a set of two coupled equations that determine at the same time the expansion coefficients of the many-body wave function and the single-particle states. The solution of this problem is obtained by building a doubly iterative numerical algorithm. Results: The formalism is derived and discussed in a general context, starting from a three-body Hamiltonian. Links to existing many-body techniques such as the formalism of Green's functions are established. First applications are done using the two-body D1S Gogny effective force. The numerical procedure is tested on the 12C nucleus to study the convergence features of the algorithm in different contexts. Ground-state properties as well as single-particle quantities are analyzed, and the description of the first 2+ state is examined. Conclusions: The self-consistent multiparticle-multihole configuration mixing method is fully applied for the first time to the description of a test nucleus. This study makes it possible to validate our numerical algorithm and leads to encouraging results. To test the method further, we will realize in the second article of this series a systematic description of more nuclei and observables obtained by applying the newly developed numerical procedure with the same Gogny force. As
Saturation and geometrical scaling
Praszalowicz, Michal
2016-01-01
We discuss emergence of geometrical scaling as a consequence of the nonlinear evolution equations of QCD, which generate a new dynamical scale, known as the saturation momentum: Qs. In the kinematical region where no other energy scales exist, particle spectra exhibit geometrical scaling (GS), i.e. they depend on the ratio pT=Qs, and the energy dependence enters solely through the energy dependence of the saturation momentum. We confront the hypothesis of GS in different systems with experimental data.
See, M. J.; Cozzolongo, J. V.
1983-01-01
A more automated process to produce wind tunnel models using existing facilities is discussed. A process was sought to more rapidly determine the aerodynamic characteristics of advanced aircraft configurations. Such aerodynamic characteristics are determined from theoretical analyses and wind tunnel tests of the configurations. Computers are used to perform the theoretical analyses, and a computer aided manufacturing system is used to fabricate the wind tunnel models. In the past a separate set of input data describing the aircraft geometry had to be generated for each process. This process establishes a common data base by enabling the computer aided manufacturing system to use, via a software interface, the geometric input data generated for the theoretical analysis. Thus, only one set of geometric data needs to be generated. Tests reveal that the process can reduce by several weeks the time needed to produce a wind tunnel model component. In addition, this process increases the similarity of the wind tunnel model to the mathematical model used by the theoretical aerodynamic analysis programs. Specifically, the wind tunnel model can be machined to within 0.008 in. of the original mathematical model. However, the software interface is highly complex and cumbersome to operate, making it unsuitable for routine use. The procurement of an independent computer aided design/computer aided manufacturing system with the capability to support both the theoretical analysis and the manufacturing tasks was recommended.
Directory of Open Access Journals (Sweden)
Changsen Zhan
2016-05-01
Full Text Available Danning Tablets are a traditional Chinese formula showing broad clinical applications in hepatobiliary diseases and containing a diversity of bioactive chemicals. However, the chemical profiling of the formula, which serves as the material foundation of its efficacy, is really a big challenge as Danning Tablets consist of seven herbs from different origins. An ultra-performance liquid chromatography coupled to diode array detection and electrospray ionization mass spectrometry (UPLC-DAD-ESI-MS/MS approach was developed to characterize the principal polyphenol constituents in the formula. As a result, a total of 32 constituents, including 14 anthraquinones and their glucosides, four anthrones, two naphthalene glycosides, two stilbenes and 10 flavonoids were identified based on their retention time, UV absorption and MS/MS fragmentation patterns. The sources of these compounds were also illustrated. Most of the bioactive anthraquinone derivatives were found in Rhei Radix et Rhizoma or Polygoni Cuspidati Rhizoma et Radix, which are the Emperor drugs in the formula for its clinic usage. These findings indicate the merit of using this integrated UPLC-DAD-ESI-MS/MS approach to rapidly illustrate the chemical foundation of complex formulas. The present study will facilitate the quality control of Danning Tablet formulas as well as the individual herbs.
Zhan, Changsen; Xiong, Aizhen; Shen, Danping; Yang, Li; Wang, Zhengtao
2016-05-14
Danning Tablets are a traditional Chinese formula showing broad clinical applications in hepatobiliary diseases and containing a diversity of bioactive chemicals. However, the chemical profiling of the formula, which serves as the material foundation of its efficacy, is really a big challenge as Danning Tablets consist of seven herbs from different origins. An ultra-performance liquid chromatography coupled to diode array detection and electrospray ionization mass spectrometry (UPLC-DAD-ESI-MS/MS) approach was developed to characterize the principal polyphenol constituents in the formula. As a result, a total of 32 constituents, including 14 anthraquinones and their glucosides, four anthrones, two naphthalene glycosides, two stilbenes and 10 flavonoids were identified based on their retention time, UV absorption and MS/MS fragmentation patterns. The sources of these compounds were also illustrated. Most of the bioactive anthraquinone derivatives were found in Rhei Radix et Rhizoma or Polygoni Cuspidati Rhizoma et Radix, which are the Emperor drugs in the formula for its clinic usage. These findings indicate the merit of using this integrated UPLC-DAD-ESI-MS/MS approach to rapidly illustrate the chemical foundation of complex formulas. The present study will facilitate the quality control of Danning Tablet formulas as well as the individual herbs.
Polar metals by geometric design
Kim, T. H.; Puggioni, D.; Yuan, Y.; Xie, L.; Zhou, H.; Campbell, N.; Ryan, P. J.; Choi, Y.; Kim, J.-W.; Patzner, J. R.; Ryu, S.; Podkaminer, J. P.; Irwin, J.; Ma, Y.; Fennie, C. J.; Rzchowski, M. S.; Pan, X. Q.; Gopalan, V.; Rondinelli, J. M.; Eom, C. B.
2016-05-01
Gauss’s law dictates that the net electric field inside a conductor in electrostatic equilibrium is zero by effective charge screening; free carriers within a metal eliminate internal dipoles that may arise owing to asymmetric charge distributions. Quantum physics supports this view, demonstrating that delocalized electrons make a static macroscopic polarization, an ill-defined quantity in metals—it is exceedingly unusual to find a polar metal that exhibits long-range ordered dipoles owing to cooperative atomic displacements aligned from dipolar interactions as in insulating phases. Here we describe the quantum mechanical design and experimental realization of room-temperature polar metals in thin-film ANiO3 perovskite nickelates using a strategy based on atomic-scale control of inversion-preserving (centric) displacements. We predict with ab initio calculations that cooperative polar A cation displacements are geometrically stabilized with a non-equilibrium amplitude and tilt pattern of the corner-connected NiO6 octahedra—the structural signatures of perovskites—owing to geometric constraints imposed by the underlying substrate. Heteroepitaxial thin-films grown on LaAlO3 (111) substrates fulfil the design principles. We achieve both a conducting polar monoclinic oxide that is inaccessible in compositionally identical films grown on (001) substrates, and observe a hidden, previously unreported, non-equilibrium structure in thin-film geometries. We expect that the geometric stabilization approach will provide novel avenues for realizing new multifunctional materials with unusual coexisting properties.
Field guide to geometrical optics
Greivenkamp, John E
2004-01-01
This Field Guide derives from the treatment of geometrical optics that has evolved from both the undergraduate and graduate programs at the Optical Sciences Center at the University of Arizona. The development is both rigorous and complete, and it features a consistent notation and sign convention. This volume covers Gaussian imagery, paraxial optics, first-order optical system design, system examples, illumination, chromatic effects, and an introduction to aberrations. The appendices provide supplemental material on radiometry and photometry, the human eye, and several other topics.
Geometric systematic prostate biopsy.
Chang, Doyoung; Chong, Xue; Kim, Chunwoo; Jun, Changhan; Petrisor, Doru; Han, Misop; Stoianovici, Dan
2017-04-01
The common sextant prostate biopsy schema lacks a three-dimensional (3D) geometric definition. The study objective was to determine the influence of the geometric distribution of the cores on the detection probability of prostate cancer (PCa). The detection probability of significant (>0.5 cm(3)) and insignificant (geometric distribution of the cores was optimized to maximize the probability of detecting significant cancer for various prostate sizes (20-100cm(3)), number of biopsy cores (6-40 cores) and biopsy core lengths (14-40 mm) for transrectal and transperineal biopsies. The detection of significant cancer can be improved by geometric optimization. With the current sextant biopsy, up to 20% of tumors may be missed at biopsy in a 20 cm(3) prostate due to the schema. Higher number and longer biopsy cores are required to sample with an equal detection probability in larger prostates. Higher number of cores increases both significant and insignificant tumor detection probability, but predominantly increases the detection of insignificant tumors. The study demonstrates mathematically that the geometric biopsy schema plays an important clinical role, and that increasing the number of biopsy cores is not necessarily helpful.
DEFF Research Database (Denmark)
Zhu, Jie
There exist dual-listed stocks which are issued by the same company in some stock markets. Although these stocks bare the same firm-specific risk and enjoy identical dividends and voting policies, they are priced differently. Some previous studies show this seeming deviation from the law of one...... price can be solved due to different ex- pected return and market price of risk for investors holding heterogeneous beliefs. This paper provides empirical evidence for that argument by testing the expected return and market price of risk between Chinese A and B shares listed in Shanghai and Shenzhen...... stock markets. Models with dynamic of Geometric Brownian Motion are adopted, multivariate GARCH models are also introduced to capture the feature of time-varying volatility in stock returns. The results suggest that the different pric- ing can be explained by the difference in expected returns between...
DEFF Research Database (Denmark)
Zhu, Jie
There exist dual-listed stocks which are issued by the same company in some stock markets. Although these stocks bare the same firm-specific risk and enjoy identical dividends and voting policies, they are priced differently. Some previous studies show this seeming deviation from the law of one...... price can be solved due to different ex- pected return and market price of risk for investors holding heterogeneous beliefs. This paper provides empirical evidence for that argument by testing the expected return and market price of risk between Chinese A and B shares listed in Shanghai and Shenzhen...... stock markets. Models with dynamic of Geometric Brownian Motion are adopted, multivariate GARCH models are also introduced to capture the feature of time-varying volatility in stock returns. The results suggest that the different pric- ing can be explained by the difference in expected returns between...
Berczynski, Pawel; Bliokh, Konstantin Yu; Kravtsov, Yuri A; Stateczny, Andrzej
2006-06-01
We present an ab initio account of the paraxial complex geometrical optics (CGO) in application to scalar Gaussian beam propagation and diffraction in a 3D smoothly inhomogeneous medium. The paraxial CGO deals with quadratic expansion of the complex eikonal and reduces the wave problem to the solution of ordinary differential equations of the Riccati type. This substantially simplifies the description of Gaussian beam diffraction as compared with full-wave or parabolic (quasi-optics) equations. For a Gaussian beam propagating in a homogeneous medium or along the symmetry axis in a lenslike medium, the CGO equations possess analytical solutions; otherwise, they can be readily solved numerically. As a nontrivial example we consider Gaussian beam propagation and diffraction along a helical ray in an axially symmetric waveguide medium. It is shown that the major axis of the beam's elliptical cross section grows unboundedly; it is oriented predominantly in the azimuthal (binormal) direction and does not obey the parallel-transport law.
Hierarchical Geometric Constraint Model for Parametric Feature Based Modeling
Institute of Scientific and Technical Information of China (English)
高曙明; 彭群生
1997-01-01
A new geometric constraint model is described,which is hierarchical and suitable for parametric feature based modeling.In this model,different levels of geometric information are repesented to support various stages of a design process.An efficient approach to parametric feature based modeling is also presented,adopting the high level geometric constraint model.The low level geometric model such as B-reps can be derived automatically from the hig level geometric constraint model,enabling designers to perform their task of detailed design.
Science, Art and Geometrical Imagination
Luminet, J -P
2009-01-01
From the geocentric, closed world model of Antiquity to the wraparound universe models of relativistic cosmology, the parallel history of space representations in science and art illustrates the fundamental role of geometric imagination in innovative findings. Through the analysis of works of various artists and scientists like Plato, Durer, Kepler, Escher, Grisey or the present author, it is shown how the process of creation in science and in the arts rests on aesthetical principles such as symmetry, regular polyhedra, laws of harmonic proportion, tessellations, group theory, etc., as well as beauty, conciseness and emotional approach of the world.
Science, art and geometrical imagination
Luminet, Jean-Pierre
2011-06-01
From the geocentric, closed world model of Antiquity to the wraparound universe models of relativistic cosmology, the parallel history of space representations in science and art illustrates the fundamental rôle of geometric imagination in innovative findings. Through the analysis of works of various artists and scientists like Plato, Dürer, Kepler, Escher, Grisey or the author, it is shown how the process of creation in science and in the arts rests on aesthetical principles such as symmetry, regular polyhedra, laws of harmonic proportion, tessellations, group theory, etc., as well as on beauty, conciseness and an emotional approach of the world.
Study on the Grey Polynomial Geometric Programming
Institute of Scientific and Technical Information of China (English)
LUODang
2005-01-01
In the model of geometric programming, values of parameters cannot be gotten owing to data fluctuation and incompletion. But reasonable bounds of these parameters can be attained. This is to say, parameters of this model can be regarded as interval grey numbers. When the model contains grey numbers, it is hard for common programming method to solve them. By combining the common programming model with the grey system theory,and using some analysis strategies, a model of grey polynomial geometric programming, a model of 8 positioned geometric programming and their quasi-optimum solution or optimum solution are put forward. At the same time, we also developed an algorithm for the problem.This approach brings a new way for the application research of geometric programming. An example at the end of this paper shows the rationality and feasibility of the algorithm.
Robin, C.; Pillet, N.; Dupuis, M.; Le Bloas, J.; Peña Arteaga, D.; Berger, J.-F.
2017-04-01
Background: The variational multiparticle-multihole configuration mixing approach to nuclei has been proposed about a decade ago. While the first applications followed rapidly, the implementation of the full formalism of this method has only been recently completed and applied in C. Robin, N. Pillet, D. Peña Arteaga, and J.-F. Berger, [Phys. Rev. C 93, 024302 (2016)], 10.1103/PhysRevC.93.024302 to 12C as a test-case. Purpose: The main objective of the present paper is to carry on the study that was initiated in that reference, in order to put the variational multiparticle-multihole configuration mixing method to more stringent tests. To that aim we perform a systematic study of even-even s d -shell nuclei. Method: The wave function of these nuclei is taken as a configuration mixing built on orbitals of the s d -shell, and both the mixing coefficients of the nuclear state and the single-particle wave functions are determined consistently from the same variational principle. As in the previous works, the calculations are done using the D1S Gogny force. Results: Various ground-state properties are analyzed. In particular, the correlation content and composition of the wave function as well as the single-particle orbitals and energies are examined. Binding energies and charge radii are also calculated and compared to experiment. The description of the first excited state is also examined and the corresponding transition densities are used as input for the calculation of reaction processes such as inelastic electron and proton scattering. Special attention is paid to the effect of the optimization of the single-particle states consistently with the correlations of the system. Conclusions: The variational multiparticle-multihole configuration mixing approach is systematically applied to the description of even-even s d -shell nuclei. Globally, the results are satisfying and encouraging. In particular, charge radii and excitation energies are nicely reproduced. However
Shishkin, Maxim; Sato, Hirofumi
2016-02-01
The accuracy of DFT +U calculations, applied to the study of electronic structure and energetics of strongly correlated materials, heavily depends on U parameters, chosen for adequate treatment of d and f states. Computational evaluation of U parameters, which does not require fitting to experimental measurements or results of computationally expensive schemes, is highly desirable for the study of novel materials and even more so for materials not yet synthesized to date. Within this work, we show that the linear response method could provide U parameters which can yield redox potentials of battery cathode materials in much better agreement with experiment than conventional density functional theory (DFT). In our approach, we evaluate U values self-consistently, ensuring agreement between U calculated using linear response with the value used for DFT +U calculations. We find that such self-consistency is necessary for determination of adequate values of U . We also studied the impact of using various PAW (projector augmented wave) potentials for transition-metal ions, that differ by the number of electrons treated as valence. We find that redox potentials are reasonably well reproduced for all cases, although a slightly higher degree of accuracy corresponds to PAW potentials with semicore electrons treated as valence. Importantly, we find that converged values of U are substantially different for various PAW potentials of transition-metal ions of the same material. Overall, we find that self-consistent DFT +U /linear response calculations provide quite accurate values of redox potentials for materials with purely ionic bonding (e.g., LiFePO4, LiCoPO4, LiCoO2, LiMnPO4, NaFePO4), whereas for materials with covalent p d hybridization (e.g., LiNiO2) or conducting materials (e.g., LiTiS2) the agreement with experimental redox voltage is lower. This emphasizes the need for application of more advanced techniques (e.g., DFT +U +V method) for accurate study of partially
Walker, D. A.; Daniëls, F. J. A.; Alsos, I.; Bhatt, U. S.; Breen, A. L.; Buchhorn, M.; Bültmann, H.; Druckenmiller, L. A.; Edwards, M. E.; Ehrich, D.; Epstein, H. E.; Gould, W. A.; Ims, R. A.; Meltofte, H.; Raynolds, M. K.; Sibik, J.; Talbot, S. S.; Webber, P. J.
