A Geometric Dissection Problem
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 7; Issue 7. A Geometric Dissection Problem. M N Deshpande. Think It Over Volume 7 Issue 7 July 2002 pp 91-91. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/007/07/0091-0091. Author Affiliations.
Separation problems and forcing
Czech Academy of Sciences Publication Activity Database
Zapletal, Jindřich
2013-01-01
Roč. 13, č. 1 (2013), s. 1350002 ISSN 0219-0613 R&D Projects: GA AV ČR IAA100190902 Institutional research plan: CEZ:AV0Z10190503 Keywords : separation * set of uniqueness * forcing Subject RIV: BA - General Mathematics Impact factor: 0.364, year: 2012 http://www.worldscientific.com/doi/abs/10.1142/S0219061313500025
Two solvable problems of planar geometrical optics.
Borghero, Francesco; Bozis, George
2006-12-01
In the framework of geometrical optics we consider a two-dimensional transparent inhomogeneous isotropic medium (dispersive or not). We show that (i) for any family belonging to a certain class of planar monoparametric families of monochromatic light rays given in the form f(x,y)=c of any definite color and satisfying a differential condition, all the refractive index profiles n=n(x,y) allowing for the creation of the given family can be found analytically (inverse problem) and that (ii) for any member of a class of two-dimensional refractive index profiles n=n(x,y) satisfying a differential condition, all the compatible families of light rays can be found analytically (direct problem). We present appropriate examples.
An algebraic geometric approach to separation of variables
Schöbel, Konrad
2015-01-01
Konrad Schöbel aims to lay the foundations for a consequent algebraic geometric treatment of variable separation, which is one of the oldest and most powerful methods to construct exact solutions for the fundamental equations in classical and quantum physics. The present work reveals a surprising algebraic geometric structure behind the famous list of separation coordinates, bringing together a great range of mathematics and mathematical physics, from the late 19th century theory of separation of variables to modern moduli space theory, Stasheff polytopes and operads. "I am particularly impressed by his mastery of a variety of techniques and his ability to show clearly how they interact to produce his results.” (Jim Stasheff) Contents The Foundation: The Algebraic Integrability Conditions The Proof of Concept: A Complete Solution for the 3-Sphere The Generalisation: A Solution for Spheres of Arbitrary Dimension The Perspectives: Applications and Generalisations Target Groups Scientists in the fie...
Effect of geometric parameters of liquid-gas separator units on phase separation performance
Energy Technology Data Exchange (ETDEWEB)
Mo, Songping; Chen, Xueqing; Chen, Ying [Guangdong University of Technology, Seoul (China); Yang, Zhen [Tsinghua University, Beijing (China)
2015-07-15
Five liquid-gas separator units were designed and constructed based on a new concept of a validated high-performance condenser. Each separator unit consists of two united T-junctions and an apertured baffle. The separator units have different header diameters or different baffles with different diameters of the liquid-gas separation hole. The phase separation characteristics of the units were investigated at inlet air superficial velocities from 1.0m/s to 33.0m/s and water superficial velocities from 0.0015 m/s to 0..50 m/s. The experimental results showed that the liquid height, liquid flow rate through the separation hole, and liquid separation efficiency increased with increased header diameter and decreased diameter of the separation hole. The geometric structures of the separator units affected the phase separation characteristics by influencing the liquid height in the header and the liquid flow rate through the separation hole.
Remarks on the geometric quantization of the Kepler problem
International Nuclear Information System (INIS)
Gaeta, G.; Spera, M.
1988-01-01
The geometric quantization of the (three-dimensional) Kepler problem is readily obtained from the one of the harmonic oscillator using a Segre map. The physical meaning of the latter is discussed. (orig.)
Geometrical effects on the airfoil flow separation and transition
Zhang, Wei
2015-04-25
We present results from direct numerical simulations (DNS) of incompressible flow over two airfoils, NACA-4412 and NACA-0012-64, to investigate the effects of the airfoil geometry on the flow separation and transition patterns at Re=104 and 10 degrees incidence. The two chosen airfoils are geometrically similar except for maximum camber (respectively 4%C and 0 with C the chord length), which results in a larger projection area with respect to the incoming flow for the NACA-4412 airfoil, and a larger leeward surface curvature at the leading edge for the NACA-0012-64 airfoil. The governing equations are discretized using an energy conservative fourth-order spatial discretization scheme. An assessment on the two-point correlation indicates that a spanwise domain size of 0.8C is sufficiently large for the present simulations. We discuss flow separation at the airfoil leading edge, transition of the separated shear layer to three-dimensional flow and subsequently to turbulence. Numerical results reveal a stronger adverse pressure gradient field in the leading edge region of the NACA-0012-64 airfoil due to the rapidly varying surface curvature. As a result, the flow experiences detachment at x/C=0.08, and the separated shear layer transition via Kelvin-Helmholtz mechanism occurs at x/C=0.29 with fully developed turbulent flow around x/C=0.80. These flow development phases are delayed to occur at much downstream positions, respectively, observed around x/C=0.25, 0.71 and 1.15 for the NACA-4412 airfoil. The turbulent intensity, measured by the turbulent fluctuations and turbulent Reynolds stresses, are much larger for NACA-0012-64 from the transition onset until the airfoil trailing edge, while turbulence develops significantly downstream of the trailing edge for the NACA-4412 airfoil. For both airfoils, our DNS results indicate that the mean Reynolds stress u\\'u\\'/U02 reaches its maximum value at a distance from the surface approximately equal to the displacement
Energy Tunneling Behavior in Geometrically Separated Wave Guides
Directory of Open Access Journals (Sweden)
M. Omar
2017-10-01
Full Text Available In this paper, characteristics of energy tunneling channel between the waveguides geometrically separated by a coaxial cable are studied. The novel aspect of design is use of coaxial channel to connect the waveguides while maintaining the energy tunneling phenomena. As anticipated the tunneling frequency depends upon the length of wire inside the waveguide and the length of the coaxial cable. The tunneling frequency also depends upon the dielectric constant of the material inside the waveguide and coaxial cable. At tunneling frequency the field strength (E and H in the channel is extremely high, making the channel extremely sensitive to small change in permittivity of dielectric occupying the channel. The advantage of the proposed design is, its ability to tune to desired tunneling frequency just by changing the length of the coaxial cable without the need to redesign the waveguide height to accommodate the long tunneling wires. This structure can be used as dielectric sensor both for solid or liquid dielectrics just by placing the sample in coaxial cable cavity, contrary to previously report work where the sample has to be placed inside the waveguide.
La Marca, Floriana; Moroni, Monica; Cherubini, Lorenzo; Lupo, Emanuela; Cenedese, Antonio
2012-07-01
The recovery of high-quality plastic materials is becoming an increasingly challenging issue for the recycling sector. Technologies for plastic recycling have to guarantee high-quality secondary raw material, complying with specific standards, for use in industrial applications. The variability in waste plastics does not always correspond to evident differences in physical characteristics, making traditional methodologies ineffective for plastic separation. The Multidune separator is a hydraulic channel allowing the sorting of solid particles on the basis of differential transport mechanisms by generating particular fluid dynamic conditions due to its geometric configuration and operational settings. In this paper, the fluid dynamic conditions were investigated by an image analysis technique, allowing the reconstruction of velocity fields generated inside the Multidune, considering two different geometric configurations of the device, Configuration A and Configuration B. Furthermore, tests on mono- and bi-material samples were completed with varying operational conditions under both configurations. In both series of experiments, the bi-material samples were composed of differing proportions (85% vs. 15%) to simulate real conditions in an industrial plant for the purifying of a useful fraction from a contaminating fraction. The separation results were evaluated in terms of grade and recovery of the useful fraction. Copyright © 2012 Elsevier Ltd. All rights reserved.
Geometric Programming Approach to an Interactive Fuzzy Inventory Problem
Directory of Open Access Journals (Sweden)
Nirmal Kumar Mandal
2011-01-01
Full Text Available An interactive multiobjective fuzzy inventory problem with two resource constraints is presented in this paper. The cost parameters and index parameters, the storage space, the budgetary cost, and the objective and constraint goals are imprecise in nature. These parameters and objective goals are quantified by linear/nonlinear membership functions. A compromise solution is obtained by geometric programming method. If the decision maker is not satisfied with this result, he/she may try to update the current solution to his/her satisfactory solution. In this way we implement man-machine interactive procedure to solve the problem through geometric programming method.
Geometric modeling in the problem of ball bearing accuracy
Glukhov, V. I.; Pushkarev, V. V.; Khomchenko, V. G.
2017-06-01
The manufacturing quality of ball bearings is an urgent problem for machine-building industry. The aim of the research is to improve the geometric specifications accuracy of bearings based on evidence-based systematic approach and the method of adequate size, location and form deviations modeling of the rings and assembled ball bearings. The present work addressed the problem of bearing geometric specifications identification and the study of these specifications. The deviation from symmetric planar of rings and bearings assembly and mounting width are among these specifications. A systematic approach to geometric specifications values and ball bearings tolerances normalization in coordinate systems will improve the quality of bearings by optimizing and minimizing the number of specifications. The introduction of systematic approach to the international standards on rolling bearings is a guarantee of a significant increase in accuracy of bearings and the quality of products where they are applied.
Renormgroup symmetries in problems of nonlinear geometrical optics
International Nuclear Information System (INIS)
Kovalev, V.F.
1996-01-01
Utilization and further development of the previously announced approach [1,2] enables one to construct renormgroup symmetries for a boundary value problem for the system of equations which describes propagation of a powerful radiation in a nonlinear medium in geometrical optics approximation. With the help of renormgroup symmetries new rigorous and approximate analytical solutions of nonlinear geometrical optics equations are obtained. Explicit analytical expressions are presented that characterize spatial evolution of laser beam which has an arbitrary intensity dependence at the boundary of the nonlinear medium. (author)
Tangram solved? Prefrontal cortex activation analysis during geometric problem solving.
Ayaz, Hasan; Shewokis, Patricia A; Izzetoğlu, Meltem; Çakır, Murat P; Onaral, Banu
2012-01-01
Recent neuroimaging studies have implicated prefrontal and parietal cortices for mathematical problem solving. Mental arithmetic tasks have been used extensively to study neural correlates of mathematical reasoning. In the present study we used geometric problem sets (tangram tasks) that require executive planning and visuospatial reasoning without any linguistic representation interference. We used portable optical brain imaging (functional near infrared spectroscopy--fNIR) to monitor hemodynamic changes within anterior prefrontal cortex during tangram tasks. Twelve healthy subjects were asked to solve a series of computerized tangram puzzles and control tasks that required same geometric shape manipulation without problem solving. Total hemoglobin (HbT) concentration changes indicated a significant increase during tangram problem solving in the right hemisphere. Moreover, HbT changes during failed trials (when no solution found) were significantly higher compared to successful trials. These preliminary results suggest that fNIR can be used to assess cortical activation changes induced by geometric problem solving. Since fNIR is safe, wearable and can be used in ecologically valid environments such as classrooms, this neuroimaging tool may help to improve and optimize learning in educational settings.
Implementation of the geometrical problem in CNC metal cutting machine
Directory of Open Access Journals (Sweden)
Erokhin V.V.
2017-06-01
Full Text Available The article deals with the tasks of managing the production process (technological process and technological equip-ment, the most detailed analysis of the implementation of the geometric problem in CNC machines. The influence of the solution of the geometric CNC problem on the accuracy of workpiece machining is analyzed by implementing a certain interpolation algorithm and the values of the discreteness of the movements of the working bodies of the CNC machine. The technique of forming a given trajectory of motion of the machine's executive organ is given, by means of which it is required to ensure the coordinated movement of the shaping coordinates according to a certain law, depend-ing on the specified trajectory of the cutting edge of the tool. The advantages and disadvantages of the implementation of interpolation in CNC systems by various methods are considered, and particular attention is paid to combined meth-ods of realizing interpolation.
Geometrical themes inspired by the n-body problem
Herrera, Haydeé; Herrera, Rafael
2018-01-01
Presenting a selection of recent developments in geometrical problems inspired by the N-body problem, these lecture notes offer a variety of approaches to study them, ranging from variational to dynamical, while developing new insights, making geometrical and topological detours, and providing historical references. A. Guillot’s notes aim to describe differential equations in the complex domain, motivated by the evolution of N particles moving on the plane subject to the influence of a magnetic field. Guillot studies such differential equations using different geometric structures on complex curves (in the sense of W. Thurston) in order to find isochronicity conditions. R. Montgomery’s notes deal with a version of the planar Newtonian three-body equation. Namely, he investigates the problem of whether every free homotopy class is realized by a periodic geodesic. The solution involves geometry, dynamical systems, and the McGehee blow-up. A novelty of the approach is the use of energy-balance in order t...
Separated set-systems and their geometric models
Energy Technology Data Exchange (ETDEWEB)
Danilov, Vladimir I; Koshevoy, Gleb A [Central Economics and Mathematics Institute, RAS, Moscow (Russian Federation); Karzanov, Aleksander V [Institute of Systems Analysis, Russian Academy of Sciences, Moscow (Russian Federation)
2010-11-16
This paper discusses strongly and weakly separated set-systems as well as rhombus tilings and wiring diagrams which are used to produce such systems. In particular, the Leclerc-Zelevinsky conjectures concerning weakly separated systems are proved. Bibliography: 54 titles.
Iso-geometric shape optimization of magnetic density separators
DEFF Research Database (Denmark)
Dang Manh, Nguyen; Evgrafov, Anton; Gravesen, Jens
2014-01-01
Purpose The waste recycling industry increasingly relies on magnetic density separators. These devices generate an upward magnetic force in ferro-fluids allowing to separate the immersed particles according to their mass density. Recently, a new separator design has been proposed that significantly...... reduces the required amount of permanent magnet material. The purpose of this paper is to alleviate the undesired end-effects in this design by altering the shape of the ferromagnetic covers of the individual poles. Design/methodology/approach The paper represents the shape of the ferromagnetic pole...
Geometrical effects on the airfoil flow separation and transition
Zhang, Wei; Cheng, Wan; Gao, Wei; Qamar, Adnan; Samtaney, Ravi
2015-01-01
We present results from direct numerical simulations (DNS) of incompressible flow over two airfoils, NACA-4412 and NACA-0012-64, to investigate the effects of the airfoil geometry on the flow separation and transition patterns at Re=104 and 10
The problem 7 forming triangular geometric line field
Directory of Open Access Journals (Sweden)
Travush Vladimir Iljich
2016-01-01
Full Text Available Investigated a method of formation of triangular networks in the field. Delivered conditions the problem of locating a triangular network in the area. The criterion for assessing the effectiveness of the solution of the problem is the minimum number of sizes of the dome elements, the possibility of pre-assembly and pre-stressing. The solution of the problem of one embodiment of a triangular network of accommodation in a compatible spherical triangle and, accordingly, on the sphere. Optimization of triangular geometric network on a sphere on the criterion of minimum sizes of elements can be solved by placing the system in an irregular hexagon inscribed in a circle of minimal size, maximum regular hexagons.
The problem 4 of placement triangular geometric line field
Directory of Open Access Journals (Sweden)
Travush Vladimir Iljich
2016-01-01
Full Text Available One of the a method of formation of triangular networks in the field is investigated. Conditions the problem of locating a triangular network in the area are delivered. The criterion for assessing the effectiveness of the solution of the problem is the minimum number of sizes of the dome elements, the possibility of pre-assembly and pre-stressing. The solution of the problem of one embodiment of a triangular network of accommodation in a compatible spherical triangle and, accordingly, on the sphere. Optimization of triangular geometric network on a sphere on the criterion of minimum sizes of elements can be solved by placing the system in an irregular hexagon inscribed in a circle of minimal size, maximum regular hexagons.
Failure of geometric electromagnetism in the adiabatic vector Kepler problem
International Nuclear Information System (INIS)
Anglin, J.R.; Schmiedmayer, J.
2004-01-01
The magnetic moment of a particle orbiting a straight current-carrying wire may precess rapidly enough in the wire's magnetic field to justify an adiabatic approximation, eliminating the rapid time dependence of the magnetic moment and leaving only the particle position as a slow degree of freedom. To zeroth order in the adiabatic expansion, the orbits of the particle in the plane perpendicular to the wire are Keplerian ellipses. Higher-order postadiabatic corrections make the orbits precess, but recent analysis of this 'vector Kepler problem' has shown that the effective Hamiltonian incorporating a postadiabatic scalar potential ('geometric electromagnetism') fails to predict the precession correctly, while a heuristic alternative succeeds. In this paper we resolve the apparent failure of the postadiabatic approximation, by pointing out that the correct second-order analysis produces a third Hamiltonian, in which geometric electromagnetism is supplemented by a tensor potential. The heuristic Hamiltonian of Schmiedmayer and Scrinzi is then shown to be a canonical transformation of the correct adiabatic Hamiltonian, to second order. The transformation has the important advantage of removing a 1/r 3 singularity which is an artifact of the adiabatic approximation
Separable boundary-value problems in physics
Willatzen, Morten
2011-01-01
Innovative developments in science and technology require a thorough knowledge of applied mathematics, particularly in the field of differential equations and special functions. These are relevant in modeling and computing applications of electromagnetic theory and quantum theory, e.g. in photonics and nanotechnology. The problem of solving partial differential equations remains an important topic that is taught at both the undergraduate and graduate level. Separable Boundary-Value Problems in Physics is an accessible and comprehensive treatment of partial differential equations i
Constant-work-space algorithms for geometric problems
Directory of Open Access Journals (Sweden)
Tetsuo Asano
2011-07-01
Full Text Available Constant-work-space algorithms may use only constantly many cells of storage in addition to their input, which is provided as a read-only array. We show how to construct several geometric structures efficiently in the constant-work-space model. Traditional algorithms process the input into a suitable data structure (like a doubly-connected edge list that allows efficient traversal of the structure at hand. In the constant-work-space setting, however, we cannot afford to do this. Instead, we provide operations that compute the desired features on the fly by accessing the input with no extra space. The whole geometric structure can be obtained by using these operations to enumerate all the features. Of course, we must pay for the space savings by slower running times. While the standard data structure allows us to implement traversal operations in constant time, our schemes typically take linear time to read the input data in each step.We begin with two simple problems: triangulating a planar point set and finding the trapezoidal decomposition of a simple polygon. In both cases adjacent features can be enumerated in linear time per step, resulting in total quadratic running time to output the whole structure. Actually, we show that the former result carries over to the Delaunay triangulation, and hence the Voronoi diagram. This also means that we can compute the largest empty circle of a planar point set in quadratic time and constant work-space. As another application, we demonstrate how to enumerate the features of an Euclidean minimum spanning tree (EMST in quadratic time per step, so that the whole EMST can be found in cubic time using constant work-space.Finally, we describe how to compute a shortest geodesic path between two points in a simple polygon. Although the shortest path problem in general graphs is NL-complete (Jakoby and Tantau 2003, this constrained problem can be solved in quadratic time using only constant work-space.
Separable expansion for realistic multichannel scattering problems
International Nuclear Information System (INIS)
Canton, L.; Cattapan, G.; Pisent, G.
1987-01-01
A new approach to the multichannel scattering problem with realistic local or nonlocal interactions is developed. By employing the negative-energy solutions of uncoupled Sturmian eigenvalue problems referring to simple auxiliary potentials, the coupling interactions appearing to the original multichannel problem are approximated by finite-rank potentials. By resorting to integral-equation tecniques the coupled-channel equations are then reduced to linear algebraic equations which can be straightforwardly solved. Compact algebraic expressions for the relevant scattering matrix elements are thus obtained. The convergence of the method is tasted in the single-channel case with realistic optical potentials. Excellent agreement is obtained with a few terms in the separable expansion for both real and absorptive interactions
Functional geometric method for solving free boundary problems for harmonic functions
Energy Technology Data Exchange (ETDEWEB)
Demidov, Aleksander S [M. V. Lomonosov Moscow State University, Moscow (Russian Federation)
2010-01-01
A survey is given of results and approaches for a broad spectrum of free boundary problems for harmonic functions of two variables. The main results are obtained by the functional geometric method. The core of these methods is an interrelated analysis of the functional and geometric characteristics of the problems under consideration and of the corresponding non-linear Riemann-Hilbert problems. An extensive list of open questions is presented. Bibliography: 124 titles.
Mujiasih; Waluya, S. B.; Kartono; Mariani
2018-03-01
Skills in working on the geometry problems great needs of the competence of Geometric Reasoning. As a teacher candidate, State Islamic University (UIN) students need to have the competence of this Geometric Reasoning. When the geometric reasoning in solving of geometry problems has grown well, it is expected the students are able to write their ideas to be communicative for the reader. The ability of a student's mathematical communication is supposed to be used as a marker of the growth of their Geometric Reasoning. Thus, the search for the growth of geometric reasoning in solving of analytic geometry problems will be characterized by the growth of mathematical communication abilities whose work is complete, correct and sequential, especially in writing. Preceded with qualitative research, this article was the result of a study that explores the problem: Was the search for the growth of geometric reasoning in solving analytic geometry problems could be characterized by the growth of mathematical communication abilities? The main activities in this research were done through a series of activities: (1) Lecturer trains the students to work on analytic geometry problems that were not routine and algorithmic process but many problems that the process requires high reasoning and divergent/open ended. (2) Students were asked to do the problems independently, in detail, complete, order, and correct. (3) Student answers were then corrected each its stage. (4) Then taken 6 students as the subject of this research. (5) Research subjects were interviewed and researchers conducted triangulation. The results of this research, (1) Mathematics Education student of UIN Semarang, had adequate the mathematical communication ability, (2) the ability of this mathematical communication, could be a marker of the geometric reasoning in solving of problems, and (3) the geometric reasoning of UIN students had grown in a category that tends to be good.
Directory of Open Access Journals (Sweden)
Avni YILDIZ
2016-10-01
Full Text Available Geometric constructions have already been of interest to mathematicians. However, studies on geometric construction are not adequate in the relevant literature. Moreover, these studies generally focus on how secondary school gifted students solve non-routine mathematical problems. The present study aims to examine the geometric construction abilities of ninth-grade (15 years old gifted students in solving real-world geometry problems; thus a case study was conducted. Six gifted students participated in the study. The data consisted of voice records, solutions, and models made by the students on the GeoGebra screen. Results indicate that gifted students use their previous knowledge effectively during the process of geometric construction. They modeled the situations available in the problems through using mathematical concepts and the software in coordination. Therefore, it is evident that gifted students think more creatively while solving problems using GeoGebra.
Adesso, Gerardo; Giampaolo, Salvatore M.; Illuminati, Fabrizio
2007-10-01
We present a geometric approach to the characterization of separability and entanglement in pure Gaussian states of an arbitrary number of modes. The analysis is performed adapting to continuous variables a formalism based on single subsystem unitary transformations that has been recently introduced to characterize separability and entanglement in pure states of qubits and qutrits [S. M. Giampaolo and F. Illuminati, Phys. Rev. A 76, 042301 (2007)]. In analogy with the finite-dimensional case, we demonstrate that the 1×M bipartite entanglement of a multimode pure Gaussian state can be quantified by the minimum squared Euclidean distance between the state itself and the set of states obtained by transforming it via suitable local symplectic (unitary) operations. This minimum distance, corresponding to a , uniquely determined, extremal local operation, defines an entanglement monotone equivalent to the entropy of entanglement, and amenable to direct experimental measurement with linear optical schemes.
International Nuclear Information System (INIS)
Adesso, Gerardo; Giampaolo, Salvatore M.; Illuminati, Fabrizio
2007-01-01
We present a geometric approach to the characterization of separability and entanglement in pure Gaussian states of an arbitrary number of modes. The analysis is performed adapting to continuous variables a formalism based on single subsystem unitary transformations that has been recently introduced to characterize separability and entanglement in pure states of qubits and qutrits [S. M. Giampaolo and F. Illuminati, Phys. Rev. A 76, 042301 (2007)]. In analogy with the finite-dimensional case, we demonstrate that the 1xM bipartite entanglement of a multimode pure Gaussian state can be quantified by the minimum squared Euclidean distance between the state itself and the set of states obtained by transforming it via suitable local symplectic (unitary) operations. This minimum distance, corresponding to a, uniquely determined, extremal local operation, defines an entanglement monotone equivalent to the entropy of entanglement, and amenable to direct experimental measurement with linear optical schemes
Geometric Series: A New Solution to the Dog Problem
Dion, Peter; Ho, Anthony
2013-01-01
This article describes what is often referred to as the dog, beetle, mice, ant, or turtle problem. Solutions to this problem exist, some being variations of each other, which involve mathematics of a wide range of complexity. Herein, the authors describe the intuitive solution and the calculus solution and then offer a completely new solution…
Geometric projection filter: an efficient solution to the SLAM problem
Newman, Paul M.; Durrant-Whyte, Hugh F.
2001-10-01
This paper is concerned with the simultaneous localization and map building (SLAM) problem. The SLAM problem asks if it is possible for an autonomous vehicle to start in an unknown location in an unknown environment and then to incrementally build a map of this environment while simultaneously using this map to compute absolute vehicle location. Conventional approaches to this problem are plagued with a prohibitively large increase in computation with the size of the environment. This paper offers a new solution to the SLAM problem that is both consistent and computationally feasible. The proposed algorithm builds a map expressing the relationships between landmarks which is then transformed into landmark locations. Experimental results are presented employing the new algorithm on a subsea vehicle using a scanning sonar sensor.
A Geometric Problem and the Hopf Lemma. Ⅱ
Institute of Scientific and Technical Information of China (English)
YanYan LI; Louis NIRENBERG
2006-01-01
A classical result of A. D. Alexandrov states that a connected compact smooth n-dimensional manifold without boundary, embedded in Rn+1, and such that its mean curvature is constant, is a sphere. Here we study the problem of symmetry of M in a hyperplane Xn+1 =constant in case M satisfies: for any two points (X′, Xn+1), (X′, ^Xn+1)on M, with Xn+1 ＞ ^Hn+1, the mean curvature at the first is not greater than that at the second. Symmetry need not always hold, but in this paper, we establish it under some additional conditions. Some variations of the Hopf Lemma are also presented. Several open problems are described. Part Ⅰ dealt with corresponding one dimensional problems.
The Creativity of Reflective and Impulsive Selected Students in Solving Geometric Problems
Shoimah, R. N.; Lukito, A.; Siswono, T. Y. E.
2018-01-01
This research purposed to describe the elementary students’ creativity with reflective and impulsive cognitive style in solving geometric problems. This research used qualitative research methods. The data was collected by written tests and task-based interviews. The subjects consisted of two 5th grade students that were measured by MFFT (Matching Familiar Figures Test). The data were analyzed based on the three main components of creativity; that is fluency, flexibility, and novelty. This results showed that subject with reflective cognitive style in solving geometric problems met all components of creativity (fluency; subject generated more than three different right-ideas in solving problems, flexibility; subject generated more than two different ways to get problem solved, and novelty; subject generated new ideas and new ways that original and has never been used before). While subject with impulsive cognitive style in solving geometric problems met two components of creativity (fluency; subject generated more than three different right-ideas in solving problems, flexibility; subject generated two different ways to get problem solved). Thus, it could be concluded that reflective students are more creative in solving geometric problems. The results of this research can also be used as a guideline in the future assessment of creativity based on cognitive style.
Lyapunov vs. geometrical stability analysis of the Kepler and the restricted three body problems
International Nuclear Information System (INIS)
Yahalom, A.; Levitan, J.; Lewkowicz, M.; Horwitz, L.
2011-01-01
In this Letter we show that although the application of standard Lyapunov analysis predicts that completely integrable Kepler motion is unstable, the geometrical analysis of Horwitz et al. predicts the observed stability. This seems to us to provide evidence for both the incompleteness of the standard Lyapunov analysis and the strength of the geometrical analysis. Moreover, we apply this approach to the three body problem in which the third body is restricted to move on a circle of large radius which induces an adiabatic time dependent potential on the second body. This causes the second body to move in a very interesting and intricate but periodic trajectory; however, the standard Lyapunov analysis, as well as methods based on the parametric variation of curvature associated with the Jacobi metric, incorrectly predict chaotic behavior. The geometric approach predicts the correct stable motion in this case as well. - Highlights: → Lyapunov analysis predicts Kepler motion to be unstable. → Geometrical analysis predicts the observed stability. → Lyapunov analysis predicts chaotic behavior in restricted three body problem. → The geometric approach predicts the correct stable motion in restricted three body problem.
Tabuchi, Mari; Seo, Makoto; Inoue, Takayuki; Ikeda, Takeshi; Kogure, Akinori; Inoue, Ikuo; Katayama, Shigehiro; Matsunaga, Toshiyuki; Hara, Akira; Komoda, Tsugikazu
2011-02-01
The increasing number of patients with metabolic syndrome is a critical global problem. In this study, we describe a novel geometrical electrophoretic separation method using a bioformulated-fiber matrix to analyze high-density lipoprotein (HDL) particles. HDL particles are generally considered to be a beneficial component of the cholesterol fraction. Conventional electrophoresis is widely used but is not necessarily suitable for analyzing HDL particles. Furthermore, a higher HDL density is generally believed to correlate with a smaller particle size. Here, we use a novel geometrical separation technique incorporating recently developed nanotechnology (Nata de Coco) to contradict this belief. A dyslipidemia patient given a 1-month treatment of fenofibrate showed an inverse relationship between HDL density and size. Direct microscopic observation and morphological observation of fractionated HDL particles confirmed a lack of relationship between particle density and size. This new technique may improve diagnostic accuracy and medical treatment for lipid related diseases.
Using Priors to Compensate Geometrical Problems in Head-Mounted Eye Trackers
DEFF Research Database (Denmark)
Batista Narcizo, Fabricio; Ahmed, Zaheer; Hansen, Dan Witzner
The use of additional information (a.k.a. priors) to help the eye tracking process is presented as an alternative to compensate classical geometrical problems in head-mounted eye trackers. Priors can be obtained from several distinct sources, such as: sensors to collect information related...... estimation specially for uncalibrated head-mounted setups....
A Note on the Dual of an Unconstrained (Generalized) Geometric Programming Problem
J.B.G. Frenk (Hans); G.J. Still
2005-01-01
textabstractIn this note we show that the strong duality theorem of an unconstrained (generalized) geometric programming problem as defined by Peterson (cf.[1]) is actually a special case of a Lagrangian duality result. Contrary to [1] we also consider the case that the set C is compact and
A restricted Steiner tree problem is solved by Geometric Method II
Lin, Dazhi; Zhang, Youlin; Lu, Xiaoxu
2013-03-01
The minimum Steiner tree problem has wide application background, such as transportation system, communication network, pipeline design and VISL, etc. It is unfortunately that the computational complexity of the problem is NP-hard. People are common to find some special problems to consider. In this paper, we first put forward a restricted Steiner tree problem, which the fixed vertices are in the same side of one line L and we find a vertex on L such the length of the tree is minimal. By the definition and the complexity of the Steiner tree problem, we know that the complexity of this problem is also Np-complete. In the part one, we have considered there are two fixed vertices to find the restricted Steiner tree problem. Naturally, we consider there are three fixed vertices to find the restricted Steiner tree problem. And we also use the geometric method to solve such the problem.
Numerical nonlinear complex geometrical optics algorithm for the 3D Calderón problem
DEFF Research Database (Denmark)
Delbary, Fabrice; Knudsen, Kim
2014-01-01
to the generalized Laplace equation. The 3D problem was solved in theory in late 1980s using complex geometrical optics solutions and a scattering transform. Several approximations to the reconstruction method have been suggested and implemented numerically in the literature, but here, for the first time, a complete...... computer implementation of the full nonlinear algorithm is given. First a boundary integral equation is solved by a Nystrom method for the traces of the complex geometrical optics solutions, second the scattering transform is computed and inverted using fast Fourier transform, and finally a boundary value...
International Nuclear Information System (INIS)
Choi, C. Y.; Park, C. T.; Kim, T. H.; Han, K. N.; Choe, S. H.
1995-01-01
A geometrical inverse heat conduction problem is solved for the development of Infrared Computerized-Axial-Tomography (IR CAT) Scan by using a boundary element method in conjunction with regularization procedure. In this problem, an overspecified temperature condition by infrared scanning is provided on the surface, and is used together with other conditions to solve the position of an unknown boundary (cavity). An auxiliary problem is introduced in the solution of this problem. By defining a hypothetical inner boundary for the auxiliary problem domain, the cavity is located interior to the domain and its position is determined by solving a potential problem. Boundary element method with regularization procedure is used to solve this problem, and the effects of regularization on the inverse solution method are investigated by means of numerical analysis
von Cramon-Taubadel, Noreen; Frazier, Brenda C; Lahr, Marta Mirazón
2007-09-01
Geometric morphometric methods rely on the accurate identification and quantification of landmarks on biological specimens. As in any empirical analysis, the assessment of inter- and intra-observer error is desirable. A review of methods currently being employed to assess measurement error in geometric morphometrics was conducted and three general approaches to the problem were identified. One such approach employs Generalized Procrustes Analysis to superimpose repeatedly digitized landmark configurations, thereby establishing whether repeat measures fall within an acceptable range of variation. The potential problem of this error assessment method (the "Pinocchio effect") is demonstrated and its effect on error studies discussed. An alternative approach involves employing Euclidean distances between the configuration centroid and repeat measures of a landmark to assess the relative repeatability of individual landmarks. This method is also potentially problematic as the inherent geometric properties of the specimen can result in misleading estimates of measurement error. A third approach involved the repeated digitization of landmarks with the specimen held in a constant orientation to assess individual landmark precision. This latter approach is an ideal method for assessing individual landmark precision, but is restrictive in that it does not allow for the incorporation of instrumentally defined or Type III landmarks. Hence, a revised method for assessing landmark error is proposed and described with the aid of worked empirical examples. (c) 2007 Wiley-Liss, Inc.
Directory of Open Access Journals (Sweden)
Deniz Özen
2013-03-01
Full Text Available The aim of this study is to investigate pre-service elementary mathematics teachers’ open geometric problem solving process in a Dynamic Geometry Environment. With its qualitative inquiry based research design employed, the participants of the study are three pre-service teachers from 4th graders of the Department of Elementary Mathematics Teaching. In this study, clinical interviews, screencaptures of the problem solving process in the Cabri Geomery Environment, and worksheets included 2 open geometry problems have been used to collect the data. It has been investigated that all the participants passed through similar recursive phases as construction, exploration, conjecture, validate, and justification in the problem solving process. It has been thought that this study provide a new point of view to curriculum developers, teachers and researchers
Directory of Open Access Journals (Sweden)
F Farias
2016-09-01
Full Text Available In the oil exploitation, produced fluids are composed of oil, gas, water and sand (depending on the reservoir location. The presence of sand in flow oil leads to several industrial problems for example: erosion and accumulation in valves and pipeline. Thus, it is necessary to stop production for manual cleaning of equipments and pipes. These facts have attracted attention of academic and industrial areas, enabling the appearing of new technologies or improvement of the water/oil/sand separation process. One equipment that has been used to promote phase separation is the hydrocyclone due to high performance of separation and required low cost to installation and maintenance. In this sense, the purpose of this work is to study numerically the effect of geometric parameters (vortex finder diameter of the hydrocyclone and sand concentration on the inlet fluid separation process. A numerical solution of the governing equations was obtained by the ANSYS CFX-11 commercial code. Results of the streamlines, pressure drop and separation efficiency on the hydrocyclone are presented and analyzed. It was observed that the particles concentration and geometry affect the separation efficiency of the hydrocyclone.
Separability problem for multipartite states of rank at most 4
International Nuclear Information System (INIS)
Chen, Lin; Đoković, Dragomir Ž
2013-01-01
One of the most important problems in quantum information is the separability problem, which asks whether a given quantum state is separable. We investigate multipartite states of rank at most 4 which are PPT (i.e., all their partial transposes are positive semidefinite). We show that any PPT state of rank 2 or 3 is separable and has length at most 4. For separable states of rank 4, we show that they have length at most 6. It is six only for some qubit–qutrit or multiqubit states. It turns out that any PPT entangled state of rank 4 is necessarily supported on a 3⊗3 or a 2⊗2⊗2 subsystem. We obtain a very simple criterion for the separability problem of the PPT states of rank at most 4: such a state is entangled if and only if its range contains no product vectors. This criterion can be easily applied since a four-dimensional subspace in the 3⊗3 or 2⊗2⊗2 system contains a product vector if and only if its Plücker coordinates satisfy a homogeneous polynomial equation (the Chow form of the corresponding Segre variety). We have computed an explicit determinantal expression for the Chow form in the former case, while such an expression was already known in the latter case. (paper)
Separability of diagonal symmetric states: a quadratic conic optimization problem
Directory of Open Access Journals (Sweden)
Jordi Tura
2018-01-01
Full Text Available We study the separability problem in mixtures of Dicke states i.e., the separability of the so-called Diagonal Symmetric (DS states. First, we show that separability in the case of DS in $C^d\\otimes C^d$ (symmetric qudits can be reformulated as a quadratic conic optimization problem. This connection allows us to exchange concepts and ideas between quantum information and this field of mathematics. For instance, copositive matrices can be understood as indecomposable entanglement witnesses for DS states. As a consequence, we show that positivity of the partial transposition (PPT is sufficient and necessary for separability of DS states for $d \\leq 4$. Furthermore, for $d \\geq 5$, we provide analytic examples of PPT-entangled states. Second, we develop new sufficient separability conditions beyond the PPT criterion for bipartite DS states. Finally, we focus on $N$-partite DS qubits, where PPT is known to be necessary and sufficient for separability. In this case, we present a family of almost DS states that are PPT with respect to each partition but nevertheless entangled.
International Nuclear Information System (INIS)
Asnafi, Alireza; Mahzoon, Mojtaba
2011-01-01
Based on a geometric fiber bundle structure, a generalized method to solve both regulation and trajectory tracking problems for locomotion systems is presented. The method is especially applied to two case studies of robotic locomotion systems; a three link articulated fish-like robot as a prototype of locomotion systems with symmetry, and the snakeboard as a prototype of mixed locomotion systems. Our results show that although these motion planners have an open loop structure, due to their generalities, they can steer case studies with negligible errors for almost any complicated path.
Energy Technology Data Exchange (ETDEWEB)
Asnafi, Alireza [Hydro-Aeronautical Research Center, Shiraz University, Shiraz, 71348-13668 (Iran, Islamic Republic of); Mahzoon, Mojtaba [Department of Mechanical Engineering, School of Engineering, Shiraz University, Shiraz, 71348-13668 (Iran, Islamic Republic of)
2011-09-15
Based on a geometric fiber bundle structure, a generalized method to solve both regulation and trajectory tracking problems for locomotion systems is presented. The method is especially applied to two case studies of robotic locomotion systems; a three link articulated fish-like robot as a prototype of locomotion systems with symmetry, and the snakeboard as a prototype of mixed locomotion systems. Our results show that although these motion planners have an open loop structure, due to their generalities, they can steer case studies with negligible errors for almost any complicated path.
Generalization of the geometric optical series approach for nonadiabatic scattering problems
International Nuclear Information System (INIS)
Herman, M.F.
1982-01-01
The geometric optical series approach of Bremmer is generalized for multisurface nonadiabatic scattering problems. This method yields the formal solution of the Schroedinger equation as an infinite series of multiple integrals. The zeroth order term corresponds to WKB propagation on a single adiabatic surface, while the general Nth order term involves N reflections and/or transitions between surfaces accompanied by ''free,'' single surface semiclassical propagation between the points of reflection and transition. Each term is integrated over all possible transition and reflection points. The adiabatic and diabatic limits of this expression are discussed. Numerical results, in which all reflections are ignored, are presented for curve crossing and noncrossing problems. These results are compared to exact quantum results and are shown to be highly accurate
Jupri, A.
2018-05-01
The lack of ability of primary school teachers in deductive thinking, such as doing geometrical proof, is an indispensable issue to be dealt with. In this paper, we report on results of a three-step of the field document study. The study was part of a pilot study for improving deductive thinking ability of primary school teachers. First, we designed geometrical proof problems adapted from literature. Second, we administered an individual written test involving nine master students of primary education program, in which they are having experiences as primary school mathematics teachers. Finally, we analyzed the written work from the view of the Van Hiele theory. The results revealed that even if about the half of the teachers show ability in doing formal proof, still the rest provides inappropriate proving. For further investigation, we wonder whether primary school teachers would show better deductive thinking if the teaching of geometry is designed in a systematic and appropriate manner according to the Van Hiele theory.
Geometrical Modification of Learning Vector Quantization Method for Solving Classification Problems
Directory of Open Access Journals (Sweden)
Korhan GÜNEL
2016-09-01
Full Text Available In this paper, a geometrical scheme is presented to show how to overcome an encountered problem arising from the use of generalized delta learning rule within competitive learning model. It is introduced a theoretical methodology for describing the quantization of data via rotating prototype vectors on hyper-spheres.The proposed learning algorithm is tested and verified on different multidimensional datasets including a binary class dataset and two multiclass datasets from the UCI repository, and a multiclass dataset constructed by us. The proposed method is compared with some baseline learning vector quantization variants in literature for all domains. Large number of experiments verify the performance of our proposed algorithm with acceptable accuracy and macro f1 scores.
Geometric characterization for the least Lagrangian action of n-body problems
Institute of Scientific and Technical Information of China (English)
ZHANG; Shiqing
2001-01-01
［1］Manev, G., La gravitation et l'énergie au zéro, Comptes Rendus, 924, 78: 259.［2］Diacu, F. N., Near-collision dynamics for particle systems with quasihomogeneous potentials, J. of Diff. Equ., 996, 28: 58.［3］Ambrosetti, A., Coti Zelati, V., Periodic Solutions of Singular Lagrangian Systems, Basel: Birkhuser, 993.［4］Arnold, V., Kozlov, V., Neishtadt, A., Dynamical Systems (iii): Mathematical Aspects of Classical and Celestial Mechanics, Berlin: Springer-Verlag, 988.［5］Chenciner, A., Desolneux, N., Minima de l'intégrale d'action et équilibres relatifs de n corps, C R Acad. Sci. Paris, serie I, 998, 326: 209.［6］Coti Zelati, V., The periodic solutions of n-body type problems, Ann IHP Anal nonlinéaire, 990, 7: 477.［7］Euler, L., De motu rectilineo trium corprum se mutuo attrahentium, Novi. Comm. Acad. Sci. Imp. Petropll, 767: 45.［8］Gordon, W., A minimizing property of Keplerian orbits, Amer. J. Math., 977, 99: 96.［9］Lagrange, J., Essai sur le problé me des trois corps, 772, Ouvres, 783, 3: 229.［10］Long, Y., Zhang, S. Q., Geometric characterization for variational minimization solutions of the 3-body problem, Chinese Science Bulletin, 999, 44(8): 653.［11］Long, Y., Zhang, S. Q., Geometric characterization for variational minimization solutions of the 3-body problem with fixed energy, J. of Diff. Equ., 2000, 60: 422.［12］Meyer, K., Hall, G., Introduction to Hamiltonian systems and the n-body problems, Berlin: Springer-Verlag,992.［13］Serra, E., Terracini, S., Collisionless periodic solutions to some three-body problems, Arch. Rational Mech. Anal., 992, 20: 305.［14］Siegle, C., Moser, J., Lectures on Celestial Mechanics, Berlin: Springer-Verlag, 97.［15］Wintner, A., Analytical Foundations of Celestial Mechanics, Princeton: Princeton University Press, 94.［16］Hardy, G., Littlewood, J., Pólya, G., Inequalities, 2nd ed., Cambridge: Combridge University Press, 952.
Constrained Null Space Component Analysis for Semiblind Source Separation Problem.
Hwang, Wen-Liang; Lu, Keng-Shih; Ho, Jinn
2018-02-01
The blind source separation (BSS) problem extracts unknown sources from observations of their unknown mixtures. A current trend in BSS is the semiblind approach, which incorporates prior information on sources or how the sources are mixed. The constrained independent component analysis (ICA) approach has been studied to impose constraints on the famous ICA framework. We introduced an alternative approach based on the null space component (NCA) framework and referred to the approach as the c-NCA approach. We also presented the c-NCA algorithm that uses signal-dependent semidefinite operators, which is a bilinear mapping, as signatures for operator design in the c-NCA approach. Theoretically, we showed that the source estimation of the c-NCA algorithm converges with a convergence rate dependent on the decay of the sequence, obtained by applying the estimated operators on corresponding sources. The c-NCA can be formulated as a deterministic constrained optimization method, and thus, it can take advantage of solvers developed in optimization society for solving the BSS problem. As examples, we demonstrated electroencephalogram interference rejection problems can be solved by the c-NCA with proximal splitting algorithms by incorporating a sparsity-enforcing separation model and considering the case when reference signals are available.
Diabil, Hayder Azeez; Li, Xin Kai; Abdalla, Ibrahim Elrayah
2017-09-01
Large-scale organized motions (commonly referred to coherent structures) and flow topology of a transitional separated-reattached flow have been visualised and investigated using flow visualisation techniques. Two geometrical shapes including two-dimensional flat plate with rectangular leading edge and three-dimensional square cylinder are chosen to shed a light on the flow topology and present coherent structures of the flow over these shapes. For both geometries and in the early stage of the transition, two-dimensional Kelvin-Helmholtz rolls are formed downstream of the leading edge. They are observed to be twisting around the square cylinder while they stay flat in the case of the two-dimensional flat plate. For both geometrical shapes, the two-dimensional Kelvin-Helmholtz rolls move downstream of the leading edge and they are subjected to distortion to form three-dimensional hairpin structures. The flow topology in the flat plate is different from that in the square cylinder. For the flat plate, there is a merging process by a pairing of the Kelvin-Helmholtz rolls to form a large structure that breaks down directly into many hairpin structures. For the squire cylinder case, the Kelvin-Helmholtz roll evolves topologically to form a hairpin structure. In the squire cylinder case, the reattachment length is much shorter and a forming of the three-dimensional structures is closer to the leading edge than that in the flat plate case.
Blind source separation problem in GPS time series
Gualandi, A.; Serpelloni, E.; Belardinelli, M. E.
2016-04-01
A critical point in the analysis of ground displacement time series, as those recorded by space geodetic techniques, is the development of data-driven methods that allow the different sources of deformation to be discerned and characterized in the space and time domains. Multivariate statistic includes several approaches that can be considered as a part of data-driven methods. A widely used technique is the principal component analysis (PCA), which allows us to reduce the dimensionality of the data space while maintaining most of the variance of the dataset explained. However, PCA does not perform well in finding the solution to the so-called blind source separation (BSS) problem, i.e., in recovering and separating the original sources that generate the observed data. This is mainly due to the fact that PCA minimizes the misfit calculated using an L2 norm (χ 2), looking for a new Euclidean space where the projected data are uncorrelated. The independent component analysis (ICA) is a popular technique adopted to approach the BSS problem. However, the independence condition is not easy to impose, and it is often necessary to introduce some approximations. To work around this problem, we test the use of a modified variational Bayesian ICA (vbICA) method to recover the multiple sources of ground deformation even in the presence of missing data. The vbICA method models the probability density function (pdf) of each source signal using a mix of Gaussian distributions, allowing for more flexibility in the description of the pdf of the sources with respect to standard ICA, and giving a more reliable estimate of them. Here we present its application to synthetic global positioning system (GPS) position time series, generated by simulating deformation near an active fault, including inter-seismic, co-seismic, and post-seismic signals, plus seasonal signals and noise, and an additional time-dependent volcanic source. We evaluate the ability of the PCA and ICA decomposition
Paas, Fred G.W.C.; van Merrienboer, Jeroen J.G.; van Merrienboer, J.J.G.
1994-01-01
Four computer-based training strategies for geometrical problem solving in the domain of computer numerically controlled machinery programming were studied with regard to their effects on training performance, transfer performance, and cognitive load. A low- and a high-variability conventional
On the problems of separation work unit for the laser isotope separation
International Nuclear Information System (INIS)
Wang, Lijun
2008-01-01
The concept of separation power or separation work, which is widely used in Uranium isotope separation industry is introduced historically for the weak separating machine and so-called 'ideal cascade'. Therefore, when this concept is applied to a laser isotope separation facility, which is deeply different from a cascade in structure and in mechanism of separation, some confusions may occur. By comparison the costs of SWU of laser isotope separation facility and an ideal cascade we come to a conclusion: the concept of separation work is not applicable for laser isotope separation. In order to compare the economics of laser isotope separation technique with diffusion or centrifugation techniques an equivalent cost of SWU is suggested in this paper. (author)
Plestenjak, Bor; Gheorghiu, Călin I.; Hochstenbach, Michiel E.
