WorldWideScience

Sample records for geometric segments

  1. Random geometric prior forest for multiclass object segmentation.

    Science.gov (United States)

    Liu, Xiao; Song, Mingli; Tao, Dacheng; Bu, Jiajun; Chen, Chun

    2015-10-01

    Recent advances in object detection have led to the development of segmentation by detection approaches that integrate top-down geometric priors for multiclass object segmentation. A key yet under-addressed issue in utilizing top-down cues for the problem of multiclass object segmentation by detection is efficiently generating robust and accurate geometric priors. In this paper, we propose a random geometric prior forest scheme to obtain object-adaptive geometric priors efficiently and robustly. In the scheme, a testing object first searches for training neighbors with similar geometries using the random geometric prior forest, and then the geometry of the testing object is reconstructed by linearly combining the geometries of its neighbors. Our scheme enjoys several favorable properties when compared with conventional methods. First, it is robust and very fast because its inference does not suffer from bad initializations, poor local minimums or complex optimization. Second, the figure/ground geometries of training samples are utilized in a multitask manner. Third, our scheme is object-adaptive but does not require the labeling of parts or poselets, and thus, it is quite easy to implement. To demonstrate the effectiveness of the proposed scheme, we integrate the obtained top-down geometric priors with conventional bottom-up color cues in the frame of graph cut. The proposed random geometric prior forest achieves the best segmentation results of all of the methods tested on VOC2010/2012 and is 90 times faster than the current state-of-the-art method.

  2. A Geometric Approach For Fully Automatic Chromosome Segmentation

    CERN Document Server

    Minaee, Shervin; Khalaj, Babak Hossein

    2011-01-01

    Chromosome segmentation is a fundamental task in human chromosome analysis. Most of previous methods for separation between touching chromosomes require human intervention. In this paper, a geometry based method is used for automatic chromosome segmentation. This method can be divided into two phases. In the first phase, chromosome clusters are detected using three geometric criteria and in the second phase chromosome clusters are separated using a proper cut line. However, most earlier methods do not work well with chromosome clusters that contain more than two chromosomes. Our method, on the other hand, has a high efficiency in separation of chromosome clusters in such scenarios. Another advantage of the proposed method is that it can easily apply to any type of images such as binary images. This is due to the fact that the proposed scheme uses the geometric features of chromosomes which are independent of the type of images. The performance of the proposed scheme is demonstrated on a database containing to...

  3. Turbulent dynamos in spherical shell segments of varying geometrical extent

    CERN Document Server

    Mitra, Dhrubaditya; Brandenburg, Axel; Moss, David

    2008-01-01

    We use three-dimensional direct numerical simulations of the helically forced magnetohydrodynamic equations in spherical shell segments in order to study the effects of changes in the geometrical shape and size of the domain on the growth and saturation of large-scale magnetic fields. We inject kinetic energy along with kinetic helicity in spherical domains via helical forcing using Chandrasekhar-Kendall functions. We use perfect conductor boundary conditions for the magnetic field to ensure that no magnetic helicity escapes the domain boundaries. We find dynamo action giving rise to magnetic fields at scales larger than the characteristic scale of the forcing. The magnetic energy exceeds the kinetic energy over dissipative time scales, similar to that seen earlier in Cartesian simulations in periodic boxes. As we increase the size of the domain in the azimuthal direction we find that the nonlinearly saturated magnetic field organizes itself in long-lived cellular structures with aspect ratios close to unity....

  4. A DXA validated geometric model for the calculation of body segment inertial parameters of young females.

    Science.gov (United States)

    Winter, Samantha Lee; Forrest, Sarah Michelle; Wallace, Joanne; Challis, John H

    2017-08-08

    The purpose of this study was to validate a new geometric solids model, developed to address the lack of female specific models for body segment inertial parameter estimation. A second aim was to determine the effect of reducing the number of geometric solids used to model the limb segments on model accuracy. The 'full' model comprised 56 geometric solids, the 'reduced' 31, and the 'basic' 16. Predicted whole-body inertial parameters were compared with direct measurements (reaction board, scales), and predicted segmental parameters with those estimated from whole-body DXA scans for 28 females. The percentage root mean square error (%RMSE) for whole-body volume was geometric solids are required to more accurately model the trunk.

  5. Segmentation of Nonstationary Time Series with Geometric Clustering

    DEFF Research Database (Denmark)

    Bocharov, Alexei; Thiesson, Bo

    2013-01-01

    We introduce a non-parametric method for segmentation in regimeswitching time-series models. The approach is based on spectral clustering of target-regressor tuples and derives a switching regression tree, where regime switches are modeled by oblique splits. Such models can be learned efficiently...

  6. Airborne Linear Array Image Geometric Rectification Method Based on Unequal Segmentation

    Science.gov (United States)

    Li, J. M.; Li, C. R.; Zhou, M.; Hu, J.; Yang, C. M.

    2016-06-01

    As the linear array sensor such as multispectral and hyperspectral sensor has great potential in disaster monitoring and geological survey, the quality of the image geometric rectification should be guaranteed. Different from the geometric rectification of airborne planar array images or multi linear array images, exterior orientation elements need to be determined for each scan line of single linear array images. Internal distortion persists after applying GPS/IMU data directly to geometrical rectification. Straight lines may be curving and jagged. Straight line feature -based geometrical rectification algorithm was applied to solve this problem, whereby the exterior orientation elements were fitted by piecewise polynomial and evaluated with the straight line feature as constraint. However, atmospheric turbulence during the flight is unstable, equal piecewise can hardly provide good fitting, resulting in limited precision improvement of geometric rectification or, in a worse case, the iteration cannot converge. To solve this problem, drawing on dynamic programming ideas, unequal segmentation of line feature-based geometric rectification method is developed. The angle elements fitting error is minimized to determine the optimum boundary. Then the exterior orientation elements of each segment are fitted and evaluated with the straight line feature as constraint. The result indicates that the algorithm is effective in improving the precision of geometric rectification.

  7. 3D geometric split-merge segmentation of brain MRI datasets.

    Science.gov (United States)

    Marras, Ioannis; Nikolaidis, Nikolaos; Pitas, Ioannis

    2014-05-01

    In this paper, a novel method for MRI volume segmentation based on region adaptive splitting and merging is proposed. The method, called Adaptive Geometric Split Merge (AGSM) segmentation, aims at finding complex geometrical shapes that consist of homogeneous geometrical 3D regions. In each volume splitting step, several splitting strategies are examined and the most appropriate is activated. A way to find the maximal homogeneity axis of the volume is also introduced. Along this axis, the volume splitting technique divides the entire volume in a number of large homogeneous 3D regions, while at the same time, it defines more clearly small homogeneous regions within the volume in such a way that they have greater probabilities of survival at the subsequent merging step. Region merging criteria are proposed to this end. The presented segmentation method has been applied to brain MRI medical datasets to provide segmentation results when each voxel is composed of one tissue type (hard segmentation). The volume splitting procedure does not require training data, while it demonstrates improved segmentation performance in noisy brain MRI datasets, when compared to the state of the art methods.

  8. White matter fiber tract segmentation in DT-MRI using geometric flows.

    Science.gov (United States)

    Jonasson, Lisa; Bresson, Xavier; Hagmann, Patric; Cuisenaire, Olivier; Meuli, Reto; Thiran, Jean-Philippe

    2005-06-01

    In this paper, we present a 3D geometric flow designed to segment the main core of fiber tracts in diffusion tensor magnetic resonance images. The fundamental assumption of our fiber segmentation technique is that adjacent voxels in a tract have similar properties of diffusion. The fiber segmentation is carried out with a front propagation algorithm constructed to fill the whole fiber tract. The front is a 3D surface that evolves with a propagation speed proportional to a measure indicating the similarity of diffusion between the tensors lying on the surface and their neighbors in the direction of propagation. We use a level set implementation to assure a stable and accurate evolution of the surface and to handle changes of topology of the surface during the evolution process. The fiber tract segmentation method does not need a regularized tensor field since the surface is automatically smoothed as it propagates. The smoothing is done by an intrinsic surface force, based on the minimal principal curvature. This segmentation can be used for obtaining quantitative measures of the diffusion in the fiber tracts and it can also be used for white matter registration and for surgical planning.

  9. Fast Image Segmentation Based on a Two-Stage Geometrical Active Contour

    Institute of Scientific and Technical Information of China (English)

    肖昌炎; 张素; 陈亚珠

    2005-01-01

    A fast two-stage geometric active contour algorithm for image segmentation is developed. First, the Eikonal equation problem is quickly solved using an improved fast sweeping method, and a criterion of local minimum of area gradient (LMAG) is presented to extract the optimal arrival time. Then, the final time function is passed as an initial state to an area and length minimizing flow model, which adjusts the interface more accurately and prevents it from leaking. For object with complete and salient edge, using the first stage only is able to obtain an ideal result, and this results in a time complexity of O(M), where M is the number of points in each coordinate direction. Both stages are needed for convoluted shapes, but the computation cost can be drastically reduced. Efficiency of the algorithm is verified in segmentation experiments of real images with different feature.

  10. Discrete Plane Segmentation and Estimation from a Point Cloud Using Local Geometric Patterns

    Institute of Scientific and Technical Information of China (English)

    Yukiko Kenmochi; Lilian Buzer; Akihiro Sugimoto; Ikuko Shimizu

    2008-01-01

    This paper presents a method for segmenting a 3D point cloud into planar surfaces using recently obtained discrete-geometry results. In discrete geometry, a discrete plane is defined as a set of grid points lying between two parallel planes with a small distance, called thickness. In contrast to the continuous case, there exist a finite number of local geometric patterns (LGPs) appearing on discrete planes. Moreover, such an LGP does not possess the unique normal vector but a set of normal vectors. By using those LGP properties, we first reject non-linear points from a point cloud, and then classify non-rejected points whose LGPs have common normal vectors into a planar-surface-point set. From each segmented point set, we also estimate the values of parameters of a discrete plane by minimizing its thickness.

  11. Generalization of geometrical flux maximizing flow on Riemannian manifolds for improved volumetric blood vessel segmentation.

    Science.gov (United States)

    Gooya, Ali; Liao, Hongen; Sakuma, Ichiro

    2012-09-01

    Geometric flux maximizing flow (FLUX) is an active contour based method which evolves an initial surface to maximize the flux of a vector field on the surface. For blood vessel segmentation, the vector field is defined as the vectors specified by vascular edge strengths and orientations. Hence, the segmentation performance depends on the quality of the detected edge vector field. In this paper, we propose a new method for level set based segmentation of blood vessels by generalizing the FLUX on a Riemannian manifold (R-FLUX). We consider a 3D scalar image I(x) as a manifold embedded in the 4D space (x, I(x)) and compute the image metric by pullback from the 4D space, whose metric tensor depends on the vessel enhancing diffusion (VED) tensor. This allows us to devise a non-linear filter which both projects and normalizes the original image gradient vectors under the inverse of local VED tensors. The filtered gradient vectors pertaining to the vessels are less sensitive to the local image contrast and more coherent with the local vessel orientation. The method has been applied to both synthetic and real TOF MRA data sets. Comparisons are made with the FLUX and vesselsness response based segmentations, indicating that the R-FLUX outperforms both methods in terms of leakage minimization and thiner vessel delineation.

  12. A geometric flow for segmenting vasculature in proton-density weighted MRI.

    Science.gov (United States)

    Descoteaux, Maxime; Collins, D Louis; Siddiqi, Kaleem

    2008-08-01

    Modern neurosurgery takes advantage of magnetic resonance images (MRI) of a patient's cerebral anatomy and vasculature for planning before surgery and guidance during the procedure. Dual echo acquisitions are often performed that yield proton-density (PD) and T2-weighted images to evaluate edema near a tumor or lesion. In this paper we develop a novel geometric flow for segmenting vasculature in PD images, which can also be applied to the easier cases of MR angiography data or Gadolinium enhanced MRI. Obtaining vasculature from PD data is of clinical interest since the acquisition of such images is widespread, the scanning process is non-invasive, and the availability of vessel segmentation methods could obviate the need for an additional angiographic or contrast-based sequence during preoperative imaging. The key idea is to first apply Frangi's vesselness measure [Frangi, A., Niessen, W., Vincken, K.L., Viergever, M.A., 1998. Multiscale vessel enhancement filtering. In: International Conference on Medical Image Computing and Computer Assisted Intervention, vol. 1496 of Lecture Notes in Computer Science, pp. 130-137] to find putative centerlines of tubular structures along with their estimated radii. This measure is then distributed to create a vector field which allows the flux maximizing flow algorithm of Vasilevskiy and Siddiqi [Vasilevskiy, A., Siddiqi, K., 2002. Flux maximizing geometric flows. IEEE Transactions on Pattern Analysis and Machine Intelligence 24 (12), 1565-1578] to be applied to recover vessel boundaries. We carry out a qualitative validation of the approach on PD, MR angiography and Gadolinium enhanced MRI volumes and suggest a new way to visualize the segmentations in 2D with masked projections. We validate the approach quantitatively on a single-subject data set consisting of PD, phase contrast (PC) angiography and time of flight (TOF) angiography volumes, with an expert segmented version of the TOF volume viewed as the ground truth. We then

  13. Geometric-attributes-based segmentation of cortical bone slides using optimized neural networks.

    Science.gov (United States)

    Hage, Ilige S; Hamade, Ramsey F

    2016-05-01

    In cortical bone, solid (lamellar and interstitial) matrix occupies space left over by porous microfeatures such as Haversian canals, lacunae, and canaliculi-containing clusters. In this work, pulse-coupled neural networks (PCNN) were used to automatically distinguish the microfeatures present in histology slides of cortical bone. The networks' parameters were optimized using particle swarm optimization (PSO). When forming the fitness functions for the PSO, we considered the microfeatures' geometric attributes-namely, their size (based on measures of elliptical perimeter or area), shape (based on measures of compactness or the ratio of minor axis length to major axis length), and a two-way combination of these two geometric attributes. This hybrid PCNN-PSO method was further enhanced for pulse evaluation by combination with yet another method, adaptive threshold (AT), where the PCNN algorithm is repeated until the best threshold is found corresponding to the maximum variance between two segmented regions. Together, this framework of using PCNN-PSO-AT constitutes, we believe, a novel framework in biomedical imaging. Using this framework and extracting microfeatures from only one training image, we successfully extracted microfeatures from other test images. The high fidelity of all resultant segments was established using quantitative metrics such as precision, specificity, and Dice indices.

  14. Geometric-model-based segmentation of the prostate and surrounding structures for image-guided radiotherapy

    Science.gov (United States)

    Tang, Xiaoli; Jeong, Yongwon; Radke, Richard J.; Chen, George T. Y.

    2004-01-01

    We present a computer vision tool to improve the clinical outcome of patients undergoing radiation therapy for prostate cancer by improving irradiation technique. While intensity modulated radiotherapy (IMRT) allows one to irradiate a specific region in the body with high accuracy, it is still difficult to know exactly where to aim the radiation beam on every day of the 30~40 treatments that are necessary. This paper presents a geometric model-based technique to accurately segment the prostate and other surrounding structures in a daily serial CT image, compensating for daily motion and shape variation. We first acquire a collection of serial CT scans of patients undergoing external beam radiotherapy, and manual segmentation of the prostate and other nearby structures by radiation oncologists. Then we train shape and local appearance models for the structures of interest. When new images are available, an iterative algorithm is applied to locate the prostate and surrounding structures automatically. Our experimental results show that excellent matches can be given to the prostate and surrounding structure. Convergence is declared after 10 iterations. For 256 x 256 images, the mean distance between the hand-segmented contour and the automatically estimated contour is about 1.5 pixels (2.44 mm), with variance about 0.6 pixel (1.24 mm).

  15. Segmentation of pelvic structures for planning CT using a geometrical shape model tuned by a multi-scale edge detector

    Science.gov (United States)

    Martínez, Fabio; Romero, Eduardo; Dréan, Gaël; Simon, Antoine; Haigron, Pascal; De Crevoisier, Renaud; Acosta, Oscar

    2014-01-01

    Accurate segmentation of the prostate and organs at risk in computed tomography (CT) images is a crucial step for radiotherapy (RT) planning. Manual segmentation, as performed nowadays, is a time consuming process and prone to errors due to the a high intra- and inter-expert variability. This paper introduces a new automatic method for prostate, rectum and bladder segmentation in planning CT using a geometrical shape model under a Bayesian framework. A set of prior organ shapes are first built by applying Principal Component Analysis (PCA) to a population of manually delineated CT images. Then, for a given individual, the most similar shape is obtained by mapping a set of multi-scale edge observations to the space of organs with a customized likelihood function. Finally, the selected shape is locally deformed to adjust the edges of each organ. Experiments were performed with real data from a population of 116 patients treated for prostate cancer. The data set was split in training and test groups, with 30 and 86 patients, respectively. Results show that the method produces competitive segmentations w.r.t standard methods (Averaged Dice = 0.91 for prostate, 0.94 for bladder, 0.89 for Rectum) and outperforms the majority-vote multi-atlas approaches (using rigid registration, free-form deformation (FFD) and the demons algorithm) PMID:24594798

  16. Influence of Interpersonal Geometrical Variation on Spinal Motion Segment Stiffness Implications for Patient-Specific Modeling

    NARCIS (Netherlands)

    Meijer, Gerdine J. M.; Homminga, Jasper; Veldhuizen, Albert G.; Verkerke, Gijsbertus J.

    2011-01-01

    Study Design. A validated finite element model of an L3-L4 motion segment is used to analyze the effects of interpersonal differences in geometry on spinal stiffness. Objective. The objective of this study is to determine which of the interpersonal variations of the geometry of the spine have a larg

  17. Fish recognition based on the combination between robust feature selection, image segmentation and geometrical parameter techniques using Artificial Neural Network and Decision Tree

    CERN Document Server

    Alsmadi, Mutasem Khalil Sari; Noah, Shahrul Azman; Almarashdah, Ibrahim

    2009-01-01

    We presents in this paper a novel fish classification methodology based on a combination between robust feature selection, image segmentation and geometrical parameter techniques using Artificial Neural Network and Decision Tree. Unlike existing works for fish classification, which propose descriptors and do not analyze their individual impacts in the whole classification task and do not make the combination between the feature selection, image segmentation and geometrical parameter, we propose a general set of features extraction using robust feature selection, image segmentation and geometrical parameter and their correspondent weights that should be used as a priori information by the classifier. In this sense, instead of studying techniques for improving the classifiers structure itself, we consider it as a black box and focus our research in the determination of which input information must bring a robust fish discrimination.The main contribution of this paper is enhancement recognize and classify fishes...

  18. Automated segmentation and geometrical modeling of the tricuspid aortic valve in 3D echocardiographic images.

    Science.gov (United States)

    Pouch, Alison M; Wang, Hongzhi; Takabe, Manabu; Jackson, Benjamin M; Sehgal, Chandra M; Gorman, Joseph H; Gorman, Robert C; Yushkevich, Paul A

    2013-01-01

    The aortic valve has been described with variable anatomical definitions, and the consistency of 2D manual measurement of valve dimensions in medical image data has been questionable. Given the importance of image-based morphological assessment in the diagnosis and surgical treatment of aortic valve disease, there is considerable need to develop a standardized framework for 3D valve segmentation and shape representation. Towards this goal, this work integrates template-based medial modeling and multi-atlas label fusion techniques to automatically delineate and quantitatively describe aortic leaflet geometry in 3D echocardiographic (3DE) images, a challenging task that has been explored only to a limited extent. The method makes use of expert knowledge of aortic leaflet image appearance, generates segmentations with consistent topology, and establishes a shape-based coordinate system on the aortic leaflets that enables standardized automated measurements. In this study, the algorithm is evaluated on 11 3DE images of normal human aortic leaflets acquired at mid systole. The clinical relevance of the method is its ability to capture leaflet geometry in 3DE image data with minimal user interaction while producing consistent measurements of 3D aortic leaflet geometry.

  19. Segmentation of Façades from Urban 3D Point Clouds Using Geometrical and Morphological Attribute-Based Operators

    Directory of Open Access Journals (Sweden)

    Andrés Serna

    2016-01-01

    Full Text Available 3D building segmentation is an important research issue in the remote sensing community with relevant applications to urban modeling, cloud-to-cloud and cloud-to-model registration, 3D cartography, virtual reality, cultural heritage documentation, among others. In this paper, we propose automatic, parametric and robust approaches to segment façades from 3D point clouds. Processing is carried out using elevation images and 3D decomposition, and the final result can be reprojected onto the 3D point cloud for visualization or evaluation purposes. Our methods are based on geometrical and geodesic constraints. Parameters are related to urban and architectural constraints. Thus, they can be set up to manage façades of any height, length and elongation. We propose two methods based on façade marker extraction and a third method without markers based on the maximal elongation image. This work is developed in the framework of TerraMobilita project. The performance of our methods is proved in our experiments on TerraMobilita databases using 2D and 3D ground truth annotations.

  20. Improving Semantic Updating Method on 3d City Models Using Hybrid Semantic-Geometric 3d Segmentation Technique

    Science.gov (United States)

    Sharkawi, K.-H.; Abdul-Rahman, A.

    2013-09-01

    to LoD4. The accuracy and structural complexity of the 3D objects increases with the LoD level where LoD0 is the simplest LoD (2.5D; Digital Terrain Model (DTM) + building or roof print) while LoD4 is the most complex LoD (architectural details with interior structures). Semantic information is one of the main components in CityGML and 3D City Models, and provides important information for any analyses. However, more often than not, the semantic information is not available for the 3D city model due to the unstandardized modelling process. One of the examples is where a building is normally generated as one object (without specific feature layers such as Roof, Ground floor, Level 1, Level 2, Block A, Block B, etc). This research attempts to develop a method to improve the semantic data updating process by segmenting the 3D building into simpler parts which will make it easier for the users to select and update the semantic information. The methodology is implemented for 3D buildings in LoD2 where the buildings are generated without architectural details but with distinct roof structures. This paper also introduces hybrid semantic-geometric 3D segmentation method that deals with hierarchical segmentation of a 3D building based on its semantic value and surface characteristics, fitted by one of the predefined primitives. For future work, the segmentation method will be implemented as part of the change detection module that can detect any changes on the 3D buildings, store and retrieve semantic information of the changed structure, automatically updates the 3D models and visualize the results in a userfriendly graphical user interface (GUI).

  1. Geometric and kinematics of West Segment of South Dabashan Foreland Fold-and-Thrust Belt, Northeast Sichuan Basin, China

    Science.gov (United States)

    He, Dengfa

    2017-04-01

    The west segment of South Daba Shan (WSD) foreland thrust belt is an ideal area to disclose the intra-continental tectonic processes. Based on the latest pre-stack depth migration of 3-D seismic data, 2-D seismic profile, well data and geological outcrop, the paper explore the structural geometric and kinematic features of WSD with the application of fault-related folding theories. WSD is characterized by multi-level detachment deformation due to the three predominant sets of weak layers, Lower Triassic Jialingjiang Formation gypsum interval, Silurian mudstone beds and Cambrian shale zone. It is accordingly subdivided vertically into three tectonic systems. The upper one is above the Jialingjiang Formation gypsolith layer and presents a Jura-like fold-and-thrust belt. The middle one takes Silurian shale as the base and Jialingjiang Formation gypsolith interval as the passive roof, in which imbricate thrusts developed. The lower one is bounded to Cambrian and Silurian detachment layers, in which duplex dominated. The Sinian and Proterozoic basements below Cambrian have not been involved in deformation. WSD underwent four periods of tectonic evolution: Late Jurassic -Cretaceous (150-110Ma); Late Cretaceous (110-70Ma); Latest Cretaceous to Paleogene (70-30Ma); Oligocene to Quaternary (30-0 Ma). The deformation propagated southward as an imbricate style, which results in the passive uplifting of overlying structural layer. WSD exhibits a rather low taper tectonic wedge. According to the magnetotelluric and deep seismic profiles, it is inferred that the WSD tectonic processes is mainly controlled by the Yangtze continental block subduction northward under the Qingling Mountains and the pro-wedge multi-level thrusting during late Jurassic to Cretaceous. The Upper Paleozoic carbonates in the middle tectonic deformation system are favorable for gas exploration in thea area.

  2. The effect of three-dimensional geometrical changes during adolescent growth on the biomechanics of a spinal motion segment

    NARCIS (Netherlands)

    Homminga, J.; Hekman, E. E. G.; Veldhuizen, A. G.; Verkerke, G. J.; Meijer, G.

    2010-01-01

    During adolescent growth, vertebrae and intervertebral discs undergo various geometrical changes. Although such changes in geometry are well known, their effects on spinal stiffness remains poorly understood. However, this understanding is essential in the treatment of spinal abnormalities during gr

  3. Segmentation of the Cerebellar Peduncles Using a Random Forest Classifier and a Multi-object Geometric Deformable Model: Application to Spinocerebellar Ataxia Type 6.

    Science.gov (United States)

    Ye, Chuyang; Yang, Zhen; Ying, Sarah H; Prince, Jerry L

    2015-07-01

    The cerebellar peduncles, comprising the superior cerebellar peduncles (SCPs), the middle cerebellar peduncle (MCP), and the inferior cerebellar peduncles (ICPs), are white matter tracts that connect the cerebellum to other parts of the central nervous system. Methods for automatic segmentation and quantification of the cerebellar peduncles are needed for objectively and efficiently studying their structure and function. Diffusion tensor imaging (DTI) provides key information to support this goal, but it remains challenging because the tensors change dramatically in the decussation of the SCPs (dSCP), the region where the SCPs cross. This paper presents an automatic method for segmenting the cerebellar peduncles, including the dSCP. The method uses volumetric segmentation concepts based on extracted DTI features. The dSCP and noncrossing portions of the peduncles are modeled as separate objects, and are initially classified using a random forest classifier together with the DTI features. To obtain geometrically correct results, a multi-object geometric deformable model is used to refine the random forest classification. The method was evaluated using a leave-one-out cross-validation on five control subjects and four patients with spinocerebellar ataxia type 6 (SCA6). It was then used to evaluate group differences in the peduncles in a population of 32 controls and 11 SCA6 patients. In the SCA6 group, we have observed significant decreases in the volumes of the dSCP and the ICPs and significant increases in the mean diffusivity in the noncrossing SCPs, the MCP, and the ICPs. These results are consistent with a degeneration of the cerebellar peduncles in SCA6 patients.

  4. Geometric and topological feature extraction of linear segments from 2D cross-section data of 3D point clouds

    Science.gov (United States)

    Ramamurthy, Rajesh; Harding, Kevin; Du, Xiaoming; Lucas, Vincent; Liao, Yi; Paul, Ratnadeep; Jia, Tao

    2015-05-01

    Optical measurement techniques are often employed to digitally capture three dimensional shapes of components. The digital data density output from these probes range from a few discrete points to exceeding millions of points in the point cloud. The point cloud taken as a whole represents a discretized measurement of the actual 3D shape of the surface of the component inspected to the measurement resolution of the sensor. Embedded within the measurement are the various features of the part that make up its overall shape. Part designers are often interested in the feature information since those relate directly to part function and to the analytical models used to develop the part design. Furthermore, tolerances are added to these dimensional features, making their extraction a requirement for the manufacturing quality plan of the product. The task of "extracting" these design features from the point cloud is a post processing task. Due to measurement repeatability and cycle time requirements often automated feature extraction from measurement data is required. The presence of non-ideal features such as high frequency optical noise and surface roughness can significantly complicate this feature extraction process. This research describes a robust process for extracting linear and arc segments from general 2D point clouds, to a prescribed tolerance. The feature extraction process generates the topology, specifically the number of linear and arc segments, and the geometry equations of the linear and arc segments automatically from the input 2D point clouds. This general feature extraction methodology has been employed as an integral part of the automated post processing algorithms of 3D data of fine features.

  5. Exploring New Geometric Worlds

    Science.gov (United States)

    Nirode, Wayne

    2015-01-01

    When students work with a non-Euclidean distance formula, geometric objects such as circles and segment bisectors can look very different from their Euclidean counterparts. Students and even teachers can experience the thrill of creative discovery when investigating these differences among geometric worlds. In this article, the author describes a…

  6. 基于两步几何主动轮廓的快速图像分割%Fast Image Segmentation Based on a Two-Stage Geometrical Active Contour

    Institute of Scientific and Technical Information of China (English)

    XIAO Chang-yan; ZHANG Su; CHEN Ya-zhu

    2005-01-01

    A fast two-stage geometric active contour algorithm for image segmentation is developed. First, the Eikonal equation problem is quickly solved using an improved fast sweeping method, and a criterion of local minimum of area gradient (LMAG) is presented to extract the optimal arrival time. Then, the final time function is passed as an initial state to an area and length minimizing flow model,which adjusts the interface more accurately and prevents it from leaking. For object with complete and salient edge, using the first stage only is able to obtain an ideal result, and this results in a time complexity of O ( M), where M is the number of points in each coordinate direction. Both stages are needed for convoluted shapes, but the computation cost can be drastically reduced. Efficiency of the algorithm is verified in segmentation experiments of real images with different feature.

  7. Geometrical Bioelectrodynamics

    CERN Document Server

    Ivancevic, Vladimir G

    2008-01-01

    This paper proposes rigorous geometrical treatment of bioelectrodynamics, underpinning two fast-growing biomedical research fields: bioelectromagnetism, which deals with the ability of life to produce its own electromagnetism, and bioelectromagnetics, which deals with the effect on life from external electromagnetism. Keywords: Bioelectrodynamics, exterior geometrical machinery, Dirac-Feynman quantum electrodynamics, functional electrical stimulation

  8. Material Characterization and Geometric Segmentation of a Composite Structure Using Microfocus X-Ray Computed Tomography Image-Based Finite Element Modeling

    Science.gov (United States)

    Abdul-Aziz, Ali; Roth, D. J.; Cotton, R.; Studor, George F.; Christiansen, Eric; Young, P. C.

    2011-01-01

    This study utilizes microfocus x-ray computed tomography (CT) slice sets to model and characterize the damage locations and sizes in thermal protection system materials that underwent impact testing. ScanIP/FE software is used to visualize and process the slice sets, followed by mesh generation on the segmented volumetric rendering. Then, the local stress fields around several of the damaged regions are calculated for realistic mission profiles that subject the sample to extreme temperature and other severe environmental conditions. The resulting stress fields are used to quantify damage severity and make an assessment as to whether damage that did not penetrate to the base material can still result in catastrophic failure of the structure. It is expected that this study will demonstrate that finite element modeling based on an accurate three-dimensional rendered model from a series of CT slices is an essential tool to quantify the internal macroscopic defects and damage of a complex system made out of thermal protection material. Results obtained showing details of segmented images; three-dimensional volume-rendered models, finite element meshes generated, and the resulting thermomechanical stress state due to impact loading for the material are presented and discussed. Further, this study is conducted to exhibit certain high-caliber capabilities that the nondestructive evaluation (NDE) group at NASA Glenn Research Center can offer to assist in assessing the structural durability of such highly specialized materials so improvements in their performance and capacities to handle harsh operating conditions can be made.

  9. GEOMETRIC TURBULENCE

    Directory of Open Access Journals (Sweden)

    Trunev A. P.

    2014-05-01

    Full Text Available In this article we have investigated the solutions of Maxwell's equations, Navier-Stokes equations and the Schrödinger associated with the solutions of Einstein's equations for empty space. It is shown that in some cases the geometric instability leading to turbulence on the mechanism of alternating viscosity, which offered by N.N. Yanenko. The mechanism of generation of matter from dark energy due to the geometric turbulence in the Big Bang has been discussed

  10. Geometric mechanics

    CERN Document Server

    Muniz Oliva, Waldyr

    2002-01-01

    Geometric Mechanics here means mechanics on a pseudo-riemannian manifold and the main goal is the study of some mechanical models and concepts, with emphasis on the intrinsic and geometric aspects arising in classical problems. The first seven chapters are written in the spirit of Newtonian Mechanics while the last two ones as well as two of the four appendices describe the foundations and some aspects of Special and General Relativity. All the material has a coordinate free presentation but, for the sake of motivation, many examples and exercises are included in order to exhibit the desirable flavor of physical applications.

  11. Geometric Algebra

    CERN Document Server

    Chisolm, Eric

    2012-01-01

    This is an introduction to geometric algebra, an alternative to traditional vector algebra that expands on it in two ways: 1. In addition to scalars and vectors, it defines new objects representing subspaces of any dimension. 2. It defines a product that's strongly motivated by geometry and can be taken between any two objects. For example, the product of two vectors taken in a certain way represents their common plane. This system was invented by William Clifford and is more commonly known as Clifford algebra. It's actually older than the vector algebra that we use today (due to Gibbs) and includes it as a subset. Over the years, various parts of Clifford algebra have been reinvented independently by many people who found they needed it, often not realizing that all those parts belonged in one system. This suggests that Clifford had the right idea, and that geometric algebra, not the reduced version we use today, deserves to be the standard "vector algebra." My goal in these notes is to describe geometric al...

  12. Geometric constraint solving with geometric transformation

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    This paper proposes two algorithms for solving geometric constraint systems. The first algorithm is for constrained systems without loops and has linear complexity. The second algorithm can solve constraint systems with loops. The latter algorithm is of quadratic complexity and is complete for constraint problems about simple polygons. The key to it is to combine the idea of graph based methods for geometric constraint solving and geometric transformations coming from rule-based methods.

  13. Retinal Vessel Segmentation Using A New Topological Method

    CERN Document Server

    Brooks, Martin

    2016-01-01

    A novel topological segmentation of retinal images represents blood vessels as connected regions in the continuous image plane, having shape-related analytic and geometric properties. This paper presents topological segmentation results from the DRIVE retinal image database.

  14. Geometric Design Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Purpose: The mission of the Geometric Design Laboratory (GDL) is to support the Office of Safety Research and Development in research related to the geometric design...

  15. On Geometric Infinite Divisibility

    OpenAIRE

    Sandhya, E.; Pillai, R. N.

    2014-01-01

    The notion of geometric version of an infinitely divisible law is introduced. Concepts parallel to attraction and partial attraction are developed and studied in the setup of geometric summing of random variables.

  16. Geometric Computing Based on Computerized Descriptive Geometric

    Institute of Scientific and Technical Information of China (English)

    YU Hai-yan; HE Yuan-Jun

    2011-01-01

    Computer-aided Design (CAD), video games and other computer graphic related technology evolves substantial processing to geometric elements. A novel geometric computing method is proposed with the integration of descriptive geometry, math and computer algorithm. Firstly, geometric elements in general position are transformed to a special position in new coordinate system. Then a 3D problem is projected to new coordinate planes. Finally, according to 2D/3D correspondence principle in descriptive geometry, the solution is constructed computerized drawing process with ruler and compasses. In order to make this method a regular operation, a two-level pattern is established. Basic Layer is a set algebraic packaged function including about ten Primary Geometric Functions (PGF) and one projection transformation. In Application Layer, a proper coordinate is established and a sequence of PGFs is sought for to get the final results. Examples illustrate the advantages of our method on dimension reduction, regulatory and visual computing and robustness.

  17. Probabilistic segmentation of remotely sensed images.

    NARCIS (Netherlands)

    Gorte, B.

    1998-01-01

    For information extraction from image data to create or update geographic information systems, objects are identified and labeled using an integration of segmentation and classification. This yields geometric and thematic information, respectively.Bayesian image classifiers calculate class posterior

  18. Geometrization of Trace Formulas

    CERN Document Server

    Frenkel, Edward

    2010-01-01

    Following our joint work arXiv:1003.4578 with Robert Langlands, we make the first steps toward developing geometric methods for analyzing trace formulas in the case of the function field of a curve defined over a finite field. We also suggest a conjectural framework of geometric trace formulas for curves defined over the complex field, which exploits the categorical version of the geometric Langlands correspondence.

  19. Localized Geometric Query Problems

    CERN Document Server

    Augustine, John; Maheshwari, Anil; Nandy, Subhas C; Roy, Sasanka; Sarvattomananda, Swami

    2011-01-01

    A new class of geometric query problems are studied in this paper. We are required to preprocess a set of geometric objects $P$ in the plane, so that for any arbitrary query point $q$, the largest circle that contains $q$ but does not contain any member of $P$, can be reported efficiently. The geometric sets that we consider are point sets and boundaries of simple polygons.

  20. Segmentation: Identification of consumer segments

    DEFF Research Database (Denmark)

    Høg, Esben

    2005-01-01

    It is very common to categorise people, especially in the advertising business. Also traditional marketing theory has taken in consumer segments as a favorite topic. Segmentation is closely related to the broader concept of classification. From a historical point of view, classification has its...... and analysed possible segments in the market. Results show that the statistical model used identified two segments - a segment of so-called "fish lovers" and another segment called "traditionalists". The "fish lovers" are very fond of eating fish and they actually prefer fish to other dishes...... origin in other sciences as for example biology, anthropology etc. From an economic point of view, it is called segmentation when specific scientific techniques are used to classify consumers to different characteristic groupings. What is the purpose of segmentation? For example, to be able to obtain...

  1. Geometric and unipotent crystals

    OpenAIRE

    Berenstein, Arkady; Kazhdan, David

    1999-01-01

    In this paper we introduce geometric crystals and unipotent crystals which are algebro-geometric analogues of Kashiwara's crystal bases. Given a reductive group G, let I be the set of vertices of the Dynkin diagram of G and T be the maximal torus of G. The structure of a geometric G-crystal on an algebraic variety X consists of a rational morphism \\gamma:X-->T and a compatible family e_i:G_m\\times X-->X, i\\in I of rational actions of the multiplicative group G_m satisfying certain braid-like ...

  2. Geometric and engineering drawing

    CERN Document Server

    Morling, K

    2010-01-01

    The new edition of this successful text describes all the geometric instructions and engineering drawing information that are likely to be needed by anyone preparing or interpreting drawings or designs with plenty of exercises to practice these principles.

  3. Differential geometric structures

    CERN Document Server

    Poor, Walter A

    2007-01-01

    This introductory text defines geometric structure by specifying parallel transport in an appropriate fiber bundle and focusing on simplest cases of linear parallel transport in a vector bundle. 1981 edition.

  4. Guessing Geometric Shapes.

    Science.gov (United States)

    Bledsoe, Gloria J

    1987-01-01

    The game of "Guess What" is described as a stimulating vehicle for students to consider the unifying or distinguishing features of geometric figures. Teaching suggestions as well as the gameboard are provided. (MNS)

  5. Saturation and geometrical scaling

    CERN Document Server

    Praszalowicz, Michal

    2016-01-01

    We discuss emergence of geometrical scaling as a consequence of the nonlinear evolution equations of QCD, which generate a new dynamical scale, known as the saturation momentum: Qs. In the kinematical region where no other energy scales exist, particle spectra exhibit geometrical scaling (GS), i.e. they depend on the ratio pT=Qs, and the energy dependence enters solely through the energy dependence of the saturation momentum. We confront the hypothesis of GS in different systems with experimental data.

  6. Geometric systematic prostate biopsy.

    Science.gov (United States)

    Chang, Doyoung; Chong, Xue; Kim, Chunwoo; Jun, Changhan; Petrisor, Doru; Han, Misop; Stoianovici, Dan

    2017-04-01

    The common sextant prostate biopsy schema lacks a three-dimensional (3D) geometric definition. The study objective was to determine the influence of the geometric distribution of the cores on the detection probability of prostate cancer (PCa). The detection probability of significant (>0.5 cm(3)) and insignificant (geometric distribution of the cores was optimized to maximize the probability of detecting significant cancer for various prostate sizes (20-100cm(3)), number of biopsy cores (6-40 cores) and biopsy core lengths (14-40 mm) for transrectal and transperineal biopsies. The detection of significant cancer can be improved by geometric optimization. With the current sextant biopsy, up to 20% of tumors may be missed at biopsy in a 20 cm(3) prostate due to the schema. Higher number and longer biopsy cores are required to sample with an equal detection probability in larger prostates. Higher number of cores increases both significant and insignificant tumor detection probability, but predominantly increases the detection of insignificant tumors. The study demonstrates mathematically that the geometric biopsy schema plays an important clinical role, and that increasing the number of biopsy cores is not necessarily helpful.

  7. Fingerprint Segmentation

    OpenAIRE

    Jomaa, Diala

    2009-01-01

    In this thesis, a new algorithm has been proposed to segment the foreground of the fingerprint from the image under consideration. The algorithm uses three features, mean, variance and coherence. Based on these features, a rule system is built to help the algorithm to efficiently segment the image. In addition, the proposed algorithm combine split and merge with modified Otsu. Both enhancements techniques such as Gaussian filter and histogram equalization are applied to enhance and improve th...

  8. Discrete geometric structures for architecture

    KAUST Repository

    Pottmann, Helmut

    2010-06-13

    The emergence of freeform structures in contemporary architecture raises numerous challenging research problems, most of which are related to the actual fabrication and are a rich source of research topics in geometry and geometric computing. The talk will provide an overview of recent progress in this field, with a particular focus on discrete geometric structures. Most of these result from practical requirements on segmenting a freeform shape into planar panels and on the physical realization of supporting beams and nodes. A study of quadrilateral meshes with planar faces reveals beautiful relations to discrete differential geometry. In particular, we discuss meshes which discretize the network of principal curvature lines. Conical meshes are among these meshes; they possess conical offset meshes at a constant face/face distance, which in turn leads to a supporting beam layout with so-called torsion free nodes. This work can be generalized to a variety of multilayer structures and laid the ground for an adapted curvature theory for these meshes. There are also efforts on segmenting surfaces into planar hexagonal panels. Though these are less constrained than planar quadrilateral panels, this problem is still waiting for an elegant solution. Inspired by freeform designs in architecture which involve circles and spheres, we present a new kind of triangle mesh whose faces\\' in-circles form a packing, i.e., the in-circles of two triangles with a common edge have the same contact point on that edge. These "circle packing (CP) meshes" exhibit an aesthetic balance of shape and size of their faces. They are closely tied to sphere packings on surfaces and to various remarkable structures and patterns which are of interest in art, architecture, and design. CP meshes constitute a new link between architectural freeform design and computational conformal geometry. Recently, certain timber structures motivated us to study discrete patterns of geodesics on surfaces. This

  9. PREFACE: Geometrically frustrated magnetism Geometrically frustrated magnetism

    Science.gov (United States)

    Gardner, Jason S.

    2011-04-01

    Frustrated magnetism is an exciting and diverse field in condensed matter physics that has grown tremendously over the past 20 years. This special issue aims to capture some of that excitement in the field of geometrically frustrated magnets and is inspired by the 2010 Highly Frustrated Magnetism (HFM 2010) meeting in Baltimore, MD, USA. Geometric frustration is a broad phenomenon that results from an intrinsic incompatibility between some fundamental interactions and the underlying lattice geometry based on triangles and tetrahedra. Most studies have centred around the kagomé and pyrochlore based magnets but recent work has looked at other structures including the delafossite, langasites, hyper-kagomé, garnets and Laves phase materials to name a few. Personally, I hope this issue serves as a great reference to scientist both new and old to this field, and that we all continue to have fun in this very frustrated playground. Finally, I want to thank the HFM 2010 organizers and all the sponsors whose contributions were an essential part of the success of the meeting in Baltimore. Geometrically frustrated magnetism contents Spangolite: an s = 1/2 maple leaf lattice antiferromagnet? T Fennell, J O Piatek, R A Stephenson, G J Nilsen and H M Rønnow Two-dimensional magnetism and spin-size effect in the S = 1 triangular antiferromagnet NiGa2S4 Yusuke Nambu and Satoru Nakatsuji Short range ordering in the modified honeycomb lattice compound SrHo2O4 S Ghosh, H D Zhou, L Balicas, S Hill, J S Gardner, Y Qi and C R Wiebe Heavy fermion compounds on the geometrically frustrated Shastry-Sutherland lattice M S Kim and M C Aronson A neutron polarization analysis study of moment correlations in (Dy0.4Y0.6)T2 (T = Mn, Al) J R Stewart, J M Hillier, P Manuel and R Cywinski Elemental analysis and magnetism of hydronium jarosites—model kagome antiferromagnets and topological spin glasses A S Wills and W G Bisson The Herbertsmithite Hamiltonian: μSR measurements on single crystals

  10. Mahavira's Geometrical Problems

    DEFF Research Database (Denmark)

    Høyrup, Jens

    2004-01-01

    Analysis of the geometrical chapters Mahavira's 9th-century Ganita-sara-sangraha reveals inspiration from several chronological levels of Near-Eastern and Mediterranean mathematics: (1)that known from Old Babylonian tablets, c. 1800-1600 BCE; (2)a Late Babylonian but pre-Seleucid Stratum, probably...

  11. Untangling Geometric Ideas

    Science.gov (United States)

    Burgess, Claudia R.

    2014-01-01

    Designed for a broad audience, including educators, camp directors, afterschool coordinators, and preservice teachers, this investigation aims to help individuals experience mathematics in unconventional and exciting ways by engaging them in the physical activity of building geometric shapes using ropes. Through this engagement, the author…

  12. Pragmatic geometric model evaluation

    Science.gov (United States)

    Pamer, Robert

    2015-04-01

    Quantification of subsurface model reliability is mathematically and technically demanding as there are many different sources of uncertainty and some of the factors can be assessed merely in a subjective way. For many practical applications in industry or risk assessment (e. g. geothermal drilling) a quantitative estimation of possible geometric variations in depth unit is preferred over relative numbers because of cost calculations for different scenarios. The talk gives an overview of several factors that affect the geometry of structural subsurface models that are based upon typical geological survey organization (GSO) data like geological maps, borehole data and conceptually driven construction of subsurface elements (e. g. fault network). Within the context of the trans-European project "GeoMol" uncertainty analysis has to be very pragmatic also because of different data rights, data policies and modelling software between the project partners. In a case study a two-step evaluation methodology for geometric subsurface model uncertainty is being developed. In a first step several models of the same volume of interest have been calculated by omitting successively more and more input data types (seismic constraints, fault network, outcrop data). The positions of the various horizon surfaces are then compared. The procedure is equivalent to comparing data of various levels of detail and therefore structural complexity. This gives a measure of the structural significance of each data set in space and as a consequence areas of geometric complexity are identified. These areas are usually very data sensitive hence geometric variability in between individual data points in these areas is higher than in areas of low structural complexity. Instead of calculating a multitude of different models by varying some input data or parameters as it is done by Monte-Carlo-simulations, the aim of the second step of the evaluation procedure (which is part of the ongoing work) is to

  13. A Video Watermarking Against Geometrical Distortions

    Institute of Scientific and Technical Information of China (English)

    NIUXiamu; SCHMUCKERMartin; BUSCHChristoph; SUNShenghe

    2003-01-01

    A video watermarking with robustness against frame's geometrical distortions (rotation, aspect ratio, scaling, translation shearing, and bending) is proposed. The watermark information is embedded into pixels along the temporal axis within a Watermark minimum segment (WMS). Since the geometrical distortions operations for every frame along the time axis in a video sequence are the same at a very short interval, the watermark information can be detected from watermarked frames in each WMS subjected to the distortions. Furthermore, adaptive embedding method is proposed for gaining a good quality of the watermarked video. Experimental results show that the proposed technique is robust against common attacks such as rotation, aspect ratio, scaling, translation shearing, and bending of frames, MPEG-2 lossy compression, and color-space conversion.

  14. Gravity, a geometrical course

    CERN Document Server

    Frè, Pietro Giuseppe

    2013-01-01

    ‘Gravity, a Geometrical Course’ presents general relativity (GR) in a systematic and exhaustive way, covering three aspects that are homogenized into a single texture: i) the mathematical, geometrical foundations, exposed in a self consistent contemporary formalism, ii) the main physical, astrophysical and cosmological applications,  updated to the issues of contemporary research and observations, with glimpses on supergravity and superstring theory, iii) the historical development of scientific ideas underlying both the birth of general relativity and its subsequent evolution. The book is divided in two volumes.   Volume One is dedicated to the development of the theory and basic physical applications. It guides the reader from the foundation of special relativity to Einstein field equations, illustrating some basic applications in astrophysics. A detailed  account  of the historical and conceptual development of the theory is combined with the presentation of its mathematical foundations.  Differe...