2016-05-01
Satellite-derived remote-sensing products are providing a modern circumpolar perspective of Arctic vegetation and its changes, but this new view is dependent on a long heritage of ground-based observations in the Arctic. Several products of the Conservation of Arctic Flora and Fauna are key to our current understanding. We review aspects of the PanArctic Flora, the Circumpolar Arctic Vegetation Map, the Arctic Biodiversity Assessment, and the Arctic Vegetation Archive (AVA) as they relate to efforts to describe and map the vegetation, plant biomass, and biodiversity of the Arctic at circumpolar, regional, landscape and plot scales. Cornerstones for all these tools are ground-based plant-species and plant-community surveys. The AVA is in progress and will store plot-based vegetation observations in a public-accessible database for vegetation classification, modeling, diversity studies, and other applications. We present the current status of the Alaska Arctic Vegetation Archive (AVA-AK), as a regional example for the panarctic archive, and with a roadmap for a coordinated international approach to survey, archive and classify Arctic vegetation. We note the need for more consistent standards of plot-based observations, and make several recommendations to improve the linkage between plot-based observations biodiversity studies and satellite-based observations of Arctic vegetation.
Robin, C; Dupuis, M; Bloas, J Le; Arteaga, D Peña; Berger, J -F
2016-01-01
The variational multiparticle-multihole configuration mixing approach (MPMH) to nuclei has been proposed about a decade ago. While the first applications followed rapidly, the implementation of the full formalism of this method has only been recently completed and applied in [C. Robin, N. Pillet, D. Pe\\~na Arteaga and J.-F. Berger, Phys. Rev. C 93, 024302 (2016)] to $^{12}$C as a test-case. The main objective of the present paper is to carry on the study that was initiated in that reference, in order to put the MPMH method to more stringent tests. To that aim we perform a systematic study of even-even sd-shell nuclei. The wave function of these nuclei is taken as a configuration mixing built on orbitals of the sd-shell, and both the mixing coefficients of the nuclear state and the single-particle wave functions are determined consistently from the same variational principle. The calculations are done using the D1S Gogny force. Various ground-state properties are analyzed. In particular, the correlation conten...
Tekarli, Sammer M; Williams, T Gavin; Cundari, Thomas R
2009-11-10
The kinetics and thermodynamics of copper-mediated nitrene insertion into C-H and H-H bonds (the former of methane) have been studied using several levels of theory: B3LYP/6-311++G(d,p), B97-1/cc-pVTZ, PBE1KCIS/cc-pVTZ, and ccCA (correlation consistent Composite Approach). The results show no significant difference among the DFT methods. All three DFT methods predict the ground state of the copper-nitrene model complex, L'Cu(NH), to be a triplet, while single reference ccCA predicts the singlet to be the ground state. The contributions to the total ccCA energy indicate that the singlet state is favored at the MP2/CBS level of theory, while electron correlation beyond this level (CCSD(T)) favors a triplet state, resulting in a close energetic balance between the two states. A multireference ccCA method is applied to the nitrene active species and supports the assignment of a singlet ground state. In general, the largest difference in the model reaction cycles between DFT and ccCA methods is for processes involving radicals and bond dissociation.
PREFACE: Geometrically frustrated magnetism Geometrically frustrated magnetism
Gardner, Jason S.
2011-04-01
Frustrated magnetism is an exciting and diverse field in condensed matter physics that has grown tremendously over the past 20 years. This special issue aims to capture some of that excitement in the field of geometrically frustrated magnets and is inspired by the 2010 Highly Frustrated Magnetism (HFM 2010) meeting in Baltimore, MD, USA. Geometric frustration is a broad phenomenon that results from an intrinsic incompatibility between some fundamental interactions and the underlying lattice geometry based on triangles and tetrahedra. Most studies have centred around the kagomé and pyrochlore based magnets but recent work has looked at other structures including the delafossite, langasites, hyper-kagomé, garnets and Laves phase materials to name a few. Personally, I hope this issue serves as a great reference to scientist both new and old to this field, and that we all continue to have fun in this very frustrated playground. Finally, I want to thank the HFM 2010 organizers and all the sponsors whose contributions were an essential part of the success of the meeting in Baltimore. Geometrically frustrated magnetism contents Spangolite: an s = 1/2 maple leaf lattice antiferromagnet? T Fennell, J O Piatek, R A Stephenson, G J Nilsen and H M Rønnow Two-dimensional magnetism and spin-size effect in the S = 1 triangular antiferromagnet NiGa2S4 Yusuke Nambu and Satoru Nakatsuji Short range ordering in the modified honeycomb lattice compound SrHo2O4 S Ghosh, H D Zhou, L Balicas, S Hill, J S Gardner, Y Qi and C R Wiebe Heavy fermion compounds on the geometrically frustrated Shastry-Sutherland lattice M S Kim and M C Aronson A neutron polarization analysis study of moment correlations in (Dy0.4Y0.6)T2 (T = Mn, Al) J R Stewart, J M Hillier, P Manuel and R Cywinski Elemental analysis and magnetism of hydronium jarosites—model kagome antiferromagnets and topological spin glasses A S Wills and W G Bisson The Herbertsmithite Hamiltonian: μSR measurements on single crystals
Mahavira's Geometrical Problems
DEFF Research Database (Denmark)
Høyrup, Jens
2004-01-01
Analysis of the geometrical chapters Mahavira's 9th-century Ganita-sara-sangraha reveals inspiration from several chronological levels of Near-Eastern and Mediterranean mathematics: (1)that known from Old Babylonian tablets, c. 1800-1600 BCE; (2)a Late Babylonian but pre-Seleucid Stratum, probably...
Burgess, Claudia R.
2014-01-01
Designed for a broad audience, including educators, camp directors, afterschool coordinators, and preservice teachers, this investigation aims to help individuals experience mathematics in unconventional and exciting ways by engaging them in the physical activity of building geometric shapes using ropes. Through this engagement, the author…
Pragmatic geometric model evaluation
Pamer, Robert
2015-04-01
Quantification of subsurface model reliability is mathematically and technically demanding as there are many different sources of uncertainty and some of the factors can be assessed merely in a subjective way. For many practical applications in industry or risk assessment (e. g. geothermal drilling) a quantitative estimation of possible geometric variations in depth unit is preferred over relative numbers because of cost calculations for different scenarios. The talk gives an overview of several factors that affect the geometry of structural subsurface models that are based upon typical geological survey organization (GSO) data like geological maps, borehole data and conceptually driven construction of subsurface elements (e. g. fault network). Within the context of the trans-European project "GeoMol" uncertainty analysis has to be very pragmatic also because of different data rights, data policies and modelling software between the project partners. In a case study a two-step evaluation methodology for geometric subsurface model uncertainty is being developed. In a first step several models of the same volume of interest have been calculated by omitting successively more and more input data types (seismic constraints, fault network, outcrop data). The positions of the various horizon surfaces are then compared. The procedure is equivalent to comparing data of various levels of detail and therefore structural complexity. This gives a measure of the structural significance of each data set in space and as a consequence areas of geometric complexity are identified. These areas are usually very data sensitive hence geometric variability in between individual data points in these areas is higher than in areas of low structural complexity. Instead of calculating a multitude of different models by varying some input data or parameters as it is done by Monte-Carlo-simulations, the aim of the second step of the evaluation procedure (which is part of the ongoing work) is to
Institute of Scientific and Technical Information of China (English)
Shi De-Heng; Sun Jin-Feng; Zhu Zun-Lüe; Liu Yu-Fang
2008-01-01
Taking into consideration the changes of the geometric shielding effect in a molecule as the energy of incident electrons varies, this paper presents an empirical fraction, which depends on the energy of incident electrons, the target's molecular dimension and the atomic and electronic numbers in the molecule. Using this empirical fraction, it proposes a new formulation of the additivity rule. Employing the new additivity rule, it calculates the total cross sections of electron scattering by C2H4, C6H8, C6H14 and C8H18 over the energy range from 50 to 5000eV. In order to exclude the calculation deviations caused by solving the radial SchriJdinger equation of electron scattering by atoms, here the atomic cross sections are derived from the experimental total cross section results of simple molecules (H2,O2, CO) via the inversion algorithm. The quantitative total cross sections are compared with those obtained by experiments and other theories, and good agreement is obtained over a wide energy range, even at energy of several tens of eV.
Arias-Martorell, Julia; Alba, David M; Potau, Josep M; Bello-Hellegouarch, Gaëlle; Pérez-Pérez, Alejandro
2015-03-01
Suspension plays a major adaptive role in shaping primate postcranial morphology, which therefore enables this positional behavior to be inferred in extinct taxa. The proximal humerus stands as a key region for inferring forelimb suspensory capabilities because its morphology can be effectively linked, from a functional viewpoint, to differences in suspension use between primate taxa. Here we provide an assessment of the suspensory capabilities of two pliopithecoids (Epipliopithecus vindobonensis and Pliopithecus antiquus) by means of a 3D geometric morphometric analysis of proximal humeral shape. The comparative sample includes proximal humeri from eight extant anthropoid genera, as well as other extinct catarrhines (the propliopithecoid Aegyptopithecus zeuxis, the stem hominoid Nyanzapithecus vancouveringorum, and an unascribed small catarrhine, GSP 28062, from the Middle Miocene of Pakistan). Body mass estimates based on allometric regressions of humeral head superoinferior diameter are also provided. Our results support some degree of forelimb suspensory behaviors for Epipliopithecus and GSP 28062. In contrast, and unlike previous qualitative assessments, our analysis shows that P. antiquus has a distinct glenohumeral morphology, much closer to that displayed by generalized arboreal quadrupeds with no evidence of suspensory adaptations (as in Aegyptopithecus and stem hominoids from Africa).
Ludwig, A; Berthiaume, P; Richer, J; Tinline, R; Bigras-Poulin, M
2014-04-01
Dynamic mathematical modelling and stochastic simulation of disease-host systems for the purpose of epidemiological analysis offer great opportunities for testing hypotheses, especially when field experiments are impractical or when there is a need to evaluate multiple experimental scenarios. This, combined with the ever increasing computer power available to researchers, has contributed to the development of many mathematical models for epidemic simulations, such as the individual-based model (IBM). Nevertheless, few of these models undergo extensive validation and proper assessment of intrinsic variability. The Ontario rabies model (ORM) will be used here to exemplify some advantages of appropriate model behaviour validation and to illustrate the use of a simple geometric procedure for testing directional bias in distributed stochastic dynamic model of spread of diseases. Results were obtained through the comparison of 10 000 epizootics resulting from 100 epidemic simulations started using 100 distinct base populations. The analysis results demonstrated a significant directional bias in epidemic dispersion, which prompted further verification of the model code and the identification of a coding error, which was then corrected. Subsequent testing of the corrected code showed that the directional bias could no longer be detected. These results illustrate the importance of proper validation and the importance of sufficient knowledge of the model behaviour to ensure the results will not confound the objectives of the end-users.
Geometrical Methods for Power Network Analysis
Bellucci, Stefano; Gupta, Neeraj
2013-01-01
This book is a short introduction to power system planning and operation using advanced geometrical methods. The approach is based on well-known insights and techniques developed in theoretical physics in the context of Riemannian manifolds. The proof of principle and robustness of this approach is examined in the context of the IEEE 5 bus system. This work addresses applied mathematicians, theoretical physicists and power engineers interested in novel mathematical approaches to power network theory.
Institute of Scientific and Technical Information of China (English)
蒙小英; 王向荣
2011-01-01
Two directions— geometric approach and naturalism could be recognized in the period of 1920-1970 in Norwegian landscape architecture, which were influenced by natural landscape, Classicism and Functionalism. It led to the geometric approach in coexistence with naturalistic styte in Norwegian landscape architecture, even extending into today. During the period Modern Norwegian landscape archiecture featured this coexistence if compared with other Nordic countries. Based on the field works and literatures, this paper mainly examines the works finished in the period by the noticed Norwegian landscape architects, including Olav L. Moen, Marius Rohne, Karen Reistad and Egil Gabrielsen. It targets to summarize the features and demonstrate the involved details of their works Moen's classical design language, Rohne's functionalism park policy, Reistad's poetic functionalism inspired by the naturalism, and Gabrielsen's geometric approach influenced by the works of Mies van der Rohe( 1886- 1969).%1920-1970年间挪威风景园林师秉承对本士自然景观的热爱,在新古典主义遗风和功能主义的影响下,创造出迥异于其他北欧国家的二元特征-几何式与自然主义并存的二元风格,并一直延续至今.以现场调研和文献资料为基础,重点介绍了1920-1970年间挪威知名风景园林师莫恩、罗内、莱西塔和盖布瑞尔森在这50年问的代表作品,以廓清设计师各自作品中所呈现出的风格特征与内涵:莫恩的新占典设计语言,罗内的功能主义公园建设主张,莱西塔有明显自然主义倾向的诗意功能主义,以及盖布瑞尔森受密斯影响的儿何式园林风格.
Polar Metals by Geometric Design
Energy Technology Data Exchange (ETDEWEB)
Kim, T. H.; Puggioni, D.; Yuan, Y.; Xie, L.; Zhou, H.; Campbell, N.; Ryan, P. J.; Choi, Y.; Kim, J. -W.; Patzner, J. R.; Ryu, S.; Podkaminer, J. P.; Irwin, J.; Ma, Y.; Fennie, C. J.; Rzchowski, M. S.; Pan, X. Q.; Gopalan, V.; Rondinelli, J. M.; Eom, C. B.
2016-05-05
Gauss's law dictates that the net electric field inside a conductor in electrostatic equilibrium is zero by effective charge screening; free carriers within a metal eliminate internal dipoles that may arise owing to asymmetric charge distributions(1). Quantum physics supports this view(2), demonstrating that delocalized electrons make a static macroscopic polarization, an ill-defined quantity in metals(3)-it is exceedingly unusual to find a polar metal that exhibits long-range ordered dipoles owing to cooperative atomic displacements aligned from dipolar interactions as in insulating phases(4). Here we describe the quantum mechanical design and experimental realization of room-temperature polar metals in thin-film ANiO(3) perovskite nickelates using a strategy based on atomic-scale control of inversion-preserving (centric) displacements(5). We predict with ab initio calculations that cooperative polar A cation displacements are geometrically stabilized with a non-equilibrium amplitude and tilt pattern of the corner-connected NiO6 octahedra-the structural signatures of perovskites-owing to geometric constraints imposed by the underlying substrate. Heteroepitaxial thin-films grown on LaAlO3 (111) substrates fulfil the design principles. We achieve both a conducting polar monoclinic oxide that is inaccessible in compositionally identical films grown on (001) substrates, and observe a hidden, previously unreported(6-10), non-equilibrium structure in thin-film geometries. We expect that the geometric stabilization approach will provide novel avenues for realizing new multifunctional materials with unusual coexisting properties.
Testing algebraic geometric codes
Institute of Scientific and Technical Information of China (English)
CHEN Hao
2009-01-01
Property testing was initially studied from various motivations in 1990's.A code C (∩)GF(r)n is locally testable if there is a randomized algorithm which can distinguish with high possibility the codewords from a vector essentially far from the code by only accessing a very small (typically constant) number of the vector's coordinates.The problem of testing codes was firstly studied by Blum,Luby and Rubinfeld and closely related to probabilistically checkable proofs (PCPs).How to characterize locally testable codes is a complex and challenge problem.The local tests have been studied for Reed-Solomon (RS),Reed-Muller (RM),cyclic,dual of BCH and the trace subcode of algebraicgeometric codes.In this paper we give testers for algebraic geometric codes with linear parameters (as functions of dimensions).We also give a moderate condition under which the family of algebraic geometric codes cannot be locally testable.