2015-10-01
In numerous science and engineering applications a partial differential equation has to be solved on some fairly regular domain that allows the use of the method of separation of variables. In several orthogonal coordinate systems separation of variables applied to the Helmholtz, Laplace, or Schrödinger equation leads to a multiparameter eigenvalue problem (MEP); important cases include Mathieu's system, Lamé's system, and a system of spheroidal wave functions. Although multiparameter approaches are exploited occasionally to solve such equations numerically, MEPs remain less well known, and the variety of available numerical methods is not wide. The classical approach of discretizing the equations using standard finite differences leads to algebraic MEPs with large matrices, which are difficult to solve efficiently. The aim of this paper is to change this perspective. We show that by combining spectral collocation methods and new efficient numerical methods for algebraic MEPs it is possible to solve such problems both very efficiently and accurately. We improve on several previous results available in the literature, and also present a MATLAB toolbox for solving a wide range of problems.
Method of Geometric Connected Disk Cover Problem for UAV realy network deployment
Directory of Open Access Journals (Sweden)
Chuang Liu
2017-01-01
Full Text Available Aiming at the problem of the effective connectivity of a large number of mobile combat units in the future aeronautic swarm operation, this paper proposes an idea of using UAV(Unmanned Aerial Vehicle to build, and studies the deployment of the network. User coverage and network connectivity are important for a relay network planning which are studied separately in traditional ways. In order to effectively combine these two factors while the network’s survivability is taken into account. Firstly, the concept of node aggregation degree is proposed. Secondly, a performance evaluation parameter for UAV relay network is proposed based on node aggregation degree, then analyzes the lack of deterministic deployment and presents one a PSO (VFA-PSO deployment algorithm based on virtual force. Finally, compared with the existing algorithms, the validity and stability of the algorithm are verified. The experimental results show that the VFA-PSO algorithm can effectively improve the network coverage and the survivability of the network under the premise of ensuring the network connectivity, and has better deployment effect.
Methods of geometric function theory in classical and modern problems for polynomials
International Nuclear Information System (INIS)
Dubinin, Vladimir N
2012-01-01
This paper gives a survey of classical and modern theorems on polynomials, proved using methods of geometric function theory. Most of the paper is devoted to results of the author and his students, established by applying majorization principles for holomorphic functions, the theory of univalent functions, the theory of capacities, and symmetrization. Auxiliary results and the proofs of some of the theorems are presented. Bibliography: 124 titles.
Bray, Hubert L; Mazzeo, Rafe; Sesum, Natasa
2015-01-01
This volume includes expanded versions of the lectures delivered in the Graduate Minicourse portion of the 2013 Park City Mathematics Institute session on Geometric Analysis. The papers give excellent high-level introductions, suitable for graduate students wishing to enter the field and experienced researchers alike, to a range of the most important areas of geometric analysis. These include: the general issue of geometric evolution, with more detailed lectures on Ricci flow and Kähler-Ricci flow, new progress on the analytic aspects of the Willmore equation as well as an introduction to the recent proof of the Willmore conjecture and new directions in min-max theory for geometric variational problems, the current state of the art regarding minimal surfaces in R^3, the role of critical metrics in Riemannian geometry, and the modern perspective on the study of eigenfunctions and eigenvalues for Laplace-Beltrami operators.
A new separable expansion for the two-body problem
International Nuclear Information System (INIS)
Haberzettl, H.
1988-07-01
We derive a new separable expansion of the two-body T matrix which represents the T matrix as a series of diagonal separable terms. The representation is exact half-on-shell at all energies even when truncated to one single term; moreover, the truncated expansion satisfies the full off-shell unitarity relation. The approach does not take recourse to some complete set of functions but rather uses properties of the Lippmann-Schwinger equation itself to arrive at the expansion. It is based on the W-matrix representation of the two-body T matrix introduced by Bartnik, Haberzettl, and Sandhas. That representation provides a splitting of the T matrix in one single separable term which contains all bound state poles and scatttering cuts and in a nonsingular, real remainder which vanishes half-on-shell. The method presented here yields a separable expansion of this remainder in which all its properties are preserved term by term. Any given n-term approximation can easily be refined to an (n+1)-term expansion by simply adding a new term. At each stage the amount of additional numerical work is constant. The method is applicable to any kind of short range potential, local, nonlocal or energy dependent. (orig.)
Geometrical properties of rough metallic surfaces and their implication in electromagnetic problems
International Nuclear Information System (INIS)
Hernandez, A.; Chicon, R.; Ortuno, M.; Abellan, J.
1987-01-01
We analyze the geometrical properties and their implications in the effective surface resistance and wall losses of rough metallic surfaces. The power spectrum and the autocorrelation function are calculated for a simple model that adequately represent the rough surface. The roughness parameters are obtained through average values of the roughness and its derivative. We calculate the density profile, directly related to the depth-dependent effective conductivity. The data from the profilometer are corrected to take into account the finite size of the tip. (author)
A Prefiltered Cuckoo Search Algorithm with Geometric Operators for Solving Sudoku Problems
Directory of Open Access Journals (Sweden)
Ricardo Soto
2014-01-01
Full Text Available The Sudoku is a famous logic-placement game, originally popularized in Japan and today widely employed as pastime and as testbed for search algorithms. The classic Sudoku consists in filling a 9×9 grid, divided into nine 3×3 regions, so that each column, row, and region contains different digits from 1 to 9. This game is known to be NP-complete, with existing various complete and incomplete search algorithms able to solve different instances of it. In this paper, we present a new cuckoo search algorithm for solving Sudoku puzzles combining prefiltering phases and geometric operations. The geometric operators allow one to correctly move toward promising regions of the combinatorial space, while the prefiltering phases are able to previously delete from domains the values that do not conduct to any feasible solution. This integration leads to a more efficient domain filtering and as a consequence to a faster solving process. We illustrate encouraging experimental results where our approach noticeably competes with the best approximate methods reported in the literature.
Borghero, Francesco; Demontis, Francesco
2016-09-01
In the framework of geometrical optics, we consider the following inverse problem: given a two-parameter family of curves (congruence) (i.e., f(x,y,z)=c1,g(x,y,z)=c2), construct the refractive-index distribution function n=n(x,y,z) of a 3D continuous transparent inhomogeneous isotropic medium, allowing for the creation of the given congruence as a family of monochromatic light rays. We solve this problem by following two different procedures: 1. By applying Fermat's principle, we establish a system of two first-order linear nonhomogeneous PDEs in the unique unknown function n=n(x,y,z) relating the assigned congruence of rays with all possible refractive-index profiles compatible with this family. Moreover, we furnish analytical proof that the family of rays must be a normal congruence. 2. By applying the eikonal equation, we establish a second system of two first-order linear homogeneous PDEs whose solutions give the equation S(x,y,z)=const. of the geometric wavefronts and, consequently, all pertinent refractive-index distribution functions n=n(x,y,z). Finally, we make a comparison between the two procedures described above, discussing appropriate examples having exact solutions.
DEFF Research Database (Denmark)
Christiansen, Rasmus E.; Lazarov, Boyan S.; Jensen, Jakob S.
2015-01-01
Resonance and wave-propagation problems are known to be highly sensitive towards parameter variations. This paper discusses topology optimization formulations for creating designs that perform robustly under spatial variations for acoustic cavity problems. For several structural problems, robust...... and limitations are discussed. In addition, a known explicit penalization approach is considered for comparison. For near-uniform spatial variations it is shown that highly robust designs can be obtained using the double filter approach. It is finally demonstrated that taking non-uniform variations into account...... further improves the robustness of the designs....
Geometrical foundations and results on a problem suggested in a paper by Anderson et al
International Nuclear Information System (INIS)
Gonzalez Gascon, F.; Moreno Insertis, F.; Rodriguez Camino, E.
1978-01-01
A global treatment is given to the problem proposed by Anderson et al. of finding second order differential equations not admitting pointlike transformations of symmetry but admitting families of local symmetries of non-pointlike character
Primal and Dual Penalty Methods for Contact Problems with Geometrical Non-linearities
Czech Academy of Sciences Publication Activity Database
Vondrák, V.; Dostál, Z.; Dobiáš, Jiří; Pták, Svatopluk
-, č. 5 (2005), s. 449-450 ISSN 1617-7061. [GAMM Annual Meeting 2005. Luxembourg, 28.03.2005-01.04.2005] R&D Projects: GA ČR(CZ) GA101/05/0423 Institutional research plan: CEZ:AV0Z20760514 Keywords : primal penalty * dual penalty * contact problem Subject RIV: BA - General Mathematics
International Nuclear Information System (INIS)
Goncalves, G.A.; Vilhena, M.T. de; Bodmann, B.E.J.
2010-01-01
In the present work we propose a heuristic construction of a transport equation for neutrons with anisotropic scattering considering only the radial cylinder dimension. The eigenvalues of the solutions of the equation correspond to the positive values for the one dimensional case. The central idea of the procedure is the application of the S N method for the discretisation of the angular variable followed by the application of the zero order Hankel transformation. The basis the construction of the scattering terms in form of an integro-differential equation for stationary transport resides in the hypothesis that the eigenvalues that compose the elementary solutions are independent of geometry for a homogeneous medium. We compare the solutions for the cartesian one dimensional problem for an infinite cylinder with azimuthal symmetry and linear anisotropic scattering for two cases. (orig.)
Model reduction method using variable-separation for stochastic saddle point problems
Jiang, Lijian; Li, Qiuqi
2018-02-01
In this paper, we consider a variable-separation (VS) method to solve the stochastic saddle point (SSP) problems. The VS method is applied to obtain the solution in tensor product structure for stochastic partial differential equations (SPDEs) in a mixed formulation. The aim of such a technique is to construct a reduced basis approximation of the solution of the SSP problems. The VS method attempts to get a low rank separated representation of the solution for SSP in a systematic enrichment manner. No iteration is performed at each enrichment step. In order to satisfy the inf-sup condition in the mixed formulation, we enrich the separated terms for the primal system variable at each enrichment step. For the SSP problems by regularization or penalty, we propose a more efficient variable-separation (VS) method, i.e., the variable-separation by penalty method. This can avoid further enrichment of the separated terms in the original mixed formulation. The computation of the variable-separation method decomposes into offline phase and online phase. Sparse low rank tensor approximation method is used to significantly improve the online computation efficiency when the number of separated terms is large. For the applications of SSP problems, we present three numerical examples to illustrate the performance of the proposed methods.
Lenarda, P; Paggi, M
A comprehensive computational framework based on the finite element method for the simulation of coupled hygro-thermo-mechanical problems in photovoltaic laminates is herein proposed. While the thermo-mechanical problem takes place in the three-dimensional space of the laminate, moisture diffusion occurs in a two-dimensional domain represented by the polymeric layers and by the vertical channel cracks in the solar cells. Therefore, a geometrical multi-scale solution strategy is pursued by solving the partial differential equations governing heat transfer and thermo-elasticity in the three-dimensional space, and the partial differential equation for moisture diffusion in the two dimensional domains. By exploiting a staggered scheme, the thermo-mechanical problem is solved first via a fully implicit solution scheme in space and time, with a specific treatment of the polymeric layers as zero-thickness interfaces whose constitutive response is governed by a novel thermo-visco-elastic cohesive zone model based on fractional calculus. Temperature and relative displacements along the domains where moisture diffusion takes place are then projected to the finite element model of diffusion, coupled with the thermo-mechanical problem by the temperature and crack opening dependent diffusion coefficient. The application of the proposed method to photovoltaic modules pinpoints two important physical aspects: (i) moisture diffusion in humidity freeze tests with a temperature dependent diffusivity is a much slower process than in the case of a constant diffusion coefficient; (ii) channel cracks through Silicon solar cells significantly enhance moisture diffusion and electric degradation, as confirmed by experimental tests.
Guzzo, Massimiliano; Lega, Elena
2018-06-01
The circular restricted three-body problem has five relative equilibria L1 ,L2, . . . ,L5. The invariant stable-unstable manifolds of the center manifolds originating at the partially hyperbolic equilibria L1 ,L2 have been identified as the separatrices for the motions which transit between the regions of the phase-space which are internal or external with respect to the two massive bodies. While the stable and unstable manifolds of the planar problem have been extensively studied both theoretically and numerically, the spatial case has not been as deeply investigated. This paper is devoted to the global computation of these manifolds in the spatial case with a suitable finite time chaos indicator. The definition of the chaos indicator is not trivial, since the mandatory use of the regularizing Kustaanheimo-Stiefel variables may introduce discontinuities in the finite time chaos indicators. From the study of such discontinuities, we define geometric chaos indicators which are globally defined and smooth, and whose ridges sharply approximate the stable and unstable manifolds of the center manifolds of L1 ,L2. We illustrate the method for the Sun-Jupiter mass ratio, and represent the topology of the asymptotic manifolds using sections and three-dimensional representations.
Heuristics methods for the flow shop scheduling problem with separated setup times
Directory of Open Access Journals (Sweden)
Marcelo Seido Nagano
2012-06-01
Full Text Available This paper deals with the permutation flow shop scheduling problem with separated machine setup times. As a result of an investigation on the problem characteristics, four heuristics methods are proposed with procedures of the construction sequencing solution by an analogy with the asymmetric traveling salesman problem with the objective of minimizing makespan. Experimental results show that one of the new heuristics methods proposed provide high quality solutions in comparisons with the evaluated methods considered in the literature.
Problems in Geometrical Optics
Joyce, L. S.
1973-01-01
Ten laboratory exercises on optics are described to clarify concepts involving point objects and converging lenses producing real images. Mathematical treatment is kept to a minimum to stress concepts involved. (PS)
Göttl, F.; Schmidt, M.; Seitz, F.; Bloßfeld, M.
2015-04-01
The goal of our study is to determine accurate time series of geophysical Earth rotation excitations to learn more about global dynamic processes in the Earth system. For this purpose, we developed an adjustment model which allows to combine precise observations from space geodetic observation systems, such as Satellite Laser Ranging (SLR), Global Navigation Satellite Systems, Very Long Baseline Interferometry, Doppler Orbit determination and Radiopositioning Integrated on Satellite, satellite altimetry and satellite gravimetry in order to separate geophysical excitation mechanisms of Earth rotation. Three polar motion time series are applied to derive the polar motion excitation functions (integral effect). Furthermore we use five time variable gravity field solutions from Gravity Recovery and Climate Experiment to determine not only the integral mass effect but also the oceanic and hydrological mass effects by applying suitable filter techniques and a land-ocean mask. For comparison the integral mass effect is also derived from degree 2 potential coefficients that are estimated from SLR observations. The oceanic mass effect is also determined from sea level anomalies observed by satellite altimetry by reducing the steric sea level anomalies derived from temperature and salinity fields of the oceans. Due to the combination of all geodetic estimated excitations the weaknesses of the individual processing strategies can be reduced and the technique-specific strengths can be accounted for. The formal errors of the adjusted geodetic solutions are smaller than the RMS differences of the geophysical model solutions. The improved excitation time series can be used to improve the geophysical modeling.
Well-Posedness and Primal-Dual Analysis of Some Convex Separable Optimization Problems
Directory of Open Access Journals (Sweden)
Stefan M. Stefanov
2013-01-01
Full Text Available We focus on some convex separable optimization problems, considered by the author in previous papers, for which problems, necessary and sufficient conditions or sufficient conditions have been proved, and convergent algorithms of polynomial computational complexity have been proposed for solving these problems. The concepts of well-posedness of optimization problems in the sense of Tychonov, Hadamard, and in a generalized sense, as well as calmness in the sense of Clarke, are discussed. It is shown that the convex separable optimization problems under consideration are calm in the sense of Clarke. The concept of stability of the set of saddle points of the Lagrangian in the sense of Gol'shtein is also discussed, and it is shown that this set is not stable for the “classical” Lagrangian. However, it turns out that despite this instability, due to the specificity of the approach, suggested by the author for solving problems under consideration, it is not necessary to use modified Lagrangians but only the “classical” Lagrangians. Also, a primal-dual analysis for problems under consideration in view of methods for solving them is presented.
International Nuclear Information System (INIS)
Chernichenko, Yu.D.
2005-01-01
Within the relativistic quasipotential approach to quantum field theory, the relativistic inverse scattering problem is solved for the case where the total quasipotential describing the interaction of two relativistic spinless particles having different masses is a superposition of a nonlocal separable and a local quasipotential. It is assumed that the local component of the total quasipotential is known and that there exist bound states in this local component. It is shown that the nonlocal separable component of the total interaction can be reconstructed provided that the local component, an increment of the phase shift, and the energies of bound states are known
Geometric Computing for Freeform Architecture
Wallner, J.; Pottmann, Helmut
2011-01-01
Geometric computing has recently found a new field of applications, namely the various geometric problems which lie at the heart of rationalization and construction-aware design processes of freeform architecture. We report on our work in this area
Efimov spaces and the separable quotient problem for spaces C-P(K)
Czech Academy of Sciences Publication Activity Database
Kąkol, Jerzy; Śliwa, W.
2018-01-01
Roč. 457, č. 1 (2018), s. 104-113 ISSN 0022-247X R&D Projects: GA ČR GF16-34860L Institutional support: RVO:67985840 Keywords : spaces of continuous functions * pointwise topology * separable quotient problem Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 1.064, year: 2016 http://www.sciencedirect.com/science/article/pii/S0022247X17307588?via%3Dihub
Efimov spaces and the separable quotient problem for spaces C-P(K)
Czech Academy of Sciences Publication Activity Database
Kąkol, Jerzy; Śliwa, W.
2018-01-01
Roč. 457, č. 1 (2018), s. 104-113 ISSN 0022-247X R&D Projects: GA ČR GF16-34860L Institutional support: RVO:67985840 Keywords : spaces of continuous functions * pointwise topology * separable quotient problem Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 1.064, year: 2016 http://www. science direct.com/ science /article/pii/S0022247X17307588?via%3Dihub
Geometric mean for subspace selection.
Tao, Dacheng; Li, Xuelong; Wu, Xindong; Maybank, Stephen J
2009-02-01
Subspace selection approaches are powerful tools in pattern classification and data visualization. One of the most important subspace approaches is the linear dimensionality reduction step in the Fisher's linear discriminant analysis (FLDA), which has been successfully employed in many fields such as biometrics, bioinformatics, and multimedia information management. However, the linear dimensionality reduction step in FLDA has a critical drawback: for a classification task with c classes, if the dimension of the projected subspace is strictly lower than c - 1, the projection to a subspace tends to merge those classes, which are close together in the original feature space. If separate classes are sampled from Gaussian distributions, all with identical covariance matrices, then the linear dimensionality reduction step in FLDA maximizes the mean value of the Kullback-Leibler (KL) divergences between different classes. Based on this viewpoint, the geometric mean for subspace selection is studied in this paper. Three criteria are analyzed: 1) maximization of the geometric mean of the KL divergences, 2) maximization of the geometric mean of the normalized KL divergences, and 3) the combination of 1 and 2. Preliminary experimental results based on synthetic data, UCI Machine Learning Repository, and handwriting digits show that the third criterion is a potential discriminative subspace selection method, which significantly reduces the class separation problem in comparing with the linear dimensionality reduction step in FLDA and its several representative extensions.
Laporte, Paola P; Pan, Pedro M; Hoffmann, Mauricio S; Wakschlag, Lauren S; Rohde, Luis A; Miguel, Euripedes C; Pine, Daniel S; Manfro, Gisele G; Salum, Giovanni A
2017-01-01
To distinguish normative fears from problematic fears and phobias. We investigated 2,512 children and adolescents from a large community school-based study, the High Risk Study for Psychiatric Disorders. Parent reports of 18 fears and psychiatric diagnosis were investigated. We used two analytical approaches: confirmatory factor analysis (CFA)/item response theory (IRT) and nonparametric receiver operating characteristic (ROC) curve. According to IRT and ROC analyses, social fears are more likely to indicate problems and phobias than specific fears. Most specific fears were normative when mild; all specific fears indicate problems when pervasive. In addition, the situational fear of toilets and people who look unusual were highly indicative of specific phobia. Among social fears, those not restricted to performance and fear of writing in front of others indicate problems when mild. All social fears indicate problems and are highly indicative of social phobia when pervasive. These preliminary findings provide guidance for clinicians and researchers to determine the boundaries that separate normative fears from problem indicators in children and adolescents, and indicate a differential severity threshold for specific and social fears.
Variables separation and superintegrability of the nine-dimensional MICZ-Kepler problem
Phan, Ngoc-Hung; Le, Dai-Nam; Thoi, Tuan-Quoc N.; Le, Van-Hoang
2018-03-01
The nine-dimensional MICZ-Kepler problem is of recent interest. This is a system describing a charged particle moving in the Coulomb field plus the field of a SO(8) monopole in a nine-dimensional space. Interestingly, this problem is equivalent to a 16-dimensional harmonic oscillator via the Hurwitz transformation. In the present paper, we report on the multiseparability, a common property of superintegrable systems, and the superintegrability of the problem. First, we show the solvability of the Schrödinger equation of the problem by the variables separation method in different coordinates. Second, based on the SO(10) symmetry algebra of the system, we construct explicitly a set of seventeen invariant operators, which are all in the second order of the momentum components, satisfying the condition of superintegrability. The found number 17 coincides with the prediction of (2n - 1) law of maximal superintegrability order in the case n = 9. Until now, this law is accepted to apply only to scalar Hamiltonian eigenvalue equations in n-dimensional space; therefore, our results can be treated as evidence that this definition of superintegrability may also apply to some vector equations such as the Schrödinger equation for the nine-dimensional MICZ-Kepler problem.
Directory of Open Access Journals (Sweden)
Paola P. Laporte
2017-03-01
Full Text Available Objective: To distinguish normative fears from problematic fears and phobias. Methods: We investigated 2,512 children and adolescents from a large community school-based study, the High Risk Study for Psychiatric Disorders. Parent reports of 18 fears and psychiatric diagnosis were investigated. We used two analytical approaches: confirmatory factor analysis (CFA/item response theory (IRT and nonparametric receiver operating characteristic (ROC curve. Results: According to IRT and ROC analyses, social fears are more likely to indicate problems and phobias than specific fears. Most specific fears were normative when mild; all specific fears indicate problems when pervasive. In addition, the situational fear of toilets and people who look unusual were highly indicative of specific phobia. Among social fears, those not restricted to performance and fear of writing in front of others indicate problems when mild. All social fears indicate problems and are highly indicative of social phobia when pervasive. Conclusion: These preliminary findings provide guidance for clinicians and researchers to determine the boundaries that separate normative fears from problem indicators in children and adolescents, and indicate a differential severity threshold for specific and social fears.
International Nuclear Information System (INIS)
Nagy, L.G.; Toeroek, G.
1977-01-01
The present state of a long term program is reviewed. It was started to elaborate a remote controlled automated radiochemical processing system for the neutron activation analysis of biological materials. The system is based on wet ashing of the sample followed by reactive desorption of some volatile components. The distillation residue is passed through a series of columns filled with selective ion screening materials to remove the matrix activity. The solution is thus ''stripped'' from the interfering radioions, and it is processed to single-elements through group separations using ion-exchange chromatographic techniques. Some special problems concerning this system are treated. (a) General aspects of the construction of a (semi)automated radiochemical processing system are discussed. (b) Comparison is made between various technical realizations of the same basic concept. (c) Some problems concerning the ''reconstruction'' of an already published processing system are outlined. (T.G.)
Oxygen sensor equipped engine operation on methanol/gasoline blends and phase separation problems
Energy Technology Data Exchange (ETDEWEB)
Last, A J; Lawson, A; Simmons, E W; Mackay, D; Tsang, M; Maund, G B
1980-01-01
A study was made to address problems related to Canadian utilization of methanol/gasoline blends. These problems are: (1) cold weather operation; (2) water sensitivity to phase separation in winter; (3) vehicle compatibility: fuel/air ratio control, flexibility for vehicle movement outside of areas where methanol might be available. Specifically, the operation of the HydroShear (an in-line hydraulic emulsifier) on the two separated phases of a methanol/gasoline/water blend was examined. Fuel maps, by engine dynamometer testing, were generated using methanol/gasoline blends containing 15% to 65% methanol. The capability of an oxygen sensor, located in the exhaust system, to control the fuel/air ratio was found to be adequate within the 15% to 65% methanol/gasoline blends. A fuel injected Volvo 244DL with lambda-sond emission control and a carburetted Chevrolet Monza with 3-way catalyst closed loop feedback emission control system were the two engines selected for this study.
Directory of Open Access Journals (Sweden)
N. S. Morozova
2015-01-01
Full Text Available The article considers a problem of the decentralization-based approach to formation control of a group of agents, which simulate mobile autonomous robots. The agents use only local information limited by the covering range of their sensors. The agents have to build and maintain the formation, which fits to the defined target geometric formation structure with desired accuracy during the movement to the target point. At any point in time the number of agents in the group can change unexpectedly (for example, as a result of the agent failure or if a new agent joins the group.The aim of the article is to provide the base control rule, which solves the formation control problem, and to develop its modifications, which provide the correct behavior in case the agent number in the group is not equal to the size of the target geometric formation structure. The proposed base control rule, developed by the author, uses the method of involving virtual leaders. The coordinates of the virtual leaders and also the priority to follow the specific leader are calculated by each agent itself according to specific rules.The following results are presented in the article: the base control rule for solving the formation control problem, its modifications for the cases when the number of agents is greater/less than the size of the target geometric formation structure and also the computer modeling results proving the efficiency of the modified control rules. The specific feature of the control rule, developed by the author, is that each agent itself calculates the virtual leaders and each agent performs dynamic choice of the place within the formation (there is no predefined one-to-one relation between agents and places within the geometric formation structure. The results, provided in this article, can be used in robotics for developing control algorithms for the tasks, which require preserving specific relational positions among the agents while moving. One of the
Thompson, Ronald G; Lizardi, Dana; Keyes, Katherine M; Hasin, Deborah S
2008-12-01
This study examined whether the experiences of childhood or adolescent parental divorce/separation and parental alcohol problems affected the likelihood of offspring DSM-IV lifetime alcohol dependence, controlling for parental history of drug, depression, and antisocial behavior problems. Data were drawn from the 2001-2002 National Epidemiological Survey on Alcohol and Related Conditions (NESARC), a nationally representative United States survey of 43,093 civilian non-institutionalized participants aged 18 and older, interviewed in person. Logistic regression models were used to calculate the main and interaction effects of childhood or adolescent parental divorce/separation and parental history of alcohol problems on offspring lifetime alcohol dependence, after adjusting for parental history of drug, depression, and antisocial behavior problems. Childhood or adolescent parental divorce/separation and parental history of alcohol problems were significantly related to offspring lifetime alcohol dependence, after adjusting for parental history of drug, depression, and antisocial behavior problems. Experiencing parental divorce/separation during childhood, even in the absence of parental history of alcohol problems, remained a significant predictor of lifetime alcohol dependence. Experiencing both childhood or adolescent parental divorce/separation and parental alcohol problems had a significantly stronger impact on the risk for DSM-IV alcohol dependence than the risk incurred by either parental risk factor alone. Further research is needed to better identify the factors that increase the risk for lifetime alcohol dependence among those who experience childhood or adolescent parental divorce/separation.
Energy Technology Data Exchange (ETDEWEB)
Ebata, T [Tohoku Univ., Sendai (Japan). Coll. of General Education
1976-06-01
The geometrical distribution inferred from the inelastic cross section is assumed to be proportional to the partial waves. The precocious scaling and the Q/sup 2/-dependence of various quantities are treated from the geometrical point of view. It is shown that the approximate conservation of the orbital angular momentum may be a very practical rule to understand the helicity structure of various hadronic and electromagnetic reactions. The rule can be applied to inclusive reactions as well. The model is also applied to large angle processes. Through the discussion, it is suggested that many peculiar properties of the quark-parton can be ascribed to the geometrical effects.
MM Algorithms for Geometric and Signomial Programming.
Lange, Kenneth; Zhou, Hua
2014-02-01
This paper derives new algorithms for signomial programming, a generalization of geometric programming. The algorithms are based on a generic principle for optimization called the MM algorithm. In this setting, one can apply the geometric-arithmetic mean inequality and a supporting hyperplane inequality to create a surrogate function with parameters separated. Thus, unconstrained signomial programming reduces to a sequence of one-dimensional minimization problems. Simple examples demonstrate that the MM algorithm derived can converge to a boundary point or to one point of a continuum of minimum points. Conditions under which the minimum point is unique or occurs in the interior of parameter space are proved for geometric programming. Convergence to an interior point occurs at a linear rate. Finally, the MM framework easily accommodates equality and inequality constraints of signomial type. For the most important special case, constrained quadratic programming, the MM algorithm involves very simple updates.
Geometric statistical inference
International Nuclear Information System (INIS)
Periwal, Vipul
1999-01-01
A reparametrization-covariant formulation of the inverse problem of probability is explicitly solved for finite sample sizes. The inferred distribution is explicitly continuous for finite sample size. A geometric solution of the statistical inference problem in higher dimensions is outlined
Constraints to solve parallelogram grid problems in 2D non separable linear canonical transform
Zhao, Liang; Healy, John J.; Muniraj, Inbarasan; Cui, Xiao-Guang; Malallah, Ra'ed; Ryle, James P.; Sheridan, John T.
2017-05-01
The 2D non-separable linear canonical transform (2D-NS-LCT) can model a range of various paraxial optical systems. Digital algorithms to evaluate the 2D-NS-LCTs are important in modeling the light field propagations and also of interest in many digital signal processing applications. In [Zhao 14] we have reported that a given 2D input image with rectangular shape/boundary, in general, results in a parallelogram output sampling grid (generally in an affine coordinates rather than in a Cartesian coordinates) thus limiting the further calculations, e.g. inverse transform. One possible solution is to use the interpolation techniques; however, it reduces the speed and accuracy of the numerical approximations. To alleviate this problem, in this paper, some constraints are derived under which the output samples are located in the Cartesian coordinates. Therefore, no interpolation operation is required and thus the calculation error can be significantly eliminated.
Niethammer, Marc; Hart, Gabriel L; Pace, Danielle F; Vespa, Paul M; Irimia, Andrei; Van Horn, John D; Aylward, Stephen R
2011-01-01
Standard image registration methods do not account for changes in image appearance. Hence, metamorphosis approaches have been developed which jointly estimate a space deformation and a change in image appearance to construct a spatio-temporal trajectory smoothly transforming a source to a target image. For standard metamorphosis, geometric changes are not explicitly modeled. We propose a geometric metamorphosis formulation, which explains changes in image appearance by a global deformation, a deformation of a geometric model, and an image composition model. This work is motivated by the clinical challenge of predicting the long-term effects of traumatic brain injuries based on time-series images. This work is also applicable to the quantification of tumor progression (e.g., estimating its infiltrating and displacing components) and predicting chronic blood perfusion changes after stroke. We demonstrate the utility of the method using simulated data as well as scans from a clinical traumatic brain injury patient.
Halyo, N.; Caglayan, A. K.
1976-01-01
This paper considers the control of a continuous linear plant disturbed by white plant noise when the control is constrained to be a piecewise constant function of time; i.e. a stochastic sampled-data system. The cost function is the integral of quadratic error terms in the state and control, thus penalizing errors at every instant of time while the plant noise disturbs the system continuously. The problem is solved by reducing the constrained continuous problem to an unconstrained discrete one. It is shown that the separation principle for estimation and control still holds for this problem when the plant disturbance and measurement noise are Gaussian.
Cappelli, Daniele; Mansour, Nagi N.
2012-01-01
Separation can be seen in most aerodynamic flows, but accurate prediction of separated flows is still a challenging problem for computational fluid dynamics (CFD) tools. The behavior of several Reynolds Averaged Navier-Stokes (RANS) models in predicting the separated ow over a wall-mounted hump is studied. The strengths and weaknesses of the most popular RANS models (Spalart-Allmaras, k-epsilon, k-omega, k-omega-SST) are evaluated using the open source software OpenFOAM. The hump ow modeled in this work has been documented in the 2004 CFD Validation Workshop on Synthetic Jets and Turbulent Separation Control. Only the baseline case is treated; the slot flow control cases are not considered in this paper. Particular attention is given to predicting the size of the recirculation bubble, the position of the reattachment point, and the velocity profiles downstream of the hump.
Geometric inequalities methods of proving
Sedrakyan, Hayk
2017-01-01
This unique collection of new and classical problems provides full coverage of geometric inequalities. Many of the 1,000 exercises are presented with detailed author-prepared-solutions, developing creativity and an arsenal of new approaches for solving mathematical problems. This book can serve teachers, high-school students, and mathematical competitors. It may also be used as supplemental reading, providing readers with new and classical methods for proving geometric inequalities. .
Sewer solids separation by sedimentation--the problem of modeling, validation and transferability.
Kutzner, R; Brombach, H; Geiger, W F
2007-01-01
Sedimentation of sewer solids in tanks, ponds and similar devices is the most relevant process for the treatment of stormwater and combined sewer overflows in urban collecting systems. In the past a lot of research work was done to develop deterministic models for the description of this separation process. But these modern models are not commonly accepted in Germany until today. Water Authorities are sceptical with regard to model validation and transferability. Within this paper it is checked whether this scepticism is reasonable. A framework-proposal for the validation of mathematical models with zero or one dimensional spatial resolution for particle separation processes for stormwater and combined sewer overflow treatment is presented. This proposal was applied to publications of repute on sewer solids separation by sedimentation. The result was that none of the investigated models described in literature passed the validation entirely. There is an urgent need for future research in sewer solids sedimentation and remobilization!
Geometric Computing for Freeform Architecture
Wallner, J.
2011-06-03
Geometric computing has recently found a new field of applications, namely the various geometric problems which lie at the heart of rationalization and construction-aware design processes of freeform architecture. We report on our work in this area, dealing with meshes with planar faces and meshes which allow multilayer constructions (which is related to discrete surfaces and their curvatures), triangles meshes with circle-packing properties (which is related to conformal uniformization), and with the paneling problem. We emphasize the combination of numerical optimization and geometric knowledge.
DEFF Research Database (Denmark)
Andersen, Jørgen Ellegaard; Borot, Gaëtan; Orantin, Nicolas
We propose a general theory whose main component are functorial assignments ∑→Ω∑ ∈ E (∑), for a large class of functors E from a certain category of bordered surfaces (∑'s) to a suitable a target category of topological vector spaces. The construction is done by summing appropriate compositions...... as Poisson structures on the moduli space of flat connections. The theory has a wider scope than that and one expects that many functorial objects in low-dimensional geometry and topology should have a GR construction. The geometric recursion has various projections to topological recursion (TR) and we...... in particular show it retrieves all previous variants and applications of TR. We also show that, for any initial data for topological recursion, one can construct initial data for GR with values in Frobenius algebra-valued continuous functions on Teichmueller space, such that the ωg,n of TR are obtained...
Directory of Open Access Journals (Sweden)
Akimov Pavel Alekseevich
2012-10-01
Full Text Available The proposed paper covers the operator-related formulation of the eigenvalue problem of analysis of a three-dimensional structure that has piecewise-constant physical and geometrical parameters alongside the so-called basic direction within the framework of a discrete-continual approach (a discrete-continual finite element method, a discrete-continual variation method. Generally, discrete-continual formulations represent contemporary mathematical models that become available for computer implementation. They make it possible for a researcher to consider the boundary effects whenever particular components of the solution represent rapidly varying functions. Another feature of discrete-continual methods is the absence of any limitations imposed on lengths of structures. The three-dimensional problem of elasticity is used as the design model of a structure. In accordance with the so-called method of extended domain, the domain in question is embordered by an extended one of an arbitrary shape. At the stage of numerical implementation, relative key features of discrete-continual methods include convenient mathematical formulas, effective computational patterns and algorithms, simple data processing, etc. The authors present their formulation of the problem in question for an isotropic medium with allowance for supports restrained by elastic elements while standard boundary conditions are also taken into consideration.
DEFF Research Database (Denmark)
Andersen, Michael; Abel, Sarah Maria Niebe; Erleben, Kenny
2017-01-01
We address the task of computing solutions for a separating fluid-solid wall boundary condition model. We present an embarrassingly parallel, easy to implement, fluid LCP solver.We are able to use greater domain sizes than previous works have shown, due to our new solver. The solver exploits matr...
Large-Scale Separation and Wake Closure/Reattachment - The Cascade Problem,
1983-05-01
7.3b-d) gives, for all x > xsep K (X) = u(u-l)dy + 1se (11-7.7) 44 UTRC83-13 where Isep is the integrated momentum deficit at separation, from (II...with c1 = (K: o 2/b - Isep /b) positive. So (II-7.5a) requires the underlying form -g ~-1/2_ +- g go (G) + x -1()+..+x 2 (a)+ .... (II-7.10a) for g
Directory of Open Access Journals (Sweden)
Shervin Assari
2014-01-01
Conclusions: Although separate effects of anxiety and problem drinking were similar among race and ethnic groups, race and ethnicity seemed to modify the combined effects of different mental health problems. These results warrant further exploration of these complex links.
Shape functions for separable solutions to cross-field diffusion problems
International Nuclear Information System (INIS)
Luning, C.D.; Perry, W.L.
1984-01-01
The shape function S(x), which arises in the study of nonlinear diffusion for cross-field diffusion in plasmas, satisfies the equation S''(x)+lambdaa(x)S/sup α/(x) = 0, 0 0. In the cases of physical interest a(x) possesses an integrable singularity at some point in (0,1) but is otherwise continuous. Existence of a positive solution to this problem is established
Decision trees and decision committee applied to star/galaxy separation problem
Vasconcellos, Eduardo Charles
Vasconcellos et al [1] study the efficiency of 13 diferente decision tree algorithms applied to photometric data in the Sloan Digital Sky Digital Survey Data Release Seven (SDSS-DR7) to perform star/galaxy separation. Each algorithm is defined by a set fo parameters which, when varied, produce diferente final classifications trees. In that work we extensively explore the parameter space of each algorithm, using the set of 884,126 SDSS objects with spectroscopic data as the training set. We find that Functional Tree algorithm (FT) yields the best results by the mean completeness function (galaxy true positive rate) in two magnitude intervals:14=19 (82.1%). We compare FT classification to the SDSS parametric, 2DPHOT and Ball et al (2006) classifications. At the faintest magnitudes (r > 19), our classifier is the only one that maintains high completeness (>80%) while simultaneously achieving low contamination ( 2.5%). We also examine the SDSS parametric classifier (psfMag - modelMag) to see if the dividing line between stars and galaxies can be adjusted to improve the classifier. We find that currently stars in close pairs are often misclassified as galaxies, and suggest a new cut to improve the classifier. Finally, we apply our FT classifier to separate stars from galaxies in the full set of 69,545,326 SDSS photometric objects in the magnitude range 14 train six FT classifiers with random selected objects from the same 884,126 SDSS-DR7 objects with spectroscopic data that we use before. Both, the decision commitee and our previous single FT classifier will be applied to the new ojects from SDSS data releses eight, nine and ten. Finally we will compare peformances of both methods in this new data set. [1] Vasconcellos, E. C.; de Carvalho, R. R.; Gal, R. R.; LaBarbera, F. L.; Capelato, H. V.; Fraga Campos Velho, H.; Trevisan, M.; Ruiz, R. S. R.. Decision Tree Classifiers for Star/Galaxy Separation. The Astronomical Journal, Volume 141, Issue 6, 2011.
Arkes, Jeremy
2015-01-01
This paper provides an examination of the effects of the divorce and separation process on children's academic achievement over time. By using child fixed effects and establishing a baseline period that is 4-or-more years prior to a family disruption, I can examine how children are affected in different periods relative to the disruption and whether any negative effects subside, persist, or escalate as time passes from the disruption. With a sample of 7-14 year olds, I find: children are affected at least 2-4 years before the disruption; reading test scores are most affected; and for Reading Comprehension, the negative effects persist and even escalate as time passes from the disruption.
Monomial geometric programming with an arbitrary fuzzy relational inequality
Directory of Open Access Journals (Sweden)
E. Shivanian
2015-11-01
Full Text Available In this paper, an optimization model with geometric objective function is presented. Geometric programming is widely used; many objective functions in optimization problems can be analyzed by geometric programming. We often encounter these in resource allocation and structure optimization and technology management, etc. On the other hand, fuzzy relation equalities and inequalities are also used in many areas. We here present a geometric programming model with a monomial objective function subject to the fuzzy relation inequality constraints with an arbitrary function. The feasible solution set is determined and compared with some common results in the literature. A necessary and sufficient condition and three other necessary conditions are presented to conceptualize the feasibility of the problem. In general a lower bound is always attainable for the optimal objective value by removing the components having no effect on the solution process. By separating problem to non-decreasing and non-increasing function to prove the optimal solution, we simplify operations to accelerate the resolution of the problem.
Geometrical method of decoupling
Directory of Open Access Journals (Sweden)
C. Baumgarten
2012-12-01
Full Text Available The computation of tunes and matched beam distributions are essential steps in the analysis of circular accelerators. If certain symmetries—like midplane symmetry—are present, then it is possible to treat the betatron motion in the horizontal, the vertical plane, and (under certain circumstances the longitudinal motion separately using the well-known Courant-Snyder theory, or to apply transformations that have been described previously as, for instance, the method of Teng and Edwards. In a preceding paper, it has been shown that this method requires a modification for the treatment of isochronous cyclotrons with non-negligible space charge forces. Unfortunately, the modification was numerically not as stable as desired and it was still unclear, if the extension would work for all conceivable cases. Hence, a systematic derivation of a more general treatment seemed advisable. In a second paper, the author suggested the use of real Dirac matrices as basic tools for coupled linear optics and gave a straightforward recipe to decouple positive definite Hamiltonians with imaginary eigenvalues. In this article this method is generalized and simplified in order to formulate a straightforward method to decouple Hamiltonian matrices with eigenvalues on the real and the imaginary axis. The decoupling of symplectic matrices which are exponentials of such Hamiltonian matrices can be deduced from this in a few steps. It is shown that this algebraic decoupling is closely related to a geometric “decoupling” by the orthogonalization of the vectors E[over →], B[over →], and P[over →], which were introduced with the so-called “electromechanical equivalence.” A mathematical analysis of the problem can be traced down to the task of finding a structure-preserving block diagonalization of symplectic or Hamiltonian matrices. Structure preservation means in this context that the (sequence of transformations must be symplectic and hence canonical. When
DEFF Research Database (Denmark)
Abd.Hamid, Mohd-Kamaruddin; Sin, Gürkan; Gani, Rafiqul
2010-01-01
This paper presents the integrated process design and controller design (IPDC) for a reactor-separator-recycle (RSR) system and evaluates a decomposition methodology to solve the IPDC problem. Accordingly, the IPDC problem is solved by decomposing it into four hierarchical stages: (i) pre...... the design of a RSR system involving consecutive reactions, A B -> C and shown to provide effective solutions that satisfy design, control and cost criteria. The advantage of the proposed methodology is that it is systematic, makes use of thermodynamic-process knowledge and provides valuable insights......-analysis, (ii) design analysis, (iii) controller design analysis, and (iv) final selection and verification. The methodology makes use of thermodynamic-process insights and the reverse design approach to arrive at the final process-controller design decisions. The developed methodology is illustrated through...
Geometric approach to soliton equations
International Nuclear Information System (INIS)
Sasaki, R.
1979-09-01
A class of nonlinear equations that can be solved in terms of nxn scattering problem is investigated. A systematic geometric method of exploiting conservation laws and related equations, the so-called prolongation structure, is worked out. The nxn problem is reduced to nsub(n-1)x(n-1) problems and finally to 2x2 problems, which have been comprehensively investigated recently by the author. A general method of deriving the infinite numbers of polynomial conservation laws for an nxn problem is presented. The cases of 3x3 and 2x2 problems are discussed explicitly. (Auth.)
On bivariate geometric distribution
Directory of Open Access Journals (Sweden)
K. Jayakumar
2013-05-01
Full Text Available Characterizations of bivariate geometric distribution using univariate and bivariate geometric compounding are obtained. Autoregressive models with marginals as bivariate geometric distribution are developed. Various bivariate geometric distributions analogous to important bivariate exponential distributions like, Marshall-Olkin’s bivariate exponential, Downton’s bivariate exponential and Hawkes’ bivariate exponential are presented.
Visualizing the Geometric Series.
Bennett, Albert B., Jr.
1989-01-01
Mathematical proofs often leave students unconvinced or without understanding of what has been proved, because they provide no visual-geometric representation. Presented are geometric models for the finite geometric series when r is a whole number, and the infinite geometric series when r is the reciprocal of a whole number. (MNS)
International Nuclear Information System (INIS)
Noga, M.T.
1984-01-01
This thesis addresses a number of important problems that fall within the framework of the new discipline of Computational Geometry. The list of topics covered includes sorting and selection, convex hull algorithms, the L 1 hull, determination of the minimum encasing rectangle of a set of points, the Euclidean and L 1 diameter of a set of points, the metric traveling salesman problem, and finding the superrange of star-shaped and monotype polygons. The main theme of all the work was to develop a set of very fast state-of-the-art algorithms that supersede any rivals in terms of speed and ease of implementation. In some cases existing algorithms were refined; for others new techniques were developed that add to the present database of fast adaptive geometric algorithms. What emerges is a collection of techniques that is successful at merging modern tools developed in analysis of algorithms with those of classical geometry
Guide to Geometric Algebra in Practice
Dorst, Leo
2011-01-01
This highly practical "Guide to Geometric Algebra in Practice" reviews algebraic techniques for geometrical problems in computer science and engineering, and the relationships between them. The topics covered range from powerful new theoretical developments, to successful applications, and the development of new software and hardware tools. This title: provides hands-on review exercises throughout the book, together with helpful chapter summaries; presents a concise introductory tutorial to conformal geometric algebra (CGA) in the appendices; examines the application of CGA for the d
Geometric scaling as traveling waves
International Nuclear Information System (INIS)
Munier, S.; Peschanski, R.
2003-01-01
We show the relevance of the nonlinear Fisher and Kolmogorov-Petrovsky-Piscounov (KPP) equation to the problem of high energy evolution of the QCD amplitudes. We explain how the traveling wave solutions of this equation are related to geometric scaling, a phenomenon observed in deep-inelastic scattering experiments. Geometric scaling is for the first time shown to result from an exact solution of nonlinear QCD evolution equations. Using general results on the KPP equation, we compute the velocity of the wave front, which gives the full high energy dependence of the saturation scale
Asymptotic geometric analysis, part I
Artstein-Avidan, Shiri
2015-01-01
The authors present the theory of asymptotic geometric analysis, a field which lies on the border between geometry and functional analysis. In this field, isometric problems that are typical for geometry in low dimensions are substituted by an "isomorphic" point of view, and an asymptotic approach (as dimension tends to infinity) is introduced. Geometry and analysis meet here in a non-trivial way. Basic examples of geometric inequalities in isomorphic form which are encountered in the book are the "isomorphic isoperimetric inequalities" which led to the discovery of the "concentration phenomen
Federal Laboratory Consortium — Purpose: The mission of the Geometric Design Laboratory (GDL) is to support the Office of Safety Research and Development in research related to the geometric design...
K.O. Dzhaparidze (Kacha)
1998-01-01
textabstractIn this paper a convergence class is characterized for special series associated with Gelfond's interpolation problem (a generalization of the Abel-Goncharov problem) when the interpolation nodes are equidistantly distributed within the interval $[0,1]$. As a result, an expansion is
Geometric Approaches to Quadratic Equations from Other Times and Places.
Allaire, Patricia R.; Bradley, Robert E.
2001-01-01
Focuses on geometric solutions of quadratic problems. Presents a collection of geometric techniques from ancient Babylonia, classical Greece, medieval Arabia, and early modern Europe to enhance the quadratic equation portion of an algebra course. (KHR)
Directory of Open Access Journals (Sweden)
Oboetswe Seraga Motsamai
2010-01-01
Full Text Available Effectiveness and efficiency of hydro-cyclone separators are highly dependent on their geometrical parameters and flow characteristics. Performance of the hydro-cyclone can, therefore, be improved by modifying the geometrical parameters or flow characteristics. The mining and chemical industries are faced with problems of separating ore-rich stones from the nonore-rich stones. Due to this problem a certain amount of precious metals is lost to the dumping sites. Plant managers try to solve these problems by stockpiling what could be useless stones, so that they can be reprocessed in the future. Reprocessing is not a sustainable approach, because the reprocessed material would give lower yield as compared to the production costs. Particulate separation in a hydro-cyclone has been investigated in this paper, by using computational fluid dynamics. The paper investigated the influence of various flow and geometric parameters on particulate separation. Optimal parameters for efficient separation have been determined for the density of fluid, diameter of the spigot, and diameter of the vortex finder. The principal contribution of this paper is that key parameters for design optimization of the hydro-cyclone have been investigated.