  15. Testing algebraic geometric codes

    Institute of Scientific and Technical Information of China (English)

    CHEN Hao

    2009-01-01

    Property testing was initially studied from various motivations in 1990's.A code C (∩)GF(r)n is locally testable if there is a randomized algorithm which can distinguish with high possibility the codewords from a vector essentially far from the code by only accessing a very small (typically constant) number of the vector's coordinates.The problem of testing codes was firstly studied by Blum,Luby and Rubinfeld and closely related to probabilistically checkable proofs (PCPs).How to characterize locally testable codes is a complex and challenge problem.The local tests have been studied for Reed-Solomon (RS),Reed-Muller (RM),cyclic,dual of BCH and the trace subcode of algebraicgeometric codes.In this paper we give testers for algebraic geometric codes with linear parameters (as functions of dimensions).We also give a moderate condition under which the family of algebraic geometric codes cannot be locally testable.

  16. Geometric group theory

    CERN Document Server

    Bestvina, Mladen; Vogtmann, Karen

    2014-01-01

    Geometric group theory refers to the study of discrete groups using tools from topology, geometry, dynamics and analysis. The field is evolving very rapidly and the present volume provides an introduction to and overview of various topics which have played critical roles in this evolution. The book contains lecture notes from courses given at the Park City Math Institute on Geometric Group Theory. The institute consists of a set of intensive short courses offered by leaders in the field, designed to introduce students to exciting, current research in mathematics. These lectures do not duplicate standard courses available elsewhere. The courses begin at an introductory level suitable for graduate students and lead up to currently active topics of research. The articles in this volume include introductions to CAT(0) cube complexes and groups, to modern small cancellation theory, to isometry groups of general CAT(0) spaces, and a discussion of nilpotent genus in the context of mapping class groups and CAT(0) gro...

  17. Testing algebraic geometric codes

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Property testing was initially studied from various motivations in 1990’s. A code C  GF (r)n is locally testable if there is a randomized algorithm which can distinguish with high possibility the codewords from a vector essentially far from the code by only accessing a very small (typically constant) number of the vector’s coordinates. The problem of testing codes was firstly studied by Blum, Luby and Rubinfeld and closely related to probabilistically checkable proofs (PCPs). How to characterize locally testable codes is a complex and challenge problem. The local tests have been studied for Reed-Solomon (RS), Reed-Muller (RM), cyclic, dual of BCH and the trace subcode of algebraicgeometric codes. In this paper we give testers for algebraic geometric codes with linear parameters (as functions of dimensions). We also give a moderate condition under which the family of algebraic geometric codes cannot be locally testable.

  18. Dynamics in geometrical confinement

    CERN Document Server

    Kremer, Friedrich

    2014-01-01

    This book describes the dynamics of low molecular weight and polymeric molecules when they are constrained under conditions of geometrical confinement. It covers geometrical confinement in different dimensionalities: (i) in nanometer thin layers or self supporting films (1-dimensional confinement) (ii) in pores or tubes with nanometric diameters (2-dimensional confinement) (iii) as micelles embedded in matrices (3-dimensional) or as nanodroplets.The dynamics under such conditions have been a much discussed and central topic in the focus of intense worldwide research activities within the last two decades. The present book discusses how the resulting molecular mobility is influenced by the subtle counterbalance between surface effects (typically slowing down molecular dynamics through attractive guest/host interactions) and confinement effects (typically increasing the mobility). It also explains how these influences can be modified and tuned, e.g. through appropriate surface coatings, film thicknesses or pore...

  19. Progressive geometric algorithms

    Directory of Open Access Journals (Sweden)

    Sander P.A. Alewijnse

    2015-01-01

    Full Text Available Progressive algorithms are algorithms that, on the way to computing a complete solution to the problem at hand, output intermediate solutions that approximate the complete solution increasingly well. We present a framework for analyzing such algorithms, and develop efficient progressive algorithms for two geometric problems: computing the convex hull of a planar point set, and finding popular places in a set of trajectories.

  20. Geometric Time Delay Interferometry

    OpenAIRE

    Vallisneri, Michele

    2005-01-01

    The space-based gravitational-wave observatory LISA, a NASA-ESA mission to be launched after 2012, will achieve its optimal sensitivity using Time Delay Interferometry (TDI), a LISA-specific technique needed to cancel the otherwise overwhelming laser noise in the inter-spacecraft phase measurements. The TDI observables of the Michelson and Sagnac types have been interpreted physically as the virtual measurements of a synthesized interferometer. In this paper, I present Geometric TDI, a new an...

  1. Geometric unsharpness calculations

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, D.J. [International Training and Education Group (INTEG), Oakville, Ontario (Canada)

    2008-07-15

    The majority of radiographers' geometric unsharpness calculations are normally performed with a mathematical formula. However, a majority of codes and standards refer to the use of a nomograph for this calculation. Upon first review, the use of a nomograph appears more complicated but with a few minutes of study and practice it can be just as effective. A review of this article should provide enlightenment. (author)

  2. Geometric Stochastic Resonance

    CERN Document Server

    Ghosh, Pulak Kumar; Savel'ev, Sergey E; Nori, Franco

    2015-01-01

    A Brownian particle moving across a porous membrane subject to an oscillating force exhibits stochastic resonance with properties which strongly depend on the geometry of the confining cavities on the two sides of the membrane. Such a manifestation of stochastic resonance requires neither energetic nor entropic barriers, and can thus be regarded as a purely geometric effect. The magnitude of this effect is sensitive to the geometry of both the cavities and the pores, thus leading to distinctive optimal synchronization conditions.

  3. Geometrically Consistent Mesh Modification

    KAUST Repository

    Bonito, A.

    2010-01-01

    A new paradigm of adaptivity is to execute refinement, coarsening, and smoothing of meshes on manifolds with incomplete information about their geometry and yet preserve position and curvature accuracy. We refer to this collectively as geometrically consistent (GC) mesh modification. We discuss the concept of discrete GC, show the failure of naive approaches, and propose and analyze a simple algorithm that is GC and accuracy preserving. © 2010 Society for Industrial and Applied Mathematics.

  4. Geometric properties of eigenfunctions

    Energy Technology Data Exchange (ETDEWEB)

    Jakobson, D; Nadirashvili, N [McGill University, Montreal, Quebec (Canada); Toth, John [University of Chicago, Chicago, Illinois (United States)

    2001-12-31

    We give an overview of some new and old results on geometric properties of eigenfunctions of Laplacians on Riemannian manifolds. We discuss properties of nodal sets and critical points, the number of nodal domains, and asymptotic properties of eigenfunctions in the high-energy limit (such as weak * limits, the rate of growth of L{sup p} norms, and relationships between positive and negative parts of eigenfunctions)

  5. Geometric theory of information

    CERN Document Server

    2014-01-01

    This book brings together geometric tools and their applications for Information analysis. It collects current and many uses of in the interdisciplinary fields of Information Geometry Manifolds in Advanced Signal, Image & Video Processing, Complex Data Modeling and Analysis, Information Ranking and Retrieval, Coding, Cognitive Systems, Optimal Control, Statistics on Manifolds, Machine Learning, Speech/sound recognition, and natural language treatment which are also substantially relevant for the industry.

  6. Segmentation of Ancient Telugu Text Documents

    Directory of Open Access Journals (Sweden)

    Srinivasa Rao A.V

    2012-07-01

    Full Text Available OCR of ancient document images remains a challenging task till date. Scanning process itself introduces deformation of document images. Cleaning process of these document images will result in information loss. Segmentation contributes an invariance process in OCR. Complex scripts, like derivatives of Brahmi, encounter many problems in the segmentation process. Segmentation of meaningful units, (instead of isolated patterns, revealed interesting trends. A segmentation technique for the ancient Telugu document image into meaningful units is proposed. The topological features of the meaningful units within the script line are adopted as a basis, while segmenting the text line. Horizontal profile pattern is convolved with Gaussian kernel. The statistical properties of meaningful units are explored by extensively analyzing the geometrical patterns of the meaningful unit. The efficiency of the proposed algorithm involving segmentation process is found to be 73.5% for the case of uncleaned document images.

  7. Perspective: Geometrically frustrated assemblies

    Science.gov (United States)

    Grason, Gregory M.

    2016-09-01

    This perspective will overview an emerging paradigm for self-organized soft materials, geometrically frustrated assemblies, where interactions between self-assembling elements (e.g., particles, macromolecules, proteins) favor local packing motifs that are incompatible with uniform global order in the assembly. This classification applies to a broad range of material assemblies including self-twisting protein filament bundles, amyloid fibers, chiral smectics and membranes, particle-coated droplets, curved protein shells, and phase-separated lipid vesicles. In assemblies, geometric frustration leads to a host of anomalous structural and thermodynamic properties, including heterogeneous and internally stressed equilibrium structures, self-limiting assembly, and topological defects in the equilibrium assembly structures. The purpose of this perspective is to (1) highlight the unifying principles and consequences of geometric frustration in soft matter assemblies; (2) classify the known distinct modes of frustration and review corresponding experimental examples; and (3) describe outstanding questions not yet addressed about the unique properties and behaviors of this broad class of systems.

  8. The quantum geometric limit

    CERN Document Server

    Lloyd, Seth

    2012-01-01

    This letter analyzes the limits that quantum mechanics imposes on the accuracy to which spacetime geometry can be measured. By applying the fundamental physical bounds to measurement accuracy to ensembles of clocks and signals moving in curved spacetime -- e.g., the global positioning system -- I derive a covariant version of the quantum geometric limit: the total number of ticks of clocks and clicks of detectors that can be contained in a four volume of spacetime of radius r and temporal extent t is less than or equal to rt/\\pi x_P t_P, where x_P, t_P are the Planck length and time. The quantum geometric limit bounds the number of events or `ops' that can take place in a four-volume of spacetime: each event is associated with a Planck-scale area. Conversely, I show that if each quantum event is associated with such an area, then Einstein's equations must hold. The quantum geometric limit is consistent with and complementary to the holographic bound which limits the number of bits that can exist within a spat...

  9. Automated house internal geometric quality inspection using laser scanning

    Science.gov (United States)

    Wang, Yuchen; Zhang, Zhichao; Qiu, Zhouyan

    2015-12-01

    Taking a terrestrial laser scanner to scan the room of a house, the scanned data can be used to inspect the geometric quality of the room. Taking advantage of the scan line feature, we can quickly calculate normal of the scanned points. Afterwards, we develop a fast plane segmentation approach to recognize the walls of the room according to the semantic constraints of a common room. With geometric and semantic constraints, we can exclude points that don't belong to the inspecting room. With the segmented results, we can accurately do global search of max and min height, width and length of a room, and the flatness of the wall as well. Experiment shows the robustness of this geometric inspecting approach. This approach has the ability to measure some important indicators that cannot be done by manual work.

  10. Geometric diffusion of quantum trajectories.

    Science.gov (United States)

    Yang, Fan; Liu, Ren-Bao

    2015-07-16

    A quantum object can acquire a geometric phase (such as Berry phases and Aharonov-Bohm phases) when evolving along a path in a parameter space with non-trivial gauge structures. Inherent to quantum evolutions of wavepackets, quantum diffusion occurs along quantum trajectories. Here we show that quantum diffusion can also be geometric as characterized by the imaginary part of a geometric phase. The geometric quantum diffusion results from interference between different instantaneous eigenstate pathways which have different geometric phases during the adiabatic evolution. As a specific example, we study the quantum trajectories of optically excited electron-hole pairs in time-reversal symmetric insulators, driven by an elliptically polarized terahertz field. The imaginary geometric phase manifests itself as elliptical polarization in the terahertz sideband generation. The geometric quantum diffusion adds a new dimension to geometric phases and may have applications in many fields of physics, e.g., transport in topological insulators and novel electro-optical effects.

  11. Algebraic geometric codes with applications

    Institute of Scientific and Technical Information of China (English)

    CHEN Hao

    2007-01-01

    The theory of linear error-correcting codes from algebraic geomet-ric curves (algebraic geometric (AG) codes or geometric Goppa codes) has been well-developed since the work of Goppa and Tsfasman, Vladut, and Zink in 1981-1982. In this paper we introduce to readers some recent progress in algebraic geometric codes and their applications in quantum error-correcting codes, secure multi-party computation and the construction of good binary codes.

  12. A Geometric Approach for Multi-Degree Spline

    Institute of Scientific and Technical Information of China (English)

    Xin Li; Zhang-Jin Huang; Zhao Liu

    2012-01-01

    Multi-degree spline (MD-spline for short) is a generalization of B-spline which comprises of polynomial segments of various degrees.The present paper provides a new definition for MD-spline curves in a geometric intuitive way based on an efficient and simple evaluation algorithm.MD-spline curves maintain various desirable properties of B-spline curves,such as convex hull,local support and variation diminishing properties.They can also be refined exactly with knot insertion.The continuity between two adjacent segments with different degrees is at least C1 and that between two adjacent segments of same degrees d is Cd-1.Benefited by the exact refinement algorithm,we also provide several operators for MD-spline curves,such as converting each curve segment into Bézier form,an efficient merging algorithm and a new curve subdivision scheme which allows different degrees for each segment.

  13. [Segmental neurofibromatosis].

    Science.gov (United States)

    Zulaica, A; Peteiro, C; Pereiro, M; Pereiro Ferreiros, M; Quintas, C; Toribio, J

    1989-01-01

    Four cases of segmental neurofibromatosis (SNF) are reported. It is a rare entity considered to be a localized variant of neurofibromatosis (NF)-Riccardi's type V. Two cases are male and two female. The lesions are located to the head in a patient and the other three cases in the trunk. No family history nor transmission to progeny were manifested. The rest of the organs are undamaged.

  14. Geometric Number Systems and Spinors

    CERN Document Server

    Sobczyk, Garret

    2015-01-01

    The real number system is geometrically extended to include three new anticommuting square roots of plus one, each such root representing the direction of a unit vector along the orthonormal coordinate axes of Euclidean 3-space. The resulting geometric (Clifford) algebra provides a geometric basis for the famous Pauli matrices which, in turn, proves the consistency of the rules of geometric algebra. The flexibility of the concept of geometric numbers opens the door to new understanding of the nature of space-time, and of Pauli and Dirac spinors as points on the Riemann sphere, including Lorentz boosts.

  15. Geometric analysis and PDEs

    CERN Document Server

    Ambrosetti, Antonio; Malchiodi, Andrea

    2009-01-01

    This volume contains lecture notes on some topics in geometric analysis, a growing mathematical subject which uses analytical techniques, mostly of partial differential equations, to treat problems in differential geometry and mathematical physics. The presentation of the material should be rather accessible to non-experts in the field, since the presentation is didactic in nature. The reader will be provided with a survey containing some of the most exciting topics in the field, with a series of techniques used to treat such problems.

  16. Robust Geometric Spanners

    CERN Document Server

    Bose, Prosenjit; Morin, Pat; Smid, Michiel

    2012-01-01

    Highly connected and yet sparse graphs (such as expanders or graphs of high treewidth) are fundamental, widely applicable and extensively studied combinatorial objects. We initiate the study of such highly connected graphs that are, in addition, geometric spanners. We define a property of spanners called robustness. Informally, when one removes a few vertices from a robust spanner, this harms only a small number of other vertices. We show that robust spanners must have a superlinear number of edges, even in one dimension. On the positive side, we give constructions, for any dimension, of robust spanners with a near-linear number of edges.

  17. Geometric Algebra Computing

    CERN Document Server

    Corrochano, Eduardo Bayro

    2010-01-01

    This book presents contributions from a global selection of experts in the field. This useful text offers new insights and solutions for the development of theorems, algorithms and advanced methods for real-time applications across a range of disciplines. Written in an accessible style, the discussion of all applications is enhanced by the inclusion of numerous examples, figures and experimental analysis. Features: provides a thorough discussion of several tasks for image processing, pattern recognition, computer vision, robotics and computer graphics using the geometric algebra framework; int

  18. Geometric phases in physics

    CERN Document Server

    Shapere, Alfred D

    1989-01-01

    During the last few years, considerable interest has been focused on the phase that waves accumulate when the equations governing the waves vary slowly. The recent flurry of activity was set off by a paper by Michael Berry, where it was found that the adiabatic evolution of energy eigenfunctions in quantum mechanics contains a phase of geometric origin (now known as 'Berry's phase') in addition to the usual dynamical phase derived from Schrödinger's equation. This observation, though basically elementary, seems to be quite profound. Phases with similar mathematical origins have been identified

  19. RGB-D Segmentation of Poultry Entrails

    DEFF Research Database (Denmark)

    Philipsen, Mark Philip; Jørgensen, Anders; Guerrero, Sergio Escalera

    2016-01-01

    This paper presents an approach for automatic visual inspection of chicken entrails in RGB-D data. The point cloud is first over-segmented into supervoxels based on color, spatial and geometric information. Color, position and texture features are extracted from each of the resulting supervoxels ...

  20. Bidimensionality and Geometric Graphs

    CERN Document Server

    Fomin, Fedor V; Saurabh, Saket

    2011-01-01

    In this paper we use several of the key ideas from Bidimensionality to give a new generic approach to design EPTASs and subexponential time parameterized algorithms for problems on classes of graphs which are not minor closed, but instead exhibit a geometric structure. In particular we present EPTASs and subexponential time parameterized algorithms for Feedback Vertex Set, Vertex Cover, Connected Vertex Cover, Diamond Hitting Set, on map graphs and unit disk graphs, and for Cycle Packing and Minimum-Vertex Feedback Edge Set on unit disk graphs. Our results are based on the recent decomposition theorems proved by Fomin et al [SODA 2011], and our algorithms work directly on the input graph. Thus it is not necessary to compute the geometric representations of the input graph. To the best of our knowledge, these results are previously unknown, with the exception of the EPTAS and a subexponential time parameterized algorithm on unit disk graphs for Vertex Cover, which were obtained by Marx [ESA 2005] and Alber and...

  1. Geometric Decision Tree

    CERN Document Server

    Manwani, Naresh

    2010-01-01

    In this paper we present a new algorithm for learning oblique decision trees. Most of the current decision tree algorithms rely on impurity measures to assess the goodness of hyperplanes at each node while learning a decision tree in a top-down fashion. These impurity measures do not properly capture the geometric structures in the data. Motivated by this, our algorithm uses a strategy to assess the hyperplanes in such a way that the geometric structure in the data is taken into account. At each node of the decision tree, we find the clustering hyperplanes for both the classes and use their angle bisectors as the split rule at that node. We show through empirical studies that this idea leads to small decision trees and better performance. We also present some analysis to show that the angle bisectors of clustering hyperplanes that we use as the split rules at each node, are solutions of an interesting optimization problem and hence argue that this is a principled method of learning a decision tree.

  2. Mixed segmentation

    DEFF Research Database (Denmark)

    Bonde, Anders; Aagaard, Morten; Hansen, Allan Grutt

    This book is about using recent developments in the fields of data analytics and data visualization to frame new ways of identifying target groups in media communication. Based on a mixed-methods approach, the authors combine psychophysiological monitoring (galvanic skin response) with textual...... content analysis and audience segmentation in a single-source perspective. The aim is to explain and understand target groups in relation to, on the one hand, emotional response to commercials or other forms of audio-visual communication and, on the other hand, living preferences and personality traits...

  3. Image Segmentation Using Weak Shape Priors

    CERN Document Server

    Xu, Robert Sheng; Salama, Magdy

    2010-01-01

    The problem of image segmentation is known to become particularly challenging in the case of partial occlusion of the object(s) of interest, background clutter, and the presence of strong noise. To overcome this problem, the present paper introduces a novel approach segmentation through the use of "weak" shape priors. Specifically, in the proposed method, an segmenting active contour is constrained to converge to a configuration at which its geometric parameters attain their empirical probability densities closely matching the corresponding model densities that are learned based on training samples. It is shown through numerical experiments that the proposed shape modeling can be regarded as "weak" in the sense that it minimally influences the segmentation, which is allowed to be dominated by data-related forces. On the other hand, the priors provide sufficient constraints to regularize the convergence of segmentation, while requiring substantially smaller training sets to yield less biased results as compare...

  4. Geometric Complexity Theory: Introduction

    CERN Document Server

    Sohoni, Ketan D Mulmuley Milind

    2007-01-01

    These are lectures notes for the introductory graduate courses on geometric complexity theory (GCT) in the computer science department, the university of Chicago. Part I consists of the lecture notes for the course given by the first author in the spring quarter, 2007. It gives introduction to the basic structure of GCT. Part II consists of the lecture notes for the course given by the second author in the spring quarter, 2003. It gives introduction to invariant theory with a view towards GCT. No background in algebraic geometry or representation theory is assumed. These lecture notes in conjunction with the article \\cite{GCTflip1}, which describes in detail the basic plan of GCT based on the principle called the flip, should provide a high level picture of GCT assuming familiarity with only basic notions of algebra, such as groups, rings, fields etc.

  5. The Geometric Transition Revisited

    CERN Document Server

    Gwyn, Rhiannon

    2007-01-01

    Our intention in this article is to review known facts and to summarise recent advances in the understanding of geometric transitions and the underlying open/closed duality in string theory. We aim to present a pedagogical discussion of the gauge theory underlying the Klebanov--Strassler model and review the Gopakumar--Vafa conjecture based on topological string theory. These models are also compared in the T-dual brane constructions. We then summarise a series of papers verifying both models on the supergravity level. An appendix provides extensive background material about conifold geometries. We pay special attention to their complex structures and re-evaluate the supersymmetry conditions on the background flux in constructions with fractional D3-branes on the singular (Klebanov--Strassler) and resolved (Pando Zayas--Tseytlin) conifolds. We agree with earlier results that only the singular solution allows a supersymmetric flux, but point out the importance of using the correct complex structure to reach th...

  6. Random geometric complexes

    CERN Document Server

    Kahle, Matthew

    2009-01-01

    We study the expected topological properties of Cech and Vietoris-Rips complexes built on randomly sampled points in R^d. These are, in some cases, analogues of known results for connectivity and component counts for random geometric graphs. However, an important difference in this setting is that homology is not monotone in the underlying parameter. In the sparse range, we compute the expectation and variance of the Betti numbers, and establish Central Limit Theorems and concentration of measure. In the dense range, we introduce Morse theoretic arguments to bound the expectation of the Betti numbers, which is the main technical contribution of this article. These results provide a detailed probabilistic picture to compare with the topological statistics of point cloud data.

  7. Geometrical Destabilization of Inflation

    Science.gov (United States)

    Renaux-Petel, Sébastien; Turzyński, Krzysztof

    2016-09-01

    We show the existence of a general mechanism by which heavy scalar fields can be destabilized during inflation, relying on the fact that the curvature of the field space manifold can dominate the stabilizing force from the potential and destabilize inflationary trajectories. We describe a simple and rather universal setup in which higher-order operators suppressed by a large energy scale trigger this instability. This phenomenon can prematurely end inflation, thereby leading to important observational consequences and sometimes excluding models that would otherwise perfectly fit the data. More generally, it modifies the interpretation of cosmological constraints in terms of fundamental physics. We also explain how the geometrical destabilization can lead to powerful selection criteria on the field space curvature of inflationary models.

  8. Geometric modeling and analysis of large latticed surfaces

    Science.gov (United States)

    Nayfeh, A. H.; Hefzy, M. S.

    1980-01-01

    The application of geometrical schemes, similar to geodesic domes, to large spherical antenna reflectors was investigated. The shape and size of flat segmented latticed surfaces which approximate general shells of revolution, and in particular spherical and paraboloidal reflective surfaces, were determined. The extensive mathematical and computational geometric analyses of the reflector resulted in the development of a general purpose computer program capable of generating the complete design parameters of the dish. The program also includes a graphical self contained subroutine for graphic display of the required design.

  9. Segmented blockcopolymers with uniform amide segments

    NARCIS (Netherlands)

    Husken, D.; Krijgsman, J.; Gaymans, R.J.

    2004-01-01

    Segmented blockcopolymers based on poly(tetramethylene oxide) (PTMO) soft segments and uniform crystallisable tetra-amide segments (TxTxT) are made via polycondensation. The PTMO soft segments, with a molecular weight of 1000 g/mol, are extended with terephthalic groups to a molecular weight of 6000

  10. Capability of geometric features to classify ships in SAR imagery

    Science.gov (United States)

    Lang, Haitao; Wu, Siwen; Lai, Quan; Ma, Li

    2016-10-01

    Ship classification in synthetic aperture radar (SAR) imagery has become a new hotspot in remote sensing community for its valuable potential in many maritime applications. Several kinds of ship features, such as geometric features, polarimetric features, and scattering features have been widely applied on ship classification tasks. Compared with polarimetric features and scattering features, which are subject to SAR parameters (e.g., sensor type, incidence angle, polarization, etc.) and environment factors (e.g., sea state, wind, wave, current, etc.), geometric features are relatively independent of SAR and environment factors, and easy to be extracted stably from SAR imagery. In this paper, the capability of geometric features to classify ships in SAR imagery with various resolution has been investigated. Firstly, the relationship between the geometric feature extraction accuracy and the SAR imagery resolution is analyzed. It shows that the minimum bounding rectangle (MBR) of ship can be extracted exactly in terms of absolute precision by the proposed automatic ship-sea segmentation method. Next, six simple but effective geometric features are extracted to build a ship representation for the subsequent classification task. These six geometric features are composed of length (f1), width (f2), area (f3), perimeter (f4), elongatedness (f5) and compactness (f6). Among them, two basic features, length (f1) and width (f2), are directly extracted based on the MBR of ship, the other four are derived from those two basic features. The capability of the utilized geometric features to classify ships are validated on two data set with different image resolutions. The results show that the performance of ship classification solely by geometric features is close to that obtained by the state-of-the-art methods, which obtained by a combination of multiple kinds of features, including scattering features and geometric features after a complex feature selection process.

  11. A contrario line segment detection

    CERN Document Server

    von Gioi, Rafael Grompone

    2014-01-01

    The reliable detection of low-level image structures is an old and still challenging problem in computer vision. This?book leads a detailed tour through the LSD algorithm, a line segment detector designed to be fully automatic. Based on the a contrario framework, the algorithm works efficiently without the need of any parameter tuning. The design criteria are thoroughly explained and the algorithm's good and bad results are illustrated on real and synthetic images. The issues involved, as well as the strategies used, are common to many geometrical structure detection problems and some possible

  12. Harmonic and geometric analysis

    CERN Document Server

    Citti, Giovanna; Pérez, Carlos; Sarti, Alessandro; Zhong, Xiao

    2015-01-01

    This book presents an expanded version of four series of lectures delivered by the authors at the CRM. Harmonic analysis, understood in a broad sense, has a very wide interplay with partial differential equations and in particular with the theory of quasiconformal mappings and its applications. Some areas in which real analysis has been extremely influential are PDE's and geometric analysis. Their foundations and subsequent developments made extensive use of the Calderón–Zygmund theory, especially the Lp inequalities for Calderón–Zygmund operators (Beurling transform and Riesz transform, among others) and the theory of Muckenhoupt weights.  The first chapter is an application of harmonic analysis and the Heisenberg group to understanding human vision, while the second and third chapters cover some of the main topics on linear and multilinear harmonic analysis. The last serves as a comprehensive introduction to a deep result from De Giorgi, Moser and Nash on the regularity of elliptic partial differen...

  13. A geometric level set model for ultrasounds analysis

    Energy Technology Data Exchange (ETDEWEB)

    Sarti, A.; Malladi, R.

    1999-10-01

    We propose a partial differential equation (PDE) for filtering and segmentation of echocardiographic images based on a geometric-driven scheme. The method allows edge-preserving image smoothing and a semi-automatic segmentation of the heart chambers, that regularizes the shapes and improves edge fidelity especially in presence of distinct gaps in the edge map as is common in ultrasound imagery. A numerical scheme for solving the proposed PDE is borrowed from level set methods. Results on human in vivo acquired 2D, 2D+time,3D, 3D+time echocardiographic images are shown.

  14. Geometrical approach to fluid models

    NARCIS (Netherlands)

    Kuvshinov, B. N.; Schep, T. J.

    1997-01-01

    Differential geometry based upon the Cartan calculus of differential forms is applied to investigate invariant properties of equations that describe the motion of continuous media. The main feature of this approach is that physical quantities are treated as geometrical objects. The geometrical

  15. In Defence of Geometrical Algebra

    OpenAIRE

    Blasjo, V.N.E.

    2016-01-01

    The geometrical algebra hypothesis was once the received interpretation of Greek mathematics. In recent decades, however, it has become anathema to many. I give a critical review of all arguments against it and offer a consistent rebuttal case against the modern consensus. Consequently, I find that the geometrical algebra interpretation should be reinstated as a viable historical hypothesis.

  16. Homological Type of Geometric Transitions

    CERN Document Server

    Rossi, Michele

    2010-01-01

    The present paper gives an account and quantifies the change in topology induced by small and type II geometric transitions, by introducing the notion of the \\emph{homological type} of a geometric transition. The obtained results agree with, and go further than, most results and estimates, given to date by several authors, both in mathematical and physical literature.

  17. Geometrical approach to fluid models

    NARCIS (Netherlands)

    Kuvshinov, B. N.; Schep, T. J.

    1997-01-01

    Differential geometry based upon the Cartan calculus of differential forms is applied to investigate invariant properties of equations that describe the motion of continuous media. The main feature of this approach is that physical quantities are treated as geometrical objects. The geometrical notio

  18. Fast Streaming 3D Level set Segmentation on the GPU for Smooth Multi-phase Segmentation

    DEFF Research Database (Denmark)

    Sharma, Ojaswa; Zhang, Qin; Anton, François

    2011-01-01

    Level set method based segmentation provides an efficient tool for topological and geometrical shape handling, but it is slow due to high computational burden. In this work, we provide a framework for streaming computations on large volumetric images on the GPU. A streaming computational model...

  19. Transmuted Complementary Weibull Geometric Distribution

    Directory of Open Access Journals (Sweden)

    Ahmed Z. A…fify

    2014-12-01

    Full Text Available This paper provides a new generalization of the complementary Weibull geometric distribution that introduced by Tojeiro et al. (2014, using the quadratic rank transmutation map studied by Shaw and Buckley (2007. The new distribution is referred to as transmuted complementary Weibull geometric distribution (TCWGD. The TCWG distribution includes as special cases the complementary Weibull geometric distribution (CWGD, complementary exponential geometric distribution(CEGD,Weibull distribution (WD and exponential distribution (ED. Various structural properties of the new distribution including moments, quantiles, moment generating function and RØnyi entropy of the subject distribution are derived. We proposed the method of maximum likelihood for estimating the model parameters and obtain the observed information matrix. A real data set are used to compare the ‡exibility of the transmuted version versus the complementary Weibull geometric distribution.

  20. Geometrical method of decoupling

    Science.gov (United States)

    Baumgarten, C.

    2012-12-01

    The computation of tunes and matched beam distributions are essential steps in the analysis of circular accelerators. If certain symmetries—like midplane symmetry—are present, then it is possible to treat the betatron motion in the horizontal, the vertical plane, and (under certain circumstances) the longitudinal motion separately using the well-known Courant-Snyder theory, or to apply transformations that have been described previously as, for instance, the method of Teng and Edwards. In a preceding paper, it has been shown that this method requires a modification for the treatment of isochronous cyclotrons with non-negligible space charge forces. Unfortunately, the modification was numerically not as stable as desired and it was still unclear, if the extension would work for all conceivable cases. Hence, a systematic derivation of a more general treatment seemed advisable. In a second paper, the author suggested the use of real Dirac matrices as basic tools for coupled linear optics and gave a straightforward recipe to decouple positive definite Hamiltonians with imaginary eigenvalues. In this article this method is generalized and simplified in order to formulate a straightforward method to decouple Hamiltonian matrices with eigenvalues on the real and the imaginary axis. The decoupling of symplectic matrices which are exponentials of such Hamiltonian matrices can be deduced from this in a few steps. It is shown that this algebraic decoupling is closely related to a geometric “decoupling” by the orthogonalization of the vectors E→, B→, and P→, which were introduced with the so-called “electromechanical equivalence.” A mathematical analysis of the problem can be traced down to the task of finding a structure-preserving block diagonalization of symplectic or Hamiltonian matrices. Structure preservation means in this context that the (sequence of) transformations must be symplectic and hence canonical. When used iteratively, the decoupling

  1. Analysis of the Segmented Features of Indicator of Mine Presence

    Science.gov (United States)

    Krtalic, A.

    2016-06-01

    The aim of this research is to investigate possibility for interactive semi-automatic interpretation of digital images in humanitarian demining for the purpose of detection and extraction of (strong) indicators of mine presence which can be seen on the images, according to the parameters of the general geometric shapes rather than radiometric characteristics. For that purpose, objects are created by segmentation. The segments represent the observed indicator and the objects that surround them (for analysis of the degree of discrimination of objects from the environment) in the best possible way. These indicators cover a certain characteristic surface. These areas are determined by segmenting the digital image. Sets of pixels that form such surface on images have specific geometric features. In this way, it is provided to analyze the features of the segments on the basis of the object, rather than the pixel level. Factor analysis of geometric parameters of this segments is performed in order to identify parameters that can be distinguished from the other parameters according to their geometric features. Factor analysis was carried out in two different ways, according to the characteristics of the general geometric shape and to the type of strong indicators of mine presence. The continuation of this research is the implementation of the automatic extraction of indicators of mine presence according results presented in this paper.

  2. Geometrical method of decoupling

    Directory of Open Access Journals (Sweden)

    C. Baumgarten

    2012-12-01

    Full Text Available The computation of tunes and matched beam distributions are essential steps in the analysis of circular accelerators. If certain symmetries—like midplane symmetry—are present, then it is possible to treat the betatron motion in the horizontal, the vertical plane, and (under certain circumstances the longitudinal motion separately using the well-known Courant-Snyder theory, or to apply transformations that have been described previously as, for instance, the method of Teng and Edwards. In a preceding paper, it has been shown that this method requires a modification for the treatment of isochronous cyclotrons with non-negligible space charge forces. Unfortunately, the modification was numerically not as stable as desired and it was still unclear, if the extension would work for all conceivable cases. Hence, a systematic derivation of a more general treatment seemed advisable. In a second paper, the author suggested the use of real Dirac matrices as basic tools for coupled linear optics and gave a straightforward recipe to decouple positive definite Hamiltonians with imaginary eigenvalues. In this article this method is generalized and simplified in order to formulate a straightforward method to decouple Hamiltonian matrices with eigenvalues on the real and the imaginary axis. The decoupling of symplectic matrices which are exponentials of such Hamiltonian matrices can be deduced from this in a few steps. It is shown that this algebraic decoupling is closely related to a geometric “decoupling” by the orthogonalization of the vectors E[over →], B[over →], and P[over →], which were introduced with the so-called “electromechanical equivalence.” A mathematical analysis of the problem can be traced down to the task of finding a structure-preserving block diagonalization of symplectic or Hamiltonian matrices. Structure preservation means in this context that the (sequence of transformations must be symplectic and hence canonical. When

  3. Geometric Computing for Freeform Architecture

    KAUST Repository

    Wallner, J.

    2011-06-03

    Geometric computing has recently found a new field of applications, namely the various geometric problems which lie at the heart of rationalization and construction-aware design processes of freeform architecture. We report on our work in this area, dealing with meshes with planar faces and meshes which allow multilayer constructions (which is related to discrete surfaces and their curvatures), triangles meshes with circle-packing properties (which is related to conformal uniformization), and with the paneling problem. We emphasize the combination of numerical optimization and geometric knowledge.

  4. Geometric inequalities for black holes

    Energy Technology Data Exchange (ETDEWEB)

    Dain, Sergio [Universidad Nacional de Cordoba (Argentina)

    2013-07-01

    Full text: A geometric inequality in General Relativity relates quantities that have both a physical interpretation and a geometrical definition. It is well known that the parameters that characterize the Kerr-Newman black hole satisfy several important geometric inequalities. Remarkably enough, some of these inequalities also hold for dynamical black holes. This kind of inequalities, which are valid in the dynamical and strong field regime, play an important role in the characterization of the gravitational collapse. They are closed related with the cosmic censorship conjecture. In this talk I will review recent results in this subject. (author)

  5. Strategic market segmentation

    National Research Council Canada - National Science Library

    Maričić Branko R; Đorđević Aleksandar

    2015-01-01

    ..., requires segmented approach to the market that appreciates differences in expectations and preferences of customers. One of significant activities in strategic planning of marketing activities is market segmentation...

  6. Mobile Watermarking against Geometrical Distortions

    Directory of Open Access Journals (Sweden)

    Jing Zhang

    2015-08-01

    Full Text Available Mobile watermarking robust to geometrical distortions is still a great challenge. In mobile watermarking, efficient computation is necessary because mobile devices have very limited resources due to power consumption. In this paper, we propose a low-complexity geometrically resilient watermarking approach based on the optimal tradeoff circular harmonic function (OTCHF correlation filter and the minimum average correlation energy Mellin radial harmonic (MACE-MRH correlation filter. By the rotation, translation and scale tolerance properties of the two kinds of filter, the proposed watermark detector can be robust to geometrical attacks. The embedded watermark is weighted by a perceptual mask which matches very well with the properties of the human visual system. Before correlation, a whitening process is utilized to improve watermark detection reliability. Experimental results demonstrate that the proposed watermarking approach is computationally efficient and robust to geometrical distortions.

  7. Geometric structure of gauge theories

    Energy Technology Data Exchange (ETDEWEB)

    Mangiarotti, L.; Modugno, M.

    1985-06-01

    In the framework of the adjoint forms over the jet spaces of connections and using a canonical jet shift differential, we give a geometrical interpretation of the Yang--Mills equations both in a direct and Lagrangian formulation.

  8. Geometric phases in graphitic cones

    Energy Technology Data Exchange (ETDEWEB)

    Furtado, Claudio [Departamento de Fisica, CCEN, Universidade Federal da Paraiba, Cidade Universitaria, 58051-970 Joao Pessoa, PB (Brazil)], E-mail: furtado@fisica.ufpb.br; Moraes, Fernando [Departamento de Fisica, CCEN, Universidade Federal da Paraiba, Cidade Universitaria, 58051-970 Joao Pessoa, PB (Brazil); Carvalho, A.M. de M [Departamento de Fisica, Universidade Estadual de Feira de Santana, BR116-Norte, Km 3, 44031-460 Feira de Santana, BA (Brazil)

    2008-08-04

    In this Letter we use a geometric approach to study geometric phases in graphitic cones. The spinor that describes the low energy states near the Fermi energy acquires a phase when transported around the apex of the cone, as found by a holonomy transformation. This topological result can be viewed as an analogue of the Aharonov-Bohm effect. The topological analysis is extended to a system with n cones, whose resulting configuration is described by an effective defect00.

  9. Determining Geometric Accuracy in Turning

    Institute of Scientific and Technical Information of China (English)

    Kwong; Chi; Kit; A; Geddam

    2002-01-01

    Mechanical components machined to high levels of ac cu racy are vital to achieve various functional requirements in engineering product s. In particular, the geometric accuracy of turned components play an important role in determining the form, fit and function of mechanical assembly requiremen ts. The geometric accuracy requirements of turned components are usually specifi ed in terms of roundness, straightness, cylindricity and concentricity. In pract ice, the accuracy specifications achievable are infl...

  10. The Geometric Gravitational Internal Problem

    CERN Document Server

    González-Martin, G R

    2000-01-01

    In a geometric unified theory there is an energy momentum equation, apart from the field equations and equations of motion. The general relativity Einstein equation with cosmological constant follows from this energy momentum equation for empty space. For non empty space we obtain a generalized Einstein equation, relating the Einstein tensor to a geometric stress energy tensor. The matching exterior solution is in agreement with the standard relativity tests. Furthermore, there is a Newtonian limit where we obtain Poisson's equation.

  11. Geometric symmetries in light nuclei

    CERN Document Server

    Bijker, Roelof

    2016-01-01

    The algebraic cluster model is is applied to study cluster states in the nuclei 12C and 16O. The observed level sequences can be understood in terms of the underlying discrete symmetry that characterizes the geometrical configuration of the alpha-particles, i.e. an equilateral triangle for 12C, and a regular tetrahedron for 16O. The structure of rotational bands provides a fingerprint of the underlying geometrical configuration of alpha-particles.

  12. Geometric inequalities methods of proving

    CERN Document Server

    Sedrakyan, Hayk

    2017-01-01

    This unique collection of new and classical problems provides full coverage of geometric inequalities. Many of the 1,000 exercises are presented with detailed author-prepared-solutions, developing creativity and an arsenal of new approaches for solving mathematical problems. This book can serve teachers, high-school students, and mathematical competitors. It may also be used as supplemental reading, providing readers with new and classical methods for proving geometric inequalities. .

  13. Geometric morphometric analysis reveals sexual dimorphism in the distal femur.

    Science.gov (United States)

    Cavaignac, Etienne; Savall, Frederic; Faruch, Marie; Reina, Nicolas; Chiron, Philippe; Telmon, Norbert

    2016-02-01

    An individual's sex can be determined by the shape of their distal femur. The goal of this study was to show that differences in distal femur shape related to sexual dimorphism could be identified, visualized, and quantified using 3D geometric morphometric analysis. Geometric morphometric analysis was carried out on CT scans of the distal femur of 256 subjects living in the south of France. Ten landmarks were defined on 3D reconstructions of the distal femur. Both traditional metric and geometric morphometric analyses were carried out on these bone reconstructions; these analyses identified trends in bone shape in sex-based subgroups. Sex-related differences in shape were statistically significant. The subject's sex was correctly assigned in 77.3% of cases using geometric morphometric analysis. This study has shown that geometric morphometric analysis of the distal femur is feasible and has revealed sexual dimorphism differences in this bone segment. This reliable, accurate method could be used for virtual autopsy and be used to perform diachronic and interethnic comparisons. Moreover, this study provides updated morphometric data for a modern population in the south of France. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  14. Antenna with Dielectric Having Geometric Patterns

    Science.gov (United States)

    Dudley, Kenneth L. (Inventor); Elliott, Holly A. (Inventor); Cravey, Robin L. (Inventor); Connell, John W. (Inventor); Ghose, Sayata (Inventor); Watson, Kent A. (Inventor); Smith, Jr., Joseph G. (Inventor)

    2013-01-01

    An antenna includes a ground plane, a dielectric disposed on the ground plane, and an electrically-conductive radiator disposed on the dielectric. The dielectric includes at least one layer of a first dielectric material and a second dielectric material that collectively define a dielectric geometric pattern, which may comprise a fractal geometry. The radiator defines a radiator geometric pattern, and the dielectric geometric pattern is geometrically identical, or substantially geometrically identical, to the radiator geometric pattern.

  15. NEW APPROACH FOR IMAGE REPRESENTATION BASED ON GEOMETRIC STRUCTURAL CONTENTS

    Institute of Scientific and Technical Information of China (English)

    Jia Xiaomeng; Wang Guoyu

    2003-01-01

    This paper presents a novel approach for representation of image contents based on edge structural features. Edge detection is carried out for an image in the pre-processing stage.For feature representation, edge pixels are grouped into a set of segments through geometrical partitioning of the whole edge image. Then the invariant feature vector is computed for each edge-pixel segment. Thereby the image is represented with a set of spatially distributed feature vectors, each of which describes the local pattern of edge structures. Matching of two images can be achieved by the correspondence of two sets of feature vectors. Without the difficulty of image segmentation and object extraction due to the complexity of the real world images, the proposed approach provides a simple and flexible description for the image with complex scene, in terms of structural features of the image content. Experiments with real images illustrate the effectiveness of this new method.

  16. Accuracy Assessment Measures for Image Segmentation Goodness of the Land Parcel Identification System

    DEFF Research Database (Denmark)

    Montaghi, Alessandro; Larsen, Rene; Greve, Mogens Humlekrog

    2013-01-01

    , was employed in order to assess the quality of segmentation. An accuracy assessment was performed using seven metrics based on the topological or geometric similarity between segmented polygons and reference polygons, which were derived through manual delineation. The results indicate that (1) segmentation...... accuracy is influenced by the size of the reference polygons and (2) the presence of clear boundaries (e.g. hedgerow, ponds, ditches and road) drives the segmentation algorithm when the scale parameter exceeds a certain value....

  17. Segmentation Similarity and Agreement

    CERN Document Server

    Fournier, Chris

    2012-01-01

    We propose a new segmentation evaluation metric, called segmentation similarity (S), that quantifies the similarity between two segmentations as the proportion of boundaries that are not transformed when comparing them using edit distance, essentially using edit distance as a penalty function and scaling penalties by segmentation size. We propose several adapted inter-annotator agreement coefficients which use S that are suitable for segmentation. We show that S is configurable enough to suit a wide variety of segmentation evaluations, and is an improvement upon the state of the art. We also propose using inter-annotator agreement coefficients to evaluate automatic segmenters in terms of human performance.

  18. Geometric procedures for civil engineers

    CERN Document Server

    Tonias, Elias C

    2016-01-01

    This book provides a multitude of geometric constructions usually encountered in civil engineering and surveying practice.  A detailed geometric solution is provided to each construction as well as a step-by-step set of programming instructions for incorporation into a computing system. The volume is comprised of 12 chapters and appendices that may be grouped in three major parts: the first is intended for those who love geometry for its own sake and its evolution through the ages, in general, and, more specifically, with the introduction of the computer. The second section addresses geometric features used in the book and provides support procedures used by the constructions presented. The remaining chapters and the appendices contain the various constructions. The volume is ideal for engineering practitioners in civil and construction engineering and allied areas.

  19. Geometric scalar theory of gravity

    Energy Technology Data Exchange (ETDEWEB)

    Novello, M.; Bittencourt, E.; Goulart, E.; Salim, J.M.; Toniato, J.D. [Instituto de Cosmologia Relatividade Astrofisica ICRA - CBPF Rua Dr. Xavier Sigaud 150 - 22290-180 Rio de Janeiro - Brazil (Brazil); Moschella, U., E-mail: novello@cbpf.br, E-mail: eduhsb@cbpf.br, E-mail: Ugo.Moschella@uninsubria.it, E-mail: egoulart@cbpf.br, E-mail: jsalim@cbpf.br, E-mail: toniato@cbpf.br [Università degli Studi dell' Insubria - Dipartamento di Fisica e Matematica Via Valleggio 11 - 22100 Como - Italy (Italy)

    2013-06-01

    We present a geometric scalar theory of gravity. Our proposal will be described using the ''background field method'' introduced by Gupta, Feynman, Deser and others as a field theory formulation of general relativity. We analyze previous criticisms against scalar gravity and show how the present proposal avoids these difficulties. This concerns not only the theoretical complaints but also those related to observations. In particular, we show that the widespread belief of the conjecture that the source of scalar gravity must be the trace of the energy-momentum tensor — which is one of the main difficulties to couple gravity with electromagnetic phenomenon in previous models — does not apply to our geometric scalar theory. From the very beginning this is not a special relativistic scalar gravity. The adjective ''geometric'' pinpoints its similarity with general relativity: this is a metric theory of gravity. Some consequences of this new scalar theory are explored.

  20. Geometric identities in stereological particle analysis

    DEFF Research Database (Denmark)

    Kötzer, S.; Jensen, Eva Bjørn Vedel; Baddeley, A.

    We review recent findings about geometric identities in integral geometry and geometric tomography, and their statistical application to stereological particle analysis. Open questions are discussed.......We review recent findings about geometric identities in integral geometry and geometric tomography, and their statistical application to stereological particle analysis. Open questions are discussed....