Testing algebraic geometric codes
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
Property testing was initially studied from various motivations in 1990’s. A code C GF (r)n is locally testable if there is a randomized algorithm which can distinguish with high possibility the codewords from a vector essentially far from the code by only accessing a very small (typically constant) number of the vector’s coordinates. The problem of testing codes was firstly studied by Blum, Luby and Rubinfeld and closely related to probabilistically checkable proofs (PCPs). How to characterize locally testable codes is a complex and challenge problem. The local tests have been studied for Reed-Solomon (RS), Reed-Muller (RM), cyclic, dual of BCH and the trace subcode of algebraicgeometric codes. In this paper we give testers for algebraic geometric codes with linear parameters (as functions of dimensions). We also give a moderate condition under which the family of algebraic geometric codes cannot be locally testable.
Dynamics in geometrical confinement
Kremer, Friedrich
2014-01-01
This book describes the dynamics of low molecular weight and polymeric molecules when they are constrained under conditions of geometrical confinement. It covers geometrical confinement in different dimensionalities: (i) in nanometer thin layers or self supporting films (1-dimensional confinement) (ii) in pores or tubes with nanometric diameters (2-dimensional confinement) (iii) as micelles embedded in matrices (3-dimensional) or as nanodroplets.The dynamics under such conditions have been a much discussed and central topic in the focus of intense worldwide research activities within the last two decades. The present book discusses how the resulting molecular mobility is influenced by the subtle counterbalance between surface effects (typically slowing down molecular dynamics through attractive guest/host interactions) and confinement effects (typically increasing the mobility). It also explains how these influences can be modified and tuned, e.g. through appropriate surface coatings, film thicknesses or pore...
Progressive geometric algorithms
Directory of Open Access Journals (Sweden)
Sander P.A. Alewijnse
2015-01-01
Full Text Available Progressive algorithms are algorithms that, on the way to computing a complete solution to the problem at hand, output intermediate solutions that approximate the complete solution increasingly well. We present a framework for analyzing such algorithms, and develop efficient progressive algorithms for two geometric problems: computing the convex hull of a planar point set, and finding popular places in a set of trajectories.
Geometric Time Delay Interferometry
Vallisneri, Michele
2005-01-01
The space-based gravitational-wave observatory LISA, a NASA-ESA mission to be launched after 2012, will achieve its optimal sensitivity using Time Delay Interferometry (TDI), a LISA-specific technique needed to cancel the otherwise overwhelming laser noise in the inter-spacecraft phase measurements. The TDI observables of the Michelson and Sagnac types have been interpreted physically as the virtual measurements of a synthesized interferometer. In this paper, I present Geometric TDI, a new an...
Geometric unsharpness calculations
Energy Technology Data Exchange (ETDEWEB)
Anderson, D.J. [International Training and Education Group (INTEG), Oakville, Ontario (Canada)
2008-07-15
The majority of radiographers' geometric unsharpness calculations are normally performed with a mathematical formula. However, a majority of codes and standards refer to the use of a nomograph for this calculation. Upon first review, the use of a nomograph appears more complicated but with a few minutes of study and practice it can be just as effective. A review of this article should provide enlightenment. (author)
Geometric Stochastic Resonance
Ghosh, Pulak Kumar; Savel'ev, Sergey E; Nori, Franco
2015-01-01
A Brownian particle moving across a porous membrane subject to an oscillating force exhibits stochastic resonance with properties which strongly depend on the geometry of the confining cavities on the two sides of the membrane. Such a manifestation of stochastic resonance requires neither energetic nor entropic barriers, and can thus be regarded as a purely geometric effect. The magnitude of this effect is sensitive to the geometry of both the cavities and the pores, thus leading to distinctive optimal synchronization conditions.
Geometric properties of eigenfunctions
Energy Technology Data Exchange (ETDEWEB)
Jakobson, D; Nadirashvili, N [McGill University, Montreal, Quebec (Canada); Toth, John [University of Chicago, Chicago, Illinois (United States)
2001-12-31
We give an overview of some new and old results on geometric properties of eigenfunctions of Laplacians on Riemannian manifolds. We discuss properties of nodal sets and critical points, the number of nodal domains, and asymptotic properties of eigenfunctions in the high-energy limit (such as weak * limits, the rate of growth of L{sup p} norms, and relationships between positive and negative parts of eigenfunctions)
Geometric theory of information
2014-01-01
This book brings together geometric tools and their applications for Information analysis. It collects current and many uses of in the interdisciplinary fields of Information Geometry Manifolds in Advanced Signal, Image & Video Processing, Complex Data Modeling and Analysis, Information Ranking and Retrieval, Coding, Cognitive Systems, Optimal Control, Statistics on Manifolds, Machine Learning, Speech/sound recognition, and natural language treatment which are also substantially relevant for the industry.
Perspective: Geometrically frustrated assemblies
Grason, Gregory M.
2016-09-01
This perspective will overview an emerging paradigm for self-organized soft materials, geometrically frustrated assemblies, where interactions between self-assembling elements (e.g., particles, macromolecules, proteins) favor local packing motifs that are incompatible with uniform global order in the assembly. This classification applies to a broad range of material assemblies including self-twisting protein filament bundles, amyloid fibers, chiral smectics and membranes, particle-coated droplets, curved protein shells, and phase-separated lipid vesicles. In assemblies, geometric frustration leads to a host of anomalous structural and thermodynamic properties, including heterogeneous and internally stressed equilibrium structures, self-limiting assembly, and topological defects in the equilibrium assembly structures. The purpose of this perspective is to (1) highlight the unifying principles and consequences of geometric frustration in soft matter assemblies; (2) classify the known distinct modes of frustration and review corresponding experimental examples; and (3) describe outstanding questions not yet addressed about the unique properties and behaviors of this broad class of systems.
Geometric diffusion of quantum trajectories.
Yang, Fan; Liu, Ren-Bao
2015-07-16
A quantum object can acquire a geometric phase (such as Berry phases and Aharonov-Bohm phases) when evolving along a path in a parameter space with non-trivial gauge structures. Inherent to quantum evolutions of wavepackets, quantum diffusion occurs along quantum trajectories. Here we show that quantum diffusion can also be geometric as characterized by the imaginary part of a geometric phase. The geometric quantum diffusion results from interference between different instantaneous eigenstate pathways which have different geometric phases during the adiabatic evolution. As a specific example, we study the quantum trajectories of optically excited electron-hole pairs in time-reversal symmetric insulators, driven by an elliptically polarized terahertz field. The imaginary geometric phase manifests itself as elliptical polarization in the terahertz sideband generation. The geometric quantum diffusion adds a new dimension to geometric phases and may have applications in many fields of physics, e.g., transport in topological insulators and novel electro-optical effects.
Geometric covering arguments and ergodic theorems for free groups
Bowen, Lewis
2009-01-01
We present a new approach to the proof of ergodic theorems for actions of free groups based on geometric covering and asymptotic invariance arguments. Our approach can be viewed as a direct generalization of the classical geometric covering and asymptotic invariance arguments used in the ergodic theory of amenable groups. We use this approach to generalize the existing maximal and pointwise ergodic theorems for free group actions to a large class of geometric averages which were not accessible by previous techniques. Some applications of our approach to other groups and other problems in ergodic theory are also briefly discussed.
Robust Geometric Control of a Distillation Column
DEFF Research Database (Denmark)
Kymmel, Mogens; Andersen, Henrik Weisberg
1987-01-01
A frequency domain method, which makes it possible to adjust multivariable controllers with respect to both nominal performance and robustness, is presented. The basic idea in the approach is that the designer assigns objectives such as steady-state tracking, maximum resonance peaks, bandwidth, m...... is used to examine and improve geometric control of a binary distillation column....
Robust topology optimization accounting for geometric imperfections
DEFF Research Database (Denmark)
Schevenels, M.; Jansen, M.; Lombaert, Geert
2013-01-01
performance. As a consequence, the actual structure may be far from optimal. In this paper, a robust approach to topology optimization is presented, taking into account two types of geometric imperfections: variations of (1) the crosssections and (2) the locations of structural elements. The first type...... of imperfections) and a vertical load carrying system (for the second type). © 2013 Taylor & Francis Group, London....
Algebraic geometric codes with applications
Institute of Scientific and Technical Information of China (English)
CHEN Hao
2007-01-01
The theory of linear error-correcting codes from algebraic geomet-ric curves (algebraic geometric (AG) codes or geometric Goppa codes) has been well-developed since the work of Goppa and Tsfasman, Vladut, and Zink in 1981-1982. In this paper we introduce to readers some recent progress in algebraic geometric codes and their applications in quantum error-correcting codes, secure multi-party computation and the construction of good binary codes.
A Note on a Geometric Interpretation of the Correlation Coefficient.
Marks, Edmond
1982-01-01
An alternate geometric interpretation of the correlation coefficient to that given in most statistics texts for psychology and education is presented. This interpretation is considered to be more consistent with the statistical model for the data, and richer in geometric meaning. (Author)
互补判断矩阵一致性的两种修正方法%TWO APPROACHES TO IMPROVING THE CONSISTENCY OF COMPLEMENTARY JUDGEMENT MATRIX
Institute of Scientific and Technical Information of China (English)
徐泽水
2002-01-01
By the transformation relations between complementary judgement matrix and reciprocal judgement matrix,this paper proposes two methods for improving the consistency of complementary judgement matrix and gives two simple practical iterative algorithms.These two algorithms are easy to implement on computer,and the modified complementary judgement matrices remain most information that original matrix contains.Thus the methods supplement and develop the theory and methodology for improving consistency of complementary judgement matrix.
Geometric U-folds in four dimensions
Lazaroiu, C I
2016-01-01
We describe a general construction of geometric U-folds compatible with the global formulation of four-dimensional extended supergravity on a differentiable spin manifold. The topology of geometric U-folds depends on certain fiber bundles which encode how supergravity fields are globally glued together. Smooth non-trivial U-folds of this type can exist only in theories where both the scalar and space-time manifolds have non-trivial fundamental group and in addition the configuration of scalar fields of the solution is homotopically non-trivial. Nonetheless, certain geometric U-folds extend to simply-connected backgrounds containing localized sources. Consistency with string theory requires smooth geometric U-folds to be glued using subgroups of the effective discrete U-duality group, implying that the fundamental group of the scalar manifold of such solutions must be a subgroup of the latter. We construct simple examples of geometric U-folds in a generalization of the axion-dilaton model of N=2 supergravity c...
Ambrosetti, Antonio; Malchiodi, Andrea
2009-01-01
This volume contains lecture notes on some topics in geometric analysis, a growing mathematical subject which uses analytical techniques, mostly of partial differential equations, to treat problems in differential geometry and mathematical physics. The presentation of the material should be rather accessible to non-experts in the field, since the presentation is didactic in nature. The reader will be provided with a survey containing some of the most exciting topics in the field, with a series of techniques used to treat such problems.
Bose, Prosenjit; Morin, Pat; Smid, Michiel
2012-01-01
Highly connected and yet sparse graphs (such as expanders or graphs of high treewidth) are fundamental, widely applicable and extensively studied combinatorial objects. We initiate the study of such highly connected graphs that are, in addition, geometric spanners. We define a property of spanners called robustness. Informally, when one removes a few vertices from a robust spanner, this harms only a small number of other vertices. We show that robust spanners must have a superlinear number of edges, even in one dimension. On the positive side, we give constructions, for any dimension, of robust spanners with a near-linear number of edges.
Corrochano, Eduardo Bayro
2010-01-01
This book presents contributions from a global selection of experts in the field. This useful text offers new insights and solutions for the development of theorems, algorithms and advanced methods for real-time applications across a range of disciplines. Written in an accessible style, the discussion of all applications is enhanced by the inclusion of numerous examples, figures and experimental analysis. Features: provides a thorough discussion of several tasks for image processing, pattern recognition, computer vision, robotics and computer graphics using the geometric algebra framework; int
Shapere, Alfred D
1989-01-01
During the last few years, considerable interest has been focused on the phase that waves accumulate when the equations governing the waves vary slowly. The recent flurry of activity was set off by a paper by Michael Berry, where it was found that the adiabatic evolution of energy eigenfunctions in quantum mechanics contains a phase of geometric origin (now known as 'Berry's phase') in addition to the usual dynamical phase derived from Schrödinger's equation. This observation, though basically elementary, seems to be quite profound. Phases with similar mathematical origins have been identified
LUNGEOMETRY- GEOMETRICAL INVESTIGATION OF LUNGE
Directory of Open Access Journals (Sweden)
R.Vinodh Rajkumar
2015-02-01
Full Text Available Physiotherapists must learn the biomechanics of lunge in detail to clearly understand its significance in human life and implement effective training measures to overcome the limiting factors of proper lunge of their clientele. To understand the biomechanical value of every movement, interesting experimental learning methods must be employed to kindle the Physiotherapists to actively take part in research activities from the under-graduate level onwards. Lungeometry is a novel, simple and inexpensive experimental investigation of lunge, applying basic geometrical methods taking near normal lower limb length dimensions and rationale approaches into consideration. Lungeometry can give a foundation to learn other forms of lunges like forward lunge, weighted lunges, lateral lunges. This model of learning biomechanics of movements using fundamental geometry techniques is expected to strongly connect with any futuristic Physiotherapy curricular structure.
Spherical projections and liftings in geometric tomography
DEFF Research Database (Denmark)
Goodey, Paul; Kiderlen, Markus; Weil, Wolfgang
2011-01-01
We consider a variety of integral transforms arising in Geometric Tomography. It will be shown that these can be put into a common framework using spherical projection and lifting operators. These operators will be applied to support functions and surface area measures of convex bodies and to rad......We consider a variety of integral transforms arising in Geometric Tomography. It will be shown that these can be put into a common framework using spherical projection and lifting operators. These operators will be applied to support functions and surface area measures of convex bodies...... and to radial functions of star bodies. We then investigate averages of lifted projections and show that they correspond to self-adjoint intertwining operators. We obtain formulas for the eigenvalues of these operators and use them to ascertain circumstances under which tomographic measurements determine...... the original bodies. This approach via mean lifted projections leads us to some unexpected relationships between seemingly disparate geometric constructions....
Duality orbits of non-geometric fluxes
Energy Technology Data Exchange (ETDEWEB)
Dibitetto, G.; Roest, D. [Centre for Theoretical Physics, University of Groningen, Nijenborgh 4, 9747 AG Groningen (Netherlands); Fernandez-Melgarejo, J.J. [Grupo de Fisica Teorica y Cosmologia, Dept. de Fisica, University of Murcia, Campus de Espinardo, 30100-Murcia (Spain); Marques, D. [Institut de Physique Theorique, CEA/ Saclay, 91191 Gif-sur-Yvette Cedex (France)
2012-11-15
Compactifications in duality covariant constructions such as generalised geometry and double field theory have proven to be suitable frameworks to reproduce gauged supergravities containing non-geometric fluxes. However, it is a priori unclear whether these approaches only provide a reformulation of old results, or also contain new physics. To address this question, we classify the T- and U-duality orbits of gaugings of (half-)maximal supergravities in dimensions seven and higher. It turns out that all orbits have a geometric supergravity origin in the maximal case, while there are non-geometric orbits in the half-maximal case. We show how the latter are obtained from compactifications of double field theory. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Understanding geometric algebra for electromagnetic theory
Arthur, John W
2011-01-01
"This book aims to disseminate geometric algebra as a straightforward mathematical tool set for working with and understanding classical electromagnetic theory. It's target readership is anyone who has some knowledge of electromagnetic theory, predominantly ordinary scientists and engineers who use it in the course of their work, or postgraduate students and senior undergraduates who are seeking to broaden their knowledge and increase their understanding of the subject. It is assumed that the reader is not a mathematical specialist and is neither familiar with geometric algebra or its application to electromagnetic theory. The modern approach, geometric algebra, is the mathematical tool set we should all have started out with and once the reader has a grasp of the subject, he or she cannot fail to realize that traditional vector analysis is really awkward and even misleading by comparison"--Provided by publisher.
