Geometria fractal em física do solo Fractal geometry in soil physics
Directory of Open Access Journals (Sweden)
O.O.S. Bacchi
1993-09-01
Full Text Available A geometria fractal tem sido aplicada nos mais diversos ramos da ciencia, mostrando grande potencial na descrição de estruturas altamente complexas. A sua aplicação em ciência do solo tem despertado grande interesse e vem se intensificando nos últimos anos. Apesar da sua divulgação através da literatura científica internacional, de conhecido acesso por parte dos pesquisadores brasileiros, o assunto parece não ter merecido ainda a nossa atenção, a contar pela ausência do tema em nossas revistas especializadas. Tratamos aqui da conceituação básica dessa nova abordagem e de algumas aplicações em física do solo.Fractal geometry has been applied on different branches of science, showing high potential in describing complex structures. Its applications in soil science have received large attention and have been intensified in the last few years. Inspite of the large number of internationally published papers, the subject seems not having received the same attention by Brazilian soil scientists, as verified by the absence of the subject in our scientific journals. This paper presents the basic concepts of this new tool and some of its applications in soil physics.
Edjan Fernandes dos Santos
2015-01-01
O trabalho traz inicialmente uma abordagem histÃrica, da GrÃcia (com os pitagÃricos), com o matemÃtico Eudoxo, fazendo referÃncia a talvez Ã maior obra matemÃtica, os livros de Euclides. Em seguida, trazemos definiÃÃes e construÃÃes sobre os nÃmeros reais com um corpo completo, os conceitos de Ãnfimo, supremo, sequÃncias infinitas com destaque as convergentes, sequÃncia de Cauchy e os trÃs teoremas fundamentais para o curso de cÃlculo, o teorema do anulamento, do valor intermediÃrio e de Weie...
Directory of Open Access Journals (Sweden)
Leandro Redin Vestena
2010-08-01
Full Text Available Os objetivos deste trabalho foram estimar e avaliar a dimensão fractal da rede de drenagem da bacia hidrográfica do Caeté, em Alfredo Wagner, SC, a partir de diferentes métodos, com o propósito de caracterizar as formas geomorfológicas irregulares. A rede de drenagem apresenta propriedades multifractais. As dimensões fractais para os segmentos individuais (df e para a rede de drenagem inteira (Df foram determinadas por métodos que se fundamentaram nas razões de Horton e pelo método da contagem de caixas (Box-Counting. A rede de drenagem tem característica de autoafinidade. A dimensão fractal proveniente da relação de parâmetros obtidos pelas Leis de Horton apresentou resultados dentro dos limiares da teoria da geometria fractal.The objective of the present work was to evaluate the fractal dimensions of the drainage network of the Caeté river watershed, Alfredo Wagner/SC, with different methods in order to characterize the irregular geomorphologic forms. The drainage network possesses multi-fractal properties. That is why the fractal dimensions for the individual segments (df and for the entire network (Df were evaluated with Horton's Laws and the Box-Counting method. The drainage network has self-affinity characteristics. The fractal dimension obtained through the parameters relationship of Horton's Laws showed the results within the thresholds of the fractal geometry theory.
Directory of Open Access Journals (Sweden)
J. R. P. Carvalho
2004-02-01
Full Text Available Este trabalho teve por objetivo explorar a aplicabilidade da teoria de fractais no estudo da variabilidade espacial em agregação de solo. A geometria de fractais tem sido proposta como um modelo para a distribuição de tamanho de partículas. A distribuição do tamanho de agregados do solo, expressos em termos de massa, é apresentada. Os parâmetros do modelo, tais como: a dimensão fractal D, medida representativa da fragmentação do solo (quanto maior seu valor, maior a fragmentação, e o tamanho do maior agregado R L foram definidos como ferramentas descritivas para a agregação do solo. Os agregados foram coletados em uma profundidade de 0-10 cm de um Latossolo Vermelho distrófico típico álico textura argilosa, em Angatuba, São Paulo. Uma grade regular de 100 x 100 m foi usada e a amostragem realizada em 76 pontos nos quais se determinou a distribuição de agregados por via úmida, usando água, álcool e benzeno como pré-tratamentos. Pelo exame de semivariogramas, constatou-se a ocorrência de dependência espacial. A krigagem ordinária foi usada como interpolador e mapas de contorno mostraram-se de grande utilidade na descrição da variabilidade espacial de agregação do solo.This work explored the applicability of the fractal theory for studies into space variability of soil aggregation. Fractal geometry has become a model for soil size particle distribution. The distribution of soil aggregates in terms of its mass was obtained, and model parameters such as the fractal dimension D, which is a representative measure of the soil fragmentation (the larger its value, the larger the fragmentation, and the largest aggregate size R L were defined as descriptive tools for soil aggregation. The aggregates were collected at a depth of 0-10 cm of a Clayey Ferrasol in Angatuba, São Paulo. A regular grid of 100 x 100 m was used and samples collected from 76 points, where the aggregate distribution was determined by humid way (water
A geometria fractal da rede de drenagem da bacia hidrográfica do Caeté, Alfredo Wagner-SC
Vestena,Leandro Redin; Kobiyama,Masato
2010-01-01
Os objetivos deste trabalho foram estimar e avaliar a dimensão fractal da rede de drenagem da bacia hidrográfica do Caeté, em Alfredo Wagner, SC, a partir de diferentes métodos, com o propósito de caracterizar as formas geomorfológicas irregulares. A rede de drenagem apresenta propriedades multifractais. As dimensões fractais para os segmentos individuais (df) e para a rede de drenagem inteira (Df) foram determinadas por métodos que se fundamentaram nas razões de Horton e pelo método da conta...
Formação de conceitos em Geometria e Álgebra por estudante com deficiência visual
Directory of Open Access Journals (Sweden)
Lúcia Virginia Mamcasz-Viginheski
Full Text Available Resumo: Esta pesquisa tem como objetivo buscar uma alternativa para desenvolver conceitos matemáticos com uma estudante cega total, os quais tenham sentido e contribuam para a sua aprendizagem e o seu desenvolvimento. A pesquisa apresenta uma abordagem qualitativa, sendo utilizado o estudo de caso como estratégia. Ela foi realizada em uma instituição não governamental que oferece atendimento especializado na área da deficiência visual, no município de Guarapuava, interior do Estado do Paraná. Fundamentados na teoria histórico-cultural de Vygotsky, procedemos a uma intervenção pedagógica para que a estudante elaborasse conceitos de Geometria e Álgebra. Os resultados mostraram que a estudante consolidou conceitos em fase de maturação, produzindo novos conceitos a partir deles. Também foi possível perceber que, independentemente das limitações, estudantes com deficiência visual são capazes de elaborar conceitos necessários para a autonomia e a participação social.
Sobre a modelação da função respiratória em geometrias complexas
Directory of Open Access Journals (Sweden)
M.J.S. Morais
1998-01-01
Full Text Available RESUMO: A influência de uma estenose de forma co-sinusoidal sobre o escoamento de ar e sobre a dispersão de um elemento contaminante no interior de uma via respiratória é analisada por viateórica. O processo de cálculo consiste na integração numérica das equações de conservação de massa, de quantidade de movimento, de espécies químicas e de quantidades ligadas ao transporte turbulento, formuladas num sistema de coordenadas curvilíneas não-ortogonais, fa cilmente adaptável a domínios de geometria complexa. ABSTRACT: The influence of a cosine-shaped airway stenosis upon the air flow and the disperson of a pollutant is theoretically analised. The calculation procedure is based on the numerical integration of the equations representing conservation of mass, momentum, chemical species and turbulent quantities. Boundary-fitted, nonorthogonal general curvilinear coordinates are adopted for the problem formulation. Key-words: turbulent airflow, numerical integration, boundary-fitted coordinates, airway, stenosis, Palavras-chave: escoamemo turbulento, integração numérica, coordenadas curvilíneas, via respiratória, estenose
Estudo da geometria hidráulica do Rio dos Bugres, no município de Rio Negrinho - SC
Grison, Fernando
2013-01-01
Tese (doutorado) - Universidade Federal de Santa Catarina, Centro Tecnológico, Programa de Pós-Graduação em Engenharia Ambiental, Florianópolis, 2013. O presente trabalho aplicou a teoria da geometria hidráulica no rio dos Bugres, em várias seções e trechos desse rio. Foi feita uma comparação entre resultados da geometria hidráulica obtidos pelo método clássico proposto por Leopold com derivações analíticas propostas por Dingman. Foram definidos 11 pontos de estudo ao longo do rio dos Bugr...
TEORIA E APLICAÇÃO DA GEOMETRIA HIDRÁULICA: REVISÃO
Directory of Open Access Journals (Sweden)
Fernando Grison
2011-12-01
Full Text Available Desde a criação da teoria da geometria hidráulica, um elevado número de trabalhos foi desenvolvido em relação a essa teoria e sua aplicação. O presente estudo teve o objetivo de revisar a definição dessa teoria, formas pelas quais ela vem sendo estudada e os principais métodos aplicados para interpretação dos seus resultados. As principais descobertas mostram que, com aumento da vazão, a velocidade e a profundidade aumentam mais rapidamente do que a largura das seções transversais e que a variação da largura nos canais com leito rochoso é semelhante àquela com leito aluvial. Foi claramente observado que as relações matemáticas da geometria hidráulica, que se diferenciam pela mudança da potência do escoamento do curso d’água, vêm sendo detalhadamente estudadas. Vários tipos de clima e formações geológicas foram avaliados para verificar suas influências nos expoentes da geometria hidráulica. Além disso, também se investigou o motivo das grandes variações dos valores desses expoentes. A vazão dominante está intimamente correlacionada com a área de drenagem e, a partir disso, foram desenvolvidas as Equações Regionais da Geometria Hidráulica. Outros trabalhos mostraram o comportamento dos sedimentos com relação às mudanças na forma dos cursos d’água. O tópico mais explorado na geometria hidráulica é a modelagem matemática, que foi utilizada principalmente para investigar a influência da forma de uma seção transversal e do leito de um canal em nível de margens plenas no comportamento das variáveis hidráulicas. A modelagem matemática também foi empregada para verificar a variabilidade espacial da geometria hidráulica devido à localização das seções transversais. As aplicações da geometria hidráulica encontram-se, na prática, tal como em projetos de revitalizações de rios e projetos de gerenciamento de recursos hídricos.
Robótica Educacional – Geometria da direção de triciclos com “drive governor”
Directory of Open Access Journals (Sweden)
Fred Santos
2015-07-01
Full Text Available Esse artigo aborda o projeto de robô móvel em forma de triciclo revelando características peculiares da sua geometria de direção permitindo compreender detalhes de seu dimensionamento a partir do conhecimento do ambiente com o qual ele irá interagir.
Esbenshade, Donald H., Jr.
1991-01-01
Develops the idea of fractals through a laboratory activity that calculates the fractal dimension of ordinary white bread. Extends use of the fractal dimension to compare other complex structures as other breads and sponges. (MDH)
International Nuclear Information System (INIS)
Dickau, Jonathan J.
2009-01-01
The use of fractals and fractal-like forms to describe or model the universe has had a long and varied history, which begins long before the word fractal was actually coined. Since the introduction of mathematical rigor to the subject of fractals, by Mandelbrot and others, there have been numerous cosmological theories and analyses of astronomical observations which suggest that the universe exhibits fractality or is by nature fractal. In recent years, the term fractal cosmology has come into usage, as a description for those theories and methods of analysis whereby a fractal nature of the cosmos is shown.
Brincar com a geometria na educação pré-escolar
Directory of Open Access Journals (Sweden)
Filipa Balinha
2016-12-01
Full Text Available Este artigo descreve a exploração de tarefas de geometria, com um grupo de crianças a frequentar a educação Pré-escolar, em Braga. Apresentaram-se quatro tarefas no âmbito da geometria, a um grupo de 20 crianças com idades entre os 3 e os 4 anos. As tarefas incluíam a abordagem às figuras geométricas, às relações topológicas, à leitura de mapas e à orientação espacial. Com a prática espelhada neste artigo ficou evidente que é possível trabalhar geometria e matemática, nestas idades, se as tarefas forem apresentadas sob a forma de jogos ou desafios. É importante que as tarefas sejam pensadas para a educação pré-escolar atendendo aos documentos curriculares. Desta forma, podemos interligar as diversas áreas do saber e construir tarefas interessantes e desafiantes para ajudarmos as crianças a crescer e a aprender brincando.
Directory of Open Access Journals (Sweden)
Fábio Gonçalves Teixeira
2013-12-01
Full Text Available Este trabalho apresenta o HyperCAL3D, um aplicativo de apoio ao ensino de Geometria Descritiva, através do estudo de objetos sólidos. São descritas a metodologia utilizada para a sua implementação e as principais funcionalidades do aplicativo. Foi realizada uma seleção de conceitos a fim de determinar a estrutura funcional que o software deveria atender. A partir disso, foram modeladas as principais funcionalidades através de processos de Geometria vetorial equivalentes aos utilizados na Geometria Descritiva. Dentre as principais funcionalidades apresentadas destacam-se: o processo de projeção, a representação de linhas ocultas no modelo tridimensional e nas projeções, vistas auxiliares sucessivas em tempo real e em 3D, representação em épura e o processo de interseção. Todas estas ferramentas são implementadas em um aplicativo que auxilia o processo de aprendizagem dos alunos e os procedimentos didáticos dos professores.
Os programas de geometria dinâmica no ensino básico
Fonseca, Cecília; Mateus, Joaquim
2011-01-01
Tendo em conta o contexto informático actual, estão ao dispor dos intervenientes no processo de ensino/aprendizagem um vasto leque de programas que permitem diversificar estratégias no ensino/aprendizagem da matemática. É neste enquadramento que se inserem os programas de geometria dinâmica, os quais constituem ferramentas interactivas que permitem a criação e manipulação de figuras geométricas, com base nas suas propriedades, favorecendo a compreensão dos conceitos e relações geométricas. ...
DEFF Research Database (Denmark)
Bruun Jensen, Casper
2007-01-01
. Instead, I outline a fractal approach to the study of space, society, and infrastructure. A fractal orientation requires a number of related conceptual reorientations. It has implications for thinking about scale and perspective, and (sociotechnical) relations, and for considering the role of the social...... and a fractal social theory....
Saw, Vee-Liem; Chew, Lock Yue
2013-01-01
We formulate the helicaliser, which replaces a given smooth curve by another curve that winds around it. In our analysis, we relate this formulation to the geometrical properties of the self-similar circular fractal (the discrete version of the curved helical fractal). Iterative applications of the helicaliser to a given curve yields a set of helicalisations, with the infinitely helicalised object being a fractal. We derive the Hausdorff dimension for the infinitely helicalised straight line ...
Barnsley, Michael F
2012-01-01
""Difficult concepts are introduced in a clear fashion with excellent diagrams and graphs."" - Alan E. Wessel, Santa Clara University""The style of writing is technically excellent, informative, and entertaining."" - Robert McCartyThis new edition of a highly successful text constitutes one of the most influential books on fractal geometry. An exploration of the tools, methods, and theory of deterministic geometry, the treatment focuses on how fractal geometry can be used to model real objects in the physical world. Two sixteen-page full-color inserts contain fractal images, and a bonus CD of
Mishra, Jibitesh
2007-01-01
The book covers all the fundamental aspects of generating fractals through L-system. Also it provides insight to various researches in this area for generating fractals through L-system approach & estimating dimensions. Also it discusses various applications of L-system fractals. Key Features: - Fractals generated from L-System including hybrid fractals - Dimension calculation for L-system fractals - Images & codes for L-system fractals - Research directions in the area of L-system fractals - Usage of various freely downloadable tools in this area - Fractals generated from L-System including hybrid fractals- Dimension calculation for L-system fractals- Images & codes for L-system fractals- Research directions in the area of L-system fractals- Usage of various freely downloadable tools in this area
Directory of Open Access Journals (Sweden)
Amato P
2008-01-01
Full Text Available Abstract Self-similar patterns are frequently observed in Nature. Their reproduction is possible on a length scale 102–105 nm with lithographic methods, but seems impossible on the nanometer length scale. It is shown that this goal may be achieved via a multiplicative variant of the multi-spacer patterning technology, in this way permitting the controlled preparation of fractal surfaces.
Geometria e aritmética na concepção dos templos dóricos gregos
Claudio Walter Gomez Duarte
2010-01-01
A concepção arquitetônica dos templos dóricos gregos é estudada na perspectiva da Arqueologia da Arquitetura stricto sensu. Verificamos a relevância e o papel que teve a aplicação da geometria e da aritmética como recursos técnicos e metodológicos para o desenvolvimento do projeto do templo dórico grego no século V a.C., visando esclarecer e estabelecer vínculos entre tais ramos da matemática e a lógica subjacente que norteou os arquitetos, tanto em projeto como nas aplicações precisas em obr...
Fractal vector optical fields.
Pan, Yue; Gao, Xu-Zhen; Cai, Meng-Qiang; Zhang, Guan-Lin; Li, Yongnan; Tu, Chenghou; Wang, Hui-Tian
2016-07-15
We introduce the concept of a fractal, which provides an alternative approach for flexibly engineering the optical fields and their focal fields. We propose, design, and create a new family of optical fields-fractal vector optical fields, which build a bridge between the fractal and vector optical fields. The fractal vector optical fields have polarization states exhibiting fractal geometry, and may also involve the phase and/or amplitude simultaneously. The results reveal that the focal fields exhibit self-similarity, and the hierarchy of the fractal has the "weeding" role. The fractal can be used to engineer the focal field.
Directory of Open Access Journals (Sweden)
Carlos Fuentes
2005-02-01
Full Text Available Baseado nos conceitos da geometria fractal e nas leis de Laplace e de Poiseuille, foi criado um modelo geral para estimar a condutividade hidráulica de solos não saturados, utilizando a curva de retenção da água no solo, conforme representada por um modelo em potência. Considerando o fato de que este novo modelo da condutividade hidráulica introduz um parâmetro de interpolação ainda desconhecido, e que, por sua vez, depende das propriedades dos solos, a validação do modelo foi realizada, utilizando dois valores-limite fisicamente representativos. Para a aplicação do modelo, os parâmetros de forma da curva de retenção da água no solo foram escolhidos de maneira a se obter o modelo de van Genuchten. Com a finalidade de obter fórmulas algébricas da condutividade hidráulica, foram impostas relações entre seus parâmetros de forma. A comparação dos resultados obtidos com o modelo da condutividade e a curva experimental da condutividade dos dois solos, Latossolo Vermelho-Amarelo e Argissolo Amarelo, permitiu concluir que o modelo proposto é simples em sua utilização e é capaz de predizer satisfatoriamente a condutividade hidráulica dos solos não saturados.From a conceptual model based on fractal geometry and Laplace's and Poiseuille's laws, a versatile and general fractal model for the hydraulic conductivity to be used in the soils was developed. The soil-moisture retention curve is derived from a power model. Due to the fact that the proposed model of hydraulic conductivity introduces a still unknown interpolation parameter, which in turn is a function of soil properties, its limiting values were considered for the analysis. To apply the model in the soil, the form parameters of the soil-moisture retention curve were chosen so as to reproduce van Genuchten's equation. In order to obtain a closed-form equation for the hydraulic conductivity, relationships between the form parameters were imposed. The comparison between
Rotational rates of very small asteroids - 123 Brunhild, 376 Geometria, 437 Rhodia and 1224 Fantasia
Barucci, M. A.; di Martino, M.
1984-07-01
This paper presents observations of four small main belt asteroids (D Geometria, an accurate rotational period was determined. For the other two asteroids, 437 Rhodia and 1224 Fantasia, only tentative periods are suggested.
Análise fractal da fragmentação por impacto de porcelanas
Directory of Open Access Journals (Sweden)
C. B. Mvumbi
Full Text Available Resumo As porcelanas são cerâmicas produzidas a partir de matérias-primas naturais (sílica, feldspato e caulim. Em algumas aplicações são adicionadas outras matérias-primas para o aumento da resistência mecânica e dielétrica. Elas são usadas na fabricação de variados produtos, sendo, portanto, muito estudadas e desenvolvidas há muito tempo. Neste trabalho, porcelanas com diferentes composições foram caracterizadas e submetidas à fragmentação por ruptura mecânica em um ensaio de impacto balístico. A ruptura mecânica nos materiais em geral produz uma dissipação de energia formando trincas e superfícies de fratura que tem uma geometria irregular. O principal objetivo deste trabalho foi a caracterização da microestrutura e a caracterização fractal da superfície de fratura de porcelanas. Para comparação, os ensaios de impacto também foram feitos em vidro e acrílico comercial. A avaliação da superfície de fratura e da dimensão fractal de ruptura foi feita pela análise da fração de fragmentos em função da probabilidade global de fratura. Os corpos de prova foram preparados na forma de discos cilíndricos, com espessura e diâmetros fixos. O ensaio de impacto mecânico foi feito sobre o centro dos discos, para os diferentes materiais, mantendo-se as mesmas condições de ensaio. Os resultados do tamanho e massa dos fragmentos foram obtidos em função da energia de impacto e do tipo de material. Desta forma, foi possível obter uma correlação entre as condições de ensaio e a composição do material com o padrão de ruptura fractal. Verificou-se que a porcelana nas composições usadas possuiu uma tenacidade ao impacto que se situou entre aquela do vidro e do acrílico. Finalmente foi feita uma correlação entre as propriedades de resistência mecânica com os padrões de trinca formados. Percebeu-se que o número, a forma das trincas e as ramificações formaram um padrão que foi relacionado com a
A geometria do campo magnético na região da nuvem Lupus 1
Alves, F. P.; Franco, G. A. P.
2003-08-01
Apresentaremos os resultados de uma investigação polarimétrica na região de formação estelar junto à nuvem escura Lupus 1. Esse estudo baseia-se em polarimétria CCD obtida na banda R, e cobre Lupus 1, bem como a área vizinha a essa nuvem contendo a cavidade em 100 mm IRAS. Os dados observacionais foram coletados com o telescópio IAG de 60 cm do Observatório do Pico dos Dias (LNA/MCT - Brasópolis - MG). Nossa primeira análise mostra que uma variação da orientação do campo magnético através da região pode produzir padrões complexos de polarização cuja geometria do campo não pode ser facilmente determinada. Os padrões de polarização são inconsistentes com um campo magnético estritamente uniforme e unidimensional em larga escala. Comparação com a emissão em 100 mm mostra que localmente os vetores de polarização exibem um forte alinhamento com a orientação dos padrões observados em infravermelho.
Directory of Open Access Journals (Sweden)
Camila Mayumi Nakata-Osaki
Full Text Available Resumo A geometria urbana é um dos fatores de maior influência na intensidade da ilha de calor urbana. Seu estudo requer a caracterização de cânions urbanos, geralmente medidos pela relação entre a altura dos edifícios e a largura da rua (H/W, conceito aplicado no modelo numérico de Oke em 1981. O objetivo deste artigo é verificar o impacto da geometria do cânion urbano na intensidade de ilhas de calor noturna. Para isso, foram realizados levantamento de dados climáticos e de geometria urbana em duas cidades brasileiras. Os valores de intensidade de ilha de calor foram confrontados com os simulados pelo modelo original de Oke (1981, o qual foi calibrado e adaptado à plataforma SIG, de forma a possibilitar a incorporação de outro parâmetro de geometria, além da relação H/W: o comprimento de rugosidade. Esse processo gerou uma nova ferramenta de cálculo, que é denominda THIS (Tool for Heat Island Simulation. Aplicou-se o novo modelo para simular alguns cenários urbanos hipotéticos, que representam vários tipos de cânions urbanos. Os resultados demonstraram que cânions urbanos de maior rugosidade amenizam as intensidades de ilha de calor noturna em relação a um cânion de mesmo valor de relação H/W e menor rugosidade.
Neutron scattering from fractals
DEFF Research Database (Denmark)
Kjems, Jørgen; Freltoft, T.; Richter, D.
1986-01-01
The scattering formalism for fractal structures is presented. Volume fractals are exemplified by silica particle clusters formed either from colloidal suspensions or by flame hydrolysis. The determination of the fractional dimensionality through scattering experiments is reviewed, and recent small...
Proposta didática para o ensino de geometria espacial reutilizando materiais
Directory of Open Access Journals (Sweden)
Eliane Vasconcelos Santos
2012-12-01
Full Text Available Novas estratégias e metodologias têm sido foco de interesse na educação matemática a fim de auxiliar no processo de ensino-aprendizagem, bem como na intenção de dar sentido àquilo que é ensinado. Com a elaboração deste trabalho visamos verificar se a construção dos sólidos geométricos com a reutilização de materiais pode despertar nos alunos o desenvolvimento de competências matemáticas além de fazer a correlação da matemática com as demais áreas do conhecimento e demonstrar sua importância nas mais variadas situações presentes no dia a dia que nem sempre são percebidas. A aplicação da atividade aconteceu em uma turma do 3ª ano do ensino médio. Os resultados obtidos foram satisfatórios, tendo em vista que os alunos se aproximaram de conhecimentos, com os quais poderão criar relações sociais constituídas de sensibilidade, criatividade e criticidade, características essenciais para a construção de novos saberes.Palavras-chave: ensino da matemática; geometria espacial; sólidos geométricos; reutilização de materiais.
FELICIA RAMONA BIRAU
2012-01-01
In this article, the concept of capital market is analysed using Fractal Market Hypothesis which is a modern, complex and unconventional alternative to classical finance methods. Fractal Market Hypothesis is in sharp opposition to Efficient Market Hypothesis and it explores the application of chaos theory and fractal geometry to finance. Fractal Market Hypothesis is based on certain assumption. Thus, it is emphasized that investors did not react immediately to the information they receive and...
Fractal description of fractures
International Nuclear Information System (INIS)
Lung, C.W.
1991-06-01
Recent studies on the fractal description of fractures are reviewed. Some problems on this subject are discussed. It seems hopeful to use the fractal dimension as a parameter for quantitative fractography and to apply fractal structures to the development of high toughness materials. (author). 28 refs, 7 figs
Directory of Open Access Journals (Sweden)
FELICIA RAMONA BIRAU
2012-05-01
Full Text Available In this article, the concept of capital market is analysed using Fractal Market Hypothesis which is a modern, complex and unconventional alternative to classical finance methods. Fractal Market Hypothesis is in sharp opposition to Efficient Market Hypothesis and it explores the application of chaos theory and fractal geometry to finance. Fractal Market Hypothesis is based on certain assumption. Thus, it is emphasized that investors did not react immediately to the information they receive and of course, the manner in which they interpret that information may be different. Also, Fractal Market Hypothesis refers to the way that liquidity and investment horizons influence the behaviour of financial investors.
Directory of Open Access Journals (Sweden)
Wagner Rodrigues Valente
2013-04-01
Full Text Available O artigo aborda a geometria para crianças, seu ensino para alunos das primeiras séries escolares. Leva em conta, inicialmente, a trajetória da Geometria para o nível elementar, desde, praticamente, a Independência do Brasil. Nessa análise, evidencia a permanência de conteúdos da geometria euclidiana até quase meados do século XX. Em seguida, analisa as propostas de alteração do ensino de Geometria elaboradas na década de 1960. Com isso, procura mostrar as intenções de modificar os conteúdos desse ramo matemático, em busca da redefinição de um novo elementar: um novo conhecimento elementar de geometria, vindo de processos de apropriação das contribuições trazidas pelos estudos da Psicologia cognitiva.The article discusses geometry for children and its teaching for students from early grades. It takes into account, firstly, the geometry journey at the elementary level since practically the Independence of Brazil. This analysis highlights the presence of Euclidean geometry contents up to the mid-twentieth century. It then analyzes the proposed amendment to the teaching of geometry developed in the 1960s. Thus, this article attempts to show the intentions to modify the contents of this branch of mathematics in search of a redefinition of the 'new elementary': a new elementary knowledge of geometry, coming from the appropriation processes of the contributions made by studies of cognitive psychology.
LA GEOMETRIA NON-ARCHIMEDEA. DALLE PREMESSE AGLI INFINITI MODELLI ATTUALI
Directory of Open Access Journals (Sweden)
R. Mascella
2006-02-01
Full Text Available La geometria non-archimedea sembra essere un’ipotesi astratta e fantasiosa, accettabile nella matematica ma non per la rappresentazione spaziale, perché usa concetti a lungo esplorati nel pensiero scientifico e filosofico e spesso rigettati, quali l’infinito e l’infinitesimo attuali. L’articolo analizza gli aspetti storici, epistemologici, filosofici e matematici legati a questa geometria ed alle sue radici, considerando l’impostazione dell’inventore Giuseppe Veronese, della formalizzazione analitica di Levi-Civita e di altri matematici e filosofici che sul tema hanno fornito risultati e dibattuto, quali Cantor, Hilbert e Hahn, per terminare con gli infiniti modelli che oggi conosciamo. Questa geometria appare sottovalutata, ma si presta ad un ruolo non meno importante di alcune alternative non-euclidee, spesso semplicisticamente considerate come uniche varianti astratte dei modelli euclideo e riemanniano.
Baryshev, Yuri
2002-01-01
This is the first book to present the fascinating new results on the largest fractal structures in the universe. It guides the reader, in a simple way, to the frontiers of astronomy, explaining how fractals appear in cosmic physics, from our solar system to the megafractals in deep space. It also offers a personal view of the history of the idea of self-similarity and of cosmological principles, from Plato's ideal architecture of the heavens to Mandelbrot's fractals in the modern physical cosmos. In addition, this invaluable book presents the great fractal debate in astronomy (after Luciano Pi
Directory of Open Access Journals (Sweden)
Eva Vidal Vázquez
2010-02-01
Full Text Available Surface roughness isinfluenced by type and intensity of soil tillage among other factors, and it changes considerably with rain. In microrelief studies the advantages of using indices such as the fractal dimension, D, and the crossover length, l, is that they allow the partition of the roughness characteristics into properties that depend purely on the scale and on a scale free component, respectively. On the other hand, some geostatistical parameters may provide different ways to understand soil surface variability not addressed with fractal parameters. Changes in fractal dimension and semivariogram parameters for surface roughness evolution were evaluated as a function of cumulative rainfall on Oxisol samples over six tillage treatments, namely, disc harrow, disc plow, chisel plow, disc harrow+disc level, disc plow+disc level and chisel plow+disc level. Measurements were taken in each tillage treatment after rainfall events yielding a total of 48 experimental surfaces measured with a pin microrelief meter. The plot had 135 cm by 135 cm and the sample spacing was 25 mm. Trends due to plot slope component with its concavities and convexities and to agricultural practices were removed from field data sets. A semivariogram model was fitted to each of the surfaces and the model parameters were analyzed and related to the fractal dimension, D, and crossover length, l. A relationship was found between the fractal dimension, D, and semivariogram model parameters. The cross over length, l,did not show as strong relationships with the semivariogram model parameters, even though there was a power relation between D and l.A rugosidade da superfície pode ser influenciada pelo tipo e pela intensidade do preparo do solo entre outros fatores. A vantagem de se usar índices fractais em estudos de microrrelevo é que eles permitem a partição das características da rugosidade em propriedades ou que dependem exclusivamente da escala ou que independem
Categorization of fractal plants
International Nuclear Information System (INIS)
Chandra, Munesh; Rani, Mamta
2009-01-01
Fractals in nature are always a result of some growth process. The language of fractals which has been created specifically for the description of natural growth process is called L-systems. Recently, superior iterations (essentially, investigated by Mann [Mann WR. Mean value methods in iteration. Proc Am Math Soc 1953;4:506-10 [MR0054846 (14,988f)
Casati, Giulio; Maspero, Giulio; Shepelyansky, Dima L.