  1. Geometric orbit datum and orbit covers

    Institute of Scientific and Technical Information of China (English)

    梁科; 侯自新

    2001-01-01

    Vogan conjectured that the parabolic induction of orbit data is independent of the choice of the parabolic subgroup. In this paper we first give the parabolic induction of orbit covers, whose relationship with geometric orbit datum is also induced. Hence we show a geometric interpretation of orbit data and finally prove the conjugation for geometric orbit datum using geometric method.

  2. Geometric formula for prism deflection

    Indian Academy of Sciences (India)

    Apoorva G Wagh; Veer Chand Rakhecha

    2004-08-01

    While studying neutron deflections produced by a magnetic prism, we have stumbled upon a simple `geometric' formula. For a prism of refractive index close to unity, the deflection simply equals the product of the refractive power − 1 and the base-to-height ratio of the prism, regardless of the apex angle. The base and height of the prism are measured respectively along and perpendicular to the direction of beam propagation within the prism. The geometric formula greatly simplifies the optimisation of prism parameters to suit any specific experiment.

  3. A Geometric Formulation of Supersymmetry

    CERN Document Server

    Freedman, Daniel Z; Van Proeyen, Antoine

    2016-01-01

    The scalar fields of supersymmetric models are coordinates of a geometric space. We propose a formulation of supersymmetry that is covariant with respect to reparametrizations of this target space. Employing chiral multiplets as an example, we introduce modified supersymmetry variations and redefined auxiliary fields that transform covariantly under reparametrizations. The resulting action and transformation laws are manifestly covariant and highlight the geometric structure of the supersymmetric theory. The covariant methods are developed first for general theories (not necessarily supersymmetric) whose scalar fields are coordinates of a Riemannian target space.

  4. Height and Tilt Geometric Texture

    DEFF Research Database (Denmark)

    Andersen, Vedrana; Desbrun, Mathieu; Bærentzen, Jakob Andreas

    2009-01-01

    We propose a new intrinsic representation of geometric texture over triangle meshes. Our approach extends the conventional height field texture representation by incorporating displacements in the tangential plane in the form of a normal tilt. This texture representation offers a good practical...... compromise between functionality and simplicity: it can efficiently handle and process geometric texture too complex to be represented as a height field, without having recourse to full blown mesh editing algorithms. The height-and-tilt representation proposed here is fully intrinsic to the mesh, making...

  5. Geometric integration for particle accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Forest, Etienne [High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan)

    2006-05-12

    This paper is a very personal view of the field of geometric integration in accelerator physics-a field where often work of the highest quality is buried in lost technical notes or even not published; one has only to think of Simon van der Meer Nobel prize work on stochastic cooling-unpublished in any refereed journal. So I reconstructed the relevant history of geometrical integration in accelerator physics as much as I could by talking to collaborators and using my own understanding of the field. The reader should not be too surprised if this account is somewhere between history, science and perhaps even fiction.

  6. Geometric pumping in autophoretic channels

    CERN Document Server

    Michelin, Sebastien; De Canio, Gabriele; Lobato-Dauzier, Nicolas; Lauga, Eric

    2015-01-01

    Many microfluidic devices use macroscopic pressure differentials to overcome viscous friction and generate flows in microchannels. In this work, we investigate how the chemical and geometric properties of the channel walls can drive a net flow by exploiting the autophoretic slip flows induced along active walls by local concentration gradients of a solute species. We show that chemical patterning of the wall is not required to generate and control a net flux within the channel, rather channel geometry alone is sufficient. Using numerical simulations, we determine how geometric characteristics of the wall influence channel flow rate, and confirm our results analytically in the asymptotic limit of lubrication theory.

  7. Asymptotic geometric analysis, part I

    CERN Document Server

    Artstein-Avidan, Shiri

    2015-01-01

    The authors present the theory of asymptotic geometric analysis, a field which lies on the border between geometry and functional analysis. In this field, isometric problems that are typical for geometry in low dimensions are substituted by an "isomorphic" point of view, and an asymptotic approach (as dimension tends to infinity) is introduced. Geometry and analysis meet here in a non-trivial way. Basic examples of geometric inequalities in isomorphic form which are encountered in the book are the "isomorphic isoperimetric inequalities" which led to the discovery of the "concentration phenomen

  8. An introduction to geometrical physics

    CERN Document Server

    Aldrovandi, R

    1995-01-01

    This book stresses the unifying power of the geometrical framework in bringing together concepts from the different areas of physics. Common underpinnings of optics, elasticity, gravitation, relativistic fields, particle mechanics and other subjects are underlined. It attempts to extricate the notion of space currently in the physical literature from the metric connotation.The book's goal is to present mathematical ideas associated with geometrical physics in a rather introductory language. Included are many examples from elementary physics and also, for those wishing to reach a higher level o

  9. Pituitary Adenoma Segmentation

    CERN Document Server

    Egger, Jan; Kuhnt, Daniela; Freisleben, Bernd; Nimsky, Christopher

    2011-01-01

    Sellar tumors are approximately 10-15% among all intracranial neoplasms. The most common sellar lesion is the pituitary adenoma. Manual segmentation is a time-consuming process that can be shortened by using adequate algorithms. In this contribution, we present a segmentation method for pituitary adenoma. The method is based on an algorithm we developed recently in previous work where the novel segmentation scheme was successfully used for segmentation of glioblastoma multiforme and provided an average Dice Similarity Coefficient (DSC) of 77%. This scheme is used for automatic adenoma segmentation. In our experimental evaluation, neurosurgeons with strong experiences in the treatment of pituitary adenoma performed manual slice-by-slice segmentation of 10 magnetic resonance imaging (MRI) cases. Afterwards, the segmentations were compared with the segmentation results of the proposed method via the DSC. The average DSC for all data sets was 77.49% +/- 4.52%. Compared with a manual segmentation that took, on the...

  10. STIFFNESS EQUATION OF FINITE SEGMENT FOR FLEXIBLE BEAM-FORMED STRUCTURAL ELEMENTS

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The finite segment modelling for the flexible beam-formed structural elemens is presented,in which the discretization views of the finite segment method and the difference from the finite element method are introduced. In terms of the nodal model, the joint properties are described easily by the model of the finite segment method,and according to the element properties,the assumption of the small strain is only met in the finite segment method, i. e., the geometric nonlinear deformation of the flexible bodies is allowable.Consequently, the finite segment method is very suited to the flexible multibody structure. The finite segment model is used and the arc differentiation is adopted for the differential beam segments.The stiffness equation is derived by the use of the principle of virtual work. The new modelling method shows its normalization, clear physical and geometric meanings and simple computational process.

  11. Geometric calibration of the circle-plus-arc trajectory.

    Science.gov (United States)

    Hoppe, Stefan; Noo, Frédéric; Dennerlein, Frank; Lauritsch, Günter; Hornegger, Joachim

    2007-12-07

    In this paper, a novel geometric calibration method for C-arm cone-beam scanners is presented which allows the calibration of the circle-plus-arc trajectory. The main idea is the separation of the trajectory into two circular segments (circle segment and arc segment) which are calibrated independently. This separation makes it possible to reuse a calibration phantom which has been successfully applied in clinical environments to calibrate numerous routinely used C-arm systems. For each trajectory segment, the phantom is placed in an optimal position. The two calibration results are then combined by computing the transformation the phantom underwent between the independent calibration runs. This combination can be done in a post-processing step by using standard linear algebra. The method is not limited to circle-plus-arc trajectories and works for any calibration procedure in which the phantom has a preferred orientation with respect to a trajectory segment. Results are presented for both simulated as well as real data acquired with a C-arm system. We also present the first image reconstruction results for the circle-plus-arc trajectory using real C-arm data.

  12. In Defence of Geometrical Algebra

    NARCIS (Netherlands)

    Blasjo, V.N.E.

    2016-01-01

    The geometrical algebra hypothesis was once the received interpretation of Greek mathematics. In recent decades, however, it has become anathema to many. I give a critical review of all arguments against it and offer a consistent rebuttal case against the modern consensus. Consequently, I find that

  13. Metastable vacua and geometric deformations

    CERN Document Server

    Amariti, A; Girardello, L; Mariotti, A

    2008-01-01

    We study the geometric interpretation of metastable vacua for systems of D3 branes at non isolated toric deformable singularities. Using the L^{aba} examples, we investigate the relations between the field theoretic susy breaking and restoration and the complex deformations of the CY singularities.

  14. Geometric hashing and object recognition

    Science.gov (United States)

    Stiller, Peter F.; Huber, Birkett

    1999-09-01

    We discuss a new geometric hashing method for searching large databases of 2D images (or 3D objects) to match a query built from geometric information presented by a single 3D object (or single 2D image). The goal is to rapidly determine a small subset of the images that potentially contain a view of the given object (or a small set of objects that potentially match the item in the image). Since this must be accomplished independent of the pose of the object, the objects and images, which are characterized by configurations of geometric features such as points, lines and/or conics, must be treated using a viewpoint invariant formulation. We are therefore forced to characterize these configurations in terms of their 3D and 2D geometric invariants. The crucial relationship between the 3D geometry and its 'residual' in 2D is expressible as a correspondence (in the sense of algebraic geometry). Computing a set of generating equations for the ideal of this correspondence gives a complete characterization of the view of independent relationships between an object and all of its possible images. Once a set of generators is in hand, it can be used to devise efficient recognition algorithms and to give an efficient geometric hashing scheme. This requires exploiting the form and symmetry of the equations. The result is a multidimensional access scheme whose efficiency we examine. Several potential directions for improving this scheme are also discussed. Finally, in a brief appendix, we discuss an alternative approach to invariants for generalized perspective that replaces the standard invariants by a subvariety of a Grassmannian. The advantage of this is that one can circumvent many annoying general position assumptions and arrive at invariant equations (in the Plucker coordinates) that are more numerically robust in applications.

  15. Geometric Transformations in Engineering Geometry

    Directory of Open Access Journals (Sweden)

    I. F. Borovikov

    2015-01-01

    Full Text Available Recently, for business purposes, in view of current trends and world experience in training engineers, research and faculty staff there has been a need to transform traditional courses of descriptive geometry into the course of engineering geometry in which the geometrical transformations have to become its main section. On the basis of critical analysis the paper gives suggestions to improve a presentation technique of this section both in the classroom and in academic literature, extend an application scope of geometrical transformations to solve the position and metric tasks and simulation of surfaces, as well as to design complex engineering configurations, which meet a number of pre-specified conditions.The article offers to make a number of considerable amendments to the terms and definitions used in the existing courses of descriptive geometry. It draws some conclusions and makes the appropriate proposals on feasibility of coordination in teaching the movement transformation in the courses of analytical and descriptive geometry. This will provide interdisciplinary team teaching and allow students to be convinced that a combination of analytical and graphic ways to solve geometric tasks is useful and reasonable.The traditional sections of learning courses need to be added with a theory of projective and bi-rational transformations. In terms of application simplicity and convenience it is enough to consider the central transformations when solving the applied tasks. These transformations contain a beam of sub-invariant (low-invariant straight lines on which the invariant curve induces non-involution and involution projectivities. The expediency of nonlinear transformations application is shown in the article by a specific example of geometric modeling of the interfacing surface "spar-blade".Implementation of these suggestions will contribute to a real transformation of a traditional course of descriptive geometry to the engineering geometry

  16. Image-Based Geometric Modeling and Mesh Generation

    CERN Document Server

    2013-01-01

    As a new interdisciplinary research area, “image-based geometric modeling and mesh generation” integrates image processing, geometric modeling and mesh generation with finite element method (FEM) to solve problems in computational biomedicine, materials sciences and engineering. It is well known that FEM is currently well-developed and efficient, but mesh generation for complex geometries (e.g., the human body) still takes about 80% of the total analysis time and is the major obstacle to reduce the total computation time. It is mainly because none of the traditional approaches is sufficient to effectively construct finite element meshes for arbitrarily complicated domains, and generally a great deal of manual interaction is involved in mesh generation. This contributed volume, the first for such an interdisciplinary topic, collects the latest research by experts in this area. These papers cover a broad range of topics, including medical imaging, image alignment and segmentation, image-to-mesh conversion,...

  17. GPS Control Segment

    Science.gov (United States)

    2015-04-29

    Luke J. Schaub Chief, GPS Control Segment Division 29 Apr 15 GPS Control Segment Report Documentation Page Form ApprovedOMB No. 0704-0188...00-2015 4. TITLE AND SUBTITLE GPS Control Segment 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT...Center, GPS Control Segment Division,Los Angeles AFB, El Segundo,CA,90245 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S

  18. Sipunculans and segmentation

    DEFF Research Database (Denmark)

    Wanninger, Andreas; Kristof, Alen; Brinkmann, Nora

    2009-01-01

    Comparative molecular, developmental and morphogenetic analyses show that the three major segmented animal groups- Lophotrochozoa, Ecdysozoa and Vertebrata-use a wide range of ontogenetic pathways to establish metameric body organization. Even in the life history of a single specimen, different...... plasticity and potential evolutionary lability of segmentation nourishes the controversy of a segmented bilaterian ancestor versus multiple independent evolution of segmentation in respective metazoan lineages....

  19. Automatic Melody Segmentation

    NARCIS (Netherlands)

    Rodríguez López, Marcelo

    2016-01-01

    The work presented in this dissertation investigates music segmentation. In the field of Musicology, segmentation refers to a score analysis technique, whereby notated pieces or passages of these pieces are divided into “units” referred to as sections, periods, phrases, and so on. Segmentation analy

  20. Geometrical Phases in Quantum Mechanics

    Science.gov (United States)

    Christian, Joy Julius

    In quantum mechanics, the path-dependent geometrical phase associated with a physical system, over and above the familiar dynamical phase, was initially discovered in the context of adiabatically changing environments. Subsequently, Aharonov and Anandan liberated this phase from the original formulation of Berry, which used Hamiltonians, dependent on curves in a classical parameter space, to represent the cyclic variations of the environments. Their purely quantum mechanical treatment, independent of Hamiltonians, instead used the non-trivial topological structure of the projective space of one-dimensional subspaces of an appropriate Hilbert space. The geometrical phase, in their treatment, results from a parallel transport of the time-dependent pure quantum states along a curve in this space, which is endowed with an abelian connection. Unlike Berry, they were able to achieve this without resort to an adiabatic approximation or to a time-independent eigenvalue equation. Prima facie, these two approaches are conceptually quite different. After a review of both approaches, an exposition bridging this apparent conceptual gap is given; by rigorously analyzing a model composite system, it is shown that, in an appropriate correspondence limit, the Berry phase can be recovered as a special case from the Aharonov-Anandan phase. Moreover, the model composite system is used to show that Berry's correction to the traditional Born-Oppenheimer energy spectra indeed brings the spectra closer to the exact results. Then, an experimental arrangement to measure geometrical phases associated with cyclic and non-cyclic variations of quantum states of an entangled composite system is proposed, utilizing the fundamental ideas of the recently opened field of two-particle interferometry. This arrangement not only resolves the controversy regarding the true nature of the phases associated with photon states, but also unequivocally predicts experimentally accessible geometrical phases in a

  1. Precise acquisition and unsupervised segmentation of multi-spectral images

    DEFF Research Database (Denmark)

    Gomez, David Delgado; Clemmensen, Line Katrine Harder; Ersbøll, Bjarne Kjær

    2007-01-01

    In this work, an integrated imaging system to obtain accurate and reproducible multi-spectral images and a novel multi-spectral image segmentation algorithm are proposed. The system collects up to 20 different spectral bands within a range that vary from 395 nm to 970 nm. The system is designed...... to acquire geometrically and chromatically corrected images in homogeneous and diffuse illumination, so images can be compared over time. The proposed segmentation algorithm combines the information provided by all the spectral bands to segment the different regions of interest. Three experiments...

  2. Unsupervised segmentation of predefined shapes in multivariate images

    NARCIS (Netherlands)

    Noordam, J.C.; Broek, van den W.H.A.M.; Buydens, L.M.C.

    2003-01-01

    Fuzzy C-means (FCM) is an unsupervised clustering technique that is often used for the unsupervised segmentation of multivariate images. In traditional FCM the clustering is based on spectral information only and the geometrical relationship between neighbouring pixels is not used in the clustering

  3. Guiding light via geometric phases

    CERN Document Server

    Slussarenko, Sergei; Jisha, Chandroth P; Piccirillo, Bruno; Santamato, Enrico; Assanto, Gaetano; Marrucci, Lorenzo

    2015-01-01

    Known methods for transverse confinement and guidance of light can be grouped into a few basic mechanisms, the most common being metallic reflection, total internal reflection and photonic-bandgap (or Bragg) reflection. All of them essentially rely on changes of the refractive index, that is on scalar properties of light. Recently, processes based on "geometric Berry phases", such as manipulation of polarization states or deflection of spinning-light rays, have attracted considerable interest in the contexts of singular optics and structured light. Here, we disclose a new approach to light waveguiding, using geometric Berry phases and exploiting polarization states and their handling. This can be realized in structured three-dimensional anisotropic media, in which the optic axis lies orthogonal to the propagation direction and is modulated along it and across the transverse plane, so that the refractive index remains constant but a phase distortion can be imposed on a beam. In addition to a complete theoretic...

  4. A Geometrical Method of Decoupling

    CERN Document Server

    Baumgarten, Christian

    2012-01-01

    In a preceeding paper the real Dirac matrices have been introduced to coupled linear optics and a recipe to decouple positive definite Hamiltonians has been given. In this article a geometrical method is presented which allows to decouple regular {\\it and} irregular systems with the same straightforward method and to compute the eigenvalues and eigenvectors of Hamiltonian matrices with both, real and imaginary eigenvalues. It is shown that the algebraic decoupling is closely related to a geometric "decoupling" by the orthogonalization of the vectors $\\vec E$, $\\vec B$ and $\\vec p$, that were introduced with the so-called "electromechanical equivalence" (EMEQ). When used iteratively, the decoupling algorithm can also be applied to n-dimensional non-dissipative systems.

  5. Geometrical Aspects of Venus Transit

    CERN Document Server

    Bertuola, Alberto C; Magalhães, N S; Filho, Victo S

    2016-01-01

    We obtained two astronomical values, the Earth-Venus distance and Venus diameter, by means of a geometrical treatment of photos taken of Venus transit in June of 2012. Here we presented the static and translational modelsthat were elaborated taking into account the Earth and Venus orbital movements. An additional correction was also added by considering the Earth rotation movement. The results obtained were compared with the values of reference from literature, showing very good concordance.

  6. Geometric Hyperplanes: Desargues Encodes Doily

    CERN Document Server

    Saniga, Metod

    2011-01-01

    It is shown that the structure of the generalized quadrangle of order two is fully encoded in the properties of the Desargues configuration. A point of the quadrangle is represented by a geometric hyperplane of the Desargues configuration and its line by a set of three hyperplanes such that one of them is the complement of the symmetric difference of the remaining two and they all share a pair of non-collinear points.

  7. Geometrical interpretation of optical absorption

    Energy Technology Data Exchange (ETDEWEB)

    Monzon, J. J.; Barriuso, A. G.; Sanchez-Soto, L. L. [Departamento de Optica, Facultad de Fisica, Universidad Complutense, E-28040 Madrid (Spain); Montesinos-Amilibia, J. M. [Departamento de Geometria y Topologia, Facultad de Matematicas, Universidad Complutense, E-28040 Madrid (Spain)

    2011-08-15

    We reinterpret the transfer matrix for an absorbing system in very simple geometrical terms. In appropriate variables, the system appears as performing a Lorentz transformation in a (1 + 3)-dimensional space. Using homogeneous coordinates, we map that action on the unit sphere, which is at the realm of the Klein model of hyperbolic geometry. The effects of absorption appear then as a loxodromic transformation, that is, a rhumb line crossing all the meridians at the same angle.

  8. Polar metals by geometric design

    Science.gov (United States)

    Kim, T. H.; Puggioni, D.; Yuan, Y.; Xie, L.; Zhou, H.; Campbell, N.; Ryan, P. J.; Choi, Y.; Kim, J.-W.; Patzner, J. R.; Ryu, S.; Podkaminer, J. P.; Irwin, J.; Ma, Y.; Fennie, C. J.; Rzchowski, M. S.; Pan, X. Q.; Gopalan, V.; Rondinelli, J. M.; Eom, C. B.

    2016-05-01

    Gauss’s law dictates that the net electric field inside a conductor in electrostatic equilibrium is zero by effective charge screening; free carriers within a metal eliminate internal dipoles that may arise owing to asymmetric charge distributions. Quantum physics supports this view, demonstrating that delocalized electrons make a static macroscopic polarization, an ill-defined quantity in metals—it is exceedingly unusual to find a polar metal that exhibits long-range ordered dipoles owing to cooperative atomic displacements aligned from dipolar interactions as in insulating phases. Here we describe the quantum mechanical design and experimental realization of room-temperature polar metals in thin-film ANiO3 perovskite nickelates using a strategy based on atomic-scale control of inversion-preserving (centric) displacements. We predict with ab initio calculations that cooperative polar A cation displacements are geometrically stabilized with a non-equilibrium amplitude and tilt pattern of the corner-connected NiO6 octahedra—the structural signatures of perovskites—owing to geometric constraints imposed by the underlying substrate. Heteroepitaxial thin-films grown on LaAlO3 (111) substrates fulfil the design principles. We achieve both a conducting polar monoclinic oxide that is inaccessible in compositionally identical films grown on (001) substrates, and observe a hidden, previously unreported, non-equilibrium structure in thin-film geometries. We expect that the geometric stabilization approach will provide novel avenues for realizing new multifunctional materials with unusual coexisting properties.

  9. A robust line matching method based on local appearance descriptor and neighboring geometric attributes

    Science.gov (United States)

    Xing, Jing; Wei, Zhenzhong; Zhang, Guangjun

    2016-10-01

    This paper reports an efficient method for line matching, which utilizes local intensity gradient information and neighboring geometric attributes. Lines are detected in a multi-scale way to make the method robust to scale changes. A descriptor based on local appearance is built to generate candidate matching pairs. The key idea is to accumulate intensity gradient information into histograms based on their intensity orders to overcome the fragmentation problem of lines. Besides, local coordinate system is built for each line to achieve rotation invariance. For each line segment in candidate matching pairs, a histogram is built by aggregating geometric attributes of neighboring line segments. The final matching measure derives from the distance between normalized geometric attributes histograms. Experiments show that the proposed method is robust to large illumination changes and is rotation invariant.

  10. What is a segment?

    Science.gov (United States)

    Hannibal, Roberta L; Patel, Nipam H

    2013-12-17

    Animals have been described as segmented for more than 2,000 years, yet a precise definition of segmentation remains elusive. Here we give the history of the definition of segmentation, followed by a discussion on current controversies in defining a segment. While there is a general consensus that segmentation involves the repetition of units along the anterior-posterior (a-p) axis, long-running debates exist over whether a segment can be composed of only one tissue layer, whether the most anterior region of the arthropod head is considered segmented, and whether and how the vertebrate head is segmented. Additionally, we discuss whether a segment can be composed of a single cell in a column of cells, or a single row of cells within a grid of cells. We suggest that 'segmentation' be used in its more general sense, the repetition of units with a-p polarity along the a-p axis, to prevent artificial classification of animals. We further suggest that this general definition be combined with an exact description of what is being studied, as well as a clearly stated hypothesis concerning the specific nature of the potential homology of structures. These suggestions should facilitate dialogue among scientists who study vastly differing segmental structures.

  11. Figure-Ground Segmentation Using Factor Graphs.

    Science.gov (United States)

    Shen, Huiying; Coughlan, James; Ivanchenko, Volodymyr

    2009-06-04

    Foreground-background segmentation has recently been applied [26,12] to the detection and segmentation of specific objects or structures of interest from the background as an efficient alternative to techniques such as deformable templates [27]. We introduce a graphical model (i.e. Markov random field)-based formulation of structure-specific figure-ground segmentation based on simple geometric features extracted from an image, such as local configurations of linear features, that are characteristic of the desired figure structure. Our formulation is novel in that it is based on factor graphs, which are graphical models that encode interactions among arbitrary numbers of random variables. The ability of factor graphs to express interactions higher than pairwise order (the highest order encountered in most graphical models used in computer vision) is useful for modeling a variety of pattern recognition problems. In particular, we show how this property makes factor graphs a natural framework for performing grouping and segmentation, and demonstrate that the factor graph framework emerges naturally from a simple maximum entropy model of figure-ground segmentation.We cast our approach in a learning framework, in which the contributions of multiple grouping cues are learned from training data, and apply our framework to the problem of finding printed text in natural scenes. Experimental results are described, including a performance analysis that demonstrates the feasibility of the approach.

  12. Human habenula segmentation using myelin content.

    Science.gov (United States)

    Kim, Joo-won; Naidich, Thomas P; Ely, Benjamin A; Yacoub, Essa; De Martino, Federico; Fowkes, Mary E; Goodman, Wayne K; Xu, Junqian

    2016-04-15

    The habenula consists of a pair of small epithalamic nuclei located adjacent to the dorsomedial thalamus. Despite increasing interest in imaging the habenula due to its critical role in mediating subcortical reward circuitry, in vivo neuroimaging research targeting the human habenula has been limited by its small size and low anatomical contrast. In this work, we have developed an objective semi-automated habenula segmentation scheme consisting of histogram-based thresholding, region growing, geometric constraints, and partial volume estimation steps. This segmentation scheme was designed around in vivo 3 T myelin-sensitive images, generated by taking the ratio of high-resolution T1w over T2w images. Due to the high myelin content of the habenula, the contrast-to-noise ratio with the thalamus in the in vivo 3T myelin-sensitive images was significantly higher than the T1w or T2w images alone. In addition, in vivo 7 T myelin-sensitive images (T1w over T2*w ratio images) and ex vivo proton density-weighted images, along with histological evidence from the literature, strongly corroborated the in vivo 3 T habenula myelin contrast used in the proposed segmentation scheme. The proposed segmentation scheme represents a step toward a scalable approach for objective segmentation of the habenula suitable for both morphological evaluation and habenula seed region selection in functional and diffusion MRI applications.

  13. An attribute-based image segmentation method

    Directory of Open Access Journals (Sweden)

    M.C. de Andrade

    1999-07-01

    Full Text Available This work addresses a new image segmentation method founded on Digital Topology and Mathematical Morphology grounds. The ABA (attribute based absorptions transform can be viewed as a region-growing method by flooding simulation working at the scale of the main structures of the image. In this method, the gray level image is treated as a relief flooded from all its local minima, which are progressively detected and merged as the flooding takes place. Each local minimum is exclusively associated to one catchment basin (CB. The CBs merging process is guided by their geometric parameters as depth, area and/or volume. This solution enables the direct segmentation of the original image without the need of a preprocessing step or the explicit marker extraction step, often required by other flooding simulation methods. Some examples of image segmentation, employing the ABA transform, are illustrated for uranium oxide samples. It is shown that the ABA transform presents very good segmentation results even in presence of noisy images. Moreover, it's use is often easier and faster when compared to similar image segmentation methods.

  14. Thermodynamics and the segmented compound parabolic concentrator

    Science.gov (United States)

    Widyolar, Bennett; Jiang, Lun; Winston, Roland

    2017-04-01

    Compound parabolic concentrator (CPC) reflector profiles are complex and can be difficult to manufacture using traditional methods. Computer numeric control machines, however, can approximate complex profiles by bending a series of small flat segments. We investigate the relationship between the number of segments and the optical transmission of a CPC approximated by equal length segments whose start and end points lie along the CPC profile. We also investigate a separate method for generating CPC-like profiles by adjusting the angle of each segment to satisfy the edge-ray principle. Three variations of this method are examined where the edge-ray condition is taken from the start, mid, and end points of each segment. A flux efficiency (FE) to compare concentrators, which combines the concentration ratio and optical efficiency, is introduced and directly relates to the maximum achievable flux on the absorber. We demonstrate that the FE defined is another way to look at the compromises one makes for a geometric concentrator designed under real-world constraints.

  15. Edge Segment-Based Automatic Video Surveillance

    Directory of Open Access Journals (Sweden)

    Oksam Chae

    2007-12-01

    Full Text Available This paper presents a moving-object segmentation algorithm using edge information as segment. The proposed method is developed to address challenges due to variations in ambient lighting and background contents. We investigated the suitability of the proposed algorithm in comparison with the traditional-intensity-based as well as edge-pixel-based detection methods. In our method, edges are extracted from video frames and are represented as segments using an efficiently designed edge class. This representation helps to obtain the geometric information of edge in the case of edge matching and moving-object segmentation; and facilitates incorporating knowledge into edge segment during background modeling and motion tracking. An efficient approach for background initialization and robust method of edge matching is presented, to effectively reduce the risk of false alarm due to illumination change and camera motion while maintaining the high sensitivity to the presence of moving object. Detected moving edges are utilized along with watershed algorithm for extracting video object plane (VOP with more accurate boundary. Experiment results with real image sequence reflect that the proposed method is suitable for automated video surveillance applications in various monitoring systems.

  16. Some geometrical iteration methods for nonlinear equations

    Institute of Scientific and Technical Information of China (English)

    LU Xing-jiang; QIAN Chun

    2008-01-01

    This paper describes geometrical essentials of some iteration methods (e.g. Newton iteration,secant line method,etc.) for solving nonlinear equations and advances some geomet-rical methods of iteration that are flexible and efficient.

  17. Segmentation algorithms for ear image data towards biomechanical studies.

    Science.gov (United States)

    Ferreira, Ana; Gentil, Fernanda; Tavares, João Manuel R S

    2014-01-01

    In recent years, the segmentation, i.e. the identification, of ear structures in video-otoscopy, computerised tomography (CT) and magnetic resonance (MR) image data, has gained significant importance in the medical imaging area, particularly those in CT and MR imaging. Segmentation is the fundamental step of any automated technique for supporting the medical diagnosis and, in particular, in biomechanics studies, for building realistic geometric models of ear structures. In this paper, a review of the algorithms used in ear segmentation is presented. The review includes an introduction to the usually biomechanical modelling approaches and also to the common imaging modalities. Afterwards, several segmentation algorithms for ear image data are described, and their specificities and difficulties as well as their advantages and disadvantages are identified and analysed using experimental examples. Finally, the conclusions are presented as well as a discussion about possible trends for future research concerning the ear segmentation.

  18. Low-Level Hierarchical Multiscale Segmentation Statistics of Natural Images.

    Science.gov (United States)

    Akbas, Emre; Ahuja, Narendra

    2014-09-01

    This paper is aimed at obtaining the statistics as a probabilistic model pertaining to the geometric, topological and photometric structure of natural images. The image structure is represented by its segmentation graph derived from the low-level hierarchical multiscale image segmentation. We first estimate the statistics of a number of segmentation graph properties from a large number of images. Our estimates confirm some findings reported in the past work, as well as provide some new ones. We then obtain a Markov random field based model of the segmentation graph which subsumes the observed statistics. To demonstrate the value of the model and the statistics, we show how its use as a prior impacts three applications: image classification, semantic image segmentation and object detection.

  19. Joint Rendering and Segmentation of Free-Viewpoint Video

    Directory of Open Access Journals (Sweden)

    Ishii Masato

    2010-01-01

    Full Text Available Abstract This paper presents a method that jointly performs synthesis and object segmentation of free-viewpoint video using multiview video as the input. This method is designed to achieve robust segmentation from online video input without per-frame user interaction and precomputations. This method shares a calculation process between the synthesis and segmentation steps; the matching costs calculated through the synthesis step are adaptively fused with other cues depending on the reliability in the segmentation step. Since the segmentation is performed for arbitrary viewpoints directly, the extracted object can be superimposed onto another 3D scene with geometric consistency. We can observe that the object and new background move naturally along with the viewpoint change as if they existed together in the same space. In the experiments, our method can process online video input captured by a 25-camera array and show the result image at 4.55 fps.

  20. Adiabatic geometric phases in hydrogenlike atoms

    OpenAIRE

    Sjöqvist, Erik; Yi, X. X.; Åberg, J.

    2005-01-01

    We examine the effect of spin-orbit coupling on geometric phases in hydrogenlike atoms exposed to a slowly varying magnetic field. The marginal geometric phases associated with the orbital angular momentum and the intrinsic spin fulfill a sum rule that explicitly relates them to the corresponding geometric phase of the whole system. The marginal geometric phases in the Zeeman and Paschen-Back limit are analyzed. We point out the existence of nodal points in the marginal phases that may be det...

  1. Learning image based surrogate relevance criterion for atlas selection in segmentation

    Science.gov (United States)

    Zhao, Tingting; Ruan, Dan

    2016-06-01

    Picking geometrically relevant atlases from the whole training set is crucial to multi-atlas based image segmentation, especially with extensive data of heterogeneous quality in the Big Data era. Unfortunately, there is very limited understanding of how currently used image similarity criteria reveal geometric relevance, let alone the optimization of them. This paper aims to develop a good image based surrogate relevance criterion to best reflect the underlying inaccessible geometric relevance in a learning context. We cast this surrogate learning problem into an optimization framework, by encouraging the image based surrogate to behave consistently with geometric relevance during training. In particular, we desire a criterion to be small for image pairs with similar geometry and large for those with significantly different segmentation geometry. Validation experiments on corpus callosum segmentation demonstrate the improved quality of the learned surrogate compared to benchmark surrogate candidates.

  2. Development of a Geometric Spatial Visualization Tool

    Science.gov (United States)

    Ganesh, Bibi; Wilhelm, Jennifer; Sherrod, Sonya

    2009-01-01

    This paper documents the development of the Geometric Spatial Assessment. We detail the development of this instrument which was designed to identify middle school students' strategies and advancement in understanding of four geometric concept domains (geometric spatial visualization, spatial projection, cardinal directions, and periodic patterns)…

  3. Exact Solutions for Einstein's Hyperbolic Geometric Flow

    Institute of Scientific and Technical Information of China (English)

    HE Chun-Lei

    2008-01-01

    In this paper we investigate the Einstein's hyperbolic geometric flow and obtain some interesting exact solutions for this kind of flow. Many interesting properties of these exact solutions have also been analyzed and we believe that these properties of Einstein's hyperbolic geometric flow are very helpful to understanding the Einstein equations and the hyperbolic geometric flow.

  4. Generalized geometrically convex functions and inequalities.

    Science.gov (United States)

    Noor, Muhammad Aslam; Noor, Khalida Inayat; Safdar, Farhat

    2017-01-01

    In this paper, we introduce and study a new class of generalized functions, called generalized geometrically convex functions. We establish several basic inequalities related to generalized geometrically convex functions. We also derive several new inequalities of the Hermite-Hadamard type for generalized geometrically convex functions. Several special cases are discussed, which can be deduced from our main results.

  5. 胸腰段脊柱节段撞击能量与几何参数变化及生物力学变化的相互关系%Relationship between different levels of energy impaction and changes of geometric parameters and biomechanics in thoracolumbar spinal segments

    Institute of Scientific and Technical Information of China (English)

    杨欣建; 王正国; 朱佩芳; 宁心; 郭小愚; 陈海斌

    2004-01-01

    目的:探讨胸腰段脊柱节段撞击能量与几何参数、几何参数变化与生物力学的相互关系,为评判脊柱损伤程度及稳定性变化提供相应的客观标准,为治疗中采取适宜的生物力学方法提供确切的实验依据. 方法:对 18例新鲜尸体胸腰段脊柱标本进行不同能量的撞击,复制成不同损伤程度的 L1椎体爆裂骨折模型.结合脊柱三维稳定性测试,进行椎体几何参数及生物力学分析. 结果:低能量撞击使节段出现结构"松弛"的现象,椎体几何参数仅角度参数部分出现变化( P< 0.05),表明椎间松弛、椎体无明显破坏.中、高能量撞击使椎体几何参数发生明显变化,中能量组后伸位时前椎体高( AVH)、畸形率 (DR)可基本恢复正常,而后椎体高 (PVH)和椎体直径 (VD)不能恢复正常( P< 0.05);高能量组 AVH和 DR后伸时也可恢复到正常,然而, PVH和 VD与正常相差更加明显( P< 0.01).牵伸作用后,中、高能量组除 VD外,其余线性和角度参数都能基本恢复至正常,表明牵伸能使椎体得到较好复位. 结论: AVH、 DR和角度参数可作为判断脊柱稳定性的指标;而 PVH、后单位高( PUH)不到正常的 85%时,预示着损伤节段结构的严重破坏,为重度爆裂粉碎骨折.牵伸力是满足椎体几何参数恢复的有效生物力学方法.重度爆裂骨折的后伸复位也有一定的危险性.%AIM: To explore the relationship between the different levels of impact energy and geometric parameters,variations of such parameters and their biomechanics to provide an objective standard for evaluation of the extent of injury to the spine and the stability variations and to provide an accurate experimental basis for selecting a proper biomechanical management method in handling such injuries.METHODS: Eighteen human thoracolumbar spines taken from cadavers were impacted with different levels of energy.Then,models of L1 vertebrae burst injuries of different levels

  6. Polar Metals by Geometric Design

    Energy Technology Data Exchange (ETDEWEB)

    Kim, T. H.; Puggioni, D.; Yuan, Y.; Xie, L.; Zhou, H.; Campbell, N.; Ryan, P. J.; Choi, Y.; Kim, J. -W.; Patzner, J. R.; Ryu, S.; Podkaminer, J. P.; Irwin, J.; Ma, Y.; Fennie, C. J.; Rzchowski, M. S.; Pan, X. Q.; Gopalan, V.; Rondinelli, J. M.; Eom, C. B.

    2016-05-05

    Gauss's law dictates that the net electric field inside a conductor in electrostatic equilibrium is zero by effective charge screening; free carriers within a metal eliminate internal dipoles that may arise owing to asymmetric charge distributions(1). Quantum physics supports this view(2), demonstrating that delocalized electrons make a static macroscopic polarization, an ill-defined quantity in metals(3)-it is exceedingly unusual to find a polar metal that exhibits long-range ordered dipoles owing to cooperative atomic displacements aligned from dipolar interactions as in insulating phases(4). Here we describe the quantum mechanical design and experimental realization of room-temperature polar metals in thin-film ANiO(3) perovskite nickelates using a strategy based on atomic-scale control of inversion-preserving (centric) displacements(5). We predict with ab initio calculations that cooperative polar A cation displacements are geometrically stabilized with a non-equilibrium amplitude and tilt pattern of the corner-connected NiO6 octahedra-the structural signatures of perovskites-owing to geometric constraints imposed by the underlying substrate. Heteroepitaxial thin-films grown on LaAlO3 (111) substrates fulfil the design principles. We achieve both a conducting polar monoclinic oxide that is inaccessible in compositionally identical films grown on (001) substrates, and observe a hidden, previously unreported(6-10), non-equilibrium structure in thin-film geometries. We expect that the geometric stabilization approach will provide novel avenues for realizing new multifunctional materials with unusual coexisting properties.

  7. Field guide to geometrical optics

    CERN Document Server

    Greivenkamp, John E

    2004-01-01

    This Field Guide derives from the treatment of geometrical optics that has evolved from both the undergraduate and graduate programs at the Optical Sciences Center at the University of Arizona. The development is both rigorous and complete, and it features a consistent notation and sign convention. This volume covers Gaussian imagery, paraxial optics, first-order optical system design, system examples, illumination, chromatic effects, and an introduction to aberrations. The appendices provide supplemental material on radiometry and photometry, the human eye, and several other topics.

  8. A history of geometrical methods

    CERN Document Server

    Coolidge, Julian Lowell

    2013-01-01

    Full and authoritative, this history of the techniques for dealing with geometric questions begins with synthetic geometry and its origins in Babylonian and Egyptian mathematics; reviews the contributions of China, Japan, India, and Greece; and discusses the non-Euclidean geometries. Subsequent sections cover algebraic geometry, starting with the precursors and advancing to the great awakening with Descartes; and differential geometry, from the early work of Huygens and Newton to projective and absolute differential geometry. The author's emphasis on proofs and notations, his comparisons betwe

  9. Science, Art and Geometrical Imagination

    CERN Document Server

    Luminet, J -P

    2009-01-01

    From the geocentric, closed world model of Antiquity to the wraparound universe models of relativistic cosmology, the parallel history of space representations in science and art illustrates the fundamental role of geometric imagination in innovative findings. Through the analysis of works of various artists and scientists like Plato, Durer, Kepler, Escher, Grisey or the present author, it is shown how the process of creation in science and in the arts rests on aesthetical principles such as symmetry, regular polyhedra, laws of harmonic proportion, tessellations, group theory, etc., as well as beauty, conciseness and emotional approach of the world.

  10. Science, art and geometrical imagination

    Science.gov (United States)

    Luminet, Jean-Pierre

    2011-06-01

    From the geocentric, closed world model of Antiquity to the wraparound universe models of relativistic cosmology, the parallel history of space representations in science and art illustrates the fundamental rôle of geometric imagination in innovative findings. Through the analysis of works of various artists and scientists like Plato, Dürer, Kepler, Escher, Grisey or the author, it is shown how the process of creation in science and in the arts rests on aesthetical principles such as symmetry, regular polyhedra, laws of harmonic proportion, tessellations, group theory, etc., as well as on beauty, conciseness and an emotional approach of the world.

  11. Geometric Rationalization for Freeform Architecture

    KAUST Repository

    Jiang, Caigui

    2016-06-20

    The emergence of freeform architecture provides interesting geometric challenges with regards to the design and manufacturing of large-scale structures. To design these architectural structures, we have to consider two types of constraints. First, aesthetic constraints are important because the buildings have to be visually impressive. Sec- ond, functional constraints are important for the performance of a building and its e cient construction. This thesis contributes to the area of architectural geometry. Specifically, we are interested in the geometric rationalization of freeform architec- ture with the goal of combining aesthetic and functional constraints and construction requirements. Aesthetic requirements typically come from designers and architects. To obtain visually pleasing structures, they favor smoothness of the building shape, but also smoothness of the visible patterns on the surface. Functional requirements typically come from the engineers involved in the construction process. For exam- ple, covering freeform structures using planar panels is much cheaper than using non-planar ones. Further, constructed buildings have to be stable and should not collapse. In this thesis, we explore the geometric rationalization of freeform archi- tecture using four specific example problems inspired by real life applications. We achieve our results by developing optimization algorithms and a theoretical study of the underlying geometrical structure of the problems. The four example problems are the following: (1) The design of shading and lighting systems which are torsion-free structures with planar beams based on quad meshes. They satisfy the functionality requirements of preventing light from going inside a building as shad- ing systems or reflecting light into a building as lighting systems. (2) The Design of freeform honeycomb structures that are constructed based on hex-dominant meshes with a planar beam mounted along each edge. The beams intersect without

  12. Hubbard model with geometrical frustration

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hunpyo

    2009-10-15

    At first we present the details of the dual fermion (DF), the cluster extension of dynamical mean field theory (CDMFT) and continuous-time quantum Monte Carlo (CT QMC) methods. Using a panoply of these methods we explore the Hubbard model on the triangular and hyperkagome lattice. We find a first-order transition and continuous transition on the triangular and hyper-kagome lattice, respectively. Moreover, we find the reentrant behavior due to competition between the magnetic correlation and itinerancy of electrons by source of geometrical frustration on both lattices. (orig.)

  13. Buildings, spiders, and geometric Satake

    CERN Document Server

    Fontaine, Bruce; Kuperberg, Greg

    2011-01-01

    Let G be a simple algebraic group. Labelled trivalent graphs called webs can be used to product invariants in tensor products of minuscule representations. For each web, we construct a configuration space of points in the affine Grassmannian. Via the geometric Satake correspondence, we relate these configuration spaces to the invariant vectors coming from webs. In the case G = SL(3), non-elliptic webs yield a basis for the invariant spaces. The non-elliptic condition, which is equivalent to the condition that the dual diskoid of the web is CAT(0), is explained by the fact that affine buildings are CAT(0).

  14. Geometric Topology and Shape Theory

    CERN Document Server

    Segal, Jack

    1987-01-01

    The aim of this international conference the third of its type was to survey recent developments in Geometric Topology and Shape Theory with an emphasis on their interaction. The volume contains original research papers and carefully selected survey of currently active areas. The main topics and themes represented by the papers of this volume include decomposition theory, cell-like mappings and CE-equivalent compacta, covering dimension versus cohomological dimension, ANR's and LCn-compacta, homology manifolds, embeddings of continua into manifolds, complement theorems in shape theory, approximate fibrations and shape fibrations, fibered shape, exact homologies and strong shape theory.

  15. Keypoint Transfer Segmentation

    OpenAIRE

    Wachinger, C.; Toews, M.; Langs, G.; Wells, W.; Golland, P.

    2015-01-01

    We present an image segmentation method that transfers label maps of entire organs from the training images to the novel image to be segmented. The transfer is based on sparse correspondences between keypoints that represent automatically identified distinctive image locations. Our segmentation algorithm consists of three steps: (i) keypoint matching, (ii) voting-based keypoint labeling, and (iii) keypoint-based probabilistic transfer of organ label maps. We introduce generative models for th...

  16. Text line Segmentation of Curved Document Images

    Directory of Open Access Journals (Sweden)

    Anusree.M

    2014-05-01

    Full Text Available Document image analysis has been widely used in historical and heritage studies, education and digital library. Document image analytical techniques are mainly used for improving the human readability and the OCR quality of the document. During the digitization, camera captured images contain warped document due perspective and geometric distortions. The main difficulty is text line detection in the document. Many algorithms had been proposed to address the problem of printed document text line detection, but they failed to extract text lines in curved document. This paper describes a segmentation technique that detects the curled text line in camera captured document images.

  17. Universal Numeric Segmented Display

    CERN Document Server

    Azad, Md Abul kalam; Kamruzzaman, S M

    2010-01-01

    Segmentation display plays a vital role to display numerals. But in today's world matrix display is also used in displaying numerals. Because numerals has lots of curve edges which is better supported by matrix display. But as matrix display is costly and complex to implement and also needs more memory, segment display is generally used to display numerals. But as there is yet no proposed compact display architecture to display multiple language numerals at a time, this paper proposes uniform display architecture to display multiple language digits and general mathematical expressions with higher accuracy and simplicity by using a 18-segment display, which is an improvement over the 16 segment display.

  18. GEOMETRIC TURBULENCE IN GENERAL RELATIVITY

    Directory of Open Access Journals (Sweden)

    Trunev A. P.

    2015-03-01

    Full Text Available The article presents the simulation results of the metric of elementary particles, atoms, stars and galaxies in the general theory of relativity and Yang-Mills theory. We have shown metrics and field equations describing the transition to turbulence. The problems of a unified field theory with the turbulent fluctuations of the metric are considered. A transition from the Einstein equations to the diffusion equation and the Schrödinger equation in quantum mechanics is shown. Ther are examples of metrics in which the field equations are reduced to a single equation, it changes type depending on the equation of state. These examples can be seen as a transition to the geometric turbulence. It is shown that the field equations in general relativity can be reduced to a hyperbolic, elliptic or parabolic type. The equation of parabolic type describing the perturbations of the gravitational field on the scale of stars, galaxies and clusters of galaxies, which is a generalization of the theory of gravitation Newton-Poisson in case of Riemannian geometry, taking into account the curvature of space-time has been derived. It was found that the geometric turbulence leads to an exchange between regions of different scale. Under turbulent exchange material formed of two types of clusters, having positive and negative energy density that corresponds to the classical and quantum particle motion respectively. These results allow us to answer the question about the origin of the quantum theory

  19. Geometric decompositions of collective motion

    Science.gov (United States)

    Mischiati, Matteo; Krishnaprasad, P. S.