Morse Theory and the Geometric interpretation of NCCW Complexes
Milani, Vida; Rezaei, Ali Asghar
2009-01-01
The approach we present here is a modification of the Morse theory for unital C*-algebras.It helps us to study the geometry of the noncommutative CW complexes introduced in[1] and [2]. A geometric condition for a unital C*-algebra to admit a noncommutative CW complex decomposition is studied. Some examples to illustrate these geometric information in practice are given.
Hochhalter, Jake D.; Littlewood, David J.; Christ, Robert J., Jr.; Veilleux, M. G.; Bozek, J. E.; Ingraffea, A. R.; Maniatty, Antionette M.
2010-01-01
The objective of this paper is to develop further a framework for computationally modeling microstructurally small fatigue crack growth in AA 7075-T651 [1]. The focus is on the nucleation event, when a crack extends from within a second-phase particle into a surrounding grain, since this has been observed to be an initiating mechanism for fatigue crack growth in this alloy. It is hypothesized that nucleation can be predicted by computing a non-local nucleation metric near the crack front. The hypothesis is tested by employing a combination of experimentation and nite element modeling in which various slip-based and energy-based nucleation metrics are tested for validity, where each metric is derived from a continuum crystal plasticity formulation. To investigate each metric, a non-local procedure is developed for the calculation of nucleation metrics in the neighborhood of a crack front. Initially, an idealized baseline model consisting of a single grain containing a semi-ellipsoidal surface particle is studied to investigate the dependence of each nucleation metric on lattice orientation, number of load cycles, and non-local regularization method. This is followed by a comparison of experimental observations and computational results for microstructural models constructed by replicating the observed microstructural geometry near second-phase particles in fatigue specimens. It is found that orientation strongly influences the direction of slip localization and, as a result, in uences the nucleation mechanism. Also, the baseline models, replication models, and past experimental observation consistently suggest that a set of particular grain orientations is most likely to nucleate fatigue cracks. It is found that a continuum crystal plasticity model and a non-local nucleation metric can be used to predict the nucleation event in AA 7075-T651. However, nucleation metric threshold values that correspond to various nucleation governing mechanisms must be calibrated.
Sturz, Bradley R; Edwards, Joshua E; Boyer, Ty W
2014-01-01
Nativists have postulated fundamental geometric knowledge that predates linguistic and symbolic thought. Central to these claims is the proposal for an isolated cognitive system dedicated to processing geometric information. Testing such hypotheses presents challenges due to difficulties in eliminating the combination of geometric and non-geometric information through language. We present evidence using a modified matching interference paradigm that an incongruent shape word interferes with identifying a two-dimensional geometric shape, but an incongruent two-dimensional geometric shape does not interfere with identifying a shape word. This asymmetry in interference effects between two-dimensional geometric shapes and their corresponding shape words suggests that shape words activate spatial representations of shapes but shapes do not activate linguistic representations of shape words. These results appear consistent with hypotheses concerning a cognitive system dedicated to processing geometric information isolated from linguistic processing and provide evidence consistent with hypotheses concerning knowledge of geometric properties of space that predates linguistic and symbolic thought.
Manwani, Naresh
2010-01-01
In this paper we present a new algorithm for learning oblique decision trees. Most of the current decision tree algorithms rely on impurity measures to assess the goodness of hyperplanes at each node while learning a decision tree in a top-down fashion. These impurity measures do not properly capture the geometric structures in the data. Motivated by this, our algorithm uses a strategy to assess the hyperplanes in such a way that the geometric structure in the data is taken into account. At each node of the decision tree, we find the clustering hyperplanes for both the classes and use their angle bisectors as the split rule at that node. We show through empirical studies that this idea leads to small decision trees and better performance. We also present some analysis to show that the angle bisectors of clustering hyperplanes that we use as the split rules at each node, are solutions of an interesting optimization problem and hence argue that this is a principled method of learning a decision tree.
Xu, Zhijie; Meakin, Paul
2009-06-21
Dissipative particle dynamics (DPD) is an effective mesoscopic particle model with a lower computational cost than molecular dynamics because of the soft potentials that it employs. However, the soft potential is not strong enough to prevent the DPD particles that are used to represent the fluid from penetrating solid boundaries represented by stationary DPD particles. A phase-field variable, phi(x,t), is used to indicate the phase at point x and time t, with a smooth transition from -1 (phase 1) to +1 (phase 2) across the interface. We describe an efficient implementation of no-slip boundary conditions in DPD models that combines solid-liquid particle-particle interactions with reflection at a sharp boundary located with subgrid scale accuracy using the phase field. This approach can be used for arbitrarily complex flow geometries and other similar particle models (such as smoothed particle hydrodynamics), and the validity of the model is demonstrated by DPD simulations of flow in confined systems with various geometries.
Consistent quantum measurements
Griffiths, Robert B.
2015-11-01
In response to recent criticisms by Okon and Sudarsky, various aspects of the consistent histories (CH) resolution of the quantum measurement problem(s) are discussed using a simple Stern-Gerlach device, and compared with the alternative approaches to the measurement problem provided by spontaneous localization (GRW), Bohmian mechanics, many worlds, and standard (textbook) quantum mechanics. Among these CH is unique in solving the second measurement problem: inferring from the measurement outcome a property of the measured system at a time before the measurement took place, as is done routinely by experimental physicists. The main respect in which CH differs from other quantum interpretations is in allowing multiple stochastic descriptions of a given measurement situation, from which one (or more) can be selected on the basis of its utility. This requires abandoning a principle (termed unicity), central to classical physics, that at any instant of time there is only a single correct description of the world.
Ikeda, Tatsuya; Oaki, Yuya; Imai, Hiroaki
2013-09-01
Thin films of copper oxides can be synthesized on substrates by using approaches that are inspired by microbial mineralization processes. In nature, precipitates of manganese and iron oxides with controlled oxidation states and crystal phases are produced through biomineralization by microorganisms. We have previously reported microbial-mineralization-inspired approaches that are comprised of direct and intermediate routes for the controlled syntheses of transition-metal oxides. Herein, these approaches are applied to the thin-film formation and coating of copper oxides and a related compound with controlled crystal phases and morphologies. Thin films of CuO, Cu2O, and Cu2(OH)3Cl were selectively synthesized by using direct or intermediate routes. Notably, CuO mesocrystal nanosheets formed a thin film over the whole of the substrate. The resultant CuO mesocrystal nanosheets showed enhanced properties for the electrochemical detection of dopamine. This study shows the potential applicability of microbial-mineralization-inspired approaches to thin-film coatings.
Pecorella, Patricia A.; Bowers, David G.
Analyses preparatory to construction of a suitable file for generating a system of future performance trend indicators are described. Such a system falls into the category of a current value approach to human resources accounting. It requires that there be a substantial body of data which: (1) uses the work group or unit, not the individual, as…
The Geometric Transition Revisited
Gwyn, Rhiannon
2007-01-01
Our intention in this article is to review known facts and to summarise recent advances in the understanding of geometric transitions and the underlying open/closed duality in string theory. We aim to present a pedagogical discussion of the gauge theory underlying the Klebanov--Strassler model and review the Gopakumar--Vafa conjecture based on topological string theory. These models are also compared in the T-dual brane constructions. We then summarise a series of papers verifying both models on the supergravity level. An appendix provides extensive background material about conifold geometries. We pay special attention to their complex structures and re-evaluate the supersymmetry conditions on the background flux in constructions with fractional D3-branes on the singular (Klebanov--Strassler) and resolved (Pando Zayas--Tseytlin) conifolds. We agree with earlier results that only the singular solution allows a supersymmetric flux, but point out the importance of using the correct complex structure to reach th...
Kahle, Matthew
2009-01-01
We study the expected topological properties of Cech and Vietoris-Rips complexes built on randomly sampled points in R^d. These are, in some cases, analogues of known results for connectivity and component counts for random geometric graphs. However, an important difference in this setting is that homology is not monotone in the underlying parameter. In the sparse range, we compute the expectation and variance of the Betti numbers, and establish Central Limit Theorems and concentration of measure. In the dense range, we introduce Morse theoretic arguments to bound the expectation of the Betti numbers, which is the main technical contribution of this article. These results provide a detailed probabilistic picture to compare with the topological statistics of point cloud data.
Geometrical Destabilization of Inflation
Renaux-Petel, Sébastien; Turzyński, Krzysztof
2016-09-01
We show the existence of a general mechanism by which heavy scalar fields can be destabilized during inflation, relying on the fact that the curvature of the field space manifold can dominate the stabilizing force from the potential and destabilize inflationary trajectories. We describe a simple and rather universal setup in which higher-order operators suppressed by a large energy scale trigger this instability. This phenomenon can prematurely end inflation, thereby leading to important observational consequences and sometimes excluding models that would otherwise perfectly fit the data. More generally, it modifies the interpretation of cosmological constraints in terms of fundamental physics. We also explain how the geometrical destabilization can lead to powerful selection criteria on the field space curvature of inflationary models.
Advanced Geometric Modeler with Hybrid Representation
Institute of Scientific and Technical Information of China (English)
杨长贵; 陈玉健; 等
1996-01-01
An advanced geometric modeler GEMS4.0 has been developed,in which feature representation is used at the highest level abstraction of a product model.Boundary representation is used at the bottom level,while CSG model is adopted at the median level.A BRep data structure capable of modeling non-manifold is adopted.UNRBS representation is used for all curved surfaces,Quadric surfaces have dual representations consisting of their geometric data such as radius,center point,and center axis.Boundary representation of free form surfaces is easily built by sweeping and skinning method with NURBS geometry.Set operations on curved solids with boundary representation are performed by an evaluation process consisting of four steps.A file exchange facility is provided for the conversion between product data described by STEP and product information generated by GEMS4.0.
Bochove, Erik J; Rao Gudimetla, V S
2017-01-01
We propose a self-consistency condition based on the extended Huygens-Fresnel principle, which we apply to the propagation kernel of the mutual coherence function of a partially coherent laser beam propagating through a turbulent atmosphere. The assumption of statistical independence of turbulence in neighboring propagation segments leads to an integral equation in the propagation kernel. This integral equation is satisfied by a Gaussian function, with dependence on the transverse coordinates that is identical to the previous Gaussian formulation by Yura [Appl. Opt.11, 1399 (1972)APOPAI0003-693510.1364/AO.11.001399], but differs in the transverse coherence length's dependence on propagation distance, so that this established version violates our self-consistency principle. Our formulation has one free parameter, which in the context of Kolmogorov's theory is independent of turbulence strength and propagation distance. We determined its value by numerical fitting to the rigorous beam propagation theory of Yura and Hanson [J. Opt. Soc. Am. A6, 564 (1989)JOAOD60740-323210.1364/JOSAA.6.000564], demonstrating in addition a significant improvement over other Gaussian models.
Noncommutative Geometric Gauge Theory from Superconnections
Lee, Chang-Yeong
1996-01-01
Noncommutative geometric gauge theory is reconstructed based on the superconnection concept. The bosonic action of the Connes-Lott model including the symmetry breaking Higgs sector is obtained by using a new generalized derivative, which consists of the usual 1-form exterior derivative plus an extra element called the matrix derivative, for the curvatures. We first derive the matrix derivative based on superconnections and then show how the matrix derivative can give rise to spontaneous symm...
Boucaud, Ph; De Soto, F; Morenas, V; Pène, O; Petrov, K; Rodríguez-Quintero, J
2013-01-01
We present a lattice calculation of the renormalized running coupling constant in symmetric (MOM) and asymmetric ($\\widetilde{\\rm MOM}$) momentum substraction schemes including $u$, $d$, $s$ and $c$ quarks in the sea. An Operator Product Expansion dominated by the dimension-two $\\langle A^2\\rangle$ condensate is used to fit the running of the coupling. We argue that the agreement in the predicted $\\langle A^2\\rangle$ condensate for both schemes is a strong support for the validity of the OPE approach and the effect of this non-gauge invariant condensate over the running of the strong coupling.
Geometric reasoning about assembly tools
Energy Technology Data Exchange (ETDEWEB)
Wilson, R.H.
1997-01-01
Planning for assembly requires reasoning about various tools used by humans, robots, or other automation to manipulate, attach, and test parts and subassemblies. This paper presents a general framework to represent and reason about geometric accessibility issues for a wide variety of such assembly tools. Central to the framework is a use volume encoding a minimum space that must be free in an assembly state to apply a given tool, and placement constraints on where that volume must be placed relative to the parts on which the tool acts. Determining whether a tool can be applied in a given assembly state is then reduced to an instance of the FINDPLACE problem. In addition, the author presents more efficient methods to integrate the framework into assembly planning. For tools that are applied either before or after their target parts are mated, one method pre-processes a single tool application for all possible states of assembly of a product in polynomial time, reducing all later state-tool queries to evaluations of a simple expression. For tools applied after their target parts are mated, a complementary method guarantees polynomial-time assembly planning. The author presents a wide variety of tools that can be described adequately using the approach, and surveys tool catalogs to determine coverage of standard tools. Finally, the author describes an implementation of the approach in an assembly planning system and experiments with a library of over one hundred manual and robotic tools and several complex assemblies.
Chialvo, Ariel A; Moucka, Filip; Vlcek, Lukas; Nezbeda, Ivo
2015-04-16
We developed the Gaussian charge-on-spring (GCOS) version of the original self-consistent field implementation of the Gaussian Charge Polarizable water model and test its accuracy to represent the polarization behavior of the original model involving smeared charges and induced dipole moments. For that purpose we adapted the recently proposed multiple-particle-move (MPM) within the Gibbs and isochoric-isothermal ensembles Monte Carlo methods for the efficient simulation of polarizable fluids. We assessed the accuracy of the GCOS representation by a direct comparison of the resulting vapor-liquid phase envelope, microstructure, and relevant microscopic descriptors of water polarization along the orthobaric curve against the corresponding quantities from the actual GCP water model.
Coordinate Geometric Generalization of the Spherometer and Cylindrometer
Khan, Sameen Ahmed
2013-01-01
Spherometer is an instrument widely used for measuring the radius of curvature of a spherical surface. Cylindrometer is a modified spherometer, which can measure the radii of both spherical and cylindrical surfaces. Both of these instruments are based on a geometric relation unique to circles and spheres, from Euclidean geometry. A more general understanding is obtained using coordinate geometry. The coordinate geometric approach also enables a generalization of the spherometer and cylindrometer to devices, which can handle aspherical surfaces. Here, we present the newly developed coordinate geometric approach and its applications.
Gilman, Robert H; Miasnikov, Alexei
2007-01-01
Each relational structure X has an associated Gaifman graph, which endows X with the properties of a graph. Suppose that X is infinite, connected and of bounded degree. A first-order sentence in the language of X is almost surely true (resp. a.s. false) for finite substructures of X if for every element x in X, the fraction of substructures of the ball of radius n around x which satisfy the sentence approaches 1 (resp. 0) as n approaches infinity. Suppose further that, for every finite substructure, X has a disjoint isomorphic substructure. Then every sentence is a.s. true or a.s. false for finite substructures of X. This is one form of the geometric zero-one law. We formulate it also in a form that does not mention the ambient infinite structure. In addition, we investigate various questions related to the geometric zero-one law.