Hananto, R. B.; Kusmayadi, T. A.; Riyadi
2018-05-01
The research aims to identify the critical thinking process of students in solving geometry problems. The geometry problem selected in this study was the building of flat side room (cube). The critical thinking process was implemented to visual, auditory and kinesthetic learning styles. This research was a descriptive analysis research using qualitative method. The subjects of this research were 3 students selected by purposive sampling consisting of visual, auditory, and kinesthetic learning styles. Data collection was done through test, interview, and observation. The results showed that the students' critical thinking process in identifying and defining steps for each learning style were similar in solving problems. The critical thinking differences were seen in enumerate, analyze, list, and self-correct steps. It was also found that critical thinking process of students with kinesthetic learning style was better than visual and auditory learning styles.
Sirota, Dmitry; Ivanov, Vadim
2017-11-01
Any mining operations influence stability of natural and technogenic massifs are the reason of emergence of the sources of differences of mechanical tension. These sources generate a quasistationary electric field with a Newtonian potential. The paper reviews the method of determining the shape and size of a flat source field with this kind of potential. This common problem meets in many fields of mining: geological exploration mineral resources, ore deposits, control of mining by underground method, determining coal self-heating source, localization of the rock crack's sources and other applied problems of practical physics. This problems are ill-posed and inverse and solved by converting to Fredholm-Uryson integral equation of the first kind. This equation will be solved by A.N. Tikhonov regularization method.
Energy Technology Data Exchange (ETDEWEB)
Buryakovskiy, L A; Kondrushkin, Yu M
1979-01-01
Over 200 people participated in the work of the conference: members of sections, scientists and specialist of production and scientific research organizations of the Ministry of the Oil Industry, Ministry of Geology, Ministry of the Gas Industry, USSR State Commission on Mineral Reserves, as well as the Kuybyshev Polytechnical Institute, the Perm State University, the Institute of Problems of Deep Oil and Gas Fields of the Azerbaijan SSR Academy of Sciences. A total of 11 production organizations and 24 institutes from 15 oil recovery regions of the USSR were represented.
Geometric quantization and general relativity
International Nuclear Information System (INIS)
Souriau, J.-M.
1977-01-01
The purpose of geometric quantization is to give a rigorous mathematical content to the 'correspondence principle' between classical and quantum mechanics. The main tools are borrowed on one hand from differential geometry and topology (differential manifolds, differential forms, fiber bundles, homology and cohomology, homotopy), on the other hand from analysis (functions of positive type, infinite dimensional group representations, pseudo-differential operators). Some satisfactory results have been obtained in the study of dynamical systems, but some fundamental questions are still waiting for an answer. The 'geometric quantization of fields', where some further well known difficulties arise, is still in a preliminary stage. In particular, the geometric quantization on the gravitational field is still a mere project. The situation is even more uncertain due to the fact that there is no experimental evidence of any quantum gravitational effect which could give us a hint towards what we are supposed to look for. The first level of both Quantum Theory, and General Relativity describes passive matter: influence by the field without being a source of it (first quantization and equivalence principle respectively). In both cases this is only an approximation (matter is always a source). But this approximation turns out to be the least uncertain part of the description, because on one hand the first quantization avoids the problems of renormalization and on the other hand the equivalence principle does not imply any choice of field equations (it is known that one can modify Einstein equations at short distances without changing their geometrical properties). (Auth.)
Geometric optimization and sums of algebraic functions
Vigneron, Antoine E.
2014-01-01
We present a new optimization technique that yields the first FPTAS for several geometric problems. These problems reduce to optimizing a sum of nonnegative, constant description complexity algebraic functions. We first give an FPTAS for optimizing such a sum of algebraic functions, and then we apply it to several geometric optimization problems. We obtain the first FPTAS for two fundamental geometric shape-matching problems in fixed dimension: maximizing the volume of overlap of two polyhedra under rigid motions and minimizing their symmetric difference. We obtain the first FPTAS for other problems in fixed dimension, such as computing an optimal ray in a weighted subdivision, finding the largest axially symmetric subset of a polyhedron, and computing minimum-area hulls.
Geometric reconstruction methods for electron tomography
DEFF Research Database (Denmark)
Alpers, Andreas; Gardner, Richard J.; König, Stefan
2013-01-01
Electron tomography is becoming an increasingly important tool in materials science for studying the three-dimensional morphologies and chemical compositions of nanostructures. The image quality obtained by many current algorithms is seriously affected by the problems of missing wedge artefacts...... and discuss several algorithms from the mathematical fields of geometric and discrete tomography. The algorithms incorporate geometric prior knowledge (mainly convexity and homogeneity), which also in principle considerably reduces the number of tilt angles required. Results are discussed...
The effect of photometric and geometric context on photometric and geometric lightness effects.
Lee, Thomas Y; Brainard, David H
2014-01-24
We measured the lightness of probe tabs embedded at different orientations in various contextual images presented on a computer-controlled stereo display. Two background context planes met along a horizontal roof-like ridge. Each plane was a graphic rendering of a set of achromatic surfaces with the simulated illumination for each plane controlled independently. Photometric context was varied by changing the difference in simulated illumination intensity between the two background planes. Geometric context was varied by changing the angle between them. We parsed the data into separate photometric effects and geometric effects. For fixed geometry, varying photometric context led to linear changes in both the photometric and geometric effects. Varying geometric context did not produce a statistically reliable change in either the photometric or geometric effects.
Impossible Geometric Constructions: A Calculus Writing Project
Awtrey, Chad
2013-01-01
This article discusses a writing project that offers students the opportunity to solve one of the most famous geometric problems of Greek antiquity; namely, the impossibility of trisecting the angle [pi]/3. Along the way, students study the history of Greek geometry problems as well as the life and achievements of Carl Friedrich Gauss. Included is…
Druţu, Cornelia
2018-01-01
The key idea in geometric group theory is to study infinite groups by endowing them with a metric and treating them as geometric spaces. This applies to many groups naturally appearing in topology, geometry, and algebra, such as fundamental groups of manifolds, groups of matrices with integer coefficients, etc. The primary focus of this book is to cover the foundations of geometric group theory, including coarse topology, ultralimits and asymptotic cones, hyperbolic groups, isoperimetric inequalities, growth of groups, amenability, Kazhdan's Property (T) and the Haagerup property, as well as their characterizations in terms of group actions on median spaces and spaces with walls. The book contains proofs of several fundamental results of geometric group theory, such as Gromov's theorem on groups of polynomial growth, Tits's alternative, Stallings's theorem on ends of groups, Dunwoody's accessibility theorem, the Mostow Rigidity Theorem, and quasiisometric rigidity theorems of Tukia and Schwartz. This is the f...
Geometric and engineering drawing
Morling, K
2010-01-01
The new edition of this successful text describes all the geometric instructions and engineering drawing information that are likely to be needed by anyone preparing or interpreting drawings or designs with plenty of exercises to practice these principles.
Differential geometric structures
Poor, Walter A
2007-01-01
This introductory text defines geometric structure by specifying parallel transport in an appropriate fiber bundle and focusing on simplest cases of linear parallel transport in a vector bundle. 1981 edition.
Geometric ghosts and unitarity
International Nuclear Information System (INIS)
Ne'eman, Y.
1980-09-01
A review is given of the geometrical identification of the renormalization ghosts and the resulting derivation of Unitarity equations (BRST) for various gauges: Yang-Mills, Kalb-Ramond, and Soft-Group-Manifold
Asymptotic and geometrical quantization
International Nuclear Information System (INIS)
Karasev, M.V.; Maslov, V.P.
1984-01-01
The main ideas of geometric-, deformation- and asymptotic quantizations are compared. It is shown that, on the one hand, the asymptotic approach is a direct generalization of exact geometric quantization, on the other hand, it generates deformation in multiplication of symbols and Poisson brackets. Besides investigating the general quantization diagram, its applications to the calculation of asymptotics of a series of eigenvalues of operators possessing symmetry groups are considered
On geometrized gravitation theories
International Nuclear Information System (INIS)
Logunov, A.A.; Folomeshkin, V.N.
1977-01-01
General properties of the geometrized gravitation theories have been considered. Geometrization of the theory is realized only to the extent that by necessity follows from an experiment (geometrization of the density of the matter Lagrangian only). Aor a general case the gravitation field equations and the equations of motion for matter are formulated in the different Riemann spaces. A covariant formulation of the energy-momentum conservation laws is given in an arbitrary geometrized theory. The noncovariant notion of ''pseudotensor'' is not required in formulating the conservation laws. It is shown that in the general case (i.e., when there is an explicit dependence of the matter Lagrangian density on the covariant derivatives) a symmetric energy-momentum tensor of the matter is explicitly dependent on the curvature tensor. There are enlisted different geometrized theories that describe a known set of the experimental facts. The properties of one of the versions of the quasilinear geometrized theory that describes the experimental facts are considered. In such a theory the fundamental static spherically symmetrical solution has a singularity only in the coordinate origin. The theory permits to create a satisfactory model of the homogeneous nonstationary Universe
A Unit-Problem Investigation of Blunt Leading-Edge Separation Motivated by AVT-161 SACCON Research
Luckring, James M.; Boelens, Okko J.
2011-01-01
A research effort has been initiated to examine in more detail some of the challenging flow fields discovered from analysis of the SACCON configuration aerodynamics. This particular effort is oriented toward a diamond wing investigation specifically designed to isolate blunt leading-edge separation phenomena relevant to the SACCON investigations of the present workshop. The approach taken to design this new effort is reviewed along with the current status of the program.
Geometrical optics and optimal transport.
Rubinstein, Jacob; Wolansky, Gershon
2017-10-01
The Fermat principle is generalized to a system of rays. It is shown that all the ray mappings that are compatible with two given intensities of a monochromatic wave, measured at two planes, are stationary points of a canonical functional, which is the weighted average of the actions of all the rays. It is further shown that there exist at least two stationary points for this functional, implying that in the geometrical optics regime the phase from intensity problem has inherently more than one solution. The caustic structures of all the possible ray mappings are analyzed. A number of simulations illustrate the theoretical considerations.
DEFF Research Database (Denmark)
Blekhman, Iliya I.; Sorokin, Vladislav
2016-01-01
A general approach to study oscillating action on nonlinear dynamical systems is developed. It implies a transition from initial governing equations of motion to much more simple equations describing only the main slow component of motions (the vibro-transformed dynamics equations). The approach...... is named as the Oscillatory Strobodynamics, since motions are perceived as under a stroboscopic light. The vibro-transformed dynamics equations comprise terms that represent the averaged effect of the oscillating action. The method of direct separation of motions (MDSM) appears to be an efficient...
Geometric approximation algorithms
Har-Peled, Sariel
2011-01-01
Exact algorithms for dealing with geometric objects are complicated, hard to implement in practice, and slow. Over the last 20 years a theory of geometric approximation algorithms has emerged. These algorithms tend to be simple, fast, and more robust than their exact counterparts. This book is the first to cover geometric approximation algorithms in detail. In addition, more traditional computational geometry techniques that are widely used in developing such algorithms, like sampling, linear programming, etc., are also surveyed. Other topics covered include approximate nearest-neighbor search, shape approximation, coresets, dimension reduction, and embeddings. The topics covered are relatively independent and are supplemented by exercises. Close to 200 color figures are included in the text to illustrate proofs and ideas.
Geometrical optical illusionists.
Wade, Nicholas J
2014-01-01
Geometrical optical illusions were given this title by Oppel in 1855. Variants on such small distortions of visual space were illustrated thereafter, many of which bear the names of those who first described them. Some original forms of the geometrical optical illusions are shown together with 'perceptual portraits' of those who described them. These include: Roget, Chevreul, Fick, Zöllner, Poggendorff, Hering, Kundt, Delboeuf Mach, Helmholtz, Hermann, von Bezold, Müller-Lyer, Lipps, Thiéry, Wundt, Münsterberg, Ebbinghaus, Titchener, Ponzo, Luckiesh, Sander, Ehrenstein, Gregory, Heard, White, Shepard, and. Lingelbach. The illusions are grouped under the headings of orientation, size, the combination of size and orientation, and contrast. Early theories of illusions, before geometrical optical illusions were so named, are mentioned briefly.
Geometric Rationalization for Freeform Architecture
Jiang, Caigui
2016-06-20
The emergence of freeform architecture provides interesting geometric challenges with regards to the design and manufacturing of large-scale structures. To design these architectural structures, we have to consider two types of constraints. First, aesthetic constraints are important because the buildings have to be visually impressive. Sec- ond, functional constraints are important for the performance of a building and its e cient construction. This thesis contributes to the area of architectural geometry. Specifically, we are interested in the geometric rationalization of freeform architec- ture with the goal of combining aesthetic and functional constraints and construction requirements. Aesthetic requirements typically come from designers and architects. To obtain visually pleasing structures, they favor smoothness of the building shape, but also smoothness of the visible patterns on the surface. Functional requirements typically come from the engineers involved in the construction process. For exam- ple, covering freeform structures using planar panels is much cheaper than using non-planar ones. Further, constructed buildings have to be stable and should not collapse. In this thesis, we explore the geometric rationalization of freeform archi- tecture using four specific example problems inspired by real life applications. We achieve our results by developing optimization algorithms and a theoretical study of the underlying geometrical structure of the problems. The four example problems are the following: (1) The design of shading and lighting systems which are torsion-free structures with planar beams based on quad meshes. They satisfy the functionality requirements of preventing light from going inside a building as shad- ing systems or reflecting light into a building as lighting systems. (2) The Design of freeform honeycomb structures that are constructed based on hex-dominant meshes with a planar beam mounted along each edge. The beams intersect without
International Nuclear Information System (INIS)
Takada, Kunio
1979-01-01
For the gravimetric determination of lanthanum, it was precipitated as fluoride and converted to oxide by igniting (ca. 930 0 C) in a town gas flame. However, the oxidation of lanthanum fluoride by ignition was incomplete, the major part of the precipitate being converted to oxyfluoride (LaOF) and a mixture of oxide and oxyfluoride resulted. Therefore, analytical results were generally (5 -- 7)% higher than theoretically expected. The lanthanum fluoride became converted into the oxide by repeating ignition (ca. 1070 0 C) three times, each for (30 -- 40)min. However, the weight was lower than that of the corresponding sesquioxide, La 2 O 3 . Except for ytterbium and lutetium, gravimetric results as oxides for the other rare earth elements (Y, Pr, Nd, Sm, Eu and Gd) were higher than theoretical values. Therefore, the precipitation of the rare earth elements as fluoride and the subsequent determination as oxide by ignition of the fluoride could not be recommended as the gravimetric method for the rare earths. In order to obtain accurate results for major to minor amounts of the rare earth elements, an EDTA titration at pH 6 should be used after the dissolution of fluoride in acid, if the fluoride precipitation separation is involved. (author)
International Nuclear Information System (INIS)
EI-Shorbagy, Kh.H.
2002-11-01
The stabilization effect of a strong HP electric field on beam-plasma instability in a cylindrical warm plasma waveguide is discussed. A new mathematical technique 'separation method' which has been applied to the two-fluid plasma model to separate the equations, which describe the system, into two parts, temporal and space parts. Plasma electrons are considered to have a thermal velocity. It is shown that a HF electric field has no essential influence on dispersion characteristics of unstable surface waves excited in a warm plasma waveguide by a low-density electron beam. The region of instability only slightly narrowing and the growth rate decreases by a small parameter and this result has been reduced compared to cold plasma. Also, it is found that the plasma electrons have not affected the solution of the space part of the problem. (author)
International Nuclear Information System (INIS)
La, H.
1992-01-01
A new geometric formulation of Liouville gravity based on the area preserving diffeo-morphism is given and a possible alternative to reinterpret Liouville gravity is suggested, namely, a scalar field coupled to two-dimensional gravity with a curvature constraint
Geometric Series via Probability
Tesman, Barry
2012-01-01
Infinite series is a challenging topic in the undergraduate mathematics curriculum for many students. In fact, there is a vast literature in mathematics education research on convergence issues. One of the most important types of infinite series is the geometric series. Their beauty lies in the fact that they can be evaluated explicitly and that…
Geometric function theory in higher dimension
2017-01-01
The book collects the most relevant outcomes from the INdAM Workshop “Geometric Function Theory in Higher Dimension” held in Cortona on September 5-9, 2016. The Workshop was mainly devoted to discussions of basic open problems in the area, and this volume follows the same line. In particular, it offers a selection of original contributions on Loewner theory in one and higher dimensions, semigroups theory, iteration theory and related topics. Written by experts in geometric function theory in one and several complex variables, it focuses on new research frontiers in this area and on challenging open problems. The book is intended for graduate students and researchers working in complex analysis, several complex variables and geometric function theory.
Pragmatic geometric model evaluation
Pamer, Robert
2015-04-01
Quantification of subsurface model reliability is mathematically and technically demanding as there are many different sources of uncertainty and some of the factors can be assessed merely in a subjective way. For many practical applications in industry or risk assessment (e. g. geothermal drilling) a quantitative estimation of possible geometric variations in depth unit is preferred over relative numbers because of cost calculations for different scenarios. The talk gives an overview of several factors that affect the geometry of structural subsurface models that are based upon typical geological survey organization (GSO) data like geological maps, borehole data and conceptually driven construction of subsurface elements (e. g. fault network). Within the context of the trans-European project "GeoMol" uncertainty analysis has to be very pragmatic also because of different data rights, data policies and modelling software between the project partners. In a case study a two-step evaluation methodology for geometric subsurface model uncertainty is being developed. In a first step several models of the same volume of interest have been calculated by omitting successively more and more input data types (seismic constraints, fault network, outcrop data). The positions of the various horizon surfaces are then compared. The procedure is equivalent to comparing data of various levels of detail and therefore structural complexity. This gives a measure of the structural significance of each data set in space and as a consequence areas of geometric complexity are identified. These areas are usually very data sensitive hence geometric variability in between individual data points in these areas is higher than in areas of low structural complexity. Instead of calculating a multitude of different models by varying some input data or parameters as it is done by Monte-Carlo-simulations, the aim of the second step of the evaluation procedure (which is part of the ongoing work) is to
An efficient formulation for linear and geometric non-linear membrane elements
Directory of Open Access Journals (Sweden)
Mohammad Rezaiee-Pajand
Full Text Available Utilizing the straingradient notation process and the free formulation, an efficient way of constructing membrane elements will be proposed. This strategy can be utilized for linear and geometric non-linear problems. In the suggested formulation, the optimization constraints of insensitivity to distortion, rotational invariance and not having parasitic shear error are employed. In addition, the equilibrium equations will be established based on some constraints among the strain states. The authors' technique can easily separate the rigid body motions, and those belong to deformational motions. In this article, a novel triangular element, named SST10, is formulated. This element will be used in several plane problems having irregular mesh and complicated geometry with linear and geometrically nonlinear behavior. The numerical outcomes clearly demonstrate the efficiency of the new formulation.
Geometric Models for Collaborative Search and Filtering
Bitton, Ephrat
2011-01-01
This dissertation explores the use of geometric and graphical models for a variety of information search and filtering applications. These models serve to provide an intuitive understanding of the problem domains and as well as computational efficiencies to our solution approaches. We begin by considering a search and rescue scenario where both…
Non-crossing geometric steiner arborescences
Kostitsyna, I.; Speckmann, B.; Verbeek, K.A.B.; Okamoto, Yoshio; Tokuyama, Takeshi
2017-01-01
Motivated by the question of simultaneous embedding of several flow maps, we consider the problem of drawing multiple geometric Steiner arborescences with no crossings in the rectilinear and in the angle-restricted setting. When terminal-to-root paths are allowed to turn freely, we show that two
Geometric Algorithms for Part Orienting and Probing
Panahi, F.
2015-01-01
In this thesis, detailed solutions are presented to several problems dealing with geometric shape and orientation of an object in the field of robotics and automation. We first have considered a general model for shape variations that allows variation along the entire boundary of an object, both in
Geometrical intuition and the learning and teaching of geometry
Fujita, Taro; Jones, Keith; Yamamoto, Shinya
2004-01-01
Intuition is often regarded as essential in the learning of geometry, but how such skills might be effectively developed in students remains an open question. This paper reviews the role and importance of geometrical intuition and suggests it involves the skills to create and manipulate geometrical figures in the mind, to see geometrical properties, to relate images to concepts and theorems in geometry, and decide where and how to start when solving problems in geometry. Based on these theore...
Dynamics in geometrical confinement
Kremer, Friedrich
2014-01-01
This book describes the dynamics of low molecular weight and polymeric molecules when they are constrained under conditions of geometrical confinement. It covers geometrical confinement in different dimensionalities: (i) in nanometer thin layers or self supporting films (1-dimensional confinement) (ii) in pores or tubes with nanometric diameters (2-dimensional confinement) (iii) as micelles embedded in matrices (3-dimensional) or as nanodroplets.The dynamics under such conditions have been a much discussed and central topic in the focus of intense worldwide research activities within the last two decades. The present book discusses how the resulting molecular mobility is influenced by the subtle counterbalance between surface effects (typically slowing down molecular dynamics through attractive guest/host interactions) and confinement effects (typically increasing the mobility). It also explains how these influences can be modified and tuned, e.g. through appropriate surface coatings, film thicknesses or pore...
Bestvina, Mladen; Vogtmann, Karen
2014-01-01
Geometric group theory refers to the study of discrete groups using tools from topology, geometry, dynamics and analysis. The field is evolving very rapidly and the present volume provides an introduction to and overview of various topics which have played critical roles in this evolution. The book contains lecture notes from courses given at the Park City Math Institute on Geometric Group Theory. The institute consists of a set of intensive short courses offered by leaders in the field, designed to introduce students to exciting, current research in mathematics. These lectures do not duplicate standard courses available elsewhere. The courses begin at an introductory level suitable for graduate students and lead up to currently active topics of research. The articles in this volume include introductions to CAT(0) cube complexes and groups, to modern small cancellation theory, to isometry groups of general CAT(0) spaces, and a discussion of nilpotent genus in the context of mapping class groups and CAT(0) gro...
Lectures in geometric combinatorics
Thomas, Rekha R
2006-01-01
This book presents a course in the geometry of convex polytopes in arbitrary dimension, suitable for an advanced undergraduate or beginning graduate student. The book starts with the basics of polytope theory. Schlegel and Gale diagrams are introduced as geometric tools to visualize polytopes in high dimension and to unearth bizarre phenomena in polytopes. The heart of the book is a treatment of the secondary polytope of a point configuration and its connections to the state polytope of the toric ideal defined by the configuration. These polytopes are relatively recent constructs with numerous connections to discrete geometry, classical algebraic geometry, symplectic geometry, and combinatorics. The connections rely on Gr�bner bases of toric ideals and other methods from commutative algebra. The book is self-contained and does not require any background beyond basic linear algebra. With numerous figures and exercises, it can be used as a textbook for courses on geometric, combinatorial, and computational as...
Geometric information provider platform
Directory of Open Access Journals (Sweden)
Meisam Yousefzadeh
2015-07-01
Full Text Available Renovation of existing buildings is known as an essential stage in reduction of the energy loss. Considerable part of renovation process depends on geometric reconstruction of building based on semantic parameters. Following many research projects which were focused on parameterizing the energy usage, various energy modelling methods were developed during the last decade. On the other hand, by developing accurate measuring tools such as laser scanners, the interests of having accurate 3D building models are rapidly growing. But the automation of 3D building generation from laser point cloud or detection of specific objects in that is still a challenge. The goal is designing a platform through which required geometric information can be efficiently produced to support energy simulation software. Developing a reliable procedure which extracts required information from measured data and delivers them to a standard energy modelling system is the main purpose of the project.
Frè, Pietro Giuseppe
2013-01-01
‘Gravity, a Geometrical Course’ presents general relativity (GR) in a systematic and exhaustive way, covering three aspects that are homogenized into a single texture: i) the mathematical, geometrical foundations, exposed in a self consistent contemporary formalism, ii) the main physical, astrophysical and cosmological applications, updated to the issues of contemporary research and observations, with glimpses on supergravity and superstring theory, iii) the historical development of scientific ideas underlying both the birth of general relativity and its subsequent evolution. The book is divided in two volumes. Volume One is dedicated to the development of the theory and basic physical applications. It guides the reader from the foundation of special relativity to Einstein field equations, illustrating some basic applications in astrophysics. A detailed account of the historical and conceptual development of the theory is combined with the presentation of its mathematical foundations. Differe...
Karagiannis, Christos I; Burman, Oliver Hp; Mills, Daniel S
2015-03-28
Canine separation-related problems (SRP) (also described as "separation anxiety" or "separation distress") are among the most common behavioural complaints of dog owners. Treatment with psychoactive medication in parallel with a behaviour modification plan is well documented in the literature, but it is unknown if this is associated with an improvement in underlying affective state (emotion and mood) or simply an inhibition of the behaviour. Cognitive judgement bias tasks have been proposed as a method for assessing underlying affective state and so we used this approach to identify if any change in clinical signs during treatment was associated with a consistent change in cognitive bias (affective state). Five dogs showing signs of SRP (vocalising - e.g. barking, howling-, destruction of property, and toileting - urination or defecation- when alone) were treated with fluoxetine chewable tablets (Reconcile™) and set on a standard behaviour modification plan for two months. Questionnaires and interviews of the owners were used to monitor the clinical progress of the dogs. Subjects were also evaluated using a spatial cognitive bias test to infer changes in underlying affect prior to, and during, treatment. Concurrently, seven other dogs without signs of SRP were tested in the same way to act as controls. Furthermore, possible correlations between cognitive bias and clinical measures were also assessed for dogs with SRP. Prior to treatment, the dogs with SRP responded to ambiguous positions in the cognitive bias test negatively (i.e. with slower running speeds) compared to control dogs (p 0.05). Questionnaire based clinical measures were significantly correlated among themselves and with performance in the cognitive bias test. These results demonstrate for the first time that the clinical treatment of a negative affective state and associated behaviours in a non-human species can produce a shift in cognitive bias. These findings demonstrate how the outcome of an
Ruffino, Fabio Ferrari
2013-01-01
Given a cohomology theory, there is a well-known abstract way to define the dual homology theory using the theory of spectra. In [4] the author provides a more geometric construction of the homology theory, using a generalization of the bordism groups. Such a generalization involves in its definition the vector bundle modification, which is a particular case of the Gysin map. In this paper we provide a more natural variant of that construction, which replaces the vector bundle modification wi...
Waerden, B
1996-01-01
From the reviews: "... Federer's timely and beautiful book indeed fills the need for a comprehensive treatise on geometric measure theory, and his detailed exposition leads from the foundations of the theory to the most recent discoveries. ... The author writes with a distinctive style which is both natural and powerfully economical in treating a complicated subject. This book is a major treatise in mathematics and is essential in the working library of the modern analyst." Bulletin of the London Mathematical Society.
Developing geometrical reasoning
Brown, Margaret; Jones, Keith; Taylor, Ron; Hirst, Ann
2004-01-01
This paper summarises a report (Brown, Jones & Taylor, 2003) to the UK Qualifications and Curriculum Authority of the work of one geometry group. The group was charged with developing and reporting on teaching ideas that focus on the development of geometrical reasoning at the secondary school level. The group was encouraged to explore what is possible both within and beyond the current requirements of the UK National Curriculum and the Key Stage 3 strategy, and to consider the whole atta...
Geometrically Consistent Mesh Modification
Bonito, A.
2010-01-01
A new paradigm of adaptivity is to execute refinement, coarsening, and smoothing of meshes on manifolds with incomplete information about their geometry and yet preserve position and curvature accuracy. We refer to this collectively as geometrically consistent (GC) mesh modification. We discuss the concept of discrete GC, show the failure of naive approaches, and propose and analyze a simple algorithm that is GC and accuracy preserving. © 2010 Society for Industrial and Applied Mathematics.
Geometric theory of information
2014-01-01
This book brings together geometric tools and their applications for Information analysis. It collects current and many uses of in the interdisciplinary fields of Information Geometry Manifolds in Advanced Signal, Image & Video Processing, Complex Data Modeling and Analysis, Information Ranking and Retrieval, Coding, Cognitive Systems, Optimal Control, Statistics on Manifolds, Machine Learning, Speech/sound recognition, and natural language treatment which are also substantially relevant for the industry.
Geometric leaf placement strategies
International Nuclear Information System (INIS)
Fenwick, J D; Temple, S W P; Clements, R W; Lawrence, G P; Mayles, H M O; Mayles, W P M
2004-01-01
Geometric leaf placement strategies for multileaf collimators (MLCs) typically involve the expansion of the beam's-eye-view contour of a target by a uniform MLC margin, followed by movement of the leaves until some point on each leaf end touches the expanded contour. Film-based dose-distribution measurements have been made to determine appropriate MLC margins-characterized through an index d 90 -for multileaves set using one particular strategy to straight lines lying at various angles to the direction of leaf travel. Simple trigonometric relationships exist between different geometric leaf placement strategies and are used to generalize the results of the film work into d 90 values for several different strategies. Measured d 90 values vary both with angle and leaf placement strategy. A model has been derived that explains and describes quite well the observed variations of d 90 with angle. The d 90 angular variations of the strategies studied differ substantially, and geometric and dosimetric reasoning suggests that the best strategy is the one with the least angular variation. Using this criterion, the best straightforwardly implementable strategy studied is a 'touch circle' approach for which semicircles are imagined to be inscribed within leaf ends, the leaves being moved until the semicircles just touch the expanded target outline
Studies in geometric quantization
International Nuclear Information System (INIS)
Tuynman, G.M.
1988-01-01
This thesis contains five chapters, of which the first, entitled 'What is prequantization, and what is geometric quantization?', is meant as an introduction to geometric quantization for the non-specialist. The second chapter, entitled 'Central extensions and physics' deals with the notion of central extensions of manifolds and elaborates and proves the statements made in the first chapter. Central extensions of manifolds occur in physics as the freedom of a phase factor in the quantum mechanical state vector, as the phase factor in the prequantization process of classical mechanics and it appears in mathematics when studying central extension of Lie groups. In this chapter the connection between these central extensions is investigated and a remarkable similarity between classical and quantum mechanics is shown. In chapter three a classical model is given for the hydrogen atom including spin-orbit and spin-spin interaction. The method of geometric quantization is applied to this model and the results are discussed. In the final chapters (4 and 5) an explicit method to calculate the operators corresponding to classical observables is given when the phase space is a Kaehler manifold. The obtained formula are then used to quantise symplectic manifolds which are irreducible hermitian symmetric spaces and the results are compared with other quantization procedures applied to these manifolds (in particular to Berezin's quantization). 91 refs.; 3 tabs
Geometrical framework for robust portfolio optimization
Bazovkin, Pavel
2014-01-01
We consider a vector-valued multivariate risk measure that depends on the user's profile given by the user's utility. It is constructed on the basis of weighted-mean trimmed regions and represents the solution of an optimization problem. The key feature of this measure is convexity. We apply the measure to the portfolio selection problem, employing different measures of performance as objective functions in a common geometrical framework.
Geometrical model of multiple production
International Nuclear Information System (INIS)
Chikovani, Z.E.; Jenkovszky, L.L.; Kvaratshelia, T.M.; Struminskij, B.V.
1988-01-01
The relation between geometrical and KNO-scaling and their violation is studied in a geometrical model of multiple production of hadrons. Predictions concerning the behaviour of correlation coefficients at future accelerators are given
Geometric (Berry) phases in neutron molecular spectroscopy
International Nuclear Information System (INIS)
Lovesey, S.W.
1992-02-01
A theory of neutron scattering by nuclei in a molecule, accompanied by an electronic transition, is formulated with attention to gauge potentials and geometric phases in the Born-Oppenheimer scheme. Non-degenerate and nearly degenerate electronic levels are considered. For nearly degenerate levels it is shown that, the cross-section is free of the singular structure which characterizes the corresponding gauge potential for the phase, and much larger than for well separated electronic states. (author)
Geometric Constructions with the Computer.
Chuan, Jen-chung
The computer can be used as a tool to represent and communicate geometric knowledge. With the appropriate software, a geometric diagram can be manipulated through a series of animation that offers more than one particular snapshot as shown in a traditional mathematical text. Geometric constructions with the computer enable the learner to see and…
Geometric inequalities for axially symmetric black holes
International Nuclear Information System (INIS)
Dain, Sergio
2012-01-01
A geometric inequality in general relativity relates quantities that have both a physical interpretation and a geometrical definition. It is well known that the parameters that characterize the Kerr-Newman black hole satisfy several important geometric inequalities. Remarkably enough, some of these inequalities also hold for dynamical black holes. This kind of inequalities play an important role in the characterization of the gravitational collapse; they are closely related with the cosmic censorship conjecture. Axially symmetric black holes are the natural candidates to study these inequalities because the quasi-local angular momentum is well defined for them. We review recent results in this subject and we also describe the main ideas behind the proofs. Finally, a list of relevant open problems is presented. (topical review)
A Color Image Watermarking Scheme Resistant against Geometrical Attacks
Directory of Open Access Journals (Sweden)
Y. Xing
2010-04-01
Full Text Available The geometrical attacks are still a problem for many digital watermarking algorithms at present. In this paper, we propose a watermarking algorithm for color images resistant to geometrical distortions (rotation and scaling. The singular value decomposition is used for watermark embedding and extraction. The log-polar map- ping (LPM and phase correlation method are used to register the position of geometrical distortion suffered by the watermarked image. Experiments with different kinds of color images and watermarks demonstrate that the watermarking algorithm is robust to common image processing attacks, especially geometrical attacks.
Salt bridges: geometrically specific, designable interactions.
Donald, Jason E; Kulp, Daniel W; DeGrado, William F
2011-03-01
Salt bridges occur frequently in proteins, providing conformational specificity and contributing to molecular recognition and catalysis. We present a comprehensive analysis of these interactions in protein structures by surveying a large database of protein structures. Salt bridges between Asp or Glu and His, Arg, or Lys display extremely well-defined geometric preferences. Several previously observed preferences are confirmed, and others that were previously unrecognized are discovered. Salt bridges are explored for their preferences for different separations in sequence and in space, geometric preferences within proteins and at protein-protein interfaces, co-operativity in networked salt bridges, inclusion within metal-binding sites, preference for acidic electrons, apparent conformational side chain entropy reduction on formation, and degree of burial. Salt bridges occur far more frequently between residues at close than distant sequence separations, but, at close distances, there remain strong preferences for salt bridges at specific separations. Specific types of complex salt bridges, involving three or more members, are also discovered. As we observe a strong relationship between the propensity to form a salt bridge and the placement of salt-bridging residues in protein sequences, we discuss the role that salt bridges might play in kinetically influencing protein folding and thermodynamically stabilizing the native conformation. We also develop a quantitative method to select appropriate crystal structure resolution and B-factor cutoffs. Detailed knowledge of these geometric and sequence dependences should aid de novo design and prediction algorithms. Copyright © 2010 Wiley-Liss, Inc.
Corrochano, Eduardo Bayro
2010-01-01
This book presents contributions from a global selection of experts in the field. This useful text offers new insights and solutions for the development of theorems, algorithms and advanced methods for real-time applications across a range of disciplines. Written in an accessible style, the discussion of all applications is enhanced by the inclusion of numerous examples, figures and experimental analysis. Features: provides a thorough discussion of several tasks for image processing, pattern recognition, computer vision, robotics and computer graphics using the geometric algebra framework; int
Geometric multipartite entanglement measures
International Nuclear Information System (INIS)
Paz-Silva, Gerardo A.; Reina, John H.
2007-01-01
Within the framework of constructions for quantifying entanglement, we build a natural scenario for the assembly of multipartite entanglement measures based on Hopf bundle-like mappings obtained through Clifford algebra representations. Then, given the non-factorizability of an arbitrary two-qubit density matrix, we give an alternate quantity that allows the construction of two types of entanglement measures based on their arithmetical and geometrical averages over all pairs of qubits in a register of size N, and thus fully characterize its degree and type of entanglement. We find that such an arithmetical average is both additive and strongly super additive
Geometric correlations and multifractals
International Nuclear Information System (INIS)
Amritkar, R.E.
1991-07-01
There are many situations where the usual statistical methods are not adequate to characterize correlations in the system. To characterize such situations we introduce mutual correlation dimensions which describe geometric correlations in the system. These dimensions allow us to distinguish between variables which are perfectly correlated with or without a phase lag, variables which are uncorrelated and variables which are partially correlated. We demonstrate the utility of our formalism by considering two examples from dynamical systems. The first example is about the loss of memory in chaotic signals and describes auto-correlations while the second example is about synchronization of chaotic signals and describes cross-correlations. (author). 19 refs, 6 figs
Discrete geometric structures for architecture
Pottmann, Helmut
2010-06-13
The emergence of freeform structures in contemporary architecture raises numerous challenging research problems, most of which are related to the actual fabrication and are a rich source of research topics in geometry and geometric computing. The talk will provide an overview of recent progress in this field, with a particular focus on discrete geometric structures. Most of these result from practical requirements on segmenting a freeform shape into planar panels and on the physical realization of supporting beams and nodes. A study of quadrilateral meshes with planar faces reveals beautiful relations to discrete differential geometry. In particular, we discuss meshes which discretize the network of principal curvature lines. Conical meshes are among these meshes; they possess conical offset meshes at a constant face/face distance, which in turn leads to a supporting beam layout with so-called torsion free nodes. This work can be generalized to a variety of multilayer structures and laid the ground for an adapted curvature theory for these meshes. There are also efforts on segmenting surfaces into planar hexagonal panels. Though these are less constrained than planar quadrilateral panels, this problem is still waiting for an elegant solution. Inspired by freeform designs in architecture which involve circles and spheres, we present a new kind of triangle mesh whose faces\\' in-circles form a packing, i.e., the in-circles of two triangles with a common edge have the same contact point on that edge. These "circle packing (CP) meshes" exhibit an aesthetic balance of shape and size of their faces. They are closely tied to sphere packings on surfaces and to various remarkable structures and patterns which are of interest in art, architecture, and design. CP meshes constitute a new link between architectural freeform design and computational conformal geometry. Recently, certain timber structures motivated us to study discrete patterns of geodesics on surfaces. This
Geometrization of quantum physics
International Nuclear Information System (INIS)
Ol'khov, O.A.
2009-01-01
It is shown that the Dirac equation for a free particle can be considered as a description of specific distortion of the space Euclidean geometry (space topological defect). This approach is based on the possibility of interpretation of the wave function as vector realizing representation of the fundamental group of the closed topological space-time 4-manifold. Mass and spin appear to be topological invariants. Such a concept explains all so-called 'strange' properties of quantum formalism: probabilities, wave-particle duality, nonlocal instantaneous correlation between noninteracting particles (EPR-paradox) and so on. Acceptance of the suggested geometrical concept means rejection of atomistic concept where all matter is considered as consisting of more and more small elementary particles. There are no any particles a priory, before measurement: the notions of particles appear as a result of classical interpretation of the contact of the region of the curved space with a device
Geometrization of quantum physics
Ol'Khov, O. A.
2009-12-01
It is shown that the Dirac equation for free particle can be considered as a description of specific distortion of the space euclidean geometry (space topological defect). This approach is based on possibility of interpretation of the wave function as vector realizing representation of the fundamental group of the closed topological space-time 4-manifold. Mass and spin appear to be topological invariants. Such concept explains all so called “strange” properties of quantum formalism: probabilities, wave-particle duality, nonlocal instantaneous correlation between noninteracting particles (EPR-paradox) and so on. Acceptance of suggested geometrical concept means rejection of atomistic concept where all matter is considered as consisting of more and more small elementary particles. There is no any particles a priori, before measurement: the notions of particles appear as a result of classical interpretation of the contact of the region of the curved space with a device.
Havelka, Jan
2008-01-01
Tato diplomová práce se zabývá akcelerací geometrických transformací obrazu s využitím GPU a architektury NVIDIA (R) CUDA TM. Časově kritické části kódu jsou přesunuty na GPU a vykonány paralelně. Jedním z výsledků je demonstrační aplikace pro porovnání výkonnosti obou architektur: CPU, a GPU v kombinaci s CPU. Pro referenční implementaci jsou použity vysoce optimalizované algoritmy z knihovny OpenCV, od firmy Intel. This master's thesis deals with acceleration of geometrical image transfo...
Geometric Measure Theory and Minimal Surfaces
Bombieri, Enrico
2011-01-01
W.K. ALLARD: On the first variation of area and generalized mean curvature.- F.J. ALMGREN Jr.: Geometric measure theory and elliptic variational problems.- E. GIUSTI: Minimal surfaces with obstacles.- J. GUCKENHEIMER: Singularities in soap-bubble-like and soap-film-like surfaces.- D. KINDERLEHRER: The analyticity of the coincidence set in variational inequalities.- M. MIRANDA: Boundaries of Caciopoli sets in the calculus of variations.- L. PICCININI: De Giorgi's measure and thin obstacles.
Geometrical tile design for complex neighborhoods.
Czeizler, Eugen; Kari, Lila
2009-01-01
Recent research has showed that tile systems are one of the most suitable theoretical frameworks for the spatial study and modeling of self-assembly processes, such as the formation of DNA and protein oligomeric structures. A Wang tile is a unit square, with glues on its edges, attaching to other tiles and forming larger and larger structures. Although quite intuitive, the idea of glues placed on the edges of a tile is not always natural for simulating the interactions occurring in some real systems. For example, when considering protein self-assembly, the shape of a protein is the main determinant of its functions and its interactions with other proteins. Our goal is to use geometric tiles, i.e., square tiles with geometrical protrusions on their edges, for simulating tiled paths (zippers) with complex neighborhoods, by ribbons of geometric tiles with simple, local neighborhoods. This paper is a step toward solving the general case of an arbitrary neighborhood, by proposing geometric tile designs that solve the case of a "tall" von Neumann neighborhood, the case of the f-shaped neighborhood, and the case of a 3 x 5 "filled" rectangular neighborhood. The techniques can be combined and generalized to solve the problem in the case of any neighborhood, centered at the tile of reference, and included in a 3 x (2k + 1) rectangle.
Harmonic and geometric analysis
Citti, Giovanna; Pérez, Carlos; Sarti, Alessandro; Zhong, Xiao
2015-01-01
This book presents an expanded version of four series of lectures delivered by the authors at the CRM. Harmonic analysis, understood in a broad sense, has a very wide interplay with partial differential equations and in particular with the theory of quasiconformal mappings and its applications. Some areas in which real analysis has been extremely influential are PDE's and geometric analysis. Their foundations and subsequent developments made extensive use of the Calderón–Zygmund theory, especially the Lp inequalities for Calderón–Zygmund operators (Beurling transform and Riesz transform, among others) and the theory of Muckenhoupt weights. The first chapter is an application of harmonic analysis and the Heisenberg group to understanding human vision, while the second and third chapters cover some of the main topics on linear and multilinear harmonic analysis. The last serves as a comprehensive introduction to a deep result from De Giorgi, Moser and Nash on the regularity of elliptic partial differen...
Regular Polygons and Geometric Series.
Jarrett, Joscelyn A.
1982-01-01
Examples of some geometric illustrations of limits are presented. It is believed the limit concept is among the most important topics in mathematics, yet many students do not have good intuitive feelings for the concept, since it is often taught very abstractly. Geometric examples are suggested as meaningful tools. (MP)
Geometric Invariants and Object Recognition.
1992-08-01
University of Chicago Press. Maybank , S.J. [1992], "The Projection of Two Non-coplanar Conics", in Geometric Invariance in Machine Vision, eds. J.L...J.L. Mundy and A. Zisserman, MIT Press, Cambridge, MA. Mundy, J.L., Kapur, .. , Maybank , S.J., and Quan, L. [1992a] "Geometric Inter- pretation of
Transmuted Complementary Weibull Geometric Distribution
Directory of Open Access Journals (Sweden)
Ahmed Z. A fify
2014-12-01
Full Text Available This paper provides a new generalization of the complementary Weibull geometric distribution that introduced by Tojeiro et al. (2014, using the quadratic rank transmutation map studied by Shaw and Buckley (2007. The new distribution is referred to as transmuted complementary Weibull geometric distribution (TCWGD. The TCWG distribution includes as special cases the complementary Weibull geometric distribution (CWGD, complementary exponential geometric distribution(CEGD,Weibull distribution (WD and exponential distribution (ED. Various structural properties of the new distribution including moments, quantiles, moment generating function and RØnyi entropy of the subject distribution are derived. We proposed the method of maximum likelihood for estimating the model parameters and obtain the observed information matrix. A real data set are used to compare the exibility of the transmuted version versus the complementary Weibull geometric distribution.
Geometric Reasoning for Automated Planning
Clement, Bradley J.; Knight, Russell L.; Broderick, Daniel
2012-01-01
An important aspect of mission planning for NASA s operation of the International Space Station is the allocation and management of space for supplies and equipment. The Stowage, Configuration Analysis, and Operations Planning teams collaborate to perform the bulk of that planning. A Geometric Reasoning Engine is developed in a way that can be shared by the teams to optimize item placement in the context of crew planning. The ISS crew spends (at the time of this writing) a third or more of their time moving supplies and equipment around. Better logistical support and optimized packing could make a significant impact on operational efficiency of the ISS. Currently, computational geometry and motion planning do not focus specifically on the optimized orientation and placement of 3D objects based on multiple distance and containment preferences and constraints. The software performs reasoning about the manipulation of 3D solid models in order to maximize an objective function based on distance. It optimizes for 3D orientation and placement. Spatial placement optimization is a general problem and can be applied to object packing or asset relocation.
Simulating geometrically complex blast scenarios
Directory of Open Access Journals (Sweden)
Ian G. Cullis
2016-04-01
Full Text Available The effects of blast waves generated by energetic and non-energetic sources are of continuing interest to the ballistics research community. Modern conflicts are increasingly characterised by asymmetric urban warfare, with improvised explosive devices (IEDs often playing a dominant role on the one hand and an armed forces requirement for minimal collateral effects from their weapons on the other. These problems are characterised by disparate length- and time-scales and may also be governed by complex physics. There is thus an increasing need to be able to rapidly assess and accurately predict the effects of energetic blast in topologically complex scenarios. To this end, this paper presents a new QinetiQ-developed advanced computational package called EAGLE-Blast, which is capable of accurately resolving the generation, propagation and interaction of blast waves around geometrically complex shapes such as vehicles and buildings. After a brief description of the numerical methodology, various blast scenario simulations are described and the results compared with experimental data to demonstrate the validation of the scheme and its ability to describe these complex scenarios accurately and efficiently. The paper concludes with a brief discussion on the use of the code in supporting the development of algorithms for fast running engineering models.
Plasma geometric optics analysis and computation
International Nuclear Information System (INIS)
Smith, T.M.
1983-01-01
Important practical applications in the generation, manipulation, and diagnosis of laboratory thermonuclear plasmas have created a need for elaborate computational capabilities in the study of high frequency wave propagation in plasmas. A reduced description of such waves suitable for digital computation is provided by the theory of plasma geometric optics. The existing theory is beset by a variety of special cases in which the straightforward analytical approach fails, and has been formulated with little attention to problems of numerical implementation of that analysis. The standard field equations are derived for the first time from kinetic theory. A discussion of certain terms previously, and erroneously, omitted from the expansion of the plasma constitutive relation is given. A powerful but little known computational prescription for determining the geometric optics field in the neighborhood of caustic singularities is rigorously developed, and a boundary layer analysis for the asymptotic matching of the plasma geometric optics field across caustic singularities is performed for the first time with considerable generality. A proper treatment of birefringence is detailed, wherein a breakdown of the fundamental perturbation theory is identified and circumvented. A general ray tracing computer code suitable for applications to radiation heating and diagnostic problems is presented and described
Biskup, Claudia; Pfister, Gertrud; Robke, Cathrin
1998-01-01
Examines the results of interviews with elementary school children that gauged the attitudes towards and reasons for a partial separation by gender. Proposes an occassional separation of girls and boys for special pedogogical intervention. Discusses the findings. (CMK)
Progressive geometric algorithms
Alewijnse, S.P.A.; Bagautdinov, T.M.; de Berg, M.T.; Bouts, Q.W.; ten Brink, Alex P.; Buchin, K.A.; Westenberg, M.A.