    2017-04-01

    Collective motion in nature is a captivating phenomenon. Revealing the underlying mechanisms, which are of biological and theoretical interest, will require empirical data, modelling and analysis techniques. Here, we contribute a geometric viewpoint, yielding a novel method of analysing movement. Snapshots of collective motion are portrayed as tangent vectors on configuration space, with length determined by the total kinetic energy. Using the geometry of fibre bundles and connections, this portrait is split into orthogonal components each tangential to a lower dimensional manifold derived from configuration space. The resulting decomposition, when interleaved with classical shape space construction, is categorized into a family of kinematic modes-including rigid translations, rigid rotations, inertia tensor transformations, expansions and compressions. Snapshots of empirical data from natural collectives can be allocated to these modes and weighted by fractions of total kinetic energy. Such quantitative measures can provide insight into the variation of the driving goals of a collective, as illustrated by applying these methods to a publicly available dataset of pigeon flocking. The geometric framework may also be profitably employed in the control of artificial systems of interacting agents such as robots.

  20. Image coding with geometric wavelets.

    Science.gov (United States)

    Alani, Dror; Averbuch, Amir; Dekel, Shai

    2007-01-01

    This paper describes a new and efficient method for low bit-rate image coding which is based on recent development in the theory of multivariate nonlinear piecewise polynomial approximation. It combines a binary space partition scheme with geometric wavelet (GW) tree approximation so as to efficiently capture curve singularities and provide a sparse representation of the image. The GW method successfully competes with state-of-the-art wavelet methods such as the EZW, SPIHT, and EBCOT algorithms. We report a gain of about 0.4 dB over the SPIHT and EBCOT algorithms at the bit-rate 0.0625 bits-per-pixels (bpp). It also outperforms other recent methods that are based on "sparse geometric representation." For example, we report a gain of 0.27 dB over the Bandelets algorithm at 0.1 bpp. Although the algorithm is computationally intensive, its time complexity can be significantely reduced by collecting a "global" GW n-term approximation to the image from a collection of GW trees, each constructed separately over tiles of the image.

  1. Measurement error in geometric morphometrics.

    Science.gov (United States)

    Fruciano, Carmelo

    2016-06-01

    Geometric morphometrics-a set of methods for the statistical analysis of shape once saluted as a revolutionary advancement in the analysis of morphology -is now mature and routinely used in ecology and evolution. However, a factor often disregarded in empirical studies is the presence and the extent of measurement error. This is potentially a very serious issue because random measurement error can inflate the amount of variance and, since many statistical analyses are based on the amount of "explained" relative to "residual" variance, can result in loss of statistical power. On the other hand, systematic bias can affect statistical analyses by biasing the results (i.e. variation due to bias is incorporated in the analysis and treated as biologically-meaningful variation). Here, I briefly review common sources of error in geometric morphometrics. I then review the most commonly used methods to measure and account for both random and non-random measurement error, providing a worked example using a real dataset.

  2. NPP VIIRS Geometric Performance Status

    Science.gov (United States)

    Lin, Guoqing; Wolfe, Robert E.; Nishihama, Masahiro

    2011-01-01

    Visible Infrared Imager Radiometer Suite (VIIRS) instrument on-board the National Polar-orbiting Operational Environmental Satellite System (NPOESS) Preparatory Project (NPP) satellite is scheduled for launch in October, 2011. It is to provide satellite measured radiance/reflectance data for both weather and climate applications. Along with radiometric calibration, geometric characterization and calibration of Sensor Data Records (SDRs) are crucial to the VIIRS Environmental Data Record (EDR) algorithms and products which are used in numerical weather prediction (NWP). The instrument geometric performance includes: 1) sensor (detector) spatial response, parameterized by the dynamic field of view (DFOV) in the scan direction and instantaneous FOV (IFOV) in the track direction, modulation transfer function (MTF) for the 17 moderate resolution bands (M-bands), and horizontal spatial resolution (HSR) for the five imagery bands (I-bands); 2) matrices of band-to-band co-registration (BBR) from the corresponding detectors in all band pairs; and 3) pointing knowledge and stability characteristics that includes scan plane tilt, scan rate and scan start position variations, and thermally induced variations in pointing with respect to orbital position. They have been calibrated and characterized through ground testing under ambient and thermal vacuum conditions, numerical modeling and analysis. This paper summarizes the results, which are in general compliance with specifications, along with anomaly investigations, and describes paths forward for characterizing on-orbit BBR and spatial response, and for improving instrument on-orbit performance in pointing and geolocation.

  3. Optomechanical design software for segmented mirrors

    Science.gov (United States)

    Marrero, Juan

    2016-08-01

    The software package presented in this paper, still under development, was born to help analyzing the influence of the many parameters involved in the design of a large segmented mirror telescope. In summary, it is a set of tools which were added to a common framework as they were needed. Great emphasis has been made on the graphical presentation, as scientific visualization nowadays cannot be conceived without the use of a helpful 3d environment, showing the analyzed system as close to reality as possible. Use of third party software packages is limited to ANSYS, which should be available in the system only if the FEM results are needed. Among the various functionalities of the software, the next ones are worth mentioning here: automatic 3d model construction of a segmented mirror from a set of parameters, geometric ray tracing, automatic 3d model construction of a telescope structure around the defined mirrors from a set of parameters, segmented mirror human access assessment, analysis of integration tolerances, assessment of segments collision, structural deformation under gravity and thermal variation, mirror support system analysis including warping harness mechanisms, etc.

  4. Segmentation and Tracking of Neural Stem Cell

    Institute of Scientific and Technical Information of China (English)

    TANG Chun-ming; ZHAO Chun-hui; Ewert Bengtsson

    2005-01-01

    In order to understand the development of stem cells into specialized mature cells it is necessary to study the growth of cells in culture. For this purpose it is very useful to have an efficient computerized cell tracking system. In this paper a prototype system for tracking neural stem cells in a sequence of images is described. In order to get reliable tracking results it is important to have good and robust segmentation of the cells. To achieve this we have implemented three levels of segmentation. The primary level, applied to all frames, is based on fuzzy threshold and watershed segmentation of a fuzzy gray weighted distance transformed image.The second level, applied to difficult frames where the first algorithm seems to have failed, is based on a fast geometric active contour model based on the level set algorithm. Finally, the automatic segmentation result on the crucial first frame can be interactively inspected and corrected. Visual inspection and correction can also be applied to other frames but this is generally not needed. For the tracking all cells are classified into inactive, active, dividing and clustered cells. Different algorithms are used to deal with the different cell categories. A special backtracking step is used to automatically correct for some common errors that appear in the initial forward tracking process.

  5. From interpretation to segmentation

    NARCIS (Netherlands)

    Koning, A.R.; Lier, R.J. van

    2005-01-01

    In visual perception, part segmentation of an object is considered to be guided by image-based properties, such as occurrences of deep concavities in the outer contour. However, object-based properties can also provide information regarding segmentation. In this study, outer contours and interpretat

  6. Segmentation, advertising and prices

    NARCIS (Netherlands)

    Galeotti, Andrea; Moraga González, José

    This paper explores the implications of market segmentation on firm competitiveness. In contrast to earlier work, here market segmentation is minimal in the sense that it is based on consumer attributes that are completely unrelated to tastes. We show that when the market is comprised by two

  7. Segmentation, advertising and prices

    NARCIS (Netherlands)

    Galeotti, Andrea; Moraga González, José

    2008-01-01

    This paper explores the implications of market segmentation on firm competitiveness. In contrast to earlier work, here market segmentation is minimal in the sense that it is based on consumer attributes that are completely unrelated to tastes. We show that when the market is comprised by two consume

  8. Benign segmental bronchial obstruction

    Energy Technology Data Exchange (ETDEWEB)

    Loercher, U.

    1988-09-01

    The benigne segmental bronchial obstruction - mostly discovered on routine chest films - can well be diagnosed by CT. The specific findings in CT are the site of the bronchial obstruction, the mucocele and the localized empysema of the involved segment. Furthermore CT allows a better approach to the underlying process.

  9. Hospital benefit segmentation.

    Science.gov (United States)

    Finn, D W; Lamb, C W

    1986-12-01

    Market segmentation is an important topic to both health care practitioners and researchers. The authors explore the relative importance that health care consumers attach to various benefits available in a major metropolitan area hospital. The purposes of the study are to test, and provide data to illustrate, the efficacy of one approach to hospital benefit segmentation analysis.

  10. Geometrical charged-particle optics

    CERN Document Server

    Rose, Harald H

    2009-01-01

    This reference monograph covers all theoretical aspects of modern geometrical charged-particle optics. It is intended as a guide for researchers, who are involved in the design of electron optical instruments and beam-guiding systems for charged particles, and as a tutorial for graduate students seeking a comprehensive treatment. Procedures for calculating the properties of systems with arbitrarily curved axes are outlined in detail and methods are discussed for designing and optimizing special components such as aberration correctors, spectrometers, energy filters, monochromators, ion traps, electron mirrors and cathode lenses. Also addressed is the design of novel electron optical components enabling sub-Angstroem spatial resolution and sub-0.1eV energy resolution. Relativistic motion and spin precession of the electron is treated in a concise way by employing a covariant five-dimensional procedure.

  11. On chromatic and geometrical calibration

    DEFF Research Database (Denmark)

    Folm-Hansen, Jørgen

    1999-01-01

    of non-uniformity of the illumination of the image plane. Only the image deforming aberrations and the non-uniformity of illumination are included in the calibration models. The topics of the pinhole camera model and the extension to the Direct Linear Transform (DLT) are described. It is shown how......The main subject of the present thesis is different methods for the geometrical and chromatic calibration of cameras in various environments. For the monochromatic issues of the calibration we present the acquisition of monochrome images, the classic monochrome aberrations and the various sources...... the DLT can be extended with non-linear models of the common lens aberrations/errors some of them caused by manufacturing defects like decentering and thin prism distortion. The relation between a warping and the non-linear defects are shown. The issue of making a good resampling of an image by using...

  12. Geometrical charged-particle optics

    CERN Document Server

    Rose, Harald

    2012-01-01

    This second edition is an extended version of the first edition of Geometrical Charged-Particle Optics. The updated reference monograph is intended as a guide for researchers and graduate students who are seeking a comprehensive treatment of the design of instruments and beam-guiding systems of charged particles and their propagation in electromagnetic fields. Wave aspects are included in this edition for explaining electron holography, the Aharanov-Bohm effect and the resolution of electron microscopes limited by diffraction. Several methods for calculating the electromagnetic field are presented and procedures are outlined for calculating the properties of systems with arbitrarily curved axis. Detailed methods are presented for designing and optimizing special components such as aberration correctors, spectrometers, energy filters monochromators, ion traps, electron mirrors and cathode lenses. In particular, the optics of rotationally symmetric lenses, quadrupoles, and systems composed of these elements are...

  13. Phenomenological modeling of Geometric Metasurfaces

    CERN Document Server

    Ye, Weimin; Xiang, Yuanjiang; Fan, Dianyuan; Zhang, Shuang

    2015-01-01

    Metasurfaces, with their superior capability in manipulating the optical wavefront at the subwavelength scale and low manufacturing complexity, have shown great potential for planar photonics and novel optical devices. However, vector field simulation of metasurfaces is so far limited to periodic-structured metasurfaces containing a small number of meta-atoms in the unit cell by using full-wave numerical methods. Here, we propose a general phenomenological method to analytically model metasurfaces made up of arbitrarily distributed meta-atoms based on the assumption that the meta-atoms possess localized resonances with Lorentz-Drude forms, whose exact form can be retrieved from the full wave simulation of a single element. Applied to phase modulated geometric metasurfaces, our analytical results show good agreement with full-wave numerical simulations. The proposed theory provides an efficient method to model and design optical devices based on metasurfaces.

  14. LUNGEOMETRY- GEOMETRICAL INVESTIGATION OF LUNGE

    Directory of Open Access Journals (Sweden)

    R.Vinodh Rajkumar

    2015-02-01

    Full Text Available Physiotherapists must learn the biomechanics of lunge in detail to clearly understand its significance in human life and implement effective training measures to overcome the limiting factors of proper lunge of their clientele. To understand the biomechanical value of every movement, interesting experimental learning methods must be employed to kindle the Physiotherapists to actively take part in research activities from the under-graduate level onwards. Lungeometry is a novel, simple and inexpensive experimental investigation of lunge, applying basic geometrical methods taking near normal lower limb length dimensions and rationale approaches into consideration. Lungeometry can give a foundation to learn other forms of lunges like forward lunge, weighted lunges, lateral lunges. This model of learning biomechanics of movements using fundamental geometry techniques is expected to strongly connect with any futuristic Physiotherapy curricular structure.

  15. Geometric interpretation of phyllotaxis transition

    CERN Document Server

    Okabe, Takuya

    2012-01-01

    The original problem of phyllotaxis was focused on the regular arrangements of leaves on mature stems represented by common fractions such as 1/2, 1/3, 2/5, 3/8, 5/13, etc. The phyllotaxis fraction is not fixed for each plant but it may undergo stepwise transitions during ontogeny, despite contrasting observation that the arrangement of leaf primordia at shoot apical meristems changes continuously. No explanation has been given so far for the mechanism of the phyllotaxis transition, excepting suggestion resorting to genetic programs operating at some specific stages. Here it is pointed out that varying length of the leaf trace acts as an important factor to control the transition by analyzing Larson's diagram of the procambial system of young cottonwood plants. The transition is interpreted as a necessary consequence of geometric constraints that the leaf traces cannot be fitted into a fractional pattern unless their length is shorter than the denominator times the internode.

  16. Elastic scattering in geometrical model

    Science.gov (United States)

    Plebaniak, Zbigniew; Wibig, Tadeusz

    2016-10-01

    The experimental data on proton-proton elastic and inelastic scattering emerging from the measurements at the Large Hadron Collider, calls for an efficient model to fit the data. We have examined the optical, geometrical picture and we have found the simplest, linear dependence of this model parameters on the logarithm of the interaction energy with the significant change of the respective slopes at one point corresponding to the energy of about 300 GeV. The logarithmic dependence observed at high energies allows one to extrapolate the proton-proton elastic, total (and inelastic) cross sections to ultra high energies seen in cosmic rays events which makes a solid justification of the extrapolation to very high energy domain of cosmic rays and could help us to interpret the data from an astrophysical and a high energy physics point of view.

  17. Microlocal Analysis of the Geometric Separation Problem

    CERN Document Server

    Donoho, David L

    2010-01-01

    Image data are often composed of two or more geometrically distinct constituents; in galaxy catalogs, for instance, one sees a mixture of pointlike structures (galaxy superclusters) and curvelike structures (filaments). It would be ideal to process a single image and extract two geometrically `pure' images, each one containing features from only one of the two geometric constituents. This seems to be a seriously underdetermined problem, but recent empirical work achieved highly persuasive separations. We present a theoretical analysis showing that accurate geometric separation of point and curve singularities can be achieved by minimizing the $\\ell_1$ norm of the representing coefficients in two geometrically complementary frames: wavelets and curvelets. Driving our analysis is a specific property of the ideal (but unachievable) representation where each content type is expanded in the frame best adapted to it. This ideal representation has the property that important coefficients are clustered geometrically ...

  18. Geometric solitons of Hamiltonian flows on manifolds

    Energy Technology Data Exchange (ETDEWEB)

    Song, Chong, E-mail: songchong@xmu.edu.cn [School of Mathematical Sciences, Xiamen University, Xiamen 361005 (China); Sun, Xiaowei, E-mail: sunxw@cufe.edu.cn [School of Applied Mathematics, Central University of Finance and Economics, Beijing 100081 (China); Wang, Youde, E-mail: wyd@math.ac.cn [Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190 (China)

    2013-12-15

    It is well-known that the LIE (Locally Induction Equation) admit soliton-type solutions and same soliton solutions arise from different and apparently irrelevant physical models. By comparing the solitons of LIE and Killing magnetic geodesics, we observe that these solitons are essentially decided by two families of isometries of the domain and the target space, respectively. With this insight, we propose the new concept of geometric solitons of Hamiltonian flows on manifolds, such as geometric Schrödinger flows and KdV flows for maps. Moreover, we give several examples of geometric solitons of the Schrödinger flow and geometric KdV flow, including magnetic curves as geometric Schrödinger solitons and explicit geometric KdV solitons on surfaces of revolution.

  19. Analysis of Geometrical Specification Model Based on the New GeometricalProduct Specification Language

    Institute of Scientific and Technical Information of China (English)

    马利民; 王金星; 蒋向前; 李柱; 徐振高

    2004-01-01

    Geometrical Product Specification and verification (GPS) is an ISO standard system coveting standards of size, dimension,geometrical tolerance and surface texture of geometrical product. ISO/TC213 on the GPS has been working towards coordination of the previous standards in tolerance and related metrology in order to publish the next generation of the GPS language. This paper introduces the geometrical product specification model for design, manufacturing and verification based on the improved GPS and its new concepts,i.e., surface models, geometrical features and operations. An application example for the geometrical product specification model is then given.

  20. Geometric Photonic Spin Hall Effect with Metapolarization

    OpenAIRE

    2014-01-01

    We develop a geometric photonic spin Hall effect (PSHE) which manifests as spin-dependent shift in momentum space. It originates from an effective space-variant Pancharatnam-Berry (PB) phase created by artificially engineering the polarization distribution of the incident light. Unlikely the previously reported PSHE involving the light-matter interaction, the resulting spin-dependent splitting in the geometric PSHE is purely geometrically depend upon the polarization distribution of light whi...

  1. A Geometric Approach to Noncommutative Principal Bundles

    CERN Document Server

    Wagner, Stefan

    2011-01-01

    From a geometrical point of view it is, so far, not sufficiently well understood what should be a "noncommutative principal bundle". Still, there is a well-developed abstract algebraic approach using the theory of Hopf algebras. An important handicap of this approach is the ignorance of topological and geometrical aspects. The aim of this thesis is to develop a geometrically oriented approach to the noncommutative geometry of principal bundles based on dynamical systems and the representation theory of the corresponding transformation group.

  2. Guide to Geometric Algebra in Practice

    CERN Document Server

    Dorst, Leo

    2011-01-01

    This highly practical "Guide to Geometric Algebra in Practice" reviews algebraic techniques for geometrical problems in computer science and engineering, and the relationships between them. The topics covered range from powerful new theoretical developments, to successful applications, and the development of new software and hardware tools. This title: provides hands-on review exercises throughout the book, together with helpful chapter summaries; presents a concise introductory tutorial to conformal geometric algebra (CGA) in the appendices; examines the application of CGA for the d

  3. Keypoint Transfer Segmentation.

    Science.gov (United States)

    Wachinger, C; Toews, M; Langs, G; Wells, W; Golland, P

    2015-01-01

    We present an image segmentation method that transfers label maps of entire organs from the training images to the novel image to be segmented. The transfer is based on sparse correspondences between keypoints that represent automatically identified distinctive image locations. Our segmentation algorithm consists of three steps: (i) keypoint matching, (ii) voting-based keypoint labeling, and (iii) keypoint-based probabilistic transfer of organ label maps. We introduce generative models for the inference of keypoint labels and for image segmentation, where keypoint matches are treated as a latent random variable and are marginalized out as part of the algorithm. We report segmentation results for abdominal organs in whole-body CT and in contrast-enhanced CT images. The accuracy of our method compares favorably to common multi-atlas segmentation while offering a speed-up of about three orders of magnitude. Furthermore, keypoint transfer requires no training phase or registration to an atlas. The algorithm's robustness enables the segmentation of scans with highly variable field-of-view.

  4. Pancreas and cyst segmentation

    Science.gov (United States)

    Dmitriev, Konstantin; Gutenko, Ievgeniia; Nadeem, Saad; Kaufman, Arie

    2016-03-01

    Accurate segmentation of abdominal organs from medical images is an essential part of surgical planning and computer-aided disease diagnosis. Many existing algorithms are specialized for the segmentation of healthy organs. Cystic pancreas segmentation is especially challenging due to its low contrast boundaries, variability in shape, location and the stage of the pancreatic cancer. We present a semi-automatic segmentation algorithm for pancreata with cysts. In contrast to existing automatic segmentation approaches for healthy pancreas segmentation which are amenable to atlas/statistical shape approaches, a pancreas with cysts can have even higher variability with respect to the shape of the pancreas due to the size and shape of the cyst(s). Hence, fine results are better attained with semi-automatic steerable approaches. We use a novel combination of random walker and region growing approaches to delineate the boundaries of the pancreas and cysts with respective best Dice coefficients of 85.1% and 86.7%, and respective best volumetric overlap errors of 26.0% and 23.5%. Results show that the proposed algorithm for pancreas and pancreatic cyst segmentation is accurate and stable.

  5. A novel iris segmentation algorithm based on small eigenvalue analysis

    Science.gov (United States)

    Harish, B. S.; Aruna Kumar, S. V.; Guru, D. S.; Ngo, Minh Ngoc

    2015-12-01

    In this paper, a simple and robust algorithm is proposed for iris segmentation. The proposed method consists of two steps. In first step, iris and pupil is segmented using Robust Spatial Kernel FCM (RSKFCM) algorithm. RSKFCM is based on traditional Fuzzy-c-Means (FCM) algorithm, which incorporates spatial information and uses kernel metric as distance measure. In second step, small eigenvalue transformation is applied to localize iris boundary. The transformation is based on statistical and geometrical properties of the small eigenvalue of the covariance matrix of a set of edge pixels. Extensive experimentations are carried out on standard benchmark iris dataset (viz. CASIA-IrisV4 and UBIRIS.v2). We compared our proposed method with existing iris segmentation methods. Our proposed method has the least time complexity of O(n(i+p)) . The result of the experiments emphasizes that the proposed algorithm outperforms the existing iris segmentation methods.

  6. Skin lesion image segmentation using Delaunay Triangulation for melanoma detection.

    Science.gov (United States)

    Pennisi, Andrea; Bloisi, Domenico D; Nardi, Daniele; Giampetruzzi, Anna Rita; Mondino, Chiara; Facchiano, Antonio

    2016-09-01

    Developing automatic diagnostic tools for the early detection of skin cancer lesions in dermoscopic images can help to reduce melanoma-induced mortality. Image segmentation is a key step in the automated skin lesion diagnosis pipeline. In this paper, a fast and fully-automatic algorithm for skin lesion segmentation in dermoscopic images is presented. Delaunay Triangulation is used to extract a binary mask of the lesion region, without the need of any training stage. A quantitative experimental evaluation has been conducted on a publicly available database, by taking into account six well-known state-of-the-art segmentation methods for comparison. The results of the experimental analysis demonstrate that the proposed approach is highly accurate when dealing with benign lesions, while the segmentation accuracy significantly decreases when melanoma images are processed. This behavior led us to consider geometrical and color features extracted from the binary masks generated by our algorithm for classification, achieving promising results for melanoma detection.

  7. Segmentation of consumer's markets and evaluation of market's segments

    OpenAIRE

    ŠVECOVÁ, Iveta

    2013-01-01

    The goal of this bachelor thesis was to explain a possibly segmentation of consumer´s markets for a chosen company, and to present a suitable goods offer, so it would be suitable to the needs of selected segments. The work is divided into theoretical and practical part. First part describes marketing, segmentation, segmentation of consumer's markets, consumer's market, market's segments a other terms. Second part describes an evaluation of questionnaire survey, discovering of market's segment...

  8. Report on Workshop on Geometric Scattering

    DEFF Research Database (Denmark)

    As part of the activities of MaPhySto a workshop on geometric scattering was organized at University of Aarhus, November 5-7, 1998. The workshop was narrowly focused on geometric scattering, and in particular the use of geometric scattering in understanding the structure of the scattering operator...... for the quantum mechanical many-body problem. A number of other questions were also discussed in detail, including the resonances and various geometric questions. This report includes the program of the workshop, a collection of previews, abstracts, and reports on the lectures, with extensive references....

  9. Higher-Dimensional Geometric $\\sigma$-Models

    CERN Document Server

    Vasilic, M

    1999-01-01

    Geometric $\\sigma$-models have been defined as purely geometric theories of scalar fields coupled to gravity. By construction, these theories possess arbitrarily chosen vacuum solutions. Using this fact, one can build a Kaluza--Klein geometric $\\sigma$-model by specifying the vacuum metric of the form $M^4\\times B^d$. The obtained higher dimensional theory has vanishing cosmological constant but fails to give massless gauge fields after the dimensional reduction. In this paper, a modified geometric $\\sigma$-model is suggested, which solves the above problem.

  10. Adiabatic geometric phases in hydrogenlike atoms

    Science.gov (United States)

    Sjöqvist, Erik; Yi, X. X.; Åberg, Johan

    2005-11-01

    We examine the effect of spin-orbit coupling on geometric phases in hydrogenlike atoms exposed to a slowly varying magnetic field. The marginal geometric phases associated with the orbital angular momentum and the intrinsic spin fulfill a sum rule that explicitly relates them to the corresponding geometric phase of the whole system. The marginal geometric phases in the Zeeman and Paschen-Back limits are analyzed. We point out the existence of nodal points in the marginal phases that may be detected by topological means.

  11. Adiabatic geometric phases in hydrogenlike atoms

    CERN Document Server

    Sjöqvist, E; Sj\\"{o}qvist, Erik

    2005-01-01

    We examine the effect of spin-orbit coupling on geometric phases in hydrogenlike atoms exposed to a slowly varying magnetic field. The marginal geometric phases associated with the orbital angular momentum and the intrinsic spin fulfill a sum rule that explicitly relates them to the corresponding geometric phase of the whole system. The marginal geometric phases in the Zeeman and Paschen-Back limit are analyzed. We point out the existence of nodal points in the marginal phases that may be detected by topological means.

  12. Calibrated Full-Waveform Airborne Laser Scanning for 3D Object Segmentation

    Directory of Open Access Journals (Sweden)

    Fanar M. Abed

    2014-05-01

    Full Text Available Segmentation of urban features is considered a major research challenge in the fields of photogrammetry and remote sensing. However, the dense datasets now readily available through airborne laser scanning (ALS offer increased potential for 3D object segmentation. Such potential is further augmented by the availability of full-waveform (FWF ALS data. FWF ALS has demonstrated enhanced performance in segmentation and classification through the additional physical observables which can be provided alongside standard geometric information. However, use of FWF information is not recommended without prior radiometric calibration, taking into account all parameters affecting the backscatter energy. This paper reports the implementation of a radiometric calibration workflow for FWF ALS data, and demonstrates how the resultant FWF information can be used to improve segmentation of an urban area. The developed segmentation algorithm presents a novel approach which uses the calibrated backscatter cross-section as a weighting function to estimate the segmentation similarity measure. The normal vector and the local Euclidian distance are used as criteria to segment the point clouds through a region growing approach. The paper demonstrates the potential to enhance 3D object segmentation in urban areas by integrating the FWF physical backscattered energy alongside geometric information. The method is demonstrated through application to an interest area sampled from a relatively dense FWF ALS dataset. The results are assessed through comparison to those delivered from utilising only geometric information. Validation against a manual segmentation demonstrates a successful automatic implementation, achieving a segmentation accuracy of 82%, and out-performs a purely geometric approach.

  13. An algorithm of image segmentation for overlapping grain image

    Institute of Scientific and Technical Information of China (English)

    WANG Zhi; JIN Guang; SUN Xiao-wei

    2005-01-01

    Aiming at measurement of granularity size of nonmetal grain, an algorithm of image segmentation and parameter calculation for microscopic overlapping grain image was studied. This algorithm presents some new attributes of graph sequence from discrete attribute of graph,and consequently achieves the geometrical characteristics from input graph, and the new graph sequence in favor of image segmentation is recombined. The conception that image edge denoted with "twin-point" is put forward, base on geometrical characters of point, image edge is transformed into serial edge, and on recombined serial image edge, based on direction vector definition of line and some additional restricted conditions, the segmentation twin-points are searched with, thus image segmentation is accomplished. Serial image edge is transformed into twin-point pattern, to realize calculation of area and granularity size of nonmetal grain. The inkling and uncertainty on selection of structure element which base on mathematical morphology are avoided in this algorithm, and image segmentation and parameter calculation are realized without changing grain's self statistical characters.

  14. Segmentation of antiperspirants and deodorants

    OpenAIRE

    KRÁL, Tomáš

    2009-01-01

    The goal of Master's Thesis on topic Segmentation of antiperspirants and deodorants is to discover differences in consumer's behaviour, determinate and describe segments of consumers based on these differences and propose marketing strategy for the most attractive segments. Theoretical part describes market segmentation in general, process of segmentation and segmentation criteria. Analytic part characterizes Czech market of antiperspirants and deodorants, analyzes ACNielsen market data and d...

  15. a segmentation approach

    African Journals Online (AJOL)

    kirstam

    a visitor survey was conducted at the Cape Town International Jazz ... 13Key words: dining motives, tipping, black diners, market segmentation, South .... and tipping behaviour as well as the findings from cross-cultural tipping and market.

  16. Segmental tuberculosis verrucosa cutis

    Directory of Open Access Journals (Sweden)

    Hanumanthappa H

    1994-01-01

    Full Text Available A case of segmental Tuberculosis Verrucosa Cutis is reported in 10 year old boy. The condition was resembling the ascending lymphangitic type of sporotrichosis. The lesions cleared on treatment with INH 150 mg daily for 6 months.

  17. Automatic cone photoreceptor segmentation using graph theory and dynamic programming.

    Science.gov (United States)

    Chiu, Stephanie J; Lokhnygina, Yuliya; Dubis, Adam M; Dubra, Alfredo; Carroll, Joseph; Izatt, Joseph A; Farsiu, Sina

    2013-06-01

    Geometrical analysis of the photoreceptor mosaic can reveal subclinical ocular pathologies. In this paper, we describe a fully automatic algorithm to identify and segment photoreceptors in adaptive optics ophthalmoscope images of the photoreceptor mosaic. This method is an extension of our previously described closed contour segmentation framework based on graph theory and dynamic programming (GTDP). We validated the performance of the proposed algorithm by comparing it to the state-of-the-art technique on a large data set consisting of over 200,000 cones and posted the results online. We found that the GTDP method achieved a higher detection rate, decreasing the cone miss rate by over a factor of five.

  18. A Unified 3D Mesh Segmentation Framework Based on Markov Random Field

    Directory of Open Access Journals (Sweden)

    Z.F. Shi

    2012-04-01

    Full Text Available 3D Mesh segmentation has become an important research field in computer graphics during the past decades. Many geometry based and semantic oriented approaches for 3D mesh segmentation has been presented. In this paper, we present a definition of mesh segmentation according to labeling problem. Inspired by the Markov Random Field (MRF based image segmentation, we propose a new framework of 3D mesh segmentation based on MRF and use graph cuts to solve it. Any features of 3D mesh can be integrated into the segmentation framework. Experimental results show that the noise and over-segmentation are avoided. It also demonstrates that the proposed scheme has the capability of combining the geometric and topology information of the 3D mesh.

  19. Market segmentation: venezuelan adrs

    OpenAIRE

    Urbi Garay; Maximiliano González

    2012-01-01

    The foreign exchange controls imposed by Venezuela in 2003, constitute a natural experiment that allows researchers to observe the effects of exchange controls on stock market segmentation. This paper provides empirical evidence that, although the Venezuelan capital market as a whole was highly segmented before the controls were imposed, shares in the firm CANTV were, through its American Depositary Receipts (ADRs), partially integrated with the global market. Following the imposition of the ...

  20. Adjacent segment disease.

    Science.gov (United States)

    Virk, Sohrab S; Niedermeier, Steven; Yu, Elizabeth; Khan, Safdar N

    2014-08-01

    EDUCATIONAL OBJECTIVES As a result of reading this article, physicians should be able to: 1. Understand the forces that predispose adjacent cervical segments to degeneration. 2. Understand the challenges of radiographic evaluation in the diagnosis of cervical and lumbar adjacent segment disease. 3. Describe the changes in biomechanical forces applied to adjacent segments of lumbar vertebrae with fusion. 4. Know the risk factors for adjacent segment disease in spinal fusion. Adjacent segment disease (ASD) is a broad term encompassing many complications of spinal fusion, including listhesis, instability, herniated nucleus pulposus, stenosis, hypertrophic facet arthritis, scoliosis, and vertebral compression fracture. The area of the cervical spine where most fusions occur (C3-C7) is adjacent to a highly mobile upper cervical region, and this contributes to the biomechanical stress put on the adjacent cervical segments postfusion. Studies have shown that after fusion surgery, there is increased load on adjacent segments. Definitive treatment of ASD is a topic of continuing research, but in general, treatment choices are dictated by patient age and degree of debilitation. Investigators have also studied the risk factors associated with spinal fusion that may predispose certain patients to ASD postfusion, and these data are invaluable for properly counseling patients considering spinal fusion surgery. Biomechanical studies have confirmed the added stress on adjacent segments in the cervical and lumbar spine. The diagnosis of cervical ASD is complicated given the imprecise correlation of radiographic and clinical findings. Although radiological and clinical diagnoses do not always correlate, radiographs and clinical examination dictate how a patient with prolonged pain is treated. Options for both cervical and lumbar spine ASD include fusion and/or decompression. Current studies are encouraging regarding the adoption of arthroplasty in spinal surgery, but more long

  1. Strategic market segmentation

    Directory of Open Access Journals (Sweden)

    Maričić Branko R.

    2015-01-01

    Full Text Available Strategic planning of marketing activities is the basis of business success in modern business environment. Customers are not homogenous in their preferences and expectations. Formulating an adequate marketing strategy, focused on realization of company's strategic objectives, requires segmented approach to the market that appreciates differences in expectations and preferences of customers. One of significant activities in strategic planning of marketing activities is market segmentation. Strategic planning imposes a need to plan marketing activities according to strategically important segments on the long term basis. At the same time, there is a need to revise and adapt marketing activities on the short term basis. There are number of criteria based on which market segmentation is performed. The paper will consider effectiveness and efficiency of different market segmentation criteria based on empirical research of customer expectations and preferences. The analysis will include traditional criteria and criteria based on behavioral model. The research implications will be analyzed from the perspective of selection of the most adequate market segmentation criteria in strategic planning of marketing activities.

  2. Skin Images Segmentation

    Directory of Open Access Journals (Sweden)

    Ali E. Zaart

    2010-01-01

    Full Text Available Problem statement: Image segmentation is a fundamental step in many applications of image processing. Skin cancer has been the most common of all new cancers detected each year. At early stage detection of skin cancer, simple and economic treatment can cure it mostly. An accurate segmentation of skin images can help the diagnosis to define well the region of the cancer. The principal approach of segmentation is based on thresholding (classification that is lied to the problem of the thresholds estimation. Approach: The objective of this study is to develop a method to segment the skin images based on a mixture of Beta distributions. We assume that the data in skin images can be modeled by a mixture of Beta distributions. We used an unsupervised learning technique with Beta distribution to estimate the statistical parameters of the data in skin image and then estimate the thresholds for segmentation. Results: The proposed method of skin images segmentation was implemented and tested on different skin images. We obtained very good results in comparing with the same techniques with Gamma distribution. Conclusion: The experiment showed that the proposed method obtained very good results but it requires more testing on different types of skin images.

  3. Geometric reasoning about assembly tools

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, R.H.

    1997-01-01

    Planning for assembly requires reasoning about various tools used by humans, robots, or other automation to manipulate, attach, and test parts and subassemblies. This paper presents a general framework to represent and reason about geometric accessibility issues for a wide variety of such assembly tools. Central to the framework is a use volume encoding a minimum space that must be free in an assembly state to apply a given tool, and placement constraints on where that volume must be placed relative to the parts on which the tool acts. Determining whether a tool can be applied in a given assembly state is then reduced to an instance of the FINDPLACE problem. In addition, the author presents more efficient methods to integrate the framework into assembly planning. For tools that are applied either before or after their target parts are mated, one method pre-processes a single tool application for all possible states of assembly of a product in polynomial time, reducing all later state-tool queries to evaluations of a simple expression. For tools applied after their target parts are mated, a complementary method guarantees polynomial-time assembly planning. The author presents a wide variety of tools that can be described adequately using the approach, and surveys tool catalogs to determine coverage of standard tools. Finally, the author describes an implementation of the approach in an assembly planning system and experiments with a library of over one hundred manual and robotic tools and several complex assemblies.

  4. Simulating geometrically complex blast scenarios

    Directory of Open Access Journals (Sweden)

    Ian G. Cullis

    2016-04-01

    Full Text Available The effects of blast waves generated by energetic and non-energetic sources are of continuing interest to the ballistics research community. Modern conflicts are increasingly characterised by asymmetric urban warfare, with improvised explosive devices (IEDs often playing a dominant role on the one hand and an armed forces requirement for minimal collateral effects from their weapons on the other. These problems are characterised by disparate length- and time-scales and may also be governed by complex physics. There is thus an increasing need to be able to rapidly assess and accurately predict the effects of energetic blast in topologically complex scenarios. To this end, this paper presents a new QinetiQ-developed advanced computational package called EAGLE-Blast, which is capable of accurately resolving the generation, propagation and interaction of blast waves around geometrically complex shapes such as vehicles and buildings. After a brief description of the numerical methodology, various blast scenario simulations are described and the results compared with experimental data to demonstrate the validation of the scheme and its ability to describe these complex scenarios accurately and efficiently. The paper concludes with a brief discussion on the use of the code in supporting the development of algorithms for fast running engineering models.

  5. Generalized Geometric Quantum Speed Limits

    Science.gov (United States)

    Pires, Diego Paiva; Cianciaruso, Marco; Céleri, Lucas C.; Adesso, Gerardo; Soares-Pinto, Diogo O.

    2016-04-01

    The attempt to gain a theoretical understanding of the concept of time in quantum mechanics has triggered significant progress towards the search for faster and more efficient quantum technologies. One of such advances consists in the interpretation of the time-energy uncertainty relations as lower bounds for the minimal evolution time between two distinguishable states of a quantum system, also known as quantum speed limits. We investigate how the nonuniqueness of a bona fide measure of distinguishability defined on the quantum-state space affects the quantum speed limits and can be exploited in order to derive improved bounds. Specifically, we establish an infinite family of quantum speed limits valid for unitary and nonunitary evolutions, based on an elegant information geometric formalism. Our work unifies and generalizes existing results on quantum speed limits and provides instances of novel bounds that are tighter than any established one based on the conventional quantum Fisher information. We illustrate our findings with relevant examples, demonstrating the importance of choosing different information metrics for open system dynamics, as well as clarifying the roles of classical populations versus quantum coherences, in the determination and saturation of the speed limits. Our results can find applications in the optimization and control of quantum technologies such as quantum computation and metrology, and might provide new insights in fundamental investigations of quantum thermodynamics.

  6. Simulating geometrically complex blast scenarios

    Institute of Scientific and Technical Information of China (English)

    Ian G. CULLIS; Nikos NIKIFORAKIS; Peter FRANKL; Philip BLAKELY; Paul BENNETT; Paul GREENWOOD

    2016-01-01

    The effects of blast waves generated by energetic and non-energetic sources are of continuing interest to the ballistics research community. Modern conflicts are increasingly characterised by asymmetric urban warfare, with improvised explosive devices (IEDs) often playing a dominant role on the one hand and an armed forces requirement for minimal collateral effects from their weapons on the other. These problems are characterised by disparate length-and time-scales and may also be governed by complex physics. There is thus an increasing need to be able to rapidly assess and accurately predict the effects of energetic blast in topologically complex scenarios. To this end, this paper presents a new QinetiQ-developed advanced computational package called EAGLE-Blast, which is capable of accurately resolving the generation, propagation and interaction of blast waves around geometrically complex shapes such as vehicles and buildings. After a brief description of the numerical methodology, various blast scenario simulations are described and the results compared with experimental data to demonstrate the validation of the scheme and its ability to describe these complex scenarios accurately and efficiently. The paper concludes with a brief discussion on the use of the code in supporting the development of algorithms for fast running engineering models.

  7. Geometric Reasoning for Automated Planning

    Science.gov (United States)

    Clement, Bradley J.; Knight, Russell L.; Broderick, Daniel

    2012-01-01

    An important aspect of mission planning for NASA s operation of the International Space Station is the allocation and management of space for supplies and equipment. The Stowage, Configuration Analysis, and Operations Planning teams collaborate to perform the bulk of that planning. A Geometric Reasoning Engine is developed in a way that can be shared by the teams to optimize item placement in the context of crew planning. The ISS crew spends (at the time of this writing) a third or more of their time moving supplies and equipment around. Better logistical support and optimized packing could make a significant impact on operational efficiency of the ISS. Currently, computational geometry and motion planning do not focus specifically on the optimized orientation and placement of 3D objects based on multiple distance and containment preferences and constraints. The software performs reasoning about the manipulation of 3D solid models in order to maximize an objective function based on distance. It optimizes for 3D orientation and placement. Spatial placement optimization is a general problem and can be applied to object packing or asset relocation.

  8. Generalized Geometric Quantum Speed Limits

    Directory of Open Access Journals (Sweden)

    Diego Paiva Pires

    2016-06-01

    Full Text Available The attempt to gain a theoretical understanding of the concept of time in quantum mechanics has triggered significant progress towards the search for faster and more efficient quantum technologies. One of such advances consists in the interpretation of the time-energy uncertainty relations as lower bounds for the minimal evolution time between two distinguishable states of a quantum system, also known as quantum speed limits. We investigate how the nonuniqueness of a bona fide measure of distinguishability defined on the quantum-state space affects the quantum speed limits and can be exploited in order to derive improved bounds. Specifically, we establish an infinite family of quantum speed limits valid for unitary and nonunitary evolutions, based on an elegant information geometric formalism. Our work unifies and generalizes existing results on quantum speed limits and provides instances of novel bounds that are tighter than any established one based on the conventional quantum Fisher information. We illustrate our findings with relevant examples, demonstrating the importance of choosing different information metrics for open system dynamics, as well as clarifying the roles of classical populations versus quantum coherences, in the determination and saturation of the speed limits. Our results can find applications in the optimization and control of quantum technologies such as quantum computation and metrology, and might provide new insights in fundamental investigations of quantum thermodynamics.

  9. Geometrical aspects of quantum spaces

    Energy Technology Data Exchange (ETDEWEB)

    Ho, P.M. [Lawrence Berkeley Lab., CA (United States). Theoretical Physics Group

    1996-05-11

    Various geometrical aspects of quantum spaces are presented showing the possibility of building physics on quantum spaces. In the first chapter the authors give the motivations for studying noncommutative geometry and also review the definition of a Hopf algebra and some general features of the differential geometry on quantum groups and quantum planes. In Chapter 2 and Chapter 3 the noncommutative version of differential calculus, integration and complex structure are established for the quantum sphere S{sub 1}{sup 2} and the quantum complex projective space CP{sub q}(N), on which there are quantum group symmetries that are represented nonlinearly, and are respected by all the aforementioned structures. The braiding of S{sub q}{sup 2} and CP{sub q}(N) is also described. In Chapter 4 the quantum projective geometry over the quantum projective space CP{sub q}(N) is developed. Collinearity conditions, coplanarity conditions, intersections and anharmonic ratios is described. In Chapter 5 an algebraic formulation of Reimannian geometry on quantum spaces is presented where Riemannian metric, distance, Laplacian, connection, and curvature have their quantum counterparts. This attempt is also extended to complex manifolds. Examples include the quantum sphere, the complex quantum projective space and the two-sheeted space. The quantum group of general coordinate transformations on some quantum spaces is also given.

  10. Geometrical splitting and reduction of Feynman diagrams

    Science.gov (United States)

    Davydychev, Andrei I.

    2016-10-01

    A geometrical approach to the calculation of N-point Feynman diagrams is reviewed. It is shown that the geometrical splitting yields useful connections between Feynman integrals with different momenta and masses. It is demonstrated how these results can be used to reduce the number of variables in the occurring functions.

  11. Parabolas: Connection between Algebraic and Geometrical Representations

    Science.gov (United States)

    Shriki, Atara

    2011-01-01

    A parabola is an interesting curve. What makes it interesting at the secondary school level is the fact that this curve is presented in both its contexts: algebraic and geometric. Being one of Apollonius' conic sections, the parabola is basically a geometric entity. It is, however, typically known for its algebraic characteristics, in particular…

  12. Some technical issues in geometric modeling

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, D.P.

    1983-01-01

    The full impact of CAD/CAM will not be felt until geometric modeling systems support dimensioning and tolerancing, have sophisticated user interfaces, and are capable of routinely handling many representation conversions. The attainment of these capabilities requires a joint effort among users, implementors, and theoreticians of geometric modeling.

  13. Geometric Growing Patterns: What's the Rule?

    Science.gov (United States)

    Hourigan, Mairéad; Leavy, Aisling

    2015-01-01

    While within a geometric repeating pattern, there is an identifiable core which is made up of objects that repeat in a predictable manner, a geometric growing pattern (also called visual or pictorial growing patterns in other curricula) "is a pattern that is made from a sequence of figures [or objects] that change from one term to the next in…

  14. Sudan-decoding generalized geometric Goppa codes

    DEFF Research Database (Denmark)

    Heydtmann, Agnes Eileen

    2003-01-01

    Generalized geometric Goppa codes are vector spaces of n-tuples with entries from different extension fields of a ground field. They are derived from evaluating functions similar to conventional geometric Goppa codes, but allowing evaluation in places of arbitrary degree. A decoding scheme...

  15. A Framework for Analyzing Geometric Pattern Tasks

    Science.gov (United States)

    Friel, Susan N.; Markworth, Kimberly A.

    2009-01-01

    Teachers can use geometric patterns to promote students' understanding of functional relationships. In this article, the authors first look at a problem-solving process that supports the use of figural reasoning to explore and interpret geometric pattern tasks and generalize function rules. Second, the authors discuss a framework for…

  16. On geometric Langlands theory and stacks

    NARCIS (Netherlands)

    Poirier, Cécile Florence Christine

    2008-01-01

    R.Langlands conjectured the existence of a bridge between two parts of number theory. This correspondence, called 'Langlands conjecture' was proved by L. Lafforgue who obtained a Fields medal for his work. G. Laumon gave a geometric translation of a part of the theorem, called 'geometric Langlands c

  17. Geometrical optics and the diffraction phenomenon

    Energy Technology Data Exchange (ETDEWEB)

    Timofeev, Aleksandr V [Russian Research Centre ' Kurchatov Institute' , Moscow (Russian Federation)

    2005-06-30

    This note outlines the principles of the geometrical optics of inhomogeneous waves whose description necessitates the use of complex values of the wave vector. Generalizing geometrical optics to inhomogeneous waves permits including in its scope the analysis of the diffraction phenomenon. (methodological notes)

  18. Variance optimal stopping for geometric Levy processes

    DEFF Research Database (Denmark)

    Gad, Kamille Sofie Tågholt; Pedersen, Jesper Lund

    2015-01-01

    The main result of this paper is the solution to the optimal stopping problem of maximizing the variance of a geometric Lévy process. We call this problem the variance problem. We show that, for some geometric Lévy processes, we achieve higher variances by allowing randomized stopping. Furthermore...

  19. Geometrical description of denormalized thermodynamic manifold

    Institute of Scientific and Technical Information of China (English)

    Wu Li-Ping; Sun Hua-Fei; Cao Li-Mei

    2009-01-01

    In view of differential geometry,the state space of thermodynamic parameters is investigated. Here the geometrical structures of the denormalized thermodynamic manifold are considered. The relation of their geometrical metrics is obtained. Moreover an example is used to illustrate our conclusions.

  20. The geometric semantics of algebraic quantum mechanics.

    Science.gov (United States)

    Cruz Morales, John Alexander; Zilber, Boris

    2015-08-06

    In this paper, we will present an ongoing project that aims to use model theory as a suitable mathematical setting for studying the formalism of quantum mechanics. We argue that this approach provides a geometric semantics for such a formalism by means of establishing a (non-commutative) duality between certain algebraic and geometric objects.