Geometric dynamical observables in rare gas crystals
Energy Technology Data Exchange (ETDEWEB)
Casetti, L. [Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa (Italy); Macchi, A. [Istituto Nazionale di Fisica della Materia (INFM), Unita di Firenze, Largo Enrico Fermi 2, 50125 Firenze (Italy)
1997-03-01
We present a detailed description of how a differential geometric approach to Hamiltonian dynamics can be used for determining the existence of a crossover between different dynamical regimes in a realistic system, a model of a rare gas solid. Such a geometric approach allows us to locate the energy threshold between weakly and strongly chaotic regimes, and to estimate the largest Lyapunov exponent. We show how standard methods of classical statistical mechanics, i.e., Monte Carlo simulations, can be used for our computational purposes. Finally we consider a Lennard-Jones crystal modeling solid xenon. The value of the energy threshold turns out to be in excellent agreement with the numerical estimate based on the crossover between slow and fast relaxation to equilibrium obtained in a previous work by molecular dynamics simulations. {copyright} {ital 1997} {ital The American Physical Society}
Geometric dynamical observables in rare gas crystals
Casetti, L; Casetti, Lapo; Macchi, Alessandro
1996-01-01
We present a detailed description of how a differential geometric approach to Hamiltonian dynamics can be used for determining the existence of a crossover between different dynamical regimes in a realistic system, a model of a rare gas solid. Such a geometric approach allows to locate the energy threshold between weakly and strongly chaotic regimes, and to estimate the largest Lyapunov exponent. We show how standard mehods of classical statistical mechanics, i.e. Monte Carlo simulations, can be used for our computational purposes. Finally we consider a Lennard Jones crystal modeling solid Xenon. The value of the energy threshold turns out to be in excellent agreement with the numerical estimate based on the crossover between slow and fast relaxation to equilibrium obtained in a previous work by molecular dynamics simulations.
van der Schalie, Robin; de Jeu, Richard; Kerr, Yann; Wigneron, Jean-Pierre; Rodríguez-Fernández, Nemesio; Al-Yaari, Amen; Drusch, Matthias; Mecklenburg, Susanne; Dolman, Han
2016-04-01
Datasets that are derived from satellite observations are becoming increasingly important for measuring key parameters of the Earth's climate and are therefore crucial in research on climate change, giving the opportunity to researchers to detect anomalies and long-term trends globally. One of these key parameters is soil moisture (SM), which has a large impact on water, energy and biogeochemical cycles worldwide. A long-term SM data record from active and passive microwave satellite observations was developed as part of ESA's Climate Change Initiative (ESA-CCI-SM, http://www.esa-soilmoisture-cci.org/). Currently the dataset covers a period from 1978 to 2014 and is updated regularly, observations from a several microwave satellites including: ERS-1, ERS-2, METOP-A, Nimbus 7 SMMR, DMSP SSM/I, TRMM TMI, Aqua AMSRE, Coriolis WindSat, and GCOM-W1 AMSR2. In 2009, ESA launched the Soil Moisture and Ocean Salinity (SMOS, Kerr et al., 2010) mission, carrying onboard a unique L-band radiometer, but its SM retrievals are not yet part of this dataset. Due to the different radiometric characteristics of SMOS, integrating SMOS into the ESA-CCI-SM dataset is not straight forward. Therefore several approaches have been tested to fuse soil moisture retrievals from SMOS and AMSRE, which currently forms the basis of the passive microwave part within ESA-CCI-SM project. These approaches are: 1. A Neural Network Fusion approach (Rodríguez-Fernández et al., 2015), 2. A regression approach (Wigneron et al., 2004; Al-Yaari et al., 2015) and 3. A radiative transfer based approach, using the Land Parameter Retrieval Model (Van der Schalie et al., 2016). This study evaluates the three different approaches and tests their skills against multiple datasets, including MERRA-Land, ERA-Interim/Land, the current ESA-CCI-SM v2.2 and in situ measurements from the International Soil Moisture Network and present a recommendation for the potential integration of SMOS soil moisture into the ESA
Harmonic and geometric analysis
Citti, Giovanna; Pérez, Carlos; Sarti, Alessandro; Zhong, Xiao
2015-01-01
This book presents an expanded version of four series of lectures delivered by the authors at the CRM. Harmonic analysis, understood in a broad sense, has a very wide interplay with partial differential equations and in particular with the theory of quasiconformal mappings and its applications. Some areas in which real analysis has been extremely influential are PDE's and geometric analysis. Their foundations and subsequent developments made extensive use of the Calderón–Zygmund theory, especially the Lp inequalities for Calderón–Zygmund operators (Beurling transform and Riesz transform, among others) and the theory of Muckenhoupt weights. The first chapter is an application of harmonic analysis and the Heisenberg group to understanding human vision, while the second and third chapters cover some of the main topics on linear and multilinear harmonic analysis. The last serves as a comprehensive introduction to a deep result from De Giorgi, Moser and Nash on the regularity of elliptic partial differen...
Wiktor, Julia; Jomard, Gérald; Torrent, Marc
2015-09-01
Many techniques have been developed in the past in order to compute positron lifetimes in materials from first principles. However, there is still a lack of a fast and accurate self-consistent scheme that could handle accurately the forces acting on the ions induced by the presence of the positron. We will show in this paper that we have reached this goal by developing the two-component density functional theory within the projector augmented-wave (PAW) method in the open-source code abinit. This tool offers the accuracy of the all-electron methods with the computational efficiency of the plane-wave ones. We can thus deal with supercells that contain few hundreds to thousands of atoms to study point defects as well as more extended defects clusters. Moreover, using the PAW basis set allows us to use techniques able to, for instance, treat strongly correlated systems or spin-orbit coupling, which are necessary to study heavy elements, such as the actinides or their compounds.
Rocha, Alexandre B.; de Moura, Carlos E. V.
2011-12-01
Potential energy curves for inner-shell states of nitrogen and carbon dioxide molecules are calculated by inner-shell complete active space self-consistent field (CASSCF) method, which is a protocol, recently proposed, to obtain specifically converged inner-shell states at multiconfigurational level. This is possible since the collapse of the wave function to a low-lying state is avoided by a sequence of constrained optimization in the orbital mixing step. The problem of localization of K-shell states is revisited by calculating their energies at CASSCF level based on both localized and delocalized orbitals. The localized basis presents the best results at this level of calculation. Transition energies are also calculated by perturbation theory, by taking the above mentioned MCSCF function as zeroth order wave function. Values for transition energy are in fairly good agreement with experimental ones. Bond dissociation energies for N2 are considerably high, which means that these states are strongly bound. Potential curves along ground state normal modes of CO2 indicate the occurrence of Renner-Teller effect in inner-shell states.
Directory of Open Access Journals (Sweden)
Shang Erxin
2012-11-01
Full Text Available Abstract Background In the present study, chemical consistency between traditional and dispensing granule decoctions of Tao-Hong-Si-Wu decoction was rapidly evaluated by UPLC-QTOF-MS coupled with the MarkerLynx software. Two different kinds of decoctions, namely traditional decoction: water extract of mixed six constituent herbs of Tao-Hong-Si-Wu decoction, and dispensing granules decoction: mixed water extract of each individual herbs of Tao-Hong-Si-Wu decoction, were prepared. Results Chemical difference was found between traditional and dispensing granule decoctions, and albiflorin, paeoniflorin, gallic acid, amygdalin, and hydroxysafflor yellow A were identified as the significantly changed components during decocting Tao-Hong-Si-Wu decoction. All the peaks of mass spectrum from Tao-Hong-Si-Wu decoction and each herb were extracted and integration by using QuanLynx™. And the optimized data was used for linear regression analysis. The contribution of each herb in Tao-Hong-Si-Wu decoction, and the optimal compatibility proportion of dispensing granule decoction were derived from the linear regression equation. Conclusions The optimal dosage proportionality of Tao-Hong-Si-Wu dispensing granule decoction was obtained as 2.5:0.2:1:0.5:0.6:0.1 (DG : CX : BS : SD : TR : HH, which guided better clinic application of Tao-Hong-Si-Wu decoction as dispensing granule decoctions usage, and it also provided some experimental data to reveal the compatibility rule of the relative TCM formulae.
A new geometrical approach to void statistics
Werner, M C
2014-01-01
Modelling cosmic voids as spheres in Euclidean space, the notion of a de-Sitter configuration space is introduced. It is shown that a uniform distribution over this configuration space yields a power-law approximating the void size distribution in an intermediate range of volumes, as well as an estimate for the fractal dimension of the large scale structure.
Geometric approach to Ending Lamination Conjecture
Soma, Teruhiko
2008-01-01
We present a new proof of the bi-Lipschitz model theorem, which occupies the main part of the Ending Lamination Conjecture proved by Minsky and Brock-Canary-Minsky. Our proof is done by using techniques of standard hyperbolic geometry as much as possible.
A Geometric Approach to Matrix Ordering
Auer, B O Fagginger
2011-01-01
We present a recursive way to partition hypergraphs which creates and exploits hypergraph geometry and is suitable for many-core parallel architectures. Such partitionings are then used to bring sparse matrices in a recursive Bordered Block Diagonal form (for processor-oblivious parallel LU decomposition) or recursive Separated Block Diagonal form (for cache-oblivious sparse matrix-vector multiplication). We show that the quality of the obtained partitionings and orderings is competitive by comparing obtained fill-in for LU decomposition with SuperLU (with better results for 8 of the 28 test matrices) and comparing cut sizes for sparse matrix-vector multiplication with Mondriaan (with better results for 4 of the 12 test matrices). The main advantage of the new method is its speed: it is on average 21.6 times faster than Mondriaan.
Geometric approach to condensates in holographic QCD
Hirn, J; Sanz, V; Hirn, Johannes; Rius, Nuria; Sanz, Veronica
2006-01-01
An SU(Nf)xSU(Nf) Yang-Mills theory on an extra-dimensional interval is considered, with appropriate symmetry-breaking boundary conditions on the IR brane. UV-brane to UV-brane correlators at high energies are compared with the OPE of two-point functions of QCD quark currents. Condensates correspond to departure from AdS of the (different) metrics felt by vector and axial combinations, away from the UV brane. Their effect on hadronic observables is studied: the extracted condensates agree with the signs and orders of magnitude expected from QCD.
Oscillator Phase Noise: A Geometrical Approach
DEFF Research Database (Denmark)
Djurhuus, Torsten; Krozer, Viktor; Vidkjær, Jens
2009-01-01
We construct a coordinate-independent description of oscillator linear response through a decomposition scheme derived independently of any Floquet theoretic results. Trading matrix algebra for a simpler graphical methodology, the text will present the reader with an opportunity to gain an intuit...... an intuitive understanding of the well-known phase noise macromodel. The topics discussed in this paper include the following: orthogonal decompositions, AM–PM conversion, and nonhyperbolic oscillator noise response....
Homological Type of Geometric Transitions
Rossi, Michele
2010-01-01
The present paper gives an account and quantifies the change in topology induced by small and type II geometric transitions, by introducing the notion of the \\emph{homological type} of a geometric transition. The obtained results agree with, and go further than, most results and estimates, given to date by several authors, both in mathematical and physical literature.
Geometric Mechanics of Periodic Pleated Origami
Wei, Zhiyan; Dudte, Levi; Liang, Haiyi; Mahadevan, L
2012-01-01
Origami is the archetype of a structural material with unusual mechanical properties that arise almost exclusively from the geometry of its constituent folds and forms the basis for mechanical metamaterials with an extreme deformation response. Here we consider a simple periodically folded structure Miura-ori, which is composed of identical unit cells of mountain and valley folds with four-coordinated ridges, de?fined completely by 2 angles and 2 lengths. We use the geometrical properties of a Miura-ori plate to characterize its elastic response to planar and non-planar piece- wise isometric deformations and calculate the two-dimensional stretching and bending response of a Miura-ori sheet, and show that the in-plane and out-of-plane Poisson's ratios are equal in magnitude, but opposite in sign. Our geometric approach also allows us to solve the inverse design problem of determining the geometric parameters that achieve the optimal geometric and mechanical response of such structures.
垂体腺瘤质地与手术入路的探讨%The evaluation for consistency of pituitary adenoma and surgical approach
Institute of Scientific and Technical Information of China (English)
王集生; 谢坚; 罗世祺
2001-01-01
Objective To discuss the relationship between the hardness of pituitary adenomas with surgical approach.Methods 100 cases with solid tumors were studied. We have reviewed their clinical features, level of hormone, the signal intensity of MR and operative results. Results Among the 88 cases of adenomas with sofe-texture, 36 cases of them were GH secreting adenomas, 21 cases were prolactinomas, 31 cases were nonfunctioning adenomas. 76 cases were with long-T2 MR signal, 12 cases with equal-T2 MR signal, The other 12 cases were with hard-texture, which prolactionmas in 4 cases and nonfunctioning adenomas in 8. Long-T2 MR signal were in 4 patients and equal-T2 signal in 8. Conclusions There are relationship among the signal of T2 weight, level of hormone and texture of adenomas, which are very important for choice of surgical approach.%目的 探讨大垂体腺瘤的手术入路。方法 分析了100例实性垂体腺瘤的临床表现、内分泌检查结果、MR检查T2信号特点及手术情况。结果 肿瘤质地软易切除者88例，其中生长激素腺瘤36例，泌乳激素腺瘤21例，无功能性腺瘤31例；MR检查T2像：高信号76例，等信号12例。肿瘤质地较韧者12例，其中泌乳激素腺瘤4例，无功能性腺瘤8例；MR检查T2像：高信号4例，等信号8例。结论 垂体腺瘤的质地与MR检查T2像信号强度、内分泌测定有关，可以指导大垂体腺瘤的手术入路选择。
The geometrical structure of quantum theory as a natural generalization of information geometry
Energy Technology Data Exchange (ETDEWEB)
Reginatto, Marcel [Physikalisch-Technische Bundesanstalt, Braunschweig (Germany)
2015-01-13
Quantum mechanics has a rich geometrical structure which allows for a geometrical formulation of the theory. This formalism was introduced by Kibble and later developed by a number of other authors. The usual approach has been to start from the standard description of quantum mechanics and identify the relevant geometrical features that can be used for the reformulation of the theory. Here this procedure is inverted: the geometrical structure of quantum theory is derived from information geometry, a geometrical structure that may be considered more fundamental, and the Hilbert space of the standard formulation of quantum mechanics is constructed using geometrical quantities. This suggests that quantum theory has its roots in information geometry.
Transmuted Complementary Weibull Geometric Distribution
Directory of Open Access Journals (Sweden)
Ahmed Z. A fify
2014-12-01
Full Text Available This paper provides a new generalization of the complementary Weibull geometric distribution that introduced by Tojeiro et al. (2014, using the quadratic rank transmutation map studied by Shaw and Buckley (2007. The new distribution is referred to as transmuted complementary Weibull geometric distribution (TCWGD. The TCWG distribution includes as special cases the complementary Weibull geometric distribution (CWGD, complementary exponential geometric distribution(CEGD,Weibull distribution (WD and exponential distribution (ED. Various structural properties of the new distribution including moments, quantiles, moment generating function and RØnyi entropy of the subject distribution are derived. We proposed the method of maximum likelihood for estimating the model parameters and obtain the observed information matrix. A real data set are used to compare the exibility of the transmuted version versus the complementary Weibull geometric distribution.
Chip Multithreaded Consistency Model
Institute of Scientific and Technical Information of China (English)
Zu-Song Li; Dan-Dan Huan; Wei-Wu Hu; Zhi-Min Tang
2008-01-01
Multithreaded technique is the developing trend of high performance processor. Memory consistency model is essential to the correctness, performance and complexity of multithreaded processor. The chip multithreaded consistency model adapting to multithreaded processor is proposed in this paper. The restriction imposed on memory event ordering by chip multithreaded consistency is presented and formalized. With the idea of critical cycle built by Wei-Wu Hu, we prove that the proposed chip multithreaded consistency model satisfies the criterion of correct execution of sequential consistency model. Chip multithreaded consistency model provides a way of achieving high performance compared with sequential consistency model and ensures the compatibility of software that the execution result in multithreaded processor is the same as the execution result in uniprocessor. The implementation strategy of chip multithreaded consistency model in Godson-2 SMT processor is also proposed. Godson-2 SMT processor supports chip multithreaded consistency model correctly by exception scheme based on the sequential memory access queue of each thread.
Generalized Geometric Quantum Speed Limits
Pires, Diego Paiva; Cianciaruso, Marco; Céleri, Lucas C.; Adesso, Gerardo; Soares-Pinto, Diogo O.
2016-04-01
The attempt to gain a theoretical understanding of the concept of time in quantum mechanics has triggered significant progress towards the search for faster and more efficient quantum technologies. One of such advances consists in the interpretation of the time-energy uncertainty relations as lower bounds for the minimal evolution time between two distinguishable states of a quantum system, also known as quantum speed limits. We investigate how the nonuniqueness of a bona fide measure of distinguishability defined on the quantum-state space affects the quantum speed limits and can be exploited in order to derive improved bounds. Specifically, we establish an infinite family of quantum speed limits valid for unitary and nonunitary evolutions, based on an elegant information geometric formalism. Our work unifies and generalizes existing results on quantum speed limits and provides instances of novel bounds that are tighter than any established one based on the conventional quantum Fisher information. We illustrate our findings with relevant examples, demonstrating the importance of choosing different information metrics for open system dynamics, as well as clarifying the roles of classical populations versus quantum coherences, in the determination and saturation of the speed limits. Our results can find applications in the optimization and control of quantum technologies such as quantum computation and metrology, and might provide new insights in fundamental investigations of quantum thermodynamics.