2015-01-01
Progressive algorithms are algorithms that, on the way to computing a complete solution to the problem at hand, output intermediate solutions that approximate the complete solution increasingly well. We present a framework for analyzing such algorithms, and develop efficient progressive algorithms
Progressive geometric algorithms
Alewijnse, S.P.A.; Bagautdinov, T.M.; Berg, de M.T.; Bouts, Q.W.; Brink, ten A.P.; Buchin, K.; Westenberg, M.A.
2014-01-01
Progressive algorithms are algorithms that, on the way to computing a complete solution to the problem at hand, output intermediate solutions that approximate the complete solution increasingly well. We present a framework for analyzing such algorithms, and develop efficient progressive algorithms
Towards a theory of geometric graphs
Pach, Janos
2004-01-01
The early development of graph theory was heavily motivated and influenced by topological and geometric themes, such as the Konigsberg Bridge Problem, Euler's Polyhedral Formula, or Kuratowski's characterization of planar graphs. In 1936, when Denes Konig published his classical Theory of Finite and Infinite Graphs, the first book ever written on the subject, he stressed this connection by adding the subtitle Combinatorial Topology of Systems of Segments. He wanted to emphasize that the subject of his investigations was very concrete: planar figures consisting of points connected by straight-line segments. However, in the second half of the twentieth century, graph theoretical research took an interesting turn. In the most popular and most rapidly growing areas (the theory of random graphs, Ramsey theory, extremal graph theory, algebraic graph theory, etc.), graphs were considered as abstract binary relations rather than geometric objects. Many of the powerful techniques developed in these fields have been su...
Geometric mechanics of periodic pleated origami.
Wei, Z Y; Guo, Z V; Dudte, L; Liang, H Y; Mahadevan, L
2013-05-24
Origami structures are mechanical metamaterials with properties that arise almost exclusively from the geometry of the constituent folds and the constraint of piecewise isometric deformations. Here we characterize the geometry and planar and nonplanar effective elastic response of a simple periodically folded Miura-ori structure, which is composed of identical unit cells of mountain and valley folds with four-coordinated ridges, defined completely by two angles and two lengths. We show that the in-plane and out-of-plane Poisson's ratios are equal in magnitude, but opposite in sign, independent of material properties. Furthermore, we show that effective bending stiffness of the unit cell is singular, allowing us to characterize the two-dimensional deformation of a plate in terms of a one-dimensional theory. Finally, we solve the inverse design problem of determining the geometric parameters for the optimal geometric and mechanical response of these extreme structures.
Geometric inequalities for black holes
International Nuclear Information System (INIS)
Dain, Sergio
2013-01-01
Full text: A geometric inequality in General Relativity relates quantities that have both a physical interpretation and a geometrical definition. It is well known that the parameters that characterize the Kerr-Newman black hole satisfy several important geometric inequalities. Remarkably enough, some of these inequalities also hold for dynamical black holes. This kind of inequalities, which are valid in the dynamical and strong field regime, play an important role in the characterization of the gravitational collapse. They are closed related with the cosmic censorship conjecture. In this talk I will review recent results in this subject. (author)
Optical traps with geometric aberrations
International Nuclear Information System (INIS)
Roichman, Yael; Waldron, Alex; Gardel, Emily; Grier, David G.
2006-01-01
We assess the influence of geometric aberrations on the in-plane performance of optical traps by studying the dynamics of trapped colloidal spheres in deliberately distorted holographic optical tweezers. The lateral stiffness of the traps turns out to be insensitive to moderate amounts of coma, astigmatism, and spherical aberration. Moreover holographic aberration correction enables us to compensate inherent shortcomings in the optical train, thereby adaptively improving its performance. We also demonstrate the effects of geometric aberrations on the intensity profiles of optical vortices, whose readily measured deformations suggest a method for rapidly estimating and correcting geometric aberrations in holographic trapping systems
Geometric inequalities for black holes
Energy Technology Data Exchange (ETDEWEB)
Dain, Sergio [Universidad Nacional de Cordoba (Argentina)
2013-07-01
Full text: A geometric inequality in General Relativity relates quantities that have both a physical interpretation and a geometrical definition. It is well known that the parameters that characterize the Kerr-Newman black hole satisfy several important geometric inequalities. Remarkably enough, some of these inequalities also hold for dynamical black holes. This kind of inequalities, which are valid in the dynamical and strong field regime, play an important role in the characterization of the gravitational collapse. They are closed related with the cosmic censorship conjecture. In this talk I will review recent results in this subject. (author)
An information geometric approach to least squares minimization
Transtrum, Mark; Machta, Benjamin; Sethna, James
2009-03-01
Parameter estimation by nonlinear least squares minimization is a ubiquitous problem that has an elegant geometric interpretation: all possible parameter values induce a manifold embedded within the space of data. The minimization problem is then to find the point on the manifold closest to the origin. The standard algorithm for minimizing sums of squares, the Levenberg-Marquardt algorithm, also has geometric meaning. When the standard algorithm fails to efficiently find accurate fits to the data, geometric considerations suggest improvements. Problems involving large numbers of parameters, such as often arise in biological contexts, are notoriously difficult. We suggest an algorithm based on geodesic motion that may offer improvements over the standard algorithm for a certain class of problems.
Diffusion Under Geometrical Constraint
Ogawa, Naohisa
2014-01-01
Here we discus the diffusion of particles in a curved tube. This kind of transport phenomenon is observed in biological cells and porous media. To solve such a problem, we discuss the three dimensional diffusion equation with a confining wall forming a thinner tube. We find that the curvature appears in a effective diffusion coefficient for such a quasi-one-dimensional system. As an application to higher dimensional case, we discuss the diffusion in a curved surface with ...
Discrete geometric structures for architecture
Pottmann, Helmut
2010-01-01
. The talk will provide an overview of recent progress in this field, with a particular focus on discrete geometric structures. Most of these result from practical requirements on segmenting a freeform shape into planar panels and on the physical realization
Geometric Rationalization for Freeform Architecture
Jiang, Caigui
2016-01-01
The emergence of freeform architecture provides interesting geometric challenges with regards to the design and manufacturing of large-scale structures. To design these architectural structures, we have to consider two types of constraints. First
Geometrical optics in general relativity
Loinger, A.
2006-01-01
General relativity includes geometrical optics. This basic fact has relevant consequences that concern the physical meaning of the discontinuity surfaces propagated in the gravitational field - as it was first emphasized by Levi-Civita.
Mobile Watermarking against Geometrical Distortions
Directory of Open Access Journals (Sweden)
Jing Zhang
2015-08-01
Full Text Available Mobile watermarking robust to geometrical distortions is still a great challenge. In mobile watermarking, efficient computation is necessary because mobile devices have very limited resources due to power consumption. In this paper, we propose a low-complexity geometrically resilient watermarking approach based on the optimal tradeoff circular harmonic function (OTCHF correlation filter and the minimum average correlation energy Mellin radial harmonic (MACE-MRH correlation filter. By the rotation, translation and scale tolerance properties of the two kinds of filter, the proposed watermark detector can be robust to geometrical attacks. The embedded watermark is weighted by a perceptual mask which matches very well with the properties of the human visual system. Before correlation, a whitening process is utilized to improve watermark detection reliability. Experimental results demonstrate that the proposed watermarking approach is computationally efficient and robust to geometrical distortions.
The Inappropriate Symmetries of Multivariate Statistical Analysis in Geometric Morphometrics.
Bookstein, Fred L
In today's geometric morphometrics the commonest multivariate statistical procedures, such as principal component analysis or regressions of Procrustes shape coordinates on Centroid Size, embody a tacit roster of symmetries -axioms concerning the homogeneity of the multiple spatial domains or descriptor vectors involved-that do not correspond to actual biological fact. These techniques are hence inappropriate for any application regarding which we have a-priori biological knowledge to the contrary (e.g., genetic/morphogenetic processes common to multiple landmarks, the range of normal in anatomy atlases, the consequences of growth or function for form). But nearly every morphometric investigation is motivated by prior insights of this sort. We therefore need new tools that explicitly incorporate these elements of knowledge, should they be quantitative, to break the symmetries of the classic morphometric approaches. Some of these are already available in our literature but deserve to be known more widely: deflated (spatially adaptive) reference distributions of Procrustes coordinates, Sewall Wright's century-old variant of factor analysis, the geometric algebra of importing explicit biomechanical formulas into Procrustes space. Other methods, not yet fully formulated, might involve parameterized models for strain in idealized forms under load, principled approaches to the separation of functional from Brownian aspects of shape variation over time, and, in general, a better understanding of how the formalism of landmarks interacts with the many other approaches to quantification of anatomy. To more powerfully organize inferences from the high-dimensional measurements that characterize so much of today's organismal biology, tomorrow's toolkit must rely neither on principal component analysis nor on the Procrustes distance formula, but instead on sound prior biological knowledge as expressed in formulas whose coefficients are not all the same. I describe the problems
Calculation of the geometric buckling for reactors of various shapes
Energy Technology Data Exchange (ETDEWEB)
Sjoestrand, N E
1958-05-15
A systematic investigation is made of the eleven coordinate systems in which the reactor equation {nabla}{sup 2}{phi} + B{sup 2}{phi} = 0 is separable. The fundamental solution and geometric buckling are given for those cases where the separated equations lead to known functions. It is especially shown that reactors of prolate and oblate spheroidal shape can be calculated in detail, and the results are given in extensive tables.
Geometric interpretation of the Zero-Moment Point
van Oort, Gijs; Stramigioli, Stefano
In this article we show that the concept of screws and wrenches gives us tools to geometrically establish the relation between the ground reaction wrench and the Zero-Moment Point. In order to arrive at this, we show how a wrench can be decomposed into separate components. The proposed method gives
Time as a geometric property of space
Directory of Open Access Journals (Sweden)
James Michael Chappell
2016-11-01
Full Text Available The proper description of time remains a key unsolved problem in science. Newton conceived of time as absolute and universal which it `flows equably without relation to anything external'}. In the nineteenth century, the four-dimensional algebraic structure of the quaternions developed by Hamilton, inspired him to suggest that they could provide a unified representation of space and time. With the publishing of Einstein's theory of special relativity these ideas then lead to the generally accepted Minkowski spacetime formulation in 1908. Minkowski, though, rejected the formalism of quaternions suggested by Hamilton and adopted rather an approach using four-vectors. The Minkowski framework is indeed found to provide a versatile formalism for describing the relationship between space and time in accordance with Einstein's relativistic principles, but nevertheless fails to provide more fundamental insights into the nature of time itself. In order to answer this question we begin by exploring the geometric properties of three-dimensional space that we model using Clifford geometric algebra, which is found to contain sufficient complexity to provide a natural description of spacetime. This description using Clifford algebra is found to provide a natural alternative to the Minkowski formulation as well as providing new insights into the nature of time. Our main result is that time is the scalar component of a Clifford space and can be viewed as an intrinsic geometric property of three-dimensional space without the need for the specific addition of a fourth dimension.
A geometric Hamiltonian description of composite quantum systems and quantum entanglement
Pastorello, Davide
2015-05-01
Finite-dimensional Quantum Mechanics can be geometrically formulated as a proper classical-like Hamiltonian theory in a projective Hilbert space. The description of composite quantum systems within the geometric Hamiltonian framework is discussed in this paper. As summarized in the first part of this work, in the Hamiltonian formulation the phase space of a quantum system is the Kähler manifold given by the complex projective space P(H) of the Hilbert space H of the considered quantum theory. However the phase space of a bipartite system must be P(H1 ⊗ H2) and not simply P(H1) × P(H2) as suggested by the analogy with Classical Mechanics. A part of this paper is devoted to manage this problem. In the second part of the work, a definition of quantum entanglement and a proposal of entanglement measure are given in terms of a geometrical point of view (a rather studied topic in recent literature). Finally two known separability criteria are implemented in the Hamiltonian formalism.
Surface current equilibria from a geometric point of view
International Nuclear Information System (INIS)
Kaiser, R.; Salat, A.
1993-04-01
This paper addresses the inverse problem of the existence of surface current MHD equilibria in toroidal geometry with vanishing magnetic field inside. Inverse means that the plasma-vacuum interface rather than the external wall or conductors are given and the latter remain to be determined. This makes a reformulation of the problem possible in geometric terms: What toroidal surfaces with analytic parameterization allow a simple analytic covering by geodesics? If such a covering by geodesics (field lines) exists, their orthogonal trajectories (current lines) also form a simple covering and are described by a function satisfying a nonlinear partial differential equation of the Hamilton-Jacobi type whose coefficients are combinations of the metric elements of the surface. All known equilibria - equilibria with zero and infinite rotational transform and the symmetric ones in the case of finite rotational transform - turn out to be solutions of separable cases of that equation and allow a unified description if the toroidal surface is parametrized in the moving trihedral associated with a closed curve. Analogously to volume current equilibria, the only continuous symmetries compatible with separability are plane, helical and axial symmetry. In the nonseparable case numerical evidence is presented for cases with chaotic behaviour of geodesics, thus restricting possible equilibria for these surfaces. For weak deviation from axisymmetry KAM-type behaviour is observed, i.e. destruction of geodesic coverings with a low rational rotational transform and preservation of those with irrational rotational transform. A previous attempt to establish three-dimensional surface current equilibria on the basis of the KAM theorem is rejected as incomplete, and a complete proof of the existence of equilibria in the weakly nonaxisymmetric case, based on the twist theorem for mappings, is given. Finally, for a certain class of strong deviations from axisymmetry an analytic criterion is
Geometric Algebra Techniques in Flux Compactifications
International Nuclear Information System (INIS)
Coman, Ioana Alexandra; Lazaroiu, Calin Iuliu; Babalic, Elena Mirela
2016-01-01
We study “constrained generalized Killing (s)pinors,” which characterize supersymmetric flux compactifications of supergravity theories. Using geometric algebra techniques, we give conceptually clear and computationally effective methods for translating supersymmetry conditions into differential and algebraic constraints on collections of differential forms. In particular, we give a synthetic description of Fierz identities, which are an important ingredient of such problems. As an application, we show how our approach can be used to efficiently treat N=1 compactification of M-theory on eight manifolds and prove that we recover results previously obtained in the literature.
ERC Workshop on Geometric Partial Differential Equations
Novaga, Matteo; Valdinoci, Enrico
2013-01-01
This book is the outcome of a conference held at the Centro De Giorgi of the Scuola Normale of Pisa in September 2012. The aim of the conference was to discuss recent results on nonlinear partial differential equations, and more specifically geometric evolutions and reaction-diffusion equations. Particular attention was paid to self-similar solutions, such as solitons and travelling waves, asymptotic behaviour, formation of singularities and qualitative properties of solutions. These problems arise in many models from Physics, Biology, Image Processing and Applied Mathematics in general, and have attracted a lot of attention in recent years.
Geometric singular perturbation analysis of systems with friction
DEFF Research Database (Denmark)
Bossolini, Elena
This thesis is concerned with the application of geometric singular perturbation theory to mechanical systems with friction. The mathematical background on geometric singular perturbation theory, on the blow-up method, on non-smooth dynamical systems and on regularization is presented. Thereafter......, two mechanical problems with two diﬀerent formulations of the friction force are introduced and analysed. The ﬁrst mechanical problem is a one-dimensional spring-block model describing earthquake faulting. The dynamics of earthquakes is naturally a multiple timescale problem: the timescale...... scales. The action of friction is generally explained as the loss and restoration of linkages between the surface asperities at the molecular scale. However, the consequences of friction are noticeable at much larger scales, like hundreds of kilometers. By using geometric singular perturbation theory...
Geometric Mixing, Peristalsis, and the Geometric Phase of the Stomach.
Arrieta, Jorge; Cartwright, Julyan H E; Gouillart, Emmanuelle; Piro, Nicolas; Piro, Oreste; Tuval, Idan
2015-01-01
Mixing fluid in a container at low Reynolds number--in an inertialess environment--is not a trivial task. Reciprocating motions merely lead to cycles of mixing and unmixing, so continuous rotation, as used in many technological applications, would appear to be necessary. However, there is another solution: movement of the walls in a cyclical fashion to introduce a geometric phase. We show using journal-bearing flow as a model that such geometric mixing is a general tool for using deformable boundaries that return to the same position to mix fluid at low Reynolds number. We then simulate a biological example: we show that mixing in the stomach functions because of the "belly phase," peristaltic movement of the walls in a cyclical fashion introduces a geometric phase that avoids unmixing.
Geometric Mixing, Peristalsis, and the Geometric Phase of the Stomach.
Directory of Open Access Journals (Sweden)
Jorge Arrieta
Full Text Available Mixing fluid in a container at low Reynolds number--in an inertialess environment--is not a trivial task. Reciprocating motions merely lead to cycles of mixing and unmixing, so continuous rotation, as used in many technological applications, would appear to be necessary. However, there is another solution: movement of the walls in a cyclical fashion to introduce a geometric phase. We show using journal-bearing flow as a model that such geometric mixing is a general tool for using deformable boundaries that return to the same position to mix fluid at low Reynolds number. We then simulate a biological example: we show that mixing in the stomach functions because of the "belly phase," peristaltic movement of the walls in a cyclical fashion introduces a geometric phase that avoids unmixing.
A new geometrical gravitational theory
International Nuclear Information System (INIS)
Obata, T.; Chiba, J.; Oshima, H.
1981-01-01
A geometrical gravitational theory is developed. The field equations are uniquely determined apart from one unknown dimensionless parameter ω 2 . It is based on an extension of the Weyl geometry, and by the extension the gravitational coupling constant and the gravitational mass are made to be dynamical and geometrical. The fundamental geometrical objects in the theory are a metric gsub(μν) and two gauge scalars phi and psi. The theory satisfies the weak equivalence principle, but breaks the strong one generally. u(phi, psi) = phi is found out on the assumption that the strong one keeps holding good at least for bosons of low spins. Thus there is the simple correspondence between the geometrical objects and the gravitational objects. Since the theory satisfies the weak one, the inertial mass is also dynamical and geometrical in the same way as is the gravitational mass. Moreover, the cosmological term in the theory is a coscalar of power -4 algebraically made of psi and u(phi, psi), so it is dynamical, too. Finally spherically symmetric exact solutions are given. The permissible range of the unknown parameter ω 2 is experimentally determined by applying the solutions to the solar system. (author)
Existence of localizing solutions in plasticity via the geometric singular perturbation theory
Lee, Min-Gi; Tzavaras, Athanasios
2017-01-01
system has fast and slow time scales, forming a singularly perturbed problem. Geometric singular perturbation theory is applied to this problem to achieve an invariant surface. The flow on the invariant surface is analyzed via the Poincaré
Geometric group theory an introduction
Löh, Clara
2017-01-01
Inspired by classical geometry, geometric group theory has in turn provided a variety of applications to geometry, topology, group theory, number theory and graph theory. This carefully written textbook provides a rigorous introduction to this rapidly evolving field whose methods have proven to be powerful tools in neighbouring fields such as geometric topology. Geometric group theory is the study of finitely generated groups via the geometry of their associated Cayley graphs. It turns out that the essence of the geometry of such groups is captured in the key notion of quasi-isometry, a large-scale version of isometry whose invariants include growth types, curvature conditions, boundary constructions, and amenability. This book covers the foundations of quasi-geometry of groups at an advanced undergraduate level. The subject is illustrated by many elementary examples, outlooks on applications, as well as an extensive collection of exercises.
Geometric procedures for civil engineers
Tonias, Elias C
2016-01-01
This book provides a multitude of geometric constructions usually encountered in civil engineering and surveying practice. A detailed geometric solution is provided to each construction as well as a step-by-step set of programming instructions for incorporation into a computing system. The volume is comprised of 12 chapters and appendices that may be grouped in three major parts: the first is intended for those who love geometry for its own sake and its evolution through the ages, in general, and, more specifically, with the introduction of the computer. The second section addresses geometric features used in the book and provides support procedures used by the constructions presented. The remaining chapters and the appendices contain the various constructions. The volume is ideal for engineering practitioners in civil and construction engineering and allied areas.
An introduction to geometrical physics
Aldrovandi, R
1995-01-01
This book stresses the unifying power of the geometrical framework in bringing together concepts from the different areas of physics. Common underpinnings of optics, elasticity, gravitation, relativistic fields, particle mechanics and other subjects are underlined. It attempts to extricate the notion of space currently in the physical literature from the metric connotation.The book's goal is to present mathematical ideas associated with geometrical physics in a rather introductory language. Included are many examples from elementary physics and also, for those wishing to reach a higher level o
Geometric integration for particle accelerators
International Nuclear Information System (INIS)
Forest, Etienne
2006-01-01
This paper is a very personal view of the field of geometric integration in accelerator physics-a field where often work of the highest quality is buried in lost technical notes or even not published; one has only to think of Simon van der Meer Nobel prize work on stochastic cooling-unpublished in any refereed journal. So I reconstructed the relevant history of geometrical integration in accelerator physics as much as I could by talking to collaborators and using my own understanding of the field. The reader should not be too surprised if this account is somewhere between history, science and perhaps even fiction
Geometrical spin symmetry and spin
International Nuclear Information System (INIS)
Pestov, I. B.
2011-01-01
Unification of General Theory of Relativity and Quantum Mechanics leads to General Quantum Mechanics which includes into itself spindynamics as a theory of spin phenomena. The key concepts of spindynamics are geometrical spin symmetry and the spin field (space of defining representation of spin symmetry). The essence of spin is the bipolar structure of geometrical spin symmetry induced by the gravitational potential. The bipolar structure provides a natural derivation of the equations of spindynamics. Spindynamics involves all phenomena connected with spin and provides new understanding of the strong interaction.
Geometric integration for particle accelerators
Forest, Étienne
2006-05-01
This paper is a very personal view of the field of geometric integration in accelerator physics—a field where often work of the highest quality is buried in lost technical notes or even not published; one has only to think of Simon van der Meer Nobel prize work on stochastic cooling—unpublished in any refereed journal. So I reconstructed the relevant history of geometrical integration in accelerator physics as much as I could by talking to collaborators and using my own understanding of the field. The reader should not be too surprised if this account is somewhere between history, science and perhaps even fiction.
Lattice degeneracies of geometric fermions
International Nuclear Information System (INIS)
Raszillier, H.
1983-05-01
We give the minimal numbers of degrees of freedom carried by geometric fermions on all lattices of maximal symmetries in d = 2, 3, and 4 dimensions. These numbers are lattice dependent, but in the (free) continuum limit, part of the degrees of freedom have to escape to infinity by a Wilson mechanism built in, and 2sup(d) survive for any lattice. On self-reciprocal lattices we compare the minimal numbers of degrees of freedom of geometric fermions with the minimal numbers of naive fermions on these lattices and argue that these numbers are equal. (orig.)
Geometric reconstruction methods for electron tomography
Energy Technology Data Exchange (ETDEWEB)
Alpers, Andreas, E-mail: alpers@ma.tum.de [Zentrum Mathematik, Technische Universität München, D-85747 Garching bei München (Germany); Gardner, Richard J., E-mail: Richard.Gardner@wwu.edu [Department of Mathematics, Western Washington University, Bellingham, WA 98225-9063 (United States); König, Stefan, E-mail: koenig@ma.tum.de [Zentrum Mathematik, Technische Universität München, D-85747 Garching bei München (Germany); Pennington, Robert S., E-mail: robert.pennington@uni-ulm.de [Center for Electron Nanoscopy, Technical University of Denmark, DK-2800 Kongens Lyngby (Denmark); Boothroyd, Chris B., E-mail: ChrisBoothroyd@cantab.net [Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Jülich, D-52425 Jülich (Germany); Houben, Lothar, E-mail: l.houben@fz-juelich.de [Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Jülich, D-52425 Jülich (Germany); Dunin-Borkowski, Rafal E., E-mail: rdb@fz-juelich.de [Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Jülich, D-52425 Jülich (Germany); Joost Batenburg, Kees, E-mail: Joost.Batenburg@cwi.nl [Centrum Wiskunde and Informatica, NL-1098XG, Amsterdam, The Netherlands and Vision Lab, Department of Physics, University of Antwerp, B-2610 Wilrijk (Belgium)
2013-05-15
Electron tomography is becoming an increasingly important tool in materials science for studying the three-dimensional morphologies and chemical compositions of nanostructures. The image quality obtained by many current algorithms is seriously affected by the problems of missing wedge artefacts and non-linear projection intensities due to diffraction effects. The former refers to the fact that data cannot be acquired over the full 180° tilt range; the latter implies that for some orientations, crystalline structures can show strong contrast changes. To overcome these problems we introduce and discuss several algorithms from the mathematical fields of geometric and discrete tomography. The algorithms incorporate geometric prior knowledge (mainly convexity and homogeneity), which also in principle considerably reduces the number of tilt angles required. Results are discussed for the reconstruction of an InAs nanowire. - Highlights: ► Four algorithms for electron tomography are introduced that utilize prior knowledge. ► Objects are assumed to be homogeneous; convexity and regularity is also discussed. ► We are able to reconstruct slices of a nanowire from as few as four projections. ► Algorithms should be selected based on the specific reconstruction task at hand.
A geometric viewpoint on generalized hydrodynamics
Directory of Open Access Journals (Sweden)
Benjamin Doyon
2018-01-01
Full Text Available Generalized hydrodynamics (GHD is a large-scale theory for the dynamics of many-body integrable systems. It consists of an infinite set of conservation laws for quasi-particles traveling with effective (“dressed” velocities that depend on the local state. We show that these equations can be recast into a geometric dynamical problem. They are conservation equations with state-independent quasi-particle velocities, in a space equipped with a family of metrics, parametrized by the quasi-particles' type and speed, that depend on the local state. In the classical hard rod or soliton gas picture, these metrics measure the free length of space as perceived by quasi-particles; in the quantum picture, they weigh space with the density of states available to them. Using this geometric construction, we find a general solution to the initial value problem of GHD, in terms of a set of integral equations where time appears explicitly. These integral equations are solvable by iteration and provide an extremely efficient solution algorithm for GHD.
Geometric reconstruction methods for electron tomography
International Nuclear Information System (INIS)
Alpers, Andreas; Gardner, Richard J.; König, Stefan; Pennington, Robert S.; Boothroyd, Chris B.; Houben, Lothar; Dunin-Borkowski, Rafal E.; Joost Batenburg, Kees
2013-01-01
Electron tomography is becoming an increasingly important tool in materials science for studying the three-dimensional morphologies and chemical compositions of nanostructures. The image quality obtained by many current algorithms is seriously affected by the problems of missing wedge artefacts and non-linear projection intensities due to diffraction effects. The former refers to the fact that data cannot be acquired over the full 180° tilt range; the latter implies that for some orientations, crystalline structures can show strong contrast changes. To overcome these problems we introduce and discuss several algorithms from the mathematical fields of geometric and discrete tomography. The algorithms incorporate geometric prior knowledge (mainly convexity and homogeneity), which also in principle considerably reduces the number of tilt angles required. Results are discussed for the reconstruction of an InAs nanowire. - Highlights: ► Four algorithms for electron tomography are introduced that utilize prior knowledge. ► Objects are assumed to be homogeneous; convexity and regularity is also discussed. ► We are able to reconstruct slices of a nanowire from as few as four projections. ► Algorithms should be selected based on the specific reconstruction task at hand
Implicit face prototype learning from geometric information.
Or, Charles C-F; Wilson, Hugh R
2013-04-19
There is evidence that humans implicitly learn an average or prototype of previously studied faces, as the unseen face prototype is falsely recognized as having been learned (Solso & McCarthy, 1981). Here we investigated the extent and nature of face prototype formation where observers' memory was tested after they studied synthetic faces defined purely in geometric terms in a multidimensional face space. We found a strong prototype effect: The basic results showed that the unseen prototype averaged from the studied faces was falsely identified as learned at a rate of 86.3%, whereas individual studied faces were identified correctly 66.3% of the time and the distractors were incorrectly identified as having been learned only 32.4% of the time. This prototype learning lasted at least 1 week. Face prototype learning occurred even when the studied faces were further from the unseen prototype than the median variation in the population. Prototype memory formation was evident in addition to memory formation of studied face exemplars as demonstrated in our models. Additional studies showed that the prototype effect can be generalized across viewpoints, and head shape and internal features separately contribute to prototype formation. Thus, implicit face prototype extraction in a multidimensional space is a very general aspect of geometric face learning. Copyright © 2013 Elsevier Ltd. All rights reserved.
Chang, Paul K
2014-01-01
Interdisciplinary and Advanced Topics in Science and Engineering, Volume 3: Separation of Flow presents the problem of the separation of fluid flow. This book provides information covering the fields of basic physical processes, analyses, and experiments concerning flow separation.Organized into 12 chapters, this volume begins with an overview of the flow separation on the body surface as discusses in various classical examples. This text then examines the analytical and experimental results of the laminar boundary layer of steady, two-dimensional flows in the subsonic speed range. Other chapt
Height and Tilt Geometric Texture
DEFF Research Database (Denmark)
Andersen, Vedrana; Desbrun, Mathieu; Bærentzen, Jakob Andreas
2009-01-01
compromise between functionality and simplicity: it can efficiently handle and process geometric texture too complex to be represented as a height field, without having recourse to full blown mesh editing algorithms. The height-and-tilt representation proposed here is fully intrinsic to the mesh, making...
In Defence of Geometrical Algebra
Blasjo, V.N.E.
The geometrical algebra hypothesis was once the received interpretation of Greek mathematics. In recent decades, however, it has become anathema to many. I give a critical review of all arguments against it and offer a consistent rebuttal case against the modern consensus. Consequently, I find that
Geometrical interpretation of extended supergravity
International Nuclear Information System (INIS)
Townsend, P.K.; Nieuwenhuizen, P.van
1977-01-01
SO 2 extended supergravity is shown to be a geometrical theory, whose underlying gauge group is OSp(4,2). The couplings which gauge the SO 2 symmetry as well as the accompanying cosmological and masslike terms are directly obtained, and the usual SO 2 model is obtained after a Wigner-Inoenue group contraction. (Auth.)
Geometric scaling in exclusive processes
International Nuclear Information System (INIS)
Munier, S.; Wallon, S.
2003-01-01
We show that according to the present understanding of the energy evolution of the observables measured in deep-inelastic scattering, the photon-proton scattering amplitude has to exhibit geometric scaling at each impact parameter. We suggest a way to test this experimentally at HERA. A qualitative analysis based on published data is presented and discussed. (orig.)
Geometric origin of central charges
International Nuclear Information System (INIS)
Lukierski, J.; Rytel, L.
1981-05-01
The complete set of N(N-1) central charge generators for D=4 N-extended super Poincare algebra is obtained by suitable contraction of OSp (2N; 4) superalgebra. The superspace realizations of the spinorial generators with central charges are derived. The conjugate set of N(N-1) additional bosonic superspace coordinates is introduced in an unique and geometric way. (author)
Vergence, Vision, and Geometric Optics
Keating, Michael P.
1975-01-01
Provides a definition of vergence in terms of the curvature of the wave fronts, and gives examples to illustrate the advantages of this approach. The vergence treatment of geometrical optics provides both conceptual and algebraic advantages, particularly for the life science student, over the traditional object distance-image distance-focal length…
Geometric phases and quantum computation
International Nuclear Information System (INIS)
Vedral, V.
2005-01-01
Full text: In my lectures I will talk about the notion of the geometric phase and explain its relevance for both fundamental quantum mechanics as well as quantum computation. The phase will be at first introduced via the idea of Pancharatnam which involves interference of three or more light beams. This notion will then be generalized to the evolving quantum systems. I will discuss both pure and mixed states as well as unitary and non-unitary evolutions. I will also show how the concept of the vacuum induced geometric phase arises in quantum optics. A simple measurement scheme involving a Mach Zehnder interferometer will be presented and will be used to illustrate all the concepts in the lecture. Finally, I will expose a simple generalization of the geometric phase to evolving degenerate states. This will be seen to lead to the possibility of universal quantum computation using geometric effects only. Moreover, this contains a promise of intrinsically fault tolerant quantum information processing, whose prospects will be outlined at the end of the lecture. (author)
Cartan's geometrical structure of supergravity
International Nuclear Information System (INIS)
Baaklini, N.S.
1977-06-01
The geometrical partnership of the vierbein and the spin-3/2 field in the structure of the supergravity Lagrangian is emphasized. Both fields are introduced as component of the same matrix differential form. The only local symmetry of the theory is SL(2,C)
Geometrically based optimization for extracranial radiosurgery
International Nuclear Information System (INIS)
Liu Ruiguo; Wagner, Thomas H; Buatti, John M; Modrick, Joseph; Dill, John; Meeks, Sanford L
2004-01-01
For static beam conformal intracranial radiosurgery, geometry of the beam arrangement dominates overall dose distribution. Maximizing beam separation in three dimensions decreases beam overlap, thus maximizing dose conformality and gradient outside of the target volume. Webb proposed arrangements of isotropically convergent beams that could be used as the starting point for a radiotherapy optimization process. We have developed an extracranial radiosurgery optimization method by extending Webb's isotropic beam arrangements to deliverable beam arrangements. This method uses an arrangement of N maximally separated converging vectors within the space available for beam delivery. Each bouquet of isotropic beam vectors is generated by a random sampling process that iteratively maximizes beam separation. Next, beam arrangement is optimized for critical structure avoidance while maintaining minimal overlap between beam entrance and exit pathways. This geometrically optimized beam set can then be used as a template for either conformal beam or intensity modulated extracranial radiosurgery. Preliminary results suggest that using this technique with conformal beam planning provides high plan conformality, a steep dose gradient outside of the tumour volume and acceptable critical structure avoidance in the majority of clinical cases
Printed Spacecraft Separation System
Energy Technology Data Exchange (ETDEWEB)
Dehoff, Ryan R [ORNL; Holmans, Walter [Planetary Systems Corporation
2016-10-01
In this project Planetary Systems Corporation proposed utilizing additive manufacturing (3D printing) to manufacture a titanium spacecraft separation system for commercial and US government customers to realize a 90% reduction in the cost and energy. These savings were demonstrated via “printing-in” many of the parts and sub-assemblies into one part, thus greatly reducing the labor associated with design, procurement, assembly and calibration of mechanisms. Planetary Systems Corporation redesigned several of the components of the separation system based on additive manufacturing principles including geometric flexibility and the ability to fabricate complex designs, ability to combine multiple parts of an assembly into a single component, and the ability to optimize design for specific mechanical property targets. Shock absorption was specifically targeted and requirements were established to attenuate damage to the Lightband system from shock of initiation. Planetary Systems Corporation redesigned components based on these requirements and sent the designs to Oak Ridge National Laboratory to be printed. ORNL printed the parts using the Arcam electron beam melting technology based on the desire for the parts to be fabricated from Ti-6Al-4V based on the weight and mechanical performance of the material. A second set of components was fabricated from stainless steel material on the Renishaw laser powder bed technology due to the improved geometric accuracy, surface finish, and wear resistance of the material. Planetary Systems Corporation evaluated these components and determined that 3D printing is potentially a viable method for achieving significant cost and savings metrics.
Geometric Transformations in Engineering Geometry
Directory of Open Access Journals (Sweden)
I. F. Borovikov
2015-01-01
Full Text Available Recently, for business purposes, in view of current trends and world experience in training engineers, research and faculty staff there has been a need to transform traditional courses of descriptive geometry into the course of engineering geometry in which the geometrical transformations have to become its main section. On the basis of critical analysis the paper gives suggestions to improve a presentation technique of this section both in the classroom and in academic literature, extend an application scope of geometrical transformations to solve the position and metric tasks and simulation of surfaces, as well as to design complex engineering configurations, which meet a number of pre-specified conditions.The article offers to make a number of considerable amendments to the terms and definitions used in the existing courses of descriptive geometry. It draws some conclusions and makes the appropriate proposals on feasibility of coordination in teaching the movement transformation in the courses of analytical and descriptive geometry. This will provide interdisciplinary team teaching and allow students to be convinced that a combination of analytical and graphic ways to solve geometric tasks is useful and reasonable.The traditional sections of learning courses need to be added with a theory of projective and bi-rational transformations. In terms of application simplicity and convenience it is enough to consider the central transformations when solving the applied tasks. These transformations contain a beam of sub-invariant (low-invariant straight lines on which the invariant curve induces non-involution and involution projectivities. The expediency of nonlinear transformations application is shown in the article by a specific example of geometric modeling of the interfacing surface "spar-blade".Implementation of these suggestions will contribute to a real transformation of a traditional course of descriptive geometry to the engineering geometry
Geometric model from microscopic theory for nuclear absorption
International Nuclear Information System (INIS)
John, S.; Townsend, L.W.; Wilson, J.W.; Tripathi, R.K.
1993-07-01
A parameter-free geometric model for nuclear absorption is derived herein from microscopic theory. The expression for the absorption cross section in the eikonal approximation, taken in integral form, is separated into a geometric contribution that is described by an energy-dependent effective radius and two surface terms that cancel in an asymptotic series expansion. For collisions of light nuclei, an expression for the effective radius is derived from harmonic oscillator nuclear density functions. A direct extension to heavy nuclei with Woods-Saxon densities is made by identifying the equivalent half-density radius for the harmonic oscillator functions. Coulomb corrections are incorporated, and a simplified geometric form of the Bradt-Peters type is obtained. Results spanning the energy range from 1 MeV/nucleon to 1 GeV/nucleon are presented. Good agreement with experimental results is obtained
Geometric model for nuclear absorption from microscopic theory
International Nuclear Information System (INIS)
John, S.; Townsend, L.W.; Wilson, J.W.; Tripathi, R.K.
1993-01-01
A parameter-free geometric model for nuclear absorption is derived from microscopic theory. The expression for the absorption cross section in the eikonal approximation taken in integral form is separated into a geometric contribution, described by an energy-dependent effective radius, and two surface terms which are shown to cancel in an asymptotic series expansion. For collisions of light nuclei, an expression for the effective radius is derived using harmonic-oscillator nuclear density functions. A direct extension to heavy nuclei with Woods-Saxon densities is made by identifying the equivalent half density radius for the harmonic-oscillator functions. Coulomb corrections are incorporated and a simplified geometric form of the Bradt-Peters type obtained. Results spanning the energy range of 1 MeV/nucleon to 1 GeV/nucleon are presented. Good agreement with experimental results is obtained
Energy Technology Data Exchange (ETDEWEB)
Prokopyuk, S.G.; Dyachenko, A.Ye.; Mukhametov, M.N.; Prokopov, O.I.
1982-01-01
A separator is proposed which contains separating slanted plates and baffle plates installed at a distance to them at an acute angle to them. To increase the effectiveness of separating a gas and liquid stream and the throughput through reducing the secondary carry away of the liquid drops and to reduce the hydraulic resistance, as well, openings are made in the plates. The horizontal projections of each opening from the lower and upper surfaces of the plate do not overlap each other.
Optimization of biotechnological systems through geometric programming
Directory of Open Access Journals (Sweden)
Torres Nestor V
2007-09-01
Full Text Available Abstract Background In the past, tasks of model based yield optimization in metabolic engineering were either approached with stoichiometric models or with structured nonlinear models such as S-systems or linear-logarithmic representations. These models stand out among most others, because they allow the optimization task to be converted into a linear program, for which efficient solution methods are widely available. For pathway models not in one of these formats, an Indirect Optimization Method (IOM was developed where the original model is sequentially represented as an S-system model, optimized in this format with linear programming methods, reinterpreted in the initial model form, and further optimized as necessary. Results A new method is proposed for this task. We show here that the model format of a Generalized Mass Action (GMA system may be optimized very efficiently with techniques of geometric programming. We briefly review the basics of GMA systems and of geometric programming, demonstrate how the latter may be applied to the former, and illustrate the combined method with a didactic problem and two examples based on models of real systems. The first is a relatively small yet representative model of the anaerobic fermentation pathway in S. cerevisiae, while the second describes the dynamics of the tryptophan operon in E. coli. Both models have previously been used for benchmarking purposes, thus facilitating comparisons with the proposed new method. In these comparisons, the geometric programming method was found to be equal or better than the earlier methods in terms of successful identification of optima and efficiency. Conclusion GMA systems are of importance, because they contain stoichiometric, mass action and S-systems as special cases, along with many other models. Furthermore, it was previously shown that algebraic equivalence transformations of variables are sufficient to convert virtually any types of dynamical models into
Liu, Hong; Zhu, Jingping; Wang, Kai
2015-08-24
The geometrical attenuation model given by Blinn was widely used in the geometrical optics bidirectional reflectance distribution function (BRDF) models. Blinn's geometrical attenuation model based on symmetrical V-groove assumption and ray scalar theory causes obvious inaccuracies in BRDF curves and negatives the effects of polarization. Aiming at these questions, a modified polarized geometrical attenuation model based on random surface microfacet theory is presented by combining of masking and shadowing effects and polarized effect. The p-polarized, s-polarized and unpolarized geometrical attenuation functions are given in their separate expressions and are validated with experimental data of two samples. It shows that the modified polarized geometrical attenuation function reaches better physical rationality, improves the precision of BRDF model, and widens the applications for different polarization.
Geometric Aspects of Force Controllability for a Swimming Model
International Nuclear Information System (INIS)
Khapalov, A. Y.
2008-01-01
We study controllability properties (swimming capabilities) of a mathematical model of an abstract object which 'swims' in the 2-D Stokes fluid. Our goal is to investigate how the geometric shape of this object affects the forces acting upon it. Such problems are of interest in biology and engineering applications dealing with propulsion systems in fluids
Balanced partitions of 3-colored geometric sets in the plane
Bereg, S.; Hurtado, F.; Kano, M.; Korman, M.; Lara, D.; Seara, C.; Silveira, R.I.; Urrutia, J.; Verbeek, K.A.B.
2015-01-01
Let SS be a finite set of geometric objects partitioned into classes or colors . A subset S'¿SS'¿S is said to be balanced if S'S' contains the same amount of elements of SS from each of the colors. We study several problems on partitioning 33-colored sets of points and lines in the plane into two
Geometric and Algebraic Approaches in the Concept of Complex Numbers
Panaoura, A.; Elia, I.; Gagatsis, A.; Giatilis, G.-P.
2006-01-01
This study explores pupils' performance and processes in tasks involving equations and inequalities of complex numbers requiring conversions from a geometric representation to an algebraic representation and conversions in the reverse direction, and also in complex numbers problem solving. Data were collected from 95 pupils of the final grade from…
International Nuclear Information System (INIS)
Eerkens, J.W.
1979-01-01
A method of isotope separation is described which involves the use of a laser photon beam to selectively induce energy level transitions of an isotope molecule containing the isotope to be separated. The use of the technique for 235 U enrichment is demonstrated. (UK)
Waldinger, Marcel D; Zwinderman, Aeilko H; Olivier, Berend; Schweitzer, Dave H
2008-02-01
The intravaginal ejaculation latency time (IELT) behaves in a skewed manner and needs the appropriate statistics for correct interpretation of treatment results. To explain the rightful use of geometrical mean IELT values and the fold increase of the geometric mean IELT because of the positively skewed IELT distribution. Linking theoretical arguments to the outcome of several selective serotonin reuptake inhibitor and modern antidepressant study results. Geometric mean IELT and fold increase of geometrical mean IELT. Log-transforming each separate IELT measurement of each individual man is the basis for the calculation of the geometric mean IELT. A drug-induced positively skewed IELT distribution necessitates the calculation of the geometric mean IELTs at baseline and during drug treatment. In a positively skewed IELT distribution, the use of the "arithmetic" mean IELT risks an overestimation of the drug-induced ejaculation delay as the mean IELT is always higher than the geometric mean IELT. Strong ejaculation-delaying drugs give rise to a strong positively skewed IELT distribution, whereas weak ejaculation-delaying drugs give rise to (much) less skewed IELT distributions. Ejaculation delay is expressed in fold increase of the geometric mean IELT. Drug-induced ejaculatory performance discloses a positively skewed IELT distribution, requiring the use of the geometric mean IELT and the fold increase of the geometric mean IELT.
On chromatic and geometrical calibration
DEFF Research Database (Denmark)
Folm-Hansen, Jørgen
1999-01-01
The main subject of the present thesis is different methods for the geometrical and chromatic calibration of cameras in various environments. For the monochromatic issues of the calibration we present the acquisition of monochrome images, the classic monochrome aberrations and the various sources...... the correct interpolation method is described. For the chromatic issues of calibration we present the acquisition of colour and multi-spectral images, the chromatic aberrations and the various lens/camera based non-uniformities of the illumination of the image plane. It is described how the monochromatic...... to design calibration targets for both geometrical and chromatic calibration are described. We present some possible systematical errors on the detection of the objects in the calibration targets, if viewed in a non orthogonal angle, if the intensities are uneven or if the image blurring is uneven. Finally...
Geometrical approach to tumor growth.
Escudero, Carlos
2006-08-01
Tumor growth has a number of features in common with a physical process known as molecular beam epitaxy. Both growth processes are characterized by the constraint of growth development to the body border, and surface diffusion of cells and particles at the growing edge. However, tumor growth implies an approximate spherical symmetry that makes necessary a geometrical treatment of the growth equations. The basic model was introduced in a former paper [C. Escudero, Phys. Rev. E 73, 020902(R) (2006)], and in the present work we extend our analysis and try to shed light on the possible geometrical principles that drive tumor growth. We present two-dimensional models that reproduce the experimental observations, and analyze the unexplored three-dimensional case, for which interesting conclusions on tumor growth are derived.
Geometrical interpretation of optical absorption
Energy Technology Data Exchange (ETDEWEB)
Monzon, J. J.; Barriuso, A. G.; Sanchez-Soto, L. L. [Departamento de Optica, Facultad de Fisica, Universidad Complutense, E-28040 Madrid (Spain); Montesinos-Amilibia, J. M. [Departamento de Geometria y Topologia, Facultad de Matematicas, Universidad Complutense, E-28040 Madrid (Spain)
2011-08-15
We reinterpret the transfer matrix for an absorbing system in very simple geometrical terms. In appropriate variables, the system appears as performing a Lorentz transformation in a (1 + 3)-dimensional space. Using homogeneous coordinates, we map that action on the unit sphere, which is at the realm of the Klein model of hyperbolic geometry. The effects of absorption appear then as a loxodromic transformation, that is, a rhumb line crossing all the meridians at the same angle.
Parametric FEM for geometric biomembranes
Bonito, Andrea; Nochetto, Ricardo H.; Sebastian Pauletti, M.
2010-05-01
We consider geometric biomembranes governed by an L2-gradient flow for bending energy subject to area and volume constraints (Helfrich model). We give a concise derivation of a novel vector formulation, based on shape differential calculus, and corresponding discretization via parametric FEM using quadratic isoparametric elements and a semi-implicit Euler method. We document the performance of the new parametric FEM with a number of simulations leading to dumbbell, red blood cell and toroidal equilibrium shapes while exhibiting large deformations.
Geometrical methods in learning theory
International Nuclear Information System (INIS)
Burdet, G.; Combe, Ph.; Nencka, H.
2001-01-01
The methods of information theory provide natural approaches to learning algorithms in the case of stochastic formal neural networks. Most of the classical techniques are based on some extremization principle. A geometrical interpretation of the associated algorithms provides a powerful tool for understanding the learning process and its stability and offers a framework for discussing possible new learning rules. An illustration is given using sequential and parallel learning in the Boltzmann machine
Geometrical approach to tumor growth
Escudero, Carlos
2006-01-01
Tumor growth has a number of features in common with a physical process known as molecular beam epitaxy. Both growth processes are characterized by the constraint of growth development to the body border, and surface diffusion of cells/particles at the growing edge. However, tumor growth implies an approximate spherical symmetry that makes necessary a geometrical treatment of the growth equations. The basic model was introduced in a former article [C. Escudero, Phys. Rev. E 73, 020902(R) (200...
Riemannian geometry and geometric analysis
Jost, Jürgen
2017-01-01
This established reference work continues to provide its readers with a gateway to some of the most interesting developments in contemporary geometry. It offers insight into a wide range of topics, including fundamental concepts of Riemannian geometry, such as geodesics, connections and curvature; the basic models and tools of geometric analysis, such as harmonic functions, forms, mappings, eigenvalues, the Dirac operator and the heat flow method; as well as the most important variational principles of theoretical physics, such as Yang-Mills, Ginzburg-Landau or the nonlinear sigma model of quantum field theory. The present volume connects all these topics in a systematic geometric framework. At the same time, it equips the reader with the working tools of the field and enables her or him to delve into geometric research. The 7th edition has been systematically reorganized and updated. Almost no page has been left unchanged. It also includes new material, for instance on symplectic geometry, as well as the B...