  1. Geometric phases in discrete dynamical systems

    Energy Technology Data Exchange (ETDEWEB)

    Cartwright, Julyan H.E., E-mail: julyan.cartwright@csic.es [Instituto Andaluz de Ciencias de la Tierra, CSIC–Universidad de Granada, E-18100 Armilla, Granada (Spain); Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada, E-18071 Granada (Spain); Piro, Nicolas, E-mail: nicolas.piro@epfl.ch [École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne (Switzerland); Piro, Oreste, E-mail: piro@imedea.uib-csic.es [Departamento de Física, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain); Tuval, Idan, E-mail: ituval@imedea.uib-csic.es [Mediterranean Institute for Advanced Studies, CSIC–Universitat de les Illes Balears, E-07190 Mallorca (Spain)

    2016-10-14

    In order to study the behaviour of discrete dynamical systems under adiabatic cyclic variations of their parameters, we consider discrete versions of adiabatically-rotated rotators. Parallelling the studies in continuous systems, we generalize the concept of geometric phase to discrete dynamics and investigate its presence in these rotators. For the rotated sine circle map, we demonstrate an analytical relationship between the geometric phase and the rotation number of the system. For the discrete version of the rotated rotator considered by Berry, the rotated standard map, we further explore this connection as well as the role of the geometric phase at the onset of chaos. Further into the chaotic regime, we show that the geometric phase is also related to the diffusive behaviour of the dynamical variables and the Lyapunov exponent. - Highlights: • We extend the concept of geometric phase to maps. • For the rotated sine circle map, we demonstrate an analytical relationship between the geometric phase and the rotation number. • For the rotated standard map, we explore the role of the geometric phase at the onset of chaos. • We show that the geometric phase is related to the diffusive behaviour of the dynamical variables and the Lyapunov exponent.

  2. Geometric integrators for stochastic rigid body dynamics

    KAUST Repository

    Tretyakov, Mikhail

    2016-01-05

    Geometric integrators play an important role in simulating dynamical systems on long time intervals with high accuracy. We will illustrate geometric integration ideas within the stochastic context, mostly on examples of stochastic thermostats for rigid body dynamics. The talk will be mainly based on joint recent work with Rusland Davidchak and Tom Ouldridge.

  3. Geometric Control of Patterned Linear Systems

    CERN Document Server

    Hamilton, Sarah C

    2012-01-01

    This monograph is aiming at researchers of systems control, especially those interested in multiagent systems, distributed and decentralized control, and structured systems. The book assumes no prior background in geometric control theory; however, a first year graduate course in linear control systems is desirable.  Since not all control researchers today are exposed to geometric control theory, the book also adopts a tutorial style by way of examples that illustrate the geometric and abstract algebra concepts used in linear geometric control. In addition, the matrix calculations required for the studied control synthesis problems of linear multivariable control are illustrated via a set of running design examples. As such, some of the design examples are of higher dimension than one may typically see in a text; this is so that all the geometric features of the design problem are illuminated.

  4. Rule-based transformations for geometric modelling

    Directory of Open Access Journals (Sweden)

    Thomas Bellet

    2011-02-01

    Full Text Available The context of this paper is the use of formal methods for topology-based geometric modelling. Topology-based geometric modelling deals with objects of various dimensions and shapes. Usually, objects are defined by a graph-based topological data structure and by an embedding that associates each topological element (vertex, edge, face, etc. with relevant data as their geometric shape (position, curve, surface, etc. or application dedicated data (e.g. molecule concentration level in a biological context. We propose to define topology-based geometric objects as labelled graphs. The arc labelling defines the topological structure of the object whose topological consistency is then ensured by labelling constraints. Nodes have as many labels as there are different data kinds in the embedding. Labelling constraints ensure then that the embedding is consistent with the topological structure. Thus, topology-based geometric objects constitute a particular subclass of a category of labelled graphs in which nodes have multiple labels.

  5. Rule-based transformations for geometric modelling

    CERN Document Server

    Bellet, Thomas; Gall, Pascale Le; 10.4204/EPTCS.48.5

    2011-01-01

    The context of this paper is the use of formal methods for topology-based geometric modelling. Topology-based geometric modelling deals with objects of various dimensions and shapes. Usually, objects are defined by a graph-based topological data structure and by an embedding that associates each topological element (vertex, edge, face, etc.) with relevant data as their geometric shape (position, curve, surface, etc.) or application dedicated data (e.g. molecule concentration level in a biological context). We propose to define topology-based geometric objects as labelled graphs. The arc labelling defines the topological structure of the object whose topological consistency is then ensured by labelling constraints. Nodes have as many labels as there are different data kinds in the embedding. Labelling constraints ensure then that the embedding is consistent with the topological structure. Thus, topology-based geometric objects constitute a particular subclass of a category of labelled graphs in which nodes hav...

  6. Efficient terrestrial laser scan segmentation exploiting data structure

    Science.gov (United States)

    Mahmoudabadi, Hamid; Olsen, Michael J.; Todorovic, Sinisa

    2016-09-01

    New technologies such as lidar enable the rapid collection of massive datasets to model a 3D scene as a point cloud. However, while hardware technology continues to advance, processing 3D point clouds into informative models remains complex and time consuming. A common approach to increase processing efficiently is to segment the point cloud into smaller sections. This paper proposes a novel approach for point cloud segmentation using computer vision algorithms to analyze panoramic representations of individual laser scans. These panoramas can be quickly created using an inherent neighborhood structure that is established during the scanning process, which scans at fixed angular increments in a cylindrical or spherical coordinate system. In the proposed approach, a selected image segmentation algorithm is applied on several input layers exploiting this angular structure including laser intensity, range, normal vectors, and color information. These segments are then mapped back to the 3D point cloud so that modeling can be completed more efficiently. This approach does not depend on pre-defined mathematical models and consequently setting parameters for them. Unlike common geometrical point cloud segmentation methods, the proposed method employs the colorimetric and intensity data as another source of information. The proposed algorithm is demonstrated on several datasets encompassing variety of scenes and objects. Results show a very high perceptual (visual) level of segmentation and thereby the feasibility of the proposed algorithm. The proposed method is also more efficient compared to Random Sample Consensus (RANSAC), which is a common approach for point cloud segmentation.

  7. Comparison of male and female lower limb segment inertial properties.

    Science.gov (United States)

    Challis, John H; Winter, Samantha L; Kuperavage, Adam J

    2012-10-11

    Many studies have examined human segmental inertial parameters, but these studies have focused more on male rather than female data. The purpose of this study was to determine the lower limb segmental inertial parameters for a large sample (n>1500) of both males and females. The participants in this study were those measured as part of a survey of the anthropometry of US army personnel. The sample comprised 1774 males (mean height 1.756±0.079 m, mean mass of 78.49±0.11 kg, and mean age of 27.21±6.81 years), and 2208 females (mean height 1.629±0.072 m, mean mass of 62.01±0.08 kg, and mean age of 26.18±5.70 years). Anthropometric measurements were used to determine the inertial properties of the lower limb segments by modeling them as series of geometric solids. An analysis of variance revealed that the normalized inertial parameters for each of the segments were statistically significantly different (p>0.001) between the two groups. The time for each segment to swing through the range of motion of the swing phase of gait, produced shorter swing times for the male segments. The differences between the segmental inertial properties for the sexes have implications for how these parameters are customized to experimental subjects.

  8. Rediscovering market segmentation.

    Science.gov (United States)

    Yankelovich, Daniel; Meer, David

    2006-02-01

    In 1964, Daniel Yankelovich introduced in the pages of HBR the concept of nondemographic segmentation, by which he meant the classification of consumers according to criteria other than age, residence, income, and such. The predictive power of marketing studies based on demographics was no longer strong enough to serve as a basis for marketing strategy, he argued. Buying patterns had become far better guides to consumers' future purchases. In addition, properly constructed nondemographic segmentations could help companies determine which products to develop, which distribution channels to sell them in, how much to charge for them, and how to advertise them. But more than 40 years later, nondemographic segmentation has become just as unenlightening as demographic segmentation had been. Today, the technique is used almost exclusively to fulfill the needs of advertising, which it serves mainly by populating commercials with characters that viewers can identify with. It is true that psychographic types like "High-Tech Harry" and "Joe Six-Pack" may capture some truth about real people's lifestyles, attitudes, self-image, and aspirations. But they are no better than demographics at predicting purchase behavior. Thus they give corporate decision makers very little idea of how to keep customers or capture new ones. Now, Daniel Yankelovich returns to these pages, with consultant David Meer, to argue the case for a broad view of nondemographic segmentation. They describe the elements of a smart segmentation strategy, explaining how segmentations meant to strengthen brand identity differ from those capable of telling a company which markets it should enter and what goods to make. And they introduce their "gravity of decision spectrum", a tool that focuses on the form of consumer behavior that should be of the greatest interest to marketers--the importance that consumers place on a product or product category.

  9. Segmentation of Color Images Based on Different Segmentation Techniques

    Directory of Open Access Journals (Sweden)

    Purnashti Bhosale

    2013-03-01

    Full Text Available In this paper, we propose an Color image segmentation algorithm based on different segmentation techniques. We recognize the background objects such as the sky, ground, and trees etc based on the color and texture information using various methods of segmentation. The study of segmentation techniques by using different threshold methods such as global and local techniques and they are compared with one another so as to choose the best technique for threshold segmentation. Further segmentation is done by using clustering method and Graph cut method to improve the results of segmentation.

  10. Mobility in geometrically confined membranes.

    Science.gov (United States)

    Domanov, Yegor A; Aimon, Sophie; Toombes, Gilman E S; Renner, Marianne; Quemeneur, François; Triller, Antoine; Turner, Matthew S; Bassereau, Patricia

    2011-08-02

    Lipid and protein lateral mobility is essential for biological function. Our theoretical understanding of this mobility can be traced to the seminal work of Saffman and Delbrück, who predicted a logarithmic dependence of the protein diffusion coefficient (i) on the inverse of the size of the protein and (ii) on the "membrane size" for membranes of finite size [Saffman P, Delbrück M (1975) Proc Natl Acad Sci USA 72:3111-3113]. Although the experimental proof of the first prediction is a matter of debate, the second has not previously been thought to be experimentally accessible. Here, we construct just such a geometrically confined membrane by forming lipid bilayer nanotubes of controlled radii connected to giant liposomes. We followed the diffusion of individual molecules in the tubular membrane using single particle tracking of quantum dots coupled to lipids or voltage-gated potassium channels KvAP, while changing the membrane tube radius from approximately 250 to 10 nm. We found that both lipid and protein diffusion was slower in tubular membranes with smaller radii. The protein diffusion coefficient decreased as much as 5-fold compared to diffusion on the effectively flat membrane of the giant liposomes. Both lipid and protein diffusion data are consistent with the predictions of a hydrodynamic theory that extends the work of Saffman and Delbrück to cylindrical geometries. This study therefore provides strong experimental support for the ubiquitous Saffman-Delbrück theory and elucidates the role of membrane geometry and size in regulating lateral diffusion.

  11. Geometric characterization of polymeric macrofibers

    Directory of Open Access Journals (Sweden)

    A. R. E. Cáceres

    Full Text Available ABSTRACTThe geometric characteristics of synthetic macrofibers are important because they affect the behavior of fiber-reinforced concrete (FRC. Because there is a lack of specific, relevant publications in Brazil, the European standard EN14889-2:2006 was adopted as a reference to perform the characterization. Thus, an experimental plan was developed to assess the adequacy of testing procedures for the qualification of synthetic macrofibers for use in FRC. Two types of macrofibers were evaluated. The length measurement was performed using two methods: the caliper method, which is a manual measurement, and the digital image analysis method using the ImageJ software for image processing. These aforementioned methods were used to determine the diameter together with the density method, which is an indirect method that uses the developed length obtained by one of the previous methods. The statistical analyses revealed that the length results are similar regardless of the method used. However, the macrofibers must be pre-stretched to maximize the accuracy of caliper measurements. The caliper method for diameter determination has the disadvantage of underestimating the macrofiber cross-section because of the pressure applied by the load claws. In contrast, the digital image analysis method obtains the projected diameter in a single plane, which overestimate the diameter because the macrofibers are oriented with the pressure of the scanner cover. Thus, these techniques may result in false projections of the diameters that will depend on the level of torsion in the macrofibers. It was concluded that both the caliper method using previously stretched macrofibers and the digital imaging method can be used to measure length. The density method presented the best results for the diameter determination because these results were not affected by the method chosen to determine the length.

  12. Heat Equation to 3D Image Segmentation

    Directory of Open Access Journals (Sweden)

    Nikolay Sirakov

    2006-04-01

    Full Text Available This paper presents a new approach, capable of 3D image segmentation and objects' surface reconstruction. The main advantages of the method are: large capture range; quick segmentation of a 3D scene/image to regions; multiple 3D objects reconstruction. The method uses centripetal force and penalty function to segment the entire 3D scene/image to regions containing a single 3D object. Each region is inscribed in a convex, smooth closed surface, which defines a centripetal force. Then the surface is evolved by the geometric heat differential equation toward the force's direction. The penalty function is defined to stop evolvement of those surface patches, whose normal vectors encountered object's surface. On the base of the theoretical model Forward Difference Algorithm was developed and coded by Mathematica. Stability convergence condition, truncation error and calculation complexity of the algorithm are determined. The obtained results, advantages and disadvantages of the method are discussed at the end of this paper.

  13. Segmented conjugated polymers

    Indian Academy of Sciences (India)

    G Padmanaban; S Ramakrishnan

    2003-08-01

    Segmented conjugated polymers, wherein the conjugation is randomly truncated by varying lengths of non-conjugated segments, form an interesting class of polymers as they not only represent systems of varying stiffness, but also ones where the backbone can be construed as being made up of chromophores of varying excitation energies. The latter feature, especially when the chromophores are fluorescent, like in MEHPPV, makes these systems particularly interesting from the photophysics point of view. Segmented MEHPPV- samples, where x represents the mole fraction of conjugated segments, were prepared by a novel approach that utilizes a suitable precursor wherein selective elimination of one of the two eliminatable groups is affected; the uneliminated units serve as conjugation truncations. Control of the composition x of the precursor therefore permits one to prepare segmented MEHPPV- samples with varying levels of conjugation (elimination). Using fluorescence spectroscopy, we have seen that even in single isolated polymer chains, energy migration from the shorter (higher energy) chromophores to longer (lower energy) ones occurs – the extent of which depends on the level of conjugation. Further, by varying the solvent composition, it is seen that the extent of energy transfer and the formation of poorly emissive inter-chromophore excitons are greatly enhanced with increasing amounts of non-solvent. A typical S-shaped curve represents the variation of emission yields as a function of composition suggestive of a cooperative collapse of the polymer coil, reminiscent of conformational transitions seen in biological macromolecules.

  14. Scorpion image segmentation system

    Science.gov (United States)

    Joseph, E.; Aibinu, A. M.; Sadiq, B. A.; Bello Salau, H.; Salami, M. J. E.

    2013-12-01

    Death as a result of scorpion sting has been a major public health problem in developing countries. Despite the high rate of death as a result of scorpion sting, little report exists in literature of intelligent device and system for automatic detection of scorpion. This paper proposed a digital image processing approach based on the floresencing characteristics of Scorpion under Ultra-violet (UV) light for automatic detection and identification of scorpion. The acquired UV-based images undergo pre-processing to equalize uneven illumination and colour space channel separation. The extracted channels are then segmented into two non-overlapping classes. It has been observed that simple thresholding of the green channel of the acquired RGB UV-based image is sufficient for segmenting Scorpion from other background components in the acquired image. Two approaches to image segmentation have also been proposed in this work, namely, the simple average segmentation technique and K-means image segmentation. The proposed algorithm has been tested on over 40 UV scorpion images obtained from different part of the world and results obtained show an average accuracy of 97.7% in correctly classifying the pixel into two non-overlapping clusters. The proposed 1system will eliminate the problem associated with some of the existing manual approaches presently in use for scorpion detection.

  15. Segmented heterochromia in scalp hair.

    Science.gov (United States)

    Yoon, Kyeong Han; Kim, Daehwan; Sohn, Seonghyang; Lee, Won Soo

    2003-12-01

    Segmented heterochromia of scalp hair is characterized by the irregularly alternating segmentation of hair into dark and light bands and is known to be associated with iron deficiency anemia. The authors report the case of an 11-year-old boy with segmented heterochromia associated with iron deficiency anemia. After 11 months of iron replacement, the boy's segmented heterochromic hair recovered completely.

  16. Mechanics of tunable helices and geometric frustration in biomimetic seashells

    Science.gov (United States)

    Guo, Qiaohang; Chen, Zi; Li, Wei; Dai, Pinqiang; Ren, Kun; Lin, Junjie; Taber, Larry A.; Chen, Wenzhe

    2014-03-01

    Helical structures are ubiquitous in nature and engineering, ranging from DNA molecules to plant tendrils, from sea snail shells to nanoribbons. While the helical shapes in natural and engineered systems often exhibit nearly uniform radius and pitch, helical shell structures with changing radius and pitch, such as seashells and some plant tendrils, add to the variety of this family of aesthetic beauty. Here we develop a comprehensive theoretical framework for tunable helical morphologies, and report the first biomimetic seashell-like structure resulting from mechanics of geometric frustration. In previous studies, the total potential energy is everywhere minimized when the system achieves equilibrium. In this work, however, the local energy minimization cannot be realized because of the geometric incompatibility, and hence the whole system deforms into a shape with a global energy minimum whereby the energy in each segment may not necessarily be locally optimized. This novel approach can be applied to develop materials and devices of tunable geometries with a range of applications in nano/biotechnology.

  17. On geometric factors for neutral particle analyzers.

    Science.gov (United States)

    Stagner, L; Heidbrink, W W

    2014-11-01

    Neutral particle analyzers (NPA) detect neutralized energetic particles that escape from plasmas. Geometric factors relate the counting rate of the detectors to the intensity of the particle source. Accurate geometric factors enable quick simulation of geometric effects without the need to resort to slower Monte Carlo methods. Previously derived expressions [G. R. Thomas and D. M. Willis, "Analytical derivation of the geometric factor of a particle detector having circular or rectangular geometry," J. Phys. E: Sci. Instrum. 5(3), 260 (1972); J. D. Sullivan, "Geometric factor and directional response of single and multi-element particle telescopes," Nucl. Instrum. Methods 95(1), 5-11 (1971)] for the geometric factor implicitly assume that the particle source is very far away from the detector (far-field); this excludes applications close to the detector (near-field). The far-field assumption does not hold in most fusion applications of NPA detectors. We derive, from probability theory, a generalized framework for deriving geometric factors that are valid for both near and far-field applications as well as for non-isotropic sources and nonlinear particle trajectories.

  18. Conceptual aspects of geometric quantum computation

    Science.gov (United States)

    Sjöqvist, Erik; Azimi Mousolou, Vahid; Canali, Carlo M.

    2016-10-01

    Geometric quantum computation is the idea that geometric phases can be used to implement quantum gates, i.e., the basic elements of the Boolean network that forms a quantum computer. Although originally thought to be limited to adiabatic evolution, controlled by slowly changing parameters, this form of quantum computation can as well be realized at high speed by using nonadiabatic schemes. Recent advances in quantum gate technology have allowed for experimental demonstrations of different types of geometric gates in adiabatic and nonadiabatic evolution. Here, we address some conceptual issues that arise in the realizations of geometric gates. We examine the appearance of dynamical phases in quantum evolution and point out that not all dynamical phases need to be compensated for in geometric quantum computation. We delineate the relation between Abelian and non-Abelian geometric gates and find an explicit physical example where the two types of gates coincide. We identify differences and similarities between adiabatic and nonadiabatic realizations of quantum computation based on non-Abelian geometric phases.

  19. Optimally segmented magnetic structures

    DEFF Research Database (Denmark)

    Insinga, Andrea Roberto; Bahl, Christian; Bjørk, Rasmus;

    ], or are applicable only to analytically solvable geometries[4]. In addition, some questions remained fundamentally unanswered, such as how to segment a given design into N uniformly magnetized pieces.Our method calculates the globally optimal shape and magnetization direction of each segment inside a certain......We present a semi-analytical algorithm for magnet design problems, which calculates the optimal way to subdivide a given design region into uniformly magnetized segments.The availability of powerful rare-earth magnetic materials such as Nd-Fe-B has broadened the range of applications of permanent...... designarea with an optional constraint on the total amount of magnetic material. The method can be applied to any objective functional which is linear respect to the field, and with any combination of linear materials. Being based on an analytical-optimization approach, the algorithm is not computationally...

  20. Segmentation of complex document

    Directory of Open Access Journals (Sweden)

    Souad Oudjemia

    2014-06-01

    Full Text Available In this paper we present a method for segmentation of documents image with complex structure. This technique based on GLCM (Grey Level Co-occurrence Matrix used to segment this type of document in three regions namely, 'graphics', 'background' and 'text'. Very briefly, this method is to divide the document image, in block size chosen after a series of tests and then applying the co-occurrence matrix to each block in order to extract five textural parameters which are energy, entropy, the sum entropy, difference entropy and standard deviation. These parameters are then used to classify the image into three regions using the k-means algorithm; the last step of segmentation is obtained by grouping connected pixels. Two performance measurements are performed for both graphics and text zones; we have obtained a classification rate of 98.3% and a Misclassification rate of 1.79%.

  1. Microscopic Halftone Image Segmentation

    Institute of Scientific and Technical Information of China (English)

    WANG Yong-gang; YANG Jie; DING Yong-sheng

    2004-01-01

    Microscopic halftone image recognition and analysis can provide quantitative evidence for printing quality control and fault diagnosis of printing devices, while halftone image segmentation is one of the significant steps during the procedure. Automatic segmentation on microscopic dots by the aid of the Fuzzy C-Means (FCM) method that takes account of the fuzziness of halftone image and utilizes its color information adequately is realized. Then some examples show the technique effective and simple with better performance of noise immunity than some usual methods. In addition, the segmentation results obtained by the FCM in different color spaces are compared, which indicates that the method using the FCM in the f1f2f3 color space is superior to the rest.

  2. The Geometric Field at a Josephson Junction

    CERN Document Server

    Atanasov, Victor

    2016-01-01

    A geometric potential from the kinetic term of a constrained to a curved hyper-plane of space-time quantum superconducting condensate is derived. An energy conservation relation involving the geometric field at every material point in the superconductor is demonstrated. At a Josephson junction the energy conservation relation implies the possibility to transform electric energy into geometric field energy, that is curvature of space-time. Experimental procedures to verify that the Josephson junction can act as a voltage-to-curvature converter are discussed.

  3. A physics perspective on geometric Langlands duality

    CERN Document Server

    Schlesinger, Karl-Georg

    2009-01-01

    We review the approach to the geometric Langlands program for algebraic curves via S-duality of an N=4 supersymmetric four dimensional gauge theory, initiated by Kapustin and Witten in 2006. We sketch some of the central further developments. Placing this four dimensional gauge theory into a six dimensional framework, as advocated by Witten, holds the promise to lead to a formulation which makes geometric Langlands duality a manifest symmetry (like coavariance in differential geometry). Furthermore, it leads to an approach toward geometric Langlands duality for algebraic surfaces, reproducing and extending the recent results of Braverman and Finkelberg.

  4. A Geometric Characterization of Arithmetic Varieties

    Indian Academy of Sciences (India)

    Kapil Hari Paranjape

    2002-08-01

    A result of Belyi can be stated as follows. Every curve defined over a number field can be expressed as a cover of the projective line with branch locus contained in a rigid divisor. We define the notion of geometrically rigid divisors in surfaces and then show that every surface defined over a number field can be expressed as a cover of the projective plane with branch locus contained in a geometrically rigid divisor in the plane. The main result is the characterization of arithmetically defined divisors in the plane as geometrically rigid divisors in the plane.

  5. GPS Control Segment Improvements

    Science.gov (United States)

    2015-04-29

    Systems Center GPS Control Segment Improvements Mr. Tim McIntyre GPS Product Support Manager GPS Ops Support and Sustainment Division Peterson...DATE 29 APR 2015 2. REPORT TYPE 3. DATES COVERED 00-00-2015 to 00-00-2015 4. TITLE AND SUBTITLE GPS Control Segment Improvements 5a. CONTRACT...ORGANIZATION NAME(S) AND ADDRESS(ES) Air Force Space Command,Space and Missile Systems Center, GPS Ops Support and Sustainment Division,Peterson AFB,CO,80916 8

  6. Statistical Images Segmentation

    Directory of Open Access Journals (Sweden)

    Corina Curilă

    2008-05-01

    Full Text Available This paper deals with fuzzy statistical imagesegmentation. We introduce a new hierarchicalMarkovian fuzzy hidden field model, which extends to thefuzzy case the classical Pérez and Heitz hard model. Twofuzzy statistical segmentation methods related with themodel proposed are defined in this paper and we show viasimulations that they are competitive with, in some casesthan, the classical Maximum Posterior Mode (MPMbased methods. Furthermore, they are faster, which willshould facilitate extensions to more than two hard classesin future work. In addition, the model proposed isapplicable to the multiscale segmentation andmultiresolution images fusion problems.

  7. A method for the evaluation of thousands of automated 3D stem cell segmentations.

    Science.gov (United States)

    Bajcsy, P; Simon, M; Florczyk, S J; Simon, C G; Juba, D; Brady, M C

    2015-12-01

    There is no segmentation method that performs perfectly with any dataset in comparison to human segmentation. Evaluation procedures for segmentation algorithms become critical for their selection. The problems associated with segmentation performance evaluations and visual verification of segmentation results are exaggerated when dealing with thousands of three-dimensional (3D) image volumes because of the amount of computation and manual inputs needed. We address the problem of evaluating 3D segmentation performance when segmentation is applied to thousands of confocal microscopy images (z-stacks). Our approach is to incorporate experimental imaging and geometrical criteria, and map them into computationally efficient segmentation algorithms that can be applied to a very large number of z-stacks. This is an alternative approach to considering existing segmentation methods and evaluating most state-of-the-art algorithms. We designed a methodology for 3D segmentation performance characterization that consists of design, evaluation and verification steps. The characterization integrates manual inputs from projected surrogate 'ground truth' of statistically representative samples and from visual inspection into the evaluation. The novelty of the methodology lies in (1) designing candidate segmentation algorithms by mapping imaging and geometrical criteria into algorithmic steps, and constructing plausible segmentation algorithms with respect to the order of algorithmic steps and their parameters, (2) evaluating segmentation accuracy using samples drawn from probability distribution estimates of candidate segmentations and (3) minimizing human labour needed to create surrogate 'truth' by approximating z-stack segmentations with 2D contours from three orthogonal z-stack projections and by developing visual verification tools. We demonstrate the methodology by applying it to a dataset of 1253 mesenchymal stem cells. The cells reside on 10 different types of biomaterial

  8. An Image Matching Algorithm Integrating Global SRTM and Image Segmentation for Multi-Source Satellite Imagery

    Directory of Open Access Journals (Sweden)

    Xiao Ling

    2016-08-01

    Full Text Available This paper presents a novel image matching method for multi-source satellite images, which integrates global Shuttle Radar Topography Mission (SRTM data and image segmentation to achieve robust and numerous correspondences. This method first generates the epipolar lines as a geometric constraint assisted by global SRTM data, after which the seed points are selected and matched. To produce more reliable matching results, a region segmentation-based matching propagation is proposed in this paper, whereby the region segmentations are extracted by image segmentation and are considered to be a spatial constraint. Moreover, a similarity measure integrating Distance, Angle and Normalized Cross-Correlation (DANCC, which considers geometric similarity and radiometric similarity, is introduced to find the optimal correspondences. Experiments using typical satellite images acquired from Resources Satellite-3 (ZY-3, Mapping Satellite-1, SPOT-5 and Google Earth demonstrated that the proposed method is able to produce reliable and accurate matching results.

  9. Geodesic active fields--a geometric framework for image registration.

    Science.gov (United States)

    Zosso, Dominique; Bresson, Xavier; Thiran, Jean-Philippe

    2011-05-01

    In this paper we present a novel geometric framework called geodesic active fields for general image registration. In image registration, one looks for the underlying deformation field that best maps one image onto another. This is a classic ill-posed inverse problem, which is usually solved by adding a regularization term. Here, we propose a multiplicative coupling between the registration term and the regularization term, which turns out to be equivalent to embed the deformation field in a weighted minimal surface problem. Then, the deformation field is driven by a minimization flow toward a harmonic map corresponding to the solution of the registration problem. This proposed approach for registration shares close similarities with the well-known geodesic active contours model in image segmentation, where the segmentation term (the edge detector function) is coupled with the regularization term (the length functional) via multiplication as well. As a matter of fact, our proposed geometric model is actually the exact mathematical generalization to vector fields of the weighted length problem for curves and surfaces introduced by Caselles-Kimmel-Sapiro. The energy of the deformation field is measured with the Polyakov energy weighted by a suitable image distance, borrowed from standard registration models. We investigate three different weighting functions, the squared error and the approximated absolute error for monomodal images, and the local joint entropy for multimodal images. As compared to specialized state-of-the-art methods tailored for specific applications, our geometric framework involves important contributions. Firstly, our general formulation for registration works on any parametrizable, smooth and differentiable surface, including nonflat and multiscale images. In the latter case, multiscale images are registered at all scales simultaneously, and the relations between space and scale are intrinsically being accounted for. Second, this method is, to

  10. Transition curves for highway geometric design

    CERN Document Server

    Kobryń, Andrzej

    2017-01-01

    This book provides concise descriptions of the various solutions of transition curves, which can be used in geometric design of roads and highways. It presents mathematical methods and curvature functions for defining transition curves. .

  11. Exotic geometric structures on Kodaira surfaces

    CERN Document Server

    McKay, Benjamin

    2012-01-01

    On all compact complex surfaces (modulo finite unramified coverings), we classify all of the locally homogeneous geometric structures which are locally isomorphic to the exotic homogeneous surfaces of Lie.

  12. Geometric Photonic Spin Hall Effect with Metapolarization

    CERN Document Server

    Ling, Xiaohui; Yi, Xunong; Luo, Hailu; Wen, Shuangchun

    2014-01-01

    We develop a geometric photonic spin Hall effect (PSHE) which manifests as spin-dependent shift in momentum space. It originates from an effective space-variant Pancharatnam-Berry (PB) phase created by artificially engineering the polarization distribution of the incident light. Unlikely the previously reported PSHE involving the light-matter interaction, the resulting spin-dependent splitting in the geometric PSHE is purely geometrically depend upon the polarization distribution of light which can be tailored by assembling its circular polarization basis with suitably magnitude and phase. This metapolarization idea enables us to manipulate the geometric PSHE by suitably tailoring the polarization geometry of light. Our scheme provides great flexibility in the design of various polarization geometry and polarization-dependent application, and can be extrapolated to other physical system, such as electron beam or atom beam, with the similar spin-orbit coupling underlying.

  13. 5th Dagstuhl Seminar on Geometric Modelling

    CERN Document Server

    Brunnett, Guido; Farin, Gerald; Goldman, Ron

    2004-01-01

    In 19 articles presented by leading experts in the field of geometric modelling the state-of-the-art on representing, modeling, and analyzing curves, surfaces as well as other 3-dimensional geometry is given. The range of applications include CAD/CAM-systems, computer graphics, scientific visualization, virtual reality, simulation and medical imaging. The content of this book is based on selected lectures given at a workshop held at IBFI Schloss Dagstuhl, Germany. Topics treated are: – curve and surface modelling – non-manifold modelling in CAD – multiresolution analysis of complex geometric models – surface reconstruction – variational design – computational geometry of curves and surfaces – 3D meshing – geometric modelling for scientific visualization – geometric models for biomedical applications

  14. Hidden geometric correlations in real multiplex networks

    Science.gov (United States)

    Kleineberg, Kaj-Kolja; Boguñá, Marián; Ángeles Serrano, M.; Papadopoulos, Fragkiskos

    2016-11-01

    Real networks often form interacting parts of larger and more complex systems. Examples can be found in different domains, ranging from the Internet to structural and functional brain networks. Here, we show that these multiplex systems are not random combinations of single network layers. Instead, they are organized in specific ways dictated by hidden geometric correlations between the layers. We find that these correlations are significant in different real multiplexes, and form a key framework for answering many important questions. Specifically, we show that these geometric correlations facilitate the definition and detection of multidimensional communities, which are sets of nodes that are simultaneously similar in multiple layers. They also enable accurate trans-layer link prediction, meaning that connections in one layer can be predicted by observing the hidden geometric space of another layer. And they allow efficient targeted navigation in the multilayer system using only local knowledge, outperforming navigation in the single layers only if the geometric correlations are sufficiently strong.

  15. Study on the Grey Polynomial Geometric Programming

    Institute of Scientific and Technical Information of China (English)

    LUODang

    2005-01-01

    In the model of geometric programming, values of parameters cannot be gotten owing to data fluctuation and incompletion. But reasonable bounds of these parameters can be attained. This is to say, parameters of this model can be regarded as interval grey numbers. When the model contains grey numbers, it is hard for common programming method to solve them. By combining the common programming model with the grey system theory,and using some analysis strategies, a model of grey polynomial geometric programming, a model of 8 positioned geometric programming and their quasi-optimum solution or optimum solution are put forward. At the same time, we also developed an algorithm for the problem.This approach brings a new way for the application research of geometric programming. An example at the end of this paper shows the rationality and feasibility of the algorithm.

  16. A geometric approach to acyclic orientations

    CERN Document Server

    Ehrenborg, Richard

    2009-01-01

    The set of acyclic orientations of a connected graph with a given sink has a natural poset structure. We give a geometric proof of a result of Jim Propp: this poset is the disjoint union of distributive lattices.

  17. Concepts and Figures in Geometric Reasoning.

    Science.gov (United States)

    Fischbein, Efraim; Nachlieli, Talli

    1998-01-01

    Opens with the theoretical construct of figural concepts. Argues that geometrical figures are characterized by both conceptual and sensorial properties. Investigates the effects of interaction between conceptual and figural components. Contains 19 references. (DDR)

  18. Geometric continuum mechanics and induced beam theories

    CERN Document Server

    R Eugster, Simon

    2015-01-01

    This research monograph discusses novel approaches to geometric continuum mechanics and introduces beams as constraint continuous bodies. In the coordinate free and metric independent geometric formulation of continuum mechanics as well as for beam theories, the principle of virtual work serves as the fundamental principle of mechanics. Based on the perception of analytical mechanics that forces of a mechanical system are defined as dual quantities to the kinematical description, the virtual work approach is a systematic way to treat arbitrary mechanical systems. Whereas this methodology is very convenient to formulate induced beam theories, it is essential in geometric continuum mechanics when the assumptions on the physical space are relaxed and the space is modeled as a smooth manifold. The book addresses researcher and graduate students in engineering and mathematics interested in recent developments of a geometric formulation of continuum mechanics and a hierarchical development of induced beam theories.

  19. Sipunculans and segmentation

    DEFF Research Database (Denmark)

    Wanninger, Andreas; Kristof, Alen; Brinkmann, Nora

    2009-01-01

    Comparative molecular, developmental and morphogenetic analyses show that the three major segmented animal groups- Lophotrochozoa, Ecdysozoa and Vertebrata-use a wide range of ontogenetic pathways to establish metameric body organization. Even in the life history of a single specimen, different m...

  20. [Segmental testicular infarction].

    Science.gov (United States)

    Ripa Saldías, L; Guarch Troyas, R; Hualde Alfaro, A; de Pablo Cárdenas, A; Ruiz Ramo, M; Pinós Paul, M

    2006-02-01

    We report the case of a 47 years old man previously diagnosed of left hidrocele. After having a recent mild left testicular pain, an ultrasonografic study revealed a solid hipoecoic testicular lesion rounded by a big hidrocele, suggesting a testicular neoplasm. Radical inguinal orchiectomy was made and pathologic study showed segmental testicular infarction. No malignancy was found. We review the literature of the topic.

  1. Dictionary Based Image Segmentation

    DEFF Research Database (Denmark)

    Dahl, Anders Bjorholm; Dahl, Vedrana Andersen

    2015-01-01

    We propose a method for weakly supervised segmentation of natural images, which may contain both textured or non-textured regions. Our texture representation is based on a dictionary of image patches. To divide an image into separated regions with similar texture we use an implicit level sets...

  2. Geometric Modelling by Recursively Cutting Vertices

    Institute of Scientific and Technical Information of China (English)

    吕伟; 梁友栋; 等

    1989-01-01

    In this paper,a new method for curve and surface modelling is introduced which generates curves and surfaces by recursively cutting and grinding polygons and polyhedra.It is a generalization of the existing corner-cutting methods.A lot of properties,such as geometric continuity,representation,shape-preserving,and the algorithm are studied which show that such curves and surfaces are suitable for geometric designs in CAD,computer graphics and their application fields.

  3. Mechanisms of geometrical seismic attenuation

    Directory of Open Access Journals (Sweden)

    Igor B. Morozov

    2011-07-01

    Full Text Available In several recent reports, we have explained the frequency dependence of the apparent seismic quality-factor (Q observed in many studies according to the effects of geometrical attenuation, which was defined as the zero-frequency limit of the temporal attenuation coefficient. In particular, geometrical attenuation was found to be positive for most waves traveling within the lithosphere. Here, we present three theoretical models that illustrate the origin of this geometrical attenuation, and we investigate the causes of its preferential positive values. In addition, we discuss the physical basis and limitations of both the conventional and new attenuation models. For waves in media with slowly varying properties, geometrical attenuation is caused by variations in the wavefront curvature, which can be both positive (for defocusing and negative (for focusing. In media with velocity/density contrasts, incoherent reflectivity leads to geometrical-attenuation coefficients which are proportional to the mean squared reflectivity and are always positive. For «coherent» reflectivity, the geometrical attenuation is approximately zero, and the attenuation process can be described according to the concept of «scattering Q». However, the true meaning of this parameter is in describing the mean reflectivity within the medium, and not that of the traditional resonator quality factor known in mechanics. The general conclusion from these models is that non-zero and often positive levels of geometrical attenuation are common in realistic, heterogeneous media, both observationally and theoretically. When transformed into the conventional Q-factor form, this positive geometrical attenuation leads to Q values that quickly increase with frequency. These predictions show that the positive frequency-dependent Q observed in many datasets might represent artifacts of the transformations of the attenuation coefficients into Q.

  1. Geometric Hypergraph Learning for Visual Tracking.

    Science.gov (United States)

    Du, Dawei; Qi, Honggang; Wen, Longyin; Tian, Qi; Huang, Qingming; Lyu, Siwei

    2016-11-18

    Graph-based representation is widely used in visual tracking field by finding correct correspondences between target parts in different frames. However, most graph-based trackers consider pairwise geometric relations between local parts. They do not make full use of the target's intrinsic structure, thereby making the representation easily disturbed by errors in pairwise affinities when large deformation or occlusion occurs. In this paper, we propose a geometric hypergraph learning-based tracking method, which fully exploits high-order geometric relations among multiple correspondences of parts in different frames. Then visual tracking is formulated as the mode-seeking problem on the hypergraph in which vertices represent correspondence hypotheses and hyperedges describe high-order geometric relations among correspondences. Besides, a confidence-aware sampling method is developed to select representative vertices and hyperedges to construct the geometric hypergraph for more robustness and scalability. The experiments are carried out on three challenging datasets (VOT2014, OTB100, and Deform-SOT) to demonstrate that our method performs favorably against other existing trackers.

  2. Morphing of geometric composites via residual swelling.

    Science.gov (United States)

    Pezzulla, Matteo; Shillig, Steven A; Nardinocchi, Paola; Holmes, Douglas P

    2015-08-07

    Understanding and controlling the shape of thin, soft objects has been the focus of significant research efforts among physicists, biologists, and engineers in the last decade. These studies aim to utilize advanced materials in novel, adaptive ways such as fabricating smart actuators or mimicking living tissues. Here, we present the controlled growth-like morphing of 2D sheets into 3D shapes by preparing geometric composite structures that deform by residual swelling. The morphing of these geometric composites is dictated by both swelling and geometry, with diffusion controlling the swelling-induced actuation, and geometric confinement dictating the structure's deformed shape. Building on a simple mechanical analog, we present an analytical model that quantitatively describes how the Gaussian and mean curvatures of a thin disk are affected by the interplay among geometry, mechanics, and swelling. This model is in excellent agreement with our experiments and numerics. We show that the dynamics of residual swelling is dictated by a competition between two characteristic diffusive length scales governed by geometry. Our results provide the first 2D analog of Timoshenko's classical formula for the thermal bending of bimetallic beams - our generalization explains how the Gaussian curvature of a 2D geometric composite is affected by geometry and elasticity. The understanding conferred by these results suggests that the controlled shaping of geometric composites may provide a simple complement to traditional manufacturing techniques.

  3. Introduction to Dynamical Systems and Geometric Mechanics

    Science.gov (United States)

    Maruskin, Jared M.

    2012-01-01

    Introduction to Dynamical Systems and Geometric Mechanics provides a comprehensive tour of two fields that are intimately entwined: dynamical systems is the study of the behavior of physical systems that may be described by a set of nonlinear first-order ordinary differential equations in Euclidean space, whereas geometric mechanics explores similar systems that instead evolve on differentiable manifolds. In the study of geometric mechanics, however, additional geometric structures are often present, since such systems arise from the laws of nature that govern the motions of particles, bodies, and even galaxies. In the first part of the text, we discuss linearization and stability of trajectories and fixed points, invariant manifold theory, periodic orbits, Poincaré maps, Floquet theory, the Poincaré-Bendixson theorem, bifurcations, and chaos. The second part of the text begins with a self-contained chapter on differential geometry that introduces notions of manifolds, mappings, vector fields, the Jacobi-Lie bracket, and differential forms. The final chapters cover Lagrangian and Hamiltonian mechanics from a modern geometric perspective, mechanics on Lie groups, and nonholonomic mechanics via both moving frames and fiber bundle decompositions. The text can be reasonably digested in a single-semester introductory graduate-level course. Each chapter concludes with an application that can serve as a springboard project for further investigation or in-class discussion.

  4. Geometric U-folds in four dimensions

    CERN Document Server

    Lazaroiu, C I

    2016-01-01

    We describe a general construction of geometric U-folds compatible with the global formulation of four-dimensional extended supergravity on a differentiable spin manifold. The topology of geometric U-folds depends on certain fiber bundles which encode how supergravity fields are globally glued together. Smooth non-trivial U-folds of this type can exist only in theories where both the scalar and space-time manifolds have non-trivial fundamental group and in addition the configuration of scalar fields of the solution is homotopically non-trivial. Nonetheless, certain geometric U-folds extend to simply-connected backgrounds containing localized sources. Consistency with string theory requires smooth geometric U-folds to be glued using subgroups of the effective discrete U-duality group, implying that the fundamental group of the scalar manifold of such solutions must be a subgroup of the latter. We construct simple examples of geometric U-folds in a generalization of the axion-dilaton model of N=2 supergravity c...

  5. Market Segmentation for Information Services.

    Science.gov (United States)

    Halperin, Michael

    1981-01-01

    Discusses the advantages and limitations of market segmentation as strategy for the marketing of information services made available by nonprofit organizations, particularly libraries. Market segmentation is defined, a market grid for libraries is described, and the segmentation of information services is outlined. A 16-item reference list is…

  6. Segmenting the Adult Education Market.

    Science.gov (United States)

    Aurand, Tim

    1994-01-01

    Describes market segmentation and how the principles of segmentation can be applied to the adult education market. Indicates that applying segmentation techniques to adult education programs results in programs that are educationally and financially satisfying and serve an appropriate population. (JOW)

  7. Market Segmentation for Information Services.

    Science.gov (United States)

    Halperin, Michael

    1981-01-01

    Discusses the advantages and limitations of market segmentation as strategy for the marketing of information services made available by nonprofit organizations, particularly libraries. Market segmentation is defined, a market grid for libraries is described, and the segmentation of information services is outlined. A 16-item reference list is…

  8. Segmenting the Adult Education Market.

    Science.gov (United States)

    Aurand, Tim

    1994-01-01

    Describes market segmentation and how the principles of segmentation can be applied to the adult education market. Indicates that applying segmentation techniques to adult education programs results in programs that are educationally and financially satisfying and serve an appropriate population. (JOW)

  9. Young Children's Understanding of Geometric Shapes: The Role of Geometric Models

    Science.gov (United States)

    Elia, Iliada; Gagatsis, Athanasios; Kyriakides, Leonidas

    2003-01-01

    In this paper, we explore the role of polygonal shapes as geometrical models in teaching mathematics, so as to elicit and interpret children's geometric conceptions and understanding about shapes. Primary pupils were asked to draw a stairway of figures (triangles, squares and rectangles) each one bigger than the preceding one. Pupils use two…

  10. Information Extraction of High-Resolution Remotely Sensed Image Based on Multiresolution Segmentation

    Directory of Open Access Journals (Sweden)

    Peng Shao

    2014-08-01

    Full Text Available The principle of multiresolution segmentation was represented in detail in this study, and the canny algorithm was applied for edge-detection of a remotely sensed image based on this principle. The target image was divided into regions based on object-oriented multiresolution segmentation and edge-detection. Furthermore, object hierarchy was created, and a series of features (water bodies, vegetation, roads, residential areas, bare land and other information were extracted by the spectral and geometrical features. The results indicate that the edge-detection has a positive effect on multiresolution segmentation, and overall accuracy of information extraction reaches to 94.6% by the confusion matrix.

  11. Multi-domain, higher order level set scheme for 3D image segmentation on the GPU

    DEFF Research Database (Denmark)

    Sharma, Ojaswa; Zhang, Qin; Anton, François;

    2010-01-01

    Level set method based segmentation provides an efficient tool for topological and geometrical shape handling. Conventional level set surfaces are only $C^0$ continuous since the level set evolution involves linear interpolation to compute derivatives. Bajaj et al. present a higher order method t...

  12. A new geometric-based model to accurately estimate arm and leg inertial estimates.

    Science.gov (United States)

    Wicke, Jason; Dumas, Geneviève A

    2014-06-03

    Segment estimates of mass, center of mass and moment of inertia are required input parameters to analyze the forces and moments acting across the joints. The objectives of this study were to propose a new geometric model for limb segments, to evaluate it against criterion values obtained from DXA, and to compare its performance to five other popular models. Twenty five female and 24 male college students participated in the study. For the criterion measures, the participants underwent a whole body DXA scan, and estimates for segment mass, center of mass location, and moment of inertia (frontal plane) were directly computed from the DXA mass units. For the new model, the volume was determined from two standing frontal and sagittal photographs. Each segment was modeled as a stack of slices, the sections of which were ellipses if they are not adjoining another segment and sectioned ellipses if they were adjoining another segment (e.g. upper arm and trunk). Length of axes of the ellipses was obtained from the photographs. In addition, a sex-specific, non-uniform density function was developed for each segment. A series of anthropometric measurements were also taken by directly following the definitions provided of the different body segment models tested, and the same parameters determined for each model. Comparison of models showed that estimates from the new model were consistently closer to the DXA criterion than those from the other models, with an error of less than 5% for mass and moment of inertia and less than about 6% for center of mass location. Copyright © 2014. Published by Elsevier Ltd.

  13. Connexions for the nuclear geometrical collective model

    Science.gov (United States)

    Rosensteel, G.; Sparks, N.

    2015-11-01

    The Bohr-Mottelson-Frankfurt model of nuclear rotations and quadrupole vibrations is a foundational model in nuclear structure physics. The model, also called the geometrical collective model or simply GCM(3), has two hidden mathematical structures, one group theoretic and the other differential geometric. Although the group structure has been understood for some time, the geometric structure is a new feature that this paper investigates in some detail. Using the de Rham Laplacian \\triangle =\\star d \\star d for the kinetic energy extends significantly the physical scope of the GCM(3) model. This Laplacian contains a ‘magnetic’ term due to the connexion between base manifold rotational and fibre vortex degrees of freedom. When the connexion specializes to irrotational flow, the Laplacian reduces to the Bohr-Mottelson kinetic energy operator.