Generalized Geometric Quantum Speed Limits
Directory of Open Access Journals (Sweden)
Diego Paiva Pires
2016-06-01
Full Text Available The attempt to gain a theoretical understanding of the concept of time in quantum mechanics has triggered significant progress towards the search for faster and more efficient quantum technologies. One of such advances consists in the interpretation of the time-energy uncertainty relations as lower bounds for the minimal evolution time between two distinguishable states of a quantum system, also known as quantum speed limits. We investigate how the nonuniqueness of a bona fide measure of distinguishability defined on the quantum-state space affects the quantum speed limits and can be exploited in order to derive improved bounds. Specifically, we establish an infinite family of quantum speed limits valid for unitary and nonunitary evolutions, based on an elegant information geometric formalism. Our work unifies and generalizes existing results on quantum speed limits and provides instances of novel bounds that are tighter than any established one based on the conventional quantum Fisher information. We illustrate our findings with relevant examples, demonstrating the importance of choosing different information metrics for open system dynamics, as well as clarifying the roles of classical populations versus quantum coherences, in the determination and saturation of the speed limits. Our results can find applications in the optimization and control of quantum technologies such as quantum computation and metrology, and might provide new insights in fundamental investigations of quantum thermodynamics.
Probing the geometric nature of particles mass in graphene systems
Dolce, Donatello
2014-01-01
According to undulatory mechanics, the Compton periodicity, which is the intrinsic proper-time recurrence of a wave function, determines the mass of the corresponding elementary particles. This provides a geometric description of the rest mass which can be consistently applied to derive the effective mass spectrum and electronic properties of the elementary charge carriers in carbon nanotubes and other condensed matter systems. The Compton periodicity is determined by the boundary conditions associated to the curled-up dimension of carbon nanotubes or analogous constraints of the charge carrier wave function. This approach shows an interesting interplay between particle physics and relativistic space-time, as well as analogies with the Kaluza-Klein theory and Holography.
Geometric phase and Pancharatnam phase induced by light wave polarization
Lages, J; Vigoureux, J -M
2013-01-01
We use the quantum kinematic approach to revisit geometric phases associated with polarizing processes of a monochromatic light wave. We give the expressions of geometric phases for any, unitary or non-unitary, cyclic or non-cyclic transformations of the light wave state. Contrarily to the usually considered case of absorbing polarizers, we found that a light wave passing through a polarizer may acquire in general a non zero geometric phase. This geometric phase exists despite the fact that initial and final polarization states are in phase according to the Pancharatnam criterion and can not be measured using interferometric superposition. Consequently, there is a difference between the Pancharatnam phase and the complete geometric phase acquired by a light wave passing through a polarizer. We illustrate our work with the particular example of total reflection based polarizers.
Geometric control theory and sub-Riemannian geometry
Boscain, Ugo; Gauthier, Jean-Paul; Sarychev, Andrey; Sigalotti, Mario
2014-01-01
This volume presents recent advances in the interaction between Geometric Control Theory and sub-Riemannian geometry. On the one hand, Geometric Control Theory used the differential geometric and Lie algebraic language for studying controllability, motion planning, stabilizability and optimality for control systems. The geometric approach turned out to be fruitful in applications to robotics, vision modeling, mathematical physics etc. On the other hand, Riemannian geometry and its generalizations, such as sub-Riemannian, Finslerian geometry etc., have been actively adopting methods developed in the scope of geometric control. Application of these methods has led to important results regarding geometry of sub-Riemannian spaces, regularity of sub-Riemannian distances, properties of the group of diffeomorphisms of sub-Riemannian manifolds, local geometry and equivalence of distributions and sub-Riemannian structures, regularity of the Hausdorff volume.
Geometrical method of decoupling
Baumgarten, C.
2012-12-01
The computation of tunes and matched beam distributions are essential steps in the analysis of circular accelerators. If certain symmetries—like midplane symmetry—are present, then it is possible to treat the betatron motion in the horizontal, the vertical plane, and (under certain circumstances) the longitudinal motion separately using the well-known Courant-Snyder theory, or to apply transformations that have been described previously as, for instance, the method of Teng and Edwards. In a preceding paper, it has been shown that this method requires a modification for the treatment of isochronous cyclotrons with non-negligible space charge forces. Unfortunately, the modification was numerically not as stable as desired and it was still unclear, if the extension would work for all conceivable cases. Hence, a systematic derivation of a more general treatment seemed advisable. In a second paper, the author suggested the use of real Dirac matrices as basic tools for coupled linear optics and gave a straightforward recipe to decouple positive definite Hamiltonians with imaginary eigenvalues. In this article this method is generalized and simplified in order to formulate a straightforward method to decouple Hamiltonian matrices with eigenvalues on the real and the imaginary axis. The decoupling of symplectic matrices which are exponentials of such Hamiltonian matrices can be deduced from this in a few steps. It is shown that this algebraic decoupling is closely related to a geometric “decoupling” by the orthogonalization of the vectors E→, B→, and P→, which were introduced with the so-called “electromechanical equivalence.” A mathematical analysis of the problem can be traced down to the task of finding a structure-preserving block diagonalization of symplectic or Hamiltonian matrices. Structure preservation means in this context that the (sequence of) transformations must be symplectic and hence canonical. When used iteratively, the decoupling
Institute of Scientific and Technical Information of China (English)
韦博成; 唐年胜; 王学仁
2000-01-01
A modified Bates and Watts geometric framework is proposed for quasi-likelihood nonlinear models in Euclidean inner product space.Based on the modified geometric framework,some asymptotic inference in terms of curvatures for quasi-likelihood nonlinear models is studied.Several previous results for nonlinear regression models and exponential family nonlinear models etc.are extended to quasi-likelihood nonlinear models.
Geometrical dynamics of Born-Infeld objects
Energy Technology Data Exchange (ETDEWEB)
Cordero, Ruben [Departamento de Fisica, Escuela Superior de Fisica y Matematicas del I.P.N., Unidad Adolfo Lopez Mateos, Edificio 9, 07738 Mexico, D.F. (Mexico); Molgado, Alberto [Facultad de Ciencias, Universidad de Colima, Bernal DIaz del Castillo 340, Col. Villas San Sebastian, Colima (Mexico); Rojas, Efrain [Facultad de Fisica e Inteligencia Artificial, Universidad Veracruzana, 91000 Xalapa, Veracruz (Mexico)
2007-03-21
We present a geometrically inspired study of the dynamics of Dp-branes. We focus on the usual non-polynomial Dirac-Born-Infeld action for the worldvolume swept out by the brane in its evolution in general background spacetimes. We emphasize the form of the resulting equations of motion which are quite simple and resemble Newton's second law, complemented with a conservation law for a worldvolume bicurrent. We take a closer look at the classical Hamiltonian analysis which is supported by the ADM framework of general relativity. The constraints and their algebra are identified as well as the geometrical role they play in phase space. In order to illustrate our results, we review the dynamics of a D1-brane immersed in a AdS{sub 3} x S{sup 3} background spacetime. We exhibit the mechanical properties of Born-Infeld objects paving the way to a consistent quantum formulation.
Finsler geometric extension of Einstein gravity
Pfeifer, Christian
2011-01-01
We construct gravitational dynamics for Finsler spacetimes in terms of an action integral on the unit tangent bundle. These spacetimes are generalizations of Lorentzian metric manifolds which satisfy necessary causality properties. A coupling procedure for matter fields to Finsler gravity completes our new theory that consistently becomes equivalent to Einstein gravity in the limit of metric geometry. We provide a precise geometric definition of observers and their measurements, and show that the transformations by means of which different observers communicate form a groupoid that generalizes the usual Lorentz group. Moreover, we discuss the implementation of Finsler spacetime symmetries. We use our results to analyze a particular spacetime model that leads to Finsler geometric refinements of the linearized Schwarzschild solution.
Finsler geometric extension of Einstein gravity
Pfeifer, Christian; Wohlfarth, Mattias N. R.
2012-03-01
We construct gravitational dynamics for Finsler spacetimes in terms of an action integral on the unit tangent bundle. These spacetimes are generalizations of Lorentzian metric manifolds which satisfy necessary causality properties. A coupling procedure for matter fields to Finsler gravity completes our new theory that consistently becomes equivalent to Einstein gravity in the limit of metric geometry. We provide a precise geometric definition of observers and their measurements and show that the transformations, by means of which different observers communicate, form a groupoid that generalizes the usual Lorentz group. Moreover, we discuss the implementation of Finsler spacetime symmetries. We use our results to analyze a particular spacetime model that leads to Finsler geometric refinements of the linearized Schwarzschild solution.
Drivotin, O. I.; Ovsyannikov, D. A.
2016-09-01
A review of analytical solutions of the Vlasov equation for a beam of charged particles is given. These results are analyzed on the basis of a unified approach developed by the authors. In the context of this method, a space of integrals of motion is introduced in which the integrals of motion of particles are considered as coordinates. In this case, specifying a self-consistent distribution is reduced to defining a distribution density in this space. This approach allows us to simplify the construction and analysis of different self-consistent distributions. In particular, it is possible, in some cases, to derive new solutions by considering linear combinations of well-known solutions. This approach also makes it possible in many cases to give a visual geometric representation of self-consistent distributions in the space of integrals of motion.
Navigability of Random Geometric Graphs in the Universe and Other Spacetimes.
Cunningham, William; Zuev, Konstantin; Krioukov, Dmitri
2017-08-18
Random geometric graphs in hyperbolic spaces explain many common structural and dynamical properties of real networks, yet they fail to predict the correct values of the exponents of power-law degree distributions observed in real networks. In that respect, random geometric graphs in asymptotically de Sitter spacetimes, such as the Lorentzian spacetime of our accelerating universe, are more attractive as their predictions are more consistent with observations in real networks. Yet another important property of hyperbolic graphs is their navigability, and it remains unclear if de Sitter graphs are as navigable as hyperbolic ones. Here we study the navigability of random geometric graphs in three Lorentzian manifolds corresponding to universes filled only with dark energy (de Sitter spacetime), only with matter, and with a mixture of dark energy and matter. We find these graphs are navigable only in the manifolds with dark energy. This result implies that, in terms of navigability, random geometric graphs in asymptotically de Sitter spacetimes are as good as random hyperbolic graphs. It also establishes a connection between the presence of dark energy and navigability of the discretized causal structure of spacetime, which provides a basis for a different approach to the dark energy problem in cosmology.
Geometrical method of decoupling
Directory of Open Access Journals (Sweden)
C. Baumgarten
2012-12-01
Full Text Available The computation of tunes and matched beam distributions are essential steps in the analysis of circular accelerators. If certain symmetries—like midplane symmetry—are present, then it is possible to treat the betatron motion in the horizontal, the vertical plane, and (under certain circumstances the longitudinal motion separately using the well-known Courant-Snyder theory, or to apply transformations that have been described previously as, for instance, the method of Teng and Edwards. In a preceding paper, it has been shown that this method requires a modification for the treatment of isochronous cyclotrons with non-negligible space charge forces. Unfortunately, the modification was numerically not as stable as desired and it was still unclear, if the extension would work for all conceivable cases. Hence, a systematic derivation of a more general treatment seemed advisable. In a second paper, the author suggested the use of real Dirac matrices as basic tools for coupled linear optics and gave a straightforward recipe to decouple positive definite Hamiltonians with imaginary eigenvalues. In this article this method is generalized and simplified in order to formulate a straightforward method to decouple Hamiltonian matrices with eigenvalues on the real and the imaginary axis. The decoupling of symplectic matrices which are exponentials of such Hamiltonian matrices can be deduced from this in a few steps. It is shown that this algebraic decoupling is closely related to a geometric “decoupling” by the orthogonalization of the vectors E[over →], B[over →], and P[over →], which were introduced with the so-called “electromechanical equivalence.” A mathematical analysis of the problem can be traced down to the task of finding a structure-preserving block diagonalization of symplectic or Hamiltonian matrices. Structure preservation means in this context that the (sequence of transformations must be symplectic and hence canonical. When
Geometric Computing for Freeform Architecture
Wallner, J.
2011-06-03
Geometric computing has recently found a new field of applications, namely the various geometric problems which lie at the heart of rationalization and construction-aware design processes of freeform architecture. We report on our work in this area, dealing with meshes with planar faces and meshes which allow multilayer constructions (which is related to discrete surfaces and their curvatures), triangles meshes with circle-packing properties (which is related to conformal uniformization), and with the paneling problem. We emphasize the combination of numerical optimization and geometric knowledge.
Geometric inequalities for black holes
Energy Technology Data Exchange (ETDEWEB)
Dain, Sergio [Universidad Nacional de Cordoba (Argentina)
2013-07-01
Full text: A geometric inequality in General Relativity relates quantities that have both a physical interpretation and a geometrical definition. It is well known that the parameters that characterize the Kerr-Newman black hole satisfy several important geometric inequalities. Remarkably enough, some of these inequalities also hold for dynamical black holes. This kind of inequalities, which are valid in the dynamical and strong field regime, play an important role in the characterization of the gravitational collapse. They are closed related with the cosmic censorship conjecture. In this talk I will review recent results in this subject. (author)
Langlands Program, Trace Formulas, and their Geometrization
Frenkel, Edward
2012-01-01
The Langlands Program relates Galois representations and automorphic representations of reductive algebraic groups. The trace formula is a powerful tool in the study of this connection and the Langlands Functoriality Conjecture. After giving an introduction to the Langlands Program and its geometric version, which applies to curves over finite fields and over the complex field, I give a survey of my recent joint work with Robert Langlands and Ngo Bao Chau (arXiv:1003.4578 and arXiv:1004.5323) on a new approach to proving the Functoriality Conjecture using the trace formulas, and on the geometrization of the trace formulas. In particular, I discuss the connection of the latter to the categorification of the Langlands correspondence.
Geometrical vs wave optics under gravitational waves
Angélil, Raymond
2015-01-01
We present some new derivations of the effect of a plane gravitational wave on a light ray. A simple interpretation of the results is that a gravitational wave causes a phase modulation of electromagnetic waves. We arrive at this picture from two contrasting directions, namely null geodesics and Maxwell's equations, or, geometric and wave optics. Under geometric optics, we express the geodesic equations in Hamiltonian form and solve perturbatively for the effect of gravitational waves. We find that the well-known time-delay formula for light generalizes trivially to massive particles. We also recover, by way of a Hamilton-Jacobi equation, the phase modulation obtained under wave optics. Turning then to wave optics, rather than solving Maxwell's equations directly for the fields, as in most previous approaches, we derive a perturbed wave equation (perturbed by the gravitational wave) for the electromagnetic four-potential. From this wave equation it follows that the four-potential and the electric and magnetic...
Topological minimally entangled states via geometric measure
Buerschaper, Oliver; García-Saez, Artur; Orús, Román; Wei, Tzu-Chieh
2014-11-01
Here we show how the Minimally Entangled States (MES) of a 2d system with topological order can be identified using the geometric measure of entanglement. We show this by minimizing this measure for the doubled semion, doubled Fibonacci and toric code models on a torus with non-trivial topological partitions. Our calculations are done either quasi-exactly for small system sizes, or using the tensor network approach in Orús et al (arXiv:1406.0585) for large sizes. As a byproduct of our methods, we see that the minimisation of the geometric entanglement can also determine the number of Abelian quasiparticle excitations in a given model. The results in this paper provide a very efficient and accurate way of extracting the full topological information of a 2d quantum lattice model from the multipartite entanglement structure of its ground states.
CCH-based geometric algorithms for SVM and applications
Institute of Scientific and Technical Information of China (English)
Xin-jun PENG; Yi-fei WANG
2009-01-01
The support vector machine (SVM) is a novel machine learning tool in data mining. In this paper, the geometric approach based on the compressed convex hull (CCH) with a mathematical framework is introduced to solve SVM classification problems. Compared with the reduced convex hull (RCH), CCH preserves the shape of geometric solids for data sets; meanwhile, it is easy to give the necessary and sufficient condition for determining its extreme points. As practical applications of CCH, spare and probabilistic speed-up geometric algorithms are developed. Results of numerical experiments show that the proposed algorithms can reduce kernel calculations and display nice performances.