1997-01-01
We study quantum chaos in open dynamical systems and show that it is characterized by quantum fractal eigenstates located on the underlying classical strange repeller. The states with longest life times typically reveal a scars structure on the classical fractal set.
Thermodynamics for Fractal Statistics
da Cruz, Wellington
1998-01-01
We consider for an anyon gas its termodynamics properties taking into account the fractal statistics obtained by us recently. This approach describes the anyonic excitations in terms of equivalence classes labeled by fractal parameter or Hausdorff dimension $h$. An exact equation of state is obtained in the high-temperature and low-temperature limits, for gases with a constant density of states.
Perepelitsa, VA; Sergienko, [No Value; Kochkarov, AM
1999-01-01
Definitions of prefractal and fractal graphs are introduced, and they are used to formulate mathematical models in different fields of knowledge. The topicality of fractal-graph recognition from the point of view, of fundamental improvement in the efficiency of the solution of algorithmic problems
Electromagnetic fields in fractal continua
Energy Technology Data Exchange (ETDEWEB)
Balankin, Alexander S., E-mail: abalankin@ipn.mx [Grupo “Mecánica Fractal”, Instituto Politécnico Nacional, México D.F., 07738 Mexico (Mexico); Mena, Baltasar [Instituto de Ingeniería, Universidad Nacional Autónoma de México, México D.F. (Mexico); Patiño, Julián [Grupo “Mecánica Fractal”, Instituto Politécnico Nacional, México D.F., 07738 Mexico (Mexico); Morales, Daniel [Instituto Mexicano del Petróleo, México D.F., 07730 Mexico (Mexico)
2013-04-01
Fractal continuum electrodynamics is developed on the basis of a model of three-dimensional continuum Φ{sub D}{sup 3}⊂E{sup 3} with a fractal metric. The generalized forms of Maxwell equations are derived employing the local fractional vector calculus related to the Hausdorff derivative. The difference between the fractal continuum electrodynamics based on the fractal metric of continua with Euclidean topology and the electrodynamics in fractional space F{sup α} accounting the fractal topology of continuum with the Euclidean metric is outlined. Some electromagnetic phenomena in fractal media associated with their fractal time and space metrics are discussed.
La geometria del còdex 80 (s. XII de la catedral de Tortosa
Directory of Open Access Journals (Sweden)
Lluís i Ginovart, Josep
2015-12-01
Full Text Available The geometry in codex 80 of the Capitular Archive has traditionally been understood as a complete text and attributed to Gerbert of Aurillac (c. 940-1003. From a new reading of the text, we can say that it is a miscellaneous writing about geometry, composed of three independent parts: one containing the Geometria Incerti Auctoris apocryphical by Gerbert of Aurillac (c. 940-1003; another one is a fragment of De Nuptiis Philologiae et Mercurii by Martianus Capella (fl . 430 from Ergasticis Schematibus of Book VII of the Geometry; and finally there is a gloss to the Elementa by Euclides (c. 325-c. 265 bC. by Al-Ḥajjāj ibn Yūsuf ibn Maṭar (786-833. The interpretation of the geometrical propositions provides knowledge about the indirect measure of places which are inaccessible using medieval instrumental, the astrolabe, mirrors, cane and squares.[ct] La geometria del còdex 80 de l’Arxiu Capitular de Tortosa ha estat tradicionalment atribuïda, com un text únic, a Gerbert d’Orlhac (c. 940-1003. Una nova lectura del text ens permet assegurar que es tracta d’un text de caràcter miscel·lani de geometria, compost per tres textos independents: una part pertany a la Geometria Incerti Auctoris apòcrifa de Gerbert d’Orlhac; una altra, al fragment De Nuptiis Philologiae et Mercurii de Marcià Capella (fl . 430 Ergasticis Schematibus, del llibre VII de la Geometria; i, finalment, s’hi llegeix una glossa als Elementa d’Euclides (c. 325-c. 265 aC. d’Al-Ḥajjāj ibn Yūsuf ibn Maṭar (786-833. La interpretació de les proposicions de la geometria dóna el coneixement de la mesura indirecta de llocs als quals no es pot accedir amb l’instrumental medieval, és a dir, amb astrolabi, miralls, bastons i escaires.
A metodologia adotada para a construção de um banco de questões de geometria
Directory of Open Access Journals (Sweden)
Aline Silva De Bona
2018-03-01
Full Text Available O trabalho apresenta a metodologia construída por uma professora e um licenciando em Matemática para desenvolver um banco de questões de geometria, segundo três tipos de enunciado e em três níveis de dificuldade. Tal banco de questões será parte integrante de um aplicativo que visa verificar previamente os conhecimentos dos estudantes ingressantes no ensino superior, particularmente, do curso de Licenciatura em Matemática do IFRS–Campus Osório. O objetivo do trabalho é compartilhar a forma de trabalho da seleção e classificação das questões a compor o banco. A metodologia é um relato de experiência de cunho qualitativo, e significativo a todos licenciando de matemática pelo apontamento do quanto é complexo e exige estudos construir atividades de sala de aula. As questões selecionadas são todas públicas, ou seja, compiladas a partir de processos seletivos públicos de nível médio. Aponta-se como resultado parcial a experiência de se planejar atividades desde a sua seleção, classificação e organização para um futuro docente, pois exige estudos de matemática e educação matemática, e essa ação será frequente na sua vida profissional de acordo com o ano da escola básica que selecionará.
TÓPICOS DE GEOMETRIA ANALÍTICA
Directory of Open Access Journals (Sweden)
Karise Gonçalves Oliveira
2010-12-01
Full Text Available Enfatizamos o estudo das cônicas, apresentando as equações gerais da elipse, parábola e hipérbole, bem como suas propriedades geométricas e alguns exemplos. Este minicurso é baseado em trabalhos apresentados em V. V. da Silva & G. L. Reis (1996 e E. W. Swokowski (1994.
Pinheiro, J.; Cabrita, I.
2013-01-01
A frequência do m@c2 – Programa de Formação Continua em Matemática com professores do 2º Ciclo do Ensino Básico da Universidade de Aveiro – inspirou e motivou uma professora, em parceria com o ex-formador, a conceber e implementar uma experiência de aprendizagem que pudesse contribuir para um mais sólido desenvolvimento d o raciocínio proporcional e da representação gráfica das situações em causa, envolvendo o conceito de função linear. Para a sua avaliação, desenvolveu-se um estudo de caso q...
Willson, Stephen J.
1991-01-01
Described is a course designed to teach students about fractals using various teaching methods including the computer. Discussed are why the course drew students, prerequisites, clientele, textbook, grading, computer usage, and the syllabus. (KR)
Peleg, M
1993-01-01
Fractal geometry and related concepts have had only a very minor impact on food research. The very few reported food applications deal mainly with the characterization of the contours of agglomerated instant coffee particles, the surface morphology of treated starch particles, the microstructure of casein gels viewed as a product limited diffusion aggregation, and the jagged mechanical signatures of crunchy dry foods. Fractal geometry describes objects having morphological features that are scale invariant. A demonstration of the self-similarity of fractal objects can be found in the familiar morphology of cauliflower and broccoli, both foods. Processes regulated by nonlinear dynamics can exhibit a chaotic behavior that has fractal characteristics. Examples are mixing of viscous fluids, turbulence, crystallization, agglomeration, diffusion, and possibly food spoilage.
Architettura e/è Geometria: dalla forma architettonica alla costruzione geometrica
Directory of Open Access Journals (Sweden)
Mariateresa Galizia
2012-06-01
Full Text Available L’avvento delle tecnologie digitali di acquisizione dati 3D ha proiettato gli studiosi dell’architettura in una dimensione del tutto inaspettata. Milioni di punti hanno travolto ricercatori e professionisti ancora culturalmente impreparati ad affrontare la rivoluzione digitale nel campo del Rilievo. Le nuvole di punti acquisite documentano e allo stesso tempo rappresentano la spazialità degli oggetti reali, tuttavia, nulla rivelano su forma e geometria, architettura e materia se non attraverso una successiva interpretazione. Il contributo vuole soffermarsi sulle implicazioni teoriche e applicative del processo di interpretazione dei dati acquisiti per la comprensione della geometria e sulla funzione euristica della modellazione digitale, nel passaggio dal “noto all’ignoto”, nella “ri-scoperta” della forma e quindi dell’idea progettuale.
Directory of Open Access Journals (Sweden)
Wanderley Pivatto Brum
2014-02-01
Full Text Available Neste artigo apresentamos um relato de uma experiência, de caráter qualitativo, a qual teve como objetivo analisar se a utilização de diferentes atividades, por meio de uma sequência didática para o ensino de Geometria não Euclidiana, em particular, Esférica e Hiperbólica. Para isso, realizamos uma pesquisa participante com 14 estudantes da 2ª série do Ensino Médio de uma escola da rede pública de Tijucas, Santa Catarina. A pesquisa esteve sentada na Teoria da Aprendizagem Significativa de Ausubel. A pesquisa foi dividida em três momentos: no primeiro foi aplicado um pré-teste, no segundo momento ocorreu a aplicação da sequência didática, e por fim, foi aplicado um pós-teste. Os resultados evidenciam que, após a sequência grande parte dos estudantes conseguiram assimilar, diferenciar e reconciliar conceitos de Geometria Euclidiana, Esférica e Hiperbólica, por ser um tema ainda novo nos bancos escolares, houve estudantes que permaneceram com um posicionamento euclidiano frente ao problema não euclidiano.
Oleshko, Klaudia; de Jesús Correa López, María; Romero, Alejandro; Ramírez, Victor; Pérez, Olga
2016-04-01
The effectiveness of fractal toolbox to capture the scaling or fractal probability distribution, and simply fractal statistics of main hydrocarbon reservoir attributes, was highlighted by Mandelbrot (1995) and confirmed by several researchers (Zhao et al., 2015). Notwithstanding, after more than twenty years, it's still common the opinion that fractals are not useful for the petroleum engineers and especially for Geoengineering (Corbett, 2012). In spite of this negative background, we have successfully applied the fractal and multifractal techniques to our project entitled "Petroleum Reservoir as a Fractal Reactor" (2013 up to now). The distinguishable feature of Fractal Reservoir is the irregular shapes and rough pore/solid distributions (Siler, 2007), observed across a broad range of scales (from SEM to seismic). At the beginning, we have accomplished the detailed analysis of Nelson and Kibler (2003) Catalog of Porosity and Permeability, created for the core plugs of siliciclastic rocks (around ten thousand data were compared). We enriched this Catalog by more than two thousand data extracted from the last ten years publications on PoroPerm (Corbett, 2012) in carbonates deposits, as well as by our own data from one of the PEMEX, Mexico, oil fields. The strong power law scaling behavior was documented for the major part of these data from the geological deposits of contrasting genesis. Based on these results and taking into account the basic principles and models of the Physics of Fractals, introduced by Per Back and Kan Chen (1989), we have developed new software (Muukíl Kaab), useful to process the multiscale geological and geophysical information and to integrate the static geological and petrophysical reservoir models to dynamic ones. The new type of fractal numerical model with dynamical power law relations among the shapes and sizes of mesh' cells was designed and calibrated in the studied area. The statistically sound power law relations were established
Fractal Electrochemical Microsupercapacitors
Hota, Mrinal Kanti
2017-08-17
The first successful fabrication of microsupercapacitors (μ-SCs) using fractal electrode designs is reported. Using sputtered anhydrous RuO thin-film electrodes as prototypes, μ-SCs are fabricated using Hilbert, Peano, and Moore fractal designs, and their performance is compared to conventional interdigital electrode structures. Microsupercapacitor performance, including energy density, areal and volumetric capacitances, changes with fractal electrode geometry. Specifically, the μ-SCs based on the Moore design show a 32% enhancement in energy density compared to conventional interdigital structures, when compared at the same power density and using the same thin-film RuO electrodes. The energy density of the Moore design is 23.2 mWh cm at a volumetric power density of 769 mW cm. In contrast, the interdigital design shows an energy density of only 17.5 mWh cm at the same power density. We show that active electrode surface area cannot alone explain the increase in capacitance and energy density. We propose that the increase in electrical lines of force, due to edging effects in the fractal electrodes, also contribute to the higher capacitance. This study shows that electrode fractal design is a viable strategy for improving the performance of integrated μ-SCs that use thin-film electrodes at no extra processing or fabrication cost.
Fractal Electrochemical Microsupercapacitors
Hota, Mrinal Kanti; Jiang, Qiu; Mashraei, Yousof; Salama, Khaled N.; Alshareef, Husam N.
2017-01-01
The first successful fabrication of microsupercapacitors (μ-SCs) using fractal electrode designs is reported. Using sputtered anhydrous RuO thin-film electrodes as prototypes, μ-SCs are fabricated using Hilbert, Peano, and Moore fractal designs, and their performance is compared to conventional interdigital electrode structures. Microsupercapacitor performance, including energy density, areal and volumetric capacitances, changes with fractal electrode geometry. Specifically, the μ-SCs based on the Moore design show a 32% enhancement in energy density compared to conventional interdigital structures, when compared at the same power density and using the same thin-film RuO electrodes. The energy density of the Moore design is 23.2 mWh cm at a volumetric power density of 769 mW cm. In contrast, the interdigital design shows an energy density of only 17.5 mWh cm at the same power density. We show that active electrode surface area cannot alone explain the increase in capacitance and energy density. We propose that the increase in electrical lines of force, due to edging effects in the fractal electrodes, also contribute to the higher capacitance. This study shows that electrode fractal design is a viable strategy for improving the performance of integrated μ-SCs that use thin-film electrodes at no extra processing or fabrication cost.
Random walk through fractal environments
Isliker, H.; Vlahos, L.
2002-01-01
We analyze random walk through fractal environments, embedded in 3-dimensional, permeable space. Particles travel freely and are scattered off into random directions when they hit the fractal. The statistical distribution of the flight increments (i.e. of the displacements between two consecutive hittings) is analytically derived from a common, practical definition of fractal dimension, and it turns out to approximate quite well a power-law in the case where the dimension D of the fractal is ...
Positron annihilation near fractal surfaces
International Nuclear Information System (INIS)
Lung, C.W.; Deng, K.M.; Xiong, L.Y.
1991-07-01
A model for positron annihilation in the sub-surface region near a fractal surface is proposed. It is found that the power law relationship between the mean positron implantation depth and incident positron energy can be used to measure the fractal dimension of the fractal surface in materials. (author). 10 refs, 2 figs
DEFF Research Database (Denmark)
Malureanu, Radu; Jepsen, Peter Uhd; Xiao, S.
2010-01-01
applications. THz radiation can be employed for various purposes, among them the study of vibrations in biological molecules, motion of electrons in semiconductors and propagation of acoustic shock waves in crystals. We propose here a new THz fractal MTM design that shows very high transmission in the desired...... frequency range as well as a clear differentiation between one polarisation and another. Based on theoretical predictions we fabricated and measured a fractal based THz metamaterial that shows more than 60% field transmission at around 1THz for TE polarized light while the TM waves have almost 80% field...... transmission peak at 0.6THz. One of the main characteristics of this design is its tunability by design: by simply changing the length of the fractal elements one can choose the operating frequency window. The modelling, fabrication and characterisation results will be presented in this paper. Due to the long...
Directory of Open Access Journals (Sweden)
Guilherme Henrique Gomes da Silva
2013-01-01
Full Text Available Este artigo é baseado em resultados de uma pesquisa cujo objetivo foi analisar como futuros professores de matemática, vinculados a um grupo de estudos, se apropriaram de um software de geometria dinâmica, de forma a inseri-lo em atividades de ensino. O grupo se reuniu para ler e discutir artigos científicos, explorar um software e elaborar uma oficina para alunos do Ensino Médio. Aqui são discutidas reflexões do grupo sobre os imprevistos que podem ocorrer quando o professor atua num ambiente de aprendizagem baseado em Tecnologia da Informação e Comunicação (TIC. São apresentados episódios que ilustram como uma zona de risco pode se constituir numa zona de possibilidades para aprendizagem da docência. O grupo fornece estímulo e condições para se refletir e enfrentar os imprevistos decorrentes de um ambiente computacional, o que impulsiona o movimento para o desenvolvimento profissional.
International Nuclear Information System (INIS)
Li, W.; Bak, P.
1986-01-01
At a critical point the golden-mean Kolmogorov-Arnol'd-Moser trajectory of Chirikov's standard map breaks up into a fractal orbit called a cantorus. The transition describes a pinning of the incommensurate phase of the Frenkel-Kontorowa model. We find that the fractal dimension of the cantorus is D = 0 and that the transition from the Kolmogorov-Arnol'd-Moser trajectory with dimension D = 1 to the cantorus is governed by an exponent ν = 0.98. . . and a universal scaling function. It is argued that the exponent is equal to that of the Lyapunov exponent
Fractal actors and infrastructures
DEFF Research Database (Denmark)
Bøge, Ask Risom
2011-01-01
-network-theory (ANT) into surveillance studies (Ball 2002, Adey 2004, Gad & Lauritsen 2009). In this paper, I further explore the potential of this connection by experimenting with Marilyn Strathern’s concept of the fractal (1991), which has been discussed in newer ANT literature (Law 2002; Law 2004; Jensen 2007). I...... under surveillance. Based on fieldwork conducted in 2008 and 2011 in relation to my Master’s thesis and PhD respectively, I illustrate fractal concepts by describing the acts, actors and infrastructure that make up the ‘DNA surveillance’ conducted by the Danish police....
Earnshow, R; Jones, H
1991-01-01
This volume is based upon the presentations made at an international conference in London on the subject of 'Fractals and Chaos'. The objective of the conference was to bring together some of the leading practitioners and exponents in the overlapping fields of fractal geometry and chaos theory, with a view to exploring some of the relationships between the two domains. Based on this initial conference and subsequent exchanges between the editors and the authors, revised and updated papers were produced. These papers are contained in the present volume. We thank all those who contributed to this effort by way of planning and organisation, and also all those who helped in the production of this volume. In particular, we wish to express our appreciation to Gerhard Rossbach, Computer Science Editor, Craig Van Dyck, Production Director, and Nancy A. Rogers, who did the typesetting. A. J. Crilly R. A. Earnshaw H. Jones 1 March 1990 Introduction Fractals and Chaos The word 'fractal' was coined by Benoit Mandelbrot i...
Sugestões de práticas de ensino de geometria utilizando origami modular
Marília Pelinson Tridapalli
2017-01-01
O presente trabalho contém sugestões de práticas de ensino, utilizando o origami modular, que podem ser aplicadas nas aulas de geometria do Ensino Fundamental. As práticas foram desenvolvidas de maneira que o professor possa enriquecer suas aulas gastando pouco tempo no preparo, e apresentam objetos manipuláveis que tornam o processo de ensino-aprendizagem mais atrativo e significativo. Apresentamos todo o processo de elaboração dos módulos e seus respectivos encaixes para a construção, usand...
Fractals in several electrode materials
Energy Technology Data Exchange (ETDEWEB)
Zhang, Chunyong, E-mail: zhangchy@njau.edu.cn [Department of Chemistry, College of Science, Nanjing Agricultural University, Nanjing 210095 (China); Suzhou Key Laboratory of Environment and Biosafety, Suzhou Academy of Southeast University, Dushuhu lake higher education town, Suzhou 215123 (China); Wu, Jingyu [Department of Chemistry, College of Science, Nanjing Agricultural University, Nanjing 210095 (China); Fu, Degang [Suzhou Key Laboratory of Environment and Biosafety, Suzhou Academy of Southeast University, Dushuhu lake higher education town, Suzhou 215123 (China); State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096 (China)
2014-09-15
Highlights: • Fractal geometry was employed to characterize three important electrode materials. • The surfaces of all studied electrodes were proved to be very rough. • The fractal dimensions of BDD and ACF were scale dependent. • MMO film was more uniform than BDD and ACF in terms of fractal structures. - Abstract: In the present paper, the fractal properties of boron-doped diamond (BDD), mixed metal oxide (MMO) and activated carbon fiber (ACF) electrode have been studied by SEM imaging at different scales. Three materials are self-similar with mean fractal dimension in the range of 2.6–2.8, confirming that they all exhibit very rough surfaces. Specifically, it is found that MMO film is more uniform in terms of fractal structure than BDD and ACF. As a result, the intriguing characteristics make these electrodes as ideal candidates for high-performance decontamination processes.
International Nuclear Information System (INIS)
Huang, F.; Peng, R. D.; Liu, Y. H.; Chen, Z. Y.; Ye, M. F.; Wang, L.
2012-01-01
Fractal dust grains of different shapes are observed in a radially confined magnetized radio frequency plasma. The fractal dimensions of the dust structures in two-dimensional (2D) horizontal dust layers are calculated, and their evolution in the dust growth process is investigated. It is found that as the dust grains grow the fractal dimension of the dust structure decreases. In addition, the fractal dimension of the center region is larger than that of the entire region in the 2D dust layer. In the initial growth stage, the small dust particulates at a high number density in a 2D layer tend to fill space as a normal surface with fractal dimension D = 2. The mechanism of the formation of fractal dust grains is discussed.
Martin, Demetri
2015-03-01
Demetri Maritn prepared this palindromic poem as his project for Michael Frame's fractal geometry class at Yale. Notice the first, fourth, and seventh words in the second and next-to-second lines are palindromes, the first two and last two lines are palindromes, the middle line, "Be still if I fill its ebb" minus its last letter is a palindrome, and the entire poem is a palindrome...
Categorization of new fractal carpets
International Nuclear Information System (INIS)
Rani, Mamta; Goel, Saurabh
2009-01-01
Sierpinski carpet is one of the very beautiful fractals from the historic gallery of classical fractals. Carpet designing is not only a fascinating activity in computer graphics, but it has real applications in carpet industry as well. One may find illusionary delighted carpets designed here, which are useful in real designing of carpets. In this paper, we attempt to systematize their generation and put them into categories. Each next category leads to a more generalized form of the fractal carpet.
Bilipschitz embedding of homogeneous fractals
Lü, Fan; Lou, Man-Li; Wen, Zhi-Ying; Xi, Li-Feng
2014-01-01
In this paper, we introduce a class of fractals named homogeneous sets based on some measure versions of homogeneity, uniform perfectness and doubling. This fractal class includes all Ahlfors-David regular sets, but most of them are irregular in the sense that they may have different Hausdorff dimensions and packing dimensions. Using Moran sets as main tool, we study the dimensions, bilipschitz embedding and quasi-Lipschitz equivalence of homogeneous fractals.
FONT DISCRIMINATIO USING FRACTAL DIMENSIONS
Directory of Open Access Journals (Sweden)
S. Mozaffari
2014-09-01
Full Text Available One of the related problems of OCR systems is discrimination of fonts in machine printed document images. This task improves performance of general OCR systems. Proposed methods in this paper are based on various fractal dimensions for font discrimination. First, some predefined fractal dimensions were combined with directional methods to enhance font differentiation. Then, a novel fractal dimension was introduced in this paper for the first time. Our feature extraction methods which consider font recognition as texture identification are independent of document content. Experimental results on different pages written by several font types show that fractal geometry can overcome the complexities of font recognition problem.
Fractal differential equations and fractal-time dynamical systems
Indian Academy of Sciences (India)
like fractal subsets of the real line may be termed as fractal-time dynamical systems. Formulation ... involving scaling and memory effects. But most of ..... begin by recalling the definition of the Riemann integral in ordinary calculus [33]. Let g: [a ...
Directory of Open Access Journals (Sweden)
Marcos Aurélio Barboza de Oliveira
2014-04-01
Full Text Available Introdução: As soluções que provocam parada cardíaca eletiva estão em constante evolução, porém, o composto ideal ainda não foi encontrado. Os autores comparam uma nova solução cardioplégica com histidina-triptofano-glutamato (Grupo 2 com histidina-triptofano-cetoglutarato (Grupo 1 em modelo de coração isolado de rato. Objetivo: Quantificar a dimensão fractal e entropia de Shannon em miócitos de rato submetidos à cardioplegia utilizando solução histidina-triptofano com glutamato em modelo experimental, considerando-se os marcadores caspase, IL-8 e Ki-67. Métodos: Vinte ratos machos de raça Wistar foram anestesiados e heparinizados. O tórax foi aberto, realizado cardiectomia e infundido 40 ml/Kg de solução cardioplégica apropriada. Os corações foram mantidos por 2 horas na mesma solução a 4ºC e, após esse período, colocados em aparato de Langendorff por 30 minutos com solução de Ringer Locke. Foram feitas análises imunohistoquímicas para caspase, IL-8 e KI-67. Resultados: A dimensão fractal e a entropia de Shannon dos corações submetidos à parada cardíaca eletiva nos grupos 1 e 2 não foram diferentes. Conclusão: A quantidade de informações avaliada pela entropia de Shannon e a distribuição das mesmas (dada pela dimensão fractal nas lâminas de coração de rato submetidas à cardioplegia com solução histidina-triptofano-acetoglutarato ou histidina-triptofano-glutamato não foram diferentes, o que mostra que a solução de histidina-triptofano-glutamato é tão boa quanto a histidina-triptofano-cetoglutarato na preservação dos miócitos em modelo de coração isolado de rato.
Electromagnetism on anisotropic fractal media
Ostoja-Starzewski, Martin
2013-04-01
Basic equations of electromagnetic fields in anisotropic fractal media are obtained using a dimensional regularization approach. First, a formulation based on product measures is shown to satisfy the four basic identities of the vector calculus. This allows a generalization of the Green-Gauss and Stokes theorems as well as the charge conservation equation on anisotropic fractals. Then, pursuing the conceptual approach, we derive the Faraday and Ampère laws for such fractal media, which, along with two auxiliary null-divergence conditions, effectively give the modified Maxwell equations. Proceeding on a separate track, we employ a variational principle for electromagnetic fields, appropriately adapted to fractal media, so as to independently derive the same forms of these two laws. It is next found that the parabolic (for a conducting medium) and the hyperbolic (for a dielectric medium) equations involve modified gradient operators, while the Poynting vector has the same form as in the non-fractal case. Finally, Maxwell's electromagnetic stress tensor is reformulated for fractal systems. In all the cases, the derived equations for fractal media depend explicitly on fractal dimensions in three different directions and reduce to conventional forms for continuous media with Euclidean geometries upon setting these each of dimensions equal to unity.
Fractals and multifractals in physics
International Nuclear Information System (INIS)
Arcangelis, L. de.
1987-01-01
We present a general introduction to the world of fractals. The attention is mainly devoted to stress how fractals do indeed appear in the real world and to find quantitative methods for characterizing their properties. The idea of multifractality is also introduced and it is presented in more details within the framework of the percolation problem
Simoson, Andrew J.
2009-01-01
This article presents a fun activity of generating a double-minded fractal image for a linear algebra class once the idea of rotation and scaling matrices are introduced. In particular the fractal flip-flops between two words, depending on the level at which the image is viewed. (Contains 5 figures.)
Turbulent wakes of fractal objects
Staicu, A.D.; Mazzi, B.; Vassilicos, J.C.; Water, van de W.
2003-01-01
Turbulence of a windtunnel flow is stirred using objects that have a fractal structure. The strong turbulent wakes resulting from three such objects which have different fractal dimensions are probed using multiprobe hot-wire anemometry in various configurations. Statistical turbulent quantities are
Ghost quintessence in fractal gravity
Indian Academy of Sciences (India)
In this study, using the time-like fractal theory of gravity, we mainly focus on the ghost dark energy model which was recently suggested to explain the present acceleration of the cosmic expansion. Next, we establish a connection between the quintessence scalar field and fractal ghost dark energy density.
Contour fractal analysis of grains
Guida, Giulia; Casini, Francesca; Viggiani, Giulia MB
2017-06-01
Fractal analysis has been shown to be useful in image processing to characterise the shape and the grey-scale complexity in different applications spanning from electronic to medical engineering (e.g. [1]). Fractal analysis consists of several methods to assign a dimension and other fractal characteristics to a dataset describing geometric objects. Limited studies have been conducted on the application of fractal analysis to the classification of the shape characteristics of soil grains. The main objective of the work described in this paper is to obtain, from the results of systematic fractal analysis of artificial simple shapes, the characterization of the particle morphology at different scales. The long term objective of the research is to link the microscopic features of granular media with the mechanical behaviour observed in the laboratory and in situ.
Encounters with chaos and fractals
Gulick, Denny
2012-01-01
Periodic Points Iterates of Functions Fixed Points Periodic Points Families of Functions The Quadratic Family Bifurcations Period-3 Points The Schwarzian Derivative One-Dimensional Chaos Chaos Transitivity and Strong Chaos Conjugacy Cantor Sets Two-Dimensional Chaos Review of Matrices Dynamics of Linear FunctionsNonlinear Maps The Hénon Map The Horseshoe Map Systems of Differential Equations Review of Systems of Differential Equations Almost Linearity The Pendulum The Lorenz System Introduction to Fractals Self-Similarity The Sierpiński Gasket and Other "Monsters"Space-Filling Curves Similarity and Capacity DimensionsLyapunov Dimension Calculating Fractal Dimensions of Objects Creating Fractals Sets Metric Spaces The Hausdorff Metric Contractions and Affine Functions Iterated Function SystemsAlgorithms for Drawing Fractals Complex Fractals: Julia Sets and the Mandelbrot Set Complex Numbers and Functions Julia Sets The Mandelbrot Set Computer Programs Answers to Selected Exercises References Index.
dos Santos, Arlan Ricardo C; Cavalcante, Márcio André A
2017-01-01
Resumo. Este trabalho apresenta uma formulação para análise de tensões em estruturas axissimétricas, tais como tubos circulares, cilindros e anéis, elaborada com base em uma versão em coordenadas polares da Teoria de Volumes Finitos. Esta formulação é bastante apropriada para análise de tensões em estruturas com contornos curvos, apresentando geometria e campos mecânicos expressos em termo de coordenadas polares, visando melhorar o desempenho do método em tais situações. Diferentemente de ver...
Fractales para la arqueología: un nuevo lenguaje
Directory of Open Access Journals (Sweden)
Rodríguez Alcalde, Angel
1995-06-01
Full Text Available In this paper we propose an evolutionary model of systems in which their elements are articulated through the relationships that involve an exchange of information. When analysing these relationships we use the concept of <em>percolation>. The result is a set of dynamic systems self-organized towards a <em>critical stateem>, as the consequence of the iteration of time-space events at a small scale. The network of relationships follows a fractal structure. As an example we tackle the problem of the expansion of domestic species in the Mediterranean basin, proposing an alternative model to that of demic diffusion.
Se propone un modelo de evolución de sistemas en los que sus elementos se articulan mediante relaciones que implican intercambio de información. Éstas se analizan a partir del concepto de <em>percolación>. El resultado son sistemas dinámicos que se auto-organizan hacia un <em>estado críticoem>. como consecuencia de la iteración de sucesos espacio-temporales a pequeña escala. La red de relaciones presenta estructura fractal. Como ejemplo se aborda el problema de la expansión de las especies domésticas en la cuenca mediterránea, proponiendo un modelo alternativo a la difusión démica.
Fractals: Giant impurity nonlinearities in optics of fractal clusters
International Nuclear Information System (INIS)
Butenko, A.V.; Shalaev, V.M.; Stockman, M.I.