  14. Geometric spin echo under zero field

    Science.gov (United States)

    Sekiguchi, Yuhei; Komura, Yusuke; Mishima, Shota; Tanaka, Touta; Niikura, Naeko; Kosaka, Hideo

    2016-01-01

    Spin echo is a fundamental tool for quantum registers and biomedical imaging. It is believed that a strong magnetic field is needed for the spin echo to provide long memory and high resolution, since a degenerate spin cannot be controlled or addressed under a zero magnetic field. While a degenerate spin is never subject to dynamic control, it is still subject to geometric control. Here we show the spin echo of a degenerate spin subsystem, which is geometrically controlled via a mediating state split by the crystal field, in a nitrogen vacancy centre in diamond. The demonstration reveals that the degenerate spin is protected by inherent symmetry breaking called zero-field splitting. The geometric spin echo under zero field provides an ideal way to maintain the coherence without any dynamics, thus opening the way to pseudo-static quantum random access memory and non-invasive biosensors. PMID:27193936

  15. A Toolbox for Geometric Grain Boundary Characterization

    Science.gov (United States)

    Glowinski, Krzysztof; Morawiec, Adam

    Properties of polycrystalline materials are affected by grain boundary networks. The most basic aspect of boundary analysis is boundary geometry. This paper describes a package of computer programs for geometric boundary characterization based on macroscopic boundary parameters. The program allows for determination whether a boundary can be classified as near-tilt, -twist, -symmetric et cetera. Since calculations on experimental, i.e., error affected data are assumed, the program also provides distances to the nearest geometrically characteristic boundaries. The software has a number of other functions helpful in grain boundary analysis. One of them is the determination of planes of all characteristic boundaries for a given misorientation. The resulting diagrams of geometrically characteristic boundaries can be linked to experimentally determined grain boundary distributions. In computations, all symmetrically equivalent representations of boundaries are taken into account. Cubic and hexagonal holohedral crystal symmetries are allowed.

  16. Problemas de geometría

    OpenAIRE

    2012-01-01

    Este libro, Problemas de Geometría, junto con otros dos, Problemas de Matemáticas y Problemas de Geometría Analítica y Diferencial, están dedicados a la presentación y resolución de problemas que se planteaban hace unas décadas, en la preparación para ingreso en las carreras de ingeniería técnica superior. Incluye 744 problemas que se presentan en dos grandes grupos: • Geometría del plano, con 523 problemas referentes a lugares geométricos, rectas, ángulos, triángulos y su construcción, cuadr...

  17. Spherical projections and liftings in geometric tomography

    DEFF Research Database (Denmark)

    Goodey, Paul; Kiderlen, Markus; Weil, Wolfgang

    2011-01-01

    We consider a variety of integral transforms arising in Geometric Tomography. It will be shown that these can be put into a common framework using spherical projection and lifting operators. These operators will be applied to support functions and surface area measures of convex bodies and to rad......We consider a variety of integral transforms arising in Geometric Tomography. It will be shown that these can be put into a common framework using spherical projection and lifting operators. These operators will be applied to support functions and surface area measures of convex bodies...... and to radial functions of star bodies. We then investigate averages of lifted projections and show that they correspond to self-adjoint intertwining operators. We obtain formulas for the eigenvalues of these operators and use them to ascertain circumstances under which tomographic measurements determine...... the original bodies. This approach via mean lifted projections leads us to some unexpected relationships between seemingly disparate geometric constructions....

  18. An Underlying Geometrical Manifold for Hamiltonian Mechanics

    CERN Document Server

    Horwitz, L P; Levitan, J; Lewkowicz, M

    2015-01-01

    We show that there exists an underlying manifold with a conformal metric and compatible connection form, and a metric type Hamiltonian (which we call the geometrical picture) that can be put into correspondence with the usual Hamilton-Lagrange mechanics. The requirement of dynamical equivalence of the two types of Hamiltonians, that the momenta generated by the two pictures be equal for all times, is sufficient to determine an expansion of the conformal factor, defined on the geometrical coordinate representation, in its domain of analyticity with coefficients to all orders determined by functions of the potential of the Hamilton-Lagrange picture, defined on the Hamilton-Lagrange coordinate representation, and its derivatives. Conversely, if the conformal function is known, the potential of a Hamilton-Lagrange picture can be determined in a similar way. We show that arbitrary local variations of the orbits in the Hamilton-Lagrange picture can be generated by variations along geodesics in the geometrical pictu...

  19. Duality orbits of non-geometric fluxes

    Energy Technology Data Exchange (ETDEWEB)

    Dibitetto, G.; Roest, D. [Centre for Theoretical Physics, University of Groningen, Nijenborgh 4, 9747 AG Groningen (Netherlands); Fernandez-Melgarejo, J.J. [Grupo de Fisica Teorica y Cosmologia, Dept. de Fisica, University of Murcia, Campus de Espinardo, 30100-Murcia (Spain); Marques, D. [Institut de Physique Theorique, CEA/ Saclay, 91191 Gif-sur-Yvette Cedex (France)

    2012-11-15

    Compactifications in duality covariant constructions such as generalised geometry and double field theory have proven to be suitable frameworks to reproduce gauged supergravities containing non-geometric fluxes. However, it is a priori unclear whether these approaches only provide a reformulation of old results, or also contain new physics. To address this question, we classify the T- and U-duality orbits of gaugings of (half-)maximal supergravities in dimensions seven and higher. It turns out that all orbits have a geometric supergravity origin in the maximal case, while there are non-geometric orbits in the half-maximal case. We show how the latter are obtained from compactifications of double field theory. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. The Geometric Phase of Stock Trading.

    Science.gov (United States)

    Altafini, Claudio

    2016-01-01

    Geometric phases describe how in a continuous-time dynamical system the displacement of a variable (called phase variable) can be related to other variables (shape variables) undergoing a cyclic motion, according to an area rule. The aim of this paper is to show that geometric phases can exist also for discrete-time systems, and even when the cycles in shape space have zero area. A context in which this principle can be applied is stock trading. A zero-area cycle in shape space represents the type of trading operations normally carried out by high-frequency traders (entering and exiting a position on a fast time-scale), while the phase variable represents the cash balance of a trader. Under the assumption that trading impacts stock prices, even zero-area cyclic trading operations can induce geometric phases, i.e., profits or losses, without affecting the stock quote.

  1. Geometrical families of mechanically stable granular packings

    Science.gov (United States)

    Gao, Guo-Jie; Blawzdziewicz, Jerzy; O'Hern, Corey S.

    2009-12-01

    We enumerate and classify nearly all of the possible mechanically stable (MS) packings of bidipserse mixtures of frictionless disks in small sheared systems. We find that MS packings form continuous geometrical families, where each family is defined by its particular network of particle contacts. We also monitor the dynamics of MS packings along geometrical families by applying quasistatic simple shear strain at zero pressure. For small numbers of particles (N16 , we observe an increase in the period and random splittings of the trajectories caused by bifurcations in configuration space. We argue that the ratio of the splitting and contraction rates in large systems will determine the distribution of MS-packing geometrical families visited in steady state. This work is part of our long-term research program to develop a master-equation formalism to describe macroscopic slowly driven granular systems in terms of collections of small subsystems.

  2. MM Algorithms for Geometric and Signomial Programming.

    Science.gov (United States)

    Lange, Kenneth; Zhou, Hua

    2014-02-01

    This paper derives new algorithms for signomial programming, a generalization of geometric programming. The algorithms are based on a generic principle for optimization called the MM algorithm. In this setting, one can apply the geometric-arithmetic mean inequality and a supporting hyperplane inequality to create a surrogate function with parameters separated. Thus, unconstrained signomial programming reduces to a sequence of one-dimensional minimization problems. Simple examples demonstrate that the MM algorithm derived can converge to a boundary point or to one point of a continuum of minimum points. Conditions under which the minimum point is unique or occurs in the interior of parameter space are proved for geometric programming. Convergence to an interior point occurs at a linear rate. Finally, the MM framework easily accommodates equality and inequality constraints of signomial type. For the most important special case, constrained quadratic programming, the MM algorithm involves very simple updates.

  3. Singularity Analysis of Geometric Constraint Systems

    Institute of Scientific and Technical Information of China (English)

    彭小波; 陈立平; 周凡利; 周济

    2002-01-01

    Singularity analysis is an important subject of the geometric constraint sat-isfaction problem. In this paper, three kinds of singularities are described and corresponding identification methods are presented for both under-constrained systems and over-constrained systems. Another special but common singularity for under-constrained geometric systems, pseudo-singularity, is analyzed. Pseudo-singularity is caused by a variety of constraint match ing of under-constrained systems and can be removed by improving constraint distribution. To avoid pseudo-singularity and decide redundant constraints adaptively, a differentiation algo rithm is proposed in the paper. Its correctness and efficiency have been validated through its practical applications in a 2D/3D geometric constraint solver CBA.

  4. Geometric optimization and sums of algebraic functions

    KAUST Repository

    Vigneron, Antoine E.

    2014-01-01

    We present a new optimization technique that yields the first FPTAS for several geometric problems. These problems reduce to optimizing a sum of nonnegative, constant description complexity algebraic functions. We first give an FPTAS for optimizing such a sum of algebraic functions, and then we apply it to several geometric optimization problems. We obtain the first FPTAS for two fundamental geometric shape-matching problems in fixed dimension: maximizing the volume of overlap of two polyhedra under rigid motions and minimizing their symmetric difference. We obtain the first FPTAS for other problems in fixed dimension, such as computing an optimal ray in a weighted subdivision, finding the largest axially symmetric subset of a polyhedron, and computing minimum-area hulls.

  5. Understanding geometric algebra for electromagnetic theory

    CERN Document Server

    Arthur, John W

    2011-01-01

    "This book aims to disseminate geometric algebra as a straightforward mathematical tool set for working with and understanding classical electromagnetic theory. It's target readership is anyone who has some knowledge of electromagnetic theory, predominantly ordinary scientists and engineers who use it in the course of their work, or postgraduate students and senior undergraduates who are seeking to broaden their knowledge and increase their understanding of the subject. It is assumed that the reader is not a mathematical specialist and is neither familiar with geometric algebra or its application to electromagnetic theory. The modern approach, geometric algebra, is the mathematical tool set we should all have started out with and once the reader has a grasp of the subject, he or she cannot fail to realize that traditional vector analysis is really awkward and even misleading by comparison"--Provided by publisher.

  6. The effect of photometric and geometric context on photometric and geometric lightness effects.

    Science.gov (United States)

    Lee, Thomas Y; Brainard, David H

    2014-01-24

    We measured the lightness of probe tabs embedded at different orientations in various contextual images presented on a computer-controlled stereo display. Two background context planes met along a horizontal roof-like ridge. Each plane was a graphic rendering of a set of achromatic surfaces with the simulated illumination for each plane controlled independently. Photometric context was varied by changing the difference in simulated illumination intensity between the two background planes. Geometric context was varied by changing the angle between them. We parsed the data into separate photometric effects and geometric effects. For fixed geometry, varying photometric context led to linear changes in both the photometric and geometric effects. Varying geometric context did not produce a statistically reliable change in either the photometric or geometric effects.

  7. Primary School Teacher Candidates' Geometric Habits of Mind

    Science.gov (United States)

    Köse, Nilu¨fer Y.; Tanisli, Dilek

    2014-01-01

    Geometric habits of mind are productive ways of thinking that support learning and using geometric concepts. Identifying primary school teacher candidates' geometric habits of mind is important as they affect the development of their future students' geometric thinking. Therefore, this study attempts to determine primary school teachers' geometric…

  8. Assessment of Multiresolution Segmentation for Extracting Greenhouses from WORLDVIEW-2 Imagery

    Science.gov (United States)

    Aguilar, M. A.; Aguilar, F. J.; García Lorca, A.; Guirado, E.; Betlej, M.; Cichon, P.; Nemmaoui, A.; Vallario, A.; Parente, C.

    2016-06-01

    The latest breed of very high resolution (VHR) commercial satellites opens new possibilities for cartographic and remote sensing applications. In this way, object based image analysis (OBIA) approach has been proved as the best option when working with VHR satellite imagery. OBIA considers spectral, geometric, textural and topological attributes associated with meaningful image objects. Thus, the first step of OBIA, referred to as segmentation, is to delineate objects of interest. Determination of an optimal segmentation is crucial for a good performance of the second stage in OBIA, the classification process. The main goal of this work is to assess the multiresolution segmentation algorithm provided by eCognition software for delineating greenhouses from WorldView- 2 multispectral orthoimages. Specifically, the focus is on finding the optimal parameters of the multiresolution segmentation approach (i.e., Scale, Shape and Compactness) for plastic greenhouses. The optimum Scale parameter estimation was based on the idea of local variance of object heterogeneity within a scene (ESP2 tool). Moreover, different segmentation results were attained by using different combinations of Shape and Compactness values. Assessment of segmentation quality based on the discrepancy between reference polygons and corresponding image segments was carried out to identify the optimal setting of multiresolution segmentation parameters. Three discrepancy indices were used: Potential Segmentation Error (PSE), Number-of-Segments Ratio (NSR) and Euclidean Distance 2 (ED2).

  9. Model-based vision using geometric hashing

    Science.gov (United States)

    Akerman, Alexander, III; Patton, Ronald

    1991-04-01

    The Geometric Hashing technique developed by the NYU Courant Institute has been applied to various automatic target recognition applications. In particular, I-MATH has extended the hashing algorithm to perform automatic target recognition ofsynthetic aperture radar (SAR) imagery. For this application, the hashing is performed upon the geometric locations of dominant scatterers. In addition to being a robust model-based matching algorithm -- invariant under translation, scale, and 3D rotations of the target -- hashing is of particular utility because it can still perform effective matching when the target is partially obscured. Moreover, hashing is very amenable to a SIMD parallel processing architecture, and thus potentially realtime implementable.

  10. The geometric phase in quantum physics

    Energy Technology Data Exchange (ETDEWEB)

    Bohm, A.

    1993-03-01

    After an explanatory introduction, a quantum system in a classical time-dependent environment is discussed; an example is a magnetic moment in a classical magnetic field. At first, the general abelian case is discussed in the adiabatic approximation. Then the geometric phase for nonadiabatic change of the environment (Anandan--Aharonov phase) is introduced, and after that general cyclic (nonadiabatic) evolution is discussed. The mathematics of fiber bundles is introduced, and some of its results are used to describe the relation between the adiabatic Berry phase and the geometric phase for general cyclic evolution of a pure state. The discussion is restricted to the abelian, U(1) phase.

  11. Geometric measure theory a beginner's guide

    CERN Document Server

    Morgan, Frank

    2008-01-01

    Geometric measure theory provides the framework to understand the structure of a crystal, a soap bubble cluster, or a universe. Measure Theory: A Beginner's Guide is essential to any student who wants to learn geometric measure theory, and will appeal to researchers and mathematicians working in the field. Morgan emphasizes geometry over proofs and technicalities providing a fast and efficient insight into many aspects of the subject.New to the 4th edition:* Abundant illustrations, examples, exercises, and solutions.* The latest results on soap bubble clusters, including

  12. Satellite Video Stabilization with Geometric Distortion

    Directory of Open Access Journals (Sweden)

    WANG Xia

    2016-02-01

    Full Text Available There is an exterior orientation difference in each satellite video frame, and the corresponding points have different image locations in adjacent frames images which has geometric distortion. So the projection model, affine model and other classical image stabilization registration model cannot accurately describe the relationship between adjacent frames. This paper proposes a new satellite video image stabilization method with geometric distortion to solve the problem, based on the simulated satellite video, we verify the feasibility and accuracy of proposed satellite video stabilization method.

  13. Adiabatic geometric phases and response functions

    CERN Document Server

    Jain, S R; Jain, Sudhir R.; Pati, Arun K.

    1998-01-01

    Treating a many-body Fermi system in terms of a single particle in a deforming mean field. We relate adiabatic geometric phase to susceptibility for the noncyclic case, and to its derivative for the cyclic case. Employing the semiclassical expression of susceptibility, the expression for geometric phase for chaotic quantum system immediately follows. Exploiting the well-known association of the absorptive part of susceptibility with dissipation, our relations may provide a quantum mechanical origin of the damping of collective excitations in Fermi systems.

  14. Classical Light Beams and Geometric Phases

    CERN Document Server

    Mukunda, N; Simon, R

    2013-01-01

    We present a study of geometric phases in classical wave and polarisation optics using the basic mathematical framework of quantum mechanics. Important physical situations taken from scalar wave optics, pure polarisation optics, and the behaviour of polarisation in the eikonal or ray limit of Maxwell's equations in a transparent medium are considered. The case of a beam of light whose propagation direction and polarisation state are both subject to change is dealt with, attention being paid to the validity of Maxwell's equations at all stages. Global topological aspects of the space of all propagation directions are discussed using elementary group theoretical ideas, and the effects on geometric phases are elucidated.

  15. Workshop on Topology and Geometric Group Theory

    CERN Document Server

    Fowler, James; Lafont, Jean-Francois; Leary, Ian

    2016-01-01

    This book presents articles at the interface of two active areas of research: classical topology and the relatively new field of geometric group theory. It includes two long survey articles, one on proofs of the Farrell–Jones conjectures, and the other on ends of spaces and groups. In 2010–2011, Ohio State University (OSU) hosted a special year in topology and geometric group theory. Over the course of the year, there were seminars, workshops, short weekend conferences, and a major conference out of which this book resulted. Four other research articles complement these surveys, making this book ideal for graduate students and established mathematicians interested in entering this area of research.

  16. A lexicographic shellability characterization of geometric lattices

    CERN Document Server

    Davidson, Ruth

    2011-01-01

    Geometric lattices are characterized as those finite, atomic lattices such that every atom ordering induces a lexicographic shelling given by an edge labeling known as a minimal labeling. This new characterization fits into a similar paradigm as McNamara's characterization of supersolvable lattices as those lattices admitting a different type of lexicographic shelling, namely one in which each maximal chain is labeled with a permutation of {1,...,n}. Geometric lattices arise as the intersection lattices of central hyperplane arrangements and more generally as the lattices of flats for matroids.

  17. Analysis of geometric moments as features for firearm identification.

    Science.gov (United States)

    Md Ghani, Nor Azura; Liong, Choong-Yeun; Jemain, Abdul Aziz

    2010-05-20

    The task of identifying firearms from forensic ballistics specimens is exacting in crime investigation since the last two decades. Every firearm, regardless of its size, make and model, has its own unique 'fingerprint'. These fingerprints transfer when a firearm is fired to the fired bullet and cartridge case. The components that are involved in producing these unique characteristics are the firing chamber, breech face, firing pin, ejector, extractor and the rifling of the barrel. These unique characteristics are the critical features in identifying firearms. It allows investigators to decide on which particular firearm that has fired the bullet. Traditionally the comparison of ballistic evidence has been a tedious and time-consuming process requiring highly skilled examiners. Therefore, the main objective of this study is the extraction and identification of suitable features from firing pin impression of cartridge case images for firearm recognition. Some previous studies have shown that firing pin impression of cartridge case is one of the most important characteristics used for identifying an individual firearm. In this study, data are gathered using 747 cartridge case images captured from five different pistols of type 9mm Parabellum Vektor SP1, made in South Africa. All the images of the cartridge cases are then segmented into three regions, forming three different set of images, i.e. firing pin impression image, centre of firing pin impression image and ring of firing pin impression image. Then geometric moments up to the sixth order were generated from each part of the images to form a set of numerical features. These 48 features were found to be significantly different using the MANOVA test. This high dimension of features is then reduced into only 11 significant features using correlation analysis. Classification results using cross-validation under discriminant analysis show that 96.7% of the images were classified correctly. These results demonstrate

  18. The local segmental dynamics of polymer thin films

    Science.gov (United States)

    Roland, C. M.; Casalini, Riccardo; Prevosto, Daniele; Labardi, Massimiliano; Zhu, Lei; Baer, Eric

    The local segmental dynamics of poly(methyl methacrylate) (PMMA) in multi-layered films with polycarbonate was investigated using dielectric spectroscopy. The segmental relaxation time decreased with layer thickness down to 4 nm. However, two measures of the cooperativity of the dynamics, the breadth of the relaxation dispersion and the dynamic correlation volume, were unaffected by the film thickness. This absence of an effect of geometric confinement on the cooperativity, even when the confinement length scale approaches the correlation length scale, requires an asymmetric correlation volume; i.e., correlating regions having a string-like nature. To further probe the effect of layering on the segmental dynamics, we measured the segmental dynamics of poly(vinylacetate) thin films in contact with variously an aluminum interface, an incompatible polymer, and air (free surface). From local dielectric relaxation measurements using an AFM tip, the dynamics were observed to be faster in all thin film configurations compared to the bulk. However, no differences were observed for the various interfaces; capping the thin films with a rigid material accelerated the segmental motions equivalently to that for an air interface. This insensitivity of the dynamics to the nature of the interface affords a means to engineer thin films while maintaining desired mechanical properties. Work at NRL supported by the Office of Naval Research.

  19. Improving information storage by means of segmented magnetic nanowires

    Science.gov (United States)

    Cisternas, E.; Vogel, E. E.

    2015-08-01

    A set of magnetic nanowires trapped in the membrane used to produce them can be employed to inscribe information in the form of sectors of wires with the same ferromagnetic orientation (Cisternas and Vogel, 2013 [1]). However, such a system relays on the shape anisotropy of each nanowire as the stabilizing mechanism avoiding magnetization reversal. Such stabilization mechanism weakens as the size of the nanowires decrease. In the present paper we introduce a way of using segmented nanowires to produce a self-stabilization mechanism based on the fact that interactions among segments of different layers can contribute with negative energies. Then, for some particular geometries it is possible to make this interaction the most important one producing a more stable system with respect to spontaneous magnetization reversal. Such inscribed ferromagnetic sector will then last longer than other ferromagnetic sectors formed by exclusively repelling elements. We make use of available algebraic expressions to calculate the energy contribution of noncoaxial segments. For the coaxial segments a similar expression is developed here and it is applied to real systems. The total interaction energy for all segments in the system is calculated for different geometrical possibilities. Application to two particular symbols (letters T and O) is fully discussed bringing out general aspects that could be applied to other symbols. Projections of this work are finally mentioned.

  20. A Flexible Semi-Automatic Approach for Glioblastoma multiforme Segmentation

    CERN Document Server

    Egger, Jan; Kuhnt, Daniela; Kappus, Christoph; Carl, Barbara; Freisleben, Bernd; Nimsky, Christopher

    2011-01-01

    Gliomas are the most common primary brain tumors, evolving from the cerebral supportive cells. For clinical follow-up, the evaluation of the preoperative tumor volume is essential. Volumetric assessment of tumor volume with manual segmentation of its outlines is a time-consuming process that can be overcome with the help of segmentation methods. In this paper, a flexible semi-automatic approach for grade IV glioma segmentation is presented. The approach uses a novel segmentation scheme for spherical objects that creates a directed 3D graph. Thereafter, the minimal cost closed set on the graph is computed via a polynomial time s-t cut, creating an optimal segmentation of the tumor. The user can improve the results by specifying an arbitrary number of additional seed points to support the algorithm with grey value information and geometrical constraints. The presented method is tested on 12 magnetic resonance imaging datasets. The ground truth of the tumor boundaries are manually extracted by neurosurgeons. The...

  1. Geometric calibration of high-resolution remote sensing sensors

    Institute of Scientific and Technical Information of China (English)

    LIANG Hong-you; GU Xing-fa; TAO Yu; QIAO Chao-fei

    2007-01-01

    This paper introduces the applications of high-resolution remote sensing imagery and the necessity of geometric calibration for remote sensing sensors considering assurance of the geometric accuracy of remote sensing imagery. Then the paper analyzes the general methodology of geometric calibration. Taking the DMC sensor geometric calibration as an example, the paper discusses the whole calibration procedure. Finally, it gave some concluding remarks on geometric calibration of high-resolution remote sensing sensors.

  2. Signs of segmentation?

    DEFF Research Database (Denmark)

    Ilsøe, Anna

    2012-01-01

    This article addresses the contribution of decentralized collective bargaining to the development of different forms of flexicurity for different groups of employees on the Danish labour market. Based on five case studies of company-level bargaining on flexible working hours in Danish industry...... the text of the agreements. On the other hand, less flexible employees often face difficulties in meeting the demands of the agreements and may ultimately be forced to leave the company and rely on unemployment benefits and active labour market policies. In a flexicurity perspective, this development seems...... to imply a segmentation of the Danish workforce regarding hard and soft versions of flexicurity....

  3. Noncooperative Iris Segmentation

    Directory of Open Access Journals (Sweden)

    Elsayed Mostafa

    2012-01-01

    Full Text Available In noncooperative iris recognition one should deal with uncontrolled behavior of the subject as well as uncontrolled lighting conditions. That means eyelids and eyelashes occlusion, non uniform intensities, reflections, imperfect focus, and orientation among the others are to be considered. To cope with this situation a noncooperative iris segmentation algorithm based on numerically stable direct least squares fitting of ellipses model and modified Chan-Vese model (local binary fitting energy with variational level set formulation is to be proposed. The proposed algorithm is tested using CASIA-IrisV3.

  4. The LOFT Ground Segment

    DEFF Research Database (Denmark)

    Bozzo, E.; Antonelli, A.; Argan, A.;

    2014-01-01

    targets per orbit (~90 minutes), providing roughly ~80 GB of proprietary data per day (the proprietary period will be 12 months). The WFM continuously monitors about 1/3 of the sky at a time and provides data for about ~100 sources a day, resulting in a total of ~20 GB of additional telemetry. The LOFT...... we summarize the planned organization of the LOFT ground segment (GS), as established in the mission Yellow Book 1 . We describe the expected GS contributions from ESA and the LOFT consortium. A review is provided of the planned LOFT data products and the details of the data flow, archiving...

  5. Real Time Detection and Tracking of Human Face using Skin Color Segmentation and Region Properties

    Directory of Open Access Journals (Sweden)

    Prashanth Kumar G.

    2014-07-01

    Full Text Available Real time faces detection and face tracking is one of the challenging problems in application like computer human interaction, video surveillance, biometrics etc. In this paper we are presenting an algorithm for real time face detection and tracking using skin color segmentation and region properties. First segmentation of skin regions from an image is done by using different color models. Skin regions are separated from the image by using thresholding. Then to decide whether these regions contain human face or not we used face features. Our procedure is based on skin color segmentation and human face features (knowledge-based approach. We have used RGB, YCbCr, and HSV color models for skin color segmentation. These color models with thresholds, help to remove non skin like pixel from an image. Each segmented skin regions are tested to know whether region is human face or not, by using human face features based on knowledge of geometrical properties of human face.

  6. An automatic system for segmentation, matching, anatomical labeling and measurement of airways from CT images

    DEFF Research Database (Denmark)

    Petersen, Jens; Feragen, Aasa; Owen, Megan

    Purpose: Assessing airway dimensions and attenuation from CT images is useful in the study of diseases affecting the airways such as Chronic Obstructive Pulmonary Disease (COPD). Measurements can be compared between patients and over time if specific airway segments can be identified. However......, manually finding these segments and performing such measurements is very time consuming. The purpose of the developed and validated system is to enable such measurements using automatic segmentations of the airway interior and exterior wall surfaces in three dimensions, anatomical branch labeling of all...... is used to match specific airway segments in multiple images of the same subject. The anatomical names of all segmental branches are assigned based on distances to a training set of expert labeled trees. Distances are measured in a geometric tree-space, incorporating both topology and centerline shape...

  7. How to Extract the Geometry and Topology from Very Large 3D Segmentations

    CERN Document Server

    Andres, Bjoern; Kroeger, Thorben; Hamprecht, Fred A

    2010-01-01

    Segmentation is often an essential intermediate step in image analysis. A volume segmentation characterizes the underlying volume image in terms of geometric information--segments, faces between segments, curves in which several faces meet--as well as a topology on these objects. Existing algorithms encode this information in designated data structures, but require that these data structures fit entirely in Random Access Memory (RAM). Today, 3D images with several billion voxels are acquired, e.g. in structural neurobiology. Since these large volumes can no longer be processed with existing methods, we present a new algorithm which performs geometry and topology extraction with a runtime linear in the number of voxels and log-linear in the number of faces and curves. The parallelizable algorithm proceeds in a block-wise fashion and constructs a consistent representation of the entire volume image on the hard drive, making the structure of very large volume segmentations accessible to image analysis. The paral...

  8. Geometric foundation of spin and isospin

    CERN Document Server

    Hannibal, L

    1996-01-01

    Various theories of spinning particles are interpreted as realizing elements of an underlying geometric theory. Classical particles are described by trajectories on the Poincare group. Upon quantization an eleven-dimensional Kaluza-Klein type theory is obtained which incorporates spin and isospin in a local SL(2,C) x U(1) x SU(2) theory with broken U(1)x SU(2) part.

  9. Reinforcing Geometric Properties with Shapedoku Puzzles

    Science.gov (United States)

    Wanko, Jeffrey J.; Nickell, Jennifer V.

    2013-01-01

    Shapedoku is a new type of puzzle that combines logic and spatial reasoning with understanding of basic geometric concepts such as slope, parallelism, perpendicularity, and properties of shapes. Shapedoku can be solved by individuals and, as demonstrated here, can form the basis of a review for geometry students as they create their own. In this…

  10. Robust Geometric Control of a Distillation Column

    DEFF Research Database (Denmark)

    Kymmel, Mogens; Andersen, Henrik Weisberg

    1987-01-01

    A frequency domain method, which makes it possible to adjust multivariable controllers with respect to both nominal performance and robustness, is presented. The basic idea in the approach is that the designer assigns objectives such as steady-state tracking, maximum resonance peaks, bandwidth, m...... is used to examine and improve geometric control of a binary distillation column....

  11. An underlying geometrical manifold for Hamiltonian mechanics

    Science.gov (United States)

    Horwitz, L. P.; Yahalom, A.; Levitan, J.; Lewkowicz, M.

    2017-02-01

    We show that there exists an underlying manifold with a conformal metric and compatible connection form, and a metric type Hamiltonian (which we call the geometrical picture), that can be put into correspondence with the usual Hamilton-Lagrange mechanics. The requirement of dynamical equivalence of the two types of Hamiltonians, that the momenta generated by the two pictures be equal for all times, is sufficient to determine an expansion of the conformal factor, defined on the geometrical coordinate representation, in its domain of analyticity with coefficients to all orders determined by functions of the potential of the Hamiltonian-Lagrange picture, defined on the Hamilton-Lagrange coordinate representation, and its derivatives. Conversely, if the conformal function is known, the potential of a Hamilton-Lagrange picture can be determined in a similar way. We show that arbitrary local variations of the orbits in the Hamilton-Lagrange picture can be generated by variations along geodesics in the geometrical picture and establish a correspondence which provides a basis for understanding how the instability in the geometrical picture is manifested in the instability of the the original Hamiltonian motion.

  12. Using geometric algebra to study optical aberrations

    Energy Technology Data Exchange (ETDEWEB)

    Hanlon, J.; Ziock, H.

    1997-05-01

    This paper uses Geometric Algebra (GA) to study vector aberrations in optical systems with square and round pupils. GA is a new way to produce the classical optical aberration spot diagrams on the Gaussian image plane and surfaces near the Gaussian image plane. Spot diagrams of the third, fifth and seventh order aberrations for square and round pupils are developed to illustrate the theory.

  13. Geometric singular perturbation theory in biological practice

    NARCIS (Netherlands)

    Hek, G.

    2010-01-01

    Geometric singular perturbation theory is a useful tool in the analysis of problems with a clear separation in time scales. It uses invariant manifolds in phase space in order to understand the global structure of the phase space or to construct orbits with desired properties. This paper explains an

  14. Saturation and geometrical scaling in small systems

    CERN Document Server

    Praszalowicz, Michal

    2016-01-01

    Saturation and geometrical scaling (GS) of gluon distributions are a consequence of the non-linear evolution equations of QCD. We argue that in pp GS holds for the inelastic cross-section rather than for the multiplicity distributions. We also discuss possible fluctuations of the proton saturation scale in pA collisions at the LHC.

  15. Geometric Interpretations of Some Psychophysical Results.

    Science.gov (United States)

    Levine, Michael V.

    A theory of psychophysics is discussed that enlarges the classical theory in three general ways: (1) the multidimensional nature of perception is made explicit; (2) the transformations of the theory are interpreted geometrically; and (3) attributes are distinguished from sensations and only partially ordered. It is shown that, with the enlarged…

  16. Geometric Algorithms for Part Orienting and Probing

    NARCIS (Netherlands)

    Panahi, F.

    2015-01-01

    In this thesis, detailed solutions are presented to several problems dealing with geometric shape and orientation of an object in the field of robotics and automation. We first have considered a general model for shape variations that allows variation along the entire boundary of an object, both in

  17. On Arithmetic-Geometric-Mean Polynomials

    Science.gov (United States)

    Griffiths, Martin; MacHale, Des

    2017-01-01

    We study here an aspect of an infinite set "P" of multivariate polynomials, the elements of which are associated with the arithmetic-geometric-mean inequality. In particular, we show in this article that there exist infinite subsets of probability "P" for which every element may be expressed as a finite sum of squares of real…

  18. Geometric properties of optimal photonic crystals

    DEFF Research Database (Denmark)

    Sigmund, Ole; Hougaard, Kristian G.

    2008-01-01

    on numerical optimization studies, we have discovered some surprisingly simple geometric properties of optimal planar band gap structures. We conjecture that optimal structures for gaps between bands n and n+1 correspond to n elliptic rods with centers defined by the generators of an optimal centroidal Voronoi...

  19. Geometric Mean--What Does It Mean?

    Science.gov (United States)

    Kalder, Robin S.

    2012-01-01

    The National Council of Teachers of Mathematics and numerous mathematics educators promote the combination of conceptual understanding and procedural learning in the successful instruction of mathematics. Despite this, when geometric mean is taught in a typical American geometry class, it is taught as a process only despite the many connections…

  20. Geometric Total Variation for Texture Deformation

    DEFF Research Database (Denmark)

    Bespalov, Dmitriy; Dahl, Anders Lindbjerg; Shokoufandeh, Ali

    2010-01-01

    of features in texture images leads to significant improvements in localization of these features, when textures undergo geometrical transformations. Accurate localization of features in the presense of unkown deformations is a crucial property for texture characterization methods, and we intend to expoit...

  1. Geometric Abstract Art and Public Health Data

    Centers for Disease Control (CDC) Podcasts

    2016-10-18

    Dr. Salaam Semaan, a CDC behavioral scientist, discusses the similarities between geometric abstract art and public health data analysis.  Created: 10/18/2016 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 10/18/2016.

  2. Modern Geometric Algebra: A (Very Incomplete!) Survey

    Science.gov (United States)

    Suzuki, Jeff

    2009-01-01

    Geometric algebra is based on two simple ideas. First, the area of a rectangle is equal to the product of the lengths of its sides. Second, if a figure is broken apart into several pieces, the sum of the areas of the pieces equals the area of the original figure. Remarkably, these two ideas provide an elegant way to introduce, connect, and…

  3. Robust topology optimization accounting for geometric imperfections

    DEFF Research Database (Denmark)

    Schevenels, M.; Jansen, M.; Lombaert, Geert

    2013-01-01

    performance. As a consequence, the actual structure may be far from optimal. In this paper, a robust approach to topology optimization is presented, taking into account two types of geometric imperfections: variations of (1) the crosssections and (2) the locations of structural elements. The first type...... of imperfections) and a vertical load carrying system (for the second type). © 2013 Taylor & Francis Group, London....

  4. A Geometric Approach to Fair Division

    Science.gov (United States)

    Barbanel, Julius

    2010-01-01

    We wish to divide a cake among some collection of people (who may have very different notions of the comparative value of pieces of cake) in a way that is both "fair" and "efficient." We explore the meaning of these terms, introduce two geometric tools to aid our analysis, and present a proof (due to Dietrich Weller) that establishes the existence…

  5. Geometric Reductivity--A Quotient Space Approach

    CERN Document Server

    Sastry, Pramathanath

    2010-01-01

    We give another proof that a reductive algebraic group is geometrically reductive. We show that a quotient of the semi-stable locus (by a linear action of a reductive algebraic group on a projective scheme) exists, and from this Haboush's Theorem (Mumford's Conjecture) follows.

  6. Wooden Geometric Puzzles: Design and Hardness Proofs

    NARCIS (Netherlands)

    Alt, H.; Bodlaender, H.L.; Kreveld, M.J. van; Rote, G.; Tel, G.

    2007-01-01

    We discuss some new geometric puzzles and the complexity of their extension to arbitrary sizes. For gate puzzles and two-layer puzzles we prove NP-completeness of solving them. Not only the solution of puzzles leads to interesting questions, but also puzzle design gives rise to interesting

  7. Wooden Geometric Puzzles: Design and Hardness Proofs

    NARCIS (Netherlands)

    Alt, H.; Bodlaender, H.L.; Kreveld, M.J. van; Rote, G.; Tel, G.

    2008-01-01

    We discuss some new geometric puzzles and the complexity of their extension to arbitrary sizes. For gate puzzles and two-layer puzzles we prove NP-completeness of solving them. Not only the solution of puzzles leads to interesting questions, but also puzzle design gives rise to interesting

  8. Geometric and Texture Inpainting by Gibbs Sampling

    DEFF Research Database (Denmark)

    Gustafsson, David Karl John; Pedersen, Kim Steenstrup; Nielsen, Mads

    2007-01-01

    This paper discuss a method suitable for inpainting both large scale geometric structures and more stochastic texture components. Image inpainting concerns the problem of reconstructing the intensity contents inside regions of missing data. Common techniques for solving this problem are methods...

  9. How Do Young Children Learn Geometric Concepts.

    Science.gov (United States)

    Ohe, Pia

    Twenty children (ages 5 and 6) from each of seven cultural groups (Caucasian, Black, Jewish, Puerto Rican, Chinese, Korean-American and native Korean) were given a copying task of 21 geometric shapes to test the cultural invariancy of Piaget's topological-projective-Euclidean concept acquisition sequence. All subjects were either middle or lower…

  10. Geometrical Factors in the Perception of Sacredness.

    Science.gov (United States)

    Costa, Marco; Bonetti, Leonardo

    2016-06-28

    Geometrical and environmental factors in the perception of sacredness, dominance, and attractiveness were assessed by 137 participants in five tests. In the first test, a two-alternative forced-choice paradigm was used to test the perception of sacredness, dominance, and attractiveness in geometrical figures differing in shape, verticality, size, and symmetry. Verticality, symmetry, and convexity were found to be important factors in the perception of sacredness. In the second test, participants had to mark the point inside geometrical surfaces that was perceived as most sacred, dominant, and attractive. The top and the center areas were associated with sacredness, dominance, and attractiveness. In the third test, peaks and elevated regions in landscapes were evaluated as more sacred, dominant, and attractive than valley regions. In the fourth test, three figures sharing the same area but differing in horizontal and vertical orientation were evaluated on eight scales. The vertical figure was evaluated as more sacred, dominant, and attractive than the horizontal figure. The fifth test demonstrated the significant role of space seclusion and inaccessibility in the perception of sacredness. Geometrical factors in the perception of sacredness, dominance, and attractiveness were largely overlapping.

  11. Geometric inequalities in sub-Riemannian groups

    CERN Document Server

    Montefalcone, Francescopaolo

    2012-01-01

    Let G be a sub-Riemannian k-step Carnot group of homogeneous dimension Q. In this paper, we shall prove several geometric inequalities concerning smooth hypersurfaces (i.e. codimension one submanifolds) immersed in G, endowed with the H-perimeter measure.

  12. Deformable image registration with geometric changes

    Institute of Scientific and Technical Information of China (English)

    Yu LIU; Bo ZHU

    2015-01-01

    Geometric changes present a number of difficulties in deformable image registration. In this paper, we propose a global deformation framework to model geometric changes whilst promoting a smooth transformation between source and target images. To achieve this, we have developed an innovative model which significantly reduces the side effects of geometric changes in image registration, and thus improves the registration accuracy. Our key contribution is the introduction of a sparsity-inducing norm, which is typically L1 norm regularization targeting regions where geometric changes occur. This preserves the smoothness of global transformation by eliminating local transformation under different conditions. Numerical solutions are discussed and analyzed to guarantee the stability and fast convergence of our algorithm. To demonstrate the effectiveness and utility of this method, we evaluate it on both synthetic data and real data from traumatic brain injury (TBI). We show that the transformation estimated from our model is able to reconstruct the target image with lower instances of error than a standard elastic registration model.

  13. Toeplitz Quantization and Asymptotic Expansions: Geometric Construction

    Directory of Open Access Journals (Sweden)

    Miroslav Englis

    2009-02-01

    Full Text Available For a real symmetric domain G_R/K_R, with complexification G_C/K_C, we introduce the concept of ''star-restriction'' (a real analogue of the ''star-products'' for quantization of Kähler manifolds and give a geometric construction of the G_R-invariant differential operators yielding its asymptotic expansion.

  14. Wooden Geometric Puzzles: Design and Hardness Proofs

    NARCIS (Netherlands)

    Alt, H.; Bodlaender, H.L.; Kreveld, M.J. van; Rote, G.; Tel, G.

    2007-01-01

    We discuss some new geometric puzzles and the complexity of their extension to arbitrary sizes. For gate puzzles and two-layer puzzles we prove NP-completeness of solving them. Not only the solution of puzzles leads to interesting questions, but also puzzle design gives rise to interesting theoretic

  15. Wooden Geometric Puzzles: Design and Hardness Proofs

    NARCIS (Netherlands)

    Alt, H.; Bodlaender, H.L.; Kreveld, M.J. van; Rote, G.; Tel, G.

    2008-01-01

    We discuss some new geometric puzzles and the complexity of their extension to arbitrary sizes. For gate puzzles and two-layer puzzles we prove NP-completeness of solving them. Not only the solution of puzzles leads to interesting questions, but also puzzle design gives rise to interesting theoretic

  16. Geometric Mechanics of Periodic Pleated Origami

    CERN Document Server

    Wei, Zhiyan; Dudte, Levi; Liang, Haiyi; Mahadevan, L

    2012-01-01

    Origami is the archetype of a structural material with unusual mechanical properties that arise almost exclusively from the geometry of its constituent folds and forms the basis for mechanical metamaterials with an extreme deformation response. Here we consider a simple periodically folded structure Miura-ori, which is composed of identical unit cells of mountain and valley folds with four-coordinated ridges, de?fined completely by 2 angles and 2 lengths. We use the geometrical properties of a Miura-ori plate to characterize its elastic response to planar and non-planar piece- wise isometric deformations and calculate the two-dimensional stretching and bending response of a Miura-ori sheet, and show that the in-plane and out-of-plane Poisson's ratios are equal in magnitude, but opposite in sign. Our geometric approach also allows us to solve the inverse design problem of determining the geometric parameters that achieve the optimal geometric and mechanical response of such structures.

  17. A Geometric Approach to Fair Division

    Science.gov (United States)

    Barbanel, Julius

    2010-01-01

    We wish to divide a cake among some collection of people (who may have very different notions of the comparative value of pieces of cake) in a way that is both "fair" and "efficient." We explore the meaning of these terms, introduce two geometric tools to aid our analysis, and present a proof (due to Dietrich Weller) that establishes the existence…

  18. Segmented Target Design

    Science.gov (United States)

    Merhi, Abdul Rahman; Frank, Nathan; Gueye, Paul; Thoennessen, Michael; MoNA Collaboration

    2013-10-01

    A proposed segmented target would improve decay energy measurements of neutron-unbound nuclei. Experiments like this have been performed at the National Superconducting Cyclotron Laboratory (NSCL) located at Michigan State University. Many different nuclei are produced in such experiments, some of which immediately decay into a charged particle and neutron. The charged particles are bent by a large magnet and measured by a suite of charged particle detectors. The neutrons are measured by the Modular Neutron Array (MoNA) and Large Multi-Institutional Scintillation Array (LISA). With the current target setup, a nucleus in a neutron-unbound state is produced with a radioactive beam impinged upon a beryllium target. The resolution of these measurements is very dependent on the target thickness since the nuclear interaction point is unknown. In a segmented target using alternating layers of silicon detectors and Be-targets, the Be-target in which the nuclear reaction takes place would be determined. Thus the experimental resolution would improve. This poster will describe the improvement over the current target along with the status of the design. Work supported by Augustana College and the National Science Foundation grant #0969173.

  19. Geometric morphometric analysis reveals age-related differences in the distal femur of Europeans.

    Science.gov (United States)

    Cavaignac, Etienne; Savall, Frederic; Chantalat, Elodie; Faruch, Marie; Reina, Nicolas; Chiron, Philippe; Telmon, Norbert

    2017-12-01

    Few studies have looked into age-related variations in femur shape. We hypothesized that three-dimensional (3D) geometric morphometric analysis of the distal femur would reveal age-related differences. The purpose of this study was to show that differences in distal femur shape related to age could be identified, visualized, and quantified using three-dimensional (3D) geometric morphometric analysis. Geometric morphometric analysis was carried out on CT scans of the distal femur of 256 subjects living in the south of France. Ten landmarks were defined on 3D reconstructions of the distal femur. Both traditional metric and geometric morphometric analyses were carried out on these bone reconstructions. These analyses were used to identify trends in bone shape in various age-based subgroups (60). Only the average bone shape of the < 40-year subgroup was statistically different from that of the other two groups. When the population was divided into two subgroups using 40 years of age as a threshold, the subject's age was correctly assigned 80% of the time. Age-related differences are present in this bone segment. This reliable, accurate method could be used for virtual autopsy and to perform diachronic and interethnic comparisons. Moreover, this study provides updated morphometric data for a modern population in the south of France. Manufacturers of knee replacement implants will have to adapt their prosthesis models as the population evolves over time.

  20. Segmentation of the Infant Food Market

    OpenAIRE

    Hrůzová, Daniela

    2015-01-01

    The theoretical part covers general market segmentation, namely the marketing importance of differences among consumers, the essence of market segmentation, its main conditions and the process of segmentation, which consists of four consecutive phases - defining the market, determining important criteria, uncovering segments and developing segment profiles. The segmentation criteria, segmentation approaches, methods and techniques for the process of market segmentation are also described in t...

  1. Segmentation of the Infant Food Market

    OpenAIRE

    Hrůzová, Daniela

    2015-01-01

    The theoretical part covers general market segmentation, namely the marketing importance of differences among consumers, the essence of market segmentation, its main conditions and the process of segmentation, which consists of four consecutive phases - defining the market, determining important criteria, uncovering segments and developing segment profiles. The segmentation criteria, segmentation approaches, methods and techniques for the process of market segmentation are also described in t...

  2. Can EPR non-locality be geometrical?

    Energy Technology Data Exchange (ETDEWEB)

    Ne`eman, Y. [Tel-Aviv Univ. (Israel). Raymond and Beverly Sackler Faculty of Exact Sciences]|[Univ. of Texas, Austin, TX (United States). Center for Particle Physics; Botero, A. [Texas Univ., Austin, TX (United States)

    1995-10-01

    The presence in Quantum Mechanics of non-local correlations is one of the two fundamentally non-intuitive features of that theory. The non-local correlations themselves fall into two classes: EPR and Geometrical. The non-local characteristics of the geometrical type are well-understood and are not suspected of possibly generating acausal features, such as faster-than-light propagation of information. This has especially become true since the emergence of a geometrical treatment for the relevant gauge theories, i.e. Fiber Bundle geometry, in which the quantum non-localities are seen to correspond to pure homotopy considerations. This aspect is reviewed in section 2. Contrary-wise, from its very conception, the EPR situation was felt to be paradoxical. It has been suggested that the non-local features of EPR might also derive from geometrical considerations, like all other non-local characteristics of QM. In[7], one of the authors was able to point out several plausibility arguments for this thesis, emphasizing in particular similarities between the non-local correlations provided by any gauge field theory and those required by the preservation of the quantum numbers of the original EPR state-vector, throughout its spatially-extended mode. The derivation was, however, somewhat incomplete, especially because of the apparent difference between, on the one hand, the closed spatial loops arising in the analysis of the geometrical non-localities, from Aharonov-Bohm and Berry phases to magnetic monopoles and instantons, and on the other hand, in the EPR case, the open line drawn by the positions of the two moving decay products of the disintegrating particle. In what follows, the authors endeavor to remove this obstacle and show that as in all other QM non-localities, EPR is somehow related to closed loops, almost involving homotopy considerations. They develop this view in section 3.