Geometric structure of gauge theories
Energy Technology Data Exchange (ETDEWEB)
Mangiarotti, L.; Modugno, M.
1985-06-01
In the framework of the adjoint forms over the jet spaces of connections and using a canonical jet shift differential, we give a geometrical interpretation of the Yang--Mills equations both in a direct and Lagrangian formulation.
Geometrical product specifications. Datums and coordinate systems
Glukhov, V. I.; Ivleva, I. A.; Zlatkina, O. Y.
2017-06-01
The work is devoted to the relevant topic such as the technical products quality improvement due to the geometrical specifications accuracy. The research purpose is to ensure the quality indicators on the basis of the systematic approach to the values normalization and geometrical specifications accuracy in the workpiece coordinate systems in the process of design. To achieve the goal two tasks are completed such as the datum features classification according to the number of linear and angular freedom degrees constraints, called the datums informativeness, and the rectangular coordinate systems identification, materialized by workpiece datums sets. The datum features informativeness characterizes the datums functional purpose to limit product workpiece linear and angular degrees of freedom. The datum features informativeness numerically coincides with the kinematic pairs classes and couplings in mechanics. The datum features informativeness identifies the coordinate system without the location redundancy. Each coordinate plane of a rectangular coordinate system has different informativeness 3 + 2 + 1. Each coordinate axis also has different informativeness 4+2+Θ (zero). It is possible to establish the associated workpiece position with three linear and three angular coordinates relative to two axes with the informativeness 4 and 2. is higher, the more informativeness of the coordinate axis or a coordinate plane is, the higher is the linear and angular coordinates accuracy, the coordinate being plotted along the coordinate axis or plane. The systematic approach to the geometrical products specifications positioning in coordinate systems is the scientific basis for a natural transition to the functional dimensions of features position - coordinating dimensions and the size of the features form - feature dimensions of two measures: linear and angular ones. The products technical quality improving is possible due to the coordinate systems introduction materialized by
Determining Geometric Accuracy in Turning
Institute of Scientific and Technical Information of China (English)
Kwong; Chi; Kit; A; Geddam
2002-01-01
Mechanical components machined to high levels of ac cu racy are vital to achieve various functional requirements in engineering product s. In particular, the geometric accuracy of turned components play an important role in determining the form, fit and function of mechanical assembly requiremen ts. The geometric accuracy requirements of turned components are usually specifi ed in terms of roundness, straightness, cylindricity and concentricity. In pract ice, the accuracy specifications achievable are infl...
The Geometric Gravitational Internal Problem
González-Martin, G R
2000-01-01
In a geometric unified theory there is an energy momentum equation, apart from the field equations and equations of motion. The general relativity Einstein equation with cosmological constant follows from this energy momentum equation for empty space. For non empty space we obtain a generalized Einstein equation, relating the Einstein tensor to a geometric stress energy tensor. The matching exterior solution is in agreement with the standard relativity tests. Furthermore, there is a Newtonian limit where we obtain Poisson's equation.
Geometric symmetries in light nuclei
Bijker, Roelof
2016-01-01
The algebraic cluster model is is applied to study cluster states in the nuclei 12C and 16O. The observed level sequences can be understood in terms of the underlying discrete symmetry that characterizes the geometrical configuration of the alpha-particles, i.e. an equilateral triangle for 12C, and a regular tetrahedron for 16O. The structure of rotational bands provides a fingerprint of the underlying geometrical configuration of alpha-particles.
Towards a consistent approach for ecosystem accounting
Edens, B.; Hein, L.G.
2013-01-01
In spite of an increasing interest in environmental economic accounting, there is still very limited experience with the integration of ecosystem services and ecosystem capital in national accounts. This paper identifies four key methodological challenges in developing ecosystem accounts: the defini
Utility Indifference Pricing: A Time Consistent Approach
Pirvu, Traian A
2011-01-01
This paper considers the optimal portfolio selection problem in a dynamic multi-period stochastic framework with regime switching. The risk preferences are of exponential (CARA) type with an absolute coefficient of risk aversion which changes with the regime. The market model is incomplete and there are two risky assets: one tradable and one non-tradable. In this context, the optimal investment strategies are time inconsistent. Consequently, the subgame perfect equilibrium strategies are considered. The utility indifference prices of a contingent claim written on the risky assets are computed via an indifference valuation algorithm. By running numerical experiments, we examine how these prices vary in response to changes in model parameters.
Towards a consistent approach for ecosystem accounting
Edens, B.; Hein, L.G.
2013-01-01
In spite of an increasing interest in environmental economic accounting, there is still very limited experience with the integration of ecosystem services and ecosystem capital in national accounts. This paper identifies four key methodological challenges in developing ecosystem accounts: the defini
Directory of Open Access Journals (Sweden)
R. Martínez
2011-12-01
Full Text Available Buildings in Cultural Heritage environments exhibit some common structural defects in elements which can be recognized by their differences with respect to the ideal geometric model. The global approach consists of detecting misalignments between elements corresponding to sections perpendicular to an axis, e.g. The local approach consists of detecting lack of verticality or meaningful differences (facades or internal walls in curved elements with typical components (apses or vaults, e.g. appearing in indoor environments. Geometric aspects concern to the basic model which supports successive layers corresponding to materials analysis and mechanical structural behaviour. A common strategy for detecting simple shapes consists of constructing maps of normal which can be extracted by an appropriate sampling of unit normal vectors linked to a points cloud. The most difficult issue concerns to the sampling process. A profusion of decorative details or even the small variations corresponding to small columns which are prolonging the nerves of vaults generate a dispersion of data which can be solved in a manual way by removing notrelevant zones for structural analysis. This method can be appropriate for small churches with a low number of vaults, but it appears as tedious when we are trying to analyse a large cathedral or an urban district. To tackle this problem different strategies for sampling information are designed, where some of them involving geometric aspects have been implemented. We illustrate our approach with several examples concerning to outdoor urban districts and indoor structural elements which display different kinds of pathologies.
Toward Geometric Visual Servoing
2002-09-26
IEEE Transactions on Robotics and Automation, 17(4):507–515, 2001. [3] Noah Cowan...and Robert Mahony. Visual servong of an under-actuated dynamic rigid-body system: An image-based approach. IEEE Transactions on Robotics and...Automation, 18(2):187–198, April 2002. [7] S. Hutchinson, G. D. Hager, and P. I. Corke. A tutorial on visual servo control. IEEE Transactions on Robotics
Geometric and spectral consequences of curvature bounds on tessellations
Keller, Matthias
2016-01-01
This is a chapter of a forthcoming Lecture Notes in Mathematics "Modern Approaches to Discrete Curvature" edited by L. Najman and P. Romon. It provides a survey on geometric and spectral consequences of curvature bounds. The geometric setting are tessellations of surfaces with finite and vanishing genus. We consider a curvature arising as an angular defect. Several of the results presented here have analogues in Riemannian geometry. In some cases one can go even beyond the Riemannian results ...
Alternative proofs for Kocik's Geometric Diagram for Relativistic Velocity Addition
Sasane, Amol
2015-01-01
A geometric construction for the Poincare formula for relativistic addition of velocities in one dimension was given by Jerzy Kocik in "Geometric Diagram for Relativistic Addition of Velocities", American Journal of Physics, volume 80, page 737, 2012. While the proof given there used Cartesian coordinate geometry, three alternative approaches are given in this article: a trigonometric one, one via Euclidean geometry, and one using projective geometry.
Integration of geometric modeling and advanced finite element preprocessing
Shephard, Mark S.; Finnigan, Peter M.
1987-01-01
The structure to a geometry based finite element preprocessing system is presented. The key features of the system are the use of geometric operators to support all geometric calculations required for analysis model generation, and the use of a hierarchic boundary based data structure for the major data sets within the system. The approach presented can support the finite element modeling procedures used today as well as the fully automated procedures under development.
Antenna with Dielectric Having Geometric Patterns
Dudley, Kenneth L. (Inventor); Elliott, Holly A. (Inventor); Cravey, Robin L. (Inventor); Connell, John W. (Inventor); Ghose, Sayata (Inventor); Watson, Kent A. (Inventor); Smith, Jr., Joseph G. (Inventor)
2013-01-01
An antenna includes a ground plane, a dielectric disposed on the ground plane, and an electrically-conductive radiator disposed on the dielectric. The dielectric includes at least one layer of a first dielectric material and a second dielectric material that collectively define a dielectric geometric pattern, which may comprise a fractal geometry. The radiator defines a radiator geometric pattern, and the dielectric geometric pattern is geometrically identical, or substantially geometrically identical, to the radiator geometric pattern.
No consistent bimetric gravity?
Deser, S; Waldron, A
2013-01-01
We discuss the prospects for a consistent, nonlinear, partially massless (PM), gauge symmetry of bimetric gravity (BMG). Just as for single metric massive gravity, ultimate consistency of both BMG and the putative PM BMG theory relies crucially on this gauge symmetry. We argue, however, that it does not exist.
Mobility in geometrically confined membranes.
Domanov, Yegor A; Aimon, Sophie; Toombes, Gilman E S; Renner, Marianne; Quemeneur, François; Triller, Antoine; Turner, Matthew S; Bassereau, Patricia
2011-08-02
Lipid and protein lateral mobility is essential for biological function. Our theoretical understanding of this mobility can be traced to the seminal work of Saffman and Delbrück, who predicted a logarithmic dependence of the protein diffusion coefficient (i) on the inverse of the size of the protein and (ii) on the "membrane size" for membranes of finite size [Saffman P, Delbrück M (1975) Proc Natl Acad Sci USA 72:3111-3113]. Although the experimental proof of the first prediction is a matter of debate, the second has not previously been thought to be experimentally accessible. Here, we construct just such a geometrically confined membrane by forming lipid bilayer nanotubes of controlled radii connected to giant liposomes. We followed the diffusion of individual molecules in the tubular membrane using single particle tracking of quantum dots coupled to lipids or voltage-gated potassium channels KvAP, while changing the membrane tube radius from approximately 250 to 10 nm. We found that both lipid and protein diffusion was slower in tubular membranes with smaller radii. The protein diffusion coefficient decreased as much as 5-fold compared to diffusion on the effectively flat membrane of the giant liposomes. Both lipid and protein diffusion data are consistent with the predictions of a hydrodynamic theory that extends the work of Saffman and Delbrück to cylindrical geometries. This study therefore provides strong experimental support for the ubiquitous Saffman-Delbrück theory and elucidates the role of membrane geometry and size in regulating lateral diffusion.
Energy Technology Data Exchange (ETDEWEB)
Hiscock, S.
1986-07-01
The importance of consistency in coal quality has become of increasing significance recently, with the current trend towards using coal from a range of sources. A significant development has been the swing in responsibilities for coal quality. The increasing demand for consistency in quality has led to a re-examination of where in the trade and transport chain the quality should be assessed and where further upgrading of inspection and preparation facilities are required. Changes are in progress throughout the whole coal transport chain which will improve consistency of delivered coal quality. These include installation of beneficiation plant at coal mines, export terminals, and on the premises of end users. It is suggested that one of the keys to success for the coal industry will be the ability to provide coal of a consistent quality.
Kent, A
1996-01-01
In the consistent histories formulation of quantum theory, the probabilistic predictions and retrodictions made from observed data depend on the choice of a consistent set. We show that this freedom allows the formalism to retrodict several contradictory propositions which correspond to orthogonal commuting projections and which all have probability one. We also show that the formalism makes contradictory probability one predictions when applied to generalised time-symmetric quantum mechanics.
Stabilization of LCD devices via geometric alteration.
Jeon, Il; Yoon, MinSung; Lee, Je-Hoon
2013-02-20
Glass bending in LCD displays is an inherent problem that has challenged many engineers. As a solution to this problem, we propose a methodology that can tackle the root of the phenomenon in terms of linear elastic beam theory. Using this hypothesis, we devised a background theory and a solution. In this paper, we present a glass panel to which geometrical changes, such as furrow, groove, and curb have been applied. These geometrical changes are applied to the nonactive area of the glass panel. To confirm the validity of our approach, we conducted simulation tests as well as hands-on experiments to observe the thermo-mechanical behavior of the device under various conditions. The simulation results using the Ansys simulator show that the proposed technique can reduce the deformation level of panel bending by 40%. In the experiment using a bare cell with polarizer films attached and with performing the high temperature reliability test, the deformation level of panel bending is reduced by half compared to the reference glass panel without any geometric alteration.
Time as a geometric property of space
Chappell, James; Hartnett, John; Iannella, Nicolangelo; Iqbal, Azhar; Abbott, Derek
2016-11-01
The proper description of time remains a key unsolved problem in science. Newton conceived of time as absolute and universal which `flows equably without relation to anything external'. In the nineteenth century, the four-dimensional algebraic structure of the quaternions developed by Hamilton, inspired him to suggest that they could provide a unified representation of space and time. With the publishing of Einstein's theory of special relativity these ideas then lead to the generally accepted Minkowski spacetime formulation in 1908. Minkowski, though, rejected the formalism of quaternions suggested by Hamilton and adopted rather an approach using four-vectors. The Minkowski framework is indeed found to provide a versatile formalism for describing the relationship between space and time in accordance with Einstein's relativistic principles, but nevertheless fails to provide more fundamental insights into the nature of time itself. In order to answer this question we begin by exploring the geometric properties of three-dimensional space that we model using Clifford geometric algebra, which is found to contain sufficient complexity to provide a natural description of spacetime. This description using Clifford algebra is found to provide a natural alternative to the Minkowski formulation as well as providing new insights into the nature of time. Our main result is that time is the scalar component of a Clifford space and can be viewed as an intrinsic geometric property of three-dimensional space without the need for the specific addition of a fourth dimension.
Time as a geometric property of space
Directory of Open Access Journals (Sweden)
James Michael Chappell
2016-11-01
Full Text Available The proper description of time remains a key unsolved problem in science. Newton conceived of time as absolute and universal which it `flows equably without relation to anything external'}. In the nineteenth century, the four-dimensional algebraic structure of the quaternions developed by Hamilton, inspired him to suggest that they could provide a unified representation of space and time. With the publishing of Einstein's theory of special relativity these ideas then lead to the generally accepted Minkowski spacetime formulation in 1908. Minkowski, though, rejected the formalism of quaternions suggested by Hamilton and adopted rather an approach using four-vectors. The Minkowski framework is indeed found to provide a versatile formalism for describing the relationship between space and time in accordance with Einstein's relativistic principles, but nevertheless fails to provide more fundamental insights into the nature of time itself. In order to answer this question we begin by exploring the geometric properties of three-dimensional space that we model using Clifford geometric algebra, which is found to contain sufficient complexity to provide a natural description of spacetime. This description using Clifford algebra is found to provide a natural alternative to the Minkowski formulation as well as providing new insights into the nature of time. Our main result is that time is the scalar component of a Clifford space and can be viewed as an intrinsic geometric property of three-dimensional space without the need for the specific addition of a fourth dimension.
Random geometric prior forest for multiclass object segmentation.
Liu, Xiao; Song, Mingli; Tao, Dacheng; Bu, Jiajun; Chen, Chun
2015-10-01
Recent advances in object detection have led to the development of segmentation by detection approaches that integrate top-down geometric priors for multiclass object segmentation. A key yet under-addressed issue in utilizing top-down cues for the problem of multiclass object segmentation by detection is efficiently generating robust and accurate geometric priors. In this paper, we propose a random geometric prior forest scheme to obtain object-adaptive geometric priors efficiently and robustly. In the scheme, a testing object first searches for training neighbors with similar geometries using the random geometric prior forest, and then the geometry of the testing object is reconstructed by linearly combining the geometries of its neighbors. Our scheme enjoys several favorable properties when compared with conventional methods. First, it is robust and very fast because its inference does not suffer from bad initializations, poor local minimums or complex optimization. Second, the figure/ground geometries of training samples are utilized in a multitask manner. Third, our scheme is object-adaptive but does not require the labeling of parts or poselets, and thus, it is quite easy to implement. To demonstrate the effectiveness of the proposed scheme, we integrate the obtained top-down geometric priors with conventional bottom-up color cues in the frame of graph cut. The proposed random geometric prior forest achieves the best segmentation results of all of the methods tested on VOC2010/2012 and is 90 times faster than the current state-of-the-art method.