International Nuclear Information System (INIS)
Sasakawa, T.; Okuno, H.; Ishikawa, S.; Sawada, T.
1982-01-01
The off-shell t matrix is expressed as a sum of one nonseparable and one separable terms so that it is useful for applications to more-than-two body problems. All poles are involved in this one separable term. Both the nonseparable and the separable terms of the kernel G 0 t are regular at the origin. The nonseparable term of this kernel vanishes at large distances, while the separable term behaves asymptotically as the spherical Hankel function. These properties make our expression free from defects inherent in the Jost or the K-matrix expressions, and many applications are anticipated. As the application, a compact expression of the many-level formula is presented. Also the application is suggested to the breakup threebody problem based on the Faddeev equation. It is demonstrated that the breakup amplitude is expressed in a simple and physically interesting form and we can calculate it in coordinate space
Skarstrom, C.
1959-03-10
A centrifugal separator is described for separating gaseous mixtures where the temperature gradients both longitudinally and radially of the centrifuge may be controlled effectively to produce a maximum separation of the process gases flowing through. Tbe invention provides for the balancing of increases and decreases in temperature in various zones of the centrifuge chamber as the result of compression and expansions respectively, of process gases and may be employed effectively both to neutralize harmful temperature gradients and to utilize beneficial temperaturc gradients within the centrifuge.
Microparticle Separation by Cyclonic Separation
Karback, Keegan; Leith, Alexander
2017-11-01
The ability to separate particles based on their size has wide ranging applications from the industrial to the medical. Currently, cyclonic separators are primarily used in agriculture and manufacturing to syphon out contaminates or products from an air supply. This has led us to believe that cyclonic separation has more applications than the agricultural and industrial. Using the OpenFoam computational package, we were able to determine the flow parameters of a vortex in a cyclonic separator in order to segregate dust particles to a cutoff size of tens of nanometers. To test the model, we constructed an experiment to separate a test dust of various sized particles. We filled a chamber with Arizona test dust and utilized an acoustic suspension technique to segregate particles finer than a coarse cutoff size and introduce them into the cyclonic separation apparatus where they were further separated via a vortex following our computational model. The size of the particles separated from this experiment will be used to further refine our model. Metropolitan State University of Denver, Colorado University of Denver, Dr. Randall Tagg, Dr. Richard Krantz.
International Nuclear Information System (INIS)
Castle, P.M.
1979-01-01
This invention relates to molecular and atomic isotope separation and is particularly applicable to the separation of 235 U from other uranium isotopes including 238 U. In the method described a desired isotope is separated mechanically from an atomic or molecular beam formed from an isotope mixture utilising the isotropic recoil momenta resulting from selective excitation of the desired isotope species by radiation, followed by ionization or dissociation by radiation or electron attachment. By forming a matrix of UF 6 molecules in HBr molecules so as to collapse the V 3 vibrational mode of the UF 6 molecule the 235 UF 6 molecules are selectively excited to promote reduction of UF 6 molecules containing 235 U and facilitate separation. (UK)
International Nuclear Information System (INIS)
Chen, C.L.
1979-01-01
Isotopic species in an isotopic mixture including a first species having a first isotope and a second species having a second isotope are separated by selectively exciting the first species in preference to the second species and then reacting the selectively excited first species with an additional preselected radiation, an electron or another chemical species so as to form a product having a mass different from the original species and separating the product from the balance of the mixture in a centrifugal separating device such as centrifuge or aerodynamic nozzle. In the centrifuge the isotopic mixture is passed into a rotor where it is irradiated through a window. Heavier and lighter components can be withdrawn. The irradiated mixture experiences a large centrifugal force and is separated in a deflection area into lighter and heavier components. (UK)
Geometric Properties of Grassmannian Frames for and
Directory of Open Access Journals (Sweden)
Benedetto John J
2006-01-01
Full Text Available Grassmannian frames are frames satisfying a min-max correlation criterion. We translate a geometrically intuitive approach for two- and three-dimensional Euclidean space ( and into a new analytic method which is used to classify many Grassmannian frames in this setting. The method and associated algorithm decrease the maximum frame correlation, and hence give rise to the construction of specific examples of Grassmannian frames. Many of the results are known by other techniques, and even more generally, so that this paper can be viewed as tutorial. However, our analytic method is presented with the goal of developing it to address unresovled problems in -dimensional Hilbert spaces which serve as a setting for spherical codes, erasure channel modeling, and other aspects of communications theory.
Robust topology optimization accounting for geometric imperfections
DEFF Research Database (Denmark)
Schevenels, M.; Jansen, M.; Lombaert, Geert
2013-01-01
performance. As a consequence, the actual structure may be far from optimal. In this paper, a robust approach to topology optimization is presented, taking into account two types of geometric imperfections: variations of (1) the crosssections and (2) the locations of structural elements. The first type...... is modeled by means of a scalar non-Gaussian random field, which is represented as a translation process. The underlying Gaussian field is simulated by means of the EOLE method. The second type of imperfections is modeled as a Gaussian vector-valued random field, which is simulated directly by means...... of the EOLE method. In each iteration of the optimization process, the relevant statistics of the structural response are evaluated by means of a Monte Carlo simulation. The proposed methodology is successfully applied to a test problem involving the design of a compliant mechanism (for the first type...
International Nuclear Information System (INIS)
Anon.
1976-01-01
Results of studies on the photochemistry of aqueous Pu solutions and the stability of iodine in liquid and gaseous CO 2 are reported. Progress is reported in studies on: the preparation of macroporous bodies filled with oxides and sulfides to be used as adsorbents; the beneficiation of photographic wastes; the anion exchange adsorption of transition elements from thiosulfate solutions; advanced filtration applications of energy significance; high-resolution separations; and, the examination of the separation agents, octylphenylphosphoric acid (OPPA) and trihexyl phosphate (THP)
International Nuclear Information System (INIS)
Chen, C.L.
1982-01-01
A method is described for separating isotopes in which photo-excitation of selected isotope species is used together with the reaction of the excited species with postive ions of predetermined ionization energy, other excited species, or free electrons to produce ions or ion fragments of the selected species. Ions and electrons are produced by an electrical discharge, and separation is achieved through radial ambipolar diffusion, electrostatic techniques, or magnetohydrodynamic methods
Exact Solutions for Einstein's Hyperbolic Geometric Flow
International Nuclear Information System (INIS)
He Chunlei
2008-01-01
In this paper we investigate the Einstein's hyperbolic geometric flow and obtain some interesting exact solutions for this kind of flow. Many interesting properties of these exact solutions have also been analyzed and we believe that these properties of Einstein's hyperbolic geometric flow are very helpful to understanding the Einstein equations and the hyperbolic geometric flow
Geometrical determination of the constant of motion in General Relativity
International Nuclear Information System (INIS)
Catoni, F.; Cannata, R.; Zampetti, P.
2009-01-01
In recent time a theorem, due to E. Beltrami, through which the integration of the geodesic equations of a curved manifold is obtained by means of a merely geometric method, has been revisited. This way of dealing with the problem is well in accordance with the geometric spirit of the Theory of General Relativity. In this paper we show another relevant consequence of this method. Actually, the constants of the motion, introduced in this geometrical way that is completely independent of Newton theory, are related to the conservation laws for test particles in the Einstein theory. These conservation laws may be compared with the conservation laws of Newton. In particular, by the conservation of energy (E) and the L z component of angular momentum, the equivalence of the conservation laws for the Schwarzschild field is verified and the difference between Newton and Einstein theories for the rotating bodies (Kerr metric) is obtained in a straightforward way.
The differential-geometric aspects of integrable dynamical systems
International Nuclear Information System (INIS)
Prykarpatsky, Y.A.; Samoilenko, A.M.; Prykarpatsky, A.K.; Bogolubov, N.N. Jr.; Blackmore, D.L.
2007-05-01
The canonical reduction method on canonically symplectic manifolds is analyzed in detail, and the relationships with the geometric properties of associated principal fiber bundles endowed with connection structures are described. Some results devoted to studying geometrical properties of nonabelian Yang-Mills type gauge field equations are presented. A symplectic theory approach is developed for partially solving the problem of algebraic-analytical construction of integral submanifold embeddings for integrable (via the abelian and nonabelian Liouville-Arnold theorems) Hamiltonian systems on canonically symplectic phase spaces. The fundamental role of the so-called Picard-Fuchs type equations is revealed, and their differential-geometric and algebraic properties are studied in detail. Some interesting examples of integrable Hamiltonian systems are are studied in detail in order to demonstrate the ease of implementation and effectiveness of the procedure for investigating the integral submanifold embedding mapping. (author)
Geometrically induced surface polaritons in planar nanostructured metallic cavities
Energy Technology Data Exchange (ETDEWEB)
Davids, P. S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Intravia, F [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dalvit, Diego A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2014-01-14
We examine the modal structure and dispersion of periodically nanostructured planar metallic cavities within the scattering matrix formulation. By nanostructuring a metallic grating in a planar cavity, artificial surface excitations or spoof plasmon modes are induced with dispersion determined by the periodicity and geometric characteristics of the grating. These spoof surface plasmon modes are shown to give rise to new cavity polaritonic modes at short mirror separations that modify the density of modes in nanostructured cavities. The increased modal density of states form cavity polarirons have a large impact on the fluctuation induced electromagnetic forces and enhanced hear transfer at short separations.
Geometrically Induced Interactions and Bifurcations
Binder, Bernd
2010-01-01
In order to evaluate the proper boundary conditions in spin dynamics eventually leading to the emergence of natural and artificial solitons providing for strong interactions and potentials with monopole charges, the paper outlines a new concept referring to a curvature-invariant formalism, where superintegrability is given by a special isometric condition. Instead of referring to the spin operators and Casimir/Euler invariants as the generator of rotations, a curvature-invariant description is introduced utilizing a double Gudermann mapping function (generator of sine Gordon solitons and Mercator projection) cross-relating two angular variables, where geometric phases and rotations arise between surfaces of different curvature. Applying this stereographic projection to a superintegrable Hamiltonian can directly map linear oscillators to Kepler/Coulomb potentials and/or monopoles with Pöschl-Teller potentials and vice versa. In this sense a large scale Kepler/Coulomb (gravitational, electro-magnetic) wave dynamics with a hyperbolic metric could be mapped as a geodesic vertex flow to a local oscillator singularity (Dirac monopole) with spherical metrics and vice versa. Attracting fixed points and dynamic constraints are given by special isometries with magic precession angles. The nonlinear angular encoding directly provides for a Shannon mutual information entropy measure of the geodesic phase space flow. The emerging monopole patterns show relations to spiral Fresnel holography and Berry/Aharonov-Bohm geometric phases subject to bifurcation instabilities and singularities from phase ambiguities due to a local (entropy) overload. Neutral solitons and virtual patterns emerging and mediating in the overlap region between charged or twisted holographic patterns are visualized and directly assigned to the Berry geometric phase revealing the role of photons, neutrons, and neutrinos binding repulsive charges in Coulomb, strong and weak interaction.
Moving walls and geometric phases
Energy Technology Data Exchange (ETDEWEB)
Facchi, Paolo, E-mail: paolo.facchi@ba.infn.it [Dipartimento di Fisica and MECENAS, Università di Bari, I-70126 Bari (Italy); INFN, Sezione di Bari, I-70126 Bari (Italy); Garnero, Giancarlo, E-mail: giancarlo.garnero@uniba.it [Dipartimento di Fisica and MECENAS, Università di Bari, I-70126 Bari (Italy); INFN, Sezione di Bari, I-70126 Bari (Italy); Marmo, Giuseppe [Dipartimento di Scienze Fisiche and MECENAS, Università di Napoli “Federico II”, I-80126 Napoli (Italy); INFN, Sezione di Napoli, I-80126 Napoli (Italy); Samuel, Joseph [Raman Research Institute, 560080 Bangalore (India)
2016-09-15
We unveil the existence of a non-trivial Berry phase associated to the dynamics of a quantum particle in a one dimensional box with moving walls. It is shown that a suitable choice of boundary conditions has to be made in order to preserve unitarity. For these boundary conditions we compute explicitly the geometric phase two-form on the parameter space. The unboundedness of the Hamiltonian describing the system leads to a natural prescription of renormalization for divergent contributions arising from the boundary.
Geometric Topology and Shape Theory
Segal, Jack
1987-01-01
The aim of this international conference the third of its type was to survey recent developments in Geometric Topology and Shape Theory with an emphasis on their interaction. The volume contains original research papers and carefully selected survey of currently active areas. The main topics and themes represented by the papers of this volume include decomposition theory, cell-like mappings and CE-equivalent compacta, covering dimension versus cohomological dimension, ANR's and LCn-compacta, homology manifolds, embeddings of continua into manifolds, complement theorems in shape theory, approximate fibrations and shape fibrations, fibered shape, exact homologies and strong shape theory.
Field guide to geometrical optics
Greivenkamp, John E
2004-01-01
This Field Guide derives from the treatment of geometrical optics that has evolved from both the undergraduate and graduate programs at the Optical Sciences Center at the University of Arizona. The development is both rigorous and complete, and it features a consistent notation and sign convention. This volume covers Gaussian imagery, paraxial optics, first-order optical system design, system examples, illumination, chromatic effects, and an introduction to aberrations. The appendices provide supplemental material on radiometry and photometry, the human eye, and several other topics.
Geometric phase from dielectric matrix
International Nuclear Information System (INIS)
Banerjee, D.
2005-10-01
The dielectric property of the anisotropic optical medium is found by considering the polarized photon as two component spinor of spherical harmonics. The Geometric Phase of a polarized photon has been evaluated in two ways: the phase two-form of the dielectric matrix through a twist and the Pancharatnam phase (GP) by changing the angular momentum of the incident polarized photon over a closed triangular path on the extended Poincare sphere. The helicity in connection with the spin angular momentum of the chiral photon plays the key role in developing these phase holonomies. (author)
A history of geometrical methods
Coolidge, Julian Lowell
2013-01-01
Full and authoritative, this history of the techniques for dealing with geometric questions begins with synthetic geometry and its origins in Babylonian and Egyptian mathematics; reviews the contributions of China, Japan, India, and Greece; and discusses the non-Euclidean geometries. Subsequent sections cover algebraic geometry, starting with the precursors and advancing to the great awakening with Descartes; and differential geometry, from the early work of Huygens and Newton to projective and absolute differential geometry. The author's emphasis on proofs and notations, his comparisons betwe
International Nuclear Information System (INIS)
Rubin, L.S.
1986-01-01
A disposal container is described for use in disposal of radioactive waste materials consisting of: top wall structure, bottom wall structure, and circumferential side wall structure interconnecting the top and bottom wall structures to define an enclosed container, separation structure in the container adjacent the inner surface of the side wall structure for allowing passage of liquid and retention of solids, inlet port structure in the top wall structure, discharge port structure at the periphery of the container in communication with the outer surface of the separation structure for receiving liquid that passes through the separation structure, first centrifugally actuated valve structure having a normal position closing the inlet port structure and a centrifugally actuated position opening the inlet port structure, second centrifugally actuated valve structure having a normal position closing the discharge port structure and a centrifugally actuated position opening the discharge port structure, and coupling structure integral with wall structure of the container for releasable engagement with centrifugal drive structure
Ford, Timothy J
2017-01-01
This book presents a comprehensive introduction to the theory of separable algebras over commutative rings. After a thorough introduction to the general theory, the fundamental roles played by separable algebras are explored. For example, Azumaya algebras, the henselization of local rings, and Galois theory are rigorously introduced and treated. Interwoven throughout these applications is the important notion of étale algebras. Essential connections are drawn between the theory of separable algebras and Morita theory, the theory of faithfully flat descent, cohomology, derivations, differentials, reflexive lattices, maximal orders, and class groups. The text is accessible to graduate students who have finished a first course in algebra, and it includes necessary foundational material, useful exercises, and many nontrivial examples.
International Nuclear Information System (INIS)
Bartlett, R.J.; Morrey, J.R.
1978-01-01
A method and apparatus is described for separating gas molecules containing one isotope of an element from gas molecules containing other isotopes of the same element in which all of the molecules of the gas are at the same electronic state in their ground state. Gas molecules in a gas stream containing one of the isotopes are selectively excited to a different electronic state while leaving the other gas molecules in their original ground state. Gas molecules containing one of the isotopes are then deflected from the other gas molecules in the stream and thus physically separated
Image understanding using geometric context
Zhang, Xiaochun; Liu, Chuancai
2017-07-01
A Gibbs Sampler based topic model for image annotation, which takes into account the interaction between visual geometric context and related topic, is presented. Most of the existing topic models for scene annotation use segmentation-based algorithm. However, topic models using segmentation algorithm alone sometimes can produce erroneous results when used to annotate real-life scene pictures. Therefore, our algorithm makes use of peaks of image surface instead of segmentation regions. Existing approaches use SIFT algorithm and treat the peaks as round blob features. In this paper, the peaks are treated as anisotropic blob features, which models low level visual elements more precisely. In order to better utilize visual features, our model not only takes into consideration visual codeword, but also considers influence of visual properties to topic formation, such as orientation, width, length and color. The basic idea is based on the assumption that different topics will produce distinct visual appearance, and different visual appearance is helpful to distinguish topics. During the learning stage, each topic will be associated with a set of distributions of visual properties, which depicts appearance of the topic. This paper considers more geometric properties, which will reduce topic uncertainty and learn the images better. Tested with Corel5K, SAIAPR-TC12 and Espgame100k Datasets, our method performs moderately better than some state of the arts methods.
Geometrical approach to fluid models
International Nuclear Information System (INIS)
Kuvshinov, B.N.; Schep, T.J.
1997-01-01
Differential geometry based upon the Cartan calculus of differential forms is applied to investigate invariant properties of equations that describe the motion of continuous media. The main feature of this approach is that physical quantities are treated as geometrical objects. The geometrical notion of invariance is introduced in terms of Lie derivatives and a general procedure for the construction of local and integral fluid invariants is presented. The solutions of the equations for invariant fields can be written in terms of Lagrange variables. A generalization of the Hamiltonian formalism for finite-dimensional systems to continuous media is proposed. Analogously to finite-dimensional systems, Hamiltonian fluids are introduced as systems that annihilate an exact two-form. It is shown that Euler and ideal, charged fluids satisfy this local definition of a Hamiltonian structure. A new class of scalar invariants of Hamiltonian fluids is constructed that generalizes the invariants that are related with gauge transformations and with symmetries (Noether). copyright 1997 American Institute of Physics
Some geometrical problems related to the rotation camera. Pt. 1
International Nuclear Information System (INIS)
Taupin, D.
1985-01-01
An algorithm for a safe generation of the table of expected reflections in the Arndt-Wonnacott rotation camera is given. It relies upon classic quadratic matrixalgebra. Some mathematical theorems are recalled. This algorithm is part of a series of programs developed at Orsay for the treatment of rotation-camera photographs. (orig.)
Geometric approach to evolution problems in metric spaces
Stojković, Igor
2011-01-01
This PhD thesis contains four chapters where research material is presented. In the second chapter the extension of the product formulas for semigroups induced by convex functionals, from the classical Hilbert space setting to the setting of general CAT(0) spaces. In the third chapter, the
On the motion of matter in the geometrical gauge field theory
International Nuclear Information System (INIS)
Konopleva, N.P.
2005-01-01
In the geometrical gauge field theory, the motion equations of matter (elementary particles) are connected with the field equations. The problems arising from this connection are discussed. For the first time, such problems arose in Einstein's General Relativity. Einstein hoped that solution of these problems will allow explanation of elementary particles nature without making use of quantum mechanics. But, as it turned out, the situation is more difficult. Here the corresponding problems are formulated for the connection of equations of particle motion and field equations in the geometrical gauge field theory. It is shown that appearance of the problems under discussion is an inevitable effect of passage to relativism and local symmetries
COMPARISON OF METHODS FOR GEOMETRIC CAMERA CALIBRATION
Directory of Open Access Journals (Sweden)
J. Hieronymus
2012-09-01
Full Text Available Methods for geometric calibration of cameras in close-range photogrammetry are established and well investigated. The most common one is based on test-fields with well-known pattern, which are observed from different directions. The parameters of a distortion model are calculated using bundle-block-adjustment-algorithms. This methods works well for short focal lengths, but is essentially more problematic to use with large focal lengths. Those would require very large test-fields and surrounding space. To overcome this problem, there is another common method for calibration used in remote sensing. It employs measurements using collimator and a goniometer. A third calibration method uses diffractive optical elements (DOE to project holograms of well known pattern. In this paper these three calibration methods are compared empirically, especially in terms of accuracy. A camera has been calibrated with those methods mentioned above. All methods provide a set of distortion correction parameters as used by the photogrammetric software Australis. The resulting parameter values are very similar for all investigated methods. The three sets of distortion parameters are crosscompared against all three calibration methods. This is achieved by inserting the gained distortion parameters as fixed input into the calibration algorithms and only adjusting the exterior orientation. The RMS (root mean square of the remaining image coordinate residuals are taken as a measure of distortion correction quality. There are differences resulting from the different calibration methods. Nevertheless the measure is small for every comparison, which means that all three calibration methods can be used for accurate geometric calibration.
A Geometric Representation of Collective Attention Flows.
Directory of Open Access Journals (Sweden)
Peiteng Shi
Full Text Available With the fast development of Internet and WWW, "information overload" has become an overwhelming problem, and collective attention of users will play a more important role nowadays. As a result, knowing how collective attention distributes and flows among different websites is the first step to understand the underlying dynamics of attention on WWW. In this paper, we propose a method to embed a large number of web sites into a high dimensional Euclidean space according to the novel concept of flow distance, which both considers connection topology between sites and collective click behaviors of users. With this geometric representation, we visualize the attention flow in the data set of Indiana university clickstream over one day. It turns out that all the websites can be embedded into a 20 dimensional ball, in which, close sites are always visited by users sequentially. The distributions of websites, attention flows, and dissipations can be divided into three spherical crowns (core, interim, and periphery. 20% popular sites (Google.com, Myspace.com, Facebook.com, etc. attracting 75% attention flows with only 55% dissipations (log off users locate in the central layer with the radius 4.1. While 60% sites attracting only about 22% traffics with almost 38% dissipations locate in the middle area with radius between 4.1 and 6.3. Other 20% sites are far from the central area. All the cumulative distributions of variables can be well fitted by "S"-shaped curves. And the patterns are stable across different periods. Thus, the overall distribution and the dynamics of collective attention on websites can be well exhibited by this geometric representation.
A Geometric Representation of Collective Attention Flows.
Shi, Peiteng; Huang, Xiaohan; Wang, Jun; Zhang, Jiang; Deng, Su; Wu, Yahui
2015-01-01
With the fast development of Internet and WWW, "information overload" has become an overwhelming problem, and collective attention of users will play a more important role nowadays. As a result, knowing how collective attention distributes and flows among different websites is the first step to understand the underlying dynamics of attention on WWW. In this paper, we propose a method to embed a large number of web sites into a high dimensional Euclidean space according to the novel concept of flow distance, which both considers connection topology between sites and collective click behaviors of users. With this geometric representation, we visualize the attention flow in the data set of Indiana university clickstream over one day. It turns out that all the websites can be embedded into a 20 dimensional ball, in which, close sites are always visited by users sequentially. The distributions of websites, attention flows, and dissipations can be divided into three spherical crowns (core, interim, and periphery). 20% popular sites (Google.com, Myspace.com, Facebook.com, etc.) attracting 75% attention flows with only 55% dissipations (log off users) locate in the central layer with the radius 4.1. While 60% sites attracting only about 22% traffics with almost 38% dissipations locate in the middle area with radius between 4.1 and 6.3. Other 20% sites are far from the central area. All the cumulative distributions of variables can be well fitted by "S"-shaped curves. And the patterns are stable across different periods. Thus, the overall distribution and the dynamics of collective attention on websites can be well exhibited by this geometric representation.
Institute of Scientific and Technical Information of China (English)
WANG ShunJin; ZHANG Hua
2007-01-01
Based on the exact analytical solution of ordinary differential equations,a truncation of the Taylor series of the exact solution to the Nth order leads to the Nth order algebraic dynamics algorithm.A detailed numerical comparison is presented with Runge-Kutta algorithm and symplectic geometric algorithm for 12 test models.The results show that the algebraic dynamics algorithm can better preserve both geometrical and dynamical fidelity of a dynamical system at a controllable precision,and it can solve the problem of algorithm-induced dissipation for the Runge-Kutta algorithm and the problem of algorithm-induced phase shift for the symplectic geometric algorithm.
Institute of Scientific and Technical Information of China (English)
2007-01-01
Based on the exact analytical solution of ordinary differential equations, a truncation of the Taylor series of the exact solution to the Nth order leads to the Nth order algebraic dynamics algorithm. A detailed numerical comparison is presented with Runge-Kutta algorithm and symplectic geometric algorithm for 12 test models. The results show that the algebraic dynamics algorithm can better preserve both geometrical and dynamical fidelity of a dynamical system at a controllable precision, and it can solve the problem of algorithm-induced dissipation for the Runge-Kutta algorithm and the problem of algorithm-induced phase shift for the symplectic geometric algorithm.
Induced subgraph searching for geometric model fitting
Xiao, Fan; Xiao, Guobao; Yan, Yan; Wang, Xing; Wang, Hanzi
2017-11-01
In this paper, we propose a novel model fitting method based on graphs to fit and segment multiple-structure data. In the graph constructed on data, each model instance is represented as an induced subgraph. Following the idea of pursuing the maximum consensus, the multiple geometric model fitting problem is formulated as searching for a set of induced subgraphs including the maximum union set of vertices. After the generation and refinement of the induced subgraphs that represent the model hypotheses, the searching process is conducted on the "qualified" subgraphs. Multiple model instances can be simultaneously estimated by solving a converted problem. Then, we introduce the energy evaluation function to determine the number of model instances in data. The proposed method is able to effectively estimate the number and the parameters of model instances in data severely corrupted by outliers and noises. Experimental results on synthetic data and real images validate the favorable performance of the proposed method compared with several state-of-the-art fitting methods.
Geometrical charged-particle optics
Rose, Harald
2012-01-01
This second edition is an extended version of the first edition of Geometrical Charged-Particle Optics. The updated reference monograph is intended as a guide for researchers and graduate students who are seeking a comprehensive treatment of the design of instruments and beam-guiding systems of charged particles and their propagation in electromagnetic fields. Wave aspects are included in this edition for explaining electron holography, the Aharanov-Bohm effect and the resolution of electron microscopes limited by diffraction. Several methods for calculating the electromagnetic field are presented and procedures are outlined for calculating the properties of systems with arbitrarily curved axis. Detailed methods are presented for designing and optimizing special components such as aberration correctors, spectrometers, energy filters monochromators, ion traps, electron mirrors and cathode lenses. In particular, the optics of rotationally symmetric lenses, quadrupoles, and systems composed of these elements are...
Geometrical setting of solid mechanics
International Nuclear Information System (INIS)
Fiala, Zdenek
2011-01-01
Highlights: → Solid mechanics within the Riemannian symmetric manifold GL (3, R)/O (3, R). → Generalized logarithmic strain. → Consistent linearization. → Incremental principle of virtual power. → Time-discrete approximation. - Abstract: The starting point in the geometrical setting of solid mechanics is to represent deformation process of a solid body as a trajectory in a convenient space with Riemannian geometry, and then to use the corresponding tools for its analysis. Based on virtual power of internal stresses, we show that such a configuration space is the (globally) symmetric space of symmetric positive-definite real matrices. From this unifying point of view, we shall analyse the logarithmic strain, the stress rate, as well as linearization and intrinsic integration of corresponding evolution equation.
Geometric Methods in Physics XXXV
Odzijewicz, Anatol; Previato, Emma
2018-01-01
This book features a selection of articles based on the XXXV Białowieża Workshop on Geometric Methods in Physics, 2016. The series of Białowieża workshops, attended by a community of experts at the crossroads of mathematics and physics, is a major annual event in the field. The works in this book, based on presentations given at the workshop, are previously unpublished, at the cutting edge of current research, typically grounded in geometry and analysis, and with applications to classical and quantum physics. In 2016 the special session "Integrability and Geometry" in particular attracted pioneers and leading specialists in the field. Traditionally, the Białowieża Workshop is followed by a School on Geometry and Physics, for advanced graduate students and early-career researchers, and the book also includes extended abstracts of the lecture series.
Geometric Operators on Boolean Functions
DEFF Research Database (Denmark)
Frisvad, Jeppe Revall; Falster, Peter
In truth-functional propositional logic, any propositional formula represents a Boolean function (according to some valuation of the formula). We describe operators based on Decartes' concept of constructing coordinate systems, for translation of a propositional formula to the image of a Boolean...... function. With this image of a Boolean function corresponding to a propositional formula, we prove that the orthogonal projection operator leads to a theorem describing all rules of inference in propositional reasoning. In other words, we can capture all kinds of inference in propositional logic by means...... of a few geometric operators working on the images of Boolean functions. The operators we describe, arise from the niche area of array-based logic and have previously been tightly bound to an array-based representation of Boolean functions. We redefine the operators in an abstract form to make them...
Geometric considerations in magnetron sputtering
International Nuclear Information System (INIS)
Thornton, J.A.
1982-01-01
The recent development of high performance magnetron type discharge sources has greatly enhaced the range of coating applications where sputtering is a viable deposition process. Magnetron sources can provide high current densities and sputtering rates, even at low pressures. They have much reduced substrate heating rates and can be scaled to large sizes. Magnetron sputter coating apparatuses can have a variety of geometric and plasma configurations. The target geometry affects the emission directions of both the sputtered atoms and the energetic ions which are neutralized and reflected at the cathode. This fact, coupled with the long mean free particle paths which are prevalent at low pressures, can make the coating properties very dependent on the apparatus geometry. This paper reviews the physics of magnetron operation and discusses the influences of apparatus geometry on the use of magnetrons for rf sputtering and reactive sputtering, as well as on the microstructure and internal stresses in sputtered metallic coatings. (author) [pt
Geometrical considerations in dose volume analysis in intracavitary treatment
International Nuclear Information System (INIS)
Deshpande, D.D.; Shrivastava, S.K.; Pradhan, A.S.; Viswanathan, P.S.; Dinshaw, K.A.
1996-01-01
The present work was aimed at to study the relationship between the volume enclosed by reference iodose surface and various geometrical parameters of the intracavitary applicator in treatment of carcinoma of cervix. Pearshape volume of the reference isodose derived from the Total Reference Air Kerma (TRAK) and the product of its dimensions, height H, width W and thickness T which is dependent on the applicator geometry, were estimated for 100 intracavitary applications treated by Selectron LDR machine. Orthogonal radiographs taken for each patient were used for measurement of actual geometric dimensions of the applicator and carrying out the dosimetry on TP-11 treatment planning system. The dimensions H, W and T of reference isodose surface (60 Gy) were also noted. Ratio of the product HWT and the pearshape volume was found mainly to be a function of colpostat separation and not of other geometrical parameters like maximum vertical and anterio-posterior dimension of the applicator. The ratio remained almost constant for a particular combination of uterine tandem and colpostat. Variation in the ratios were attributed to the non-standard geometry. The ratio of the volume of reference isodose surface to the product of its dimensions in the applicator depends upon the colpostat separation. (orig./MG) [de
Geometrization and Generalization of the Kowalevski Top
Dragović, Vladimir
2010-08-01
A new view on the Kowalevski top and the Kowalevski integration procedure is presented. For more than a century, the Kowalevski 1889 case, has attracted full attention of a wide community as the highlight of the classical theory of integrable systems. Despite hundreds of papers on the subject, the Kowalevski integration is still understood as a magic recipe, an unbelievable sequence of skillful tricks, unexpected identities and smart changes of variables. The novelty of our present approach is based on our four observations. The first one is that the so-called fundamental Kowalevski equation is an instance of a pencil equation of the theory of conics which leads us to a new geometric interpretation of the Kowalevski variables w, x 1, x 2 as the pencil parameter and the Darboux coordinates, respectively. The second is observation of the key algebraic property of the pencil equation which is followed by introduction and study of a new class of discriminantly separable polynomials. All steps of the Kowalevski integration procedure are now derived as easy and transparent logical consequences of our theory of discriminantly separable polynomials. The third observation connects the Kowalevski integration and the pencil equation with the theory of multi-valued groups. The Kowalevski change of variables is now recognized as an example of a two-valued group operation and its action. The final observation is surprising equivalence of the associativity of the two-valued group operation and its action to the n = 3 case of the Great Poncelet Theorem for pencils of conics.
Introduction to geometric nonlinear control; Linearization, observability, decoupling
Energy Technology Data Exchange (ETDEWEB)
Respondek, W [Laboratoire de Mathematiques, INSA de Rouen (France)
2002-07-15
These notes are devoted to the problems of linearization, observability, and decoupling of nonlinear control systems. Together with notes of Bronislaw Jakubczyk in the same volume, they form an introduction to geometric methods in nonlinear control theory. In the first part we discuss equivalence of control systems. We consider various aspects of the problem: state-space and feedback equivalence, local and global equivalence, equivalence to linear and partially linear systems. In the second part we present the notion of observability and give a geometric rank condition for local observability and an algebraic characterization of local observability. We discuss unm observability, decompositions of non-observable systems, and properties of generic observable systems. In the third part we introduce the notion of invariant distributions and discuss disturbance decoupling and input-output decoupling. Many concepts and results are illustrated with examples. (author)
Geometric solitons of Hamiltonian flows on manifolds
Energy Technology Data Exchange (ETDEWEB)
Song, Chong, E-mail: songchong@xmu.edu.cn [School of Mathematical Sciences, Xiamen University, Xiamen 361005 (China); Sun, Xiaowei, E-mail: sunxw@cufe.edu.cn [School of Applied Mathematics, Central University of Finance and Economics, Beijing 100081 (China); Wang, Youde, E-mail: wyd@math.ac.cn [Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190 (China)
2013-12-15
It is well-known that the LIE (Locally Induction Equation) admit soliton-type solutions and same soliton solutions arise from different and apparently irrelevant physical models. By comparing the solitons of LIE and Killing magnetic geodesics, we observe that these solitons are essentially decided by two families of isometries of the domain and the target space, respectively. With this insight, we propose the new concept of geometric solitons of Hamiltonian flows on manifolds, such as geometric Schrödinger flows and KdV flows for maps. Moreover, we give several examples of geometric solitons of the Schrödinger flow and geometric KdV flow, including magnetic curves as geometric Schrödinger solitons and explicit geometric KdV solitons on surfaces of revolution.
Operational geometric phase for mixed quantum states
International Nuclear Information System (INIS)
Andersson, O; Heydari, H
2013-01-01
The geometric phase has found a broad spectrum of applications in both classical and quantum physics, such as condensed matter and quantum computation. In this paper, we introduce an operational geometric phase for mixed quantum states, based on spectral weighted traces of holonomies, and we prove that it generalizes the standard definition of the geometric phase for mixed states, which is based on quantum interferometry. We also introduce higher order geometric phases, and prove that under a fairly weak, generically satisfied, requirement, there is always a well-defined geometric phase of some order. Our approach applies to general unitary evolutions of both non-degenerate and degenerate mixed states. Moreover, since we provide an explicit formula for the geometric phase that can be easily implemented, it is particularly well suited for computations in quantum physics. (paper)
Geometrical factors in the perception of sacredness
DEFF Research Database (Denmark)
Costa, Marco; Bonetti, Leonardo
2016-01-01
Geometrical and environmental factors in the perception of sacredness, dominance, and attractiveness were assessed by 137 participants in five tests. In the first test, a two-alternative forced-choice paradigm was used to test the perception of sacredness, dominance, and attractiveness in geometr......Geometrical and environmental factors in the perception of sacredness, dominance, and attractiveness were assessed by 137 participants in five tests. In the first test, a two-alternative forced-choice paradigm was used to test the perception of sacredness, dominance, and attractiveness...... in geometrical figures differing in shape, verticality, size, and symmetry. Verticality, symmetry, and convexity were found to be important factors in the perception of sacredness. In the second test, participants had to mark the point inside geometrical surfaces that was perceived as most sacred, dominant....... Geometrical factors in the perception of sacredness, dominance, and attractiveness were largely overlapping....
Hybrid Geometric Calibration Method for Multi-Platform Spaceborne SAR Image with Sparse Gcps
Lv, G.; Tang, X.; Ai, B.; Li, T.; Chen, Q.
2018-04-01
Geometric calibration is able to provide high-accuracy geometric coordinates of spaceborne SAR image through accurate geometric parameters in the Range-Doppler model by ground control points (GCPs). However, it is very difficult to obtain GCPs that covering large-scale areas, especially in the mountainous regions. In addition, the traditional calibration method is only used for single platform SAR images and can't support the hybrid geometric calibration for multi-platform images. To solve the above problems, a hybrid geometric calibration method for multi-platform spaceborne SAR images with sparse GCPs is proposed in this paper. First, we calibrate the master image that contains GCPs. Secondly, the point tracking algorithm is used to obtain the tie points (TPs) between the master and slave images. Finally, we calibrate the slave images using TPs as the GCPs. We take the Beijing-Tianjin- Hebei region as an example to study SAR image hybrid geometric calibration method using 3 TerraSAR-X images, 3 TanDEM-X images and 5 GF-3 images covering more than 235 kilometers in the north-south direction. Geometric calibration of all images is completed using only 5 GCPs. The GPS data extracted from GNSS receiver are used to assess the plane accuracy after calibration. The results after geometric calibration with sparse GCPs show that the geometric positioning accuracy is 3 m for TSX/TDX images and 7.5 m for GF-3 images.
Hydrodynamic Limit with Geometric Correction of Stationary Boltzmann Equation
Wu, Lei
2014-01-01
We consider the hydrodynamic limit of a stationary Boltzmann equation in a unit plate with in-flow boundary. We prove the solution can be approximated in $L^{\\infty}$ by the sum of interior solution which satisfies steady incompressible Navier-Stokes-Fourier system, and boundary layer with geometric correction. Also, we construct a counterexample to the classical theory which states the behavior of solution near boundary can be described by the Knudsen layer derived from the Milne problem.
Dual geometric-gauge field aspects of gravity
International Nuclear Information System (INIS)
Huei Peng; Wang, K.
1992-01-01
We propose that the geometric and standard gauge field aspects of gravity are equally essential for a complete description of gravity and can be reconciled. We show that this dualism of gravity resolves the dimensional Newtonian constant problem in both quantum gravity and unification schemes involving gravity (i.e., the Newtonian constant is no longer the coupling constant in the gauge aspect of gravity) and reveals the profound similarity between gravity and other fields. 23 refs., 3 tabs
Polarization ellipse and Stokes parameters in geometric algebra.
Santos, Adler G; Sugon, Quirino M; McNamara, Daniel J
2012-01-01
In this paper, we use geometric algebra to describe the polarization ellipse and Stokes parameters. We show that a solution to Maxwell's equation is a product of a complex basis vector in Jackson and a linear combination of plane wave functions. We convert both the amplitudes and the wave function arguments from complex scalars to complex vectors. This conversion allows us to separate the electric field vector and the imaginary magnetic field vector, because exponentials of imaginary scalars convert vectors to imaginary vectors and vice versa, while exponentials of imaginary vectors only rotate the vector or imaginary vector they are multiplied to. We convert this expression for polarized light into two other representations: the Cartesian representation and the rotated ellipse representation. We compute the conversion relations among the representation parameters and their corresponding Stokes parameters. And finally, we propose a set of geometric relations between the electric and magnetic fields that satisfy an equation similar to the Poincaré sphere equation.
Geometrical-confinement effects on excitons in quantum disks
International Nuclear Information System (INIS)
Song, J.; Ulloa, S.E.
1995-01-01
Excitons confined to flat semiconductor quantum dots with elliptical cross sections are considered as we study geometrical effects on exciton binding energy, electron-hole separation, and the resulting linear optical properties. We use numerical matrix diagonalization techniques with appropriately large and optimized basis sets in an effective-mass Hamiltonian approach. The linear optical susceptibilities of GaAs and InAs dots for several different size ratios are discussed and compared to experimental photoluminescence spectra obtained on GaAs/Al x Ga 1-x As and InAs/GaAs quantum dots. For quantum dots of several nm in size, there is a strong blueshift of the luminescence due to geometrical-confinement effects. Also, transition peaks are split and shifted towards higher energy, in comparison with dots with circular cross sections
Geometrical and Graphical Solutions of Quadratic Equations.
Hornsby, E. John, Jr.
1990-01-01
Presented are several geometrical and graphical methods of solving quadratic equations. Discussed are Greek origins, Carlyle's method, von Staudt's method, fixed graph methods and imaginary solutions. (CW)
A parametric study of contact problem on a large size flange
International Nuclear Information System (INIS)
Mukherjee, A.B.; Narayanan, T.; Dhondkar, J.K.; Mehra, V.K.
1989-01-01
Continuous change of contact point on gasket face with the application of bolt load makes it a non-linear problem. Thus the geometric non-linearity of the structure is simulated and a stress distribution over the gasket face is presented in this paper. The paper also describes the use of taper on the gasket face to reduce the stress peaking and to optimize the gasket face separation
Gollan, A.
1988-03-29
Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing. 3 figs.
International Nuclear Information System (INIS)
Rosevear, A.; Sims, H.E.
1985-01-01
sup(195m)Au for medical usage is separated from sup(195m)Hg in a solution containing ions of sup(195m)Hg by contacting the solution with an adsorbing agent to adsorb 195 Hgsup(H) thereon, followed by selective elution of sup(195m)Au generated by radioactive decay of the sup(195m)Hg. The adsorbing agent comprises a composite material in the form of an inert porous inorganic substrate (e.g. Kieselguhr),the pores of which are occupied by a hydrogel of a polysaccharide (e.g. agarose) carrying terminal thiol groups for binding Hgsup(H) ions. (author)
Geometric asymmetry driven Janus micromotors
Zhao, Guanjia; Pumera, Martin
2014-09-01
The production and application of nano-/micromotors is of great importance. In order for the motors to work, asymmetry in their chemical composition or physical geometry must be present if no external asymmetric field is applied. In this paper, we present a ``coconut'' micromotor made of platinum through the partial or complete etching of the silica templates. It was shown that although both the inner and outer surfaces are made of the same material (Pt), motion of the structure can be observed as the convex surface is capable of generating oxygen bubbles. This finding shows that not only the chemical asymmetry of the micromotor, but also its geometric asymmetry can lead to fast propulsion of the motor. Moreover, a considerably higher velocity can be seen for partially etched coconut structures than the velocities of Janus or fully etched, shell-like motors. These findings will have great importance on the design of future micromotors.The production and application of nano-/micromotors is of great importance. In order for the motors to work, asymmetry in their chemical composition or physical geometry must be present if no external asymmetric field is applied. In this paper, we present a ``coconut'' micromotor made of platinum through the partial or complete etching of the silica templates. It was shown that although both the inner and outer surfaces are made of the same material (Pt), motion of the structure can be observed as the convex surface is capable of generating oxygen bubbles. This finding shows that not only the chemical asymmetry of the micromotor, but also its geometric asymmetry can lead to fast propulsion of the motor. Moreover, a considerably higher velocity can be seen for partially etched coconut structures than the velocities of Janus or fully etched, shell-like motors. These findings will have great importance on the design of future micromotors. Electronic supplementary information (ESI) available: Additional SEM images, data analysis, Videos S
Inverse Kinematics for Industrial Robots using Conformal Geometric Algebra
Directory of Open Access Journals (Sweden)
Adam L. Kleppe
2016-01-01
Full Text Available This paper shows how the recently developed formulation of conformal geometric algebra can be used for analytic inverse kinematics of two six-link industrial manipulators with revolute joints. The paper demonstrates that the solution of the inverse kinematics in this framework relies on the intersection of geometric objects like lines, circles, planes and spheres, which provides the developer with valuable geometric intuition about the problem. It is believed that this will be very useful for new robot geometries and other mechanisms like cranes and topside drilling equipment. The paper extends previous results on inverse kinematics using conformal geometric algebra by providing consistent solutions for the joint angles for the different configurations depending on shoulder left or right, elbow up or down, and wrist flipped or not. Moreover, it is shown how to relate the solution to the Denavit-Hartenberg parameters of the robot. The solutions have been successfully implemented and tested extensively over the whole workspace of the manipulators.
Information geometric methods for complexity
Felice, Domenico; Cafaro, Carlo; Mancini, Stefano
2018-03-01
Research on the use of information geometry (IG) in modern physics has witnessed significant advances recently. In this review article, we report on the utilization of IG methods to define measures of complexity in both classical and, whenever available, quantum physical settings. A paradigmatic example of a dramatic change in complexity is given by phase transitions (PTs). Hence, we review both global and local aspects of PTs described in terms of the scalar curvature of the parameter manifold and the components of the metric tensor, respectively. We also report on the behavior of geodesic paths on the parameter manifold used to gain insight into the dynamics of PTs. Going further, we survey measures of complexity arising in the geometric framework. In particular, we quantify complexity of networks in terms of the Riemannian volume of the parameter space of a statistical manifold associated with a given network. We are also concerned with complexity measures that account for the interactions of a given number of parts of a system that cannot be described in terms of a smaller number of parts of the system. Finally, we investigate complexity measures of entropic motion on curved statistical manifolds that arise from a probabilistic description of physical systems in the presence of limited information. The Kullback-Leibler divergence, the distance to an exponential family and volumes of curved parameter manifolds, are examples of essential IG notions exploited in our discussion of complexity. We conclude by discussing strengths, limits, and possible future applications of IG methods to the physics of complexity.
Geometrical aspects of quantum spaces
International Nuclear Information System (INIS)
Ho, P.M.
1996-01-01
Various geometrical aspects of quantum spaces are presented showing the possibility of building physics on quantum spaces. In the first chapter the authors give the motivations for studying noncommutative geometry and also review the definition of a Hopf algebra and some general features of the differential geometry on quantum groups and quantum planes. In Chapter 2 and Chapter 3 the noncommutative version of differential calculus, integration and complex structure are established for the quantum sphere S 1 2 and the quantum complex projective space CP q (N), on which there are quantum group symmetries that are represented nonlinearly, and are respected by all the aforementioned structures. The braiding of S q 2 and CP q (N) is also described. In Chapter 4 the quantum projective geometry over the quantum projective space CP q (N) is developed. Collinearity conditions, coplanarity conditions, intersections and anharmonic ratios is described. In Chapter 5 an algebraic formulation of Reimannian geometry on quantum spaces is presented where Riemannian metric, distance, Laplacian, connection, and curvature have their quantum counterparts. This attempt is also extended to complex manifolds. Examples include the quantum sphere, the complex quantum projective space and the two-sheeted space. The quantum group of general coordinate transformations on some quantum spaces is also given
Yang Mills instantons, geometrical aspects
International Nuclear Information System (INIS)
Stora, R.
1977-09-01
The word instanton has been coined by analogy with the word soliton. They both refer to solutions of elliptic non linear field equations with boundary conditions at infinity (of euclidean space time in the first case, euclidean space in the second case) lying on the set of classical vacua in such a way that stable topological properties emerge, susceptible to survive quantum effects, if those are small. Under this assumption, instantons are believed to be relevant to the description of tunnelling effects between classical vacua and signal some characteristics of the vacuum at the quantum level, whereas solitons should be associated with particles, i.e. discrete points in the mass spectrum. In one case the euclidean action is finite, in the other case, the energy is finite. From the mathematical point of view, the geometrical phenomena associated with the existence of solitons have forced physicists to learn rudiments of algebraic topology. The study of euclidean classical Yang Mills fields involves naturally mathematical items falling under the headings: differential geometry (fibre bundles, connections); differential topology (characteristic classes, index theory) and more recently algebraic geometry. These notes are divided as follows: a first section is devoted to a description of the physicist's views; a second section is devoted to the mathematician's vie
Generalized Geometric Quantum Speed Limits
Directory of Open Access Journals (Sweden)
Diego Paiva Pires
2016-06-01
Full Text Available The attempt to gain a theoretical understanding of the concept of time in quantum mechanics has triggered significant progress towards the search for faster and more efficient quantum technologies. One of such advances consists in the interpretation of the time-energy uncertainty relations as lower bounds for the minimal evolution time between two distinguishable states of a quantum system, also known as quantum speed limits. We investigate how the nonuniqueness of a bona fide measure of distinguishability defined on the quantum-state space affects the quantum speed limits and can be exploited in order to derive improved bounds. Specifically, we establish an infinite family of quantum speed limits valid for unitary and nonunitary evolutions, based on an elegant information geometric formalism. Our work unifies and generalizes existing results on quantum speed limits and provides instances of novel bounds that are tighter than any established one based on the conventional quantum Fisher information. We illustrate our findings with relevant examples, demonstrating the importance of choosing different information metrics for open system dynamics, as well as clarifying the roles of classical populations versus quantum coherences, in the determination and saturation of the speed limits. Our results can find applications in the optimization and control of quantum technologies such as quantum computation and metrology, and might provide new insights in fundamental investigations of quantum thermodynamics.