1988-01-01
A theory of nonlinear optical properties of fractals is developed. Giant enhancement of optical susceptibilities is predicted for impurities bound to a fractal. This enhancement occurs if the exciting radiation frequency lies within the absorption band of the fractal. The giant optical nonlinearities are due to existence of high local electric fields in the sites of impurity locations. Such fields are due to the inhomogeneously broadened character of a fractal spectrum, i.e. partial conservation of individuality of fractal-forming particles (monomers). The field enhancement is proportional to the Q-factor of the resonance of a monomer. The effects of coherent anti-Stokes Raman scattering (CARS) and phase conjugation (PC) of light waves are enhanced to a much greater degree than generation of higher harmonics. In a general case the susceptibility of a higher-order is enhanced in the maximum way if the process includes ''subtraction'' of photons (at least one of the strong field frequencies enters the susceptibility with the minus sign). Alternatively, enhancement for the highest-order harmonic generation (when all the photons are ''accumulated'') is minimal. The predicted phenomena bear information on spectral properties of both impurity molecules and a fractal. In particular, in the CARS spectra a narrow (with the natural width) resonant structure, which is proper to an isolated monomer of a fractal, is predicted to be observed. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Espinoza Garza, Jesus; Garcia Tinoco, Guillermo J; Martinez Flores, Jose Oscar [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)
1990-12-31
For boiler soot blowing converging-diverging nozzles are employed, whose function is to convert thermal energy of a gas into kinetic energy to remove the deposits that adhere to the heat exchanger surfaces. In this paper are described the experimental equipment and the methods for flow, dynamic pressure, discharge velocity and air expansion factor calculation in each nozzle, as a function of its design geometry, utilizing air from a five stage centrifugal compressor. The graphic analysis of the results, concludes that the most efficient nozzles are not the ones than develop the greatest velocity, but the ones of highest dynamic pressure at the outlet. The nozzle geometry that allows obtaining the maximum dynamic air pressure at the discharge is A{sub 2}/A{sub g}=1.3676 [Espanol] Para el deshollinado de calderas se utilizan las toberas convergentes-divergentes, cuya funcion es convertir la energia termica de un gas en energia cinetica para remover los depositos que se adhieren a las superficies de intercambio de calor. En este trabajo se describen el equipo experimental y los metodos de calculo para flujo, presion dinamica, velocidad a la descarga y factor de expansion del aire en cada tobera, como funcion de su geometria de diseno. Durante la experimentacion se evaluaron siete disenos diferentes de toberas, empleando aire de un compresor centrifugo de cinco etapas. Del analisis grafico de los resultados, se concluye que las toberas mas eficientes no son las que desarrollan mayor velocidad sino las de mayor presion dinamica de la salida. La geometria de tobera que permite obtener la maxima presion dinamica del aire a la descarga es A{sub 2}/A{sub g} = 1.3676.
Energy Technology Data Exchange (ETDEWEB)
Espinoza Garza, Jesus; Garcia Tinoco, Guillermo J.; Martinez Flores, Jose Oscar [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)
1989-12-31
For boiler soot blowing converging-diverging nozzles are employed, whose function is to convert thermal energy of a gas into kinetic energy to remove the deposits that adhere to the heat exchanger surfaces. In this paper are described the experimental equipment and the methods for flow, dynamic pressure, discharge velocity and air expansion factor calculation in each nozzle, as a function of its design geometry, utilizing air from a five stage centrifugal compressor. The graphic analysis of the results, concludes that the most efficient nozzles are not the ones than develop the greatest velocity, but the ones of highest dynamic pressure at the outlet. The nozzle geometry that allows obtaining the maximum dynamic air pressure at the discharge is A{sub 2}/A{sub g}=1.3676 [Espanol] Para el deshollinado de calderas se utilizan las toberas convergentes-divergentes, cuya funcion es convertir la energia termica de un gas en energia cinetica para remover los depositos que se adhieren a las superficies de intercambio de calor. En este trabajo se describen el equipo experimental y los metodos de calculo para flujo, presion dinamica, velocidad a la descarga y factor de expansion del aire en cada tobera, como funcion de su geometria de diseno. Durante la experimentacion se evaluaron siete disenos diferentes de toberas, empleando aire de un compresor centrifugo de cinco etapas. Del analisis grafico de los resultados, se concluye que las toberas mas eficientes no son las que desarrollan mayor velocidad sino las de mayor presion dinamica de la salida. La geometria de tobera que permite obtener la maxima presion dinamica del aire a la descarga es A{sub 2}/A{sub g} = 1.3676.
Lentes progressivas x lentes multifocais: um estudo baseado na geometria analítica do cone
Directory of Open Access Journals (Sweden)
Araújo Marília Cavalcante
2004-01-01
Full Text Available OBJETIVO: Compreender, por meio de figuras e funções matemáticas do cone, as lentes progressivas e mostrar que elas não são lentes multifocais porque, nelas, a refração da luz não obedece as leis da geometria euclidiana. MÉTODOS: Foi feito um estudo da geometria analítica do cone, com o programa de computador Auto-CAD 14, dando enfoque óptico às figuras geométricas obtidas com a sua secção. RESULTADOS: Pela análise das figuras obtidas da secção do cone, pudemos observar as superfícies que compõem as lentes progressivas. Estas superfícies são compostas de elipse, círculo, parábola e hipérbole. Diferente do que é dito na literatura, encontramos as elipses com diâmetro maior nas ordenadas e de mesmo sentido seguida por duas superfícies inferiores que são parábola e hipérbole e não o contrário. CONCLUSÕES: As lentes progressivas diferentemente das lentes multifocais apresentam prismas nos centros ópticos como decorrência da sua estrutura. No final, fizemos análise das suas formas mostrando o limite teórico da sua evolução.
Fractal Analysis of Mobile Social Networks
International Nuclear Information System (INIS)
Zheng Wei; Pan Qian; Sun Chen; Deng Yu-Fan; Zhao Xiao-Kang; Kang Zhao
2016-01-01
Fractal and self similarity of complex networks have attracted much attention in recent years. The fractal dimension is a useful method to describe the fractal property of networks. However, the fractal features of mobile social networks (MSNs) are inadequately investigated. In this work, a box-covering method based on the ratio of excluded mass to closeness centrality is presented to investigate the fractal feature of MSNs. Using this method, we find that some MSNs are fractal at different time intervals. Our simulation results indicate that the proposed method is available for analyzing the fractal property of MSNs. (paper)
Directory of Open Access Journals (Sweden)
Emilia Barra Ferreira
2009-12-01
Full Text Available Este trabalho descreve uma pesquisa realizada junto a professores de Matemática objetivando investigar a contribuição dos ambientes de geometria dinâmica em sua formação, no sentido de incentivá-los ao uso das demonstrações no ensino da Geometria. Considerando-se as demonstrações, pela própria natureza da Matemática, elemento fundamental na construção do conhecimento geométrico, a proposta foi que dificuldades, geralmente encontradas na necessária passagem do conhecimento de natureza empírica àquele de natureza formal, podem ser minimizadas ou superadas através de trabalho em ambientes que possibilitem o experimentar, visualizar, conjecturar, generalizar e demonstrar, como propõem os ambientes de geometria dinâmica. A análise feita baseouse em estudos de Piaget (1983, de Van Hiele (1959 e da Didática da Matemática (BROUSSEAU, 1986, DUVAl, 1995. Desenvolveu-se uma engenharia didática no ambiente proposto e os resultados sugerem que tal trabalho se constitui numa alternativa eficiente no processo de formação de professores no sentido de incentivá-los ao uso das demonstrações. Palavras-chave: Formação de Professores. Demonstrações. Geometria Dinâmica.This paper describes research conducted with mathematics teachers aiming to investigate the contribution of environments of dynamic geometry in their education, to encourage them to use demonstrations in the teaching of geometry. Considering demonstrations, which are by nature a key element in the construction of geometric knowledge, the proposal was that difficulties typically encountered in the necessary passage from empirical knowledge to formal knowledge, can be minimized or overcome through work in environments that allow experimentation, viewing, conjecturing, generalization and demonstration, as proposed by environments of dynamic geometry. The analysis was based on studies of Piaget (1983, Van Hiele (1959 and Didactic of Mathematics (BROUSSEAU, 1986, DUVAL
Fractal analysis of sulphidic mineral
Directory of Open Access Journals (Sweden)
Miklúová Viera
2002-03-01
Full Text Available In this paper, the application of fractal theory in the characterization of fragmented surfaces, as well as the mass-size distributions are discussed. The investigated mineral-chalcopyrite of Slovak provenience is characterised after particle size reduction processes-crushing and grinding. The problem how the different size reduction methods influence the surface irregularities of obtained particles is solved. Mandelbrot (1983, introducing the fractal geometry, offered a new way of characterization of surface irregularities by the fractal dimension. The determination of the surface fractal dimension DS consists in measuring the specific surface by the BET method in several fractions into which the comminuted chalcopyrite is sieved. This investigation shows that the specific surface of individual fractions were higher for the crushed sample than for the short-term (3 min ground sample. The surface fractal dimension can give an information about the adsorption sites accessible to molecules of nitrogen and according to this, the value of the fractal dimension is higher for crushed sample.The effect of comminution processes on the mass distribution of particles crushed and ground in air as well as in polar liquids is also discussed. The estimation of fractal dimensions of particles mass distribution is done on the assumption that the particle size distribution is described by the power-law (1. The value of fractal dimension for the mass distribution in the crushed sample is lower than in the sample ground in air, because it is influenced by the energy required for comminution.The sample of chalcopyrite was ground (10min in ethanol and i-butanol [which according to Ikazaki (1991] are characterized by the parameter µ /V, where µ is its dipole moment and V is the molecular volume. The values of µ /V for the used polar liquids are of the same order. That is why the expressive differences in particle size distributions as well as in the values of
Moghilevsky, Débora Estela
2011-01-01
A lo largo de los últimos años del siglo veinte se ha desarrollado la teoría de la complejidad. Este modelo relaciona las ciencias duras tales como la matemática, la teoría del caos, la física cuántica y la geometría fractal con las llamadas seudo ciencias. Dentro de este contexto podemos definir la Psicología Fractal como la ciencia que estudia los aspectos psíquicos como dinámicamente fractales.
Directory of Open Access Journals (Sweden)
Massimiliano Lo Turco
2012-06-01
Full Text Available Il termine costruire (lessicalmente equivale a riordinare le singole parti dell’operazione secondo il nesso logico e grammaticale; ed altresì disporle e collegarle secondo le regole e l’uso della lingua. Analogamente gli odierni strumenti BIM possiedono nelle loro corde sia una riconoscibile capacità di sviluppare progetti seguendo le regole del buon costruire, sia un puntuale controllo della geometria da cui derivano le molteplici rappresentazioni di tipo grafo-numerico. Ci si interrogherà inoltre sul rinnovato rapporto tra Rilievo e Progetto, in un ambiente particolarmente fertile ove la Geometria è indagata nelle sue poliedriche proprietà e al Disegno è affidato un ruolo di maggiore visibilità e di effettiva rilevanza.
Directory of Open Access Journals (Sweden)
Graziana Mangiacavallo
2015-01-01
Full Text Available In questo lavoro sarà affrontata la dinamica tra processo di appartenenza e differenziazione in età adolescenziale, attraverso l’esemplificazione di un caso clinico. Tale dinamica è resa complessa dal fatto che il caso in oggetto, rimanda a trame culturali della migrazione. Tale lavoro prende in esame la possibilità dell’utilizzo di strategie integrate, come la consultazione culturale, alla luce del modello a ‘geometria variabile.
Map of fluid flow in fractal porous medium into fractal continuum flow.
Balankin, Alexander S; Elizarraraz, Benjamin Espinoza
2012-05-01
This paper is devoted to fractal continuum hydrodynamics and its application to model fluid flows in fractally permeable reservoirs. Hydrodynamics of fractal continuum flow is developed on the basis of a self-consistent model of fractal continuum employing vector local fractional differential operators allied with the Hausdorff derivative. The generalized forms of Green-Gauss and Kelvin-Stokes theorems for fractional calculus are proved. The Hausdorff material derivative is defined and the form of Reynolds transport theorem for fractal continuum flow is obtained. The fundamental conservation laws for a fractal continuum flow are established. The Stokes law and the analog of Darcy's law for fractal continuum flow are suggested. The pressure-transient equation accounting the fractal metric of fractal continuum flow is derived. The generalization of the pressure-transient equation accounting the fractal topology of fractal continuum flow is proposed. The mapping of fluid flow in a fractally permeable medium into a fractal continuum flow is discussed. It is stated that the spectral dimension of the fractal continuum flow d(s) is equal to its mass fractal dimension D, even when the spectral dimension of the fractally porous or fissured medium is less than D. A comparison of the fractal continuum flow approach with other models of fluid flow in fractally permeable media and the experimental field data for reservoir tests are provided.
Fractal geometry and computer graphics
Sakas, Georgios; Peitgen, Heinz-Otto; Englert, Gabriele
1992-01-01
Fractal geometry has become popular in the last 15 years, its applications can be found in technology, science, or even arts. Fractal methods and formalism are seen today as a general, abstract, but nevertheless practical instrument for the description of nature in a wide sense. But it was Computer Graphics which made possible the increasing popularity of fractals several years ago, and long after their mathematical formulation. The two disciplines are tightly linked. The book contains the scientificcontributions presented in an international workshop in the "Computer Graphics Center" in Darmstadt, Germany. The target of the workshop was to present the wide spectrum of interrelationships and interactions between Fractal Geometry and Computer Graphics. The topics vary from fundamentals and new theoretical results to various applications and systems development. All contributions are original, unpublished papers.The presentations have been discussed in two working groups; the discussion results, together with a...
Thermal transport in fractal systems
DEFF Research Database (Denmark)
Kjems, Jørgen
1992-01-01
Recent experiments on the thermal transport in systems with partial fractal geometry, silica aerogels, are reviewed. The individual contributions from phonons, fractons and particle modes, respectively, have been identified and can be described by quantitative models consistent with heat capacity...
Fractal analysis in oral leukoplakia
Directory of Open Access Journals (Sweden)
Prashant Bhai Pandey
2015-01-01
Full Text Available Introduction: Fractal analysis (FA quantifies complex geometric structures by generating a fractal dimension (FD, which can measure the complexity of mucosa. FA is a quantitative tool used to measure the complexity of self-similar or semi-self-similar structures. Aim and Objective: The study was done to perform the FA of oral mucosa with keratotic changes, as it is also made up of self-similar tissues, and thus, its FD can be calculated. Results: In oral leukoplakia, keratinization increases the complexity of mucosa, which denotes fractal geometry. We evaluated and compared pretreated and post-treated oral leukoplakia in 50 patients with clinically proven oral leukoplakia and analyzed the normal oral mucosa and lesional or keratinized mucosa in oral leukoplakia patients through FA using box counting method. Conclusion: FA using the fractal geometry is an efficient, noninvasive prediction tool for early detection of oral leukoplakia and other premalignant conditions in patients.
Efeitos da Pulsação Ultrassônica da Corrente sobre a Geometria da ZF e ZAC na Soldagem Arco Submerso
Directory of Open Access Journals (Sweden)
Anna Louise Voigt
Full Text Available Resumo: O presente trabalho propõe investigar a aplicação da técnica de excitação ultrassônica do arco no processo SAW com o intuito de avaliar a influência dos principais parâmetros associados a pulsação da corrente, como a frequência e a amplitude da corrente de excitação ultrassônica, sobre os cordões de solda produzidos. Para tanto, foi montada uma bancada experimental constituída por duas fontes de energia: uma convencional de soldagem e outra capaz de pulsar a corrente em frequências ultrassônicas. Durante a realização dos ensaios foram empregadas duas amplitudes de corrente de excitação ultrassônica, 25 A e 50 A, cada qual em três frequências de pulsação diferentes, 20 kHz, 50 kHz e 80 kHz. A partir de macrografias foram realizadas análises dimensionais dos cordões obtidos com foco na largura, penetração e área fundida, assim como a área da zona afetada pelo calor (ZAC. Como resultado, contrariando as informações disponíveis na literatura, não foi possível identificar alterações consideráveis na geometria do cordão de solda, assim como, na ZAC que pudessem ser atribuídas à pulsação da corrente nas frequências estudadas.
Fractals in Power Reactor Noise
International Nuclear Information System (INIS)
Aguilar Martinez, O.
1994-01-01
In this work the non- lineal dynamic problem of power reactor is analyzed using classic concepts of fractal analysis as: attractors, Hausdorff-Besikovics dimension, phase space, etc. A new non-linear problem is also analyzed: the discrimination of chaotic signals from random neutron noise signals and processing for diagnosis purposes. The advantages of a fractal analysis approach in the power reactor noise are commented in details
Random walk through fractal environments
International Nuclear Information System (INIS)
Isliker, H.; Vlahos, L.
2003-01-01
We analyze random walk through fractal environments, embedded in three-dimensional, permeable space. Particles travel freely and are scattered off into random directions when they hit the fractal. The statistical distribution of the flight increments (i.e., of the displacements between two consecutive hittings) is analytically derived from a common, practical definition of fractal dimension, and it turns out to approximate quite well a power-law in the case where the dimension D F of the fractal is less than 2, there is though, always a finite rate of unaffected escape. Random walks through fractal sets with D F ≤2 can thus be considered as defective Levy walks. The distribution of jump increments for D F >2 is decaying exponentially. The diffusive behavior of the random walk is analyzed in the frame of continuous time random walk, which we generalize to include the case of defective distributions of walk increments. It is shown that the particles undergo anomalous, enhanced diffusion for D F F >2 is normal for large times, enhanced though for small and intermediate times. In particular, it follows that fractals generated by a particular class of self-organized criticality models give rise to enhanced diffusion. The analytical results are illustrated by Monte Carlo simulations
Directory of Open Access Journals (Sweden)
Wanderley Pivatto Brum
2015-01-01
Full Text Available Apresentamos os resultados de um estudo que objetivou analisar os recursos didáticos presentes em seis livros didáticos de Matemática, em relação ao conteúdo de Geometria não Euclidiana, utilizados por professores do ensino médio de uma escola pública, no ano de 2013, localizada na cidade de Florianópolis, Santa Catarina. O estudo de caráter documental com abordagem qualitativa, buscou primeiramente verificar o número de capítulos destinados ao tema “Geometria não Euclidiana” e, posteriormente, foram analisadas a presença e frequência de recursos didáticos categorizados como: figuras, charges, história em quadrinhos, indicação de sites, leitura adicional, glossário e práticas. Os resultados mostraram que a maioria dos livros analisados apresentaram o recursofiguras como o mais frequente, seguido por textos complementares para leitura adicional. Recursos didáticoscomo charge e indicação de sites foram encontrados em apenas um dos livros. Em geral, os livros analisados reproduzem ainda um modelo memorístico de ensino que não privilegia a contextualização e participação do estudante no processo de aprendizagem.PALAVRAS-CHAVE: livros didáticos; geometria não euclidiana, recursos didáticos; aprendizagem.TEXTBOOKS OF MATHEMATICS: ANALYSIS OF DIDACTIC RESOURCES AUXILIARY BISHOPS FOR THE LEARNING OF ELEMENTARY CONCEPTS OF NON EUCLIDEAN GEOMETRYABSTRACTWe present the results of a study that aimed to analyze the teaching resources present in six textbooks in Mathematics, in relation to the content of Geometry is not Euclidean, used by teachers of secondary education in a public school, in the year 2013, located in the city of Florianopolis, Santa Catarina.The study of character a qualitative nature, sought to first check the number of chapters for the theme "Geometry is not Euclidean" and, subsequently, were analyzed the presence and frequency of didactic resources categorized as: figures, cartoons, history in comics
Design of LTCC Based Fractal Antenna
AdbulGhaffar, Farhan
2010-01-01
The thesis presents a Sierpinski Carpet fractal antenna array designed at 24 GHz for automotive radar applications. Miniaturized, high performance and low cost antennas are required for this application. To meet these specifications a fractal array
Fractal Structures For Mems Variable Capacitors
Elshurafa, Amro M.; Radwan, Ahmed Gomaa Ahmed; Emira, Ahmed A.; Salama, Khaled N.
2014-01-01
In accordance with the present disclosure, one embodiment of a fractal variable capacitor comprises a capacitor body in a microelectromechanical system (MEMS) structure, wherein the capacitor body has an upper first metal plate with a fractal shape
A fractal-based image encryption system
Abd-El-Hafiz, S. K.; Radwan, Ahmed Gomaa; Abdel Haleem, Sherif H.; Barakat, Mohamed L.
2014-01-01
single-fractal image and statistical analysis is performed. A general encryption system utilising multiple fractal images is, then, introduced to improve the performance and increase the encryption key up to hundreds of bits. This improvement is achieved
Effects of fractal pore on coal devolatilization
Energy Technology Data Exchange (ETDEWEB)
Chen, Yongli; He, Rong [Tsinghua Univ., Beijing (China). Dept. of Thermal Engineering; Wang, Xiaoliang; Cao, Liyong [Dongfang Electric Corporation, Chengdu (China). Centre New Energy Inst.
2013-07-01
Coal devolatilization is numerically investigated by drop tube furnace and a coal pyrolysis model (Fragmentation and Diffusion Model). The fractal characteristics of coal and char pores are investigated. Gas diffusion and secondary reactions in fractal pores are considered in the numerical simulations of coal devolatilization, and the results show that the fractal dimension is increased firstly and then decreased later with increased coal conversions during devolatilization. The mechanisms of effects of fractal pores on coal devolatilization are analyzed.
Fractal Structures For Fixed Mems Capacitors
Elshurafa, Amro M.
2014-08-28
An embodiment of a fractal fixed capacitor comprises a capacitor body in a microelectromechanical system (MEMS) structure. The capacitor body has a first plate with a fractal shape separated by a horizontal distance from a second plate with a fractal shape. The first plate and the second plate are within the same plane. Such a fractal fixed capacitor further comprises a substrate above which the capacitor body is positioned.
Enhanced Graphene Photodetector with Fractal Metasurface
DEFF Research Database (Denmark)
Fan, Jieran; Wang, Di; DeVault, Clayton
2016-01-01
We designed and fabricated a broadband, polarization-independent photodetector by integrating graphene with a fractal Cayley tree metasurface. Our measurements show an almost uniform, tenfold enhancement in photocurrent generation due to the fractal metasurface structure.......We designed and fabricated a broadband, polarization-independent photodetector by integrating graphene with a fractal Cayley tree metasurface. Our measurements show an almost uniform, tenfold enhancement in photocurrent generation due to the fractal metasurface structure....
Fractal Structures For Fixed Mems Capacitors
Elshurafa, Amro M.; Radwan, Ahmed Gomaa Ahmed; Emira, Ahmed A.; Salama, Khaled N.
2014-01-01
An embodiment of a fractal fixed capacitor comprises a capacitor body in a microelectromechanical system (MEMS) structure. The capacitor body has a first plate with a fractal shape separated by a horizontal distance from a second plate with a fractal shape. The first plate and the second plate are within the same plane. Such a fractal fixed capacitor further comprises a substrate above which the capacitor body is positioned.
Fractal Structures For Mems Variable Capacitors
Elshurafa, Amro M.
2014-08-28
In accordance with the present disclosure, one embodiment of a fractal variable capacitor comprises a capacitor body in a microelectromechanical system (MEMS) structure, wherein the capacitor body has an upper first metal plate with a fractal shape separated by a vertical distance from a lower first metal plate with a complementary fractal shape; and a substrate above which the capacitor body is suspended.
An enhanced fractal image denoising algorithm
International Nuclear Information System (INIS)
Lu Jian; Ye Zhongxing; Zou Yuru; Ye Ruisong
2008-01-01
In recent years, there has been a significant development in image denoising using fractal-based method. This paper presents an enhanced fractal predictive denoising algorithm for denoising the images corrupted by an additive white Gaussian noise (AWGN) by using quadratic gray-level function. Meanwhile, a quantization method for the fractal gray-level coefficients of the quadratic function is proposed to strictly guarantee the contractivity requirement of the enhanced fractal coding, and in terms of the quality of the fractal representation measured by PSNR, the enhanced fractal image coding using quadratic gray-level function generally performs better than the standard fractal coding using linear gray-level function. Based on this enhanced fractal coding, the enhanced fractal image denoising is implemented by estimating the fractal gray-level coefficients of the quadratic function of the noiseless image from its noisy observation. Experimental results show that, compared with other standard fractal-based image denoising schemes using linear gray-level function, the enhanced fractal denoising algorithm can improve the quality of the restored image efficiently
Steady laminar flow of fractal fluids
Energy Technology Data Exchange (ETDEWEB)
Balankin, Alexander S., E-mail: abalankin@ipn.mx [Grupo Mecánica Fractal, ESIME, Instituto Politécnico Nacional, México D.F., 07738 (Mexico); Mena, Baltasar [Laboratorio de Ingeniería y Procesos Costeros, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Sisal, Yucatán, 97355 (Mexico); Susarrey, Orlando; Samayoa, Didier [Grupo Mecánica Fractal, ESIME, Instituto Politécnico Nacional, México D.F., 07738 (Mexico)
2017-02-12
We study laminar flow of a fractal fluid in a cylindrical tube. A flow of the fractal fluid is mapped into a homogeneous flow in a fractional dimensional space with metric induced by the fractal topology. The equations of motion for an incompressible Stokes flow of the Newtonian fractal fluid are derived. It is found that the radial distribution for the velocity in a steady Poiseuille flow of a fractal fluid is governed by the fractal metric of the flow, whereas the pressure distribution along the flow direction depends on the fractal topology of flow, as well as on the fractal metric. The radial distribution of the fractal fluid velocity in a steady Couette flow between two concentric cylinders is also derived. - Highlights: • Equations of Stokes flow of Newtonian fractal fluid are derived. • Pressure distribution in the Newtonian fractal fluid is derived. • Velocity distribution in Poiseuille flow of fractal fluid is found. • Velocity distribution in a steady Couette flow is established.
Symmetric intersections of Rauzy fractals | Sellami | Quaestiones ...
African Journals Online (AJOL)
In this article we study symmetric subsets of Rauzy fractals of unimodular irreducible Pisot substitutions. The symmetry considered is re ection through the origin. Given an unimodular irreducible Pisot substitution, we consider the intersection of its Rauzy fractal with the Rauzy fractal of the reverse substitution. This set is ...
Directory of Open Access Journals (Sweden)
Romário Mauricio Urbanetto Nogueira
2015-06-01
Full Text Available ResumoApesar da similaridade, os processos MIG/MAG e Eletrodo Tubular apresentam particularidades quanto à estabilidade do arco e variabilidade nas características dos cordões. Assim, a escolha de um dos processos, para aplicação específica deveria considerar como tais particularidades afetam a qualidade destas soldas. Para subsidiar esta escolha, o presente estudo teve como objetivo investigar como a mudança na corrente média afeta a estabilidade e a regularidade das transferências de metal em soldas realizadas com tensão constante e corrente pulsada e comparar a variabilidade da geometria e da diluição destas soldas. Para atingir estes objetivos foram realizadas soldas automatizadas, tendo como metal de base o aço ABNT 1020 e como metais de adição o arame AWS ER70S-6 e AWS E71T-1. Além das soldas com variação da corrente média, os testes envolveram a determinação dos parâmetros para a ocorrência de transferência estável por curto-circuito, goticular e pulsado. Os resultados mostraram que a tensão que determina a maior estabilidade na transferência pelo modo curto-circuito, independe da velocidade de soldagem e aumenta com a velocidade do arame, mostraram também que as soldas com arame tubular apresentaram maiores variabilidades comparadas ao arame maciço.
Heritability of Retinal Vascular Fractals
DEFF Research Database (Denmark)
Vergmann, Anna Stage; Broe, Rebecca; Kessel, Line
2017-01-01
Purpose: To determine the genetic contribution to the pattern of retinal vascular branching expressed by its fractal dimension. Methods: This was a cross-sectional study of 50 monozygotic and 49 dizygotic, same-sex twin pairs aged 20 to 46 years. In 50°, disc-centered fundus photographs, the reti...... fractal dimension did not differ statistically significantly between monozygotic and dizygotic twin pairs (1.505 vs. 1.495, P = 0.06), supporting that the study population was suitable for quantitative analysis of heritability. The intrapair correlation was markedly higher (0.505, P = 0.......0002) in monozygotic twins than in dizygotic twins (0.108, P = 0.46), corresponding to a heritability h2 for the fractal dimension of 0.79. In quantitative genetic models, dominant genetic effects explained 54% of the variation and 46% was individually environmentally determined. Conclusions: In young adult twins...
Towards thermomechanics of fractal media
Ostoja-Starzewski, Martin
2007-11-01
Hans Ziegler’s thermomechanics [1,2,3], established half a century ago, is extended to fractal media on the basis of a recently introduced continuum mechanics due to Tarasov [14,15]. Employing the concept of internal (kinematic) variables and internal stresses, as well as the quasiconservative and dissipative stresses, a field form of the second law of thermodynamics is derived. In contradistinction to the conventional Clausius Duhem inequality, it involves generalized rates of strain and internal variables. Upon introducing a dissipation function and postulating the thermodynamic orthogonality on any lengthscale, constitutive laws of elastic-dissipative fractal media naturally involving generalized derivatives of strain and stress can then be derived. This is illustrated on a model viscoelastic material. Also generalized to fractal bodies is the Hill condition necessary for homogenization of their constitutive responses.
Fractal universe and quantum gravity.
Calcagni, Gianluca
2010-06-25
We propose a field theory which lives in fractal spacetime and is argued to be Lorentz invariant, power-counting renormalizable, ultraviolet finite, and causal. The system flows from an ultraviolet fixed point, where spacetime has Hausdorff dimension 2, to an infrared limit coinciding with a standard four-dimensional field theory. Classically, the fractal world where fields live exchanges energy momentum with the bulk with integer topological dimension. However, the total energy momentum is conserved. We consider the dynamics and the propagator of a scalar field. Implications for quantum gravity, cosmology, and the cosmological constant are discussed.
Fractals control in particle's velocity
International Nuclear Information System (INIS)
Zhang Yongping; Liu Shutang; Shen Shulan
2009-01-01
Julia set, a fractal set of the literature of nonlinear physics, has significance for the engineering applications. For example, the fractal structure characteristics of the generalized M-J set could visually reflect the change rule of particle's velocity. According to the real world requirement, the system need show various particle's velocity in some cases. Thus, the control of the nonlinear behavior, i.e., Julia set, has attracted broad attention. In this work, an auxiliary feedback control is introduced to effectively control the Julia set that visually reflects the change rule of particle's velocity. It satisfies the performance requirement of the real world problems.
Taylor dispersion on a fractal
International Nuclear Information System (INIS)
Mazo, R.M.
1998-01-01
Taylor dispersion is the greatly enhanced diffusion in the direction of a fluid flow caused by ordinary diffusion in directions orthogonal to the flow. It is essential that the system be bounded in space in the directions orthogonal to the flow. We investigate the situation where the medium through which the flow occurs has fractal properties so that diffusion in the orthogonal directions is anomalous and non-Fickian. The effective diffusion in the flow direction remains normal; its width grows proportionally with the time. However, the proportionality constant depends on the fractal dimension of the medium as well as its walk dimension. (author)
Applications of fractals in ecology.
Sugihara, G; M May, R
1990-03-01
Fractal models describe the geometry of a wide variety of natural objects such as coastlines, island chains, coral reefs, satellite ocean-color images and patches of vegetation. Cast in the form of modified diffusion models, they can mimic natural and artificial landscapes having different types of complexity of shape. This article provides a brief introduction to fractals and reports on how they can be used by ecologists to answer a variety of basic questions, about scale, measurement and hierarchy in, ecological systems. Copyright © 1990. Published by Elsevier Ltd.