  3. Speech Enhancement with Geometric Advent of Spectral Subtraction using Connected Time-Frequency Regions Noise Estimation

    Directory of Open Access Journals (Sweden)

    Nasir Saleem

    2013-06-01

    Full Text Available Speech enhancement with Geometric Advent of Spectral subtraction using connected time-frequency regions noise estimation aims to de-noise or reduce background noise from the noisy speech for better quality, pleasantness and improved intelligibility. Numerous enhancement methods are proposed including spectral subtraction, subspace, statistical with different noise estimations. The traditional spectral subtraction techniques are reasonably simple to implement and suffer from musical noise. This study addresses the new approach for speech enhancement which has minimized the insufficiencies in traditional spectral subtraction algorithms using MCRA. This approach with noise estimation has been evolved with PESQ, the ITU-T standard; Frequency weighted segmental SNR and weighted spectral slope. The analysis shows that Geometric approach with time-frequency connected regions has improved results than old-fashioned spectral subtraction algorithms. The normal hearing tests has suggested that new approach has lower audible musical noise.

  4. Fast Computation of Hemodynamic Sensitivity to Lumen Segmentation Uncertainty.

    Science.gov (United States)

    Sankaran, Sethuraman; Grady, Leo; Taylor, Charles A

    2015-12-01

    Patient-specific blood flow modeling combining imaging data and computational fluid dynamics can aid in the assessment of coronary artery disease. Accurate coronary segmentation and realistic physiologic modeling of boundary conditions are important steps to ensure a high diagnostic performance. Segmentation of the coronary arteries can be constructed by a combination of automated algorithms with human review and editing. However, blood pressure and flow are not impacted equally by different local sections of the coronary artery tree. Focusing human review and editing towards regions that will most affect the subsequent simulations can significantly accelerate the review process. We define geometric sensitivity as the standard deviation in hemodynamics-derived metrics due to uncertainty in lumen segmentation. We develop a machine learning framework for estimating the geometric sensitivity in real time. Features used include geometric and clinical variables, and reduced-order models. We develop an anisotropic kernel regression method for assessment of lumen narrowing score, which is used as a feature in the machine learning algorithm. A multi-resolution sensitivity algorithm is introduced to hierarchically refine regions of high sensitivity so that we can quantify sensitivities to a desired spatial resolution. We show that the mean absolute error of the machine learning algorithm compared to 3D simulations is less than 0.01. We further demonstrate that sensitivity is not predicted simply by anatomic reduction but also encodes information about hemodynamics which in turn depends on downstream boundary conditions. This sensitivity approach can be extended to other systems such as cerebral flow, electro-mechanical simulations, etc.

  5. Impact of stretching-segment on saturated flow rate of signalized intersection using cellular automation

    Institute of Scientific and Technical Information of China (English)

    李岩; 陈宽民; 过秀成

    2013-01-01

    In order to analyze the impact of stretching-segment on the saturated flow rate of signalized intersection approach, an improved cellular automation model was proposed to estimate its saturated flow rate. The NaSch model was improved by adding different slow probabilities, turning deceleration rules and modified lane changing rules. The relationship between the saturated flow rate of stretching-segments and adjacent lanes was tested in numerical simulation. The length of stretching-segment, cycle length and green time were selected as impact factors of the cellular automation model. The simulation result indicates that the geometrics design of stretching-segment and the traffic signal timing scenario have major effects on the saturated flow rate of the intersection approach. The saturated flow rate will continually increase with increasing stretching-segment length until it reaches a threshold. After reaching the threshold, the stretching-segment can be treated as a separate lane. The green time is approximately linearly related to the threshold length of the stretching-segment. An optimum cycle length exists when the length of the stretching-segment is not long enough, and it is approximately linearly related to the length of stretching-segment.

  6. The optimized calculation of driving points distribution in large segmented mirrors

    Science.gov (United States)

    Hui, Mei; Dong, Li-Quan; Zou, Yu-di; Yu, Fei; Zhao, Yue-jin

    2009-11-01

    The cophase calibration system is applied for adaptive optical phasing with a large segmented telescope mirror, which commonly uses 3-DOF micro-position device with three micro-displacement actuators to drive segments in parallel, making the entire segmented mirror in phase at one time and obtaining the desired sensor readings accordingly. In order to run the active control system to make the segments cophase, it is necessary to calculate the coordinates of the three driving points correctly for segmented mirrors specially limited in geometric parameters, especially for the stability and sensitivity of the micro-positioning device. The mirrors will be supported on a massively parallel system of electrostatically controlled, interconnected microactuators that can be coordinated to achieve precise actuation Adjusting posture of each segment independently so as to obtain the co-phasing errors and to control them at a nanometer level. Several generations of individual actuators as well as parallel arrays of actuators with segmented mirrors have been designed. A mechanical model of the system has been constructed and simulated numerically to obtain the actual position of three actuators using the RPY angle describing means. A three-channel parallel control scheme has been developed and implemented on a segmented mirror array. A universal evaluating method for optimization is prompted and will be a good guide to the design optimization of micro-positioning device for each segmented mirror when the mirrors are groundbased horizontally.

  7. Geometric Context and Orientation Map Combination for Indoor Corridor Modeling Using a Single Image

    Science.gov (United States)

    Baligh Jahromi, Ali; Sohn, Gunho

    2016-06-01

    Since people spend most of their time indoors, their indoor activities and related issues in health, security and energy consumption have to be understood. Hence, gathering and representing spatial information of indoor spaces in form of 3D models become very important. Considering the available data gathering techniques with respect to the sensors cost and data processing time, single images proved to be one of the reliable sources. Many of the current single image based indoor space modeling methods are defining the scene as a single box primitive. This domain-specific knowledge is usually not applicable in various cases where multiple corridors are joined at one scene. Here, we addressed this issue by hypothesizing-verifying multiple box primitives which represents the indoor corridor layout. Middle-level perceptual organization is the foundation of the proposed method, which relies on finding corridor layout boundaries using both detected line segments and virtual rays created by orthogonal vanishing points. Due to the presence of objects, shadows and occlusions, a comprehensive interpretation of the edge relations is often concealed. This necessitates the utilization of virtual rays to create a physically valid layout hypothesis. Many of the former methods used Orientation Map or Geometric Context to evaluate their proposed layout hypotheses. Orientation map is a map that reveals the local belief of region orientations computed from line segments, and in a segmented image geometric context uses color, texture, edge, and vanishing point cues to estimate the likelihood of each possible label for all super-pixels. Here, the created layout hypotheses are evaluated by an objective function which considers the fusion of orientation map and geometric context with respect to the horizontal viewing angle at each image pixel. Finally, the best indoor corridor layout hypothesis which gets the highest score from the scoring function will be selected and converted to a 3D

  8. Segmented heat exchanger

    Science.gov (United States)

    Baldwin, Darryl Dean; Willi, Martin Leo; Fiveland, Scott Byron; Timmons, Kristine Ann

    2010-12-14

    A segmented heat exchanger system for transferring heat energy from an exhaust fluid to a working fluid. The heat exchanger system may include a first heat exchanger for receiving incoming working fluid and the exhaust fluid. The working fluid and exhaust fluid may travel through at least a portion of the first heat exchanger in a parallel flow configuration. In addition, the heat exchanger system may include a second heat exchanger for receiving working fluid from the first heat exchanger and exhaust fluid from a third heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the second heat exchanger in a counter flow configuration. Furthermore, the heat exchanger system may include a third heat exchanger for receiving working fluid from the second heat exchanger and exhaust fluid from the first heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the third heat exchanger in a parallel flow configuration.

  9. Schizophrenia as segmental progeria

    Science.gov (United States)

    Papanastasiou, Evangelos; Gaughran, Fiona; Smith, Shubulade

    2011-01-01

    Schizophrenia is associated with a variety of physical manifestations (i.e. metabolic, neurological) and despite psychotropic medication being blamed for some of these (in particular obesity and diabetes), there is evidence that schizophrenia itself confers an increased risk of physical disease and early death. The observation that schizophrenia and progeroid syndromes share common clinical features and molecular profiles gives rise to the hypothesis that schizophrenia could be conceptualized as a whole body disorder, namely a segmental progeria. Mammalian cells employ the mechanisms of cellular senescence and apoptosis (programmed cell death) as a means to control inevitable DNA damage and cancer. Exacerbation of those processes is associated with accelerated ageing and schizophrenia and this warrants further investigation into possible underlying biological mechanisms, such as epigenetic control of the genome. PMID:22048679

  10. Probabilistic retinal vessel segmentation

    Science.gov (United States)

    Wu, Chang-Hua; Agam, Gady

    2007-03-01

    Optic fundus assessment is widely used for diagnosing vascular and non-vascular pathology. Inspection of the retinal vasculature may reveal hypertension, diabetes, arteriosclerosis, cardiovascular disease and stroke. Due to various imaging conditions retinal images may be degraded. Consequently, the enhancement of such images and vessels in them is an important task with direct clinical applications. We propose a novel technique for vessel enhancement in retinal images that is capable of enhancing vessel junctions in addition to linear vessel segments. This is an extension of vessel filters we have previously developed for vessel enhancement in thoracic CT scans. The proposed approach is based on probabilistic models which can discern vessels and junctions. Evaluation shows the proposed filter is better than several known techniques and is comparable to the state of the art when evaluated on a standard dataset. A ridge-based vessel tracking process is applied on the enhanced image to demonstrate the effectiveness of the enhancement filter.

  11. Automated medical image segmentation techniques

    Directory of Open Access Journals (Sweden)

    Sharma Neeraj

    2010-01-01

    Full Text Available Accurate segmentation of medical images is a key step in contouring during radiotherapy planning. Computed topography (CT and Magnetic resonance (MR imaging are the most widely used radiographic techniques in diagnosis, clinical studies and treatment planning. This review provides details of automated segmentation methods, specifically discussed in the context of CT and MR images. The motive is to discuss the problems encountered in segmentation of CT and MR images, and the relative merits and limitations of methods currently available for segmentation of medical images.

  12. Application of geometric algebra for the description of polymer conformations.

    Science.gov (United States)

    Chys, Pieter

    2008-03-14

    In this paper a Clifford algebra-based method is applied to calculate polymer chain conformations. The approach enables the calculation of the position of an atom in space with the knowledge of the bond length (l), valence angle (theta), and rotation angle (phi) of each of the preceding bonds in the chain. Hence, the set of geometrical parameters {l(i),theta(i),phi(i)} yields all the position coordinates p(i) of the main chain atoms. Moreover, the method allows the calculation of side chain conformations and the computation of rotations of chain segments. With these features it is, in principle, possible to generate conformations of any type of chemical structure. This method is proposed as an alternative for the classical approach by matrix algebra. It is more straightforward and its final symbolic representation considerably simpler than that of matrix algebra. Approaches for realistic modeling by means of incorporation of energetic considerations can be combined with it. This article, however, is entirely focused at showing the suitable mathematical framework on which further developments and applications can be built.

  13. Object Segmentation Methods for Online Model Acquisition to Guide Robotic Grasping

    Science.gov (United States)

    Ignakov, Dmitri

    A vision system is an integral component of many autonomous robots. It enables the robot to perform essential tasks such as mapping, localization, or path planning. A vision system also assists with guiding the robot's grasping and manipulation tasks. As an increased demand is placed on service robots to operate in uncontrolled environments, advanced vision systems must be created that can function effectively in visually complex and cluttered settings. This thesis presents the development of segmentation algorithms to assist in online model acquisition for guiding robotic manipulation tasks. Specifically, the focus is placed on localizing door handles to assist in robotic door opening, and on acquiring partial object models to guide robotic grasping. First, a method for localizing a door handle of unknown geometry based on a proposed 3D segmentation method is presented. Following segmentation, localization is performed by fitting a simple box model to the segmented handle. The proposed method functions without requiring assumptions about the appearance of the handle or the door, and without a geometric model of the handle. Next, an object segmentation algorithm is developed, which combines multiple appearance (intensity and texture) and geometric (depth and curvature) cues. The algorithm is able to segment objects without utilizing any a priori appearance or geometric information in visually complex and cluttered environments. The segmentation method is based on the Conditional Random Fields (CRF) framework, and the graph cuts energy minimization technique. A simple and efficient method for initializing the proposed algorithm which overcomes graph cuts' reliance on user interaction is also developed. Finally, an improved segmentation algorithm is developed which incorporates a distance metric learning (DML) step as a means of weighing various appearance and geometric segmentation cues, allowing the method to better adapt to the available data. The improved method

  14. Geometric model and analysis of rod-like large space structures

    Science.gov (United States)

    Nayfeh, A. H.; Hefney, M. S.

    1978-01-01

    The application of geometrical schemes to large sphere antenna reflectors was investigated. The purpose of these studies is to determine the shape and size of flat segmented surfaces which approximate general shells of revolution and in particular spherical and paraboloidal reflective surfaces. The extensive mathematical and computational geometry analyses of the reflector resulted in the development of a general purpose computer program. This program is capable of generating the complete design parameters of the dish and can meet stringent accuracy requirements. The computer program also includes a graphical self contained subroutine which graphically displays the required design.

  15. Automatic Target Recognition in Synthetic Aperture Sonar Images Based on Geometrical Feature Extraction

    Directory of Open Access Journals (Sweden)

    J. Del Rio Vera

    2009-01-01

    Full Text Available This paper presents a new supervised classification approach for automated target recognition (ATR in SAS images. The recognition procedure starts with a novel segmentation stage based on the Hilbert transform. A number of geometrical features are then extracted and used to classify observed objects against a previously compiled database of target and non-target features. The proposed approach has been tested on a set of 1528 simulated images created by the NURC SIGMAS sonar model, achieving up to 95% classification accuracy.

  16. Joint Image Reconstruction and Segmentation Using the Potts Model

    CERN Document Server

    Storath, Martin; Frikel, Jürgen; Unser, Michael

    2014-01-01

    We propose a new algorithmic approach to the non-smooth and non-convex Potts problem (also called piecewise-constant Mumford-Shah problem) for inverse imaging problems. We derive a suitable splitting into specific subproblems that can all be solved efficiently. Our method does not require a priori knowledge on the gray levels nor on the number of segments of the reconstruction. Further, it avoids anisotropic artifacts such as geometric staircasing. We demonstrate the suitability of our method for joint image reconstruction and segmentation from limited data in x-ray and photoacoustic tomography. For instance, our method is able to reconstruct the Shepp-Logan phantom from $7$ angular views only. We demonstrate the practical applicability in an experiment with real PET data.

  17. Potential generated by a massive inhomogeneous straight segment

    Institute of Scientific and Technical Information of China (English)

    Nour-Eddine Najid; El Haj Elourabi; Mohamed Zegoumou

    2011-01-01

    The discoveries of binary asteroids have opened an important new field of research concerning the calculation of potential generated by irregular bodies. Some of them have an elongated shape. A simple model to describe the motion of a test parficle in that kind of potential requires consideration of a finite homogeneous straight segment. We construct this model by adding an inhomogeneous distribution of mass.To be consistent with the geometrical shape of the asteroid, we explore a parabolic profile of the density. We establish the closed analytical form of the potential generated by this inhomogeneous massive segment. The study of the dynamical behavior is fulfilled by the use of Lagrangian formulation, which allows us to calculate some two and three dimensional orbits.

  18. Exploring geometric properties of gold nanoparticles using TEM images to explain their chaperone like activity for citrate synthase

    Science.gov (United States)

    Kaushik, Vikas; Lahiri, Tapobrata; Singha, Shantiswaroop; Dasgupta, Anjan Kumar; Mishra, Hrishikesh; Kumar, Upendra; Kumar, Rajeev

    2011-01-01

    Study on geometric properties of nanoparticles and their relation with biomolecular activities, especially protein is quite a new field to explore. This work was carried out towards this direction where images of gold nanoparticles obtained from transmission electron microscopy were processed to extract their size and area profile at different experimental conditions including and excluding a protein, citrate synthase. Since the images were ill-posed, texture of a context-window for each pixel was used as input to a back-propagation network architecture to obtain decision on its membership as nanoparticle. The segmented images were further analysed by k-means clustering to derive geometric properties of individual nanoparticles even from their assembled form. The extracted geometric information was found to be crucial to give a model featuring porous cage like configuration of nanoparticle assembly using which the chaperone like activity of gold nanoparticles can be explained. PMID:22355230

  19. Automatic segmentation of pulmonary segments from volumetric chest CT scans.

    NARCIS (Netherlands)

    Rikxoort, E.M. van; Hoop, B. de; Vorst, S. van de; Prokop, M.; Ginneken, B. van

    2009-01-01

    Automated extraction of pulmonary anatomy provides a foundation for computerized analysis of computed tomography (CT) scans of the chest. A completely automatic method is presented to segment the lungs, lobes and pulmonary segments from volumetric CT chest scans. The method starts with lung segmenta

  20. Scale effect and geometric shapes of grains

    Institute of Scientific and Technical Information of China (English)

    GUO Hui; GUO Xing-ming

    2007-01-01

    The rule-of-mixture approach has become one of the widely spread ways to investigate the mechanical properties of nano-materials and nano-structures, and it is very important for the simulation results to exactly compute phase volume fractions. The nanocrystalline (NC) materials are treated as three-phase composites consisting of grain core phase, grain boundary (GB) phase and triple junction phase, and a two-dimensional three-phase mixture regular polygon model is established to investigate the scale effect of mechanical properties of NC materials due to the geometrical polyhedron characteristics of crystal grain. For different multi-sided geometrical shapes of grains, the corresponding regular polygon model is adopted to obtain more precise phase volume fractions and exactly predict the mechanical properties of NC materials.

  1. Scale-invariant geometric random graphs

    CERN Document Server

    Xie, Zheng

    2015-01-01

    We introduce and analyze a class of growing geometric random graphs that are invariant under rescaling of space and time. Directed connections between nodes are drawn according to an influence zone that depends on node position in space and time, capturing the heterogeneity and increased specialization found in growing networks. Through calculations and numerical simulations we explore the consequences of scale-invariance for geometric graphs generated this way. Our analysis reveals a dichotomy between scale-free and Poisson distributions of in- and out-degree, the existence of a random number of hub nodes, high clustering, and unusual percolation behaviour. Moreover, we show how these properties provide a good fit to those of empirically observed web graphs.

  2. Langlands Program, Trace Formulas, and their Geometrization

    CERN Document Server

    Frenkel, Edward

    2012-01-01

    The Langlands Program relates Galois representations and automorphic representations of reductive algebraic groups. The trace formula is a powerful tool in the study of this connection and the Langlands Functoriality Conjecture. After giving an introduction to the Langlands Program and its geometric version, which applies to curves over finite fields and over the complex field, I give a survey of my recent joint work with Robert Langlands and Ngo Bao Chau (arXiv:1003.4578 and arXiv:1004.5323) on a new approach to proving the Functoriality Conjecture using the trace formulas, and on the geometrization of the trace formulas. In particular, I discuss the connection of the latter to the categorification of the Langlands correspondence.

  3. Geometrical dynamics of Born-Infeld objects

    Energy Technology Data Exchange (ETDEWEB)

    Cordero, Ruben [Departamento de Fisica, Escuela Superior de Fisica y Matematicas del I.P.N., Unidad Adolfo Lopez Mateos, Edificio 9, 07738 Mexico, D.F. (Mexico); Molgado, Alberto [Facultad de Ciencias, Universidad de Colima, Bernal DIaz del Castillo 340, Col. Villas San Sebastian, Colima (Mexico); Rojas, Efrain [Facultad de Fisica e Inteligencia Artificial, Universidad Veracruzana, 91000 Xalapa, Veracruz (Mexico)

    2007-03-21

    We present a geometrically inspired study of the dynamics of Dp-branes. We focus on the usual non-polynomial Dirac-Born-Infeld action for the worldvolume swept out by the brane in its evolution in general background spacetimes. We emphasize the form of the resulting equations of motion which are quite simple and resemble Newton's second law, complemented with a conservation law for a worldvolume bicurrent. We take a closer look at the classical Hamiltonian analysis which is supported by the ADM framework of general relativity. The constraints and their algebra are identified as well as the geometrical role they play in phase space. In order to illustrate our results, we review the dynamics of a D1-brane immersed in a AdS{sub 3} x S{sup 3} background spacetime. We exhibit the mechanical properties of Born-Infeld objects paving the way to a consistent quantum formulation.

  4. Advanced Geometric Modeler with Hybrid Representation

    Institute of Scientific and Technical Information of China (English)

    杨长贵; 陈玉健; 等

    1996-01-01

    An advanced geometric modeler GEMS4.0 has been developed,in which feature representation is used at the highest level abstraction of a product model.Boundary representation is used at the bottom level,while CSG model is adopted at the median level.A BRep data structure capable of modeling non-manifold is adopted.UNRBS representation is used for all curved surfaces,Quadric surfaces have dual representations consisting of their geometric data such as radius,center point,and center axis.Boundary representation of free form surfaces is easily built by sweeping and skinning method with NURBS geometry.Set operations on curved solids with boundary representation are performed by an evaluation process consisting of four steps.A file exchange facility is provided for the conversion between product data described by STEP and product information generated by GEMS4.0.

  5. GEOMETRICALLY INVARIANT WATERMARKING BASED ON RADON TRANSFORMATION

    Institute of Scientific and Technical Information of China (English)

    Cai Lian; Du Sidan; Gao Duntang

    2005-01-01

    The weakness of classical watermarking methods is the vulnerability to geometrical distortions that widely occur during normal use of the media. In this letter, a new imagewatermarking method is presented to resist Rotation, Scale and Translation (RST) attacks. The watermark is embedded into a domain obtained by taking Radon transform of a circular area selected from the original image, and then extracting Two-Dimensional (2-D) Fourier magnitude of the Radon transformed image. Furthermore, to prevent the watermarked image from degrading due to inverse Radon transform, watermark signal is inversely Radon transformed individually.Experimental results demonstrate that the proposed scheme is able to withstand a variety of attacks including common geometric attacks.

  6. The bouncing ball through a geometrical series

    Science.gov (United States)

    Flores, Sergio; Alfaro, Luis L.; Chavez, Juan E.; Bastarrachea, Aztlan; Hurtado, Jazmin

    2008-10-01

    The mathematical representation of the physical situation related to a bouncing ball on the floor is an important understanding difficulty for most of the students during the introductory mechanics and mathematics courses. The research group named Physics and mathematics in context from the University of Ciudad Juarez is concerned about the versatility in the change from a mathematical representation to the own physical context of any problem under a traditional instruction. In this case, the main idea is the association of the physical properties of the bouncing ball situation to the nearest mathematical model based on a geometrical series. The proposal of the cognitive development is based on a geometrical series that shows the time the ball takes to stop. In addition, we show the behavior of the ratio of the consecutive heights during the motion.

  7. Mixed State Geometric Phase from Thomas Rotations

    CERN Document Server

    Lévai, Peter

    2003-01-01

    It is shown that Uhlmann's parallel transport of purifications along a path of mixed states represented by $2\\times 2$ density matrices is just the path ordered product of Thomas rotations. These rotations are invariant under hyperbolic translations inside the Bloch sphere that can be regarded as the Poincar\\'e ball model of hyperbolic geometry. A general expression for the mixed state geometric phase for an {\\it arbitrary} geodesic triangle in terms of the Bures fidelities is derived. The formula gives back the solid angle result well-known from studies of the pure state geometric phase. It is also shown that this mixed state anholonomy can be reinterpreted as the pure state non-Abelian anholonomy of entangled states living in a suitable restriction of the quaternionic Hopf bundle. In this picture Uhlmann's parallel transport is just Pancharatnam transport of quaternionic spinors.

  8. Geometric methods in PDE’s

    CERN Document Server

    Manfredini, Maria; Morbidelli, Daniele; Polidoro, Sergio; Uguzzoni, Francesco

    2015-01-01

    The analysis of PDEs is a prominent discipline in mathematics research, both in terms of its theoretical aspects and its relevance in applications. In recent years, the geometric properties of linear and nonlinear second order PDEs of elliptic and parabolic type have been extensively studied by many outstanding researchers. This book collects contributions from a selected group of leading experts who took part in the INdAM meeting "Geometric methods in PDEs", on the occasion of the 70th birthday of Ermanno Lanconelli. They describe a number of new achievements and/or the state of the art in their discipline of research, providing readers an overview of recent progress and future research trends in PDEs. In particular, the volume collects significant results for sub-elliptic equations, potential theory and diffusion equations, with an emphasis on comparing different methodologies and on their implications for theory and applications. .

  9. Superatoms: Electronic and Geometric Effects on Reactivity.

    Science.gov (United States)

    Reber, Arthur C; Khanna, Shiv N

    2017-02-21

    The relative role of electronic and geometric effects on the stability of clusters has been a contentious topic for quite some time, with the focus on electronic structure generally gaining the upper hand. In this Account, we hope to demonstrate that both electronic shell filling and geometric shell filling are necessary concepts for an intuitive understanding of the reactivity of metal clusters. This work will focus on the reactivity of aluminum based clusters, although these concepts may be applied to clusters of different metals and ligand protected clusters. First we highlight the importance of electronic shell closure in the stability of metallic clusters. Quantum confinement in small compact metal clusters results in the bunching of quantum states that are reminiscent of the electronic shells in atoms. Clusters with closed electronic shells and large HOMO-LUMO (highest occupied molecular orbital-lowest unoccupied molecular orbital) gaps have enhanced stability and reduced reactivity with O2 due to the need for the cluster to accommodate the spin of molecular oxygen during activation of the molecule. To intuitively understand the reactivity of clusters with protic species such as water and methanol, geometric effects are needed. Clusters with unsymmetrical structures and defects usually result in uneven charge distribution over the surface of the cluster, forming active sites. To reduce reactivity, these sites must be quenched. These concepts can also be applied to ligand protected clusters. Clusters with ligands that are balanced across the cluster are less reactive, while clusters with unbalanced ligands can result in induced active sites. Adatoms on the surface of a cluster that are bound to a ligand result in an activated adatom that reacts readily with protic species, offering a mechanism by which the defects will be etched off returning the cluster to a closed geometric shell. The goal of this Account is to argue that both geometric and electronic shell

  10. Geometric Computations on Indecisive and Uncertain Points

    CERN Document Server

    Jorgensen, Allan; Phillips, Jeff M

    2012-01-01

    We study computing geometric problems on uncertain points. An uncertain point is a point that does not have a fixed location, but rather is described by a probability distribution. When these probability distributions are restricted to a finite number of locations, the points are called indecisive points. In particular, we focus on geometric shape-fitting problems and on building compact distributions to describe how the solutions to these problems vary with respect to the uncertainty in the points. Our main results are: (1) a simple and efficient randomized approximation algorithm for calculating the distribution of any statistic on uncertain data sets; (2) a polynomial, deterministic and exact algorithm for computing the distribution of answers for any LP-type problem on an indecisive point set; and (3) the development of shape inclusion probability (SIP) functions which captures the ambient distribution of shapes fit to uncertain or indecisive point sets and are admissible to the two algorithmic constructi...

  11. Geometrical multiresolution adaptive transforms theory and applications

    CERN Document Server

    Lisowska, Agnieszka

    2014-01-01

    Modern image processing techniques are based on multiresolution geometrical methods of image representation. These methods are efficient in sparse approximation of digital images. There is a wide family of functions called simply ‘X-lets’, and these methods can be divided into two groups: the adaptive and the nonadaptive. This book is devoted to the adaptive methods of image approximation, especially to multismoothlets. Besides multismoothlets, several other new ideas are also covered. Current literature considers the black and white images with smooth horizon function as the model for sparse approximation but here, the class of blurred multihorizon is introduced, which is then used in the approximation of images with multiedges. Additionally, the semi-anisotropic model of multiedge representation, the introduction of the shift invariant multismoothlet transform and sliding multismoothlets are also covered. Geometrical Multiresolution Adaptive Transforms should be accessible to both mathematicians and com...

  12. Spectral statistics of random geometric graphs

    CERN Document Server

    Dettmann, Carl P; Knight, Georgie

    2016-01-01

    We study the spectrum of random geometric graphs using random matrix theory. We look at short range correlations in the level spacings via the nearest neighbour and next nearest neighbour spacing distribution and long range correlations via the spectral rigidity $\\Delta_3$ statistic. These correlations in the level spacings give information about localisation of eigenvectors, level of community structure and the level of randomness within the networks. We find that the spectral statistics of random geometric graphs fits the universality of random matrix theory. In particular, the short range correlations are very close to those found in the Gaussian orthogonal ensemble of random matrix theory. For long range correlations we find deviations from Gaussian orthogonal ensemble statistics towards Poisson. We compare with previous results for Erd\\H{o}s-R\\'{e}nyi, Barab{\\'a}si-Albert and Watts-Strogatz random graphs where similar random matrix theory universality has been found.

  13. A Geometric Zero-One Law

    CERN Document Server

    Gilman, Robert H; Miasnikov, Alexei

    2007-01-01

    Each relational structure X has an associated Gaifman graph, which endows X with the properties of a graph. Suppose that X is infinite, connected and of bounded degree. A first-order sentence in the language of X is almost surely true (resp. a.s. false) for finite substructures of X if for every element x in X, the fraction of substructures of the ball of radius n around x which satisfy the sentence approaches 1 (resp. 0) as n approaches infinity. Suppose further that, for every finite substructure, X has a disjoint isomorphic substructure. Then every sentence is a.s. true or a.s. false for finite substructures of X. This is one form of the geometric zero-one law. We formulate it also in a form that does not mention the ambient infinite structure. In addition, we investigate various questions related to the geometric zero-one law.

  14. Geometric reconstruction methods for electron tomography

    CERN Document Server

    Alpers, Andreas; König, Stefan; Pennington, Robert S; Boothroyd, Chris B; Houben, Lothar; Dunin-Borkowski, Rafal E; Batenburg, Kees Joost

    2012-01-01

    Electron tomography is becoming an increasingly important tool in materials science for studying three-dimensional morphologies and chemical compositions of nanostructures. The image quality obtained by many current algorithms is seriously affected by the problems of missing wedge artefacts and nonlinear projection intensities due to diffraction effects. The former refers to the fact that data cannot be acquired over the full $180^\\circ$ tilt range; the latter implies that for some orientations, crystalline structures can show strong contrast changes. To overcome these problems we introduce four algorithms from the mathematical fields of geometric and discrete tomography. The algorithms incorporate geometric prior knowledge (mainly convexity and homogeneity), which also in principle considerably reduces the number of tilt angles required. Results are discussed for the reconstruction of an InAs nanowire.

  15. Theoretical discussions on the geometrical phase analysis

    Energy Technology Data Exchange (ETDEWEB)

    Rouviere, J.L. [CEA-Grenoble, Departement de Recherche Fondamentale sur la Matiere Condensee, SP2M, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France)]. E-mail: rouvierej@cea.fr; Sarigiannidou, E. [CEA-Grenoble, Departement de Recherche Fondamentale sur la Matiere Condensee, SP2M, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France)

    2005-12-15

    The Geometrical phase analysis, which is a very efficient method to measure deformation from High resolution transmission electron microscopy images, is studied from a theoretical point of view. We point out that the basic property of this method is its ability to measure local reciprocal lattice parameters with a high level of accuracy. We attempt to provide some insights into (a) different formula used in the geometrical phase analysis such as the well-known relation between phase and displacement: P{sub g}(r)=-2{pi}g.u(r), (b) the two different definitions of strain, each of which corresponding to a different lattice reference and (c) the meaning of a continuous displacement in a dot-like high resolution image. The case of one-dimensional analysis is also presented. Finally, we show that the method is able to give the position of the dot that is nearest to a given pixel in the image.

  16. Geometrical geodesy techniques in Goddard earth models

    Science.gov (United States)

    Lerch, F. J.

    1974-01-01

    The method for combining geometrical data with satellite dynamical and gravimetry data for the solution of geopotential and station location parameters is discussed. Geometrical tracking data (simultaneous events) from the global network of BC-4 stations are currently being processed in a solution that will greatly enhance of geodetic world system of stations. Previously the stations in Goddard earth models have been derived only from dynamical tracking data. A linear regression model is formulated from combining the data, based upon the statistical technique of weighted least squares. Reduced normal equations, independent of satellite and instrumental parameters, are derived for the solution of the geodetic parameters. Exterior standards for the evaluation of the solution and for the scale of the earth's figure are discussed.

  17. Geometric Correction for Braille Document Images

    Directory of Open Access Journals (Sweden)

    Padmavathi.S

    2016-04-01

    Full Text Available Braille system has been used by the visually impair ed people for reading.The shortage of Braille books has caused a need for conversion of Braille t o text. This paper addresses the geometric correction of a Braille document images. Due to the standard measurement of the Braille cells, identification of Braille characters could be achie ved by simple cell overlapping procedure. The standard measurement varies in a scaled document an d fitting of the cells become difficult if the document is tilted. This paper proposes a line fitt ing algorithm for identifying the tilt (skew angle. The horizontal and vertical scale factor is identified based on the ratio of distance between characters to the distance between dots. Th ese are used in geometric transformation matrix for correction. Rotation correction is done prior to scale correction. This process aids in increased accuracy. The results for various Braille documents are tabulated.

  18. Geometrical vs wave optics under gravitational waves

    CERN Document Server

    Angélil, Raymond

    2015-01-01

    We present some new derivations of the effect of a plane gravitational wave on a light ray. A simple interpretation of the results is that a gravitational wave causes a phase modulation of electromagnetic waves. We arrive at this picture from two contrasting directions, namely null geodesics and Maxwell's equations, or, geometric and wave optics. Under geometric optics, we express the geodesic equations in Hamiltonian form and solve perturbatively for the effect of gravitational waves. We find that the well-known time-delay formula for light generalizes trivially to massive particles. We also recover, by way of a Hamilton-Jacobi equation, the phase modulation obtained under wave optics. Turning then to wave optics, rather than solving Maxwell's equations directly for the fields, as in most previous approaches, we derive a perturbed wave equation (perturbed by the gravitational wave) for the electromagnetic four-potential. From this wave equation it follows that the four-potential and the electric and magnetic...

  19. New computation methods for geometrical optics

    CERN Document Server

    Lin, Psang Dain

    2014-01-01

    This book employs homogeneous coordinate notation to compute the first- and second-order derivative matrices of various optical quantities. It will be one of the important mathematical tools for automatic optical design. The traditional geometrical optics is based on raytracing only. It is very difficult, if possible, to compute the first- and second-order derivatives of a ray and optical path length with respect to system variables, since they are recursive functions. Consequently, current commercial software packages use a finite difference approximation methodology to estimate these derivatives for use in optical design and analysis. Furthermore, previous publications of geometrical optics use vector notation, which is comparatively awkward for computations for non-axially symmetrical systems.

  20. Color fringe projection profilometry using geometric constraints

    Science.gov (United States)

    Cheng, Teng; Du, Qingyu; Jiang, Yaxi

    2017-09-01

    A recently proposed phase unwrapping method using geometric constraints performs well without requiring additional camera, more patterns or global search. The major limitation of this technique is the confined measurement depth range (MDR) within 2π in phase domain. To enlarge the MDR, this paper proposes using color fringes for three-dimensional (3D) shape measurement. Each six fringe periods encoded with six different colors are treated as one group. The local order within one group can be identified with reference to the color distribution. Then the phase wrapped period-by-period is converted into the phase wrapped group-by-group. The geometric constraints of the fringe projection system are used to determine the group order. Such that the MDR is extended from 2π to 12π by six times. Experiment results demonstrate the success of the proposed method to measure two isolated objects with large MDR.

  1. Finsler geometric extension of Einstein gravity

    CERN Document Server

    Pfeifer, Christian

    2011-01-01

    We construct gravitational dynamics for Finsler spacetimes in terms of an action integral on the unit tangent bundle. These spacetimes are generalizations of Lorentzian metric manifolds which satisfy necessary causality properties. A coupling procedure for matter fields to Finsler gravity completes our new theory that consistently becomes equivalent to Einstein gravity in the limit of metric geometry. We provide a precise geometric definition of observers and their measurements, and show that the transformations by means of which different observers communicate form a groupoid that generalizes the usual Lorentz group. Moreover, we discuss the implementation of Finsler spacetime symmetries. We use our results to analyze a particular spacetime model that leads to Finsler geometric refinements of the linearized Schwarzschild solution.

  2. Finsler geometric extension of Einstein gravity

    Science.gov (United States)

    Pfeifer, Christian; Wohlfarth, Mattias N. R.

    2012-03-01

    We construct gravitational dynamics for Finsler spacetimes in terms of an action integral on the unit tangent bundle. These spacetimes are generalizations of Lorentzian metric manifolds which satisfy necessary causality properties. A coupling procedure for matter fields to Finsler gravity completes our new theory that consistently becomes equivalent to Einstein gravity in the limit of metric geometry. We provide a precise geometric definition of observers and their measurements and show that the transformations, by means of which different observers communicate, form a groupoid that generalizes the usual Lorentz group. Moreover, we discuss the implementation of Finsler spacetime symmetries. We use our results to analyze a particular spacetime model that leads to Finsler geometric refinements of the linearized Schwarzschild solution.

  3. Geometric dynamical observables in rare gas crystals

    Energy Technology Data Exchange (ETDEWEB)

    Casetti, L. [Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa (Italy); Macchi, A. [Istituto Nazionale di Fisica della Materia (INFM), Unita di Firenze, Largo Enrico Fermi 2, 50125 Firenze (Italy)

    1997-03-01

    We present a detailed description of how a differential geometric approach to Hamiltonian dynamics can be used for determining the existence of a crossover between different dynamical regimes in a realistic system, a model of a rare gas solid. Such a geometric approach allows us to locate the energy threshold between weakly and strongly chaotic regimes, and to estimate the largest Lyapunov exponent. We show how standard methods of classical statistical mechanics, i.e., Monte Carlo simulations, can be used for our computational purposes. Finally we consider a Lennard-Jones crystal modeling solid xenon. The value of the energy threshold turns out to be in excellent agreement with the numerical estimate based on the crossover between slow and fast relaxation to equilibrium obtained in a previous work by molecular dynamics simulations. {copyright} {ital 1997} {ital The American Physical Society}

  4. Geometric dynamical observables in rare gas crystals

    CERN Document Server

    Casetti, L; Casetti, Lapo; Macchi, Alessandro

    1996-01-01

    We present a detailed description of how a differential geometric approach to Hamiltonian dynamics can be used for determining the existence of a crossover between different dynamical regimes in a realistic system, a model of a rare gas solid. Such a geometric approach allows to locate the energy threshold between weakly and strongly chaotic regimes, and to estimate the largest Lyapunov exponent. We show how standard mehods of classical statistical mechanics, i.e. Monte Carlo simulations, can be used for our computational purposes. Finally we consider a Lennard Jones crystal modeling solid Xenon. The value of the energy threshold turns out to be in excellent agreement with the numerical estimate based on the crossover between slow and fast relaxation to equilibrium obtained in a previous work by molecular dynamics simulations.

  5. Topological minimally entangled states via geometric measure

    Science.gov (United States)

    Buerschaper, Oliver; García-Saez, Artur; Orús, Román; Wei, Tzu-Chieh

    2014-11-01

    Here we show how the Minimally Entangled States (MES) of a 2d system with topological order can be identified using the geometric measure of entanglement. We show this by minimizing this measure for the doubled semion, doubled Fibonacci and toric code models on a torus with non-trivial topological partitions. Our calculations are done either quasi-exactly for small system sizes, or using the tensor network approach in Orús et al (arXiv:1406.0585) for large sizes. As a byproduct of our methods, we see that the minimisation of the geometric entanglement can also determine the number of Abelian quasiparticle excitations in a given model. The results in this paper provide a very efficient and accurate way of extracting the full topological information of a 2d quantum lattice model from the multipartite entanglement structure of its ground states.

  6. Geometric description of images as topographic maps

    CERN Document Server

    Caselles, Vicent

    2010-01-01

    This volume discusses the basic geometric contents of an image and presents a tree data structure to handle those contents efficiently. The nodes of the tree are derived from connected components of level sets of the intensity, while the edges represent inclusion information. Grain filters, morphological operators simplifying these geometric contents, are analyzed and several applications to image comparison and registration, and to edge and corner detection, are presented. The mathematically inclined reader may be most interested in Chapters 2 to 6, which generalize the topological Morse description to continuous or semicontinuous functions, while mathematical morphologists may more closely consider grain filters in Chapter 3. Computer scientists will find algorithmic considerations in Chapters 6 and 7, the full justification of which may be found in Chapters 2 and 4 respectively. Lastly, all readers can learn more about the motivation for this work in the image processing applications presented in Chapter 8...

  7. Bootstrap Percolation on Random Geometric Graphs

    CERN Document Server

    Bradonjić, Milan

    2012-01-01

    Bootstrap percolation has been used effectively to model phenomena as diverse as emergence of magnetism in materials, spread of infection, diffusion of software viruses in computer networks, adoption of new technologies, and emergence of collective action and cultural fads in human societies. It is defined on an (arbitrary) network of interacting agents whose state is determined by the state of their neighbors according to a threshold rule. In a typical setting, bootstrap percolation starts by random and independent "activation" of nodes with a fixed probability $p$, followed by a deterministic process for additional activations based on the density of active nodes in each neighborhood ($\\th$ activated nodes). Here, we study bootstrap percolation on random geometric graphs in the regime when the latter are (almost surely) connected. Random geometric graphs provide an appropriate model in settings where the neighborhood structure of each node is determined by geographical distance, as in wireless {\\it ad hoc} ...

  8. An Urban Open Space Extraction Method:Combining Spectral and Geometric Characteristics

    Institute of Scientific and Technical Information of China (English)

    ZHU Guobin; Dan G. Blumberg

    2004-01-01

    This paper introduces an advanced method based on remote sensing and Geographic Information System for urban open space extraction combining spectral and geometric characteristics. From both semantic and remote sensing perspectives, a hybrid hierarchy structure and class organization of open space are issues and mapped from one to another. Based on per-pixel and segmentation mechanism separately, two classification approaches are performed. Owing to prior of spatial aggregation and spectral contribution, the segmentation-based classification exhibits its superiority over a pixel-based classification. Finally a GIS-based post procedure is hired to eliminate some unsuitable open space components in both spatial and numerical constraints on the one hand, and separate open space some fabrics from fused remote sensing classes by defining their Shape Index on the other hand. The case study of Beer Sheva based on ASTER data proves this method is a feasible way for open space extraction.

  9. Pose measurement method based on geometrical constraints

    Institute of Scientific and Technical Information of China (English)

    Zimiao Zhang; Changku Sun; Pengfei Sun; Peng Wang

    2011-01-01

    @@ The pose estimation method based on geometric constraints is studied.The coordinates of the five feature points in the camera coordinate system are calculated to obtain the pose of an object on the basis of the geometric constraints formed by the connective lines of the feature points and the coordinates of the feature points on the CCD image plane; during the solution process,the scaling and orthography projection model is used to approximate the perspective projection model.%The pose estimation method based on geometric constraints is studied. The coordinates of the five feature points in the camera coordinate system are calculated to obtain the pose of an object on the basis of the geometric constraints formed by the connective lines of the feature points and the coordinates of the feature points on the CCD image plane; during the solution process, the scaling and orthography projection model is used to approximate the perspective projection model. The initial values of the coordinates of the five feature points in the camera coordinate system are obtained to ensure the accuracy and convergence rate of the non-linear algorithm. In accordance with the perspective projection characteristics of the circular feature landmarks, we propose an approach that enables the iterative acquisition of accurate target poses through the correction of the perspective projection coordinates of the circular feature landmark centers. Experimental results show that the translation positioning accuracy reaches ±0.05 mm in the measurement range of 0-40 mm, and the rotation positioning accuracy reaches ±0.06° in the measurement range of 4°-60°.

  10. Protein Folding: A New Geometric Analysis

    OpenAIRE

    Simmons, Walter A.; Joel L. Weiner

    2008-01-01

    A geometric analysis of protein folding, which complements many of the models in the literature, is presented. We examine the process from unfolded strand to the point where the strand becomes self-interacting. A central question is how it is possible that so many initial configurations proceed to fold to a unique final configuration. We put energy and dynamical considerations temporarily aside and focus upon the geometry alone. We parameterize the structure of an idealized protein using the ...

  11. A new geometric approach to Sturmian words

    CERN Document Server

    Matomäki, Kaisa

    2012-01-01

    We introduce a new geometric approach to Sturmian words by means of a mapping that associates certain lines in the n x n -grid and sets of finite Sturmian words of length n. Using this mapping, we give new proofs of the formulas enumerating the finite Sturmian words and the palindromic finite Sturmian words of a given length. We also give a new proof for the well-known result that a factor of a Sturmian word has precisely two return words.

  12. Geometrical characterization of micro end milling tools

    DEFF Research Database (Denmark)

    Borsetto, Francesca; Bariani, Paolo; Bissacco, Giuliano

    2005-01-01

    Performance of the milling process is directly affected by the accuracy of tool geometry. Development of methods suitable for dimensional characterization of such tools, with low measurement uncertainties is therefore of relevance. The present article focuses on the geometrical characterization o...... of a flat micro end milling tool with a nominal mill diameter of 200 microns. An experimental investigation was carried out involving two different non-contact systems...

  13. Geometrical characterization of micro end milling tools

    DEFF Research Database (Denmark)

    Borsetto, Francesca; Bariani, Paolo; Bissacco, Giuliano;

    2005-01-01

    Performance of the milling process is directly affected by the accuracy of tool geometry. Development of methods suitable for dimensional characterization of such tools, with low measurement uncertainties is therefore of relevance. The present article focuses on the geometrical characterization...... of a flat micro end milling tool with a nominal mill diameter of 200 microns. An experimental investigation was carried out involving two different non-contact systems...

  14. Geometrical product specifications. Datums and coordinate systems

    Science.gov (United States)

    Glukhov, V. I.; Ivleva, I. A.; Zlatkina, O. Y.

    2017-06-01

    The work is devoted to the relevant topic such as the technical products quality improvement due to the geometrical specifications accuracy. The research purpose is to ensure the quality indicators on the basis of the systematic approach to the values normalization and geometrical specifications accuracy in the workpiece coordinate systems in the process of design. To achieve the goal two tasks are completed such as the datum features classification according to the number of linear and angular freedom degrees constraints, called the datums informativeness, and the rectangular coordinate systems identification, materialized by workpiece datums sets. The datum features informativeness characterizes the datums functional purpose to limit product workpiece linear and angular degrees of freedom. The datum features informativeness numerically coincides with the kinematic pairs classes and couplings in mechanics. The datum features informativeness identifies the coordinate system without the location redundancy. Each coordinate plane of a rectangular coordinate system has different informativeness 3 + 2 + 1. Each coordinate axis also has different informativeness 4+2+Θ (zero). It is possible to establish the associated workpiece position with three linear and three angular coordinates relative to two axes with the informativeness 4 and 2. is higher, the more informativeness of the coordinate axis or a coordinate plane is, the higher is the linear and angular coordinates accuracy, the coordinate being plotted along the coordinate axis or plane. The systematic approach to the geometrical products specifications positioning in coordinate systems is the scientific basis for a natural transition to the functional dimensions of features position - coordinating dimensions and the size of the features form - feature dimensions of two measures: linear and angular ones. The products technical quality improving is possible due to the coordinate systems introduction materialized by

  15. Geometric Measure Theory and Minimal Surfaces

    CERN Document Server

    Bombieri, Enrico

    2011-01-01

    W.K. ALLARD: On the first variation of area and generalized mean curvature.- F.J. ALMGREN Jr.: Geometric measure theory and elliptic variational problems.- E. GIUSTI: Minimal surfaces with obstacles.- J. GUCKENHEIMER: Singularities in soap-bubble-like and soap-film-like surfaces.- D. KINDERLEHRER: The analyticity of the coincidence set in variational inequalities.- M. MIRANDA: Boundaries of Caciopoli sets in the calculus of variations.- L. PICCININI: De Giorgi's measure and thin obstacles.