Pose measurement method based on geometrical constraints
Institute of Scientific and Technical Information of China (English)
Zimiao Zhang; Changku Sun; Pengfei Sun; Peng Wang
2011-01-01
@@ The pose estimation method based on geometric constraints is studied.The coordinates of the five feature points in the camera coordinate system are calculated to obtain the pose of an object on the basis of the geometric constraints formed by the connective lines of the feature points and the coordinates of the feature points on the CCD image plane; during the solution process,the scaling and orthography projection model is used to approximate the perspective projection model.%The pose estimation method based on geometric constraints is studied. The coordinates of the five feature points in the camera coordinate system are calculated to obtain the pose of an object on the basis of the geometric constraints formed by the connective lines of the feature points and the coordinates of the feature points on the CCD image plane; during the solution process, the scaling and orthography projection model is used to approximate the perspective projection model. The initial values of the coordinates of the five feature points in the camera coordinate system are obtained to ensure the accuracy and convergence rate of the non-linear algorithm. In accordance with the perspective projection characteristics of the circular feature landmarks, we propose an approach that enables the iterative acquisition of accurate target poses through the correction of the perspective projection coordinates of the circular feature landmark centers. Experimental results show that the translation positioning accuracy reaches ±0.05 mm in the measurement range of 0-40 mm, and the rotation positioning accuracy reaches ±0.06° in the measurement range of 4°-60°.
Geometric Quality Assessment of Bundle Block Adjusted Mulit- Sensor Satellite Imageries
Ghosh, S.; Bhawani Kumar, P. S.; Radhadevi, P. V.; Srinivas, V.; Saibaba, J.; Varadan, G.
2014-11-01
The integration of multi-sensor earth observation data belonging to same area has become one of the most important input for resource mapping and management. Geometric error and fidelity between adjacent scenes affects large-area digital mosaic if the images/ scenes are processed independently. A block triangulation approach "Bundle Block Adjustment (BBA)" system has been developed at ADRIN for combined processing of multi-sensor, multi-resolution satellite imagery to achieve better geometric continuity. In this paper we present the evaluation results of BBA software along with performance assessment and operational use of products thus generated. The application evaluation deals with functional aspects of block-adjustment of satellite imagery consisting of data from multiple sources, i.e. AWiFs, LISS-3, LISS-4 and Cartosat-1 in various combinations as single block. It has provision for automatic generation of GCPs and tie-points using image metafile/ Rational Polynomial Coefficient's (RPC's) and ortho/ merged/ mosaicked products generation. The study is carried out with datasets covering different terrain types (ranging from high mountainous area, moderately undulating terrain, coastal plain, agriculture fields, urban area and water-body) across Indian subcontinent with varying block sizes and spatial reference systems. Geometric accuracy assessment is carried out to figure out error propagation at scene based ortho/ merged products as well as block level. The experimental results confirm that pixel tagging, geometric fidelity and feature continuity across adjacent scenes as well as for multiple sensors reduced to a great extent, due to the high redundancy. The results demonstrate that it is one of the most affective geometric corrections for generating large area digital mosaic over High mountainous terrain using high resolution good swath satellite imagery, like Cartosat-1, with minimum human intervention.
The Importance of being consistent
Wasserman, Adam; Jiang, Kaili; Kim, Min-Cheol; Sim, Eunji; Burke, Kieron
2016-01-01
We review the role of self-consistency in density functional theory. We apply a recent analysis to both Kohn-Sham and orbital-free DFT, as well as to Partition-DFT, which generalizes all aspects of standard DFT. In each case, the analysis distinguishes between errors in approximate functionals versus errors in the self-consistent density. This yields insights into the origins of many errors in DFT calculations, especially those often attributed to self-interaction or delocalization error. In many classes of problems, errors can be substantially reduced by using `better' densities. We review the history of these approaches, many of their applications, and give simple pedagogical examples.
Energy Technology Data Exchange (ETDEWEB)
Kido, Kentaro, E-mail: kido.kentaro@jaea.go.jp [Nuclear Safety Research Center, Japan Atomic Energy Agency, 2-4 Shirane, Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Kasahara, Kento [Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510 (Japan); Yokogawa, Daisuke [Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602 (Japan); Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8062 (Japan); Sato, Hirofumi [Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510 (Japan); Elements Strategy Institute for Catalysts and Batteries (ESICB), Kyoto University, Katsura, Kyoto 615-8520 (Japan)
2015-07-07
In this study, we reported the development of a new quantum mechanics/molecular mechanics (QM/MM)-type framework to describe chemical processes in solution by combining standard molecular-orbital calculations with a three-dimensional formalism of integral equation theory for molecular liquids (multi-center molecular Ornstein–Zernike (MC-MOZ) method). The theoretical procedure is very similar to the 3D-reference interaction site model self-consistent field (RISM-SCF) approach. Since the MC-MOZ method is highly parallelized for computation, the present approach has the potential to be one of the most efficient procedures to treat chemical processes in solution. Benchmark tests to check the validity of this approach were performed for two solute (solute water and formaldehyde) systems and a simple S{sub N}2 reaction (Cl{sup −} + CH{sub 3}Cl → ClCH{sub 3} + Cl{sup −}) in aqueous solution. The results for solute molecular properties and solvation structures obtained by the present approach were in reasonable agreement with those obtained by other hybrid frameworks and experiments. In particular, the results of the proposed approach are in excellent agreements with those of 3D-RISM-SCF.
Aerospace plane guidance using geometric control theory
Van Buren, Mark A.; Mease, Kenneth D.
1990-01-01
A reduced-order method employing decomposition, based on time-scale separation, of the 4-D state space in a 2-D slow manifold and a family of 2-D fast manifolds is shown to provide an excellent approximation to the full-order minimum-fuel ascent trajectory. Near-optimal guidance is obtained by tracking the reduced-order trajectory. The tracking problem is solved as regulation problems on the family of fast manifolds, using the exact linearization methodology from nonlinear geometric control theory. The validity of the overall guidance approach is indicated by simulation.
Robust topology optimization accounting for geometric imperfections
DEFF Research Database (Denmark)
Schevenels, M.; Jansen, M.; Lombaert, Geert
2013-01-01
performance. As a consequence, the actual structure may be far from optimal. In this paper, a robust approach to topology optimization is presented, taking into account two types of geometric imperfections: variations of (1) the crosssections and (2) the locations of structural elements. The first type...... is modeled by means of a scalar non-Gaussian random field, which is represented as a translation process. The underlying Gaussian field is simulated by means of the EOLE method. The second type of imperfections is modeled as a Gaussian vector-valued random field, which is simulated directly by means...
Conformal invariants topics in geometric function theory
Ahlfors, Lars V
2010-01-01
Most conformal invariants can be described in terms of extremal properties. Conformal invariants and extremal problems are therefore intimately linked and form together the central theme of this classic book which is primarily intended for students with approximately a year's background in complex variable theory. The book emphasizes the geometric approach as well as classical and semi-classical results which Lars Ahlfors felt every student of complex analysis should know before embarking on independent research. At the time of the book's original appearance, much of this material had never ap
Geometric procedures for civil engineers
Tonias, Elias C
2016-01-01
This book provides a multitude of geometric constructions usually encountered in civil engineering and surveying practice. A detailed geometric solution is provided to each construction as well as a step-by-step set of programming instructions for incorporation into a computing system. The volume is comprised of 12 chapters and appendices that may be grouped in three major parts: the first is intended for those who love geometry for its own sake and its evolution through the ages, in general, and, more specifically, with the introduction of the computer. The second section addresses geometric features used in the book and provides support procedures used by the constructions presented. The remaining chapters and the appendices contain the various constructions. The volume is ideal for engineering practitioners in civil and construction engineering and allied areas.
Geometric scalar theory of gravity
Energy Technology Data Exchange (ETDEWEB)
Novello, M.; Bittencourt, E.; Goulart, E.; Salim, J.M.; Toniato, J.D. [Instituto de Cosmologia Relatividade Astrofisica ICRA - CBPF Rua Dr. Xavier Sigaud 150 - 22290-180 Rio de Janeiro - Brazil (Brazil); Moschella, U., E-mail: novello@cbpf.br, E-mail: eduhsb@cbpf.br, E-mail: Ugo.Moschella@uninsubria.it, E-mail: egoulart@cbpf.br, E-mail: jsalim@cbpf.br, E-mail: toniato@cbpf.br [Università degli Studi dell' Insubria - Dipartamento di Fisica e Matematica Via Valleggio 11 - 22100 Como - Italy (Italy)
2013-06-01
We present a geometric scalar theory of gravity. Our proposal will be described using the ''background field method'' introduced by Gupta, Feynman, Deser and others as a field theory formulation of general relativity. We analyze previous criticisms against scalar gravity and show how the present proposal avoids these difficulties. This concerns not only the theoretical complaints but also those related to observations. In particular, we show that the widespread belief of the conjecture that the source of scalar gravity must be the trace of the energy-momentum tensor — which is one of the main difficulties to couple gravity with electromagnetic phenomenon in previous models — does not apply to our geometric scalar theory. From the very beginning this is not a special relativistic scalar gravity. The adjective ''geometric'' pinpoints its similarity with general relativity: this is a metric theory of gravity. Some consequences of this new scalar theory are explored.
Geometric identities in stereological particle analysis
DEFF Research Database (Denmark)
Kötzer, S.; Jensen, Eva Bjørn Vedel; Baddeley, A.
We review recent findings about geometric identities in integral geometry and geometric tomography, and their statistical application to stereological particle analysis. Open questions are discussed.......We review recent findings about geometric identities in integral geometry and geometric tomography, and their statistical application to stereological particle analysis. Open questions are discussed....
Geometric orbit datum and orbit covers
Institute of Scientific and Technical Information of China (English)
梁科; 侯自新
2001-01-01
Vogan conjectured that the parabolic induction of orbit data is independent of the choice of the parabolic subgroup. In this paper we first give the parabolic induction of orbit covers, whose relationship with geometric orbit datum is also induced. Hence we show a geometric interpretation of orbit data and finally prove the conjugation for geometric orbit datum using geometric method.
Geometric formula for prism deflection
Indian Academy of Sciences (India)
Apoorva G Wagh; Veer Chand Rakhecha
2004-08-01
While studying neutron deflections produced by a magnetic prism, we have stumbled upon a simple `geometric' formula. For a prism of refractive index close to unity, the deflection simply equals the product of the refractive power − 1 and the base-to-height ratio of the prism, regardless of the apex angle. The base and height of the prism are measured respectively along and perpendicular to the direction of beam propagation within the prism. The geometric formula greatly simplifies the optimisation of prism parameters to suit any specific experiment.
A Geometric Formulation of Supersymmetry
Freedman, Daniel Z; Van Proeyen, Antoine
2016-01-01
The scalar fields of supersymmetric models are coordinates of a geometric space. We propose a formulation of supersymmetry that is covariant with respect to reparametrizations of this target space. Employing chiral multiplets as an example, we introduce modified supersymmetry variations and redefined auxiliary fields that transform covariantly under reparametrizations. The resulting action and transformation laws are manifestly covariant and highlight the geometric structure of the supersymmetric theory. The covariant methods are developed first for general theories (not necessarily supersymmetric) whose scalar fields are coordinates of a Riemannian target space.
Geometric integration for particle accelerators
Energy Technology Data Exchange (ETDEWEB)
Forest, Etienne [High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan)
2006-05-12
This paper is a very personal view of the field of geometric integration in accelerator physics-a field where often work of the highest quality is buried in lost technical notes or even not published; one has only to think of Simon van der Meer Nobel prize work on stochastic cooling-unpublished in any refereed journal. So I reconstructed the relevant history of geometrical integration in accelerator physics as much as I could by talking to collaborators and using my own understanding of the field. The reader should not be too surprised if this account is somewhere between history, science and perhaps even fiction.
Geometric pumping in autophoretic channels
Michelin, Sebastien; De Canio, Gabriele; Lobato-Dauzier, Nicolas; Lauga, Eric
2015-01-01
Many microfluidic devices use macroscopic pressure differentials to overcome viscous friction and generate flows in microchannels. In this work, we investigate how the chemical and geometric properties of the channel walls can drive a net flow by exploiting the autophoretic slip flows induced along active walls by local concentration gradients of a solute species. We show that chemical patterning of the wall is not required to generate and control a net flux within the channel, rather channel geometry alone is sufficient. Using numerical simulations, we determine how geometric characteristics of the wall influence channel flow rate, and confirm our results analytically in the asymptotic limit of lubrication theory.
An introduction to geometrical physics
Aldrovandi, R
1995-01-01
This book stresses the unifying power of the geometrical framework in bringing together concepts from the different areas of physics. Common underpinnings of optics, elasticity, gravitation, relativistic fields, particle mechanics and other subjects are underlined. It attempts to extricate the notion of space currently in the physical literature from the metric connotation.The book's goal is to present mathematical ideas associated with geometrical physics in a rather introductory language. Included are many examples from elementary physics and also, for those wishing to reach a higher level o
Network Consistent Data Association.
Chakraborty, Anirban; Das, Abir; Roy-Chowdhury, Amit K
2016-09-01
Existing data association techniques mostly focus on matching pairs of data-point sets and then repeating this process along space-time to achieve long term correspondences. However, in many problems such as person re-identification, a set of data-points may be observed at multiple spatio-temporal locations and/or by multiple agents in a network and simply combining the local pairwise association results between sets of data-points often leads to inconsistencies over the global space-time horizons. In this paper, we propose a Novel Network Consistent Data Association (NCDA) framework formulated as an optimization problem that not only maintains consistency in association results across the network, but also improves the pairwise data association accuracies. The proposed NCDA can be solved as a binary integer program leading to a globally optimal solution and is capable of handling the challenging data-association scenario where the number of data-points varies across different sets of instances in the network. We also present an online implementation of NCDA method that can dynamically associate new observations to already observed data-points in an iterative fashion, while maintaining network consistency. We have tested both the batch and the online NCDA in two application areas-person re-identification and spatio-temporal cell tracking and observed consistent and highly accurate data association results in all the cases.
Automated house internal geometric quality inspection using laser scanning
Wang, Yuchen; Zhang, Zhichao; Qiu, Zhouyan
2015-12-01
Taking a terrestrial laser scanner to scan the room of a house, the scanned data can be used to inspect the geometric quality of the room. Taking advantage of the scan line feature, we can quickly calculate normal of the scanned points. Afterwards, we develop a fast plane segmentation approach to recognize the walls of the room according to the semantic constraints of a common room. With geometric and semantic constraints, we can exclude points that don't belong to the inspecting room. With the segmented results, we can accurately do global search of max and min height, width and length of a room, and the flatness of the wall as well. Experiment shows the robustness of this geometric inspecting approach. This approach has the ability to measure some important indicators that cannot be done by manual work.
DEFF Research Database (Denmark)
Thomsen, Christa; Nielsen, Anne Ellerup
2006-01-01
of a case study showing that companies use different and not necessarily consistent strategies for reporting on CSR. Finally, the implications for managerial practice are discussed. The chapter concludes by highlighting the value and awareness of the discourse and the discourse types adopted......This chapter first outlines theory and literature on CSR and Stakeholder Relations focusing on the different perspectives and the contextual and dynamic character of the CSR concept. CSR reporting challenges are discussed and a model of analysis is proposed. Next, our paper presents the results...... in the reporting material. By implementing consistent discourse strategies that interact according to a well-defined pattern or order, it is possible to communicate a strong social commitment on the one hand, and to take into consideration the expectations of the shareholders and the other stakeholders...
A Magnetic Consistency Relation
Jain, Rajeev Kumar
2012-01-01
If cosmic magnetic fields are indeed produced during inflation, they are likely to be correlated with the scalar metric perturbations that are responsible for the Cosmic Microwave Background anisotropies and Large Scale Structure. Within an archetypical model of inflationary magnetogenesis, we show that there exists a new simple consistency relation for the non-Gaussian cross correlation function of the scalar metric perturbation with two powers of the magnetic field in the squeezed limit where the momentum of the metric perturbation vanishes. We emphasize that such a consistency relation turns out to be extremely useful to test some recent calculations in the literature. Apart from primordial non-Gaussianity induced by the curvature perturbations, such a cross correlation might provide a new observational probe of inflation and can in principle reveal the primordial nature of cosmic magnetic fields.