Heritability of Retinal Vascular Fractals
DEFF Research Database (Denmark)
Vergmann, Anna Stage; Broe, Rebecca; Kessel, Line
2017-01-01
, the retinal vascular fractal dimension was measured using the box-counting method and compared within monozygotic and dizygotic twin pairs using Pearson correlation coefficients. Falconer's formula and quantitative genetic models were used to determine the genetic component of variation. Results: The mean...... fractal dimension did not differ statistically significantly between monozygotic and dizygotic twin pairs (1.505 vs. 1.495, P = 0.06), supporting that the study population was suitable for quantitative analysis of heritability. The intrapair correlation was markedly higher (0.505, P = 0...
Synergetics and fractals in tribology
Janahmadov, Ahad Kh
2016-01-01
This book examines the theoretical and practical aspects of tribological process using synergy, fractal and multifractal methods, and the fractal and multifractal models of self-similar tribosystems developed on their basis. It provides a comprehensive analysis of their effectiveness, and also considers the method of flicker noise spectroscopy with detailed parameterization of surface roughness friction. All models, problems and solutions are taken and tested on the set of real-life examples of oil-gas industry. The book is intended for researchers, graduate students and engineers specialising in the field of tribology, and also for senior students of technical colleges.
Directory of Open Access Journals (Sweden)
Matteo Ballarin
2012-06-01
Full Text Available Il contributo testimonia una strategia d'insegnamento congiunto del rilievo architettonico, della geometria descrittiva e del disegno digitale concepita come un viaggio di andata e ritorno tra immagine e modello. Iniziando dalla fotogrammetria elementare e dalle tecniche di foto-modellazione offerte da software (gratuiti e dotati di un'interfaccia sufficientemente intuitiva si possono poi introdurre – col metodo di Monge – le tecniche del rilievo topografico, giungendo alla costruzione interdefinita di un unico modello digitale degli oggetti del rilievo. Il circolo didattico si chiude poi costruendo rappresentazioni tabulari tradizionali dei modelli.
IMPACTOS MICROCLIMÁTICOS DO DESENHO URBANO: ESTUDOS REALIZADOS EM CURITIBA
Directory of Open Access Journals (Sweden)
Eduardo KRUGER
2011-04-01
Full Text Available O artigo busca compreender as relações entre atributos da geometria urbana e alterações no microclima. São apresentados dois estudos distintos conduzidos na mesma área central de Curitiba, PR, a partir de medições de campo realizadas em 2009 e de simulações de clima urbano no software ENVI-met. Os estudos, embora utilizem a mesma campanha de coleta de dados, possuem objetivos e metodologias diferentes. O primeiro estudo foca no impacto da geometria urbana, na temperatura ambiente e nos níveis de conforto em ruas de pedestre no período diurno, sendo o fator de visão do céu utilizado como indicador da complexa geometria urbana. O segundo estudo trata do impacto da orientação das vias em relação ao vento dominante, quanto às taxas de ventilação resultantes (velocidade do ar e distribuição espacial, visando à dispersão de poluentes gerados pelo tráfego, no contexto urbano. Os resultados auferidos evidenciam a influência da forma urbana para a determinação do conforto térmico em ruas de pedestres, restringindo-se a um período diurno específico, e para a criação de cenários de poluição.
Ghost quintessence in fractal gravity
Indian Academy of Sciences (India)
In this study, using the time-like fractal theory of gravity, we mainly focus on the ghost ... Here a(t) is the cosmic scale factor and it measures the expansion of the Universe. ..... effectively appear as self-conserved dark energy, with a non-trivial ...
Fractals in DNA sequence analysis
Institute of Scientific and Technical Information of China (English)
Yu Zu-Guo(喻祖国); Vo Anh; Gong Zhi-Min(龚志民); Long Shun-Chao(龙顺潮)
2002-01-01
Fractal methods have been successfully used to study many problems in physics, mathematics, engineering, finance,and even in biology. There has been an increasing interest in unravelling the mysteries of DNA; for example, how can we distinguish coding and noncoding sequences, and the problems of classification and evolution relationship of organisms are key problems in bioinformatics. Although much research has been carried out by taking into consideration the long-range correlations in DNA sequences, and the global fractal dimension has been used in these works by other people, the models and methods are somewhat rough and the results are not satisfactory. In recent years, our group has introduced a time series model (statistical point of view) and a visual representation (geometrical point of view)to DNA sequence analysis. We have also used fractal dimension, correlation dimension, the Hurst exponent and the dimension spectrum (multifractal analysis) to discuss problems in this field. In this paper, we introduce these fractal models and methods and the results of DNA sequence analysis.
Directory of Open Access Journals (Sweden)
Rafael Montoito
2015-04-01
Full Text Available Parte da pesquisa motivada pela tradução para o português do livro Euclides e seus rivais modernos, publicado por Lewis Carroll em 1879, este artigo se inscreve numa série de estudos que visam a um exame hermenêutico dessa obra. São discutidos temas relacionados com a educação, a educação matemática e o ensino de geometria na Inglaterra vitoriana.Palavras-chave: Lewis Carroll, Euclides e seus rivais modernos, história da educação, educação matemática, geometria. LEWIS CARROLL, EDUCATION AND THE TEACHING OF GEOMETRY IN VICTORIAN ENGLANDAbstractResearch partly motivated by Lewis Carrroll's Euclid and his modern rivals (1879 portuguese translation, this paper presents some hermeneutical remarks taken as necessary to understand the context in which such book was produced. The paper focuses particularly on education, in general, and on the teaching of mathematics and geometry in victorian England.Key-words: Lewis Carroll, Euclid and his modern rivals, history of education, mathematics education, geometry. LEWIS CARROLL, LA EDUCACIÓN Y EL ENSINO DE GEOMETRÍA EN LA INGLATERRA VICTORIANAResumenParte de la investigación motivada por la traducción al portugués del libro Euclides y sus enemigos modernos, publicado por Lewis Carroll en 1879, este artículo se inscribe en una serie de estudios que tienen por objetivo hacer un examen hermenéutico de la obra. Son aquí discutidos temas relacionados como la educación, la educación matemática y la enseñanza de geometría en la Inglaterra victoriana.Palabras-clave: Lewis Carroll, Euclides y sus enemigos modernos, historia de la educación, educación matemática, geometría. LEWIS CARROLL, L’ÉDUCATION ET L’ENSEIGMENT DE GÉOMÉTRIE EN L’ANGLETERRE VICTORIENNERésuméFaisant partie de la recherche motivée par la traduction en portugais du livre Euclide et ses rivaux modernes, publié par Lewis Carrol en 1879 , cet article s’inscrit dans une série d’études dont le but
Fractal nature of humic materials
International Nuclear Information System (INIS)
Rice, J.A.
1992-01-01
Fractals are geometric representatives of strongly disordered systems whose structure is described by nonintegral dimensions. A fundamental tenet of fractal geometry is that disorder persists at any characterization scale-length used to describe the system. The nonintegral nature of these fractal dimensions is the result of the realization that a disordered system must possess more structural detail than an ordered system with classical dimensions of 1, 2, or 3 in order to accommodate this ''disorder within disorder.'' Thus from a fractal perspective, disorder is seen as an inherent characteristic of the system rather than as a perturbative phenomena forced upon it. Humic materials are organic substances that are formed by the profound alteration of organic matter in a natural environment. They can be operationally divided into 3 fractions; humic acid (soluble in base), fulvic acid (soluble in acid or base), and humin (insoluble in acid or base). Each of these fraction has been shown to be an extremely heterogeneous mixture. These mixtures have proven so intractable that they may represent the ultimate in molecular disorder. In fact, based on the characteristics that humic materials must possess in order to perform their functions in natural systems, it has been proposed that the fundamental chemical characteristic of a humic material is not a discrete chemical structure but a pronounced lack of order on a molecular level. If the fundamental chemical characteristic of a humic material is a strongly disordered nature, as has been proposed, then humic materials should be amenable to characterization by fractal geometry. The purpose of this paper is to test this hypothesis
Melo, Helena Sousa
2011-01-01
Encontro Internacional "Educação, Currículos e Didáticas: Tendências, Contextos e Dinâmicas", Ponta Delgada, 27 a 29 de outubro de 2011. Esta comunicação explora a utilização de materiais didáticos manipulativos como auxiliares no ensino da geometria.
Order-fractal transitions in abstract paintings
Energy Technology Data Exchange (ETDEWEB)
Calleja, E.M. de la, E-mail: elsama79@gmail.com [Instituto de Física, Universidade Federal do Rio Grande do Sul, Caixa Postal 15051, 91501-970, Porto Alegre, RS (Brazil); Cervantes, F. [Department of Applied Physics, CINVESTAV-IPN, Carr. Antigua a Progreso km.6, Cordemex, C.P.97310, Mérida, Yucatán (Mexico); Calleja, J. de la [Department of Informatics, Universidad Politécnica de Puebla, 72640 (Mexico)
2016-08-15
In this study, we determined the degree of order for 22 Jackson Pollock paintings using the Hausdorff–Besicovitch fractal dimension. Based on the maximum value of each multi-fractal spectrum, the artworks were classified according to the year in which they were painted. It has been reported that Pollock’s paintings are fractal and that this feature was more evident in his later works. However, our results show that the fractal dimension of these paintings ranges among values close to two. We characterize this behavior as a fractal-order transition. Based on the study of disorder-order transition in physical systems, we interpreted the fractal-order transition via the dark paint strokes in Pollock’s paintings as structured lines that follow a power law measured by the fractal dimension. We determined self-similarity in specific paintings, thereby demonstrating an important dependence on the scale of observations. We also characterized the fractal spectrum for the painting entitled Teri’s Find. We obtained similar spectra for Teri’s Find and Number 5, thereby suggesting that the fractal dimension cannot be rejected completely as a quantitative parameter for authenticating these artworks. -- Highlights: •We determined the degree of order in Jackson Pollock paintings using the Hausdorff–Besicovitch dimension. •We detected a fractal-order transition from Pollock’s paintings between 1947 and 1951. •We suggest that Jackson Pollock could have painted Teri’s Find.
Fractal structures and fractal functions as disease indicators
Escos, J.M; Alados, C.L.; Emlen, J.M.
1995-01-01
Developmental instability is an early indicator of stress, and has been used to monitor the impacts of human disturbance on natural ecosystems. Here we investigate the use of different measures of developmental instability on two species, green peppers (Capsicum annuum), a plant, and Spanish ibex (Capra pyrenaica), an animal. For green peppers we compared the variance in allometric relationship between control plants, and a treatment group infected with the tomato spotted wilt virus. The results show that infected plants have a greater variance about the allometric regression line than the control plants. We also observed a reduction in complexity of branch structure in green pepper with a viral infection. Box-counting fractal dimension of branch architecture declined under stress infection. We also tested the reduction in complexity of behavioral patterns under stress situations in Spanish ibex (Capra pyrenaica). Fractal dimension of head-lift frequency distribution measures predator detection efficiency. This dimension decreased under stressful conditions, such as advanced pregnancy and parasitic infection. Feeding distribution activities reflect food searching efficiency. Power spectral analysis proves to be the most powerful tool for character- izing fractal behavior, revealing a reduction in complexity of time distribution activity under parasitic infection.
Conference on Fractals and Related Fields III
Seuret, Stéphane
2017-01-01
This contributed volume provides readers with an overview of the most recent developments in the mathematical fields related to fractals, including both original research contributions, as well as surveys from many of the leading experts on modern fractal theory and applications. It is an outgrowth of the Conference of Fractals and Related Fields III, that was held on September 19-25, 2015 in île de Porquerolles, France. Chapters cover fields related to fractals such as harmonic analysis, multifractal analysis, geometric measure theory, ergodic theory and dynamical systems, probability theory, number theory, wavelets, potential theory, partial differential equations, fractal tilings, combinatorics, and signal and image processing. The book is aimed at pure and applied mathematicians in these areas, as well as other researchers interested in discovering the fractal domain.
Chaos, Fractals and Their Applications
Thompson, J. Michael T.
2016-12-01
This paper gives an up-to-date account of chaos and fractals, in a popular pictorial style for the general scientific reader. A brief historical account covers the development of the subject from Newton’s laws of motion to the astronomy of Poincaré and the weather forecasting of Lorenz. Emphasis is given to the important underlying concepts, embracing the fractal properties of coastlines and the logistics of population dynamics. A wide variety of applications include: NASA’s discovery and use of zero-fuel chaotic “superhighways” between the planets; erratic chaotic solutions generated by Euler’s method in mathematics; atomic force microscopy; spontaneous pattern formation in chemical and biological systems; impact mechanics in offshore engineering and the chatter of cutting tools; controlling chaotic heartbeats. Reference is made to a number of interactive simulations and movies accessible on the web.
Fractals, malware, and data models
Jaenisch, Holger M.; Potter, Andrew N.; Williams, Deborah; Handley, James W.
2012-06-01
We examine the hypothesis that the decision boundary between malware and non-malware is fractal. We introduce a novel encoding method derived from text mining for converting disassembled programs first into opstrings and then filter these into a reduced opcode alphabet. These opcodes are enumerated and encoded into real floating point number format and used for characterizing frequency of occurrence and distribution properties of malware functions to compare with non-malware functions. We use the concept of invariant moments to characterize the highly non-Gaussian structure of the opcode distributions. We then derive Data Model based classifiers from identified features and interpolate and extrapolate the parameter sample space for the derived Data Models. This is done to examine the nature of the parameter space classification boundary between families of malware and the general non-malware category. Preliminary results strongly support the fractal boundary hypothesis, and a summary of our methods and results are presented here.
The fractal dimension of architecture
Ostwald, Michael J
2016-01-01
Fractal analysis is a method for measuring, analysing and comparing the formal or geometric properties of complex objects. In this book it is used to investigate eighty-five buildings that have been designed by some of the twentieth-century’s most respected and celebrated architects. Including designs by Le Corbusier, Eileen Gray, Frank Lloyd Wright, Robert Venturi, Frank Gehry, Peter Eisenman, Richard Meier and Kazuyo Sejima amongst others, this book uses mathematics to analyse arguments and theories about some of the world’s most famous designs. Starting with 625 reconstructed architectural plans and elevations, and including more than 200 specially prepared views of famous buildings, this book presents the results of the largest mathematical study ever undertaken into architectural design and the largest single application of fractal analysis presented in any field. The data derived from this study is used to test three overarching hypotheses about social, stylistic and personal trends in design, along...
Dimensional analysis, scaling and fractals
International Nuclear Information System (INIS)
Timm, L.C.; Reichardt, K.; Oliveira Santos Bacchi, O.
2004-01-01
Dimensional analysis refers to the study of the dimensions that characterize physical entities, like mass, force and energy. Classical mechanics is based on three fundamental entities, with dimensions MLT, the mass M, the length L and the time T. The combination of these entities gives rise to derived entities, like volume, speed and force, of dimensions L 3 , LT -1 , MLT -2 , respectively. In other areas of physics, four other fundamental entities are defined, among them the temperature θ and the electrical current I. The parameters that characterize physical phenomena are related among themselves by laws, in general of quantitative nature, in which they appear as measures of the considered physical entities. The measure of an entity is the result of its comparison with another one, of the same type, called unit. Maps are also drawn in scale, for example, in a scale of 1:10,000, 1 cm 2 of paper can represent 10,000 m 2 in the field. Entities that differ in scale cannot be compared in a simple way. Fractal geometry, in contrast to the Euclidean geometry, admits fractional dimensions. The term fractal is defined in Mandelbrot (1982) as coming from the Latin fractus, derived from frangere which signifies to break, to form irregular fragments. The term fractal is opposite to the term algebra (from the Arabic: jabara) which means to join, to put together the parts. For Mandelbrot, fractals are non topologic objects, that is, objects which have as their dimension a real, non integer number, which exceeds the topologic dimension. For the topologic objects, or Euclidean forms, the dimension is an integer (0 for the point, 1 for a line, 2 for a surface, and 3 for a volume). The fractal dimension of Mandelbrot is a measure of the degree of irregularity of the object under consideration. It is related to the speed by which the estimate of the measure of an object increases as the measurement scale decreases. An object normally taken as uni-dimensional, like a piece of a
Fuzzy fractals, chaos, and noise
Energy Technology Data Exchange (ETDEWEB)
Zardecki, A.
1997-05-01
To distinguish between chaotic and noisy processes, the authors analyze one- and two-dimensional chaotic mappings, supplemented by the additive noise terms. The predictive power of a fuzzy rule-based system allows one to distinguish ergodic and chaotic time series: in an ergodic series the likelihood of finding large numbers is small compared to the likelihood of finding them in a chaotic series. In the case of two dimensions, they consider the fractal fuzzy sets whose {alpha}-cuts are fractals, arising in the context of a quadratic mapping in the extended complex plane. In an example provided by the Julia set, the concept of Hausdorff dimension enables one to decide in favor of chaotic or noisy evolution.
International Nuclear Information System (INIS)
Xie Tao; Zhao Shang-Zhuo; Fang He; Yu Wen-Jin; He Yi-Jun; Perrie, William
2016-01-01
Sea surface current has a significant influence on electromagnetic (EM) backscattering signals and may constitute a dominant synthetic aperture radar (SAR) imaging mechanism. An effective EM backscattering model for a one-dimensional drifting fractal sea surface is presented in this paper. This model is used to simulate EM backscattering signals from the drifting sea surface. Numerical results show that ocean currents have a significant influence on EM backscattering signals from the sea surface. The normalized radar cross section (NRCS) discrepancies between the model for a coupled wave-current fractal sea surface and the model for an uncoupled fractal sea surface increase with the increase of incidence angle, as well as with increasing ocean currents. Ocean currents that are parallel to the direction of the wave can weaken the EM backscattering signal intensity, while the EM backscattering signal is intensified by ocean currents propagating oppositely to the wave direction. The model presented in this paper can be used to study the SAR imaging mechanism for a drifting sea surface. (paper)
Inkjet-Printed Ultra Wide Band Fractal Antennas
Maza, Armando Rodriguez
2012-01-01
reduction, a Cantor-based fractal antenna which performs a larger bandwidth compared to previously published UWB Cantor fractal monopole antenna, and a 3D loop fractal antenna which attains miniaturization, impedance matching and multiband characteristics
Fractals via iterated functions and multifunctions
International Nuclear Information System (INIS)
Singh, S.L.; Prasad, Bhagwati; Kumar, Ashish
2009-01-01
Fractals have wide applications in biology, computer graphics, quantum physics and several other areas of applied sciences (see, for instance [Daya Sagar BS, Rangarajan Govindan, Veneziano Daniele. Preface - fractals in geophysics. Chaos, Solitons and Fractals 2004;19:237-39; El Naschie MS. Young double-split experiment Heisenberg uncertainty principles and cantorian space-time. Chaos, Solitons and Fractals 1994;4(3):403-09; El Naschie MS. Quantum measurement, information, diffusion and cantorian geodesics. In: El Naschie MS, Rossler OE, Prigogine I, editors. Quantum mechanics, diffusion and Chaotic fractals. Oxford: Elsevier Science Ltd; 1995. p. 191-205; El Naschie MS. Iterated function systems, information and the two-slit experiment of quantum mechanics. In: El Naschie MS, Rossler OE, Prigogine I, editors. Quantum mechanics, diffusion and Chaotic fractals. Oxford: Elsevier Science Ltd; 1995. p. 185-9; El Naschie MS, Rossler OE, Prigogine I. Forward. In: El Naschie MS, Rossler OE, Prigogine I, editors. Quantum mechanics, diffusion and Chaotic fractals. Oxford: Elsevier Science Ltd; 1995; El Naschie MS. A review of E-infinity theory and the mass spectrum of high energy particle physics. Chaos, Solitons and Fractals 2004;19:209-36; El Naschie MS. Fractal black holes and information. Chaos, Solitons and Fractals 2006;29:23-35; El Naschie MS. Superstring theory: what it cannot do but E-infinity could. Chaos, Solitons and Fractals 2006;29:65-8). Especially, the study of iterated functions has been found very useful in the theory of black holes, two-slit experiment in quantum mechanics (cf. El Naschie, as mentioned above). The intent of this paper is to give a brief account of recent developments of fractals arising from IFS. We also discuss iterated multifunctions.
Node insertion in Coalescence Fractal Interpolation Function
International Nuclear Information System (INIS)
Prasad, Srijanani Anurag
2013-01-01
The Iterated Function System (IFS) used in the construction of Coalescence Hidden-variable Fractal Interpolation Function (CHFIF) depends on the interpolation data. The insertion of a new point in a given set of interpolation data is called the problem of node insertion. In this paper, the effect of insertion of new point on the related IFS and the Coalescence Fractal Interpolation Function is studied. Smoothness and Fractal Dimension of a CHFIF obtained with a node are also discussed
Fractional hydrodynamic equations for fractal media
International Nuclear Information System (INIS)
Tarasov, Vasily E.
2005-01-01
We use the fractional integrals in order to describe dynamical processes in the fractal medium. We consider the 'fractional' continuous medium model for the fractal media and derive the fractional generalization of the equations of balance of mass density, momentum density, and internal energy. The fractional generalization of Navier-Stokes and Euler equations are considered. We derive the equilibrium equation for fractal media. The sound waves in the continuous medium model for fractional media are considered
Comparison of two fractal interpolation methods
Fu, Yang; Zheng, Zeyu; Xiao, Rui; Shi, Haibo
2017-03-01
As a tool for studying complex shapes and structures in nature, fractal theory plays a critical role in revealing the organizational structure of the complex phenomenon. Numerous fractal interpolation methods have been proposed over the past few decades, but they differ substantially in the form features and statistical properties. In this study, we simulated one- and two-dimensional fractal surfaces by using the midpoint displacement method and the Weierstrass-Mandelbrot fractal function method, and observed great differences between the two methods in the statistical characteristics and autocorrelation features. From the aspect of form features, the simulations of the midpoint displacement method showed a relatively flat surface which appears to have peaks with different height as the fractal dimension increases. While the simulations of the Weierstrass-Mandelbrot fractal function method showed a rough surface which appears to have dense and highly similar peaks as the fractal dimension increases. From the aspect of statistical properties, the peak heights from the Weierstrass-Mandelbrot simulations are greater than those of the middle point displacement method with the same fractal dimension, and the variances are approximately two times larger. When the fractal dimension equals to 1.2, 1.4, 1.6, and 1.8, the skewness is positive with the midpoint displacement method and the peaks are all convex, but for the Weierstrass-Mandelbrot fractal function method the skewness is both positive and negative with values fluctuating in the vicinity of zero. The kurtosis is less than one with the midpoint displacement method, and generally less than that of the Weierstrass-Mandelbrot fractal function method. The autocorrelation analysis indicated that the simulation of the midpoint displacement method is not periodic with prominent randomness, which is suitable for simulating aperiodic surface. While the simulation of the Weierstrass-Mandelbrot fractal function method has
Power Load Prediction Based on Fractal Theory
Jian-Kai, Liang; Cattani, Carlo; Wan-Qing, Song
2015-01-01
The basic theories of load forecasting on the power system are summarized. Fractal theory, which is a new algorithm applied to load forecasting, is introduced. Based on the fractal dimension and fractal interpolation function theories, the correlation algorithms are applied to the model of short-term load forecasting. According to the process of load forecasting, the steps of every process are designed, including load data preprocessing, similar day selecting, short-term load forecasting, and...
Fractal Metrology for biogeosystems analysis
Directory of Open Access Journals (Sweden)
V. Torres-Argüelles
2010-11-01
Full Text Available The solid-pore distribution pattern plays an important role in soil functioning being related with the main physical, chemical and biological multiscale and multitemporal processes of this complex system. In the present research, we studied the aggregation process as self-organizing and operating near a critical point. The structural pattern is extracted from the digital images of three soils (Chernozem, Solonetz and "Chocolate" Clay and compared in terms of roughness of the gray-intensity distribution quantified by several measurement techniques. Special attention was paid to the uncertainty of each of them measured in terms of standard deviation. Some of the applied methods are known as classical in the fractal context (box-counting, rescaling-range and wavelets analyses, etc. while the others have been recently developed by our Group. The combination of these techniques, coming from Fractal Geometry, Metrology, Informatics, Probability Theory and Statistics is termed in this paper Fractal Metrology (FM. We show the usefulness of FM for complex systems analysis through a case study of the soil's physical and chemical degradation applying the selected toolbox to describe and compare the structural attributes of three porous media with contrasting structure but similar clay mineralogy dominated by montmorillonites.
Fractal Geometry and Stochastics V
Falconer, Kenneth; Zähle, Martina
2015-01-01
This book brings together leading contributions from the fifth conference on Fractal Geometry and Stochastics held in Tabarz, Germany, in March 2014. The book is divided into five sections covering different facets of this fast developing area: geometric measure theory, self-similar fractals and recurrent structures, analysis and algebra on fractals, multifractal theory, and random constructions. There are state-of-the-art surveys as well as papers highlighting more specific recent advances. The authors are world-experts who present their topics comprehensibly and attractively. The book provides an accessible gateway to the subject for newcomers as well as a reference for recent developments for specialists. Authors include: Krzysztof Barański, Julien Barral, Kenneth Falconer, De-Jun Feng, Peter J. Grabner, Rostislav Grigorchuk, Michael Hinz, Stéphane Jaffard, Maarit Järvenpää, Antti Käenmäki, Marc Kesseböhmer, Michel Lapidus, Klaus Mecke, Mark Pollicott, Michał Rams, Pablo Shmerkin, and András Te...
Fractal geometry mathematical foundations and applications
Falconer, Kenneth
2013-01-01
The seminal text on fractal geometry for students and researchers: extensively revised and updated with new material, notes and references that reflect recent directions. Interest in fractal geometry continues to grow rapidly, both as a subject that is fascinating in its own right and as a concept that is central to many areas of mathematics, science and scientific research. Since its initial publication in 1990 Fractal Geometry: Mathematical Foundations and Applications has become a seminal text on the mathematics of fractals. The book introduces and develops the general theory and applica
A variational principle for the Hausdorff dimension of fractal sets
DEFF Research Database (Denmark)
Olsen, Lars; Cutler, Colleen D.
1994-01-01
Matematik, fraktal (fractal), Hausdorff dimension, Renyi dimension, pakke dimension (packing dimension)......Matematik, fraktal (fractal), Hausdorff dimension, Renyi dimension, pakke dimension (packing dimension)...
Inkjet-Printed Ultra Wide Band Fractal Antennas
Maza, Armando Rodriguez
2012-05-01
In this work, Paper-based inkjet-printed Ultra-wide band (UWB) fractal antennas are presented. Three new designs, a combined UWB fractal monopole based on the fourth order Koch Snowflake fractal which utilizes a Sierpinski Gasket fractal for ink reduction, a Cantor-based fractal antenna which performs a larger bandwidth compared to previously published UWB Cantor fractal monopole antenna, and a 3D loop fractal antenna which attains miniaturization, impedance matching and multiband characteristics. It is shown that fractals prove to be a successful method of reducing fabrication cost in inkjet printed antennas while retaining or enhancing printed antenna performance.
Fractal analysis of polar bear hairs
Directory of Open Access Journals (Sweden)
Wang Qing-Li
2015-01-01
Full Text Available Hairs of a polar bear (Ursus maritimus are of superior properties such as the excellent thermal protection. Why do polar bears can resist such cold environment? The paper concludes that its fractal porosity plays an important role, and its fractal dimensions are very close to the golden mean, 1.618, revealing the possible optimal structure of polar bear hair.
Design of LTCC Based Fractal Antenna
AdbulGhaffar, Farhan
2010-09-01
The thesis presents a Sierpinski Carpet fractal antenna array designed at 24 GHz for automotive radar applications. Miniaturized, high performance and low cost antennas are required for this application. To meet these specifications a fractal array has been designed for the first time on Low Temperature Co-fired Ceramic (LTCC) based substrate. LTCC provides a suitable platform for the development of these antennas due to its properties of vertical stack up and embedded passives. The complete antenna concept involves integration of this fractal antenna array with a Fresnel lens antenna providing a total gain of 15dB which is appropriate for medium range radar applications. The thesis also presents a comparison between the designed fractal antenna and a conventional patch antenna outlining the advantages of fractal antenna over the later one. The fractal antenna has a bandwidth of 1.8 GHz which is 7.5% of the centre frequency (24GHz) as compared to 1.9% of the conventional patch antenna. Furthermore the fractal design exhibits a size reduction of 53% as compared to the patch antenna. In the end a sensitivity analysis is carried out for the fractal antenna design depicting the robustness of the proposed design against the typical LTCC fabrication tolerances.
MEASURING THE FRACTAL STRUCTURE OF INTERSTELLAR CLOUDS
VOGELAAR, MGR; WAKKER, BP
To study the structure of interstellar matter we have applied the concept of fractal curves to the brightness contours of maps of interstellar clouds and from these estimated the fractal dimension for some of them. We used the so-called perimeter-area relation as the basis for these estimates. We
MEASURING THE FRACTAL STRUCTURE OF INTERSTELLAR CLOUDS
VOGELAAR, MGR; WAKKER, BP; SCHWARZ, UJ
1991-01-01
To study the structure of interstellar clouds we used the so-called perimeter-area relation to estimate fractal dimensions. We studied the reliability of the method by applying it to artificial fractals and discuss some of the problems and pitfalls. Results for two different cloud types
Fractal Image Coding with Digital Watermarks
Directory of Open Access Journals (Sweden)
Z. Klenovicova
2000-12-01
Full Text Available In this paper are presented some results of implementation of digitalwatermarking methods into image coding based on fractal principles. Thepaper focuses on two possible approaches of embedding digitalwatermarks into fractal code of images - embedding digital watermarksinto parameters for position of similar blocks and coefficients ofblock similarity. Both algorithms were analyzed and verified on grayscale static images.
Chaos and fractals an elementary introduction
Feldman, David P
2012-01-01
For students with a background in elementary algebra, this text provides a vivid introduction to the key phenomena and ideas of chaos and fractals, including the butterfly effect, strange attractors, fractal dimensions, Julia sets and the Mandelbrot set, power laws, and cellular automata.
MEASURING THE FRACTAL STRUCTURE OF INTERSTELLAR CLOUDS
VOGELAAR, MGR; WAKKER, BP
1994-01-01
To study the structure of interstellar matter we have applied the concept of fractal curves to the brightness contours of maps of interstellar clouds and from these estimated the fractal dimension for some of them. We used the so-called perimeter-area relation as the basis for these estimates. We
Undergraduate Experiment with Fractal Diffraction Gratings
Monsoriu, Juan A.; Furlan, Walter D.; Pons, Amparo; Barreiro, Juan C.; Gimenez, Marcos H.
2011-01-01
We present a simple diffraction experiment with fractal gratings based on the triadic Cantor set. Diffraction by fractals is proposed as a motivating strategy for students of optics in the potential applications of optical processing. Fraunhofer diffraction patterns are obtained using standard equipment present in most undergraduate physics…
Chaos and fractals. Applications to nuclear engineering
International Nuclear Information System (INIS)
Clausse, A.; Delmastro, D.F.
1990-01-01
This work presents a description of the research lines carried out by the authors on chaos and fractal theories, oriented to the nuclear field. The possibilities that appear in the nuclear security branch where the information deriving from chaos and fractal techniques may help to the development of better criteria and more reliable designs, are of special importance. (Author) [es
Fractal Analysis of Rock Joint Profiles
Audy, Ondřej; Ficker, Tomáš
2017-10-01
Surface reliefs of rock joints are analyzed in geotechnics when shear strength of rocky slopes is estimated. The rock joint profiles actually are self-affine fractal curves and computations of their fractal dimensions require special methods. Many papers devoted to the fractal properties of these profiles were published in the past but only a few of those papers employed a convenient computational method that would have guaranteed a sound value of that dimension. As a consequence, anomalously low dimensions were presented. This contribution deals with two computational modifications that lead to sound fractal dimensions of the self-affine rock joint profiles. These are the modified box-counting method and the modified yard-stick method sometimes called the compass method. Both these methods are frequently applied to self-similar fractal curves but the self-affine profile curves due to their self-affine nature require modified computational procedures implemented in computer programs.