  16. Noncommutative Geometric Gauge Theory from Superconnections

    OpenAIRE

    Lee, Chang-Yeong

    1996-01-01

    Noncommutative geometric gauge theory is reconstructed based on the superconnection concept. The bosonic action of the Connes-Lott model including the symmetry breaking Higgs sector is obtained by using a new generalized derivative, which consists of the usual 1-form exterior derivative plus an extra element called the matrix derivative, for the curvatures. We first derive the matrix derivative based on superconnections and then show how the matrix derivative can give rise to spontaneous symm...

  17. Chirality: a relational geometric-physical property.

    Science.gov (United States)

    Gerlach, Hans

    2013-11-01

    The definition of the term chirality by Lord Kelvin in 1893 and 1904 is analyzed by taking crystallography at that time into account. This shows clearly that chirality is a relational geometric-physical property, i.e., two relations between isometric objects are possible: homochiral or heterochiral. In scientific articles the relational term chirality is often mistaken for the two valued measure for the individual (absolute) sense of chirality, an arbitrary attributive term.

  18. Geometric stochastic resonance in a double cavity

    CERN Document Server

    Ghosh, Pulak K; Marchesoni, Fabio; Savel'ev, Sergey E; Nori, Franco; 10.1103/PhysRevE.84.011109

    2012-01-01

    Geometric stochastic resonance of particles diffusing across a porous membrane subject to oscillating forces is characterized as a synchronization process. Noninteracting particle currents through a symmetric membrane pore are driven either perpendicular or parallel to the membrane, whereas harmonic-mixing spectral current components are generated by the combined action of perpendicular and parallel drives. In view of potential applications to the transport of colloids and biological molecules through narrow pores, we also consider the role of particle repulsion as a controlling factor.

  19. A geometrical approach to structural change modeling

    OpenAIRE

    Stijepic, Denis

    2013-01-01

    We propose a model for studying the dynamics of economic structures. The model is based on qualitative information regarding structural dynamics, in particular, (a) the information on the geometrical properties of trajectories (and their domains) which are studied in structural change theory and (b) the empirical information from stylized facts of structural change. We show that structural change is path-dependent in this model and use this fact to restrict the number of future structural cha...

  20. Geometric problems in molecular biology and robotics.

    Science.gov (United States)

    Parsons, D; Canny, J

    1994-01-01

    Some of the geometric problems of interest to molecular biologists have macroscopic analogues in the field of robotics. Two examples of such analogies are those between protein docking and model-based perception, and between ring closure and inverse kinematics. Molecular dynamics simulation, too, has much in common with the study of robot dynamics. In this paper we give a brief survey of recent work on these and related problems.

  1. Geometric treatment of the gravitomagnetic clock effect

    CERN Document Server

    Tartaglia, A

    2000-01-01

    We have developed a general geometric treatment of the GCE valid for any stationary axisymmetric metric. The method is based on the remark that the world lines of objects rotating along spacely circular trajectories are in any case, for those kind of metrics, helices drawn on the flat bidimensional surface of a cylinder. Applying the obtained formulas to the special cases of the Kerr and weak field metric for a spinning body, known results for time delays and synchrony defects are recovered.

  2. Implicitization of surfaces via geometric tropicalization

    CERN Document Server

    Cueto, Maria Angelica

    2011-01-01

    In this paper we describe tropical methods for implicitization of surfaces. We construct the corresponding tropical surfaces via the theory of geometric tropicalization due to Hacking, Keel and Tevelev, which we enrich with a formula for computing tropical multiplicities of regular points in any dimension. We extend previous results for tropical implicitization of generic surfaces due to Sturmfels, Tevelev and Yu and provide methods for the non-generic case.

  3. The Minimal Geometric Deformation Approach Extended

    CERN Document Server

    Casadio, Roberto; da Rocha, Roldao

    2015-01-01

    The minimal geometric deformation approach was introduced in order to study the exterior space-time around spherically symmetric self-gravitating systems, like stars or similar astrophysical objects as well, in the Randall-Sundrum brane-world framework. A consistent extension of this approach is developed here, which contains modifications of both the time component and the radial component of a spherically symmetric metric. A modified Schwarzschild geometry is obtained as an example of its simplest application.

  4. Geometrical model of multidimensional orbital motion

    Energy Technology Data Exchange (ETDEWEB)

    Jacak, D [Institute of Mathematics and Computer Science, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw (Poland)], E-mail: dorota.jacak@pwr.wroc.pl

    2008-05-15

    We consider a geometrical n-dimensional model of orbital-type rotation, for n{>=}4. The vectors generating this process are defined and the Fibonacci sequence is found in representation of their lengths. Within the dimension analysis of Planck units, we consider an example of the multidimensional whirl and define a sequence of formal fields. Special attention is paid to the three subsequent elements of this sequence, called here magnetic, electric and energy fields, which allow for some physical interpretations.

  5. Geometrical effective action and Wilsonian flows

    CERN Document Server

    Pawlowski, J M

    2003-01-01

    A gauge invariant flow equation is derived by applying a Wilsonian momentum cut-off to gauge invariant field variables. The construction makes use of the geometrical effective action for gauge theories in the Vilkovisky-DeWitt framework. The approach leads to modified Nielsen identities that pose non-trivial constraints on consistent truncations. We also evaluate the relation of the present approach to gauge fixed formulations as well as discussing possible applications.

  6. Geometric measure theory a beginner's guide

    CERN Document Server

    Morgan, Frank

    1995-01-01

    Geometric measure theory is the mathematical framework for the study of crystal growth, clusters of soap bubbles, and similar structures involving minimization of energy. Morgan emphasizes geometry over proofs and technicalities, and includes a bibliography and abundant illustrations and examples. This Second Edition features a new chapter on soap bubbles as well as updated sections addressing volume constraints, surfaces in manifolds, free boundaries, and Besicovitch constant results. The text will introduce newcomers to the field and appeal to mathematicians working in the field.

  7. Integrating geometric activity images in ANN classification

    Science.gov (United States)

    De Genst, William; Gautama, Sidharta; Bellens, Rik; Canters, Frank

    2005-10-01

    In this paper we demonstrate how the interaction between innovative methods in the field of computer vision and methods for multi-spectral image classification can help in extracting detailed land-cover / land-use information from Very High Resolution (VHR) satellite imagery. We introduce the novel concept of "geometric activity images", which we define as images encoding the strength of the relationship between a pixel and surrounding features detected through dedicated computer vision methods. These geometric activity images are used as alternatives to more traditional texture images that better describe the geometry of man-made structures and that can be included as additional information in a non-parametric supervised classification framework. We present a number of findings resulting from the integration of geometric activity images and multi-spectral bands in an artificial neural network classification. The geometric activity images we use result from the use of a ridge detector for straight line detection, calculated for different window sizes and for all multi-spectral bands and band-ratio images in a VHR scene. A selection of the most relevant bands to use for classification is carried out using band selection based on a genetic algorithm. Sensitivity analysis is used to assess the importance of each input variable. An application of the proposed methods to part of a Quickbird image taken over the suburban fringe of the city of Ghent (Belgium) shows that we are able to identify roads with much higher accuracy than when using more traditional multi-spectral image classification techniques.

  8. Geometrical Methods for Power Network Analysis

    CERN Document Server

    Bellucci, Stefano; Gupta, Neeraj

    2013-01-01

    This book is a short introduction to power system planning and operation using advanced geometrical methods. The approach is based on well-known insights and techniques developed in theoretical physics in the context of Riemannian manifolds. The proof of principle and robustness of this approach is examined in the context of the IEEE 5 bus system. This work addresses applied mathematicians, theoretical physicists and power engineers interested in novel mathematical approaches to power network theory.

  9. Edit propagation using geometric relationship functions

    KAUST Repository

    Guerrero, Paul

    2014-03-01

    We propose a method for propagating edit operations in 2D vector graphics, based on geometric relationship functions. These functions quantify the geometric relationship of a point to a polygon, such as the distance to the boundary or the direction to the closest corner vertex. The level sets of the relationship functions describe points with the same relationship to a polygon. For a given query point, we first determine a set of relationships to local features, construct all level sets for these relationships, and accumulate them. The maxima of the resulting distribution are points with similar geometric relationships. We show extensions to handle mirror symmetries, and discuss the use of relationship functions as local coordinate systems. Our method can be applied, for example, to interactive floorplan editing, and it is especially useful for large layouts, where individual edits would be cumbersome. We demonstrate populating 2D layouts with tens to hundreds of objects by propagating relatively few edit operations. © 2014 ACM 0730-0301/2014/03- ART15 $15.00.

  10. Stabilization of LCD devices via geometric alteration.

    Science.gov (United States)

    Jeon, Il; Yoon, MinSung; Lee, Je-Hoon

    2013-02-20

    Glass bending in LCD displays is an inherent problem that has challenged many engineers. As a solution to this problem, we propose a methodology that can tackle the root of the phenomenon in terms of linear elastic beam theory. Using this hypothesis, we devised a background theory and a solution. In this paper, we present a glass panel to which geometrical changes, such as furrow, groove, and curb have been applied. These geometrical changes are applied to the nonactive area of the glass panel. To confirm the validity of our approach, we conducted simulation tests as well as hands-on experiments to observe the thermo-mechanical behavior of the device under various conditions. The simulation results using the Ansys simulator show that the proposed technique can reduce the deformation level of panel bending by 40%. In the experiment using a bare cell with polarizer films attached and with performing the high temperature reliability test, the deformation level of panel bending is reduced by half compared to the reference glass panel without any geometric alteration.

  11. Geometric absorption of electromagnetic angular momentum

    Science.gov (United States)

    Konz, C.; Benford, Gregory

    2003-10-01

    Circularly polarized electromagnetic fields carry both energy and angular momentum. We investigate the conditions under which a circularly polarized wave field transfers angular momentum to a perfectly conducting macroscopic object, using exact electromagnetic wave theory in a steady-state calculation. We find that axisymmetric perfect conductors cannot absorb or radiate angular momentum when illuminated. However, any asymmetry allows absorption. A rigorous, steady-state solution of the boundary value problem for the reflection from a perfectly conducting infinite wedge shows that waves convey angular momentum at the edges of asymmetries. Conductors can also radiate angular momentum, so their geometric absorption coefficient for angular momentum can be negative. Such absorption or radiation depends solely on the specific geometry of the conductor. The geometric absorption coefficient can be as high as 0.8, and the coefficient for radiation can be -0.4, larger than typical material absorption coefficients. We apply the results to recent experiments which spun roof-shaped aluminum sheets with polarized microwave beams. Applications of geometric, instead of material, absorption can be quite varied. Though experiments testing these ideas will be simpler at microwavelengths, the ideas work for optical ones as well.

  12. Geometry and topology of geometric limits I

    CERN Document Server

    Ohshika, Ken'ichi

    2010-01-01

    In this paper, we are concerned with hyperbolic 3-manifolds $\\hyperbolic^3/G$ such that $G$ are geometric limits of Kleinian surface groups isomorphic to $\\pi_1(S)$ for a finite-type hyperbolic surface $S$. In the first of the three main theorems, we shall show that such a hyperbolic 3-manifold is uniformly bi-Lipschitz homeomorphic to a model manifold which has a structure called brick decomposition and is embedded in $S \\times (0,1)$. Conversely, any such manifold admitting a brick decomposition with reasonable conditions is bi-Lipschitz homeomorphic to a hyperbolic manifold corresponding to some geometric limit of quasi-Fuchsian groups. Finally, it will be shown that we can define end invariants for hyperbolic 3-manifolds appearing as geometric limits of Kleinian surface groups, and that the homeomorphism type and the end invariants determine the isometric type of a manifold, which is analogous to the ending lamination theorem for the case of finitely generated Kleinian groups.

  13. Salt bridges: geometrically specific, designable interactions.

    Science.gov (United States)

    Donald, Jason E; Kulp, Daniel W; DeGrado, William F

    2011-03-01

    Salt bridges occur frequently in proteins, providing conformational specificity and contributing to molecular recognition and catalysis. We present a comprehensive analysis of these interactions in protein structures by surveying a large database of protein structures. Salt bridges between Asp or Glu and His, Arg, or Lys display extremely well-defined geometric preferences. Several previously observed preferences are confirmed, and others that were previously unrecognized are discovered. Salt bridges are explored for their preferences for different separations in sequence and in space, geometric preferences within proteins and at protein-protein interfaces, co-operativity in networked salt bridges, inclusion within metal-binding sites, preference for acidic electrons, apparent conformational side chain entropy reduction on formation, and degree of burial. Salt bridges occur far more frequently between residues at close than distant sequence separations, but, at close distances, there remain strong preferences for salt bridges at specific separations. Specific types of complex salt bridges, involving three or more members, are also discovered. As we observe a strong relationship between the propensity to form a salt bridge and the placement of salt-bridging residues in protein sequences, we discuss the role that salt bridges might play in kinetically influencing protein folding and thermodynamically stabilizing the native conformation. We also develop a quantitative method to select appropriate crystal structure resolution and B-factor cutoffs. Detailed knowledge of these geometric and sequence dependences should aid de novo design and prediction algorithms.

  14. Geometric Deep Learning: Going beyond Euclidean data

    Science.gov (United States)

    Bronstein, Michael M.; Bruna, Joan; LeCun, Yann; Szlam, Arthur; Vandergheynst, Pierre

    2017-07-01

    Many scientific fields study data with an underlying structure that is a non-Euclidean space. Some examples include social networks in computational social sciences, sensor networks in communications, functional networks in brain imaging, regulatory networks in genetics, and meshed surfaces in computer graphics. In many applications, such geometric data are large and complex (in the case of social networks, on the scale of billions), and are natural targets for machine learning techniques. In particular, we would like to use deep neural networks, which have recently proven to be powerful tools for a broad range of problems from computer vision, natural language processing, and audio analysis. However, these tools have been most successful on data with an underlying Euclidean or grid-like structure, and in cases where the invariances of these structures are built into networks used to model them. Geometric deep learning is an umbrella term for emerging techniques attempting to generalize (structured) deep neural models to non-Euclidean domains such as graphs and manifolds. The purpose of this paper is to overview different examples of geometric deep learning problems and present available solutions, key difficulties, applications, and future research directions in this nascent field.

  15. Facades structure detection by geometric moment

    Science.gov (United States)

    Jiang, Diqiong; Chen, Hui; Song, Rui; Meng, Lei

    2017-06-01

    This paper proposes a novel method for extracting facades structure from real-world pictures by using local geometric moment. Compared with existing methods, the proposed method has advantages of easy-to-implement, low computational cost, and robustness to noises, such as uneven illumination, shadow, and shade from other objects. Besides, our method is faster and has a lower space complexity, making it feasible for mobile devices and the situation where real-time data processing is required. Specifically, a facades structure modal is first proposed to support the use of our special noise reduction method, which is based on a self-adapt local threshold with Gaussian weighted average for image binarization processing and the feature of the facades structure. Next, we divide the picture of the building into many individual areas, each of which represents a door or a window in the picture. Subsequently we calculate the geometric moment and centroid for each individual area, for identifying those collinear ones based on the feature vectors, each of which is thereafter replaced with a line. Finally, we comprehensively analyze all the geometric moment and centroid to find out the facades structure of the building. We compare our result with other methods and especially report the result from the pictures taken in bad environmental conditions. Our system is designed for two application, i.e, the reconstruction of facades based on higher resolution ground-based on imagery, and the positional system based on recognize the urban building.

  16. Time as a geometric property of space

    Science.gov (United States)

    Chappell, James; Hartnett, John; Iannella, Nicolangelo; Iqbal, Azhar; Abbott, Derek

    2016-11-01

    The proper description of time remains a key unsolved problem in science. Newton conceived of time as absolute and universal which `flows equably without relation to anything external'. In the nineteenth century, the four-dimensional algebraic structure of the quaternions developed by Hamilton, inspired him to suggest that they could provide a unified representation of space and time. With the publishing of Einstein's theory of special relativity these ideas then lead to the generally accepted Minkowski spacetime formulation in 1908. Minkowski, though, rejected the formalism of quaternions suggested by Hamilton and adopted rather an approach using four-vectors. The Minkowski framework is indeed found to provide a versatile formalism for describing the relationship between space and time in accordance with Einstein's relativistic principles, but nevertheless fails to provide more fundamental insights into the nature of time itself. In order to answer this question we begin by exploring the geometric properties of three-dimensional space that we model using Clifford geometric algebra, which is found to contain sufficient complexity to provide a natural description of spacetime. This description using Clifford algebra is found to provide a natural alternative to the Minkowski formulation as well as providing new insights into the nature of time. Our main result is that time is the scalar component of a Clifford space and can be viewed as an intrinsic geometric property of three-dimensional space without the need for the specific addition of a fourth dimension.

  17. Time as a geometric property of space

    Directory of Open Access Journals (Sweden)

    James Michael Chappell

    2016-11-01

    Full Text Available The proper description of time remains a key unsolved problem in science. Newton conceived of time as absolute and universal which it `flows equably without relation to anything external'}. In the nineteenth century, the four-dimensional algebraic structure of the quaternions developed by Hamilton, inspired him to suggest that they could provide a unified representation of space and time. With the publishing of Einstein's theory of special relativity these ideas then lead to the generally accepted Minkowski spacetime formulation in 1908. Minkowski, though, rejected the formalism of quaternions suggested by Hamilton and adopted rather an approach using four-vectors. The Minkowski framework is indeed found to provide a versatile formalism for describing the relationship between space and time in accordance with Einstein's relativistic principles, but nevertheless fails to provide more fundamental insights into the nature of time itself. In order to answer this question we begin by exploring the geometric properties of three-dimensional space that we model using Clifford geometric algebra, which is found to contain sufficient complexity to provide a natural description of spacetime. This description using Clifford algebra is found to provide a natural alternative to the Minkowski formulation as well as providing new insights into the nature of time. Our main result is that time is the scalar component of a Clifford space and can be viewed as an intrinsic geometric property of three-dimensional space without the need for the specific addition of a fourth dimension.

  18. Shape-Memory Properties of Segmented Polymers Containing Aramid Hard Segments and Polycaprolactone Soft Segments

    Directory of Open Access Journals (Sweden)

    Arno Kraft

    2010-06-01

    Full Text Available A series of segmented multiblock copolymers containing aramid hard segments and extended polycaprolactone soft segments (with an Mn of 4,200 or 8,200 g mol–1 was prepared and tested for their shape-memory properties. Chain extenders were essential to raise the hard segment concentration so that an extended rubbery plateau could be observed. Dynamic mechanical thermal analysis provided a useful guide in identifying (i the presence of a rubbery plateau, (ii the flow temperature, and (iii the temperature when samples started to deform irreversibly.

  19. New geometric design consistency model based on operating speed profiles for road safety evaluation.

    Science.gov (United States)

    Camacho-Torregrosa, Francisco J; Pérez-Zuriaga, Ana M; Campoy-Ungría, J Manuel; García-García, Alfredo

    2013-12-01

    To assist in the on-going effort to reduce road fatalities as much as possible, this paper presents a new methodology to evaluate road safety in both the design and redesign stages of two-lane rural highways. This methodology is based on the analysis of road geometric design consistency, a value which will be a surrogate measure of the safety level of the two-lane rural road segment. The consistency model presented in this paper is based on the consideration of continuous operating speed profiles. The models used for their construction were obtained by using an innovative GPS-data collection method that is based on continuous operating speed profiles recorded from individual drivers. This new methodology allowed the researchers to observe the actual behavior of drivers and to develop more accurate operating speed models than was previously possible with spot-speed data collection, thereby enabling a more accurate approximation to the real phenomenon and thus a better consistency measurement. Operating speed profiles were built for 33 Spanish two-lane rural road segments, and several consistency measurements based on the global and local operating speed were checked. The final consistency model takes into account not only the global dispersion of the operating speed, but also some indexes that consider both local speed decelerations and speeds over posted speeds as well. For the development of the consistency model, the crash frequency for each study site was considered, which allowed estimating the number of crashes on a road segment by means of the calculation of its geometric design consistency. Consequently, the presented consistency evaluation method is a promising innovative tool that can be used as a surrogate measure to estimate the safety of a road segment.

  20. Geometric Approach to Lie Symmetry of Discrete Time Toda Equation

    Institute of Scientific and Technical Information of China (English)

    JIA Xiao-Yu; WANG Na

    2009-01-01

    By using the extended Harrison and Estabrook geometric approach,we investigate the Lie symmetry of discrete time Toda equation from the geometric point of view.Its one-dimensional continuous symmetry group is presented.

  1. Geometrical approach to the evaluation of multileg Feynman diagrams

    Energy Technology Data Exchange (ETDEWEB)

    Davydychev, A.I. [Department of Physics, University of Mainz, Mainz (Germany); Delbourgo, R. [Physics Department, University of Tasmania, Hobart, Tasmania (Australia)

    1998-10-01

    A connection between one-loop N-point Feynman diagrams and certain geometrical quantities in non-Euclidean geometry is discussed. A geometrical way to calculate the corresponding Feynman integrals is considered. (author)

  2. Geometric Approaches to Quadratic Equations from Other Times and Places.

    Science.gov (United States)

    Allaire, Patricia R.; Bradley, Robert E.

    2001-01-01

    Focuses on geometric solutions of quadratic problems. Presents a collection of geometric techniques from ancient Babylonia, classical Greece, medieval Arabia, and early modern Europe to enhance the quadratic equation portion of an algebra course. (KHR)

  3. Optimally segmented permanent magnet structures

    DEFF Research Database (Denmark)

    Insinga, Andrea Roberto; Bjørk, Rasmus; Smith, Anders

    2016-01-01

    We present an optimization approach which can be employed to calculate the globally optimal segmentation of a two-dimensional magnetic system into uniformly magnetized pieces. For each segment the algorithm calculates the optimal shape and the optimal direction of the remanent flux density vector...

  4. Upper medium segment cooling down

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>The sluggish growth of the passenger car market in top provinces was also reflected in a depression of the upper medium segment. In Jan-Apr, 2008, the top 3 upper medium models accounting for nearly 40% of this segment performed poorly, with the Passat-Lingyu and the Accord decreasing. The Camry also saw a decrease in three top provinces: Guangdong,

  5. Essays in International Market Segmentation

    NARCIS (Netherlands)

    Hofstede, ter F.

    1999-01-01

    The primary objective of this thesis is to develop and validate new methodologies to improve the effectiveness of international segmentation strategies. The current status of international market segmentation research is reviewed in an introductory chapter, which provided a number of methodological

  6. Adaptive Segmentation for Scientific Databases

    NARCIS (Netherlands)

    Ivanova, M.G.; Kersten, M.L.; Nes, N.J.

    2008-01-01

    In this paper we explore database segmentation in the context of a column-store DBMS targeted at a scientific database. We present a novel hardware- and scheme-oblivious segmentation algorithm, which learns and adapts to the workload immediately. The approach taken is to capitalize on (intermediate)

  7. Dermatology case: segmental lichen aureus

    OpenAIRE

    Fernandes, I.; S. Carvalho; Machado, S.; Alves,R.; Selores, M.

    2012-01-01

    ABSTRACT The authors describe a clinical case of a six-year-old boy with history of a segmental brownish maculopapular skin eruption on his left thoracic and lumbar wall, since the last four months. Based on clinical and histological findings he was diagnosed with segmental lichen aureus.

  8. Essays in international market segmentation

    NARCIS (Netherlands)

    Hofstede, ter F.

    1999-01-01

    The primary objective of this thesis is to develop and validate new methodologies to improve the effectiveness of international segmentation strategies. The current status of international market segmentation research is reviewed in an introductory chapter, which provided a number of

  9. Adaptive segmentation for scientific databases

    NARCIS (Netherlands)

    Ivanova, M.; Kersten, M.L.; Nes, N.

    2008-01-01

    In this paper we explore database segmentation in the context of a column-store DBMS targeted at a scientific database. We present a novel hardware- and scheme-oblivious segmentation algorithm, which learns and adapts to the workload immediately. The approach taken is to capitalize on (intermediate)

  10. Market segmentation using perceived constraints

    Science.gov (United States)

    Jinhee Jun; Gerard Kyle; Andrew Mowen

    2008-01-01

    We examined the practical utility of segmenting potential visitors to Cleveland Metroparks using their constraint profiles. Our analysis identified three segments based on their scores on the dimensions of constraints: Other priorities--visitors who scored the highest on 'other priorities' dimension; Highly Constrained--visitors who scored relatively high on...

  11. The Importance of Marketing Segmentation

    Science.gov (United States)

    Martin, Gillian

    2011-01-01

    The rationale behind marketing segmentation is to allow businesses to focus on their consumers' behaviors and purchasing patterns. If done effectively, marketing segmentation allows an organization to achieve its highest return on investment (ROI) in turn for its marketing and sales expenses. If an organization markets its products or services to…

  12. Market Segmentation: An Instructional Module.

    Science.gov (United States)

    Wright, Peter H.

    A concept-based introduction to market segmentation is provided in this instructional module for undergraduate and graduate transportation-related courses. The material can be used in many disciplines including engineering, business, marketing, and technology. The concept of market segmentation is primarily a transportation planning technique by…

  13. Segmentation: Slicing the Urban Pie.

    Science.gov (United States)

    Keim, William A.

    1981-01-01

    Explains market segmentation and defines undifferentiated, concentrated, and differentiated marketing strategies. Describes in detail the marketing planning process at the Metropolitan Community Colleges. Focuses on the development and implementation of an ongoing recruitment program designed for the market segment composed of business employees.…

  14. Adaptive segmentation for scientific databases

    NARCIS (Netherlands)

    Ivanova, M.; Kersten, M.L.; Nes, N.

    2008-01-01

    In this paper we explore database segmentation in the context of a column-store DBMS targeted at a scientific database. We present a novel hardware- and scheme-oblivious segmentation algorithm, which learns and adapts to the workload immediately. The approach taken is to capitalize on (intermediate)

  15. A general framework to learn surrogate relevance criterion for atlas based image segmentation

    Science.gov (United States)

    Zhao, Tingting; Ruan, Dan

    2016-09-01

    Multi-atlas based image segmentation sees great opportunities in the big data era but also faces unprecedented challenges in identifying positive contributors from extensive heterogeneous data. To assess data relevance, image similarity criteria based on various image features widely serve as surrogates for the inaccessible geometric agreement criteria. This paper proposes a general framework to learn image based surrogate relevance criteria to better mimic the behaviors of segmentation based oracle geometric relevance. The validity of its general rationale is verified in the specific context of fusion set selection for image segmentation. More specifically, we first present a unified formulation for surrogate relevance criteria and model the neighborhood relationship among atlases based on the oracle relevance knowledge. Surrogates are then trained to be small for geometrically relevant neighbors and large for irrelevant remotes to the given targets. The proposed surrogate learning framework is verified in corpus callosum segmentation. The learned surrogates demonstrate superiority in inferring the underlying oracle value and selecting relevant fusion set, compared to benchmark surrogates.

  16. A general framework to learn surrogate relevance criterion for atlas based image segmentation.

    Science.gov (United States)

    Zhao, Tingting; Ruan, Dan

    2016-09-07

    Multi-atlas based image segmentation sees great opportunities in the big data era but also faces unprecedented challenges in identifying positive contributors from extensive heterogeneous data. To assess data relevance, image similarity criteria based on various image features widely serve as surrogates for the inaccessible geometric agreement criteria. This paper proposes a general framework to learn image based surrogate relevance criteria to better mimic the behaviors of segmentation based oracle geometric relevance. The validity of its general rationale is verified in the specific context of fusion set selection for image segmentation. More specifically, we first present a unified formulation for surrogate relevance criteria and model the neighborhood relationship among atlases based on the oracle relevance knowledge. Surrogates are then trained to be small for geometrically relevant neighbors and large for irrelevant remotes to the given targets. The proposed surrogate learning framework is verified in corpus callosum segmentation. The learned surrogates demonstrate superiority in inferring the underlying oracle value and selecting relevant fusion set, compared to benchmark surrogates.

  17. Design of geometric phase measurement in EAST Tokamak

    CERN Document Server

    Lan, T; Liu, J; Jie, Y X; Wang, Y L; Gao, X; Qin, H

    2016-01-01

    The optimum scheme for geometric phase measurement in EAST Tokamak is proposed in this paper. The theoretical values of geometric phase for the probe beams of EAST Polarimeter-Interferometer (POINT) system are calculated by path integration in parameter space. Meanwhile, the influences of some controllable parameters on geometric phase are evaluated. The feasibility and challenge of distinguishing geometric effect in the POINT signal are also assessed in detail.

  18. Geometrical and Monte Carlo projectors in 3D PET reconstruction

    OpenAIRE

    Aguiar, Pablo; Rafecas López, Magdalena; Ortuno, Juan Enrique; Kontaxakis, George; Santos, Andrés; Pavía, Javier; Ros, Domènec

    2010-01-01

    Purpose: In the present work, the authors compare geometrical and Monte Carlo projectors in detail. The geometrical projectors considered were the conventional geometrical Siddon ray-tracer (S-RT) and the orthogonal distance-based ray-tracer (OD-RT), based on computing the orthogonal distance from the center of image voxel to the line-of-response. A comparison of these geometrical projectors was performed using different point spread function (PSF) models. The Monte Carlo-based method under c...

  19. The LOFT Ground Segment

    CERN Document Server

    Bozzo, E; Argan, A; Barret, D; Binko, P; Brandt, S; Cavazzuti, E; Courvoisier, T; Herder, J W den; Feroci, M; Ferrigno, C; Giommi, P; Götz, D; Guy, L; Hernanz, M; Zand, J J M in't; Klochkov, D; Kuulkers, E; Motch, C; Lumb, D; Papitto, A; Pittori, C; Rohlfs, R; Santangelo, A; Schmid, C; Schwope, A D; Smith, P J; Webb, N A; Wilms, J; Zane, S

    2014-01-01

    LOFT, the Large Observatory For X-ray Timing, was one of the ESA M3 mission candidates that completed their assessment phase at the end of 2013. LOFT is equipped with two instruments, the Large Area Detector (LAD) and the Wide Field Monitor (WFM). The LAD performs pointed observations of several targets per orbit (~90 minutes), providing roughly ~80 GB of proprietary data per day (the proprietary period will be 12 months). The WFM continuously monitors about 1/3 of the sky at a time and provides data for about ~100 sources a day, resulting in a total of ~20 GB of additional telemetry. The LOFT Burst alert System additionally identifies on-board bright impulsive events (e.g., Gamma-ray Bursts, GRBs) and broadcasts the corresponding position and trigger time to the ground using a dedicated system of ~15 VHF receivers. All WFM data are planned to be made public immediately. In this contribution we summarize the planned organization of the LOFT ground segment (GS), as established in the mission Yellow Book 1 . We...

  20. Evolution of segmented strings

    CERN Document Server

    Gubser, Steven S

    2016-01-01

    I explain how to evolve segmented strings in de Sitter and anti-de Sitter spaces of any dimension in terms of forward-directed null displacements. The evolution is described entirely in terms of discrete hops which do not require a continuum spacetime. Moreover, the evolution rule is purely algebraic, so it can be defined not only on ordinary real de Sitter and anti-de Sitter, but also on the rational points of the quadratic equations that define these spaces. For three-dimensional anti-de Sitter space, a simpler evolution rule is possible that descends from the Wess-Zumino-Witten equations of motion. In this case, one may replace three-dimensional anti-de Sitter space by a non-compact discrete subgroup of SL(2,R) whose structure is related to the Pell equation. A discrete version of the BTZ black hole can be constructed as a quotient of this subgroup. This discrete black hole avoids the firewall paradox by a curious mechanism: even for large black holes, there are no points inside the horizon until one reach...

  1. Segment Based Camera Calibration

    Institute of Scientific and Technical Information of China (English)

    马颂德; 魏国庆; 等

    1993-01-01

    The basic idea of calibrating a camera system in previous approaches is to determine camera parmeters by using a set of known 3D points as calibration reference.In this paper,we present a method of camera calibration in whih camera parameters are determined by a set of 3D lines.A set of constraints is derived on camea parameters in terms of perspective line mapping.Form these constraints,the same perspective transformation matrix as that for point mapping can be computed linearly.The minimum number of calibration lines is 6.This result generalizes that of Liu,Huang and Faugeras[12] for camera location determination in which at least 8 line correspondences are required for linear computation of camera location.Since line segments in an image can be located easily and more accurately than points,the use of lines as calibration reference tends to ease the computation in inage preprocessing and to improve calibration accuracy.Experimental results on the calibration along with stereo reconstruction are reported.

  2. A Geometric Approach to the Six Trigonometric Ratios.

    Science.gov (United States)

    Bonsangue, Martin V.

    1993-01-01

    Geometric interpretations and derivations of the six trigonometric relationships are demonstrated. Selected for discussion are limiting values, geometric verification of trigonometric identities, a one-dimensional illustration of the Pythagorean relationships, and the geometric derivation of infinite-series relationships. (DE)

  3. Geometric Error Analysis in Applied Calculus Problem Solving

    Science.gov (United States)

    Usman, Ahmed Ibrahim

    2017-01-01

    The paper investigates geometric errors students made as they tried to use their basic geometric knowledge in the solution of the Applied Calculus Optimization Problem (ACOP). Inaccuracies related to the drawing of geometric diagrams (visualization skills) and those associated with the application of basic differentiation concepts into ACOP…

  4. Identifying and Fostering Higher Levels of Geometric Thinking

    Science.gov (United States)

    Škrbec, Maja; Cadež, Tatjana Hodnik

    2015-01-01

    Pierre M. Van Hiele created five levels of geometric thinking. We decided to identify the level of geometric thinking in the students in Slovenia, aged 9 to 11 years. The majority of students (60.7%) are at the transition between the zero (visual) level and the first (descriptive) level of geometric thinking. Nearly a third (31.7%) of students is…

  5. Some Asymptotic Inference in Multinomial Nonlinear Models (a Geometric Approach)

    Institute of Scientific and Technical Information of China (English)

    WEIBOCHENG

    1996-01-01

    A geometric framework is proposed for multinomlat nonlinear modelsbased on a modified vemlon of the geometric structure presented by Bates & Watts[4]. We use this geometric framework to study some asymptotic inference in terms ofcurvtures for multlnomial nonlinear models. Our previous results [15] for ordlnary nonlinear regression models are extended to multlnomlal nonlinear models.

  6. Non-adiabatic geometrical quantum gates in semiconductor quantum dots

    CERN Document Server

    Solinas, P; Zanghì, N; Rossi, F; Solinas, Paolo; Zanardi, Paolo; Zanghì, Nino; Rossi, Fausto

    2003-01-01

    In this paper we study the implementation of non-adiabatic geometrical quantum gates with in semiconductor quantum dots. Different quantum information enconding/manipulation schemes exploiting excitonic degrees of freedom are discussed. By means of the Aharanov-Anandan geometrical phase one can avoid the limitations of adiabatic schemes relying on adiabatic Berry phase; fast geometrical quantum gates can be in principle implemented

  7. Automatic segmentation for brain MR images via a convex optimized segmentation and bias field correction coupled model.

    Science.gov (United States)

    Chen, Yunjie; Zhao, Bo; Zhang, Jianwei; Zheng, Yuhui

    2014-09-01

    Accurate segmentation of magnetic resonance (MR) images remains challenging mainly due to the intensity inhomogeneity, which is also commonly known as bias field. Recently active contour models with geometric information constraint have been applied, however, most of them deal with the bias field by using a necessary pre-processing step before segmentation of MR data. This paper presents a novel automatic variational method, which can segment brain MR images meanwhile correcting the bias field when segmenting images with high intensity inhomogeneities. We first define a function for clustering the image pixels in a smaller neighborhood. The cluster centers in this objective function have a multiplicative factor that estimates the bias within the neighborhood. In order to reduce the effect of the noise, the local intensity variations are described by the Gaussian distributions with different means and variances. Then, the objective functions are integrated over the entire domain. In order to obtain the global optimal and make the results independent of the initialization of the algorithm, we reconstructed the energy function to be convex and calculated it by using the Split Bregman theory. A salient advantage of our method is that its result is independent of initialization, which allows robust and fully automated application. Our method is able to estimate the bias of quite general profiles, even in 7T MR images. Moreover, our model can also distinguish regions with similar intensity distribution with different variances. The proposed method has been rigorously validated with images acquired on variety of imaging modalities with promising results.

  8. Use of a semi-automated cardiac segmentation tool improves reproducibility and speed of segmentation of contaminated right heart magnetic resonance angiography.

    Science.gov (United States)

    Tandon, Animesh; Byrne, Nicholas; Nieves Velasco Forte, Maria de Las; Zhang, Song; Dyer, Adrian K; Dillenbeck, Jeanne M; Greil, Gerald F; Hussain, Tarique

    2016-08-01

    Three-dimensional printing has an increasing number of clinical applications in pediatric cardiology. Time required for dataset segmentation and conversion to stereolithography (STL) format remains a significant limitation. We investigated the impact of semi-automated cardiovascular-specific segmentation software on time and reproducibility of segmentation. Magnetic resonance angiograms (MRAs) of 19 patients undergoing intervention for right ventricular outflow lesions were segmented to demonstrate the right heart. STLs were created by two independent clinicians using semi-automated cardiovascular segmentation (SAS) and traditional manual segmentation (MS). Time was recorded and geometric STL disagreement was determined (0 % = no disagreement, 100 % = complete disagreement). MRA datasets were categorized as clean when only right heart structures were present in the MRA, or contaminated when left heart structures were also present and required removal. Eighteen (seven clean and 11 contaminated) cases were successfully segmented with both methods. Time to STL for clean datasets was faster with MS than SAS [median 209 s (IQR 192-252) vs. 296 s (272-317), p = 0.018] while contaminated datasets were faster with SAS [455 s (384-561) vs. 866 s (310-1429), p = 0.033]. Interobserver STL geometric disagreement was significantly lower using SAS than MS overall (0.70 ± 1.15 % vs. 1.31 ± 1.52 %, p = 0.030), and for the contaminated subset (0.81 ± 1.08 % vs. 1.75 ± 1.57 %, p = 0.036). Most geometric disagreement occurred at areas where left heart contamination was removed. Semi-automated segmentation was faster and more reproducible for contaminated datasets, while MS was faster but equally reproducible for clean datasets. Semi-automated segmentation methods are preferable for contaminated datasets and continued refinement of these tools should be supported.

  9. Sometimes spelling is easier than phonemic segmentation

    NARCIS (Netherlands)

    Bon, W.H.J. van; Duighuisen, H.C.M.

    1995-01-01

    Poor spellers from the Netherlands segmented and spelled the same words on different occasions. If they base their spellings on the segmentations that they produce in the segmentation task, the correlation between segmentation and spelling scores should be high, and segmentation should not be more d

  10. A Segmental Framework for Representing Signs Phonetically

    Science.gov (United States)

    Johnson, Robert E.; Liddell, Scott K.

    2011-01-01

    The arguments for dividing the signing stream in signed languages into sequences of phonetic segments are compelling. The visual records of instances of actually occurring signs provide evidence of two basic types of segments: postural segments and trans-forming segments. Postural segments specify an alignment of articulatory features, both manual…

  11. Multiatlas segmentation as nonparametric regression.

    Science.gov (United States)

    Awate, Suyash P; Whitaker, Ross T

    2014-09-01

    This paper proposes a novel theoretical framework to model and analyze the statistical characteristics of a wide range of segmentation methods that incorporate a database of label maps or atlases; such methods are termed as label fusion or multiatlas segmentation. We model these multiatlas segmentation problems as nonparametric regression problems in the high-dimensional space of image patches. We analyze the nonparametric estimator's convergence behavior that characterizes expected segmentation error as a function of the size of the multiatlas database. We show that this error has an analytic form involving several parameters that are fundamental to the specific segmentation problem (determined by the chosen anatomical structure, imaging modality, registration algorithm, and label-fusion algorithm). We describe how to estimate these parameters and show that several human anatomical structures exhibit the trends modeled analytically. We use these parameter estimates to optimize the regression estimator. We show that the expected error for large database sizes is well predicted by models learned on small databases. Thus, a few expert segmentations can help predict the database sizes required to keep the expected error below a specified tolerance level. Such cost-benefit analysis is crucial for deploying clinical multiatlas segmentation systems.

  12. SAR and Oblique Aerial Optical Image Fusion for Urban Area Image Segmentation

    Science.gov (United States)

    Fagir, J.; Schubert, A.; Frioud, M.; Henke, D.

    2017-05-01

    The fusion of synthetic aperture radar (SAR) and optical data is a dynamic research area, but image segmentation is rarely treated. While a few studies use low-resolution nadir-view optical images, we approached the segmentation of SAR and optical images acquired from the same airborne platform - leading to an oblique view with high resolution and thus increased complexity. To overcome the geometric differences, we generated a digital surface model (DSM) from adjacent optical images and used it to project both the DSM and SAR data into the optical camera frame, followed by segmentation with each channel. The fused segmentation algorithm was found to out-perform the single-channel version.

  13. A hierarchical 3D segmentation method and the definition of vertebral body coordinate systems for QCT of the lumbar spine.

    Science.gov (United States)

    Mastmeyer, André; Engelke, Klaus; Fuchs, Christina; Kalender, Willi A

    2006-08-01

    We have developed a new hierarchical 3D technique to segment the vertebral bodies in order to measure bone mineral density (BMD) with high trueness and precision in volumetric CT datasets. The hierarchical approach starts with a coarse separation of the individual vertebrae, applies a variety of techniques to segment the vertebral bodies with increasing detail and ends with the definition of an anatomic coordinate system for each vertebral body, relative to which up to 41 trabecular and cortical volumes of interest are positioned. In a pre-segmentation step constraints consisting of Boolean combinations of simple geometric shapes are determined that enclose each individual vertebral body. Bound by these constraints viscous deformable models are used to segment the main shape of the vertebral bodies. Volume growing and morphological operations then capture the fine details of the bone-soft tissue interface. In the volumes of interest bone mineral density and content are determined. In addition, in the segmented vertebral bodies geometric parameters such as volume or the length of the main axes of inertia can be measured. Intra- and inter-operator precision errors of the segmentation procedure were analyzed using existing clinical patient datasets. Results for segmented volume, BMD, and coordinate system position were below 2.0%, 0.6%, and 0.7%, respectively. Trueness was analyzed using phantom scans. The bias of the segmented volume was below 4%; for BMD it was below 1.5%. The long-term goal of this work is improved fracture prediction and patient monitoring in the field of osteoporosis. A true 3D segmentation also enables an accurate measurement of geometrical parameters that may augment the clinical value of a pure BMD analysis.

  14. Optimization of biotechnological systems through geometric programming

    Directory of Open Access Journals (Sweden)

    Torres Nestor V

    2007-09-01

    Full Text Available Abstract Background In the past, tasks of model based yield optimization in metabolic engineering were either approached with stoichiometric models or with structured nonlinear models such as S-systems or linear-logarithmic representations. These models stand out among most others, because they allow the optimization task to be converted into a linear program, for which efficient solution methods are widely available. For pathway models not in one of these formats, an Indirect Optimization Method (IOM was developed where the original model is sequentially represented as an S-system model, optimized in this format with linear programming methods, reinterpreted in the initial model form, and further optimized as necessary. Results A new method is proposed for this task. We show here that the model format of a Generalized Mass Action (GMA system may be optimized very efficiently with techniques of geometric programming. We briefly review the basics of GMA systems and of geometric programming, demonstrate how the latter may be applied to the former, and illustrate the combined method with a didactic problem and two examples based on models of real systems. The first is a relatively small yet representative model of the anaerobic fermentation pathway in S. cerevisiae, while the second describes the dynamics of the tryptophan operon in E. coli. Both models have previously been used for benchmarking purposes, thus facilitating comparisons with the proposed new method. In these comparisons, the geometric programming method was found to be equal or better than the earlier methods in terms of successful identification of optima and efficiency. Conclusion GMA systems are of importance, because they contain stoichiometric, mass action and S-systems as special cases, along with many other models. Furthermore, it was previously shown that algebraic equivalence transformations of variables are sufficient to convert virtually any types of dynamical models into

  15. Hierarchical Geometric Constraint Model for Parametric Feature Based Modeling

    Institute of Scientific and Technical Information of China (English)

    高曙明; 彭群生

    1997-01-01

    A new geometric constraint model is described,which is hierarchical and suitable for parametric feature based modeling.In this model,different levels of geometric information are repesented to support various stages of a design process.An efficient approach to parametric feature based modeling is also presented,adopting the high level geometric constraint model.The low level geometric model such as B-reps can be derived automatically from the hig level geometric constraint model,enabling designers to perform their task of detailed design.

  16. Geometric transition in Non-perturbative Topological string

    CERN Document Server

    Sugimoto, Yuji

    2016-01-01

    We study a geometric transition in non-perturbative topological string. We consider two cases. One is the geometric transition from the closed topological string on the local $\\mathcal{B}_{3}$ to the closed topological string on the resolved conifold. The other is the geometric transition from the closed topological string on the local $\\mathcal{B}_{3}$ to the open topological string on the resolved conifold with a toric A-brane. We find that, in both cases, the geometric transition can be applied for the non-perturbative topological string. We also find the corrections of the value of K\\"ahler parameters at which the geometric transition occurs.

  17. Knowledge-based geometric modeling in construction

    DEFF Research Database (Denmark)

    Bonev, Martin; Hvam, Lars

    2012-01-01

    a considerably high amount of their recourses is required for designing and specifying the majority of their product assortment. As design decisions are hereby based on knowledge and experience about behaviour and applicability of construction techniques and materials for a predefined design situation, smart...... tools need to be developed, to support these activities. In order to achieve a higher degree of design automation, this study proposes a framework for using configuration systems within the CAD environment together with suitable geometric modeling techniques on the example of a Danish manufacturer...

  18. Some Geometrical Aspects of M-Theory

    Science.gov (United States)

    de Azcárraga, José A.; Izquierdo, José M.

    2008-06-01

    Some geometrical aspects of super-p-brane theory, M-theory, and their connection with supergravity, are reviewed. In particular, the different fractions of preserved supersymmetries are discussed both from the algebraic and the supergravity solutions point of view. We also review the `preon conjecture' according to which states preserving a 31/32 fraction of supersymmetries would be the building blocks of M-theory, and on the failed attempts made so far to find these states in terms of supergravity solutions.

  19. Aerospace plane guidance using geometric control theory

    Science.gov (United States)

    Van Buren, Mark A.; Mease, Kenneth D.

    1990-01-01

    A reduced-order method employing decomposition, based on time-scale separation, of the 4-D state space in a 2-D slow manifold and a family of 2-D fast manifolds is shown to provide an excellent approximation to the full-order minimum-fuel ascent trajectory. Near-optimal guidance is obtained by tracking the reduced-order trajectory. The tracking problem is solved as regulation problems on the family of fast manifolds, using the exact linearization methodology from nonlinear geometric control theory. The validity of the overall guidance approach is indicated by simulation.

  20. The Geometric Nature of the Fundamental Lemma

    CERN Document Server

    Nadler, David

    2010-01-01

    The Fundamental Lemma is a somewhat obscure combinatorial identity introduced by Robert P. Langlands as an ingredient in the theory of automorphic representations. After many years of deep contributions by mathematicians working in representation theory, number theory, algebraic geometry, and algebraic topology, a proof of the Fundamental Lemma was recently completed by Ngo Bau Chau, for which he was awarded a Fields Medal. Our aim here is to touch on some of the beautiful ideas contributing to the Fundamental Lemma and its proof. We highlight the geometric nature of the problem which allows one to attack a question in p-adic analysis with the tools of algebraic geometry.