Geometric structure of percolation clusters.
Xu, Xiao; Wang, Junfeng; Zhou, Zongzheng; Garoni, Timothy M; Deng, Youjin
2014-01-01
We investigate the geometric properties of percolation clusters by studying square-lattice bond percolation on the torus. We show that the density of bridges and nonbridges both tend to 1/4 for large system sizes. Using Monte Carlo simulations, we study the probability that a given edge is not a bridge but has both its loop arcs in the same loop and find that it is governed by the two-arm exponent. We then classify bridges into two types: branches and junctions. A bridge is a branch iff at least one of the two clusters produced by its deletion is a tree. Starting from a percolation configuration and deleting the branches results in a leaf-free configuration, whereas, deleting all bridges produces a bridge-free configuration. Although branches account for ≈43% of all occupied bonds, we find that the fractal dimensions of the cluster size and hull length of leaf-free configurations are consistent with those for standard percolation configurations. By contrast, we find that the fractal dimensions of the cluster size and hull length of bridge-free configurations are given by the backbone and external perimeter dimensions, respectively. We estimate the backbone fractal dimension to be 1.643 36(10).
Geometric Phase Generated Optical Illusion.
Yue, Fuyong; Zang, Xiaofei; Wen, Dandan; Li, Zile; Zhang, Chunmei; Liu, Huigang; Gerardot, Brian D; Wang, Wei; Zheng, Guoxing; Chen, Xianzhong
2017-09-12
An optical illusion, such as "Rubin's vase", is caused by the information gathered by the eye, which is processed in the brain to give a perception that does not tally with a physical measurement of the stimulus source. Metasurfaces are metamaterials of reduced dimensionality which have opened up new avenues for flat optics. The recent advancement in spin-controlled metasurface holograms has attracted considerate attention, providing a new method to realize optical illusions. We propose and experimentally demonstrate a metasurface device to generate an optical illusion. The metasurface device is designed to display two asymmetrically distributed off-axis images of "Rubin faces" with high fidelity, high efficiency and broadband operation that are interchangeable by controlling the helicity of the incident light. Upon the illumination of a linearly polarized light beam, the optical illusion of a 'vase' is perceived. Our result provides an intuitive demonstration of the figure-ground distinction that our brains make during the visual perception. The alliance between geometric metasurface and the optical illusion opens a pathway for new applications related to encryption, optical patterning, and information processing.
An introduction to geometric computation
International Nuclear Information System (INIS)
Nievergelt, J.
1991-01-01
Computational geometry has some appealing features that make it ideal for learning about algorithms and data structures, namely the problem statements are easily understood, intuitively meaningful, and mathematically rigorous, problem statement, solution, and every step of the construction have natural visual representations that support abstract thinking and help in detecting errors of reasoning, and finally, these algorithms are practical because is easy to come up with examples where they can be applied. Figs
Geometrical scaling, furry branching and minijets
International Nuclear Information System (INIS)
Hwa, R.C.
1988-01-01
Scaling properties and their violations in hadronic collisions are discussed in the framework of the geometrical branching model. Geometrical scaling supplemented by Furry branching characterizes the soft component, while the production of jets specifies the hard component. Many features of multiparticle production processes are well described by this model. 21 refs
Geometric integrators for stochastic rigid body dynamics
Tretyakov, Mikhail
2016-01-05
Geometric integrators play an important role in simulating dynamical systems on long time intervals with high accuracy. We will illustrate geometric integration ideas within the stochastic context, mostly on examples of stochastic thermostats for rigid body dynamics. The talk will be mainly based on joint recent work with Rusland Davidchak and Tom Ouldridge.
Geometric integrators for stochastic rigid body dynamics
Tretyakov, Mikhail
2016-01-01
Geometric integrators play an important role in simulating dynamical systems on long time intervals with high accuracy. We will illustrate geometric integration ideas within the stochastic context, mostly on examples of stochastic thermostats for rigid body dynamics. The talk will be mainly based on joint recent work with Rusland Davidchak and Tom Ouldridge.
Geometric phases in discrete dynamical systems
Energy Technology Data Exchange (ETDEWEB)
Cartwright, Julyan H.E., E-mail: julyan.cartwright@csic.es [Instituto Andaluz de Ciencias de la Tierra, CSIC–Universidad de Granada, E-18100 Armilla, Granada (Spain); Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada, E-18071 Granada (Spain); Piro, Nicolas, E-mail: nicolas.piro@epfl.ch [École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne (Switzerland); Piro, Oreste, E-mail: piro@imedea.uib-csic.es [Departamento de Física, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain); Tuval, Idan, E-mail: ituval@imedea.uib-csic.es [Mediterranean Institute for Advanced Studies, CSIC–Universitat de les Illes Balears, E-07190 Mallorca (Spain)
2016-10-14
In order to study the behaviour of discrete dynamical systems under adiabatic cyclic variations of their parameters, we consider discrete versions of adiabatically-rotated rotators. Parallelling the studies in continuous systems, we generalize the concept of geometric phase to discrete dynamics and investigate its presence in these rotators. For the rotated sine circle map, we demonstrate an analytical relationship between the geometric phase and the rotation number of the system. For the discrete version of the rotated rotator considered by Berry, the rotated standard map, we further explore this connection as well as the role of the geometric phase at the onset of chaos. Further into the chaotic regime, we show that the geometric phase is also related to the diffusive behaviour of the dynamical variables and the Lyapunov exponent. - Highlights: • We extend the concept of geometric phase to maps. • For the rotated sine circle map, we demonstrate an analytical relationship between the geometric phase and the rotation number. • For the rotated standard map, we explore the role of the geometric phase at the onset of chaos. • We show that the geometric phase is related to the diffusive behaviour of the dynamical variables and the Lyapunov exponent.
Geometrical optics and the diffraction phenomenon
International Nuclear Information System (INIS)
Timofeev, Aleksandr V
2005-01-01
This note outlines the principles of the geometrical optics of inhomogeneous waves whose description necessitates the use of complex values of the wave vector. Generalizing geometrical optics to inhomogeneous waves permits including in its scope the analysis of the diffraction phenomenon. (methodological notes)
Solving Absolute Value Equations Algebraically and Geometrically
Shiyuan, Wei
2005-01-01
The way in which students can improve their comprehension by understanding the geometrical meaning of algebraic equations or solving algebraic equation geometrically is described. Students can experiment with the conditions of the absolute value equation presented, for an interesting way to form an overall understanding of the concept.
Separable programming theory and methods
Stefanov, Stefan M
2001-01-01
In this book, the author considers separable programming and, in particular, one of its important cases - convex separable programming Some general results are presented, techniques of approximating the separable problem by linear programming and dynamic programming are considered Convex separable programs subject to inequality equality constraint(s) and bounds on variables are also studied and iterative algorithms of polynomial complexity are proposed As an application, these algorithms are used in the implementation of stochastic quasigradient methods to some separable stochastic programs Numerical approximation with respect to I1 and I4 norms, as a convex separable nonsmooth unconstrained minimization problem, is considered as well Audience Advanced undergraduate and graduate students, mathematical programming operations research specialists
Geometric function theory: a modern view of a classical subject
International Nuclear Information System (INIS)
Crowdy, Darren
2008-01-01
Geometric function theory is a classical subject. Yet it continues to find new applications in an ever-growing variety of areas such as modern mathematical physics, more traditional fields of physics such as fluid dynamics, nonlinear integrable systems theory and the theory of partial differential equations. This paper surveys, with a view to modern applications, open problems and challenges in this subject. Here we advocate an approach based on the use of the Schottky–Klein prime function within a Schottky model of compact Riemann surfaces. (open problem)
Separable quadratic stochastic operators
International Nuclear Information System (INIS)
Rozikov, U.A.; Nazir, S.
2009-04-01
We consider quadratic stochastic operators, which are separable as a product of two linear operators. Depending on properties of these linear operators we classify the set of the separable quadratic stochastic operators: first class of constant operators, second class of linear and third class of nonlinear (separable) quadratic stochastic operators. Since the properties of operators from the first and second classes are well known, we mainly study the properties of the operators of the third class. We describe some Lyapunov functions of the operators and apply them to study ω-limit sets of the trajectories generated by the operators. We also compare our results with known results of the theory of quadratic operators and give some open problems. (author)
Geometrical properties of a 'snowflake' divertor
International Nuclear Information System (INIS)
Ryutov, D. D.
2007-01-01
Using a simple set of poloidal field coils, one can reach the situation in which the null of the poloidal magnetic field in the divertor region is of second order, not of first order as in the usual X-point divertor. Then, the separatrix in the vicinity of the null point splits the poloidal plane not into four sectors, but into six sectors, making the whole structure look like a snowflake (hence the name). This arrangement allows one to spread the heat load over a much broader area than in the case of a standard divertor. A disadvantage of this configuration is that it is topologically unstable, and, with the current in the plasma varying with time, it would switch either to the standard X-point mode, or to the mode with two X-points close to each other. To avoid this problem, it is suggested to have a current in the divertor coils that is roughly 5% higher than in an ''optimum'' regime (the one in which a snowflake separatrix is formed). In this mode, the configuration becomes stable and can be controlled by varying the current in the divertor coils in concert with the plasma current; on the other hand, a strong flaring of the scrape-off layer still remains in force. Geometrical properties of this configuration are analyzed. Potential advantages and disadvantages of this scheme are discussed
Geometric calibration method for multiple head cone beam SPECT systems
International Nuclear Information System (INIS)
Rizo, Ph.; Grangeat, P.; Guillemaud, R.; Sauze, R.
1993-01-01
A method is presented for performing geometric calibration on Single Photon Emission Tomography (SPECT) cone beam systems with multiple cone beam collimators, each having its own orientation parameters. This calibration method relies on the fact that, in tomography, for each head, the relative position of the rotation axis and of the collimator does not change during the acquisition. In order to ensure the method stability, the parameters to be estimated in intrinsic parameters and extrinsic parameters are separated. The intrinsic parameters describe the acquisition geometry and the extrinsic parameters position of the detection system with respect to the rotation axis. (authors) 3 refs
Cosmological parameters from large scale structure - geometric versus shape information
Hamann, Jan; Lesgourgues, Julien; Rampf, Cornelius; Wong, Yvonne Y Y
2010-01-01
The matter power spectrum as derived from large scale structure (LSS) surveys contains two important and distinct pieces of information: an overall smooth shape and the imprint of baryon acoustic oscillations (BAO). We investigate the separate impact of these two types of information on cosmological parameter estimation, and show that for the simplest cosmological models, the broad-band shape information currently contained in the SDSS DR7 halo power spectrum (HPS) is by far superseded by geometric information derived from the baryonic features. An immediate corollary is that contrary to popular beliefs, the upper limit on the neutrino mass m_\
Quadratic time dependent Hamiltonians and separation of variables
Anzaldo-Meneses, A.
2017-06-01
Time dependent quantum problems defined by quadratic Hamiltonians are solved using canonical transformations. The Green's function is obtained and a comparison with the classical Hamilton-Jacobi method leads to important geometrical insights like exterior differential systems, Monge cones and time dependent Gaussian metrics. The Wei-Norman approach is applied using unitary transformations defined in terms of generators of the associated Lie groups, here the semi-direct product of the Heisenberg group and the symplectic group. A new explicit relation for the unitary transformations is given in terms of a finite product of elementary transformations. The sequential application of adequate sets of unitary transformations leads naturally to a new separation of variables method for time dependent Hamiltonians, which is shown to be related to the Inönü-Wigner contraction of Lie groups. The new method allows also a better understanding of interacting particles or coupled modes and opens an alternative way to analyze topological phases in driven systems.
International Nuclear Information System (INIS)
Anon.
1977-01-01
Infrared spectra of Pu(IV) polymer show effects of CO 2 adsorption and of aging. Uv light (300 nm) increases the rate of reduction of PuO 2 2+ and Pu 4+ to Pu 3+ and the Pu--U separation factor using TBP. Distribution ratios for Zr and Hf between Dowex 50W--X8 resin and H 2 SO 4 solutions were found to decrease sharply with H 2 SO 4 content. Octylphenyl acid phosphate, a mixture of monooctylphenyl and dioctylphenyl phosphoric acids, is being studied for U recovery from wet-process phosphoric acid. A study of HNO 3 leaching of Ra from U ores was completed. Effects of particle size of the packed bed on the dispersion of the boundary of the miscible phase used in oil recovery are being studied. Effects of sulfonates on toluene--n-butanol--water phase relations were determined, as were the effects of salts and solutes on the max water content of 1:1 toluene--alcohol solutions. A study was begun of hydrocarbon solubility in water--surfactant--alcohol. The mechanism of the formation of hydrous ZrO 2 --polyacrylate membranes and their use for sulfate rejection were studied. Salt rejection through hyperfiltration by clay membranes (bentonite and kaolin) was also investigated. Preliminary results are given for hyperfiltration of wood-pulping wastes by ZrO 2 membranes. 13 figures
Some aspects of geometrical confinement
Energy Technology Data Exchange (ETDEWEB)
Novello, M.; De Lorenci, V.A. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Elbaz, E. [Lyon-1 Univ., 69 - Villeurbanne (France)
1998-04-01
In this paper we present a toy model for the dynamics of a gauge field theory in such way that spin-one particles can be confined in a compact domain. We show that the property of confinement can be associated to the formation of a null surface identified to a horizon. This is due to the presence of an effective geometry generated by the self-interaction of the gauge field that guides the wave propagation of the field. This phenomenon has a striking analogy to the gravitational black hole in Einstein general theory of relativity, separating two domains of spacetime that can be trespassed only into one direction. (author) 4 refs.
Geometric design of part feeders
Berretty, R.-P.M.
2000-01-01
This thesis presents solutions for problems derived from industrial assembly and robotic manipulation. The basic tasks in a factory are manufacturing the parts, and combining them into the desired product. In automating these tasks, we want to use robot manipulators that require little or no
Geometrization of the electromagnetic field and dark matter
International Nuclear Information System (INIS)
Pestov, I.B.
2005-01-01
A general concept of potential field is introduced. The potential field that one puts in correspondence with dark matter, has fundamental geometrical interpretation (parallel transport) and has intrinsically inherent local symmetry. The equations of dark matter field are derived that are invariant with respect to the local transformations. It is shown how to reduce these equations to the Maxwell equations. Thus, the dark matter field may be considered as generalized electromagnetic field and a simple solution of the old problem is given to connect electromagnetic field with geometrical properties of the physical manifold itself. It is shown that gauge fixing renders generalized electromagnetic field effectively massive while the Maxwell electromagnetic field remains massless. To learn more about interactions between matter and dark matter on the microscopical level (and to recognize the fundamental role of internal symmetry) the general covariant Dirac equation is derived in the Minkowski space-time which describes the interactions of spinor field with dark matter field
Geometrization of the Electromagnetic Field and Dark Matter
Pestov, I B
2005-01-01
A general concept of potential field is introduced. The potential field that one puts in correspondence with dark matter, has fundamental geometrical interpretation (parallel transport) and has intrinsically inherent local symmetry. The equations of dark matter field are derived that are invariant with respect to the local transformations. It is shown how to reduce these equations to the Maxwell equations. Thus, the dark matter field may be considered as generalized lectromagnetic field and a simple solution of the old problem is given to connect electromagnetic field with geometrical properties of the physical manifold itself. It is shown that gauge fixing renders generalized electromagnetic field effectively massive while the Maxwell electromagnetic field remains massless. To learn more about interactions between matter and dark matter on the microscopical level (and to recognize the fundamental role of internal symmetry) the general covariant Dirac equation is derived in the Minkowski space--time which des...
Image-Based Geometric Modeling and Mesh Generation
2013-01-01
As a new interdisciplinary research area, “image-based geometric modeling and mesh generation” integrates image processing, geometric modeling and mesh generation with finite element method (FEM) to solve problems in computational biomedicine, materials sciences and engineering. It is well known that FEM is currently well-developed and efficient, but mesh generation for complex geometries (e.g., the human body) still takes about 80% of the total analysis time and is the major obstacle to reduce the total computation time. It is mainly because none of the traditional approaches is sufficient to effectively construct finite element meshes for arbitrarily complicated domains, and generally a great deal of manual interaction is involved in mesh generation. This contributed volume, the first for such an interdisciplinary topic, collects the latest research by experts in this area. These papers cover a broad range of topics, including medical imaging, image alignment and segmentation, image-to-mesh conversion,...
Improved Object Proposals with Geometrical Features for Autonomous Driving
Directory of Open Access Journals (Sweden)
Yiliu Feng
2017-01-01
Full Text Available This paper aims at generating high-quality object proposals for object detection in autonomous driving. Most existing proposal generation methods are designed for the general object detection, which may not perform well in a particular scene. We propose several geometrical features suited for autonomous driving and integrate them into state-of-the-art general proposal generation methods. In particular, we formulate the integration as a feature fusion problem by fusing the geometrical features with existing proposal generation methods in a Bayesian framework. Experiments on the challenging KITTI benchmark demonstrate that our approach improves the existing methods significantly. Combined with a convolutional neural net detector, our approach achieves state-of-the-art performance on all three KITTI object classes.
CIME course on Ricci Flow and Geometric Applications
Mantegazza, Carlo
2016-01-01
Presenting some impressive recent achievements in differential geometry and topology, this volume focuses on results obtained using techniques based on Ricci flow. These ideas are at the core of the study of differentiable manifolds. Several very important open problems and conjectures come from this area and the techniques described herein are used to face and solve some of them. The book's four chapters are based on lectures given by leading researchers in the field of geometric analysis and low-dimensional geometry/topology, respectively offering an introduction to: the differentiable sphere theorem (G. Besson), the geometrization of 3-manifolds (M. Boileau), the singularities of 3-dimensional Ricci flows (C. Sinestrari), and Kahler-Ricci flow (G. Tian). The lectures will be particularly valuable to young researchers interested in differential manifolds.
Geometric phase for N-level systems through unitary integration
International Nuclear Information System (INIS)
Uskov, D. B.; Rau, A. R. P.
2006-01-01
Geometric phases are important in quantum physics and are now central to fault-tolerant quantum computation. For spin 1/2, the Bloch sphere S 2 , together with a U(1) phase, provides a complete SU(2) description. We generalize to N-level systems and SU(N) in terms of a 2(N-1)-dimensional base space and reduction to a (N-1)-level problem, paralleling closely the two-dimensional case. This iteratively solves the time evolution of an N-level system and gives (N-1) geometric phases explicitly. A complete analytical construction of an S 4 Bloch-like sphere for two qubits is given for the Spin(5) or SO(5) subgroup of SU(4)
Efficient separations & processing crosscutting program
Energy Technology Data Exchange (ETDEWEB)
NONE
1996-08-01
The Efficient Separations and Processing Crosscutting Program (ESP) was created in 1991 to identify, develop, and perfect chemical and physical separations technologies and chemical processes which treat wastes and address environmental problems throughout the DOE complex. The ESP funds several multiyear tasks that address high-priority waste remediation problems involving high-level, low-level, transuranic, hazardous, and mixed (radioactive and hazardous) wastes. The ESP supports applied research and development (R & D) leading to the demonstration or use of these separations technologies by other organizations within the Department of Energy (DOE), Office of Environmental Management.
Optimization of the isotope separation in columns
International Nuclear Information System (INIS)
Kaminskij, V.A.; Vetsko, V.M.; Tevzadze, G.A.; Devdariani, O.A.; Sulaberidze, G.A.
1982-01-01
The general method for the multi-parameter optimization of cascade plants of packed columns is proposed. As an optimization effectiveness function a netcost of the isotopic product is selected. The net cost is comprehensively characterizing the sum total of capital costs for manufacturing the products as well as determining the choice of the most effective directions for capital investments and rational limits of improvement of the products quality. The method is based on main representations of the cascade theory, such as the ideal flow profile and form efficiency as well as mathematical model of the packed column specifying the bonds between its geometric and operating parameters. As a result, the isotopic products cost function could be bound with such parameters as the equilibrium stage height, ultimate packing capacity, its element dimensions, column diameter. It is concluded that the suggested approach to the optimization of isotope separation processes is rather a general one. It permits to solve a number of special problems, such as estimation of advisability of using heat-pump circuits and determining the rational automation level. Besides, by means of the method suggested one can optimize the process conditions with regard to temperature and pressure
Geometrical formulation of the conformal Ward identity
International Nuclear Information System (INIS)
Kachkachi, M.
2002-08-01
In this paper we use deep ideas in complex geometry that proved to be very powerful in unveiling the Polyakov measure on the moduli space of Riemann surfaces and lead to obtain the partition function of perturbative string theory for 2, 3, 4 loops. Indeed, a geometrical interpretation of the conformal Ward identity in two dimensional conformal field theory is proposed: the conformal anomaly is interpreted as a deformation of the complex structure of the basic Riemann surface. This point of view is in line with the modern trend of geometric quantizations that are based on deformations of classical structures. Then, we solve the conformal Ward identity by using this geometrical formalism. (author)
Initial singularity and pure geometric field theories
Wanas, M. I.; Kamal, Mona M.; Dabash, Tahia F.
2018-01-01
In the present article we use a modified version of the geodesic equation, together with a modified version of the Raychaudhuri equation, to study initial singularities. These modified equations are used to account for the effect of the spin-torsion interaction on the existence of initial singularities in cosmological models. Such models are the results of solutions of the field equations of a class of field theories termed pure geometric. The geometric structure used in this study is an absolute parallelism structure satisfying the cosmological principle. It is shown that the existence of initial singularities is subject to some mathematical (geometric) conditions. The scheme suggested for this study can be easily generalized.
SOME PROPERTIES OF GEOMETRIC DEA MODELS
Directory of Open Access Journals (Sweden)
Ozren Despić
2013-02-01
Full Text Available Some specific geometric data envelopment analysis (DEA models are well known to the researchers in DEA through so-called multiplicative or log-linear efficiency models. Valuable properties of these models were noted by several authors but the models still remain somewhat obscure and rarely used in practice. The purpose of this paper is to show from a mathematical perspective where the geometric DEA fits in relation to the classical DEA, and to provide a brief overview of some benefits in using geometric DEA in practice of decision making and/or efficiency measurement.
Refined geometric transition and qq-characters
Kimura, Taro; Mori, Hironori; Sugimoto, Yuji
2018-01-01
We show the refinement of the prescription for the geometric transition in the refined topological string theory and, as its application, discuss a possibility to describe qq-characters from the string theory point of view. Though the suggested way to operate the refined geometric transition has passed through several checks, it is additionally found in this paper that the presence of the preferred direction brings a nontrivial effect. We provide the modified formula involving this point. We then apply our prescription of the refined geometric transition to proposing the stringy description of doubly quantized Seiberg-Witten curves called qq-characters in certain cases.
A Geometrical View of Higgs Effective Theory
CERN. Geneva
2016-01-01
A geometric formulation of Higgs Effective Field Theory (HEFT) is presented. Experimental observables are given in terms of geometric invariants of the scalar sigma model sector such as the curvature of the scalar field manifold M. We show how the curvature can be measured experimentally via Higgs cross-sections, W_L scattering, and the S parameter. The one-loop action of HEFT is given in terms of geometric invariants of M. The distinction between the Standard Model (SM) and HEFT is whether M is flat or curved, with the curvature a signal of the scale of new physics.
Geometrical analysis of the interacting boson model
International Nuclear Information System (INIS)
Dieperink, A.E.L.
1983-01-01
The Interacting Boson Model is considered, in relation with geometrical models and the application of mean field techniques to algebraic models, in three lectures. In the first, several methods are reviewed to establish a connection between the algebraic formulation of collective nuclear properties in terms of the group SU(6) and the geometric approach. In the second lecture the geometric interpretation of new degrees of freedom that arise in the neutron-proton IBA is discussed, and in the third one some further applications of algebraic techniques to the calculation of static and dynamic collective properties are presented. (U.K.)
Lectures on geometrical properties of nuclei
International Nuclear Information System (INIS)
Myers, W.D.
1975-11-01
Material concerning the geometrical properties of nuclei is drawn from a number of different sources. The leptodermous nature of nuclear density distributions and potential wells is used to draw together the various geometrical properties of these systems and to provide a unified means for their description. Extensive use is made of expansions of radial properties in terms of the surface diffuseness. A strong case is made for the use of convolution as a geometrical ansatz for generating diffuse surface distributions because of the number of simplifications that arise which are of practical importance. 7 figures
Stock price prediction using geometric Brownian motion
Farida Agustini, W.; Restu Affianti, Ika; Putri, Endah RM
2018-03-01
Geometric Brownian motion is a mathematical model for predicting the future price of stock. The phase that done before stock price prediction is determine stock expected price formulation and determine the confidence level of 95%. On stock price prediction using geometric Brownian Motion model, the algorithm starts from calculating the value of return, followed by estimating value of volatility and drift, obtain the stock price forecast, calculating the forecast MAPE, calculating the stock expected price and calculating the confidence level of 95%. Based on the research, the output analysis shows that geometric Brownian motion model is the prediction technique with high rate of accuracy. It is proven with forecast MAPE value ≤ 20%.
Directory of Open Access Journals (Sweden)
Jiří Bureš
2005-06-01
Full Text Available After reconstruction of communication passing through two cadastral areas, geometrical plans were made for the property dividing for each areas independently. The cadastral boundary is a water flow. The digitized cadastral maps of the former cadastre in the Cassini - soldner datum in the scale 1:2880, (the coordinate system St. Stephan, were used. The contact of drafting on the cadastral boundary was not adjusted. The changed boundary and reference points were surveyed in the field in the datum JTSK. The surveyed data were transformed into digitized maps separately for each cadastral area. The unadjusted cadastral boundary, many calculations and also the lack of reference points casued main difficulties. These problems are solved by digitized cadastral maps in datum JTSK with adjusted cadastral boundaries.
A Location-Based Service Using Geometric Location Methods to Unite Mobile Users
Directory of Open Access Journals (Sweden)
Wen-Chen Hu
2016-02-01
Full Text Available Since the introduction of iPhone in 2007, many location-based services (LBSs have been created and new LBSs are found every day. This research proposes yet another LBS, which is practical and was not found before to the best of authors' knowledge. The problem is described as follows. It happens all the times while several groups of people are traveling towards a destination, they lose contact from each other on the way. This research tries to have the groups travel as closely as possible until they reach the destination. It uses a method of minimum covering ellipses to find whether the groups are separated by more than a threshold/distance. If they are, the system will find a convenient rendezvous for all groups by using a method of geometric median. After meeting at the rendezvous, the groups reset the service and continue their journey. By using this LBS, travelers do not need to worry about losing connections with others. This method can also be applied to the problem of finding a convenient meeting place for mobile users.
Geometrical origin of chaoticity in the bouncing ball billiard
International Nuclear Information System (INIS)
Mátyás, L.; Barna, I.F.
2011-01-01
Highlights: ► We study the possible separation of neighouring trajectories in the bouncing ball billiard. ► In a certain interval of frequencies semianalitical evaluations are possible. ► One may find a lower bound for the maximal Lyapunov exponent in case of a resonance. - Abstract: We present a study of the chaotic behaviour of the bouncing ball billiard. The work is realised on the purpose of finding at least certain causes of separation of the neighbouring trajectories. Having in view the geometrical construction of the system, we report a clear origin of chaoticity of the bouncing ball billiard. By this we claim that in case when the floor is made of arc of circles – in a certain interval of frequencies – one can give semi-analytical estimates on chaotic behaviour.
Transition curves for highway geometric design
Kobryń, Andrzej
2017-01-01
This book provides concise descriptions of the various solutions of transition curves, which can be used in geometric design of roads and highways. It presents mathematical methods and curvature functions for defining transition curves. .
Geometrical scaling of jet fragmentation photons
Energy Technology Data Exchange (ETDEWEB)
Hattori, Koichi, E-mail: koichi.hattori@riken.jp [RIKEN BNL Research Center, Brookhaven National Laboratory, Upton NY 11973 (United States); Theoretical Research Division, Nishina Center, RIKEN, Wako, Saitama 351-0198 (Japan); McLerran, Larry, E-mail: mclerran@bnl.gov [RIKEN BNL Research Center, Brookhaven National Laboratory, Upton NY 11973 (United States); Physics Dept., Bdg. 510A, Brookhaven National Laboratory, Upton, NY-11973 (United States); Physics Dept., China Central Normal University, Wuhan (China); Schenke, Björn, E-mail: bschenke@bnl.gov [Physics Dept., Bdg. 510A, Brookhaven National Laboratory, Upton, NY-11973 (United States)
2016-12-15
We discuss jet fragmentation photons in ultrarelativistic heavy-ion collisions. We argue that, if the jet distribution satisfies geometrical scaling and an anisotropic spectrum, these properties are transferred to photons during the jet fragmentation.
Geometric U-folds in four dimensions
Lazaroiu, C. I.; Shahbazi, C. S.
2018-01-01
We describe a general construction of geometric U-folds compatible with a non-trivial extension of the global formulation of four-dimensional extended supergravity on a differentiable spin manifold. The topology of geometric U-folds depends on certain flat fiber bundles which encode how supergravity fields are globally glued together. We show that smooth non-trivial U-folds of this type can exist only in theories where both the scalar and space-time manifolds have non-trivial fundamental group and in addition the scalar map of the solution is homotopically non-trivial. Consistency with string theory requires smooth geometric U-folds to be glued using subgroups of the effective discrete U-duality group, implying that the fundamental group of the scalar manifold of such solutions must be a subgroup of the latter. We construct simple examples of geometric U-folds in a generalization of the axion-dilaton model of \
5th Dagstuhl Seminar on Geometric Modelling
Brunnett, Guido; Farin, Gerald; Goldman, Ron
2004-01-01
In 19 articles presented by leading experts in the field of geometric modelling the state-of-the-art on representing, modeling, and analyzing curves, surfaces as well as other 3-dimensional geometry is given. The range of applications include CAD/CAM-systems, computer graphics, scientific visualization, virtual reality, simulation and medical imaging. The content of this book is based on selected lectures given at a workshop held at IBFI Schloss Dagstuhl, Germany. Topics treated are: – curve and surface modelling – non-manifold modelling in CAD – multiresolution analysis of complex geometric models – surface reconstruction – variational design – computational geometry of curves and surfaces – 3D meshing – geometric modelling for scientific visualization – geometric models for biomedical applications
The perception of geometrical structure from congruence
Lappin, Joseph S.; Wason, Thomas D.
1989-01-01
The principle function of vision is to measure the environment. As demonstrated by the coordination of motor actions with the positions and trajectories of moving objects in cluttered environments and by rapid recognition of solid objects in varying contexts from changing perspectives, vision provides real-time information about the geometrical structure and location of environmental objects and events. The geometric information provided by 2-D spatial displays is examined. It is proposed that the geometry of this information is best understood not within the traditional framework of perspective trigonometry, but in terms of the structure of qualitative relations defined by congruences among intrinsic geometric relations in images of surfaces. The basic concepts of this geometrical theory are outlined.
Mechanisms of geometrical seismic attenuation
Directory of Open Access Journals (Sweden)
Igor B. Morozov
2011-07-01
Full Text Available In several recent reports, we have explained the frequency dependence of the apparent seismic quality-factor (Q observed in many studies according to the effects of geometrical attenuation, which was defined as the zero-frequency limit of the temporal attenuation coefficient. In particular, geometrical attenuation was found to be positive for most waves traveling within the lithosphere. Here, we present three theoretical models that illustrate the origin of this geometrical attenuation, and we investigate the causes of its preferential positive values. In addition, we discuss the physical basis and limitations of both the conventional and new attenuation models. For waves in media with slowly varying properties, geometrical attenuation is caused by variations in the wavefront curvature, which can be both positive (for defocusing and negative (for focusing. In media with velocity/density contrasts, incoherent reflectivity leads to geometrical-attenuation coefficients which are proportional to the mean squared reflectivity and are always positive. For «coherent» reflectivity, the geometrical attenuation is approximately zero, and the attenuation process can be described according to the concept of «scattering Q». However, the true meaning of this parameter is in describing the mean reflectivity within the medium, and not that of the traditional resonator quality factor known in mechanics. The general conclusion from these models is that non-zero and often positive levels of geometrical attenuation are common in realistic, heterogeneous media, both observationally and theoretically. When transformed into the conventional Q-factor form, this positive geometrical attenuation leads to Q values that quickly increase with frequency. These predictions show that the positive frequency-dependent Q observed in many datasets might represent artifacts of the transformations of the attenuation coefficients into Q.
Electromagnetic separator of plasma
International Nuclear Information System (INIS)
Gasilin, V.V.; Nezovibatko, Yu.N.; Poklepach, G.S.; Shvets, O.M.; Taran, V.S.; Tereshin, V.I.
2005-01-01
The progress in the widespread utilization of the PVD methods is determined in many respects by the plasma quality and, therefore, the necessity of an application of plasma separators, in particular magnetic separators. One needs to note that traditional magnetic separators have a number of problems their using, namely their unwieldiness, the presence of the isolated cameras and so on. We have proposed, manufactured and investigated the simple separator of plasma that doesn't require using additional cameras. As a source of metallic plasma the standard cathode vaporizer in the installation 'BULAT 6' was in use. Plasma stream from the cathode flowed through the not protected by isolation spiral solenoid. The solenoid input (from the cathode side) was under floating potential. The solenoid output was connected to the autonomous power supply system. The solenoid was prepared with stride winding and 90 degree turn. The solenoid current was 20-90 A and the solenoid voltage with respect to the vessel (earth) was +15 V. In this case drifting charged particles could freely fly out from the interior solenoid region to its boundary. The glow of the turned flow of plasma was observed during the supplying of the cathode and the solenoid. Plasma flow was separated from the coils and extended along the axis of solenoid. One can assume that this device ensures radial electric with respect to the bulk of plasma (the diameter of the bulk of plasma is comparable with the cathode diameter), the toroidal magnetic field, produced by solenoid, was of an order of 20 Oe. Magnetic field strength was sufficient for the magnetization of electrons, but it was rather small for magnetizing the ions and charged micro-droplets. The experiments carried out with aluminum cathode on the deposition of coatings at the stainless steel substrate have shown the high effectiveness of this separator operation. Coatings without droplets were obtained also on the glass substrate with HF- displacement
Finsler-Geometric Continuum Mechanics
2016-05-01
incremental boundary value problems. Crucial to deriving such equations is an extension of the divergence theorem for- warded in reference 56. Application of...to Ω in Eq. 16, as can spatial versions of the coordinate-free Stokes’ theorem in Eq. 18 and Rund’s horizontal divergence theo- rem in Eq. 19. 2.3... divergence theorem Eq. 19 and repeated integration by parts then gives the following equivalent integral form of Eq. 49: − ∫ M {[PAa|A + (PAa CCBC + ∂̄BPAa
Graphene geometric diodes for terahertz rectennas
International Nuclear Information System (INIS)
Zhu Zixu; Joshi, Saumil; Grover, Sachit; Moddel, Garret
2013-01-01
We demonstrate a new thin-film graphene diode called a geometric diode that relies on geometric asymmetry to provide rectification at 28 THz. The geometric diode is coupled to an optical antenna to form a rectenna that rectifies incoming radiation. This is the first reported graphene-based antenna-coupled diode working at 28 THz, and potentially at optical frequencies. The planar structure of the geometric diode provides a low RC time constant, on the order of 10 −15 s, required for operation at optical frequencies, and a low impedance for efficient power transfer from the antenna. Fabricated geometric diodes show asymmetric current–voltage characteristics consistent with Monte Carlo simulations for the devices. Rectennas employing the geometric diode coupled to metal and graphene antennas rectify 10.6 µm radiation, corresponding to an operating frequency of 28 THz. The graphene bowtie antenna is the first demonstrated functional antenna made using graphene. Its response indicates that graphene is a suitable terahertz resonator material. Applications for this terahertz diode include terahertz-wave and optical detection, ultra-high-speed electronics and optical power conversion. (paper)
Quadratic time dependent Hamiltonians and separation of variables
International Nuclear Information System (INIS)
Anzaldo-Meneses, A.
2017-01-01
Time dependent quantum problems defined by quadratic Hamiltonians are solved using canonical transformations. The Green’s function is obtained and a comparison with the classical Hamilton–Jacobi method leads to important geometrical insights like exterior differential systems, Monge cones and time dependent Gaussian metrics. The Wei–Norman approach is applied using unitary transformations defined in terms of generators of the associated Lie groups, here the semi-direct product of the Heisenberg group and the symplectic group. A new explicit relation for the unitary transformations is given in terms of a finite product of elementary transformations. The sequential application of adequate sets of unitary transformations leads naturally to a new separation of variables method for time dependent Hamiltonians, which is shown to be related to the Inönü–Wigner contraction of Lie groups. The new method allows also a better understanding of interacting particles or coupled modes and opens an alternative way to analyze topological phases in driven systems. - Highlights: • Exact unitary transformation reducing time dependent quadratic quantum Hamiltonian to zero. • New separation of variables method and simultaneous uncoupling of modes. • Explicit examples of transformations for one to four dimensional problems. • New general evolution equation for quadratic form in the action, respectively Green’s function.
Separation of uranium isotopes
International Nuclear Information System (INIS)
Ehrfeld, W.; Ehrfeld, U.
1977-01-01
In the nuclear fuel cycle, uranium enrichment is not a principal problem of technological feasibility. Several processes exist for producing LWR fuel and the enrichment method can be selected in consideration of economical, environmental, and political aspects. To date, the gaseous diffusion process constitutes the major part of enrichment capacity. This process has been well demonstrated for over 30 years and, as a matter of fact, no major technological and economical progress is to be expected in the future. Because of their comparatively high development potential, the centrifuge and the separation nozzle method may become increasingly favorable in economics. The development of the centrifuge process which is superior by its low specific energy consumption aims at technological improvements. In the separation nozzle process which offers the advantage of a comparatively simple technology a further reduction of the specific energy consumption is to be expected because of the thermodynamically favorable separation mechanism of this process. Laser isotope separation methods are still on the laboratory scale, although large financial funds have been spent. (orig.) [de
Geometric algebra with applications in science and engineering
Sobczyk, Garret
2001-01-01
The goal of this book is to present a unified mathematical treatment of diverse problems in mathematics, physics, computer science, and engineer ing using geometric algebra. Geometric algebra was invented by William Kingdon Clifford in 1878 as a unification and generalization of the works of Grassmann and Hamilton, which came more than a quarter of a century before. Whereas the algebras of Clifford and Grassmann are well known in advanced mathematics and physics, they have never made an impact in elementary textbooks where the vector algebra of Gibbs-Heaviside still predominates. The approach to Clifford algebra adopted in most of the ar ticles here was pioneered in the 1960s by David Hestenes. Later, together with Garret Sobczyk, he developed it into a unified language for math ematics and physics. Sobczyk first learned about the power of geometric algebra in classes in electrodynamics and relativity taught by Hestenes at Arizona State University from 1966 to 1967. He still vividly remembers a feeling ...
Geometric Algorithms for Private-Cache Chip Multiprocessors
DEFF Research Database (Denmark)
Ajwani, Deepak; Sitchinava, Nodari; Zeh, Norbert
2010-01-01
-D convex hulls. These results are obtained by analyzing adaptations of either the PEM merge sort algorithm or PRAM algorithms. For the second group of problems—orthogonal line segment intersection reporting, batched range reporting, and related problems—more effort is required. What distinguishes......We study techniques for obtaining efficient algorithms for geometric problems on private-cache chip multiprocessors. We show how to obtain optimal algorithms for interval stabbing counting, 1-D range counting, weighted 2-D dominance counting, and for computing 3-D maxima, 2-D lower envelopes, and 2...... these problems from the ones in the previous group is the variable output size, which requires I/O-efficient load balancing strategies based on the contribution of the individual input elements to the output size. To obtain nearly optimal algorithms for these problems, we introduce a parallel distribution...
Analysis of Geometric Thinking Students’ and Process-Guided Inquiry Learning Model
Hardianti, D.; Priatna, N.; Priatna, B. A.
2017-09-01
This research aims to analysis students’ geometric thinking ability and theoretically examine the process-oriented guided iquiry (POGIL) model. This study uses qualitative approach with descriptive method because this research was done without any treatment on subjects. Data were collected naturally. This study was conducted in one of the State Junior High School in Bandung. The population was second grade students and the sample was 32 students. Data of students’ geometric thinking ability were collected through geometric thinking test. These questions are made based on the characteristics of geometry thinking based on van hiele’s theory. Based on the results of the analysis and discussion, students’ geometric thinking ability is still low so it needs to be improved. Therefore, an effort is needed to overcome the problems related to students’ geometric thinking ability. One of the efforts that can be done by doing the learning that can facilitate the students to construct their own geometry concept, especially quadrilateral’s concepts so that students’ geometric thinking ability can enhance maximally. Based on study of the theory, one of the learning models that can enhance the students’ geometric thinking ability is POGIL model.
An Explicit Consistent Geometric Stiffness Matrix for the DKT Element
Directory of Open Access Journals (Sweden)
Eliseu Lucena Neto
Full Text Available Abstract A large number of references dealing with the geometric stiffness matrix of the DKT finite element exist in the literature, where nearly all of them adopt an inconsistent form. While such a matrix may be part of the element to treat nonlinear problems in general, it is of crucial importance for linearized buckling analysis. The present work seems to be the first to obtain an explicit expression for this matrix in a consistent way. Numerical results on linear buckling of plates assess the element performance either with the proposed explicit consistent matrix, or with the most commonly used inconsistent matrix.
Type II Superstring Field Theory: Geometric Approach and Operadic Description
Jurco, Branislav
2013-01-01
We outline the construction of type II superstring field theory leading to a geometric and algebraic BV master equation, analogous to Zwiebach's construction for the bosonic string. The construction uses the small Hilbert space. Elementary vertices of the non-polynomial action are described with the help of a properly formulated minimal area problem. They give rise to an infinite tower of superstring field products defining a $\\mathcal{N}=1$ generalization of a loop homotopy Lie algebra, the genus zero part generalizing a homotopy Lie algebra. Finally, we give an operadic interpretation of the construction.
A geometrical description of local and global anomalies
International Nuclear Information System (INIS)
Catenacci, R.; Pirola, G.P.
1990-01-01
The general topological framework for testing the possible occurrence of anomalies in gauge theories can be constructed in terms of the theory of group actions on line bundles through the introduction of a suitable group cohomology. In this Letter, we generalize this construction in such a way that it can be applied to a larger class of theories, allowing for a noncontractible configuration space and a nonconnected 'gauge' group. This construction find applications to the problem of the lifts of principal group actions. As a physical application, we compare the mechanisms of the anomalies cancelation in gauge and string theories, through a geometrical splitting of local and global anomalies. (orig.)
Geometric theory of fundamental interactions. Foundations of unified physics
International Nuclear Information System (INIS)
Pestov, A.B.
2012-01-01
We put forward an idea that regularities of unified physics are in a simple relation: everything in the concept of space and the concept of space in everything. With this hypothesis as a ground, a conceptual structure of a unified geometrical theory of fundamental interactions is created and deductive derivation of its main equations is produced. The formulated theory gives solution of the actual problems, provides opportunity to understand the origin and nature of physical fields, local internal symmetry, time, energy, spin, charge, confinement, dark energy and dark matter, thus conforming the existence of new physics in its unity
Optimal control for mathematical models of cancer therapies an application of geometric methods
Schättler, Heinz
2015-01-01
This book presents applications of geometric optimal control to real life biomedical problems with an emphasis on cancer treatments. A number of mathematical models for both classical and novel cancer treatments are presented as optimal control problems with the goal of constructing optimal protocols. The power of geometric methods is illustrated with fully worked out complete global solutions to these mathematically challenging problems. Elaborate constructions of optimal controls and corresponding system responses provide great examples of applications of the tools of geometric optimal control and the outcomes aid the design of simpler, practically realizable suboptimal protocols. The book blends mathematical rigor with practically important topics in an easily readable tutorial style. Graduate students and researchers in science and engineering, particularly biomathematics and more mathematical aspects of biomedical engineering, would find this book particularly useful.
The Data Transfer Kit: A geometric rendezvous-based tool for multiphysics data transfer
International Nuclear Information System (INIS)
Slattery, S. R.; Wilson, P. P. H.; Pawlowski, R. P.
2013-01-01
The Data Transfer Kit (DTK) is a software library designed to provide parallel data transfer services for arbitrary physics components based on the concept of geometric rendezvous. The rendezvous algorithm provides a means to geometrically correlate two geometric domains that may be arbitrarily decomposed in a parallel simulation. By repartitioning both domains such that they have the same geometric domain on each parallel process, efficient and load balanced search operations and data transfer can be performed at a desirable algorithmic time complexity with low communication overhead relative to other types of mapping algorithms. With the increased development efforts in multiphysics simulation and other multiple mesh and geometry problems, generating parallel topology maps for transferring fields and other data between geometric domains is a common operation. The algorithms used to generate parallel topology maps based on the concept of geometric rendezvous as implemented in DTK are described with an example using a conjugate heat transfer calculation and thermal coupling with a neutronics code. In addition, we provide the results of initial scaling studies performed on the Jaguar Cray XK6 system at Oak Ridge National Laboratory for a worse-case-scenario problem in terms of algorithmic complexity that shows good scaling on 0(1 x 104) cores for topology map generation and excellent scaling on 0(1 x 105) cores for the data transfer operation with meshes of O(1 x 109) elements. (authors)
A content-based digital image watermarking scheme resistant to local geometric distortions
International Nuclear Information System (INIS)
Yang, Hong-ying; Chen, Li-li; Wang, Xiang-yang
2011-01-01
Geometric distortion is known as one of the most difficult attacks to resist, as it can desynchronize the location of the watermark and hence cause incorrect watermark detection. Geometric distortion can be decomposed into two classes: global affine transforms and local geometric distortions. Most countermeasures proposed in the literature only address the problem of global affine transforms. It is a challenging problem to design a robust image watermarking scheme against local geometric distortions. In this paper, we propose a new content-based digital image watermarking scheme with good visual quality and reasonable resistance against local geometric distortions. Firstly, the robust feature points, which can survive various common image processing and global affine transforms, are extracted by using a multi-scale SIFT (scale invariant feature transform) detector. Then, the affine covariant local feature regions (LFRs) are constructed adaptively according to the feature scale and local invariant centroid. Finally, the digital watermark is embedded into the affine covariant LFRs by modulating the magnitudes of discrete Fourier transform (DFT) coefficients. By binding the watermark with the affine covariant LFRs, the watermark detection can be done without synchronization error. Experimental results show that the proposed image watermarking is not only invisible and robust against common image processing operations such as sharpening, noise addition, and JPEG compression, etc, but also robust against global affine transforms and local geometric distortions
The Data Transfer Kit: A geometric rendezvous-based tool for multiphysics data transfer
Energy Technology Data Exchange (ETDEWEB)
Slattery, S. R.; Wilson, P. P. H. [Department of Engineering Physics, University of Wisconsin - Madison, 1500 Engineering Dr., Madison, WI 53706 (United States); Pawlowski, R. P. [Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM 87185 (United States)
2013-07-01
The Data Transfer Kit (DTK) is a software library designed to provide parallel data transfer services for arbitrary physics components based on the concept of geometric rendezvous. The rendezvous algorithm provides a means to geometrically correlate two geometric domains that may be arbitrarily decomposed in a parallel simulation. By repartitioning both domains such that they have the same geometric domain on each parallel process, efficient and load balanced search operations and data transfer can be performed at a desirable algorithmic time complexity with low communication overhead relative to other types of mapping algorithms. With the increased development efforts in multiphysics simulation and other multiple mesh and geometry problems, generating parallel topology maps for transferring fields and other data between geometric domains is a common operation. The algorithms used to generate parallel topology maps based on the concept of geometric rendezvous as implemented in DTK are described with an example using a conjugate heat transfer calculation and thermal coupling with a neutronics code. In addition, we provide the results of initial scaling studies performed on the Jaguar Cray XK6 system at Oak Ridge National Laboratory for a worse-case-scenario problem in terms of algorithmic complexity that shows good scaling on 0(1 x 104) cores for topology map generation and excellent scaling on 0(1 x 105) cores for the data transfer operation with meshes of O(1 x 109) elements. (authors)
1991-01-01
our sample were reportedly unable to adjust to the military environment due to social or emotional immaturity. This problem was especially prevalent...Table 9. Table 9 REASONS FOR EARLY SEPARATION 1. Mental health. Phobias , suicide threats and attempts, emotional immaturity, and personality and...hliurfl’lutf t’ htrtiuug tht .’ plinittol piioL’m.9 evIn’ thfll I b’ r i’lli. vre’.Ilv ifao~ , ýI ll.tv ill it](- rv ’: 111nil tln1 (i~.. 4 P A W4.11
Honório, Leonardo M; Barbosa, Daniele A; Oliveira, Edimar J; Garcia, Paulo A Nepomuceno; Santos, Murillo F
2018-03-01
This work presents a new approach for solving classification and learning problems. The Successive Geometric Segmentation technique is applied to encapsulate large datasets by using a series of Oriented Bounding Hyper Box (OBHBs). Each OBHB is obtained through linear separation analysis and each one represents a specific region in a pattern's solution space. Also, each OBHB can be seen as a data abstraction layer and be considered as an individual Kernel. Thus, it is possible by applying a quadratic discriminant function, to assemble a set of nonlinear surfaces separating each desirable pattern. This approach allows working with large datasets using high speed linear analysis tools and yet providing a very accurate non-linear classifier as final result. The methodology was tested using the UCI Machine Learning repository and a Power Transformer Fault Diagnosis real scenario problem. The results were compared with different approaches provided by literature and, finally, the potential and further applications of the methodology were also discussed. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
International Nuclear Information System (INIS)
Ioannou, Lawrence M.; Travaglione, Benjamin C.