A random walk through fractal dimensions
Kaye, Brian H
2008-01-01
Fractal geometry is revolutionizing the descriptive mathematics of applied materials systems. Rather than presenting a mathematical treatise, Brian Kaye demonstrates the power of fractal geometry in describing materials ranging from Swiss cheese to pyrolytic graphite. Written from a practical point of view, the author assiduously avoids the use of equations while introducing the reader to numerous interesting and challenging problems in subject areas ranging from geography to fine particle science. The second edition of this successful book provides up-to-date literature coverage of the use of fractal geometry in all areas of science.From reviews of the first edition:''...no stone is left unturned in the quest for applications of fractal geometry to fine particle problems....This book should provide hours of enjoyable reading to those wishing to become acquainted with the ideas of fractal geometry as applied to practical materials problems.'' MRS Bulletin
Pre-Service Teachers' Concept Images on Fractal Dimension
Karakus, Fatih
2016-01-01
The analysis of pre-service teachers' concept images can provide information about their mental schema of fractal dimension. There is limited research on students' understanding of fractal and fractal dimension. Therefore, this study aimed to investigate the pre-service teachers' understandings of fractal dimension based on concept image. The…
Morphometric relations of fractal-skeletal based channel network model
Directory of Open Access Journals (Sweden)
B. S. Daya Sagar
1998-01-01
Full Text Available A fractal-skeletal based channel network (F-SCN model is proposed. Four regular sided initiator-basins are transformed as second order fractal basins by following a specific generating mechanism with non-random rule. The morphological skeletons, hereafter referred to as channel networks, are extracted from these fractal basins. The morphometric and fractal relationships of these F-SCNs are shown. The fractal dimensions of these fractal basins, channel networks, and main channel lengths (computed through box counting method are compared with those of estimated length–area measures. Certain morphometric order ratios to show fractal relations are also highlighted.
Directory of Open Access Journals (Sweden)
Poloni, Marinês Yole
2012-05-01
Full Text Available Este artigo tem por propósito discutir episódios da prática de duas professoras do Ensino Fundamental I que em um curso de formação continuada revisitaram alguns conceitos geométricos. O foco está na reconstrução dos conceitos dessas professoras, entretanto são explicitadas também decisões e estratégias metodológicas por elas tomadas a fim de mediar a aprendizagem dos alunos. A pesquisa de mestrado, que subsidia este texto, foi realizada ao longo do curso “Geometria em Ação”, o qual estava centrado no tema Figuras Planas e, nele, foi utilizado o software Cabri-Géomètre[1]. A fundamentação teórica foi construída a partir dos conceitos de reflexão de Schön, das vertentes do conhecimento didático de Ponte & Oliveira e da articulação entre teoria e prática de Tardif. A pesquisa de caráter qualitativo utilizou a metodologia de Design-Based Research. No artigo apresentamos reflexões tanto sobre a (reconstrução de conceitos geométricos, quanto sobre a prática docente. Concluímos, ao final do estudo, que ocorreram situações de reconstrução de conceitos geométricos por parte de ambas as professoras, particularmente quanto às definições e às propriedades de triângulos e quadriláteros. Em relação à prática docente, elas se conscientizaram das decisões tomadas tanto durante o planejamento de suas aulas quanto durante a aplicação das mesmas avaliando, posteriormente, suas decisões didáticas e pedagógicas. This paper discusses episodes of teaching practices of two primary school teachers whom, during a course of continuing education, have revisited some geometrical concepts. The focus is on the reconstruction of mathematical concepts of these teachers, however, we also present methodological strategies and decisions taken by them in order to support students' learning. The underlying research was carried out along the course "Geometria em Ação" (Geometry in Action, which was centered on the Planar
Fractal dimension of turbulent black holes
Westernacher-Schneider, John Ryan
2017-11-01
We present measurements of the fractal dimension of a turbulent asymptotically anti-de Sitter black brane reconstructed from simulated boundary fluid data at the perfect fluid order using the fluid-gravity duality. We argue that the boundary fluid energy spectrum scaling as E (k )˜k-2 is a more natural setting for the fluid-gravity duality than the Kraichnan-Kolmogorov scaling of E (k )˜k-5 /3, but we obtain fractal dimensions D for spatial sections of the horizon H ∩Σ in both cases: D =2.584 (1 ) and D =2.645 (4 ), respectively. These results are consistent with the upper bound of D =3 , thereby resolving the tension with the recent claim in Adams et al. [Phys. Rev. Lett. 112, 151602 (2014), 10.1103/PhysRevLett.112.151602] that D =3 +1 /3 . We offer a critical examination of the calculation which led to their result, and show that their proposed definition of the fractal dimension performs poorly as a fractal dimension estimator on one-dimensional curves with known fractal dimension. Finally, we describe how to define and in principle calculate the fractal dimension of spatial sections of the horizon H ∩Σ in a covariant manner, and we speculate on assigning a "bootstrapped" value of fractal dimension to the entire horizon H when it is in a statistically quasisteady turbulent state.
Classification of radar echoes using fractal geometry
International Nuclear Information System (INIS)
Azzaz, Nafissa; Haddad, Boualem
2017-01-01
Highlights: • Implementation of two concepts of fractal geometry to classify two types of meteorological radar echoes. • A new approach, called a multi-scale fractal dimension is used for classification between fixed echoes and rain echoes. • An Automatic identification system of meteorological radar echoes was proposed using fractal geometry. - Abstract: This paper deals with the discrimination between the precipitation echoes and the ground echoes in meteorological radar images using fractal geometry. This study aims to improve the measurement of precipitations by weather radars. For this, we considered three radar sites: Bordeaux (France), Dakar (Senegal) and Me lbourne (USA). We showed that the fractal dimension based on contourlet and the fractal lacunarity are pertinent to discriminate between ground and precipitation echoes. We also demonstrated that the ground echoes have a multifractal structure but the precipitations are more homogeneous than ground echoes whatever the prevailing climate. Thereby, we developed an automatic classification system of radar using a graphic interface. This interface, based on the fractal geometry makes possible the identification of radar echoes type in real time. This system can be inserted in weather radar for the improvement of precipitation estimations.
Balankin, Alexander S.; Bory-Reyes, Juan; Shapiro, Michael
2016-02-01
One way to deal with physical problems on nowhere differentiable fractals is the mapping of these problems into the corresponding problems for continuum with a proper fractal metric. On this way different definitions of the fractal metric were suggested to account for the essential fractal features. In this work we develop the metric differential vector calculus in a three-dimensional continuum with a non-Euclidean metric. The metric differential forms and Laplacian are introduced, fundamental identities for metric differential operators are established and integral theorems are proved by employing the metric version of the quaternionic analysis for the Moisil-Teodoresco operator, which has been introduced and partially developed in this paper. The relations between the metric and conventional operators are revealed. It should be emphasized that the metric vector calculus developed in this work provides a comprehensive mathematical formalism for the continuum with any suitable definition of fractal metric. This offers a novel tool to study physics on fractals.
Undergraduate experiment with fractal diffraction gratings
International Nuclear Information System (INIS)
Monsoriu, Juan A; Furlan, Walter D; Pons, Amparo; Barreiro, Juan C; Gimenez, Marcos H
2011-01-01
We present a simple diffraction experiment with fractal gratings based on the triadic Cantor set. Diffraction by fractals is proposed as a motivating strategy for students of optics in the potential applications of optical processing. Fraunhofer diffraction patterns are obtained using standard equipment present in most undergraduate physics laboratories and compared with those obtained with conventional periodic gratings. It is shown that fractal gratings produce self-similar diffraction patterns which can be evaluated analytically. Good agreement is obtained between experimental and numerical results.
Directory of Open Access Journals (Sweden)
María Eugenia Torres
2007-01-01
Full Text Available En este trabajo comparamos tres métodos diferentes utilizados para estimar el exponente de Hurst, y analizamos su eficiencia cuando son aplicados a series de datos de diferentes longitudes. Se analizan series temporales de fBm sintetizada pura y con tendencias sinusoidales superpuestas. Mostraremos que los tres métodos aquí discutidos, DFA, basado en wavelets y de variaciones discretas, no sólo son altamente dependientes de la longitud de la señal, sino también del orden o número de los momentos (polinómico, regularidad wavelet o variaciones discretas. Para longitudes de datos suficientemente grandes (superiores a 212, los métodos basados en wavelets y de variaciones discretas mostraron ser menos sesgados y más estables para señales fBm simuladas. Mostraremos que el método de DFA, más utilizado en el ambiente biomédico, es el que proporciona peores estimaciones, arrojando resultados ambiguos cuando son aplicados a señales biológicas de diferentes longitudes o con diferentes parámetros de estimación, sin que pueda considerarse a ninguno de los otros dos como métodos confiables en el momento de desear obtener resultados de relevancia física o fisiológica. Los resultados obtenidos indican que debería procederse con más cautela cuando se trata de obtener conclusiones fisiológicas a partir de estimaciones realizadas a partir de señales reales.
Fractal statistics of brittle fragmentation
Directory of Open Access Journals (Sweden)
M. Davydova
2013-04-01
Full Text Available The study of fragmentation statistics of brittle materials that includes four types of experiments is presented. Data processing of the fragmentation of glass plates under quasi-static loading and the fragmentation of quartz cylindrical rods under dynamic loading shows that the size distribution of fragments (spatial quantity is fractal and can be described by a power law. The original experimental technique allows us to measure, apart from the spatial quantity, the temporal quantity - the size of time interval between the impulses of the light reflected from the newly created surfaces. The analysis of distributions of spatial (fragment size and temporal (time interval quantities provides evidence of obeying scaling laws, which suggests the possibility of self-organized criticality in fragmentation.
Model of fractal aggregates induced by shear
Directory of Open Access Journals (Sweden)
Wan Zhanhong
2013-01-01
Full Text Available It is an undoubted fact that particle aggregates from marine, aerosol, and engineering systems have fractal structures. In this study, fractal geometry is used to describe the morphology of irregular aggregates. The mean-field theory is employed to solve coagulation kinetic equation of aggregates. The Taylor-expansion method of moments in conjunction with the self-similar fractal characteristics is used to represent the particulate field. The effect of the target fractal dimensions on zeroth-order moment, second-order moment, and geometric standard deviation of the aggregates is explored. Results show that the developed moment method is an efficient and powerful approach to solving such evolution equations.
A Parallel Approach to Fractal Image Compression
Lubomir Dedera
2004-01-01
The paper deals with a parallel approach to coding and decoding algorithms in fractal image compressionand presents experimental results comparing sequential and parallel algorithms from the point of view of achieved bothcoding and decoding time and effectiveness of parallelization.
Random walks of oriented particles on fractals
International Nuclear Information System (INIS)
Haber, René; Prehl, Janett; Hoffmann, Karl Heinz; Herrmann, Heiko
2014-01-01
Random walks of point particles on fractals exhibit subdiffusive behavior, where the anomalous diffusion exponent is smaller than one, and the corresponding random walk dimension is larger than two. This is due to the limited space available in fractal structures. Here, we endow the particles with an orientation and analyze their dynamics on fractal structures. In particular, we focus on the dynamical consequences of the interactions between the local surrounding fractal structure and the particle orientation, which are modeled using an appropriate move class. These interactions can lead to particles becoming temporarily or permanently stuck in parts of the structure. A surprising finding is that the random walk dimension is not affected by the orientation while the diffusion constant shows a variety of interesting and surprising features. (paper)
Designing a fractal antenna of 2400 MHz
International Nuclear Information System (INIS)
Miranda Hamburger, Fabio
2012-01-01
The design of a fractal antenna with 2400 MHz of frequency has been studied. The fractal used is described by Waclaw Spierpi.ski. The initial figure, also known as seed, is divided using equilateral triangles with the aim of obtaining a perimeter similar to a meaningful portion of wave length. The use of λ to establish an ideal perimeter has reduced the radiation resistance. The adequate number of iterations needed to design the antenna is calculated based on λ. (author) [es
Fractal effects on excitations in diluted ferromagnets
International Nuclear Information System (INIS)
Kumar, D.
1981-08-01
The low energy spin-wave like excitations in diluted ferromagnets near percolation threshold are studied. For this purpose an explicit use of the fractal model for the backbone of the infinite percolating cluster due to Kirkpatrick is made. Three physical effects are identified, which cause the softening of spin-waves as the percolation point is approached. The importance of fractal effects in the calculation of density of states and the low temperature thermodynamics is pointed out. (author)
A fractal-like resistive network
International Nuclear Information System (INIS)
Saggese, A; De Luca, R
2014-01-01
The equivalent resistance of a fractal-like network is calculated by means of approaches similar to those employed in defining the equivalent resistance of an infinite ladder. Starting from an elementary triangular circuit, a fractal-like network, named after Saggese, is developed. The equivalent resistance of finite approximations of this network is measured, and the didactical implications of the model are highlighted. (paper)
Heat kernels and zeta functions on fractals
International Nuclear Information System (INIS)
Dunne, Gerald V
2012-01-01
On fractals, spectral functions such as heat kernels and zeta functions exhibit novel features, very different from their behaviour on regular smooth manifolds, and these can have important physical consequences for both classical and quantum physics in systems having fractal properties. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical in honour of Stuart Dowker's 75th birthday devoted to ‘Applications of zeta functions and other spectral functions in mathematics and physics’. (paper)
Parceria Trans-Pacífico: Novas Geometrias no Capitalismo Global
Directory of Open Access Journals (Sweden)
Hoyêdo Nunes Lins
2014-12-01
Full Text Available Em 2005, Brunei, Chile, Cingapura e Nova Zelândia firmaram acordo de parceria econômica no sentido de uma interação estratégica na região Ásia-Pacífico. Em 2009, os Estados Unidos se envolveram, assumindo a liderança das negociações. Desde então, as tratativas sobre a Parceria Trans-Pacífico ganharam impulso, com Austrália, Malásia, Peru e Vietnã aderindo em 2010 e Canadá e México em 2012, somando onze membros até o início de 2013. Baseado em pesquisa bibliográfica e documental, o artigo caracteriza essa iniciativa e discute seus termos principais e questões mais controversas. Entre estas, figuram as propostas sobre direitos de propriedade intelectual e investimentos, com vantagens para grandes empresas, inclusive na resolução de disputas entre investidores e Estados, fontes de apreensão e fortes críticas entre grupos sociais. Também se explora a motivação dos Estados Unidos, envolvendo garantia de proeminência na região de maior crescimento econômico no planeta. “Conter” a influência e a liderança chinesas parece uma estratégia central daquele país, questões econômicas e geopolíticas entrelaçando-se fortemente nesse contexto.
Pulse regime in formation of fractal fibers
Energy Technology Data Exchange (ETDEWEB)
Smirnov, B. M., E-mail: bmsmirnov@gmail.com [Joint Institute for High Temperatures (Russian Federation)
2016-11-15
The pulse regime of vaporization of a bulk metal located in a buffer gas is analyzed as a method of generation of metal atoms under the action of a plasma torch or a laser beam. Subsequently these atoms are transformed into solid nanoclusters, fractal aggregates and then into fractal fibers if the growth process proceeds in an external electric field. We are guided by metals in which transitions between s and d-electrons of their atoms are possible, since these metals are used as catalysts and filters in interaction with gas flows. The resistance of metal fractal structures to a gas flow is evaluated that allows one to find optimal parameters of a fractal structure for gas flow propagation through it. The thermal regime of interaction between a plasma pulse or a laser beam and a metal surface is analyzed. It is shown that the basic energy from an external source is consumed on a bulk metal heating, and the efficiency of atom evaporation from the metal surface, that is the ratio of energy fluxes for vaporization and heating, is 10{sup –3}–10{sup –4} for transient metals under consideration. A typical energy flux (~10{sup 6} W/cm{sup 2}), a typical surface temperature (~3000 K), and a typical pulse duration (~1 μs) provide a sufficient amount of evaporated atoms to generate fractal fibers such that each molecule of a gas flow collides with the skeleton of fractal fibers many times.
On the Lipschitz condition in the fractal calculus
International Nuclear Information System (INIS)
Golmankhaneh, Alireza K.; Tunc, Cemil
2017-01-01
In this paper, the existence and uniqueness theorems are proved for the linear and non-linear fractal differential equations. The fractal Lipschitz condition is given on the F"α-calculus which applies for the non-differentiable function in the sense of the standard calculus. More, the metric spaces associated with fractal sets and about functions with fractal supports are defined to build fractal Cauchy sequence. Furthermore, Picard iterative process in the F"α-calculus which have important role in the numerical and approximate solution of fractal differential equations is explored. We clarify the results using the illustrative examples.
Band structures in fractal grading porous phononic crystals
Wang, Kai; Liu, Ying; Liang, Tianshu; Wang, Bin
2018-05-01
In this paper, a new grading porous structure is introduced based on a Sierpinski triangle routine, and wave propagation in this fractal grading porous phononic crystal is investigated. The influences of fractal hierarchy and porosity on the band structures in fractal graidng porous phononic crystals are clarified. Vibration modes of unit cell at absolute band gap edges are given to manifest formation mechanism of absolute band gaps. The results show that absolute band gaps are easy to form in fractal structures comparatively to the normal ones with the same porosity. Structures with higher fractal hierarchies benefit multiple wider absolute band gaps. This work provides useful guidance in design of fractal porous phononic crystals.
Fractal geometry and number theory complex dimensions of fractal strings and zeros of zeta functions
Lapidus, Michael L
1999-01-01
A fractal drum is a bounded open subset of R. m with a fractal boundary. A difficult problem is to describe the relationship between the shape (geo metry) of the drum and its sound (its spectrum). In this book, we restrict ourselves to the one-dimensional case of fractal strings, and their higher dimensional analogues, fractal sprays. We develop a theory of complex di mensions of a fractal string, and we study how these complex dimensions relate the geometry with the spectrum of the fractal string. We refer the reader to [Berrl-2, Lapl-4, LapPol-3, LapMal-2, HeLapl-2] and the ref erences therein for further physical and mathematical motivations of this work. (Also see, in particular, Sections 7. 1, 10. 3 and 10. 4, along with Ap pendix B. ) In Chapter 1, we introduce the basic object of our research, fractal strings (see [Lapl-3, LapPol-3, LapMal-2, HeLapl-2]). A 'standard fractal string' is a bounded open subset of the real line. Such a set is a disjoint union of open intervals, the lengths of which ...
Fractals as objects with nontrivial structures at all scales
International Nuclear Information System (INIS)
Lacan, Francis; Tresser, Charles
2015-01-01
Toward the middle of 2001, the authors started arguing that fractals are important when discussing the operational resilience of information systems and related computer sciences issues such as artificial intelligence. But in order to argue along these lines it turned out to be indispensable to define fractals so as to let one recognize as fractals some sets that are very far from being self similar in the (usual) metric sense. This paper is devoted to define (in a loose sense at least) fractals in ways that allow for instance all the Cantor sets to be fractals and that permit to recognize fractality (the property of being fractal) in the context of the information technology issues that we had tried to comprehend. Starting from the meta-definition of a fractal as an “object with non-trivial structure at all scales” that we had used for long, we ended up taking these words seriously. Accordingly we define fractals in manners that depend both on the structures that the fractals are endowed with and the chosen sets of structure compatible maps, i.e., we approach fractals in a category-dependent manner. We expect that this new approach to fractals will contribute to the understanding of more of the fractals that appear in exact and other sciences than what can be handled presently
Fractal and multifractal analyses of bipartite networks
Liu, Jin-Long; Wang, Jian; Yu, Zu-Guo; Xie, Xian-Hua
2017-03-01
Bipartite networks have attracted considerable interest in various fields. Fractality and multifractality of unipartite (classical) networks have been studied in recent years, but there is no work to study these properties of bipartite networks. In this paper, we try to unfold the self-similarity structure of bipartite networks by performing the fractal and multifractal analyses for a variety of real-world bipartite network data sets and models. First, we find the fractality in some bipartite networks, including the CiteULike, Netflix, MovieLens (ml-20m), Delicious data sets and (u, v)-flower model. Meanwhile, we observe the shifted power-law or exponential behavior in other several networks. We then focus on the multifractal properties of bipartite networks. Our results indicate that the multifractality exists in those bipartite networks possessing fractality. To capture the inherent attribute of bipartite network with two types different nodes, we give the different weights for the nodes of different classes, and show the existence of multifractality in these node-weighted bipartite networks. In addition, for the data sets with ratings, we modify the two existing algorithms for fractal and multifractal analyses of edge-weighted unipartite networks to study the self-similarity of the corresponding edge-weighted bipartite networks. The results show that our modified algorithms are feasible and can effectively uncover the self-similarity structure of these edge-weighted bipartite networks and their corresponding node-weighted versions.
Fractal analysis of cervical intraepithelial neoplasia.
Directory of Open Access Journals (Sweden)
Markus Fabrizii
Full Text Available INTRODUCTION: Cervical intraepithelial neoplasias (CIN represent precursor lesions of cervical cancer. These neoplastic lesions are traditionally subdivided into three categories CIN 1, CIN 2, and CIN 3, using microscopical criteria. The relation between grades of cervical intraepithelial neoplasia (CIN and its fractal dimension was investigated to establish a basis for an objective diagnosis using the method proposed. METHODS: Classical evaluation of the tissue samples was performed by an experienced gynecologic pathologist. Tissue samples were scanned and saved as digital images using Aperio scanner and software. After image segmentation the box counting method as well as multifractal methods were applied to determine the relation between fractal dimension and grades of CIN. A total of 46 images were used to compare the pathologist's neoplasia grades with the predicted groups obtained by fractal methods. RESULTS: Significant or highly significant differences between all grades of CIN could be found. The confusion matrix, comparing between pathologist's grading and predicted group by fractal methods showed a match of 87.1%. Multifractal spectra were able to differentiate between normal epithelium and low grade as well as high grade neoplasia. CONCLUSION: Fractal dimension can be considered to be an objective parameter to grade cervical intraepithelial neoplasia.
From dendrimers to fractal polymers and beyond
Directory of Open Access Journals (Sweden)
Charles N. Moorefield
2013-01-01
Full Text Available The advent of dendritic chemistry has facilitated materials research by allowing precise control of functional component placement in macromolecular architecture. The iterative synthetic protocols used for dendrimer construction were developed based on the desire to craft highly branched, high molecular weight, molecules with exact mass and tailored functionality. Arborols, inspired by trees and precursors of the utilitarian macromolecules known as dendrimers today, were the first examples to employ predesigned, 1 → 3 C-branched, building blocks; physical characteristics of the arborols, including their globular shapes, excellent solubilities, and demonstrated aggregation, combined to reveal the inherent supramolecular potential (e.g., the unimolecular micelle of these unique species. The architecture that is a characteristic of dendritic materials also exhibits fractal qualities based on self-similar, repetitive, branched frameworks. Thus, the fractal design and supramolecular aspects of these constructs are suggestive of a larger field of fractal materials that incorporates repeating geometries and are derived by complementary building block recognition and assembly. Use of terpyridine-M2+-terpyridine (where, M = Ru, Zn, Fe, etc connectivity in concert with mathematical algorithms, such as forms the basis for the Seirpinski gasket, has allowed the beginning exploration of fractal materials construction. The propensity of the fractal molecules to self-assemble into higher order architectures adds another dimension to this new arena of materials and composite construction.
Multirate diversity strategy of fractal modulation
International Nuclear Information System (INIS)
Yuan Yong; Shi Si-Hong; Luo Mao-Kang
2011-01-01
Previous analyses of fractal modulation were carried out mostly from a signle perspective or a subband, but the analyses from the perspective of multiscale synthesis have not been found yet; while multiscale synthesis is just the essence of the mutlirate diversity which is the most important characteristic of fractal modulation. As for the mutlirate diversity of fractal modulation, previous studies only dealt with the general outspread of its concept, lacked the thorough and intensive quantitative comparison and analysis. In light of the above fact, from the perspective of multiscale synthesis, in this paper we provide a comprehensive analysis of the multirate diversity of fractal modulation and corresponding quantitative analysis. The results show that mutlirate diversity, which is a fusion of frequency diversity and time diversity, pays an acceptable price in spectral efficiency in exchange for a significant improvement in bit error rate. It makes fractal modulation particularly suitable for the channels whose bandwidth and duration parameters are unknown or cannot be predicted to the transmitter. Surely it is clearly of great significance for reliable communications. Moreover, we also attain the ability to flexibly make various rate-bandwidth tradeoffs between the transmitter and the receiver, to freely select the reception time and to expediently control the total bandwidth. Furthermore, the acquisitions or improvements of these fine features could provide support of the technical feasibility for the electromagnetic spectrum control technology in a complex electromagnetic environment. (general)
GEOMETRIA E ARITMÉTICA COMBINAM COM EQUAÇÕES DO SEGUNDO GRAU?
Directory of Open Access Journals (Sweden)
Francisco Quaranta
2014-01-01
Full Text Available Quando falamos em equação do segundo grau, é imediata a associação com a fórmula geral atribuída erroneamente à Bháskara no Brasil. Isto se deve ao uso exagerado e, muitas vezes, exclusivo dessa fórmula. O objetivo desse trabalho é incentivar e discutir a relevância e a abrangência de outros métodos de resolução de equações do segundo grau que atualmente tem sido deixado de lado pela maioria dos professores brasileiros, tais como: um método geométrico presente em “Os Elementos” de Euclides, o completamento de quadrados (onde demonstraremos a fórmula geral através do raciocínio geométrico – adição de áreas e o método da soma e produto (no qual apresentaremos um artifício que amplia o seu uso para raízes fracionárias.
On the arithmetic of fractal dimension using hyperhelices
International Nuclear Information System (INIS)
Toledo-Suarez, Carlos D.
2009-01-01
A hyperhelix is a fractal curve generated by coiling a helix around a rect line, then another helix around the first one, a third around the second... an infinite number of times. A way to generate hyperhelices with any desired fractal dimension is presented, leading to the result that they have embedded an algebraic structure that allows making arithmetic with fractal dimensions and to the idea of an infinitesimal of fractal dimension
Poiseuille equation for steady flow of fractal fluid
Tarasov, Vasily E.
2016-07-01
Fractal fluid is considered in the framework of continuous models with noninteger dimensional spaces (NIDS). A recently proposed vector calculus in NIDS is used to get a description of fractal fluid flow in pipes with circular cross-sections. The Navier-Stokes equations of fractal incompressible viscous fluids are used to derive a generalization of the Poiseuille equation of steady flow of fractal media in pipe.
2-D Fractal Carpet Antenna Design and Performance
Barton, C. C.; Tebbens, S. F.; Ewing, J. J.; Peterman, D. J.; Rizki, M. M.
2017-12-01
A 2-D fractal carpet antenna uses a fractal (self-similar) pattern to increase its perimeter by iteration and can receive or transmit electromagnetic radiation within its perimeter-bounded surface area. 2-D fractals are shapes that, at their mathematical limit (infinite iterations) have an infinite perimeter bounding a finite surface area. The fractal dimension describes the degree of space filling and lacunarity which quantifies the size and spatial distribution of open space bounded by a fractal shape. A key aspect of fractal antennas lies in iteration (repetition) of a fractal pattern over a range of length scales. Iteration produces fractal antennas that are very compact, wideband and multiband. As the number of iterations increases, the antenna operates at higher and higher frequencies. Manifestly different from traditional antenna designs, a fractal antenna can operate at multiple frequencies simultaneously. We have created a MATLAB code to generate deterministic and stochastic modes of Sierpinski carpet fractal antennas with a range of fractal dimensions between 1 and 2. Variation in fractal dimension, stochasticity, number of iterations, and lacunarities have been computationally tested using COMSOL Multiphysics software to determine their effect on antenna performance
Investigation into How 8th Grade Students Define Fractals
Karakus, Fatih
2015-01-01
The analysis of 8th grade students' concept definitions and concept images can provide information about their mental schema of fractals. There is limited research on students' understanding and definitions of fractals. Therefore, this study aimed to investigate the elementary students' definitions of fractals based on concept image and concept…
Generalized Warburg impedance on realistic self-affine fractals ...
Indian Academy of Sciences (India)
2016-08-26
Aug 26, 2016 ... We analyse the problem of impedance for a diffusion controlled charge transfer process across an irregular interface. These interfacial irregularities are characterized as two class of random fractals: (i) a statistically isotropic self-affine fractals and (ii) a statistically corrugated self-affine fractals.
Fractal tomography and its application in 3D vision
Trubochkina, N.
2018-01-01
A three-dimensional artistic fractal tomography method that implements a non-glasses 3D visualization of fractal worlds in layered media is proposed. It is designed for the glasses-free 3D vision of digital art objects and films containing fractal content. Prospects for the development of this method in art galleries and the film industry are considered.
Constructing and applying the fractal pied de poule (houndstooth)
Feijs, L.M.G.; Toeters, M.J.; Hart, G.; Sarhangi, R.
2013-01-01
Time is ready for a fractal version of pied de poule; it is almost "in the air". Taking inspiration from the Cantor set, and using the analysis of the classical pattern, we obtain a family of elegant new fractal Pied de Poules. We calculate the fractal dimension and develop an attractive fashion
Monitoring of dry sliding wear using fractal analysis
Zhang, Jindang; Regtien, Paulus P.L.; Korsten, Maarten J.
2005-01-01
Reliable online monitoring of wear remains a challenge to tribology research as well as to the industry. This paper presents a new method for monitoring of dry sliding wear using digital imaging and fractal analysis. Fractal values, namely fractal dimension and intercept, computed from the power
Fractal characterization of the compaction and sintering of ferrites
Glass, H.J.; With, de G.
2001-01-01
A novel parameter, the fractal exponent DE, is derived using the concept of fractal scaling. The fractal exponent DE relates the development of a feature within a material to the development of the size of the material. As an application, structural changes during the compaction and sintering of
Generalized Warburg impedance on realistic self-affine fractals
Indian Academy of Sciences (India)
We analyse the problem of impedance for a diffusion controlled charge transfer process across an irregular interface. These interfacial irregularities are characterized as two class of random fractals: (i) a statistically isotropic self-affine fractals and (ii) a statistically corrugated self-affine fractals. The information about the ...
Directory of Open Access Journals (Sweden)
Othon C. Da Cruz
2010-08-01
Full Text Available O hidrociclone é um equipamento amplamente utilizado pela indústria em processos envolvendo separação sólido-líquido, porém ainda pouco utilizado na agricultura irrigada no Brasil. Neste trabalho, avaliou-se o desempenho deste equipamento como pré-filtrante de partículas sólidas, oriundas dos processos erosivos e do assoreamento dos recursos hídricos. Os testes foram realizados com um hidrociclone de geometria "Rietema", possuindo diâmetro de 19,2 cm na parte cilíndrica, operando com vazões variando entre 10 m³ h-1 e 27 m³ h-1. Os materiais particulados usados em suspensão foram: solo franco-argiloso e areia de rio. Os resultados mostraram que a perda de carga máxima média foi de 52 kPa e 47 kPa para as suspensões aquosas de areia e solo, respectivamente. Seu melhor desempenho ocorreu operando com suspensão aquosa de areia, apresentando eficiência total de 92,3% para a vazão de 26,9 m³ h-1. Concluiu-se que o equipamento avaliado é mais eficiente para remoção de partículas de areia, podendo ser utilizado como pré-filtro em sistemas de irrigação.The hydrocyclone is an equipment widely used by industry in cases involving solid-liquid separation, but still little used in irrigated agriculture in Brazil. This study evaluated the performance of this equipment as a pre-filter of solid particles, from erosive processes and the silting of water resources. The tests were performed with a hydrocyclone of "Rietema" geometry, with a diameter of 19.2 cm at the cylindrical part operating with outflows ranging between 10 m³ h-1 and 27 m³ h-1. The materials used in particulate suspension were clay loam soil and sand from river. The results showed that the average maximum head loss was 52 kPa and 47 kPa for aqueous suspensions of sand and soil, respectively. Its best performance occurred operating with slurry of sand, presenting total efficiency of 92.3% for 26.9 m³ h-1 of flow rate. It was concluded that such equipment is most
Lectures on fractal geometry and dynamical systems
Pesin, Yakov
2009-01-01
Both fractal geometry and dynamical systems have a long history of development and have provided fertile ground for many great mathematicians and much deep and important mathematics. These two areas interact with each other and with the theory of chaos in a fundamental way: many dynamical systems (even some very simple ones) produce fractal sets, which are in turn a source of irregular "chaotic" motions in the system. This book is an introduction to these two fields, with an emphasis on the relationship between them. The first half of the book introduces some of the key ideas in fractal geometry and dimension theory--Cantor sets, Hausdorff dimension, box dimension--using dynamical notions whenever possible, particularly one-dimensional Markov maps and symbolic dynamics. Various techniques for computing Hausdorff dimension are shown, leading to a discussion of Bernoulli and Markov measures and of the relationship between dimension, entropy, and Lyapunov exponents. In the second half of the book some examples o...
Computer Security: The dilemma of fractal defence
Stefan Lueders, Computer Security Team
2015-01-01
Aren’t mathematical fractals just beautiful? The Mandelbrot set and the Julia set, the Sierpinski gasket, the Menger sponge, the Koch curve (see here)… Based on very simple mathematical rules, they quickly develop into a mosaic of facets slightly different from each other. More and more features appear the closer you zoom into a fractal and expose similar but not identical features of the overall picture. Computer security is like these fractals, only much less pretty: simple at first glance, but increasingly complex and complicated when you look more closely at the details. The deeper you dig, the more and more possibilities open up for malicious people as the attack surface grows, just like that of “Koch’s snowflakes”, where the border length grows exponentially. Consequently, the defensive perimeter also increases when we follow the bits and bytes layer by layer from their processing in the CPU, trickling up the software stack thro...
Fractal design concepts for stretchable electronics.
Fan, Jonathan A; Yeo, Woon-Hong; Su, Yewang; Hattori, Yoshiaki; Lee, Woosik; Jung, Sung-Young; Zhang, Yihui; Liu, Zhuangjian; Cheng, Huanyu; Falgout, Leo; Bajema, Mike; Coleman, Todd; Gregoire, Dan; Larsen, Ryan J; Huang, Yonggang; Rogers, John A
2014-01-01
Stretchable electronics provide a foundation for applications that exceed the scope of conventional wafer and circuit board technologies due to their unique capacity to integrate with soft materials and curvilinear surfaces. The range of possibilities is predicated on the development of device architectures that simultaneously offer advanced electronic function and compliant mechanics. Here we report that thin films of hard electronic materials patterned in deterministic fractal motifs and bonded to elastomers enable unusual mechanics with important implications in stretchable device design. In particular, we demonstrate the utility of Peano, Greek cross, Vicsek and other fractal constructs to yield space-filling structures of electronic materials, including monocrystalline silicon, for electrophysiological sensors, precision monitors and actuators, and radio frequency antennas. These devices support conformal mounting on the skin and have unique properties such as invisibility under magnetic resonance imaging. The results suggest that fractal-based layouts represent important strategies for hard-soft materials integration.
On Nonextensive Statistics, Chaos and Fractal Strings
Castro, C
2004-01-01
Motivated by the growing evidence of universality and chaos in QFT and string theory, we study the Tsallis non-extensive statistics ( with a non-additive $ q$-entropy ) of an ensemble of fractal strings and branes of different dimensionalities. Non-equilibrium systems with complex dynamics in stationary states may exhibit large fluctuations of intensive quantities which are described in terms of generalized statistics. Tsallis statistics is a particular representative of such class. The non-extensive entropy and probability distribution of a canonical ensemble of fractal strings and branes is studied in terms of their dimensional spectrum which leads to a natural upper cutoff in energy and establishes a direct correlation among dimensions, energy and temperature. The absolute zero temperature ( Kelvin ) corresponds to zero dimensions (energy ) and an infinite temperature corresponds to infinite dimensions. In the concluding remarks some applications of fractal statistics, quasi-particles, knot theory, quantum...
A fractal-based image encryption system
Abd-El-Hafiz, S. K.
2014-12-01
This study introduces a novel image encryption system based on diffusion and confusion processes in which the image information is hidden inside the complex details of fractal images. A simplified encryption technique is, first, presented using a single-fractal image and statistical analysis is performed. A general encryption system utilising multiple fractal images is, then, introduced to improve the performance and increase the encryption key up to hundreds of bits. This improvement is achieved through several parameters: feedback delay, multiplexing and independent horizontal or vertical shifts. The effect of each parameter is studied separately and, then, they are combined to illustrate their influence on the encryption quality. The encryption quality is evaluated using different analysis techniques such as correlation coefficients, differential attack measures, histogram distributions, key sensitivity analysis and the National Institute of Standards and Technology (NIST) statistical test suite. The obtained results show great potential compared to other techniques.
Fractal design concepts for stretchable electronics
Fan, Jonathan A.; Yeo, Woon-Hong; Su, Yewang; Hattori, Yoshiaki; Lee, Woosik; Jung, Sung-Young; Zhang, Yihui; Liu, Zhuangjian; Cheng, Huanyu; Falgout, Leo; Bajema, Mike; Coleman, Todd; Gregoire, Dan; Larsen, Ryan J.; Huang, Yonggang; Rogers, John A.
2014-02-01
Stretchable electronics provide a foundation for applications that exceed the scope of conventional wafer and circuit board technologies due to their unique capacity to integrate with soft materials and curvilinear surfaces. The range of possibilities is predicated on the development of device architectures that simultaneously offer advanced electronic function and compliant mechanics. Here we report that thin films of hard electronic materials patterned in deterministic fractal motifs and bonded to elastomers enable unusual mechanics with important implications in stretchable device design. In particular, we demonstrate the utility of Peano, Greek cross, Vicsek and other fractal constructs to yield space-filling structures of electronic materials, including monocrystalline silicon, for electrophysiological sensors, precision monitors and actuators, and radio frequency antennas. These devices support conformal mounting on the skin and have unique properties such as invisibility under magnetic resonance imaging. The results suggest that fractal-based layouts represent important strategies for hard-soft materials integration.
Quantum waveguide theory of a fractal structure
International Nuclear Information System (INIS)
Lin Zhiping; Hou Zhilin; Liu Youyan
2007-01-01
The electronic transport properties of fractal quantum waveguide networks in the presence of a magnetic field are studied. A Generalized Eigen-function Method (GEM) is used to calculate the transmission and reflection coefficients of the studied systems unto the fourth generation Sierpinski fractal network with node number N=123. The relationship among the transmission coefficient T, magnetic flux Φ and wave vector k is investigated in detail. The numerical results are shown by the three-dimensional plots and contour maps. Some resonant-transmission features and the symmetry of the transmission coefficient T to flux Φ are observed and discussed, and compared with the results of the tight-binding model
Incomplete information and fractal phase space
International Nuclear Information System (INIS)
Wang, Qiuping A.
2004-01-01
The incomplete statistics for complex systems is characterized by a so called incompleteness parameter ω which equals unity when information is completely accessible to our treatment. This paper is devoted to the discussion of the incompleteness of accessible information and of the physical signification of ω on the basis of fractal phase space. ω is shown to be proportional to the fractal dimension of the phase space and can be linked to the phase volume expansion and information growth during the scale refining process
The virtual education fractality: nature and organization
Directory of Open Access Journals (Sweden)
Osbaldo Turpo Gebera
2013-04-01
Full Text Available The potential generated by ICT in education raises reflect on the underlying frameworks. In this sense, the fractal is an opportunity to explain how it organizes and manages virtual education.This approach recognizes that educational dynamics are recursive and iterative processes instituted as progressive sequences, by way of fractals. This understanding enables becoming as mediated and articulated successive levels. In each dimension are embodied own activities and in turn, involves the recurrence of subsequent levels as possible solving of problem situations. Thus, the knowledge built in response to a collaborative action, participation in networks, ranging from autonomous to the cultural level or conversely.
Transport properties of electrons in fractal magnetic-barrier structures
Sun, Lifeng; Fang, Chao; Guo, Yong
2010-09-01
Quantum transport properties in fractal magnetically modulated structures are studied by the transfer-matrix method. It is found that the transmission spectra depend sensitively not only on the incident energy and the direction of the wave vector but also on the stage of the fractal structures. Resonance splitting, enhancement, and position shift of the resonance peaks under different magnetic modulation are observed at four different fractal stages, and the relationship between the conductance in the fractal structure and magnetic modulation is also revealed. The results indicate the spectra of the transmission can be considered as fingerprints for the fractal structures, which show the subtle correspondence between magnetic structures and transport behaviors.
Fractal dimensions the digital art of Eric Hammel
Hammel, Eric
2014-01-01
The concept behind fractal geometry is extremely difficult to explain . . . but easy to see and enjoy. Eric Hammel, a professional author of military history books, is unable to explain fractals in a way that will be clear to anyone else, but most mathematicians can't explain fractals in language most people can understand. The simplest explanation is that fractals are graphic representations of high-order mathematical formulas that repeat patterns to infinity.Don't get hung up on the math. It's really all in the seeing. Like Volume 1 of Eric Hammel's Fractal Dimensions, Volume 2 is filled wit
Fractal dimensions the digital art of Eric Hammel
Hammel, Eric
2014-01-01
The concept behind fractal geometry is extremely difficult to explain . . . but easy to see and enjoy. Eric Hammel, a professional author of military history books, is unable to explain fractals in a way that will be clear to anyone else, but most mathematicians can't explain fractals in language most people can understand. The simplest explanation is that fractals are graphic representations of high-order mathematical formulas that repeat patterns to infinity.Don't get hung up on the math. It's really all in the seeing. Like Volumes 1, 2, and 3 of Eric Hammel's Fractal Dimensions, Volume 4 is
Fractal dimensions the digital art of Eric Hammel
Hammel, Eric
2014-01-01
The concept behind fractal geometry is extremely difficult to explain . . . but easy to see and enjoy. Eric Hammel, a professional author of military history books, is unable to explain fractals in a way that will be clear to anyone else, but most mathematicians can't explain fractals in language most people can understand. The simplest explanation is that fractals are graphic representations of high-order mathematical formulas that repeat patterns to infinity.Don't get hung up on the math. It's really all in the seeing. Like Volumes 1 and 2 of Eric Hammel's Fractal Dimensions, Volume 3 is fil
Focusing behavior of the fractal vector optical fields designed by fractal lattice growth model.
Gao, Xu-Zhen; Pan, Yue; Zhao, Meng-Dan; Zhang, Guan-Lin; Zhang, Yu; Tu, Chenghou; Li, Yongnan; Wang, Hui-Tian
2018-01-22
We introduce a general fractal lattice growth model, significantly expanding the application scope of the fractal in the realm of optics. This model can be applied to construct various kinds of fractal "lattices" and then to achieve the design of a great diversity of fractal vector optical fields (F-VOFs) combinating with various "bases". We also experimentally generate the F-VOFs and explore their universal focusing behaviors. Multiple focal spots can be flexibly enginnered, and the optical tweezers experiment validates the simulated tight focusing fields, which means that this model allows the diversity of the focal patterns to flexibly trap and manipulate micrometer-sized particles. Furthermore, the recovery performance of the F-VOFs is also studied when the input fields and spatial frequency spectrum are obstructed, and the results confirm the robustness of the F-VOFs in both focusing and imaging processes, which is very useful in information transmission.
Energy Technology Data Exchange (ETDEWEB)
Clausse, A; Delmastro, D F
1991-12-31
This work presents a description of the research lines carried out by the authors on chaos and fractal theories, oriented to the nuclear field. The possibilities that appear in the nuclear security branch where the information deriving from chaos and fractal techniques may help to the development of better criteria and more reliable designs, are of special importance. (Author). [Espanol] En este trabajo se presenta una descripcion de las lineas de investigacion que los autores estan llevando a cabo en teoria de caos y fractales orientadas al campo nuclear. Es de especial importancia las posibilidades que se abren en el area de la seguridad nuclear, en donde la informacion proveniente de las tecnicas de caos y fractales pueden ayudar al desarrollo de mejores criterios y disenos mas confiables. (Autor).
2-D Fractal Wire Antenna Design and Performance
Tebbens, S. F.; Barton, C. C.; Peterman, D. J.; Ewing, J. J.; Abbott, C. S.; Rizki, M. M.
2017-12-01
A 2-D fractal wire antenna uses a fractal (self-similar) pattern to increase its length by iteration and can receive or transmit electromagnetic radiation. 2-D fractals are shapes that, at their mathematical limit (of infinite iterations) have an infinite length. The fractal dimension describes the degree of space filling. A fundamental property of fractal antennas lies in iteration (repetition) of a fractal pattern over a range of length scales. Iteration produces fractal antennas that can be very compact, wideband and multiband. As the number of iterations increases, the antenna tends to have additional frequencies that minimize far field return loss. This differs from traditional antenna designs in that a single fractal antenna can operate well at multiple frequencies. We have created a MATLAB code to generate deterministic and stochastic modes of fractal wire antennas with a range of fractal dimensions between 1 and 2. Variation in fractal dimension, stochasticity, and number of iterations have been computationally tested using COMSOL Multiphysics software to determine their effect on antenna performance.
Fractal Structure and Entropy Production within the Central Nervous System
Directory of Open Access Journals (Sweden)
Andrew J. E. Seely
2014-08-01
Full Text Available Our goal is to explore the relationship between two traditionally unrelated concepts, fractal structure and entropy production, evaluating both within the central nervous system (CNS. Fractals are temporal or spatial structures with self-similarity across scales of measurement; whereas entropy production represents the necessary exportation of entropy to our environment that comes with metabolism and life. Fractals may be measured by their fractal dimension; and human entropy production may be estimated by oxygen and glucose metabolism. In this paper, we observe fractal structures ubiquitously present in the CNS, and explore a hypothetical and unexplored link between fractal structure and entropy production, as measured by oxygen and glucose metabolism. Rapid increase in both fractal structures and metabolism occur with childhood and adolescent growth, followed by slow decrease during aging. Concomitant increases and decreases in fractal structure and metabolism occur with cancer vs. Alzheimer’s and multiple sclerosis, respectively. In addition to fractals being related to entropy production, we hypothesize that the emergence of fractal structures spontaneously occurs because a fractal is more efficient at dissipating energy gradients, thus maximizing entropy production. Experimental evaluation and further understanding of limitations and necessary conditions are indicated to address broad scientific and clinical implications of this work.
Fractal characteristic in the wearing of cutting tool
Mei, Anhua; Wang, Jinghui
1995-11-01
This paper studies the cutting tool wear with fractal geometry. The wearing image of the flank has been collected by machine vision which consists of CCD camera and personal computer. After being processed by means of preserving smoothing, binary making and edge extracting, the clear boundary enclosing the worn area has been obtained. The fractal dimension of the worn surface is calculated by the methods called `Slit Island' and `Profile'. The experiments and calciating give the conclusion that the worn surface is enclosed by a irregular boundary curve with some fractal dimension and characteristics of self-similarity. Furthermore, the relation between the cutting velocity and the fractal dimension of the worn region has been submitted. This paper presents a series of methods for processing and analyzing the fractal information in the blank wear, which can be applied to research the projective relation between the fractal structure and the wear state, and establish the fractal model of the cutting tool wear.
Fractal electrodynamics via non-integer dimensional space approach
Tarasov, Vasily E.
2015-09-01
Using the recently suggested vector calculus for non-integer dimensional space, we consider electrodynamics problems in isotropic case. This calculus allows us to describe fractal media in the framework of continuum models with non-integer dimensional space. We consider electric and magnetic fields of fractal media with charges and currents in the framework of continuum models with non-integer dimensional spaces. An application of the fractal Gauss's law, the fractal Ampere's circuital law, the fractal Poisson equation for electric potential, and equation for fractal stream of charges are suggested. Lorentz invariance and speed of light in fractal electrodynamics are discussed. An expression for effective refractive index of non-integer dimensional space is suggested.
Fractals and spectra related to fourier analysis and function spaces
Triebel, Hans
1997-01-01
Fractals and Spectra Hans Triebel This book deals with the symbiotic relationship between the theory of function spaces, fractal geometry, and spectral theory of (fractal) pseudodifferential operators as it has emerged quite recently. Atomic and quarkonial (subatomic) decompositions in scalar and vector valued function spaces on the euclidean n-space pave the way to study properties (compact embeddings, entropy numbers) of function spaces on and of fractals. On this basis, distributions of eigenvalues of fractal (pseudo)differential operators are investigated. Diverse versions of fractal drums are played. The book is directed to mathematicians interested in functional analysis, the theory of function spaces, fractal geometry, partial and pseudodifferential operators, and, in particular, in how these domains are interrelated. ------ It is worth mentioning that there is virtually no literature on this topic and hence the most of the presented material is published here the first time. - Zentralblatt MATH (…) ...
Turbulence Enhancement by Fractal Square Grids: Effects of the Number of Fractal Scales
Omilion, Alexis; Ibrahim, Mounir; Zhang, Wei
2017-11-01
Fractal square grids offer a unique solution for passive flow control as they can produce wakes with a distinct turbulence intensity peak and a prolonged turbulence decay region at the expense of only minimal pressure drop. While previous studies have solidified this characteristic of fractal square grids, how the number of scales (or fractal iterations N) affect turbulence production and decay of the induced wake is still not well understood. The focus of this research is to determine the relationship between the fractal iteration N and the turbulence produced in the wake flow using well-controlled water-tunnel experiments. Particle Image Velocimetry (PIV) is used to measure the instantaneous velocity fields downstream of four different fractal grids with increasing number of scales (N = 1, 2, 3, and 4) and a conventional single-scale grid. By comparing the turbulent scales and statistics of the wake, we are able to determine how each iteration affects the peak turbulence intensity and the production/decay of turbulence from the grid. In light of the ability of these fractal grids to increase turbulence intensity with low pressure drop, this work can potentially benefit a wide variety of applications where energy efficient mixing or convective heat transfer is a key process.
A Parallel Approach to Fractal Image Compression
Directory of Open Access Journals (Sweden)
Lubomir Dedera
2004-01-01
Full Text Available The paper deals with a parallel approach to coding and decoding algorithms in fractal image compressionand presents experimental results comparing sequential and parallel algorithms from the point of view of achieved bothcoding and decoding time and effectiveness of parallelization.
Fractal structures and intermittency in QCD
International Nuclear Information System (INIS)
Gustafson, Goesta.
1990-04-01
New results are presented for fractal structures and intermittency in QCD parton showers. A geometrical interpretation of the anomalous dimension in QCD is given. It is shown that model predications for factorial moments in the PEP-PETRA energy range are increased. if the properties of directly produced pions are more carefully taken into account
Flames in fractal grid generated turbulence
Energy Technology Data Exchange (ETDEWEB)
Goh, K H H; Hampp, F; Lindstedt, R P [Department of Mechanical Engineering, Imperial College, London SW7 2AZ (United Kingdom); Geipel, P, E-mail: p.lindstedt@imperial.ac.uk [Siemens Industrial Turbomachinery AB, SE-612 83 Finspong (Sweden)
2013-12-15
Twin premixed turbulent opposed jet flames were stabilized for lean mixtures of air with methane and propane in fractal grid generated turbulence. A density segregation method was applied alongside particle image velocimetry to obtain velocity and scalar statistics. It is shown that the current fractal grids increase the turbulence levels by around a factor of 2. Proper orthogonal decomposition (POD) was applied to show that the fractal grids produce slightly larger turbulent structures that decay at a slower rate as compared to conventional perforated plates. Conditional POD (CPOD) was also implemented using the density segregation technique and the results show that CPOD is essential to segregate the relative structures and turbulent kinetic energy distributions in each stream. The Kolmogorov length scales were also estimated providing values {approx}0.1 and {approx}0.5 mm in the reactants and products, respectively. Resolved profiles of flame surface density indicate that a thin flame assumption leading to bimodal statistics is not perfectly valid under the current conditions and it is expected that the data obtained will be of significant value to the development of computational methods that can provide information on the conditional structure of turbulence. It is concluded that the increase in the turbulent Reynolds number is without any negative impact on other parameters and that fractal grids provide a route towards removing the classical problem of a relatively low ratio of turbulent to bulk strain associated with the opposed jet configuration. (paper)
Design of silicon-based fractal antennas
Ghaffar, Farhan A.
2012-11-20
This article presents Sierpinski carpet fractal antennas implemented in conventional low resistivity (Ï =10 Ω cm) as well as high resistivity (Ï =1500 Ω cm) silicon mediums. The fractal antenna is 36% smaller as compared with a typical patch antenna at 24 GHz and provides 13% bandwidth on high resistivity silicon, suitable for high data rate applications. For the first time, an on-chip fractal antenna array is demonstrated in this work which provides double the gain of a single fractal element as well as enhanced bandwidth. A custom test fixture is utilized to measure the radiation pattern and gain of these probe-fed antennas. In addition to gain and impedance characterization, measurements have also been made to study intrachip communication through these antennas. The comparison between the low resistivity and high resistivity antennas indicate that the former is not a suitable medium for array implementation and is only suitable for short range communication whereas the latter is appropriate for short and medium range wireless communication. The design is well-suited for compact, high data rate System-on-Chip (SoC) applications as well as for intrachip communication such as wireless global clock distribution in synchronous systems. © 2012 Wiley Periodicals, Inc. Microwave Opt Technol Lett 55:180-186, 2013; View this article online at wileyonlinelibrary.com. DOI 10.1002/mop.27245 Copyright © 2012 Wiley Periodicals, Inc.
Effect of noise on fractal structure
Energy Technology Data Exchange (ETDEWEB)
Serletis, Demitre [Division of Neurosurgery, Hospital for Sick Children, 1504-555 University Avenue, Toronto, Ont., M5G 1X8 (Canada)], E-mail: demitre.serletis@utoronto.ca
2008-11-15
In this paper, I investigate the effect of dynamical noise on the estimation of the Hurst exponent and the fractal dimension of time series. Recently, Serletis et al. [Serletis, Apostolos, Asghar Shahmoradi, Demitre Serletis. Effect of noise on estimation of Lyapunov exponents from a time series. Chaos, Solitons and Fractals, forthcoming] have shown that dynamical noise can make the detection of chaotic dynamics very difficult, and Serletis et al. [Serletis, Apostolos, Asghar Shahmoradi, Demitre Serletis. Effect of noise on the bifurcation behavior of dynamical systems. Chaos, Solitons and Fractals, forthcoming] have shown that dynamical noise can also shift bifurcation points and produce noise-induced transitions, making the determination of bifurcation boundaries difficult. Here I apply the detrending moving average (DMA) method, recently developed by Alessio et al. [Alessio E, Carbone A, Castelli G, Frappietro V. Second-order moving average and scaling of stochastic time series. The Eur Phys J B 2002;27:197-200] and Carbone et al. [Carbone A, Castelli G, Stanley HE. Time-dependent Hurst exponent in financial time series. Physica A 2004;344:267-71; Carbone A, Castelli G, Stanley HE. Analysis of clusters formed by the moving average of a long-range correlated time series. Phys Rev E 2004;69:026105], to estimate the Hurst exponent of a Brownian walk with a Hurst exponent of 0.5, coupled with low and high intensity noise, and show that dynamical noise has no effect on fractal structure.
Fractal geometry of high temperature superconductors
International Nuclear Information System (INIS)
Mosolov, A.B.
1989-01-01
Microstructural geometry of superconducting structural composites of Ag-Yba 2 Cu 3 O x system with a volumetric shave of silver from 0 to 60% is investigated by light and electron microscopy methods. It is ascertained that the structure of cermets investigated is characterized by fractal geometry which is sufficient for describing the electrical and mechanical properties of these materials
Fractality and the law of the wall
Xu, Haosen H. A.; Yang, X. I. A.
2018-05-01
Fluid motions in the inertial range of isotropic turbulence are fractal, with their space-filling capacity slightly below regular three-dimensional objects, which is a consequence of the energy cascade. Besides the energy cascade, the other often encountered cascading process is the momentum cascade in wall-bounded flows. Despite the long-existing analogy between the two processes, many of the thoroughly investigated aspects of the energy cascade have so far received little attention in studies of the momentum counterpart, e.g., the possibility of the momentum-transferring scales in the logarithmic region being fractal has not been considered. In this work, this possibility is pursued, and we discuss one of its implications. Following the same dimensional arguments that lead to the D =2.33 fractal dimension of wrinkled surfaces in isotropic turbulence, we show that the large-scale momentum-carrying eddies may also be fractal and non-space-filling, which then leads to the power-law scaling of the mean velocity profile. The logarithmic law of the wall, on the other hand, corresponds to space-filling eddies, as suggested by Townsend [The Structure of Turbulent Shear Flow (Cambridge University Press, Cambridge, 1980)]. Because the space-filling capacity is an integral geometric quantity, the analysis presented in this work provides us with a low-order quantity, with which, one would be able to distinguish between the logarithmic law and the power law.
Design of silicon-based fractal antennas
Ghaffar, Farhan A.; Shamim, Atif
2012-01-01
This article presents Sierpinski carpet fractal antennas implemented in conventional low resistivity (Ï =10 Ω cm) as well as high resistivity (Ï =1500 Ω cm) silicon mediums. The fractal antenna is 36% smaller as compared with a typical patch antenna at 24 GHz and provides 13% bandwidth on high resistivity silicon, suitable for high data rate applications. For the first time, an on-chip fractal antenna array is demonstrated in this work which provides double the gain of a single fractal element as well as enhanced bandwidth. A custom test fixture is utilized to measure the radiation pattern and gain of these probe-fed antennas. In addition to gain and impedance characterization, measurements have also been made to study intrachip communication through these antennas. The comparison between the low resistivity and high resistivity antennas indicate that the former is not a suitable medium for array implementation and is only suitable for short range communication whereas the latter is appropriate for short and medium range wireless communication. The design is well-suited for compact, high data rate System-on-Chip (SoC) applications as well as for intrachip communication such as wireless global clock distribution in synchronous systems. © 2012 Wiley Periodicals, Inc. Microwave Opt Technol Lett 55:180-186, 2013; View this article online at wileyonlinelibrary.com. DOI 10.1002/mop.27245 Copyright © 2012 Wiley Periodicals, Inc.
Mitered fractal trees: constructions and properties
Verhoeff, T.; Verhoeff, K.; Bosch, R.; McKenna, D.; Sarhangi, R.
2012-01-01
Tree-like structures, that is, branching structures without cycles, are attractive for artful expression. Especially interesting are fractal trees, where each subtree is a scaled and possibly otherwise transformed version of the entire tree. Such trees can be rendered in 3D by using beams with a
Geological mapping using fractal technique | Lawal | Nigerian ...
African Journals Online (AJOL)
In this work the use of fractal scaling exponents for geological mapping was first investigated using theoretical models, and results from the analysis showed that the scaling exponents mapped isolated bodies but did not properly resolve bodies close to each other. However application on real data (the Mamfe basin, the ...
Geological mapping using fractal technique | Lawal | Nigerian ...
African Journals Online (AJOL)
... in Nigeria) showed good correlation with the geological maps of the areas. The results also indicated that basement rocks can generally be represented by scaling exponents with values ranging between -3.0 and -2.0. Keywords: Fractal, dimension, susceptibility, spectra, scaling exponent. Nigerian Journal of Physics Vol.
Fractal nature of hydrocarbon deposits. 2. Spatial distribution
International Nuclear Information System (INIS)
Barton, C.C.; Schutter, T.A; Herring, P.R.; Thomas, W.J.; Scholz, C.H.
1991-01-01
Hydrocarbons are unevenly distributed within reservoirs and are found in patches whose size distribution is a fractal over a wide range of scales. The spatial distribution of the patches is also fractal and this can be used to constrain the design of drilling strategies also defined by a fractal dimension. Fractal distributions are scale independent and are characterized by a power-law scaling exponent termed the fractal dimension. The authors have performed fractal analyses on the spatial distribution of producing and showing wells combined and of dry wells in 1,600-mi 2 portions of the Denver and Powder River basins that were nearly completely drilled on quarter-mile square-grid spacings. They have limited their analyses to wells drilled to single stratigraphic intervals so that the map pattern revealed by drilling is representative of the spatial patchiness of hydrocarbons at depth. The fractal dimensions for the spatial patchiness of hydrocarbons in the two basins are 1.5 and 1.4, respectively. The fractal dimension for the pattern of all wells drilled is 1.8 for both basins, which suggests a drilling strategy with a fractal dimension significantly higher than the dimensions 1.5 and 1.4 sufficient to efficiently and economically explore these reservoirs. In fact, the fractal analysis reveals that the drilling strategy used in these basins approaches a fractal dimension of 2.0, which is equivalent to random drilling with no geologic input. Knowledge of the fractal dimension of a reservoir prior to drilling would provide a basis for selecting and a criterion for halting a drilling strategy for exploration whose fractal dimension closely matches that of the spatial fractal dimension of the reservoir, such a strategy should prove more efficient and economical than current practice
Electron spin-lattice relaxation in fractals
International Nuclear Information System (INIS)
Shrivastava, K.N.
1986-08-01
We have developed the theory of the spin-fracton interaction for paramagnetic ions in fractal structures. The interaction is exponentially damped by the self-similarity length of the fractal and by the range dimensionality d Φ . The relaxation time of the spin due to the absorption and emission of the fracton has been calculated for a general dimensionality called the Raman dimensionality d R , which for the fractons differs from the Hausdorff (fractal) dimensionality, D, as well as from the Euclidean dimensionality, d. The exponent of the energy level separation in the relaxation rate varies with d R d Φ /D. We have calculated the spin relaxation rate due to a new type of Raman process in which one fracton is absorbed to affect a spin transition from one electronic level to another and later another fracton is emitted along with a spin transition such that the difference in the energies of the two fractons is equal to the electronic energy level separation. The temperature and the dimensionality dependence of such a process has been found in several approximations. In one of the approximations where the van Vleck relaxation rate for a spin in a crystal is known to vary with temperature as T 9 , our calculated variation for fractals turns out to be T 6.6 , whereas the experimental value for Fe 3+ in frozen solutions of myoglobin azide is T 6.3 . Since we used d R =4/3 and the fracton range dimensionality d Φ =D/1.8, we expect to measure the dimensionalities of the problem by measuring the temperature dependence of the relaxation times. We have also calculated the shift of the paramagnetic resonance transition for a spin in a fractal for general dimensionalities. (author)
FRACTAL ANALYSIS OF TRABECULAR BONE: A STANDARDISED METHODOLOGY
Directory of Open Access Journals (Sweden)
Ian Parkinson
2011-05-01
Full Text Available A standardised methodology for the fractal analysis of histological sections of trabecular bone has been established. A modified box counting method has been developed for use on a PC based image analyser (Quantimet 500MC, Leica Cambridge. The effect of image analyser settings, magnification, image orientation and threshold levels, was determined. Also, the range of scale over which trabecular bone is effectively fractal was determined and a method formulated to objectively calculate more than one fractal dimension from the modified Richardson plot. The results show that magnification, image orientation and threshold settings have little effect on the estimate of fractal dimension. Trabecular bone has a lower limit below which it is not fractal (λ<25 μm and the upper limit is 4250 μm. There are three distinct fractal dimensions for trabecular bone (sectional fractals, with magnitudes greater than 1.0 and less than 2.0. It has been shown that trabecular bone is effectively fractal over a defined range of scale. Also, within this range, there is more than 1 fractal dimension, describing spatial structural entities. Fractal analysis is a model independent method for describing a complex multifaceted structure, which can be adapted for the study of other biological systems. This may be at the cell, tissue or organ level and compliments conventional histomorphometric and stereological techniques.