2006-01-01
We focus on determining the separability of an unknown bipartite quantum state ρ by invoking a sufficiently large subset of all possible entanglement witnesses given the expected value of each element of a set of mutually orthogonal observables. We review the concept of an entanglement witness from the geometrical point of view and use this geometry to show that the set of separable states is not a polytope and to characterize the class of entanglement witnesses (observables) that detect entangled states on opposite sides of the set of separable states. All this serves to motivate a classical algorithm which, given the expected values of a subset of an orthogonal basis of observables of an otherwise unknown quantum state, searches for an entanglement witness in the span of the subset of observables. The idea of such an algorithm, which is an efficient reduction of the quantum separability problem to a global optimization problem, was introduced by [Ioannou et al., Phys. Rev. A 70, 060303(R)], where it was shown to be an improvement on the naive approach for the quantum separability problem (exhaustive search for a decomposition of the given state into a convex combination of separable states). The last section of the paper discusses in more generality such algorithms, which, in our case, assume a subroutine that computes the global maximum of a real function of several variables. Despite this, we anticipate that such algorithms will perform sufficiently well on small instances that they will render a feasible test for separability in some cases of interest (e.g., in 3x3 dimensional systems)
4th Italian-Japanese workshop on Geometric Properties for Parabolic and Elliptic PDE’s
Ishige, Kazuhiro; Nitsch, Carlo; Salani, Paolo
2016-01-01
This book collects recent research papers by respected specialists in the field. It presents advances in the field of geometric properties for parabolic and elliptic partial differential equations, an area that has always attracted great attention. It settles the basic issues (existence, uniqueness, stability and regularity of solutions of initial/boundary value problems) before focusing on the topological and/or geometric aspects. These topics interact with many other areas of research and rely on a wide range of mathematical tools and techniques, both analytic and geometric. The Italian and Japanese mathematical schools have a long history of research on PDEs and have numerous active groups collaborating in the study of the geometric properties of their solutions. .
International Nuclear Information System (INIS)
Borovikov, V.A.; Kinber, B.E.
1988-01-01
The heuristic criteria (HC) of validity of geometric optics (GO) and of the geometric theory of diffraction (GTD), suggested in [2-7, 13, 14] and based on identifying the physical volume occupied by the ray with the Fresnel volume (FV) introduced in these papers (i.e., the envelope of the first Fresnel zone), are analyzed. Numerous examples of HC invalidity are given, as well as the reasons. In particular, HC provide an incorrect answer for all GO problems with caustics, since in these problems there always exists a ray, whose FV is nonlocal and covers the FV of other rays. The HC are shown to be unsuitable for multiple ray GTD problems, as well as for the simplest problems of diffraction of a cylindrical wave by a half-plane and of a plane wave by a curved half-plane
Morphing of geometric composites via residual swelling.
Pezzulla, Matteo; Shillig, Steven A; Nardinocchi, Paola; Holmes, Douglas P
2015-08-07
Understanding and controlling the shape of thin, soft objects has been the focus of significant research efforts among physicists, biologists, and engineers in the last decade. These studies aim to utilize advanced materials in novel, adaptive ways such as fabricating smart actuators or mimicking living tissues. Here, we present the controlled growth-like morphing of 2D sheets into 3D shapes by preparing geometric composite structures that deform by residual swelling. The morphing of these geometric composites is dictated by both swelling and geometry, with diffusion controlling the swelling-induced actuation, and geometric confinement dictating the structure's deformed shape. Building on a simple mechanical analog, we present an analytical model that quantitatively describes how the Gaussian and mean curvatures of a thin disk are affected by the interplay among geometry, mechanics, and swelling. This model is in excellent agreement with our experiments and numerics. We show that the dynamics of residual swelling is dictated by a competition between two characteristic diffusive length scales governed by geometry. Our results provide the first 2D analog of Timoshenko's classical formula for the thermal bending of bimetallic beams - our generalization explains how the Gaussian curvature of a 2D geometric composite is affected by geometry and elasticity. The understanding conferred by these results suggests that the controlled shaping of geometric composites may provide a simple complement to traditional manufacturing techniques.
Geometric phases and hidden local gauge symmetry
International Nuclear Information System (INIS)
Fujikawa, Kazuo
2005-01-01
The analysis of geometric phases associated with level crossing is reduced to the familiar diagonalization of the Hamiltonian in the second quantized formulation. A hidden local gauge symmetry, which is associated with the arbitrariness of the phase choice of a complete orthonormal basis set, becomes explicit in this formulation (in particular, in the adiabatic approximation) and specifies physical observables. The choice of a basis set which specifies the coordinate in the functional space is arbitrary in the second quantization, and a subclass of coordinate transformations, which keeps the form of the action invariant, is recognized as the gauge symmetry. We discuss the implications of this hidden local gauge symmetry in detail by analyzing geometric phases for cyclic and noncyclic evolutions. It is shown that the hidden local symmetry provides a basic concept alternative to the notion of holonomy to analyze geometric phases and that the analysis based on the hidden local gauge symmetry leads to results consistent with the general prescription of Pancharatnam. We however note an important difference between the geometric phases for cyclic and noncyclic evolutions. We also explain a basic difference between our hidden local gauge symmetry and a gauge symmetry (or equivalence class) used by Aharonov and Anandan in their definition of generalized geometric phases
Inequalities among eigenvalues of Sturm–Liouville problems
Directory of Open Access Journals (Sweden)
Kong Q
1999-01-01
Full Text Available There are well-known inequalities among the eigenvalues of Sturm–Liouville problems with periodic, semi-periodic, Dirichlet and Neumann boundary conditions. In this paper, for an arbitrary coupled self-adjoint boundary condition, we identify two separated boundary conditions corresponding to the Dirichlet and Neumann conditions in the classical case, and establish analogous inequalities. It is also well-known that the lowest periodic eigenvalue is simple; here we prove a similar result for the general case. Moreover, we show that the algebraic and geometric multiplicities of the eigenvalues of self-adjoint regular Sturm–Liouville problems with coupled boundary conditions are the same. An important step in our approach is to obtain a representation of the fundamental solutions for sufficiently negative values of the spectral parameter. Our approach yields the existence and boundedness from below of the eigenvalues of arbitrary self-adjoint regular Sturm–Liouville problems without using operator theory.
The Geometric Phase of Stock Trading.
Altafini, Claudio
2016-01-01
Geometric phases describe how in a continuous-time dynamical system the displacement of a variable (called phase variable) can be related to other variables (shape variables) undergoing a cyclic motion, according to an area rule. The aim of this paper is to show that geometric phases can exist also for discrete-time systems, and even when the cycles in shape space have zero area. A context in which this principle can be applied is stock trading. A zero-area cycle in shape space represents the type of trading operations normally carried out by high-frequency traders (entering and exiting a position on a fast time-scale), while the phase variable represents the cash balance of a trader. Under the assumption that trading impacts stock prices, even zero-area cyclic trading operations can induce geometric phases, i.e., profits or losses, without affecting the stock quote.
Exponentiated Lomax Geometric Distribution: Properties and Applications
Directory of Open Access Journals (Sweden)
Amal Soliman Hassan
2017-09-01
Full Text Available In this paper, a new four-parameter lifetime distribution, called the exponentiated Lomax geometric (ELG is introduced. The new lifetime distribution contains the Lomax geometric and exponentiated Pareto geometric as new sub-models. Explicit algebraic formulas of probability density function, survival and hazard functions are derived. Various structural properties of the new model are derived including; quantile function, Re'nyi entropy, moments, probability weighted moments, order statistic, Lorenz and Bonferroni curves. The estimation of the model parameters is performed by maximum likelihood method and inference for a large sample is discussed. The flexibility and potentiality of the new model in comparison with some other distributions are shown via an application to a real data set. We hope that the new model will be an adequate model for applications in various studies.
Normed algebras and the geometric series test
Directory of Open Access Journals (Sweden)
Robert Kantrowitz
2017-11-01
Full Text Available The purpose of this article is to survey a class of normed algebras that share many central features of Banach algebras, save for completeness. The likeness of these algebras to Banach algebras derives from the fact that the geometric series test is valid, whereas the lack of completeness points to the failure of the absolute convergence test for series in the algebra. Our main result is a compendium of conditions that are all equivalent to the validity of the geometric series test for commutative unital normed algebras. Several examples in the final section showcase some incomplete normed algebras for which the geometric series test is valid, and still others for which it is not.
EARLY HISTORY OF GEOMETRIC PROBABILITY AND STEREOLOGY
Directory of Open Access Journals (Sweden)
Magdalena Hykšová
2012-03-01
Full Text Available The paper provides an account of the history of geometric probability and stereology from the time of Newton to the early 20th century. It depicts the development of two parallel ways: on one hand, the theory of geometric probability was formed with minor attention paid to other applications than those concerning spatial chance games. On the other hand, practical rules of the estimation of area or volume fraction and other characteristics, easily deducible from geometric probability theory, were proposed without the knowledge of this branch. A special attention is paid to the paper of J.-É. Barbier published in 1860, which contained the fundamental stereological formulas, but remained almost unnoticed both by mathematicians and practicians.
Understanding geometric algebra for electromagnetic theory
Arthur, John W
2011-01-01
"This book aims to disseminate geometric algebra as a straightforward mathematical tool set for working with and understanding classical electromagnetic theory. It's target readership is anyone who has some knowledge of electromagnetic theory, predominantly ordinary scientists and engineers who use it in the course of their work, or postgraduate students and senior undergraduates who are seeking to broaden their knowledge and increase their understanding of the subject. It is assumed that the reader is not a mathematical specialist and is neither familiar with geometric algebra or its application to electromagnetic theory. The modern approach, geometric algebra, is the mathematical tool set we should all have started out with and once the reader has a grasp of the subject, he or she cannot fail to realize that traditional vector analysis is really awkward and even misleading by comparison"--Provided by publisher.
Spherical projections and liftings in geometric tomography
DEFF Research Database (Denmark)
Goodey, Paul; Kiderlen, Markus; Weil, Wolfgang
2011-01-01
We consider a variety of integral transforms arising in Geometric Tomography. It will be shown that these can be put into a common framework using spherical projection and lifting operators. These operators will be applied to support functions and surface area measures of convex bodies and to rad......We consider a variety of integral transforms arising in Geometric Tomography. It will be shown that these can be put into a common framework using spherical projection and lifting operators. These operators will be applied to support functions and surface area measures of convex bodies...... and to radial functions of star bodies. We then investigate averages of lifted projections and show that they correspond to self-adjoint intertwining operators. We obtain formulas for the eigenvalues of these operators and use them to ascertain circumstances under which tomographic measurements determine...... the original bodies. This approach via mean lifted projections leads us to some unexpected relationships between seemingly disparate geometric constructions....
Innovative Separations Technologies
Energy Technology Data Exchange (ETDEWEB)
J. Tripp; N. Soelberg; R. Wigeland
2011-05-01
Reprocessing used nuclear fuel (UNF) is a multi-faceted problem involving chemistry, material properties, and engineering. Technology options are available to meet a variety of processing goals. A decision about which reprocessing method is best depends significantly on the process attributes considered to be a priority. New methods of reprocessing that could provide advantages over the aqueous Plutonium Uranium Reduction Extraction (PUREX) and Uranium Extraction + (UREX+) processes, electrochemical, and other approaches are under investigation in the Fuel Cycle Research and Development (FCR&D) Separations Campaign. In an attempt to develop a revolutionary approach to UNF recycle that may have more favorable characteristics than existing technologies, five innovative separations projects have been initiated. These include: (1) Nitrogen Trifluoride for UNF Processing; (2) Reactive Fluoride Gas (SF6) for UNF Processing; (3) Dry Head-end Nitration Processing; (4) Chlorination Processing of UNF; and (5) Enhanced Oxidation/Chlorination Processing of UNF. This report provides a description of the proposed processes, explores how they fit into the Modified Open Cycle (MOC) and Full Recycle (FR) fuel cycles, and identifies performance differences when compared to 'reference' advanced aqueous and fluoride volatility separations cases. To be able to highlight the key changes to the reference case, general background on advanced aqueous solvent extraction, advanced oxidative processes (e.g., volumetric oxidation, or 'voloxidation,' which is high temperature reaction of oxide UNF with oxygen, or modified using other oxidizing and reducing gases), and fluorination and chlorination processes is provided.
Innovative Separations Technologies
International Nuclear Information System (INIS)
Tripp, J.; Soelberg, N.; Wigeland, R.
2011-01-01
Reprocessing used nuclear fuel (UNF) is a multi-faceted problem involving chemistry, material properties, and engineering. Technology options are available to meet a variety of processing goals. A decision about which reprocessing method is best depends significantly on the process attributes considered to be a priority. New methods of reprocessing that could provide advantages over the aqueous Plutonium Uranium Reduction Extraction (PUREX) and Uranium Extraction + (UREX+) processes, electrochemical, and other approaches are under investigation in the Fuel Cycle Research and Development (FCR and D) Separations Campaign. In an attempt to develop a revolutionary approach to UNF recycle that may have more favorable characteristics than existing technologies, five innovative separations projects have been initiated. These include: (1) Nitrogen Trifluoride for UNF Processing; (2) Reactive Fluoride Gas (SF6) for UNF Processing; (3) Dry Head-end Nitration Processing; (4) Chlorination Processing of UNF; and (5) Enhanced Oxidation/Chlorination Processing of UNF. This report provides a description of the proposed processes, explores how they fit into the Modified Open Cycle (MOC) and Full Recycle (FR) fuel cycles, and identifies performance differences when compared to 'reference' advanced aqueous and fluoride volatility separations cases. To be able to highlight the key changes to the reference case, general background on advanced aqueous solvent extraction, advanced oxidative processes (e.g., volumetric oxidation, or 'voloxidation,' which is high temperature reaction of oxide UNF with oxygen, or modified using other oxidizing and reducing gases), and fluorination and chlorination processes is provided.
Sudan-decoding generalized geometric Goppa codes
DEFF Research Database (Denmark)
Heydtmann, Agnes Eileen
2003-01-01
Generalized geometric Goppa codes are vector spaces of n-tuples with entries from different extension fields of a ground field. They are derived from evaluating functions similar to conventional geometric Goppa codes, but allowing evaluation in places of arbitrary degree. A decoding scheme...... for these codes based on Sudan's improved algorithm is presented and its error-correcting capacity is analyzed. For the implementation of the algorithm it is necessary that the so-called increasing zero bases of certain spaces of functions are available. A method to obtain such bases is developed....
The geometric phase in quantum physics
International Nuclear Information System (INIS)
Bohm, A.
1993-03-01
After an explanatory introduction, a quantum system in a classical time-dependent environment is discussed; an example is a magnetic moment in a classical magnetic field. At first, the general abelian case is discussed in the adiabatic approximation. Then the geometric phase for nonadiabatic change of the environment (Anandan--Aharonov phase) is introduced, and after that general cyclic (nonadiabatic) evolution is discussed. The mathematics of fiber bundles is introduced, and some of its results are used to describe the relation between the adiabatic Berry phase and the geometric phase for general cyclic evolution of a pure state. The discussion is restricted to the abelian, U(1) phase
Geometric modular action and transformation groups
International Nuclear Information System (INIS)
Summers, S.J.
1996-01-01
We study a weak form of geometric modular action, which is naturally associated with transformation groups of partially ordered sets and which provides these groups with projective representations. Under suitable conditions it is shown that these groups are implemented by point transformations of topological spaces serving as models for space-times, leading to groups which may be interpreted as symmetry groups of the space-times. As concrete examples, it is shown that the Poincare group and the de Sitter group can be derived from this condition of geometric modular action. Further consequences and examples are discussed. (orig.)
Geometrical methods for power network analysis
Energy Technology Data Exchange (ETDEWEB)
Bellucci, Stefano; Tiwari, Bhupendra Nath [Istituto Nazioneale di Fisica Nucleare, Frascati, Rome (Italy). Lab. Nazionali di Frascati; Gupta, Neeraj [Indian Institute of Technology, Kanpur (India). Dept. of Electrical Engineering
2013-02-01
Uses advanced geometrical methods to analyse power networks. Provides a self-contained and tutorial introduction. Includes a fully worked-out example for the IEEE 5 bus system. This book is a short introduction to power system planning and operation using advanced geometrical methods. The approach is based on well-known insights and techniques developed in theoretical physics in the context of Riemannian manifolds. The proof of principle and robustness of this approach is examined in the context of the IEEE 5 bus system. This work addresses applied mathematicians, theoretical physicists and power engineers interested in novel mathematical approaches to power network theory.
Aspects of the geometrical approach to supermanifolds
International Nuclear Information System (INIS)
Rogers, A.
1984-01-01
Various topics in the theory and application of the geometrical approach to supermanifolds are discussed. The construction of the superspace used in supergravity over an arbitrary spacetime manifold is described. Super Lie groups and their relation to graded Lie algebras (and more general structures referred to as 'graded Lie modules') are discussed, with examples. Certain supermanifolds, allowed in the geometric approach (using the fine topology), but having no analogue in the algebraic approach, are discussed. Finally lattice supersymmetry, and its relation to the differential geometry of supermanifolds, is discussed. (orig.)
Geometrical superresolved imaging using nonperiodic spatial masking.
Borkowski, Amikam; Zalevsky, Zeev; Javidi, Bahram
2009-03-01
The resolution of every imaging system is limited either by the F-number of its optics or by the geometry of its detection array. The geometrical limitation is caused by lack of spatial sampling points as well as by the shape of every sampling pixel that generates spectral low-pass filtering. We present a novel approach to overcome the low-pass filtering that is due to the shape of the sampling pixels. The approach combines special algorithms together with spatial masking placed in the intermediate image plane and eventually allows geometrical superresolved imaging without relation to the actual shape of the pixels.
Workshop on Topology and Geometric Group Theory
Fowler, James; Lafont, Jean-Francois; Leary, Ian
2016-01-01
This book presents articles at the interface of two active areas of research: classical topology and the relatively new field of geometric group theory. It includes two long survey articles, one on proofs of the Farrell–Jones conjectures, and the other on ends of spaces and groups. In 2010–2011, Ohio State University (OSU) hosted a special year in topology and geometric group theory. Over the course of the year, there were seminars, workshops, short weekend conferences, and a major conference out of which this book resulted. Four other research articles complement these surveys, making this book ideal for graduate students and established mathematicians interested in entering this area of research.
RESTRUCTURING INDONESIAN RAILWAY – INTEGRATION OR SEPARATION
Directory of Open Access Journals (Sweden)
Utut Widyanto
2013-05-01
The study found that the separation model is still the best approach for restructuring Indonesian railway but if looking at the Indonesian railway current condition with its problem of backlog assets it would be better that the separation approach is used in the development of railway in other islands. Keywords: Restructuration, separation, funds, operator.
Geometric flows and (some of) their physical applications
Bakas, Ioannis
2005-01-01
The geometric evolution equations provide new ways to address a variety of non-linear problems in Riemannian geometry, and, at the same time, they enjoy numerous physical applications, most notably within the renormalization group analysis of non-linear sigma models and in general relativity. They are divided into classes of intrinsic and extrinsic curvature flows. Here, we review the main aspects of intrinsic geometric flows driven by the Ricci curvature, in various forms, and explain the intimate relation between Ricci and Calabi flows on Kahler manifolds using the notion of super-evolution. The integration of these flows on two-dimensional surfaces relies on the introduction of a novel class of infinite dimensional algebras with infinite growth. It is also explained in this context how Kac's K_2 simple Lie algebra can be used to construct metrics on S^2 with prescribed scalar curvature equal to the sum of any holomorphic function and its complex conjugate; applications of this special problem to general re...
Geometric differential evolution for combinatorial and programs spaces.
Moraglio, A; Togelius, J; Silva, S
2013-01-01
Geometric differential evolution (GDE) is a recently introduced formal generalization of traditional differential evolution (DE) that can be used to derive specific differential evolution algorithms for both continuous and combinatorial spaces retaining the same geometric interpretation of the dynamics of the DE search across representations. In this article, we first review the theory behind the GDE algorithm, then, we use this framework to formally derive specific GDE for search spaces associated with binary strings, permutations, vectors of permutations and genetic programs. The resulting algorithms are representation-specific differential evolution algorithms searching the target spaces by acting directly on their underlying representations. We present experimental results for each of the new algorithms on a number of well-known problems comprising NK-landscapes, TSP, and Sudoku, for binary strings, permutations, and vectors of permutations. We also present results for the regression, artificial ant, parity, and multiplexer problems within the genetic programming domain. Experiments show that overall the new DE algorithms are competitive with well-tuned standard search algorithms.
Exploring the effects of acid mine drainage on diatom teratology using geometric morphometry.
Olenici, Adriana; Blanco, Saúl; Borrego-Ramos, María; Momeu, Laura; Baciu, Călin
2017-10-01
Metal pollution of aquatic habitats is a major and persistent environmental problem. Acid mine drainage (AMD) affects lotic systems in numerous and interactive ways. In the present work, a mining area (Roșia Montană) was chosen as study site, and we focused on two aims: (i) to find the set of environmental predictors leading to the appearance of the abnormal diatom individuals in the study area and (ii) to assess the relationship between the degree of valve outline deformation and AMD-derived pollution. In this context, morphological differences between populations of Achnanthidium minutissimum and A. macrocephalum, including normal and abnormal individuals, were evidenced by means of valve shape analysis. Geometric morphometry managed to capture and discriminate normal and abnormal individuals. Multivariate analyses (NMDS, PLS) separated the four populations of the two species mentioned and revealed the main physico-chemical parameters that influenced valve deformation in this context, namely conductivity, Zn, and Cu. ANOSIM test evidenced the presence of statistically significant differences between normal and abnormal individuals within both chosen Achnanthidium taxa. In order to determine the relative contribution of each of the measured physico-chemical parameters in the observed valve outline deformations, a PLS was conducted, confirming the results of the NMDS. The presence of deformed individuals in the study area can be attributed to the fact that the diatom communities were strongly affected by AMD released from old mining works and waste rock deposits.
Tour of a Simple Trigonometry Problem
Poon, Kin-Keung
2012-01-01
This article focuses on a simple trigonometric problem that generates a strange phenomenon when different methods are applied to tackling it. A series of problem-solving activities are discussed, so that students can be alerted that the precision of diagrams is important when solving geometric problems. In addition, the problem-solving plan was…
Theoretical frameworks for the learning of geometrical reasoning
Jones, Keith
1998-01-01
With the growth in interest in geometrical ideas it is important to be clear about the nature of geometrical reasoning and how it develops. This paper provides an overview of three theoretical frameworks for the learning of geometrical reasoning: the van Hiele model of thinking in geometry, Fischbein’s theory of figural concepts, and Duval’s cognitive model of geometrical reasoning. Each of these frameworks provides theoretical resources to support research into the development of geometrical...
Separators - Technology review: Ceramic based separators for secondary batteries
Energy Technology Data Exchange (ETDEWEB)
Nestler, Tina; Schmid, Robert; Münchgesang, Wolfram; Bazhenov, Vasilii; Meyer, Dirk C. [Technische Universität Bergakademie Freiberg, Institut für Experimentelle Physik, Leipziger Str. 23, 09596 Freiberg (Germany); Schilm, Jochen [Fraunhofer-Institut für Keramische Technologien und Systeme IKTS, Winterbergstraße 28, 01277 Dresden (Germany); Leisegang, Tilmann [Fraunhofer-Technologiezentrum Halbleitermaterialien THM, Am St.-Niclas-Schacht 13, 09599 Freiberg (Germany)
2014-06-16
Besides a continuous increase of the worldwide use of electricity, the electric energy storage technology market is a growing sector. At the latest since the German energy transition ('Energiewende') was announced, technological solutions for the storage of renewable energy have been intensively studied. Storage technologies in various forms are commercially available. A widespread technology is the electrochemical cell. Here the cost per kWh, e. g. determined by energy density, production process and cycle life, is of main interest. Commonly, an electrochemical cell consists of an anode and a cathode that are separated by an ion permeable or ion conductive membrane - the separator - as one of the main components. Many applications use polymeric separators whose pores are filled with liquid electrolyte, providing high power densities. However, problems arise from different failure mechanisms during cell operation, which can affect the integrity and functionality of these separators. In the case of excessive heating or mechanical damage, the polymeric separators become an incalculable security risk. Furthermore, the growth of metallic dendrites between the electrodes leads to unwanted short circuits. In order to minimize these risks, temperature stable and non-flammable ceramic particles can be added, forming so-called composite separators. Full ceramic separators, in turn, are currently commercially used only for high-temperature operation systems, due to their comparably low ion conductivity at room temperature. However, as security and lifetime demands increase, these materials turn into focus also for future room temperature applications. Hence, growing research effort is being spent on the improvement of the ion conductivity of these ceramic solid electrolyte materials, acting as separator and electrolyte at the same time. Starting with a short overview of available separator technologies and the separator market, this review focuses on ceramic
Separators - Technology review: Ceramic based separators for secondary batteries
Nestler, Tina; Schmid, Robert; Münchgesang, Wolfram; Bazhenov, Vasilii; Schilm, Jochen; Leisegang, Tilmann; Meyer, Dirk C.
2014-06-01
Besides a continuous increase of the worldwide use of electricity, the electric energy storage technology market is a growing sector. At the latest since the German energy transition ("Energiewende") was announced, technological solutions for the storage of renewable energy have been intensively studied. Storage technologies in various forms are commercially available. A widespread technology is the electrochemical cell. Here the cost per kWh, e. g. determined by energy density, production process and cycle life, is of main interest. Commonly, an electrochemical cell consists of an anode and a cathode that are separated by an ion permeable or ion conductive membrane - the separator - as one of the main components. Many applications use polymeric separators whose pores are filled with liquid electrolyte, providing high power densities. However, problems arise from different failure mechanisms during cell operation, which can affect the integrity and functionality of these separators. In the case of excessive heating or mechanical damage, the polymeric separators become an incalculable security risk. Furthermore, the growth of metallic dendrites between the electrodes leads to unwanted short circuits. In order to minimize these risks, temperature stable and non-flammable ceramic particles can be added, forming so-called composite separators. Full ceramic separators, in turn, are currently commercially used only for high-temperature operation systems, due to their comparably low ion conductivity at room temperature. However, as security and lifetime demands increase, these materials turn into focus also for future room temperature applications. Hence, growing research effort is being spent on the improvement of the ion conductivity of these ceramic solid electrolyte materials, acting as separator and electrolyte at the same time. Starting with a short overview of available separator technologies and the separator market, this review focuses on ceramic-based separators
Stiffness design of geometrically nonlinear structures using topology optimization
DEFF Research Database (Denmark)
Buhl, Thomas; Pedersen, Claus B. Wittendorf; Sigmund, Ole
2000-01-01
of the objective functions are found with the adjoint method and the optimization problem is solved using the Method of Moving Asymptotes. A filtering scheme is used to obtain checkerboard-free and mesh-independent designs and a continuation approach improves convergence to efficient designs. Different objective......The paper deals with topology optimization of structures undergoing large deformations. The geometrically nonlinear behaviour of the structures are modelled using a total Lagrangian finite element formulation and the equilibrium is found using a Newton-Raphson iterative scheme. The sensitivities...... functions are tested. Minimizing compliance for a fixed load results in degenerated topologies which are very inefficient for smaller or larger loads. The problem of obtaining degenerated "optimal" topologies which only can support the design load is even more pronounced than for structures with linear...
Introduction to geometric nonlinear control; Controllability and lie bracket
Energy Technology Data Exchange (ETDEWEB)
Jakubczyk, B [Institute of Mathematics, Polish Academy of Sciences, Warsaw (Poland)
2002-07-15
We present an introduction to the qualitative theory of nonlinear control systems, with the main emphasis on controllability properties of such systems. We introduce the differential geometric language of vector fields, Lie bracket, distributions, foliations etc. One of the basic tools is the orbit theorem of Stefan and Sussmann. We analyse the basic controllability problems and give criteria for complete controllability, accessibility and related properties, using certain Lie algebras of ve fields defined by the system. A problem of path approximation is considered as an application of the developed theory. We illustrate our considerations with examples of simple systems or systems appearing in applications. The notes start from an elementary level and are self-contained. (author)
A Geometric Algebra Co-Processor for Color Edge Detection
Directory of Open Access Journals (Sweden)
Biswajit Mishra
2015-01-01
Full Text Available This paper describes advancement in color edge detection, using a dedicated Geometric Algebra (GA co-processor implemented on an Application Specific Integrated Circuit (ASIC. GA provides a rich set of geometric operations, giving the advantage that many signal and image processing operations become straightforward and the algorithms intuitive to design. The use of GA allows images to be represented with the three R, G, B color channels defined as a single entity, rather than separate quantities. A novel custom ASIC is proposed and fabricated that directly targets GA operations and results in significant performance improvement for color edge detection. Use of the hardware described in this paper also shows that the convolution operation with the rotor masks within GA belongs to a class of linear vector filters and can be applied to image or speech signals. The contribution of the proposed approach has been demonstrated by implementing three different types of edge detection schemes on the proposed hardware. The overall performance gains using the proposed GA Co-Processor over existing software approaches are more than 3.2× faster than GAIGEN and more than 2800× faster than GABLE. The performance of the fabricated GA co-processor is approximately an order of magnitude faster than previously published results for hardware implementations.
Geometric representation of fundamental particles' inertial mass
Energy Technology Data Exchange (ETDEWEB)
Schachter, L. [Technion-Israel Inst. of Tech., Haifa (Israel); Spencer, James [SLAC National Accelerator Lab., Menlo Park, CA (United States)
2015-07-22
A geometric representation of the (N = 279) masses of quarks, leptons, hadrons and gauge bosons was introduced by employing a Riemann Sphere facilitating the interpretation of the N masses in terms of a single particle, the Masson, which might be in one of the N eigen-states. Geometrically, its mass is the radius of the Riemann Sphere. Dynamically, its derived mass is near the mass of the nucleon regardless of whether it is determined from all N particles of only the hadrons, the mesons or the baryons separately. Ignoring all the other properties of these particles, it is shown that the eigen-values, the polar representation θ_{ν} of the masses on the Sphere, satisfy the symmetry θ_{ν} + θ_{N+1-ν} = π within less than 1% relative error. In addition, these pair correlations include the pairs θ_{γ} + θ_{top} ≃ π and θ_{gluon} + θ_{H} ≃ π as well as pairing the weak gauge bosons with the three neutrinos.
Size and mobility of lipid domains tuned by geometrical constraints.
Schütte, Ole M; Mey, Ingo; Enderlein, Jörg; Savić, Filip; Geil, Burkhard; Janshoff, Andreas; Steinem, Claudia
2017-07-25
In the plasma membrane of eukaryotic cells, proteins and lipids are organized in clusters, the latter ones often called lipid domains or "lipid rafts." Recent findings highlight the dynamic nature of such domains and the key role of membrane geometry and spatial boundaries. In this study, we used porous substrates with different pore radii to address precisely the extent of the geometric constraint, permitting us to modulate and investigate the size and mobility of lipid domains in phase-separated continuous pore-spanning membranes (PSMs). Fluorescence video microscopy revealed two types of liquid-ordered ( l o ) domains in the freestanding parts of the PSMs: ( i ) immobile domains that were attached to the pore rims and ( ii ) mobile, round-shaped l o domains within the center of the PSMs. Analysis of the diffusion of the mobile l o domains by video microscopy and particle tracking showed that the domains' mobility is slowed down by orders of magnitude compared with the unrestricted case. We attribute the reduced mobility to the geometric confinement of the PSM, because the drag force is increased substantially due to hydrodynamic effects generated by the presence of these boundaries. Our system can serve as an experimental test bed for diffusion of 2D objects in confined geometry. The impact of hydrodynamics on the mobility of enclosed lipid domains can have great implications for the formation and lateral transport of signaling platforms.
Effect of geometric base roughness on size segregation
Directory of Open Access Journals (Sweden)
Jing L.
2017-01-01
Full Text Available The geometric roughness at boundaries has a profound impact on the dynamics of granular flows. For a bumpy base made of fixed particles, two major factors have been separately studied in the literature, namely, the size and spatial distribution of base particles. A recent work (Jing et al. 2016 has proposed a roughness indicator Ra, which combines both factors for any arbitrary bumpy base comprising equally-sized spheres. It is shown in mono-disperse flows that as Ra increases, a transition occurs from slip (Ra 0.62 conditions. This work focuses on such a phase transition in bi-disperse flows, in which Ra can be a function of time. As size segregation takes place, large particles migrate away from the bottom, leading to a variation of size ratio between flow- and base-particles. As a result, base roughness Ra evolves with the progress of segregation. Consistent with the slip/non-slip transition in mono-disperse flows, basal sliding arises at low values of Ra and the development of segregation might be affected; when Ra increases to a certain level (Ra > 0.62, non-slip condition is respected. This work extends the validity of Ra to bi-disperse flows, which can be used to understand the geometric boundary effect during segregation.
On the Motion of Matter in the Geometrical Gauge Field Theory
Konopleva, N P
2005-01-01
In the geometrical gauge field theory, the motion equations of matter (elementary particles) are connected with the field equations. In the talk, the problems arising from this connection are discussed. For the first time, such problems arose in Einstein's General Relativity. Einstein hoped that solution of these problems will allow explanation of elementary particles nature without making use of quantum mechanics. But, as it turned out, the situation is more difficult. Here the corresponding problems are formulated for the connection of equations of particle motion and field equations in the geometrical gauge field theory. It is shown that appearance of the problems under discussion is an inevitable effect of passage to relativism and local symmetries.
Two particle entanglement and its geometric duals
Energy Technology Data Exchange (ETDEWEB)
Wasay, Muhammad Abdul [University of Agriculture, Department of Physics, Faisalabad (Pakistan); Quaid-i-Azam University Campus, National Centre for Physics, Islamabad (Pakistan); Bashir, Asma [University of Agriculture, Department of Physics, Faisalabad (Pakistan)
2017-12-15
We show that for a system of two entangled particles, there is a dual description to the particle equations in terms of classical theory of conformally stretched spacetime. We also connect these entangled particle equations with Finsler geometry. We show that this duality translates strongly coupled quantum equations in the pilot-wave limit to weakly coupled geometric equations. (orig.)
Rejuvenating Allen's Arc with the Geometric Mean.
Phillips, William A.
1994-01-01
Contends that, despite ongoing criticism, Allen's arc elasticity formula remains entrenched in the microeconomics principles curriculum. Reviews the evolution and continuing scrutiny of the formula. Argues that the use of the geometric mean offers pedagogical advantages over the traditional arithmetic mean approach. (CFR)
Two particle entanglement and its geometric duals
International Nuclear Information System (INIS)
Wasay, Muhammad Abdul; Bashir, Asma
2017-01-01
We show that for a system of two entangled particles, there is a dual description to the particle equations in terms of classical theory of conformally stretched spacetime. We also connect these entangled particle equations with Finsler geometry. We show that this duality translates strongly coupled quantum equations in the pilot-wave limit to weakly coupled geometric equations. (orig.)
Geometric Abstract Art and Public Health Data
Centers for Disease Control (CDC) Podcasts
2016-10-18
Dr. Salaam Semaan, a CDC behavioral scientist, discusses the similarities between geometric abstract art and public health data analysis. Created: 10/18/2016 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID). Date Released: 10/18/2016.
Geometric phase topology in weak measurement
Samlan, C. T.; Viswanathan, Nirmal K.
2017-12-01
The geometric phase visualization proposed by Bhandari (R Bhandari 1997 Phys. Rep. 281 1-64) in the ellipticity-ellipse orientation basis of the polarization ellipse of light is implemented to understand the geometric aspects of weak measurement. The weak interaction of a pre-selected state, acheived via spin-Hall effect of light (SHEL), results in a spread in the polarization ellipticity (η) or ellipse orientation (χ) depending on the resulting spatial or angular shift, respectively. The post-selection leads to the projection of the η spread in the complementary χ basis results in the appearance of a geometric phase with helical phase topology in the η - χ parameter space. By representing the weak measurement on the Poincaré sphere and using Jones calculus, the complex weak value and the geometric phase topology are obtained. This deeper understanding of the weak measurement process enabled us to explore the techniques’ capabilities maximally, as demonstrated via SHEL in two examples—external reflection at glass-air interface and transmission through a tilted half-wave plate.
Geometric Representations for Discrete Fourier Transforms
Cambell, C. W.
1986-01-01
Simple geometric representations show symmetry and periodicity of discrete Fourier transforms (DFT's). Help in visualizing requirements for storing and manipulating transform value in computations. Representations useful in any number of dimensions, but particularly in one-, two-, and three-dimensional cases often encountered in practice.
Geometric Series and Computers--An Application.
McNerney, Charles R.
1983-01-01
This article considers the sum of a finite geometric series as applied to numeric data storage in the memory of an electronic digital computer. The presentation is viewed as relevant to programing in several languages and removes some of the mystique associated with syntax constraints that any language imposes. (MP)
Geometric Transformations in Middle School Mathematics Textbooks
Zorin, Barbara
2011-01-01
This study analyzed treatment of geometric transformations in presently available middle grades (6, 7, 8) student mathematics textbooks. Fourteen textbooks from four widely used textbook series were evaluated: two mainline publisher series, Pearson (Prentice Hall) and Glencoe (Math Connects); one National Science Foundation (NSF) funded curriculum…
Geometric calibration of ERS satellite SAR images
DEFF Research Database (Denmark)
Mohr, Johan Jacob; Madsen, Søren Nørvang
2001-01-01
Geometric calibration of the European Remote Sensing (ERS) Satellite synthetic aperture radar (SAR) slant range images is important in relation to mapping areas without ground reference points and also in relation to automated processing. The relevant SAR system parameters are discussed...
On Kaehler's geometric description of dirac fields
International Nuclear Information System (INIS)
Goeckeler, M.; Joos, H.
1983-12-01
A differential geometric generalization of the Dirac equation due to E. Kaehler seems to be an appropriate starting point for the lattice approximation of matter fields. It is the purpose of this lecture to illustrate several aspects of this approach. (orig./HSI)
Robust Geometric Control of a Distillation Column
DEFF Research Database (Denmark)
Kymmel, Mogens; Andersen, Henrik Weisberg
1987-01-01
A frequency domain method, which makes it possible to adjust multivariable controllers with respect to both nominal performance and robustness, is presented. The basic idea in the approach is that the designer assigns objectives such as steady-state tracking, maximum resonance peaks, bandwidth, m...... is used to examine and improve geometric control of a binary distillation column....
Non-equilibrium current via geometric scatterers
Czech Academy of Sciences Publication Activity Database
Exner, Pavel; Neidhardt, H.; Tater, Miloš; Zagrebnov, V. A.
2014-01-01
Roč. 47, č. 39 (2014), s. 395301 ISSN 1751-8113 R&D Projects: GA ČR(CZ) GA14-06818S Institutional support: RVO:61389005 Keywords : non-equilibrioum steady states * geometric scatterer * Landauer-Buttiker formula Subject RIV: BE - Theoretical Physics Impact factor: 1.583, year: 2014
Geometrical scaling in high energy hadron collisions
International Nuclear Information System (INIS)
Kundrat, V.; Lokajicek, M.V.
1984-06-01
The concept of geometrical scaling for high energy elastic hadron scattering is analyzed and its basic equations are solved in a consistent way. It is shown that they are applicable to a rather small interval of momentum transfers, e.g. maximally for |t| 2 for pp scattering at the ISR energies. (author)
Geometrical efficiency in computerized tomography: generalized model
International Nuclear Information System (INIS)
Costa, P.R.; Robilotta, C.C.
1992-01-01
A simplified model for producing sensitivity and exposure profiles in computerized tomographic system was recently developed allowing the forecast of profiles behaviour in the rotation center of the system. The generalization of this model for some point of the image plane was described, and the geometrical efficiency could be evaluated. (C.G.C.)
International Nuclear Information System (INIS)
Mackay, C; Hayward, D; Mulholland, A J; McKee, S; Pethrick, R A
2005-01-01
An inverse problem motivated by the nondestructive testing of adhesively bonded structures used in the aircraft industry is studied. Using transmission line theory, a model is developed which, when supplied with electrical and geometrical parameters, accurately predicts the reflection coefficient associated with such structures. Particular attention is paid to modelling the connection between the structures and the equipment used to measure the reflection coefficient. The inverse problem is then studied and an optimization approach employed to recover these electrical and geometrical parameters from experimentally obtained data. In particular the approach focuses on the recovery of spatially varying geometrical parameters as this is paramount to the successful reconstruction of electrical parameters. Reconstructions of structure geometry using this method are found to be in close agreement with experimental observations
Baronti, Marco; van der Putten, Robertus; Venturi, Irene
2016-01-01
This book, intended as a practical working guide for students in Engineering, Mathematics, Physics, or any other field where rigorous calculus is needed, includes 450 exercises. Each chapter starts with a summary of the main definitions and results, which is followed by a selection of solved exercises accompanied by brief, illustrative comments. A selection of problems with indicated solutions rounds out each chapter. A final chapter explores problems that are not designed with a single issue in mind but instead call for the combination of a variety of techniques, rounding out the book’s coverage. Though the book’s primary focus is on functions of one real variable, basic ordinary differential equations (separation of variables, linear first order and constant coefficients ODEs) are also discussed. The material is taken from actual written tests that have been delivered at the Engineering School of the University of Genoa. Literally thousands of students have worked on these problems, ensuring their real-...
International Nuclear Information System (INIS)
Modrak, T.M.; Curtis, R.W.
1978-01-01
The steam-water separator connected downstream of a steam generator consists of a vertical centrifugal separator with swirl blades between two concentric pipes and a cyclone separator located above. The water separated in the cyclone separator is collected in the inner tube of the centrifugal separator which is closed at the bottom. This design allows the overall height of the separator to be reduced. (DG) [de
Can EPR non-locality be geometrical?
International Nuclear Information System (INIS)
Ne'eman, Y.
1995-01-01
The presence in Quantum Mechanics of non-local correlations is one of the two fundamentally non-intuitive features of that theory. The non-local correlations themselves fall into two classes: EPR and Geometrical. The non-local characteristics of the geometrical type are well-understood and are not suspected of possibly generating acausal features, such as faster-than-light propagation of information. This has especially become true since the emergence of a geometrical treatment for the relevant gauge theories, i.e. Fiber Bundle geometry, in which the quantum non-localities are seen to correspond to pure homotopy considerations. This aspect is reviewed in section 2. Contrary-wise, from its very conception, the EPR situation was felt to be paradoxical. It has been suggested that the non-local features of EPR might also derive from geometrical considerations, like all other non-local characteristics of QM. In[7], one of the authors was able to point out several plausibility arguments for this thesis, emphasizing in particular similarities between the non-local correlations provided by any gauge field theory and those required by the preservation of the quantum numbers of the original EPR state-vector, throughout its spatially-extended mode. The derivation was, however, somewhat incomplete, especially because of the apparent difference between, on the one hand, the closed spatial loops arising in the analysis of the geometrical non-localities, from Aharonov-Bohm and Berry phases to magnetic monopoles and instantons, and on the other hand, in the EPR case, the open line drawn by the positions of the two moving decay products of the disintegrating particle. In what follows, the authors endeavor to remove this obstacle and show that as in all other QM non-localities, EPR is somehow related to closed loops, almost involving homotopy considerations. They develop this view in section 3
A GEOMETRICAL HEIGHT SCALE FOR SUNSPOT PENUMBRAE
International Nuclear Information System (INIS)
Puschmann, K. G.; Ruiz Cobo, B.; MartInez Pillet, V.
2010-01-01
Inversions of spectropolarimetric observations of penumbral filaments deliver the stratification of different physical quantities in an optical depth scale. However, without establishing a geometrical height scale, their three-dimensional geometrical structure cannot be derived. This is crucial in understanding the correct spatial variation of physical properties in the penumbral atmosphere and to provide insights into the mechanism capable of explaining the observed penumbral brightness. The aim of this work is to determine a global geometrical height scale in the penumbra by minimizing the divergence of the magnetic field vector and the deviations from static equilibrium as imposed by a force balance equation that includes pressure gradients, gravity, and the Lorentz force. Optical depth models are derived from the inversion of spectropolarimetric data of an active region observed with the Solar Optical Telescope on board the Hinode satellite. We use a genetic algorithm to determine the boundary condition for the inference of geometrical heights. The retrieved geometrical height scale permits the evaluation of the Wilson depression at each pixel and the correlation of physical quantities at each height. Our results fit into the uncombed penumbral scenario, i.e., a penumbra composed of flux tubes with channeled mass flow and with a weaker and more horizontal magnetic field as compared with the background field. The ascending material is hotter and denser than their surroundings. We do not find evidence of overturning convection or field-free regions in the inner penumbral area analyzed. The penumbral brightness can be explained by the energy transfer of the ascending mass carried by the Evershed flow, if the physical quantities below z = -75 km are extrapolated from the results of the inversion.
Directory of Open Access Journals (Sweden)
Nartova-Bochaver S.K.
2016-06-01
Full Text Available The review analyzes systematic studies of the psychological separation phenom- enon. The high relevance of the study is outlined because it stays in addition to the vast range of works devoted to the personal identity. Major authors’ ideas, a theoretical model of separation presented for the first time, a description of the types of harmoni- ous and disharmonious separation, a new look at family dynamics are marked. Special attention is paid to new facts in a little researched area of the relationship of adult children with their parents.
DEFF Research Database (Denmark)
Jensen, Jonas Buhrkal; Birkedal, Lars
2012-01-01
, separation means physical separation. In this paper, we introduce \\emph{fictional separation logic}, which includes more general forms of fictional separating conjunctions P * Q, where "*" does not require physical separation, but may also be used in situations where the memory resources described by P and Q...
Time-changed geometric fractional Brownian motion and option pricing with transaction costs
Gu, Hui; Liang, Jin-Rong; Zhang, Yun-Xiu
2012-08-01
This paper deals with the problem of discrete time option pricing by a fractional subdiffusive Black-Scholes model. The price of the underlying stock follows a time-changed geometric fractional Brownian motion. By a mean self-financing delta-hedging argument, the pricing formula for the European call option in discrete time setting is obtained.
Cross-Grade Comparison of Students' Conceptual Understanding with Lenses in Geometric Optics
Tural, G.