Closed contour fractal dimension estimation by the Fourier transform
International Nuclear Information System (INIS)
Florindo, J.B.; Bruno, O.M.
2011-01-01
Highlights: → A novel fractal dimension concept, based on Fourier spectrum, is proposed. → Computationally simple. Computational time smaller than conventional fractal methods. → Results are closer to Hausdorff-Besicovitch than conventional methods. → The method is more accurate and robustness to geometric operations and noise addition. - Abstract: This work proposes a novel technique for the numerical calculus of the fractal dimension of fractal objects which can be represented as a closed contour. The proposed method maps the fractal contour onto a complex signal and calculates its fractal dimension using the Fourier transform. The Fourier power spectrum is obtained and an exponential relation is verified between the power and the frequency. From the parameter (exponent) of the relation, is obtained the fractal dimension. The method is compared to other classical fractal dimension estimation methods in the literature, e.g., Bouligand-Minkowski, box-counting and classical Fourier. The comparison is achieved by the calculus of the fractal dimension of fractal contours whose dimensions are well-known analytically. The results showed the high precision and robustness of the proposed technique.
Entrainment to a real time fractal visual stimulus modulates fractal gait dynamics.
Rhea, Christopher K; Kiefer, Adam W; D'Andrea, Susan E; Warren, William H; Aaron, Roy K
2014-08-01
Fractal patterns characterize healthy biological systems and are considered to reflect the ability of the system to adapt to varying environmental conditions. Previous research has shown that fractal patterns in gait are altered following natural aging or disease, and this has potential negative consequences for gait adaptability that can lead to increased risk of injury. However, the flexibility of a healthy neurological system to exhibit different fractal patterns in gait has yet to be explored, and this is a necessary step toward understanding human locomotor control. Fifteen participants walked for 15min on a treadmill, either in the absence of a visual stimulus or while they attempted to couple the timing of their gait with a visual metronome that exhibited a persistent fractal pattern (contained long-range correlations) or a random pattern (contained no long-range correlations). The stride-to-stride intervals of the participants were recorded via analog foot pressure switches and submitted to detrended fluctuation analysis (DFA) to determine if the fractal patterns during the visual metronome conditions differed from the baseline (no metronome) condition. DFA α in the baseline condition was 0.77±0.09. The fractal patterns in the stride-to-stride intervals were significantly altered when walking to the fractal metronome (DFA α=0.87±0.06) and to the random metronome (DFA α=0.61±0.10) (both p<.05 when compared to the baseline condition), indicating that a global change in gait dynamics was observed. A variety of strategies were identified at the local level with a cross-correlation analysis, indicating that local behavior did not account for the consistent global changes. Collectively, the results show that a gait dynamics can be shifted in a prescribed manner using a visual stimulus and the shift appears to be a global phenomenon. Copyright © 2014 Elsevier B.V. All rights reserved.
Fractal analysis of fractures and microstructures in rocks
International Nuclear Information System (INIS)
Merceron, T.; Nakashima, S.; Velde, B.; Badri, A.
1991-01-01
Fractal geometry was used to characterize the distribution of fracture fields in rocks, which represent main pathways for material migration such as groundwater flow. Fractal investigations of fracture distribution were performed on granite along Auriat and Shikoku boreholes. Fractal dimensions range between 0.3 and 0.5 according to the different sets of fracture planes selected for the analyses. Shear, tension and compressional modes exhibit different fractal values while the composite fracture patterns are also fractal but with a different, median, fractal value. These observations indicate that the fractal method can be used to distinguish fracture types of different origins in a complex system. Fractal results for Shikoku borehole also correlate with geophysical parameters recorded along, drill-holes such as resistivity and possibly permeability. These results represent the first steps of the fractal investigation along drill-holes. Future studies will be conducted to verify relationships between fractal dimensions and permeability by using available geophysical data. Microstructures and microcracks were analysed in the Inada granite. Microcrack patterns are fractal but fractal dimensions values vary according to both mineral type and orientations of measurement within the mineral. Microcracks in quartz are characterized by more irregular distribution (average D = 0.40) than those in feldspars (D = 0.50) suggesting a different mode of rupture. Highest values of D are reported along main cleavage planes for feldspars or C axis for quartz. Further fractal investigations of microstructure in granite will be used to characterize the potential pathways for fluid migration and diffusion in the rock matrix. (author)
Fractal zeta functions and fractal drums higher-dimensional theory of complex dimensions
Lapidus, Michel L; Žubrinić, Darko
2017-01-01
This monograph gives a state-of-the-art and accessible treatment of a new general higher-dimensional theory of complex dimensions, valid for arbitrary bounded subsets of Euclidean spaces, as well as for their natural generalization, relative fractal drums. It provides a significant extension of the existing theory of zeta functions for fractal strings to fractal sets and arbitrary bounded sets in Euclidean spaces of any dimension. Two new classes of fractal zeta functions are introduced, namely, the distance and tube zeta functions of bounded sets, and their key properties are investigated. The theory is developed step-by-step at a slow pace, and every step is well motivated by numerous examples, historical remarks and comments, relating the objects under investigation to other concepts. Special emphasis is placed on the study of complex dimensions of bounded sets and their connections with the notions of Minkowski content and Minkowski measurability, as well as on fractal tube formulas. It is shown for the f...
Fractal dimension analysis of complexity in Ligeti piano pieces
Bader, Rolf
2005-04-01
Fractal correlation dimensional analysis has been performed with whole solo piano pieces by Gyrgy Ligeti at every 50ms interval of the pieces. The resulting curves of development of complexity represented by the fractal dimension showed up a very reasonable correlation with the perceptional density of events during these pieces. The seventh piece of Ligeti's ``Musica ricercata'' was used as a test case. Here, each new part of the piece was followed by an increase of the fractal dimension because of the increase of information at the part changes. The second piece ``Galamb borong,'' number seven of the piano Etudes was used, because Ligeti wrote these Etudes after studying fractal geometry. Although the piece is not fractal in the strict mathematical sense, the overall structure of the psychoacoustic event-density as well as the detailed event development is represented by the fractal dimension plot.
A new numerical approximation of the fractal ordinary differential equation
Atangana, Abdon; Jain, Sonal
2018-02-01
The concept of fractal medium is present in several real-world problems, for instance, in the geological formation that constitutes the well-known subsurface water called aquifers. However, attention has not been quite devoted to modeling for instance, the flow of a fluid within these media. We deem it important to remind the reader that the concept of fractal derivative is not to represent the fractal sharps but to describe the movement of the fluid within these media. Since this class of ordinary differential equations is highly complex to solve analytically, we present a novel numerical scheme that allows to solve fractal ordinary differential equations. Error analysis of the method is also presented. Application of the method and numerical approximation are presented for fractal order differential equation. The stability and the convergence of the numerical schemes are investigated in detail. Also some exact solutions of fractal order differential equations are presented and finally some numerical simulations are presented.
Evaluation of 3D Printer Accuracy in Producing Fractal Structure.
Kikegawa, Kana; Takamatsu, Kyuuichirou; Kawakami, Masaru; Furukawa, Hidemitsu; Mayama, Hiroyuki; Nonomura, Yoshimune
2017-01-01
Hierarchical structures, also known as fractal structures, exhibit advantageous material properties, such as water- and oil-repellency as well as other useful optical characteristics, owing to its self-similarity. Various methods have been developed for producing hierarchical geometrical structures. Recently, fractal structures have been manufactured using a 3D printing technique that involves computer-aided design data. In this study, we confirmed the accuracy of geometrical structures when Koch curve-like fractal structures with zero to three generations were printed using a 3D printer. The fractal dimension was analyzed using a box-counting method. This analysis indicated that the fractal dimension of the third generation hierarchical structure was approximately the same as that of the ideal Koch curve. These findings demonstrate that the design and production of fractal structures can be controlled using a 3D printer. Although the interior angle deviated from the ideal value, the side length could be precisely controlled.
Generation of fractals from complex logistic map
Energy Technology Data Exchange (ETDEWEB)
Rani, Mamta [Galgotias College of Engg. and Technology, Greater Noida (India)], E-mail: mamtarsingh@rediffmail.com; Agarwal, Rashi [IEC College of Engg. and Tech., Greater Noida (India)], E-mail: agarwal_rashi@yahoo.com
2009-10-15
Remarkably benign looking logistic transformations x{sub n+1} = r x{sub n}(1 - x{sub n}) for choosing x{sub 0} between 0 and 1 and 0 < r {<=} 4 have found a celebrated place in chaos, fractals and discrete dynamics. The strong physical meaning of Mandelbrot and Julia sets is broadly accepted and nicely connected by Christian Beck [Beck C. Physical meaning for Mandelbrot and Julia sets. Physica D 1999;125(3-4):171-182. Zbl0988.37060] to the complex logistic maps, in the former case, and to the inverse complex logistic map, in the latter case. The purpose of this paper is to study the bounded behavior of the complex logistic map using superior iterates and generate fractals from the same. The analysis in this paper shows that many beautiful properties of the logistic map are extendable for a larger value of r.
Static friction between rigid fractal surfaces.
Alonso-Marroquin, Fernando; Huang, Pengyu; Hanaor, Dorian A H; Flores-Johnson, E A; Proust, Gwénaëlle; Gan, Yixiang; Shen, Luming
2015-09-01
Using spheropolygon-based simulations and contact slope analysis, we investigate the effects of surface topography and atomic scale friction on the macroscopically observed friction between rigid blocks with fractal surface structures. From our mathematical derivation, the angle of macroscopic friction is the result of the sum of the angle of atomic friction and the slope angle between the contact surfaces. The latter is obtained from the determination of all possible contact slopes between the two surface profiles through an alternative signature function. Our theory is validated through numerical simulations of spheropolygons with fractal Koch surfaces and is applied to the description of frictional properties of Weierstrass-Mandelbrot surfaces. The agreement between simulations and theory suggests that for interpreting macroscopic frictional behavior, the descriptors of surface morphology should be defined from the signature function rather than from the slopes of the contacting surfaces.
Fractal Adaptive Web Service for Mobile Learning
Directory of Open Access Journals (Sweden)
Ichraf Tirellil
2006-06-01
Full Text Available This paper describes our proposition for adaptive web services which is based on configurable, re-usable adaptive/personalized services. To realize our ideas, we have developed an approach for designing, implementing and maintaining personal service. This approach enables the user to accomplish an activity with a set of services answering to his preferences, his profiles and to a personalized context. In this paper, we describe the principle of our approach that we call fractal adaptation approach, and we discuss the implementation of personalization services in the context of mobile and collaborative scenario of learning. We have realized a platform in this context -a platform for mobile and collaborative learning- based on fractal adaptable web services. The platform is tested with a population of students and tutors, in order to release the gaps and the advantages of the approach suggested.
Fractal Analysis of Stealthy Pathfinding Aesthetics
Directory of Open Access Journals (Sweden)
Ron Coleman
2009-01-01
Full Text Available This paper uses a fractal model to analyze aesthetic values of a new class of obstacle-prone or “stealthy” pathfinding which seeks to avoid detection, exposure, openness, and so forth in videogames. This study is important since in general the artificial intelligence literature has given relatively little attention to aesthetic outcomes in pathfinding. The data we report, according to the fractal model, suggests that stealthy paths are statistically significantly unique in relative aesthetic value when compared to control paths. We show furthermore that paths generated with different stealth regimes are also statistically significantly unique. These conclusions are supported by statistical analysis of model results on experimental trials involving pathfinding in randomly generated, multiroom virtual worlds.
A TUTORIAL INTRODUCTION TO ADAPTIVE FRACTAL ANALYSIS
Directory of Open Access Journals (Sweden)
Michael A Riley
2012-09-01
Full Text Available The authors present a tutorial description of adaptive fractal analysis (AFA. AFA utilizes an adaptive detrending algorithm to extract globally smooth trend signals from the data and then analyzes the scaling of the residuals to the fit as a function of the time scale at which the fit is computed. The authors present applications to synthetic mathematical signals to verify the accuracy of AFA and demonstrate the basic steps of the analysis. The authors then present results from applying AFA to time series from a cognitive psychology experiment on repeated estimation of durations of time to illustrate some of the complexities of real-world data. AFA shows promise in dealing with many types of signals, but like any fractal analysis method there are special challenges and considerations to take into account, such as determining the presence of linear scaling regions.
Reengineering through natural structures: the fractal factory
Sihn, Wilfried
1995-08-01
Many branches of European industry have had to recognize that their lead in the world market has been caught up with, particularly through Asian competition. In many cases a deficit of up to 30% in costs and productivity already exists. The reasons are rigid, Tayloristic company structures. The companies are not in a position to react flexibly to constantly changing environmental conditions. This article illustrates the methods of the `fractal company' which are necessary to solve the structure crisis. The fractal company distinguishes itself through its dynamics and its vitality, as well as its independent reaction to the changing circumstances. The developed methods, procedures, and framework conditions such as company structuring, human networking, hierarchy formation, and models for renumeration and working time are explained. They are based on practical examples from IPA's work with the automobile industry, their suppliers, and the engineering industry.
Enhanced Graphene Photodetector with Fractal Metasurface
DEFF Research Database (Denmark)
Fang, Jieran; Wang, Di; DeVault, Clayton T
2017-01-01
Graphene has been demonstrated to be a promising photodetection material because of its ultrabroadband optical absorption, compatibility with CMOS technology, and dynamic tunability in optical and electrical properties. However, being a single atomic layer thick, graphene has intrinsically small...... optical absorption, which hinders its incorporation with modern photodetecting systems. In this work, we propose a gold snowflake-like fractal metasurface design to realize broadband and polarization-insensitive plasmonic enhancement in graphene photodetector. We experimentally obtain an enhanced...... photovoltage from the fractal metasurface that is an order of magnitude greater than that generated at a plain gold-graphene edge and such an enhancement in the photovoltage sustains over the entire visible spectrum. We also observed a relatively constant photoresponse with respect to polarization angles...
Generation of fractals from complex logistic map
International Nuclear Information System (INIS)
Rani, Mamta; Agarwal, Rashi
2009-01-01
Remarkably benign looking logistic transformations x n+1 = r x n (1 - x n ) for choosing x 0 between 0 and 1 and 0 < r ≤ 4 have found a celebrated place in chaos, fractals and discrete dynamics. The strong physical meaning of Mandelbrot and Julia sets is broadly accepted and nicely connected by Christian Beck [Beck C. Physical meaning for Mandelbrot and Julia sets. Physica D 1999;125(3-4):171-182. Zbl0988.37060] to the complex logistic maps, in the former case, and to the inverse complex logistic map, in the latter case. The purpose of this paper is to study the bounded behavior of the complex logistic map using superior iterates and generate fractals from the same. The analysis in this paper shows that many beautiful properties of the logistic map are extendable for a larger value of r.
Tumor cells diagnostic through fractal dimensions
International Nuclear Information System (INIS)
Timbo, Christiano dos Santos
2004-01-01
This method relies on the application of an algorithm for the quantitative and statistic differentiation of a sample of cells stricken by a certain kind of pathology and a sample of healthy cells. This differentiation is made by applying the principles of fractal dimension to digital images of the cells. The algorithm was developed using the the concepts of Object- Oriented Programming, resulting in a simple code, divided in 5 distinct procedures, and a user-friendly interface. To obtain the fractal dimension of the images of the cells, the program processes the image, extracting its border, and uses it to characterize the complexity of the form of the cell in a quantitative way. In order to validate the code, it was used a digitalized image found in an article by W. Bauer, developer of an analog method. The result showed a difference of 6% between the value obtained by Bauer and the value obtained the algorithm developed in this work. (author)
a New Method for Calculating Fractal Dimensions of Porous Media Based on Pore Size Distribution
Xia, Yuxuan; Cai, Jianchao; Wei, Wei; Hu, Xiangyun; Wang, Xin; Ge, Xinmin
Fractal theory has been widely used in petrophysical properties of porous rocks over several decades and determination of fractal dimensions is always the focus of researches and applications by means of fractal-based methods. In this work, a new method for calculating pore space fractal dimension and tortuosity fractal dimension of porous media is derived based on fractal capillary model assumption. The presented work establishes relationship between fractal dimensions and pore size distribution, which can be directly used to calculate the fractal dimensions. The published pore size distribution data for eight sandstone samples are used to calculate the fractal dimensions and simultaneously compared with prediction results from analytical expression. In addition, the proposed fractal dimension method is also tested through Micro-CT images of three sandstone cores, and are compared with fractal dimensions by box-counting algorithm. The test results also prove a self-similar fractal range in sandstone when excluding smaller pores.
A Fractal Perspective on Scale in Geography
Directory of Open Access Journals (Sweden)
Bin Jiang
2016-06-01
Full Text Available Scale is a fundamental concept that has attracted persistent attention in geography literature over the past several decades. However, it creates enormous confusion and frustration, particularly in the context of geographic information science, because of scale-related issues such as image resolution and the modifiable areal unit problem (MAUP. This paper argues that the confusion and frustration arise from traditional Euclidean geometric thinking, in which locations, directions, and sizes are considered absolute, and it is now time to revise this conventional thinking. Hence, we review fractal geometry, together with its underlying way of thinking, and compare it to Euclidean geometry. Under the paradigm of Euclidean geometry, everything is measurable, no matter how big or small. However, most geographic features, due to their fractal nature, are essentially unmeasurable or their sizes depend on scale. For example, the length of a coastline, the area of a lake, and the slope of a topographic surface are all scale-dependent. Seen from the perspective of fractal geometry, many scale issues, such as the MAUP, are inevitable. They appear unsolvable, but can be dealt with. To effectively deal with scale-related issues, we present topological and scaling analyses illustrated by street-related concepts such as natural streets, street blocks, and natural cities. We further contend that one of the two spatial properties, spatial heterogeneity, is de facto the fractal nature of geographic features, and it should be considered the first effect among the two, because it is global and universal across all scales, which should receive more attention from practitioners of geography.
FRACTAL DIMENSIONALITY ANALYSIS OF MAMMARY GLAND THERMOGRAMS
Directory of Open Access Journals (Sweden)
Yu. E. Lyah
2016-06-01
Full Text Available Thermography may enable early detection of a cancer tumour within a mammary gland at an early, treatable stage of the illness, but thermogram analysis methods must be developed to achieve this goal. This study analyses the feasibility of applying the Hurst exponent readings algorithm for evaluation of the high dimensionality fractals to reveal any possible difference between normal thermograms (NT and malignant thermograms (MT.
Fractal characterization of brain lesions in CT images
International Nuclear Information System (INIS)
Jauhari, Rajnish K.; Trivedi, Rashmi; Munshi, Prabhat; Sahni, Kamal
2005-01-01
Fractal Dimension (FD) is a parameter used widely for classification, analysis, and pattern recognition of images. In this work we explore the quantification of CT (computed tomography) lesions of the brain by using fractal theory. Five brain lesions, which are portions of CT images of diseased brains, are used for the study. These lesions exhibit self-similarity over a chosen range of scales, and are broadly characterized by their fractal dimensions
A short history of fractal-Cantorian space-time
International Nuclear Information System (INIS)
Marek-Crnjac, L.
2009-01-01
The article attempts to give a short historical overview of the discovery of fractal-Cantorian space-time starting from the 17th century up to the present. In the last 25 years a great number of scientists worked on fractal space-time notably Garnet Ord in Canada, Laurent Nottale in France and Mohamed El Naschie in England who gave an exact mathematical procedure for the derivation of the dimensionality and curvature of fractal space-time fuzzy manifold.
Enhancement of critical temperature in fractal metamaterial superconductors
Energy Technology Data Exchange (ETDEWEB)
Smolyaninov, Igor I., E-mail: smoly@umd.edu [Department of Electrical and Computer Engineering, University of Maryland, College Park, MD 20742 (United States); Smolyaninova, Vera N. [Department of Physics Astronomy and Geosciences, Towson University, 8000 York Road, Towson, MD 21252 (United States)
2017-04-15
Fractal metamaterial superconductor geometry has been suggested and analyzed based on the recently developed theoretical description of critical temperature increase in epsilon near zero (ENZ) metamaterial superconductors. Considerable enhancement of critical temperature has been predicted in such materials due to appearance of large number of additional poles in the inverse dielectric response function of the fractal. Our results agree with the recent observation (Fratini et al. Nature 466, 841 (2010)) that fractal defect structure promotes superconductivity.
Hybrid 3D Fractal Coding with Neighbourhood Vector Quantisation
Directory of Open Access Journals (Sweden)
Zhen Yao
2004-12-01
Full Text Available A hybrid 3D compression scheme which combines fractal coding with neighbourhood vector quantisation for video and volume data is reported. While fractal coding exploits the redundancy present in different scales, neighbourhood vector quantisation, as a generalisation of translational motion compensation, is a useful method for removing both intra- and inter-frame coherences. The hybrid coder outperforms most of the fractal coders published to date while the algorithm complexity is kept relatively low.
Optical diffraction from fractals with a structural transition
International Nuclear Information System (INIS)
Perez Rodriguez, F.; Canessa, E.
1994-04-01
A macroscopic characterization of fractals showing up a structural transition from dense to multibranched growth is made using optical diffraction theory. Such fractals are generated via the numerical solution of the 2D Poisson and biharmonic equations and are compared to more 'regular' irreversible clusters such as diffusion limited and Laplacian aggregates. The optical diffraction method enables to identify a decrease of the fractal dimension above the structural point. (author). 19 refs, 6 figs
Password Authentication Based on Fractal Coding Scheme
Directory of Open Access Journals (Sweden)
Nadia M. G. Al-Saidi
2012-01-01
Full Text Available Password authentication is a mechanism used to authenticate user identity over insecure communication channel. In this paper, a new method to improve the security of password authentication is proposed. It is based on the compression capability of the fractal image coding to provide an authorized user a secure access to registration and login process. In the proposed scheme, a hashed password string is generated and encrypted to be captured together with the user identity using text to image mechanisms. The advantage of fractal image coding is to be used to securely send the compressed image data through a nonsecured communication channel to the server. The verification of client information with the database system is achieved in the server to authenticate the legal user. The encrypted hashed password in the decoded fractal image is recognized using optical character recognition. The authentication process is performed after a successful verification of the client identity by comparing the decrypted hashed password with those which was stored in the database system. The system is analyzed and discussed from the attacker’s viewpoint. A security comparison is performed to show that the proposed scheme provides an essential security requirement, while their efficiency makes it easier to be applied alone or in hybrid with other security methods. Computer simulation and statistical analysis are presented.
Fractal analysis of Xylella fastidiosa biofilm formation
Moreau, A. L. D.; Lorite, G. S.; Rodrigues, C. M.; Souza, A. A.; Cotta, M. A.
2009-07-01
We have investigated the growth process of Xylella fastidiosa biofilms inoculated on a glass. The size and the distance between biofilms were analyzed by optical images; a fractal analysis was carried out using scaling concepts and atomic force microscopy images. We observed that different biofilms show similar fractal characteristics, although morphological variations can be identified for different biofilm stages. Two types of structural patterns are suggested from the observed fractal dimensions Df. In the initial and final stages of biofilm formation, Df is 2.73±0.06 and 2.68±0.06, respectively, while in the maturation stage, Df=2.57±0.08. These values suggest that the biofilm growth can be understood as an Eden model in the former case, while diffusion-limited aggregation (DLA) seems to dominate the maturation stage. Changes in the correlation length parallel to the surface were also observed; these results were correlated with the biofilm matrix formation, which can hinder nutrient diffusion and thus create conditions to drive DLA growth.
Fractal theory of radon emanation from solids
International Nuclear Information System (INIS)
Semkow, T.M.
1991-01-01
The author developed a fractal theory of Rn emanation from solids, based on α recoil from the α decay of Ra. Range straggling of the recoiling Rn atoms in the solid state is included and the fractal geometry is used to describe the roughness of the emanating surface. A fractal dimension D of the surface and the median projected range become important parameters in calculating the radon emanating power E R from solids. A relation between E R and the specific surface area measured by the gas adsorption is derived for the first time, assuming a uniform distribution of the precursor Ra throughout the samples. It is suggested that the E R measurements can be used to determine D of the surfaces on the scale from tens to hundreds of nm. One obtains, for instance, D = 2.17 ± 0.06 for Lipari volcanic glass and D = 2.83 ± 0.03 for pitchblende. In addition, the author suggests a new process of penetrating recoil and modify the role of indirect recoil. The penetrating recoil may be important for rough surfaces, in which case Rn loses its kinetic energy by penetrating a large number of small surface irregularities. The indirect recoil may be important at the very last stage of energy-loss process, for kinetic energies below ∼ 5 keV
Aero-acoustic performance of Fractal Spoilers
Nedic, J.; Ganapathisubramani, B.; Vassilicos, C.; Boree, J.; Brizzi, L.; Spohn, A.
2010-11-01
One of the major environmental problems facing the aviation industry is that of aircraft noise. The work presented in this paper, done as part of the OPENAIR Project, looks at reducing spoiler noise through means of large-scale fractal porosity. It is hypothesised that the highly turbulent flow generated by these grids, which have multi-length-scales, would remove the re-circulation region and with it, the low frequency noise it generates. In its place, a higher frequency noise is introduced which is susceptible to atmospheric attenuation, and would be deemed less offensive to the human ear. A total of nine laboratory scaled spoilers were looked at, seven of which had a fractal design, one conventionally porous and one solid for reference. All of the spoilers were mounted on a flat plate and inclined at 30^o to the horizontal. Far-field, microphone array and PIV measurements were taken in an anechoic chamber to determine the acoustic performance and to study the flow coming through the spoilers. A significant reduction in sound pressure level is recorded and is found to be very sensitive to small changes in fractal grid parameters. Wake and drag force measurements indicated that the spoilers increase the drag whilst having minimal effect on the lift.
International Conference on Advances of Fractals and Related Topics
Lau, Ka-Sing
2014-01-01
This volume collects thirteen expository or survey articles on topics including Fractal Geometry, Analysis of Fractals, Multifractal Analysis, Ergodic Theory and Dynamical Systems, Probability and Stochastic Analysis, written by the leading experts in their respective fields. The articles are based on papers presented at the International Conference on Advances on Fractals and Related Topics, held on December 10-14, 2012 at the Chinese University of Hong Kong. The volume offers insights into a number of exciting, cutting-edge developments in the area of fractals, which has close ties to and applications in other areas such as analysis, geometry, number theory, probability and mathematical physics.
Fractal-Based Image Analysis In Radiological Applications
Dellepiane, S.; Serpico, S. B.; Vernazza, G.; Viviani, R.
1987-10-01
We present some preliminary results of a study aimed to assess the actual effectiveness of fractal theory and to define its limitations in the area of medical image analysis for texture description, in particular, in radiological applications. A general analysis to select appropriate parameters (mask size, tolerance on fractal dimension estimation, etc.) has been performed on synthetically generated images of known fractal dimensions. Moreover, we analyzed some radiological images of human organs in which pathological areas can be observed. Input images were subdivided into blocks of 6x6 pixels; then, for each block, the fractal dimension was computed in order to create fractal images whose intensity was related to the D value, i.e., texture behaviour. Results revealed that the fractal images could point out the differences between normal and pathological tissues. By applying histogram-splitting segmentation to the fractal images, pathological areas were isolated. Two different techniques (i.e., the method developed by Pentland and the "blanket" method) were employed to obtain fractal dimension values, and the results were compared; in both cases, the appropriateness of the fractal description of the original images was verified.
FAST TRACK COMMUNICATION: Weyl law for fat fractals
Spina, María E.; García-Mata, Ignacio; Saraceno, Marcos
2010-10-01
It has been conjectured that for a class of piecewise linear maps the closure of the set of images of the discontinuity has the structure of a fat fractal, that is, a fractal with positive measure. An example of such maps is the sawtooth map in the elliptic regime. In this work we analyze this problem quantum mechanically in the semiclassical regime. We find that the fraction of states localized on the unstable set satisfies a modified fractal Weyl law, where the exponent is given by the exterior dimension of the fat fractal.
Electro-chemical manifestation of nanoplasmonics in fractal media
Baskin, Emmanuel; Iomin, Alexander
2013-06-01
Electrodynamics of composite materials with fractal geometry is studied in the framework of fractional calculus. This consideration establishes a link between fractal geometry of the media and fractional integrodifferentiation. The photoconductivity in the vicinity of the electrode-electrolyte fractal interface is studied. The methods of fractional calculus are employed to obtain an analytical expression for the giant local enhancement of the optical electric field inside the fractal composite structure at the condition of the surface plasmon excitation. This approach makes it possible to explain experimental data on photoconductivity in the nano-electrochemistry.
Fractal characteristic study of shearer cutter cutting resistance curves
Energy Technology Data Exchange (ETDEWEB)
Liu, C. [Heilongjiang Scientific and Technical Institute, Haerbin (China). Dept of Mechanical Engineering
2004-02-01
The cutting resistance curve is the most useful tool for reflecting the overall cutting performance of a cutting machine. The cutting resistance curve is influenced by many factors such as the pick structure and arrangement, the cutter operation parameters, coal quality and geologic conditions. This paper discusses the use of fractal geometry to study the properties of the cutting resistance curve, and the use of fractal dimensions to evaluate cutting performance. On the basis of fractal theory, the general form and calculation method of fractal characteristics are given. 4 refs., 3 figs., 1 tab.
Fractal-based exponential distribution of urban density and self-affine fractal forms of cities
International Nuclear Information System (INIS)
Chen Yanguang; Feng Jian
2012-01-01
Highlights: ► The model of urban population density differs from the common exponential function. ► Fractal landscape influences the exponential distribution of urban density. ► The exponential distribution of urban population suggests a self-affine fractal. ► Urban space can be divided into three layers with scaling and non-scaling regions. ► The dimension of urban form with characteristic scale can be treated as 2. - Abstract: Urban population density always follows the exponential distribution and can be described with Clark’s model. Because of this, the spatial distribution of urban population used to be regarded as non-fractal pattern. However, Clark’s model differs from the exponential function in mathematics because that urban population is distributed on the fractal support of landform and land-use form. By using mathematical transform and empirical evidence, we argue that there are self-affine scaling relations and local power laws behind the exponential distribution of urban density. The scale parameter of Clark’s model indicating the characteristic radius of cities is not a real constant, but depends on the urban field we defined. So the exponential model suggests local fractal structure with two kinds of fractal parameters. The parameters can be used to characterize urban space filling, spatial correlation, self-affine properties, and self-organized evolution. The case study of the city of Hangzhou, China, is employed to verify the theoretical inference. Based on the empirical analysis, a three-ring model of cities is presented and a city is conceptually divided into three layers from core to periphery. The scaling region and non-scaling region appear alternately in the city. This model may be helpful for future urban studies and city planning.