2015-01-01
Students commonly find the field of physics difficult. Therefore, they generally have learning problems. One of the subjects with which they have difficulties is optics within a physics discipline. This study aims to determine students' conceptual understanding levels at different education levels relating to lenses in geometric optics. A…
Reasoning with Paper and Pencil: The Role of Inscriptions in Student Learning of Geometric Series
Carlsen, Martin
2009-01-01
The purpose of this article is to analyse how students use inscriptions as tools for thinking and learning in mathematical problem-solving activities. The empirical context is that of learning about geometric series in a small group setting. What has been analysed is how students made use of inscriptions, self-made as well as those provided by…
Right-invertibility for a class of nonlinear control systems: A geometric approach
Nijmeijer, Henk
1986-01-01
In recent years it has become evident that various synthesis problems known from linear system theory can also be solved for nonlinear control systems by using differential geometric methods. The purpose of this paper is to use this mathematical framework for giving a preliminary account on the
Appropriating Geometric Series as a Cultural Tool: A Study of Student Collaborative Learning
Carlsen, Martin
2010-01-01
The aim of this article is to illustrate how students, through collaborative small-group problem solving, appropriate the concept of geometric series. Student appropriation of cultural tools is dependent on five sociocultural aspects: involvement in joint activity, shared focus of attention, shared meanings for utterances, transforming actions and…
S.E.T., CSNI Separate Effects Test Facility Validation Matrix
International Nuclear Information System (INIS)
1997-01-01
1 - Description of test facility: The SET matrix of experiments is suitable for the developmental assessment of thermal-hydraulics transient system computer codes by selecting individual tests from selected facilities, relevant to each phenomena. Test facilities differ from one another in geometrical dimensions, geometrical configuration and operating capabilities or conditions. Correlation between SET facility and phenomena were calculated on the basis of suitability for model validation (which means that a facility is designed in such a way as to stimulate the phenomena assumed to occur in a plant and is sufficiently instrumented); limited suitability for model variation (which means that a facility is designed in such a way as to stimulate the phenomena assumed to occur in a plant but has problems associated with imperfect scaling, different test fluids or insufficient instrumentation); and unsuitability for model validation. 2 - Description of test: Whereas integral experiments are usually designed to follow the behaviour of a reactor system in various off-normal or accident transients, separate effects tests focus on the behaviour of a single component, or on the characteristics of one thermal-hydraulic phenomenon. The construction of a separate effects test matrix is an attempt to collect together the best sets of openly available test data for code validation, assessment and improvement, from the wide range of experiments that have been carried out world-wide in the field of thermal hydraulics. In all, 2094 tests are included in the SET matrix
Inequalities an approach through problems
Venkatachala, B J
2018-01-01
This book discusses about the basic topics on inequalities and their applications. These include the arithmetic mean–geometric mean inequality, Cauchy–Schwarz inequality, Chebyshev inequality, rearrangement inequality, convex and concave functions and Muirhead's theorem. The book contains over 400 problems with their solutions. A chapter on geometric inequalities is a special feature of this book. Most of these problems are from International Mathematical Olympiads and from many national mathematical Olympiads. The book is intended to help students who are preparing for various mathematical competitions. It is also a good source book for graduate students who are consolidating their knowledge of inequalities and their applications. .
Modifications of Geometric Truncation of the Scattering Phase Function
Radkevich, A.
2017-12-01
Phase function (PF) of light scattering on large atmospheric particles has very strong peak in forward direction constituting a challenge for accurate numerical calculations of radiance. Such accurate (and fast) evaluations are important in the problems of remote sensing of the atmosphere. Scaling transformation replaces original PF with a sum of the delta function and a new regular smooth PF. A number of methods to construct such a PF were suggested. Delta-M and delta-fit methods require evaluation of the PF moments which imposes a numerical problem if strongly anisotropic PF is given as a function of angle. Geometric truncation keeps the original PF unchanged outside the forward peak cone replacing it with a constant within the cone. This approach is designed to preserve the asymmetry parameter. It has two disadvantages: 1) PF has discontinuity at the cone; 2) the choice of the cone is subjective, no recommendations were provided on the choice of the truncation angle. This choice affects both truncation fraction and the value of the phase function within the forward cone. Both issues are addressed in this study. A simple functional form of the replacement PF is suggested. This functional form allows for a number of modifications. This study consider 3 versions providing continuous PF. The considered modifications also bear either of three properties: preserve asymmetry parameter, provide continuity of the 1st derivative of the PF, and preserve mean scattering angle. The second problem mentioned above is addressed with a heuristic approach providing unambiguous criterion of selection of the truncation angle. The approach showed good performance on liquid water and ice clouds with different particle size distributions. Suggested modifications were tested on different cloud PFs using both discrete ordinates and Monte Carlo methods. It was showed that the modifications provide better accuracy of the radiance computation compare to the original geometric truncation.
Separation Anxiety (For Parents)
... Safe Videos for Educators Search English Español Separation Anxiety KidsHealth / For Parents / Separation Anxiety What's in this ... both of you get through it. About Separation Anxiety Babies adapt pretty well to other caregivers. Parents ...
International Nuclear Information System (INIS)
1982-01-01
The Study Group briefly reviewed the technical status of the three Advanced Isotope Separation (AIS) processes. It also reviewed the evaluation work that has been carried out by DOE's Process Evaluation Board (PEB) and the Union Carbide Corporation-Nuclear Division (UCCND). The Study Group briefly reviewed a recent draft assessment made for DOE staff of the nonproliferation implications of the AIS technologies. The staff also very briefly summarized the status of GCEP and Advanced Centrifuge development. The Study Group concluded that: (1) there has not been sufficient progress to provide a firm scientific, technical or economic basis on which to select one of the three competing AIS processes for full-scale engineering development at this time; and (2) however, should budgetary restraints or other factors force such a selection, we believe that the evaluation process that is being carried out by the PEB provides the best basis available for making a decision. The Study Group recommended that: (1) any decisions on AIS processes should include a comparison with gas centrifuge processes, and should not be made independently from the plutonium isotope program; (2) in evaluating the various enrichment processes, all applicable costs (including R and D and sales overhead) and an appropriate discounting approach should be included in order to make comparisons on a private industry basis; (3) if the three AIS programs continue with limited resources, the work should be reoriented to focus only on the most pressing technical problems; and (4) if a decision is made to develop the Atomic Vapor Laser Isotope Separation process, the solid collector option should be pursued in parallel to alleviate the potential program impact of liquid collector thermal control problems
Stupishin, L. U.; Nikitin, K. E.; Kolesnikov, A. G.
2018-02-01
The article is concerned with a methodology of optimal design of geometrically nonlinear (flexible) shells of revolution of minimum weight with strength, stability and strain constraints. The problem of optimal design with constraints is reduced to the problem of unconstrained minimization using the penalty functions method. Stress-strain state of shell is determined within the geometrically nonlinear deformation theory. A special feature of the methodology is the use of a mixed finite-element formulation based on the Galerkin method. Test problems for determining the optimal form and thickness distribution of a shell of minimum weight are considered. The validity of the results obtained using the developed methodology is analyzed, and the efficiency of various optimization algorithms is compared to solve the set problem. The developed methodology has demonstrated the possibility and accuracy of finding the optimal solution.
Geometric description of images as topographic maps
Caselles, Vicent
2010-01-01
This volume discusses the basic geometric contents of an image and presents a tree data structure to handle those contents efficiently. The nodes of the tree are derived from connected components of level sets of the intensity, while the edges represent inclusion information. Grain filters, morphological operators simplifying these geometric contents, are analyzed and several applications to image comparison and registration, and to edge and corner detection, are presented. The mathematically inclined reader may be most interested in Chapters 2 to 6, which generalize the topological Morse description to continuous or semicontinuous functions, while mathematical morphologists may more closely consider grain filters in Chapter 3. Computer scientists will find algorithmic considerations in Chapters 6 and 7, the full justification of which may be found in Chapters 2 and 4 respectively. Lastly, all readers can learn more about the motivation for this work in the image processing applications presented in Chapter 8...
Plasmon Geometric Phase and Plasmon Hall Shift
Shi, Li-kun; Song, Justin C. W.
2018-04-01
The collective plasmonic modes of a metal comprise a simple pattern of oscillating charge density that yields enhanced light-matter interaction. Here we unveil that beneath this familiar facade plasmons possess a hidden internal structure that fundamentally alters its dynamics. In particular, we find that metals with nonzero Hall conductivity host plasmons with an intricate current density configuration that sharply departs from that of ordinary zero Hall conductivity metals. This nontrivial internal structure dramatically enriches the dynamics of plasmon propagation, enabling plasmon wave packets to acquire geometric phases as they scatter. At boundaries, these phases accumulate allowing plasmon waves that reflect off to experience a nonreciprocal parallel shift. This plasmon Hall shift, tunable by Hall conductivity as well as plasmon wavelength, displaces the incident and reflected plasmon trajectories and can be readily probed by near-field photonics techniques. Anomalous plasmon geometric phases dramatically enrich the nanophotonics toolbox, and yield radical new means for directing plasmonic beams.
Manfredini, Maria; Morbidelli, Daniele; Polidoro, Sergio; Uguzzoni, Francesco
2015-01-01
The analysis of PDEs is a prominent discipline in mathematics research, both in terms of its theoretical aspects and its relevance in applications. In recent years, the geometric properties of linear and nonlinear second order PDEs of elliptic and parabolic type have been extensively studied by many outstanding researchers. This book collects contributions from a selected group of leading experts who took part in the INdAM meeting "Geometric methods in PDEs", on the occasion of the 70th birthday of Ermanno Lanconelli. They describe a number of new achievements and/or the state of the art in their discipline of research, providing readers an overview of recent progress and future research trends in PDEs. In particular, the volume collects significant results for sub-elliptic equations, potential theory and diffusion equations, with an emphasis on comparing different methodologies and on their implications for theory and applications. .
A Practical Guide to Experimental Geometrical Optics
Garbovskiy, Yuriy A.; Glushchenko, Anatoliy V.
2017-12-01
Preface; 1. Markets of optical materials, components, accessories, light sources and detectors; 2. Introduction to optical experiments: light producing, light managing, light detection and measuring; 3. Light detectors based on semiconductors: photoresistors, photodiodes in a photo-galvanic regime. Principles of operation and measurements; 4. Linear light detectors based on photodiodes; 5. Basic laws of geometrical optics: experimental verification; 6. Converging and diverging thin lenses; 7. Thick lenses; 8. Lens systems; 9. Simple optical instruments I: the eye and the magnifier, eyepieces and telescopes; 10. Simple optical instruments II: light illuminators and microscope; 11. Spherical mirrors; 12. Introduction to optical aberrations; 13. Elements of optical radiometry; 14. Cylindrical lenses and vials; 15. Methods of geometrical optics to measure refractive index; 16. Dispersion of light and prism spectroscope; 17. Elements of computer aided optical design; Index.
Coated sphere scattering by geometric optics approximation.
Mengran, Zhai; Qieni, Lü; Hongxia, Zhang; Yinxin, Zhang
2014-10-01
A new geometric optics model has been developed for the calculation of light scattering by a coated sphere, and the analytic expression for scattering is presented according to whether rays hit the core or not. The ray of various geometric optics approximation (GOA) terms is parameterized by the number of reflections in the coating/core interface, the coating/medium interface, and the number of chords in the core, with the degeneracy path and repeated path terms considered for the rays striking the core, which simplifies the calculation. For the ray missing the core, the various GOA terms are dealt with by a homogeneous sphere. The scattering intensity of coated particles are calculated and then compared with those of Debye series and Aden-Kerker theory. The consistency of the results proves the validity of the method proposed in this work.
Geometrical Description of fractional quantum Hall quasiparticles
Park, Yeje; Yang, Bo; Haldane, F. D. M.
2012-02-01
We examine a description of fractional quantum Hall quasiparticles and quasiholes suggested by a recent geometrical approach (F. D. M. Haldane, Phys. Rev. Lett. 108, 116801 (2011)) to FQH systems, where the local excess electric charge density in the incompressible state is given by a topologically-quantized ``guiding-center spin'' times the Gaussian curvature of a ``guiding-center metric tensor'' that characterizes the local shape of the correlation hole around electrons in the fluid. We use a phenomenological energy function with two ingredients: the shear distortion energy of area-preserving distortions of the fluid, and a local (short-range) approximation to the Coulomb energy of the fluctuation of charge density associated with the Gaussian curvature. Quasiparticles and quasiholes of the 1/3 Laughlin state are modeled as ``punctures'' in the incompressible fluid which then relax by geometric distortion which generates Gaussian curvature, giving rise to the charge-density profile around the topological excitation.
The geometric Hopf invariant and surgery theory
Crabb, Michael
2017-01-01
Written by leading experts in the field, this monograph provides homotopy theoretic foundations for surgery theory on higher-dimensional manifolds. Presenting classical ideas in a modern framework, the authors carefully highlight how their results relate to (and generalize) existing results in the literature. The central result of the book expresses algebraic surgery theory in terms of the geometric Hopf invariant, a construction in stable homotopy theory which captures the double points of immersions. Many illustrative examples and applications of the abstract results are included in the book, making it of wide interest to topologists. Serving as a valuable reference, this work is aimed at graduate students and researchers interested in understanding how the algebraic and geometric topology fit together in the surgery theory of manifolds. It is the only book providing such a wide-ranging historical approach to the Hopf invariant, double points and surgery theory, with many results old and new. .
Geometric modeling in probability and statistics
Calin, Ovidiu
2014-01-01
This book covers topics of Informational Geometry, a field which deals with the differential geometric study of the manifold probability density functions. This is a field that is increasingly attracting the interest of researchers from many different areas of science, including mathematics, statistics, geometry, computer science, signal processing, physics and neuroscience. It is the authors’ hope that the present book will be a valuable reference for researchers and graduate students in one of the aforementioned fields. This textbook is a unified presentation of differential geometry and probability theory, and constitutes a text for a course directed at graduate or advanced undergraduate students interested in applications of differential geometry in probability and statistics. The book contains over 100 proposed exercises meant to help students deepen their understanding, and it is accompanied by software that is able to provide numerical computations of several information geometric objects. The reader...
Geometrical dynamics of Born-Infeld objects
Energy Technology Data Exchange (ETDEWEB)
Cordero, Ruben [Departamento de Fisica, Escuela Superior de Fisica y Matematicas del I.P.N., Unidad Adolfo Lopez Mateos, Edificio 9, 07738 Mexico, D.F. (Mexico); Molgado, Alberto [Facultad de Ciencias, Universidad de Colima, Bernal DIaz del Castillo 340, Col. Villas San Sebastian, Colima (Mexico); Rojas, Efrain [Facultad de Fisica e Inteligencia Artificial, Universidad Veracruzana, 91000 Xalapa, Veracruz (Mexico)
2007-03-21
We present a geometrically inspired study of the dynamics of Dp-branes. We focus on the usual non-polynomial Dirac-Born-Infeld action for the worldvolume swept out by the brane in its evolution in general background spacetimes. We emphasize the form of the resulting equations of motion which are quite simple and resemble Newton's second law, complemented with a conservation law for a worldvolume bicurrent. We take a closer look at the classical Hamiltonian analysis which is supported by the ADM framework of general relativity. The constraints and their algebra are identified as well as the geometrical role they play in phase space. In order to illustrate our results, we review the dynamics of a D1-brane immersed in a AdS{sub 3} x S{sup 3} background spacetime. We exhibit the mechanical properties of Born-Infeld objects paving the way to a consistent quantum formulation.
Geometrical dynamics of Born-Infeld objects
International Nuclear Information System (INIS)
Cordero, Ruben; Molgado, Alberto; Rojas, Efrain
2007-01-01
We present a geometrically inspired study of the dynamics of Dp-branes. We focus on the usual non-polynomial Dirac-Born-Infeld action for the worldvolume swept out by the brane in its evolution in general background spacetimes. We emphasize the form of the resulting equations of motion which are quite simple and resemble Newton's second law, complemented with a conservation law for a worldvolume bicurrent. We take a closer look at the classical Hamiltonian analysis which is supported by the ADM framework of general relativity. The constraints and their algebra are identified as well as the geometrical role they play in phase space. In order to illustrate our results, we review the dynamics of a D1-brane immersed in a AdS 3 x S 3 background spacetime. We exhibit the mechanical properties of Born-Infeld objects paving the way to a consistent quantum formulation
A practical guide to experimental geometrical optics
Garbovskiy, Yuriy A
2017-01-01
A concise, yet deep introduction to experimental, geometrical optics, this book begins with fundamental concepts and then develops the practical skills and research techniques routinely used in modern laboratories. Suitable for students, researchers and optical engineers, this accessible text teaches readers how to build their own optical laboratory and to design and perform optical experiments. It uses a hands-on approach which fills a gap between theory-based textbooks and laboratory manuals, allowing the reader to develop their practical skills in this interdisciplinary field, and also explores the ways in which this knowledge can be applied to the design and production of commercial optical devices. Including supplementary online resources to help readers track and evaluate their experimental results, this text is the ideal companion for anyone with a practical interest in experimental geometrical optics.
Exposing region duplication through local geometrical color invariant features
Gong, Jiachang; Guo, Jichang
2015-05-01
Many advanced image-processing softwares are available for tampering images. How to determine the authenticity of an image has become an urgent problem. Copy-move is one of the most common image forgery operations. Many methods have been proposed for copy-move forgery detection (CMFD). However, most of these methods are designed for grayscale images without any color information used. They are usually not suitable when the duplicated regions have little structure or have undergone various transforms. We propose a CMFD method using local geometrical color invariant features to detect duplicated regions. The method starts by calculating the color gradient of the inspected image. Then, we directly take the color gradient as the input for scale invariant features transform (SIFT) to extract color-SIFT descriptors. Finally, keypoints are matched and clustered before their geometrical relationship is estimated to expose the duplicated regions. We evaluate the detection performance and computational complexity of the proposed method together with several popular CMFD methods on a public database. Experimental results demonstrate the efficacy of the proposed method in detecting duplicated regions with various transforms and poor structure.
An analysis of Landsat-4 Thematic Mapper geometric properties
Walker, R. E.; Zobrist, A. L.; Bryant, N. A.; Gohkman, B.; Friedman, S. Z.; Logan, T. L.
1984-01-01
Landsat-4 Thematic Mapper data of Washington, DC, Harrisburg, PA, and Salton Sea, CA were analyzed to determine geometric integrity and conformity of the data to known earth surface geometry. Several tests were performed. Intraband correlation and interband registration were investigated. No problems were observed in the intraband analysis, and aside from indications of slight misregistration between bands of the primary versus bands of the secondary focal planes, interband registration was well within the specified tolerances. A substantial number of ground control points were found and used to check the images' conformity to the Space Oblique Mercator (SOM) projection of their respective areas. The means of the residual offsets, which included nonprocessing related measurement errors, were close to the one pixel level in the two scenes examined. The Harrisburg scene residual mean was 28.38 m (0.95 pixels) with a standard deviation of 19.82 m (0.66 pixels), while the mean and standard deviation for the Salton Sea scene were 40.46 (1.35 pixels) and 30.57 m (1.02 pixels), respectively. Overall, the data were judged to be a high geometric quality with errors close to those targeted by the TM sensor design specifications.
Volume-based geometric modeling for radiation transport calculations
International Nuclear Information System (INIS)
Li, Z.; Williamson, J.F.
1992-01-01
Accurate theoretical characterization of radiation fields is a valuable tool in the design of complex systems, such as linac heads and intracavitary applicators, and for generation of basic dose calculation data that is inaccessible to experimental measurement. Both Monte Carlo and deterministic solutions to such problems require a system for accurately modeling complex 3-D geometries that supports ray tracing, point and segment classification, and 2-D graphical representation. Previous combinatorial approaches to solid modeling, which involve describing complex structures as set-theoretic combinations of simple objects, are limited in their ease of use and place unrealistic constraints on the geometric relations between objects such as excluding common boundaries. A new approach to volume-based solid modeling has been developed which is based upon topologically consistent definitions of boundary, interior, and exterior of a region. From these definitions, FORTRAN union, intersection, and difference routines have been developed that allow involuted and deeply nested structures to be described as set-theoretic combinations of ellipsoids, elliptic cylinders, prisms, cones, and planes that accommodate shared boundaries. Line segments between adjacent intersections on a trajectory are assigned to the appropriate region by a novel sorting algorithm that generalizes upon Siddon's approach. Two 2-D graphic display tools are developed to help the debugging of a given geometric model. In this paper, the mathematical basis of our system is described, it is contrasted to other approaches, and examples are discussed
Geometric supergravity in D = 11 and its hidden supergroup
International Nuclear Information System (INIS)
D'Auria, R.; Fre, P.
1982-01-01
In this paper we address two questions: the geometrical formulation of D=11 supergravity and the derivation of the super Lie algebra it is based on. The solutions of the two problems are intimately related and are obtained via the introduction of the new concept of a Cartan integrable system described in this paper. The previously developed group manifold framework can be naturally extended to a Cartan integrable system manifold approach. Within this scheme we obtain a geometric action for D=11 supergravity based on a suitable Cartan system. This latter turns out to be compact description of a two-element class of supergroups containing besides Lorentz Jsub(ab), translation Psub(a) and ordinary supersymmetry Q, the following extra generators: two- and five-index skew-symmetric tensors Zsub(a1a2)Zsub(a1...a5) and a further spinorial charge Q'. Q' commutes with itself and everyhting else except Jsub(ab). It appears in the commutators of Q with Psub(a),Zsub(a1a2),Zsub(a1...a5). (orig.)
Geometric Relations for CYLEX Test Tube-Wall Motion
Hill, Larry
2015-06-01
The CYLinder EXpansion (CYLEX) test is a (precision, instrumented, high-purity annealed copper) pipe bomb. Its essential measured quantities are detonation speed and tube-wall motion. Its main purpose is to calibrate detonation product equations of state (EOS) by measuring how product fluid pushes metal. In its full complexity, CYLEX is an integral test, for which EOS calibration requires the entire system to be computationally modeled and compared to salient data. Stripped to its essence, CYLEX is a non-integral test for which one may perform the inverse problem, to infer the EOS directly from data. CYLEX analysis can be simplified by the fact that the test constituents achieve a steady traveling wave structure; this allows derivation of several useful geometric relationships regarding tube wall motion. The first such treatment was by G.I. Taylor. Although his analysis was limited to small wall deflection angles, he asserted that the results remain valid for arbitrary ones. I confirm this attribute and present additional useful relationships. In the past decade, CYLEX wall-motion instrumentation has migrated almost entirely from streak camera to PDV, yet discrepancies remain between the two methods. I further present geometric relationships that shed light on this issue. Work supported by the U.S. DOE.
Fast decoding algorithms for geometric coded apertures
International Nuclear Information System (INIS)
Byard, Kevin
2015-01-01
Fast decoding algorithms are described for the class of coded aperture designs known as geometric coded apertures which were introduced by Gourlay and Stephen. When compared to the direct decoding method, the algorithms significantly reduce the number of calculations required when performing the decoding for these apertures and hence speed up the decoding process. Experimental tests confirm the efficacy of these fast algorithms, demonstrating a speed up of approximately two to three orders of magnitude over direct decoding.
Geometric measure theory a beginner's guide
Morgan, Frank
1995-01-01
Geometric measure theory is the mathematical framework for the study of crystal growth, clusters of soap bubbles, and similar structures involving minimization of energy. Morgan emphasizes geometry over proofs and technicalities, and includes a bibliography and abundant illustrations and examples. This Second Edition features a new chapter on soap bubbles as well as updated sections addressing volume constraints, surfaces in manifolds, free boundaries, and Besicovitch constant results. The text will introduce newcomers to the field and appeal to mathematicians working in the field.
Geometrical Aspects of non-gravitational interactions
Roldan, Omar; Barros Jr, C. C.
2016-01-01
In this work we look for a geometric description of non-gravitational forces. The basic ideas are proposed studying the interaction between a punctual particle and an electromagnetic external field. For this purpose, we introduce the concept of proper space-time, that allow us to describe this interaction in a way analogous to the one that the general relativity theory does for gravitation. The field equations that define this geometry are similar to the Einstein's equations, where in general...
Chirality: a relational geometric-physical property.
Gerlach, Hans
2013-11-01
The definition of the term chirality by Lord Kelvin in 1893 and 1904 is analyzed by taking crystallography at that time into account. This shows clearly that chirality is a relational geometric-physical property, i.e., two relations between isometric objects are possible: homochiral or heterochiral. In scientific articles the relational term chirality is often mistaken for the two valued measure for the individual (absolute) sense of chirality, an arbitrary attributive term. © 2013 Wiley Periodicals, Inc.
Geometric continuum regularization of quantum field theory
International Nuclear Information System (INIS)
Halpern, M.B.
1989-01-01
An overview of the continuum regularization program is given. The program is traced from its roots in stochastic quantization, with emphasis on the examples of regularized gauge theory, the regularized general nonlinear sigma model and regularized quantum gravity. In its coordinate-invariant form, the regularization is seen as entirely geometric: only the supermetric on field deformations is regularized, and the prescription provides universal nonperturbative invariant continuum regularization across all quantum field theory. 54 refs
Graph Treewidth and Geometric Thickness Parameters
Dujmović, Vida; Wood, David R.
2005-01-01
Consider a drawing of a graph $G$ in the plane such that crossing edges are coloured differently. The minimum number of colours, taken over all drawings of $G$, is the classical graph parameter "thickness". By restricting the edges to be straight, we obtain the "geometric thickness". By further restricting the vertices to be in convex position, we obtain the "book thickness". This paper studies the relationship between these parameters and treewidth. Our first main result states that for grap...
Geometric morphometric footprint analysis of young women
Domjanic, Jacqueline; Fieder, Martin; Seidler, Horst; Mitteroecker, Philipp
2013-01-01
Background Most published attempts to quantify footprint shape are based on a small number of measurements. We applied geometric morphometric methods to study shape variation of the complete footprint outline in a sample of 83 adult women. Methods The outline of the footprint, including the toes, was represented by a comprehensive set of 85 landmarks and semilandmarks. Shape coordinates were computed by Generalized Procrustes Analysis. Results The first four principal components represented t...
Geometrical characterization of micro end milling tools
DEFF Research Database (Denmark)
Borsetto, Francesca; Bariani, Paolo; Bissacco, Giuliano
2005-01-01
Performance of the milling process is directly affected by the accuracy of tool geometry. Development of methods suitable for dimensional characterization of such tools, with low measurement uncertainties is therefore of relevance. The present article focuses on the geometrical characterization...... of a flat micro end milling tool with a nominal mill diameter of 200 microns. An experimental investigation was carried out involving two different non-contact systems...
Geometrical optics in correlated imaging systems
International Nuclear Information System (INIS)
Cao Dezhong; Xiong Jun; Wang Kaige
2005-01-01
We discuss the geometrical optics of correlated imaging for two kinds of spatial correlations corresponding, respectively, to a classical thermal light source and a quantum two-photon entangled source. Due to the different features in the second-order spatial correlation, the two sources obey different imaging equations. The quantum entangled source behaves as a mirror, whereas the classical thermal source looks like a phase-conjugate mirror in the correlated imaging
Nociones de geometría vectorial
Ospina Arteaga, Omar Evelio
1990-01-01
Las presentes notas de geometría vectorial pretenden ser una ayuda para los estudiantes que se inician en el tema de vectores y deberá ser complementado con ejercicios sobre el tema. Este texto contiene temas de interés tales como: Espacios euclidianos, Distancian entre dos puntos, Concepto de vector, Igualdad de vectores, entre otros relacionados con el estudio de vectores.
Geometrical Determinants of Neuronal Actin Waves
Tomba, Caterina; Bra?ni, C?line; Bugnicourt, Ghislain; Cohen, Floriane; Friedrich, Benjamin M.; Gov, Nir S.; Villard, Catherine
2017-01-01
Hippocampal neurons produce in their early stages of growth propagative, actin-rich dynamical structures called actin waves. The directional motion of actin waves from the soma to the tip of neuronal extensions has been associated with net forward growth, and ultimately with the specification of neurites into axon and dendrites. Here, geometrical cues are used to control actin wave dynamics by constraining neurons on adhesive stripes of various widths. A key observable, the average time betwe...
Multiphase flow in geometrically simple fracture intersections
Basagaoglu, H.; Meakin, P.; Green, C.T.; Mathew, M.; ,
2006-01-01
A two-dimensional lattice Boltzmann (LB) model with fluid-fluid and solid-fluid interaction potentials was used to study gravity-driven flow in geometrically simple fracture intersections. Simulated scenarios included fluid dripping from a fracture aperture, two-phase flow through intersecting fractures and thin-film flow on smooth and undulating solid surfaces. Qualitative comparisons with recently published experimental findings indicate that for these scenarios the LB model captured the underlying physics reasonably well.
The Geometric Nonlinear Generalized Brazier Effect
DEFF Research Database (Denmark)
Nikolajsen, Jan Ánike; Lauridsen, Peter Riddersholm; Damkilde, Lars
2016-01-01
that the generalized Brazier effect is a local effect not influencing the overall mechanical behavior of the structure significantly. The offset is a nonlinear geometric beam-type Finite Element calculation, which takes into account the large displacements and rotations. The beam-type model defines the stresses which...... mainly are in the direction of the beam axis. The generalized Brazier effect is calculated as a linear load case based on these stresses....
Ricci flow and geometrization of 3-manifolds
Morgan, John W
2010-01-01
This book is based on lectures given at Stanford University in 2009. The purpose of the lectures and of the book is to give an introductory overview of how to use Ricci flow and Ricci flow with surgery to establish the Poincar� Conjecture and the more general Geometrization Conjecture for 3-dimensional manifolds. Most of the material is geometric and analytic in nature; a crucial ingredient is understanding singularity development for 3-dimensional Ricci flows and for 3-dimensional Ricci flows with surgery. This understanding is crucial for extending Ricci flows with surgery so that they are defined for all positive time. Once this result is in place, one must study the nature of the time-slices as the time goes to infinity in order to deduce the topological consequences. The goal of the authors is to present the major geometric and analytic results and themes of the subject without weighing down the presentation with too many details. This book can be read as an introduction to more complete treatments of ...
Geometric phase effects in ultracold chemistry
Hazra, Jisha; Naduvalath, Balakrishnan; Kendrick, Brian K.
2016-05-01
In molecules, the geometric phase, also known as Berry's phase, originates from the adiabatic transport of the electronic wavefunction when the nuclei follow a closed path encircling a conical intersection between two electronic potential energy surfaces. It is demonstrated that the inclusion of the geometric phase has an important effect on ultracold chemical reaction rates. The effect appears in rotationally and vibrationally resolved integral cross sections as well as cross sections summed over all product quantum states. It arises from interference between scattering amplitudes of two reaction pathways: a direct path and a looping path that encircle the conical intersection between the two lowest adiabatic electronic potential energy surfaces. Illustrative results are presented for the O+ OH --> H+ O2 reaction and for hydrogen exchange in H+ H2 and D+HD reactions. It is also qualitatively demonstrated that the geometric phase effect can be modulated by applying an external electric field allowing the possibility of quantum control of chemical reactions in the ultracold regime. This work was supported in part by NSF Grant PHY-1505557 (N.B.) and ARO MURI Grant No. W911NF-12-1-0476 (N.B.).
Edit propagation using geometric relationship functions
Guerrero, Paul; Jeschke, Stefan; Wimmer, Michael; Wonka, Peter
2014-01-01
We propose a method for propagating edit operations in 2D vector graphics, based on geometric relationship functions. These functions quantify the geometric relationship of a point to a polygon, such as the distance to the boundary or the direction to the closest corner vertex. The level sets of the relationship functions describe points with the same relationship to a polygon. For a given query point, we first determine a set of relationships to local features, construct all level sets for these relationships, and accumulate them. The maxima of the resulting distribution are points with similar geometric relationships. We show extensions to handle mirror symmetries, and discuss the use of relationship functions as local coordinate systems. Our method can be applied, for example, to interactive floorplan editing, and it is especially useful for large layouts, where individual edits would be cumbersome. We demonstrate populating 2D layouts with tens to hundreds of objects by propagating relatively few edit operations. © 2014 ACM 0730-0301/2014/03- ART15 $15.00.
Geometric transitions on non-Kaehler manifolds
International Nuclear Information System (INIS)
Knauf, A.
2007-01-01
We study geometric transitions on the supergravity level using the basic idea of an earlier paper (M. Becker et al., 2004), where a pair of non-Kaehler backgrounds was constructed, which are related by a geometric transition. Here we embed this idea into an orientifold setup. The non-Kaehler backgrounds we obtain in type IIA are non-trivially fibered due to their construction from IIB via T-duality with Neveu-Schwarz flux. We demonstrate that these non-Kaehler manifolds are not half-flat and show that a symplectic structure exists on them at least locally. We also review the construction of new non-Kaehler backgrounds in type I and heterotic theory. They are found by a series of T- and S-duality and can be argued to be related by geometric transitions as well. A local toy model is provided that fulfills the flux equations of motion in IIB and the torsional relation in heterotic theory, and that is consistent with the U-duality relating both theories. For the heterotic theory we also propose a global solution that fulfills the torsional relation because it is similar to the Maldacena-Nunez background. (Abstract Copyright [2007], Wiley Periodicals, Inc.)
Edit propagation using geometric relationship functions
Guerrero, Paul
2014-04-15
We propose a method for propagating edit operations in 2D vector graphics, based on geometric relationship functions. These functions quantify the geometric relationship of a point to a polygon, such as the distance to the boundary or the direction to the closest corner vertex. The level sets of the relationship functions describe points with the same relationship to a polygon. For a given query point, we first determine a set of relationships to local features, construct all level sets for these relationships, and accumulate them. The maxima of the resulting distribution are points with similar geometric relationships. We show extensions to handle mirror symmetries, and discuss the use of relationship functions as local coordinate systems. Our method can be applied, for example, to interactive floorplan editing, and it is especially useful for large layouts, where individual edits would be cumbersome. We demonstrate populating 2D layouts with tens to hundreds of objects by propagating relatively few edit operations. © 2014 ACM 0730-0301/2014/03- ART15 $15.00.
Geometric phase modulation for stellar interferometry
International Nuclear Information System (INIS)
Roy, M.; Boschung, B.; Tango, W.J.; Davis, J.
2002-01-01
Full text: In a long baseline optical interferometer, the fringe visibility is normally measured by modulation of the optical path difference between the two arms of the instruments. To obtain accurate measurements, the spectral bandwidth must be narrow, limiting the sensitivity of the technique. The application of geometric phase modulation technique to stellar interferometry has been proposed by Tango and Davis. Modulation of the geometric phase has the potential for improving the sensitivity of optical interferometers, and specially the Sydney University Stellar Interferometer (SUSI), by allowing broad band modulation of the light signals. This is because a modulator that changes the geometric phase of the signal is, in principle, achromatic. Another advantage of using such a phase modulator is that it can be placed in the common path traversed by the two orthogonally polarized beams emerging from the beam combiner in a stellar interferometer. Thus the optical components of the modulator do not have to be interferometric quality and could be relatively easily introduced into SUSI. We have investigated the proposed application in a laboratory-based experiment using a Mach-Zehnder interferometer with white-light source. This can be seen as a small model of an amplitude stellar interferometer where the light source takes the place of the distant star and two corner mirrors replaces the entrance pupils of the stellar interferometer
DEFF Research Database (Denmark)
Yoon, Gil Ho; Joung, Young Soo; Kim, Yoon Young
2005-01-01
The topology design optimization of “three-dimensional geometrically-nonlinear” continuum structures is still a difficult problem not only because of its problem size but also the occurrence of unstable continuum finite elements during the design optimization. To overcome this difficulty, the ele......) stiffness matrix of continuum finite elements. Therefore, any finite element code, including commercial codes, can be readily used for the ECP implementation. The key ideas and characteristics of these methods will be presented in this paper....
Mimetic Discretization of Vector-valued Diffusion Problems
DEFF Research Database (Denmark)
Olesen, Kennet
this is the balance of the change of mass in a finite volume with mass fluxes across the surfaces bounding this volume? In the FDM and FEM the derivatives in the gradient-, curl- and divergence operator are approximated by formulating expressions with respect to a finite number of selected points. The continuous...... gradient-, curl- and divergence operators are derived based on geometrical considerations on finite domains, and by introducing geometry into the numerical scheme these operators can be replicated exactly. To incorporate the geometry into the PDEs the field of differential geometry is applied, which has...... of different dimensions through Stokes' theorem. - A clear separation of balance/equilibrium equations and constitutive equations is possible. As mentioned the emphasis is put on diffusion dominated problems containing second order tensors. Earlier work has developed a rigorous framework for problems involving...
Zhang, Wei-Guo; Li, Zhe; Liu, Yong-Jun
2018-01-01
In this paper, we study the pricing problem of the continuously monitored fixed and floating strike geometric Asian power options in a mixed fractional Brownian motion environment. First, we derive both closed-form solutions and mixed fractional partial differential equations for fixed and floating strike geometric Asian power options based on delta-hedging strategy and partial differential equation method. Second, we present the lower and upper bounds of the prices of fixed and floating strike geometric Asian power options under the assumption that both risk-free interest rate and volatility are interval numbers. Finally, numerical studies are performed to illustrate the performance of our proposed pricing model.
The Efficient Separations and Processing Integrated Program
International Nuclear Information System (INIS)
Kuhn, W.L.; Gephart, J.M.
1994-08-01
The Efficient Separations and Processing Integrated Program (ESPIP) was created in 1991 to identify, develop, and perfect separations technologies and processes to treat wastes and address environmental problems throughout the US Department of Energy (DOE) complex. The ESPIP funds several multiyear tasks that address high-priority waste remediation problems involving high-level, low-level, transuranic, hazardous, and mixed (radioactive and hazardous) wastes. The ESPIP supports applied R ampersand D leading to demonstration or use of these separations technologies by other organizations within DOE's Office of Environmental Restoration and Waste Management. Examples of current ESPIP-funded separations technologies are described here
The geometric content of the interacting boson model for molecular spectra
International Nuclear Information System (INIS)
Levit, S.; Smilansky, U.
1981-12-01
The recently proposed algebraic model for collective spectra of diatomic molecules is analysed in terms of conventional geometrical degrees of freedom. We present a mapping of the algebraic Hamiltonian onto an exactly solvable geometrical Hamiltonian with the Morse potential. This mapping explains the success of the algebraic model in reproducing the low lying part of molecular spectra. At the same time the mapping shows that the expression for the dipole transition operator in terms of boson operators differs from the simplest IBM expression and in general must include many-body boson terms. The study also provides an insight into the problem of possible interpretations of the bosons in the nuclear IBM. (author)
Fundamental laws of separation by the gaseous diffusion process
International Nuclear Information System (INIS)
Bouligand, G.M.
1964-01-01
Using the Knudsen's law for the flow of each component of a gaseous mixture through a porous membrane, we derive the overall separation laws and the separation power for one stage of diffusion: Various types of stages differing by the geometrical configuration and the flow nature are considered. For the sake of simplicity physical phenomena causing a loss of separation efficiency are neglected. Computation show the advantages of counter-current type stage with one entering and two leaving flows. A more refined theory of separation can be derived with the same basis of this work. (author) [fr
The Geometric Phase in Quantum Systems
International Nuclear Information System (INIS)
Pascazio, S
2003-01-01
The discovery of the geometric phase is one of the most interesting and intriguing findings of the last few decades. It led to a deeper understanding of the concept of phase in quantum mechanics and motivated a surge of interest in fundamental quantum mechanical issues, disclosing unexpected applications in very diverse fields of physics. Although the key ideas underlying the existence of a purely geometrical phase had already been proposed in 1956 by Pancharatnam, it was Michael Berry who revived this issue 30 years later. The clarity of Berry's seminal paper, in 1984, was extraordinary. Research on the topic flourished at such a pace that it became difficult for non-experts to follow the many different theoretical ideas and experimental proposals which ensued. Diverse concepts in independent areas of mathematics, physics and chemistry were being applied, for what was (and can still be considered) a nascent arena for theory, experiments and technology. Although collections of papers by different authors appeared in the literature, sometimes with ample introductions, surprisingly, to the best of my knowledge, no specific and exhaustive book has ever been written on this subject. The Geometric Phase in Quantum Systems is the first thorough book on geometric phases and fills an important gap in the physical literature. Other books on the subject will undoubtedly follow. But it will take a fairly long time before other authors can cover that same variety of concepts in such a comprehensive manner. The book is enjoyable. The choice of topics presented is well balanced and appropriate. The appendices are well written, understandable and exhaustive - three rare qualities. I also find it praiseworthy that the authors decided to explicitly carry out most of the calculations, avoiding, as much as possible, the use of the joke 'after a straightforward calculation, one finds...' This was one of the sentences I used to dislike most during my undergraduate studies. A student is
SYMMETRY, HAMILTONIAN PROBLEMS AND WAVELETS IN ACCELERATOR PHYSICS
International Nuclear Information System (INIS)
FEDOROVA, A.; ZEITLIN, M.; PARSA, Z.
2000-01-01
In this paper the authors consider applications of methods from wavelet analysis to nonlinear dynamical problems related to accelerator physics. In this approach they take into account underlying algebraical, geometrical and topological structures of corresponding problems
Some Hermite–Hadamard Type Inequalities for Geometrically Quasi ...
Indian Academy of Sciences (India)
Abstract. In the paper, we introduce a new concept 'geometrically quasi-convex function' and establish some Hermite–Hadamard type inequalities for functions whose derivatives are of geometric quasi-convexity.
New separation technique. Catalytically functionated separation membrane
Energy Technology Data Exchange (ETDEWEB)
Urgami, Tadashi [Kansai Univ., Osaka (Japan)
1989-02-01
This report introduces research examples, showing the fundamental principle of the membrane by separating the catalytically functionated separation membrane into enzyme fixing separation membrane, polymerized metal complex separation membrane and polymer catalyst separation membrane. This membrane can achieve both functions of separation and catalytic reaction simultaneously and has sufficient possibility to combine powerful functions. Enzyme fixing separation membrane is prepared by carrier combination method, bridging method or covering method and the enzyme fixing method with polymerized complex in which enzyme is controlled to prevent the activity lowering as much as possible and enzyme is fixed from an aqueous solution into polymer membrane. This membrane is applied to the continuous manufacturing of invert sugar from cane sugar and adsorption and removing of harmful substances from blood by utilizing both micro-capsuled urease and active carbon. Alginic acid-copper (II) complex membrane is used for the polymerized metal complex membrane and polystyrene sulfonate membrane is used for the polymer catalyst separation membrane. 28 refs., 4 figs., 1 tabs.
Directory of Open Access Journals (Sweden)
Vahid Raissi Dehkordi
2009-01-01
Full Text Available This paper deals with the robust performance problem of a linear time-invariant control system in the presence of robust controller uncertainty. Assuming that plant uncertainty is modeled as an additive perturbation, a geometrical approach is followed in order to find a necessary and sufficient condition for robust performance in the form of a bound on the magnitude of controller uncertainty. This frequency domain bound is derived by converting the problem into an optimization problem, whose solution is shown to be more time-efficient than a conventional structured singular value calculation. The bound on controller uncertainty can be used in controller order reduction and implementation problems.
The Neumann Type Systems and Algebro-Geometric Solutions of a System of Coupled Integrable Equations
International Nuclear Information System (INIS)
Chen Jinbing; Qiao Zhijun
2011-01-01
A system of (1+1)-dimensional coupled integrable equations is decomposed into a pair of new Neumann type systems that separate the spatial and temporal variables for this system over a symplectic submanifold. Then, the Neumann type flows associated with the coupled integrable equations are integrated on the complex tour of a Riemann surface. Finally, the algebro-geometric solutions expressed by Riemann theta functions of the system of coupled integrable equations are obtained by means of the Jacobi inversion.
Unconventional geometric logic gate in a strong-driving-assisted multi-mode cavity
International Nuclear Information System (INIS)
Chang-Ning, Pan; Di-Wu, Yang; Xue-Hui, Zhao; Mao-Fa, Fang
2010-01-01
We propose a scheme to implement an unconventional geometric logic gate separately in a two-mode cavity and a multi-mode cavity assisted by a strong classical driving field. The effect of the cavity decay is included in the investigation. The numerical calculation is carried out, and the result shows that our scheme is more tolerant to cavity decay than the previous one because the time consumed for finishing the logic gate is doubly reduced. (general)
ISOGEOMETRIC SHAPE OPTIMIZATION FOR ELECTROMAGNETIC SCATTERING PROBLEMS
DEFF Research Database (Denmark)
Nguyen, D. M.; Evgrafov, Anton; Gravesen, Jens
2012-01-01
We consider the benchmark problem of magnetic energy density enhancement in a small spatial region by varying the shape of two symmetric conducting scatterers. We view this problem as a prototype for a wide variety of geometric design problems in electromagnetic applications. Our approach...
Controlling Separation in Turbomachines
Evans, Simon; Himmel, Christoph; Power, Bronwyn; Wakelam, Christian; Xu, Liping; Hynes, Tom; Hodson, Howard
2010-01-01
Four examples of flow control: 1) Passive control of LP turbine blades (Laminar separation control). 2) Aspiration of a conventional axial compressor blade (Turbulent separation control). 3) Compressor blade designed for aspiration (Turbulent separation control). 4.Control of intakes in crosswinds (Turbulent separation control).
The Young-Laplace equation links capillarity with geometrical optics
International Nuclear Information System (INIS)
Rodriguez-Valverde, M A; Cabrerizo-Vilchez, M A; Hidalgo-Alvarez, R
2003-01-01
Analogies in physics are unusual coincidences that can be very useful to solve problems and to clarify some theoretical concepts. Apart from their own curiosity, analogies are attractive tools because they reduce the abstraction of some complex phenomena in such a way that these can be understood by means of other phenomena closer to daily experience. Usually, two analogous systems share a common aspect, like the movement of particles or transport of matter. On account of this, the analogy presented is exceptional since the involved phenomena are a priori disjoined. The most important equation of capillarity, the Young-Laplace equation, has the same structure as the Gullstrand equation of geometrical optics, which relates the optic power of a thick lens to its geometry and the properties of the media
Geometric control theory for quantum back-action evasion
Energy Technology Data Exchange (ETDEWEB)
Yokotera, Yu; Yamamoto, Naoki [Keio University, Department of Applied Physics and Physico-Informatics, Yokohama (Japan)
2016-12-15
Engineering a sensor system for detecting an extremely tiny signal such as the gravitational-wave force is a very important subject in quantum physics. A major obstacle to this goal is that, in a simple detection setup, the measurement noise is lower bounded by the so-called standard quantum limit (SQL), which is originated from the intrinsic mechanical back-action noise. Hence, the sensor system has to be carefully engineered so that it evades the back-action noise and eventually beats the SQL. In this paper, based on the well-developed geometric control theory for classical disturbance decoupling problem, we provide a general method for designing an auxiliary (coherent feedback or direct interaction) controller for the sensor system to achieve the above-mentioned goal. This general theory is applied to a typical opto-mechanical sensor system. Also, we demonstrate a controller design for a practical situation where several experimental imperfections are present. (orig.)
Geometric control theory for quantum back-action evasion
International Nuclear Information System (INIS)
Yokotera, Yu; Yamamoto, Naoki
2016-01-01
Engineering a sensor system for detecting an extremely tiny signal such as the gravitational-wave force is a very important subject in quantum physics. A major obstacle to this goal is that, in a simple detection setup, the measurement noise is lower bounded by the so-called standard quantum limit (SQL), which is originated from the intrinsic mechanical back-action noise. Hence, the sensor system has to be carefully engineered so that it evades the back-action noise and eventually beats the SQL. In this paper, based on the well-developed geometric control theory for classical disturbance decoupling problem, we provide a general method for designing an auxiliary (coherent feedback or direct interaction) controller for the sensor system to achieve the above-mentioned goal. This general theory is applied to a typical opto-mechanical sensor system. Also, we demonstrate a controller design for a practical situation where several experimental imperfections are present. (orig.)
Standalone visualization tool for three-dimensional DRAGON geometrical models
International Nuclear Information System (INIS)
Lukomski, A.; McIntee, B.; Moule, D.; Nichita, E.
2008-01-01
DRAGON is a neutron transport and depletion code able to solve one-, two- and three-dimensional problems. To date DRAGON provides two visualization modules, able to represent respectively two- and three-dimensional geometries. The two-dimensional visualization module generates a postscript file, while the three dimensional visualization module generates a MATLAB M-file with instructions for drawing the tracks in the DRAGON TRACKING data structure, which implicitly provide a representation of the geometry. The current work introduces a new, standalone, tool based on the open-source Visualization Toolkit (VTK) software package which allows the visualization of three-dimensional geometrical models by reading the DRAGON GEOMETRY data structure and generating an axonometric image which can be manipulated interactively by the user. (author)