International Nuclear Information System (INIS)
Ren Xincheng; Guo Lixin
2008-01-01
A normalized two-dimensional band-limited Weierstrass fractal function is used for modelling the dielectric rough surface. An analytic solution of the scattered field is derived based on the Kirchhoff approximation. The variance of scattering intensity is presented to study the fractal characteristics through theoretical analysis and numerical calculations. The important conclusion is obtained that the diffracted envelope slopes of scattering pattern can be approximated as a slope of linear equation. This conclusion will be applicable for solving the inverse problem of reconstructing rough surface and remote sensing. (classical areas of phenomenology)
Pore Structure and Fractal Characteristics of Niutitang Shale from China
Directory of Open Access Journals (Sweden)
Zhaodong Xi
2018-04-01
Full Text Available A suite of shale samples from the Lower Cambrian Niutitang Formation in northwestern Hunan Province, China, were investigated to better understand the pore structure and fractal characteristics of marine shale. Organic geochemistry, mineralogy by X-ray diffraction, porosity, permeability, mercury intrusion and nitrogen adsorption and methane adsorption experiments were conducted for each sample. Fractal dimension D was obtained from the nitrogen adsorption data using the fractal Frenkel-Halsey-Hill (FHH model. The relationships between total organic carbon (TOC content, mineral compositions, pore structure parameters and fractal dimension are discussed, along with the contributions of fractal dimension to shale gas reservoir evaluation. Analysis of the results showed that Niutitang shale samples featured high TOC content (2.51% on average, high thermal maturity (3.0% on average, low permeability and complex pore structures, which are highly fractal. TOC content and mineral compositions are two major factors affecting pore structure but they have different impacts on the fractal dimension. Shale samples with higher TOC content had a larger specific surface area (SSA, pore volume (PV and fractal dimension, which enhanced the heterogeneity of the pore structure. Quartz content had a relatively weak influence on shale pore structure, whereas SSA, PV and fractal dimension decreased with increasing clay mineral content. Shale with a higher clay content weakened pore structure heterogeneity. The permeability and Langmuir volume of methane adsorption were affected by fractal dimension. Shale samples with higher fractal dimension had higher adsorption capacity but lower permeability, which is favorable for shale gas adsorption but adverse to shale gas seepage and diffusion.
Phillip Springer
2012-01-01
O presente trabalho descreve o projeto, construção e testes de uma matriz de Extrusão em Canal Angular (ECA) dedicada ao processamento de amostras em forma de chapa. O parâmetro construtivo fundamental de uma matriz deste tipo é a geometria dos canais, especialmente o ângulo de encontro dos mesmos e os raios de curvatura nesse ponto. O material de trabalho empregado é o Al comercial AA1050. A motivação deste projeto é prover o ferramental necessário para produção de amostras que serão utiliza...
Cézar Clemente Pires dos Santos; Shozo Shiraiwa
2012-01-01
A topologia e geometria das redes de drenagem têm contribuído substancialmente para os estudos em geomorfologia e hidrologia, incluindo modernos modelos de evolução da paisagem. Este trabalho tem como objetivo apresentar uma metodologia para extração automatizada de redes de drenagem utilizando limiares de fluxo acumulado em ambiente SIG. A metodologia pode ser dividida nas seguintes etapas: (a) construção do Modelo Digital de Elevação (MDE) hidrologicamente corrigido, (b) delimitação das bac...
Fractal dimension of the fractured surface of materials
International Nuclear Information System (INIS)
Lung, C.W.; Zhang, S.Z.
1989-05-01
Fractal dimension of the fractured surface of materials is discussed to show that the origin of the negative correlation between D F and toughness lies in the method of fractal dimension measurement with perimeter-area relation and also in the physical mechanism of crack propagation. (author). 8 refs, 4 figs, 1 tab
Three-dimensional fractal geometry for gas permeation in microchannels
Malankowska, Magdalena; Schlautmann, Stefan; Berenschot, Erwin J.W.; Tiggelaar, Roald M.; Pina, Maria Pilar; Mallada, Reyes; Tas, Niels R.; Gardeniers, Han
2018-01-01
The novel concept of a microfluidic chip with an integrated three-dimensional fractal geometry with nanopores, acting as a gas transport membrane, is presented. The method of engineering the 3D fractal structure is based on a combination of anisotropic etching of silicon and corner lithography. The
The fractal nature of vacuum arc cathode spots
International Nuclear Information System (INIS)
Anders, Andre
2005-01-01
Cathode spot phenomena show many features of fractals, for example self-similar patterns in the emitted light and arc erosion traces. Although there have been hints on the fractal nature of cathode spots in the literature, the fractal approach to spot interpretation is underutilized. In this work, a brief review of spot properties is given, touching the differences between spot type 1 (on cathodes surfaces with dielectric layers) and spot type 2 (on metallic, clean surfaces) as well as the known spot fragment or cell structure. The basic properties of self-similarity, power laws, random colored noise, and fractals are introduced. Several points of evidence for the fractal nature of spots are provided. Specifically power laws are identified as signature of fractal properties, such as spectral power of noisy arc parameters (ion current, arc voltage, etc) obtained by fast Fourier transform. It is shown that fractal properties can be observed down to the cutoff by measurement resolution or occurrence of elementary steps in physical processes. Random walk models of cathode spot motion are well established: they go asymptotically to Brownian motion for infinitesimal step width. The power spectrum of the arc voltage noise falls as 1/f 2 , where f is frequency, supporting a fractal spot model associated with Brownian motion
Fractal sets generated by chemical reactions discrete chaotic dynamics
International Nuclear Information System (INIS)
Gontar, V.; Grechko, O.
2007-01-01
Fractal sets composed by the parameters values of difference equations derived from chemical reactions discrete chaotic dynamics (DCD) and corresponding to the sequences of symmetrical patterns were obtained in this work. Examples of fractal sets with the corresponding symmetrical patterns have been presented
Fractal Dimension analysis for seismicity spatial and temporal ...
Indian Academy of Sciences (India)
23
The research can further promote the application of fractal theory in the study ... spatial-temporal propagation characteristics of seismic activities, fractal theory is not ... provide a theoretical basis for the prevention and control of earthquakes. 2. ... random self-similar structure of the earthquake in the time series and the spatial.
a Fractal Network Model for Fractured Porous Media
Xu, Peng; Li, Cuihong; Qiu, Shuxia; Sasmito, Agus Pulung
2016-04-01
The transport properties and mechanisms of fractured porous media are very important for oil and gas reservoir engineering, hydraulics, environmental science, chemical engineering, etc. In this paper, a fractal dual-porosity model is developed to estimate the equivalent hydraulic properties of fractured porous media, where a fractal tree-like network model is used to characterize the fracture system according to its fractal scaling laws and topological structures. The analytical expressions for the effective permeability of fracture system and fractured porous media, tortuosity, fracture density and fraction are derived. The proposed fractal model has been validated by comparisons with available experimental data and numerical simulation. It has been shown that fractal dimensions for fracture length and aperture have significant effect on the equivalent hydraulic properties of fractured porous media. The effective permeability of fracture system can be increased with the increase of fractal dimensions for fracture length and aperture, while it can be remarkably lowered by introducing tortuosity at large branching angle. Also, a scaling law between the fracture density and fractal dimension for fracture length has been found, where the scaling exponent depends on the fracture number. The present fractal dual-porosity model may shed light on the transport physics of fractured porous media and provide theoretical basis for oil and gas exploitation, underground water, nuclear waste disposal and geothermal energy extraction as well as chemical engineering, etc.
Experiencia en el aula de secundaria con fractales
Gallardo, Sandra; Martínez-Santaolalla, Manuel José; Molina, Marta; Peñas, María; Cañadas, María C.; Crisóstomo, Edson
2006-01-01
Presentamos una experiencia docente en un aula de 2º ESO en la que trabajamos los fractales mediante el uso de material de carácter manipulativo. La metodología seguida se basa en la construcción de casos particulares con el fin de llegar al concepto de fractal.
Growth of fractal structures in flames with silicon admixture
Smirnov, B. M.; Dutka, M.; van Essen, V. M.; Gersen, S.; Visser, P.; Vainchtein, D.; De Hosson, J. Th. M.; Levinsky, H. B.; Mokhov, A. V.
Transmission electron microscopy (TEM) measurements and theoretical analysis are combined to construct the physical picture of formation of SiO2 fractal aggregates in a methane/hexamethyldisiloxane/air atmospheric pressure flame. The formation of SiO2 fractal aggregates is described as a multistage
Evaluation of surface quality by Fractal Dimension and Volume ...
African Journals Online (AJOL)
Experimental and simulation results have enabled to show than the large diameter ball under low loads and medium feed speeds, favors the elimination of peaks and reduction of fractal dimension whence quality improvement of surface. Keywords: burnishing, volume parameters, fractal dimension, experimental designs ...
Bouguer correction density determination from fractal analysis using ...
African Journals Online (AJOL)
In this work, Bouguer density is determined using the fractal approach. This technique was applied to the gravity data of the Kwello area of the Basement Complex, north-western Nigeria. The density obtained using the fractal approach is 2500 kgm which is lower than the conventional value of 2670 kgm used for average ...
Fractal analysis of rainfall occurrence observed in the synoptic ...
African Journals Online (AJOL)
Fractal analysis is important for characterizing and modeling rainfall's space-time variations in hydrology. The purpose of this study consists on determining, in a mono-fractal framework, the scale invariance of rainfall series in Benin synopticstations located in two main geographical area: Cotonou, Bohicon , Savè in a sub ...
Variability of fractal dimension of solar radio flux
Bhatt, Hitaishi; Sharma, Som Kumar; Trivedi, Rupal; Vats, Hari Om
2018-04-01
In the present communication, the variation of the fractal dimension of solar radio flux is reported. Solar radio flux observations on a day to day basis at 410, 1415, 2695, 4995, and 8800 MHz are used in this study. The data were recorded at Learmonth Solar Observatory, Australia from 1988 to 2009 covering an epoch of two solar activity cycles (22 yr). The fractal dimension is calculated for the listed frequencies for this period. The fractal dimension, being a measure of randomness, represents variability of solar radio flux at shorter time-scales. The contour plot of fractal dimension on a grid of years versus radio frequency suggests high correlation with solar activity. Fractal dimension increases with increasing frequency suggests randomness increases towards the inner corona. This study also shows that the low frequency is more affected by solar activity (at low frequency fractal dimension difference between solar maximum and solar minimum is 0.42) whereas, the higher frequency is less affected by solar activity (here fractal dimension difference between solar maximum and solar minimum is 0.07). A good positive correlation is found between fractal dimension averaged over all frequencies and yearly averaged sunspot number (Pearson's coefficient is 0.87).
Usefulness of fractal analysis for the diagnosis of periodontitis
Energy Technology Data Exchange (ETDEWEB)
Cha, Sang Yun; Han, Won Jeong; Kim, Eun Kyung [Dankook Univ. School of Dentistry, Seoul (Korea, Republic of)
2001-03-15
To evaluate the usefulness of fractal analysis for diagnosis of periodontitis. Each 30 cases of periapical films of male mandibular molar were selected in normal group and patient group which had complete furcation involvement. They were digitized at 300 dpi, 256 gray levels and saved with gif format. Rectangular ROIs (10 X 20 pixel) were selected at furcation, interdental crest, and interdental middle 1/3 area. Fractal dimensions were calculated three times at each area by mass radius method and were determined using a mean of three measurements. We computed fractal dimensions at furcation and interdental crest area of normal group with those of patient group. And then we compared ratio of fractal dimensions at furcation area, interdental crest area to interdental middle 1/3 area. Fractal dimension at interdental crest area of normal group was 1.979{+-}0.018 (p<0.05). The radio of fractal dimension at furcation area to interdental middle 1/3 of normal group was 1.006{+-}0.018 and that of patient group 0.9940.018 (p<0.05). The radio of fractal dimension at interdental crest and furcation area to interdental middle 1/3 area showed a statistically significant difference between normal and patient group. In conclusion, it is thought that fractal analysis might be useful for the diagnosis of periodontitis.
Separation in Data Mining Based on Fractal Nature of Data
Czech Academy of Sciences Publication Activity Database
Jiřina, Marcel; Jiřina jr., M.
2013-01-01
Roč. 3, č. 1 (2013), s. 44-60 ISSN 2225-658X Institutional support: RVO:67985807 Keywords : nearest neighbor * fractal set * multifractal * IINC method * correlation dimension Subject RIV: JC - Computer Hardware ; Software http://sdiwc.net/digital-library/separation-in-data-mining-based-on-fractal-nature-of-data.html
Fractal Dimension Of CT Images Of Normal Parotid Glands
International Nuclear Information System (INIS)
Lee, Sang Jin; Heo, Min Suk; You, Dong Soo
1999-01-01
This study was to investigate the age and sex differences of the fractal dimension of the normal parotid glands in the digitized CT images. The six groups, which were composed of 42 men and women from 20's, 40's and 60's and over were picked. Each group contained seven people of the same sex. The normal parotid CT images were digitized, and their fractal dimensions were calculated using Scion Image PC program. The mean of fractal dimensions in males was 1.7292 (+/-0.0588) and 1.6329 (+/-0.0425) in females. The mean of fractal dimensions in young males was 1.7617, 1.7328 in middle males, and 1.6933 in old males. The mean of fractal dimensions in young females was 1.6318, 1.6365 in middle females, and 1.6303 in old females. There was no statistical difference in fractal dimension between left and right parotid gland of the same subject (p>0.05). Fractal dimensions in male were decreased in older group (p 0.05). The fractal dimension of parotid glands in the digitized CT images will be useful to evaluate the age and sex differences.
Biophysical Chemistry of Fractal Structures and Processes in Environmental Systems
Buffle, J.; Leeuwen, van H.P.
2008-01-01
This book aims to provide the scientific community with a novel and valuable approach based on fractal geometry concepts on the important properties and processes of diverse environmental systems. The interpretation of complex environmental systems using modern fractal approaches is compared and
Fractal ventilation enhances respiratory sinus arrhythmia
Directory of Open Access Journals (Sweden)
Girling Linda G
2005-05-01
Full Text Available Abstract Background Programming a mechanical ventilator with a biologically variable or fractal breathing pattern (an example of 1/f noise improves gas exchange and respiratory mechanics. Here we show that fractal ventilation increases respiratory sinus arrhythmia (RSA – a mechanism known to improve ventilation/perfusion matching. Methods Pigs were anaesthetised with propofol/ketamine, paralysed with doxacurium, and ventilated in either control mode (CV or in fractal mode (FV at baseline and then following infusion of oleic acid to result in lung injury. Results Mean RSA and mean positive RSA were nearly double with FV, both at baseline and following oleic acid. At baseline, mean RSA = 18.6 msec with CV and 36.8 msec with FV (n = 10; p = 0.043; post oleic acid, mean RSA = 11.1 msec with CV and 21.8 msec with FV (n = 9, p = 0.028; at baseline, mean positive RSA = 20.8 msec with CV and 38.1 msec with FV (p = 0.047; post oleic acid, mean positive RSA = 13.2 msec with CV and 24.4 msec with FV (p = 0.026. Heart rate variability was also greater with FV. At baseline the coefficient of variation for heart rate was 2.2% during CV and 4.0% during FV. Following oleic acid the variation was 2.1 vs. 5.6% respectively. Conclusion These findings suggest FV enhances physiological entrainment between respiratory, brain stem and cardiac nonlinear oscillators, further supporting the concept that RSA itself reflects cardiorespiratory interaction. In addition, these results provide another mechanism whereby FV may be superior to conventional CV.
A fractal nature for polymerized laminin.
Directory of Open Access Journals (Sweden)
Camila Hochman-Mendez
Full Text Available Polylaminin (polyLM is a non-covalent acid-induced nano- and micro-structured polymer of the protein laminin displaying distinguished biological properties. Polylaminin stimulates neuritogenesis beyond the levels achieved by ordinary laminin and has been shown to promote axonal regeneration in animal models of spinal cord injury. Here we used confocal fluorescence microscopy (CFM, scanning electron microscopy (SEM and atomic force microscopy (AFM to characterize its three-dimensional structure. Renderization of confocal optical slices of immunostained polyLM revealed the aspect of a loose flocculated meshwork, which was homogeneously stained by the antibody. On the other hand, an ordinary matrix obtained upon adsorption of laminin in neutral pH (LM was constituted of bulky protein aggregates whose interior was not accessible to the same anti-laminin antibody. SEM and AFM analyses revealed that the seed unit of polyLM was a flat polygon formed in solution whereas the seed structure of LM was highly heterogeneous, intercalating rod-like, spherical and thin spread lamellar deposits. As polyLM was visualized at progressively increasing magnifications, we observed that the morphology of the polymer was alike independently of the magnification used for the observation. A search for the Hausdorff dimension in images of the two matrices showed that polyLM, but not LM, presented fractal dimensions of 1.55, 1.62 and 1.70 after 1, 8 and 12 hours of adsorption, respectively. Data in the present work suggest that the intrinsic fractal nature of polymerized laminin can be the structural basis for the fractal-like organization of basement membranes in the neurogenic niches of the central nervous system.
A fractal nature for polymerized laminin.
Hochman-Mendez, Camila; Cantini, Marco; Moratal, David; Salmeron-Sanchez, Manuel; Coelho-Sampaio, Tatiana
2014-01-01
Polylaminin (polyLM) is a non-covalent acid-induced nano- and micro-structured polymer of the protein laminin displaying distinguished biological properties. Polylaminin stimulates neuritogenesis beyond the levels achieved by ordinary laminin and has been shown to promote axonal regeneration in animal models of spinal cord injury. Here we used confocal fluorescence microscopy (CFM), scanning electron microscopy (SEM) and atomic force microscopy (AFM) to characterize its three-dimensional structure. Renderization of confocal optical slices of immunostained polyLM revealed the aspect of a loose flocculated meshwork, which was homogeneously stained by the antibody. On the other hand, an ordinary matrix obtained upon adsorption of laminin in neutral pH (LM) was constituted of bulky protein aggregates whose interior was not accessible to the same anti-laminin antibody. SEM and AFM analyses revealed that the seed unit of polyLM was a flat polygon formed in solution whereas the seed structure of LM was highly heterogeneous, intercalating rod-like, spherical and thin spread lamellar deposits. As polyLM was visualized at progressively increasing magnifications, we observed that the morphology of the polymer was alike independently of the magnification used for the observation. A search for the Hausdorff dimension in images of the two matrices showed that polyLM, but not LM, presented fractal dimensions of 1.55, 1.62 and 1.70 after 1, 8 and 12 hours of adsorption, respectively. Data in the present work suggest that the intrinsic fractal nature of polymerized laminin can be the structural basis for the fractal-like organization of basement membranes in the neurogenic niches of the central nervous system.
Determining Effective Thermal Conductivity of Fabrics by Using Fractal Method
Zhu, Fanglong; Li, Kejing
2010-03-01
In this article, a fractal effective thermal conductivity model for woven fabrics with multiple layers is developed. Structural models of yarn and plain woven fabric are derived based on the fractal characteristics of macro-pores (gap or channel) between the yarns and micro-pores inside the yarns. The fractal effective thermal conductivity model can be expressed as a function of the pore structure (fractal dimension) and architectural parameters of the woven fabric. Good agreement is found between the fractal model and the thermal conductivity measurements in the general porosity ranges. It is expected that the model will be helpful in the evaluation of thermal comfort for woven fabric in the whole range of porosity.
Fractal analysis for heat extraction in geothermal system
Directory of Open Access Journals (Sweden)
Shang Xiaoji
2017-01-01
Full Text Available Heat conduction and convection play a key role in geothermal development. These two processes are coupled and influenced by fluid seepage in hot porous rock. A number of integer dimension thermal fluid models have been proposed to describe this coupling mechanism. However, fluid flow, heat conduction and convection in porous rock are usually non-linear, tortuous and fractal, thus the integer dimension thermal fluid flow models can not well describe these phenomena. In this study, a fractal thermal fluid coupling model is proposed to describe the heat conduction and flow behaviors in fractal hot porous rock in terms of local fractional time and space derivatives. This coupling equation is analytically solved through the fractal travelling wave transformation method. Analytical solutions of Darcy’s velocity, fluid temperature with fractal time and space are obtained. The solutions show that the introduction of fractional parameters is essential to describe the mechanism of heat conduction and convection.
International Conference and Workshop on Fractals and Wavelets
Barnsley, Michael; Devaney, Robert; Falconer, Kenneth; Kannan, V; PB, Vinod
2014-01-01
Fractals and wavelets are emerging areas of mathematics with many common factors which can be used to develop new technologies. This volume contains the selected contributions from the lectures and plenary and invited talks given at the International Workshop and Conference on Fractals and Wavelets held at Rajagiri School of Engineering and Technology, India from November 9-12, 2013. Written by experts, the contributions hope to inspire and motivate researchers working in this area. They provide more insight into the areas of fractals, self similarity, iterated function systems, wavelets and the applications of both fractals and wavelets. This volume will be useful for the beginners as well as experts in the fields of fractals and wavelets.
Vibration modes of 3n-gaskets and other fractals
Energy Technology Data Exchange (ETDEWEB)
Bajorin, N; Chen, T; Dagan, A; Emmons, C; Hussein, M; Khalil, M; Mody, P; Steinhurst, B; Teplyaev, A [Department of Mathematics, University of Connecticut, Storrs CT 06269 (United States)
2008-01-11
We rigorously study eigenvalues and eigenfunctions (vibration modes) on the class of self-similar symmetric finitely ramified fractals, which include the Sierpinski gasket and other 3n-gaskets. We consider the classical Laplacian on fractals which generalizes the usual one-dimensional second derivative, is the generator of the self-similar diffusion process, and has possible applications as the quantum Hamiltonian. We develop a theoretical matrix analysis, including analysis of singularities, which allows us to compute eigenvalues, eigenfunctions and their multiplicities exactly. We support our theoretical analysis by symbolic and numerical computations. Our analysis, in particular, allows the computation of the spectral zeta function on fractals and the limiting distribution of eigenvalues (i.e., integrated density of states). We consider such examples as the level-3 Sierpinski gasket, a fractal 3-tree, and the diamond fractal.
Band structures in Sierpinski triangle fractal porous phononic crystals
International Nuclear Information System (INIS)
Wang, Kai; Liu, Ying; Liang, Tianshu
2016-01-01
In this paper, the band structures in Sierpinski triangle fractal porous phononic crystals (FPPCs) are studied with the aim to clarify the effect of fractal hierarchy on the band structures. Firstly, one kind of FPPCs based on Sierpinski triangle routine is proposed. Then the influence of the porosity on the elastic wave dispersion in Sierpinski triangle FPPCs is investigated. The sensitivity of the band structures to the fractal hierarchy is discussed in detail. The results show that the increase of the hierarchy increases the sensitivity of ABG (Absolute band gap) central frequency to the porosity. But further increase of the fractal hierarchy weakens this sensitivity. On the same hierarchy, wider ABGs could be opened in Sierpinski equilateral triangle FPPC; whilst, a lower ABG could be opened at lower porosity in Sierpinski right-angled isosceles FPPCs. These results will provide a meaningful guidance in tuning band structures in porous phononic crystals by fractal design.
Determination of fish gender using fractal analysis of ultrasound images
DEFF Research Database (Denmark)
McEvoy, Fintan J.; Tomkiewicz, Jonna; Støttrup, Josianne
2009-01-01
The gender of cod Gadus morhua can be determined by considering the complexity in their gonadal ultrasonographic appearance. The fractal dimension (DB) can be used to describe this feature in images. B-mode gonadal ultrasound images in 32 cod, where gender was known, were collected. Fractal...... by subjective analysis alone. The mean (and standard deviation) of the fractal dimension DB for male fish was 1.554 (0.073) while for female fish it was 1.468 (0.061); the difference was statistically significant (P=0.001). The area under the ROC curve was 0.84 indicating the value of fractal analysis in gender...... result. Fractal analysis is useful for gender determination in cod. This or a similar form of analysis may have wide application in veterinary imaging as a tool for quantification of complexity in images...
Band structures in Sierpinski triangle fractal porous phononic crystals
Energy Technology Data Exchange (ETDEWEB)
Wang, Kai; Liu, Ying, E-mail: yliu5@bjtu.edu.cn; Liang, Tianshu
2016-10-01
In this paper, the band structures in Sierpinski triangle fractal porous phononic crystals (FPPCs) are studied with the aim to clarify the effect of fractal hierarchy on the band structures. Firstly, one kind of FPPCs based on Sierpinski triangle routine is proposed. Then the influence of the porosity on the elastic wave dispersion in Sierpinski triangle FPPCs is investigated. The sensitivity of the band structures to the fractal hierarchy is discussed in detail. The results show that the increase of the hierarchy increases the sensitivity of ABG (Absolute band gap) central frequency to the porosity. But further increase of the fractal hierarchy weakens this sensitivity. On the same hierarchy, wider ABGs could be opened in Sierpinski equilateral triangle FPPC; whilst, a lower ABG could be opened at lower porosity in Sierpinski right-angled isosceles FPPCs. These results will provide a meaningful guidance in tuning band structures in porous phononic crystals by fractal design.
A Tutorial Review on Fractal Spacetime and Fractional Calculus
He, Ji-Huan
2014-11-01
This tutorial review of fractal-Cantorian spacetime and fractional calculus begins with Leibniz's notation for derivative without limits which can be generalized to discontinuous media like fractal derivative and q-derivative of quantum calculus. Fractal spacetime is used to elucidate some basic properties of fractal which is the foundation of fractional calculus, and El Naschie's mass-energy equation for the dark energy. The variational iteration method is used to introduce the definition of fractional derivatives. Fractal derivative is explained geometrically and q-derivative is motivated by quantum mechanics. Some effective analytical approaches to fractional differential equations, e.g., the variational iteration method, the homotopy perturbation method, the exp-function method, the fractional complex transform, and Yang-Laplace transform, are outlined and the main solution processes are given.
Using Peano Curves to Construct Laplacians on Fractals
Molitor, Denali; Ott, Nadia; Strichartz, Robert
2015-12-01
We describe a new method to construct Laplacians on fractals using a Peano curve from the circle onto the fractal, extending an idea that has been used in the case of certain Julia sets. The Peano curve allows us to visualize eigenfunctions of the Laplacian by graphing the pullback to the circle. We study in detail three fractals: the pentagasket, the octagasket and the magic carpet. We also use the method for two nonfractal self-similar sets, the torus and the equilateral triangle, obtaining appealing new visualizations of eigenfunctions on the triangle. In contrast to the many familiar pictures of approximations to standard Peano curves, that do no show self-intersections, our descriptions of approximations to the Peano curves have self-intersections that play a vital role in constructing graph approximations to the fractal with explicit graph Laplacians that give the fractal Laplacian in the limit.
Insulator Contamination Forecasting Based on Fractal Analysis of Leakage Current
Directory of Open Access Journals (Sweden)
Bing Luo
2012-07-01
Full Text Available In this paper, an artificial pollution test is carried out to study the leakage current of porcelain insulators. Fractal theory is adopted to extract the characteristics hidden in leakage current waveforms. Fractal dimensions of the leakage current for the security, forecast and danger zones are analyzed under four types of degrees of contamination. The mean value and the standard deviation of the fractal dimension in the forecast zone are calculated to characterize the differences. The analysis reveals large differences in the fractal dimension of leakage current under different contamination discharge stages and degrees. The experimental and calculation results suggest that the fractal dimension of a leakage current waveform can be used as a new indicator of the discharge process and contamination degree of insulators. The results provide new methods and valid indicators for forecasting contamination flashovers.
Fractal solutions of recirculation tubular chemical reactors
International Nuclear Information System (INIS)
Berezowski, Marek
2003-01-01
Three kinds of fractal solutions of model of recirculation non-adiabatic tubular chemical reactors are presented. The first kind concerns the structure of Feigenbaum's diagram on the limit of chaos. The second kind and the third one concern the effect of initial conditions on the dynamic solutions of models. In the course of computations two types of recirculation were considered, viz. the recirculation of mass (return of a part of products' stream) and recirculation of heat (heat exchange in the external heat exchanger)
Fractal characteristics of an asphaltene deposited heterogeneous surface
International Nuclear Information System (INIS)
Amin, J. Sayyad; Ayatollahi, Sh.; Alamdari, A.
2009-01-01
Several methods have been employed in recent years to investigate homogeneous surface topography based on image analysis, such as AFM (atomic force microscopy) and SEM (scanning electron microscopy). Fractal analysis of the images provides fractal dimension of the surface which is used as one of the most common surface indices. Surface topography has generally been considered to be mono-fractal. On the other hand, precipitation of organic materials on a rough surface and its irregular growth result in morphology alteration and converts a homogeneous surface to a heterogeneous one. In this case a mono-fractal description of the surface does not completely describe the nature of the altered surface. This work aims to investigate the topography alteration of a glass surface as a result of asphaltene precipitation and its growth at various pressures using a bi-fractal approach. The experimental results of the deposited surfaces were clearly indicating two regions of micro- and macro-asperities namely, surface types I and II, respectively. The fractal plots were indicative of bi-fractal behavior and for each surface type one fractal dimension was calculated. The topography information of the surfaces was obtained by two image analyses, AFM and SEM imaging techniques. Results of the bi-fractal analysis demonstrated that topography alteration in surface type II (macro-asperities) is more evident than that in surface type I (micro-asperities). Compared to surface type II, a better correlation was observed between the fractal dimensions inferred from the AFM images (D A ) and those of the SEM images (D S ) in surface type I.
Namazi, Hamidreza; Kulish, Vladimir V.; Akrami, Amin
2016-05-01
One of the major challenges in vision research is to analyze the effect of visual stimuli on human vision. However, no relationship has been yet discovered between the structure of the visual stimulus, and the structure of fixational eye movements. This study reveals the plasticity of human fixational eye movements in relation to the ‘complex’ visual stimulus. We demonstrated that the fractal temporal structure of visual dynamics shifts towards the fractal dynamics of the visual stimulus (image). The results showed that images with higher complexity (higher fractality) cause fixational eye movements with lower fractality. Considering the brain, as the main part of nervous system that is engaged in eye movements, we analyzed the governed Electroencephalogram (EEG) signal during fixation. We have found out that there is a coupling between fractality of image, EEG and fixational eye movements. The capability observed in this research can be further investigated and applied for treatment of different vision disorders.
Fractal physiology and the fractional calculus: a perspective.
West, Bruce J
2010-01-01
This paper presents a restricted overview of Fractal Physiology focusing on the complexity of the human body and the characterization of that complexity through fractal measures and their dynamics, with fractal dynamics being described by the fractional calculus. Not only are anatomical structures (Grizzi and Chiriva-Internati, 2005), such as the convoluted surface of the brain, the lining of the bowel, neural networks and placenta, fractal, but the output of dynamical physiologic networks are fractal as well (Bassingthwaighte et al., 1994). The time series for the inter-beat intervals of the heart, inter-breath intervals and inter-stride intervals have all been shown to be fractal and/or multifractal statistical phenomena. Consequently, the fractal dimension turns out to be a significantly better indicator of organismic functions in health and disease than the traditional average measures, such as heart rate, breathing rate, and stride rate. The observation that human physiology is primarily fractal was first made in the 1980s, based on the analysis of a limited number of datasets. We review some of these phenomena herein by applying an allometric aggregation approach to the processing of physiologic time series. This straight forward method establishes the scaling behavior of complex physiologic networks and some dynamic models capable of generating such scaling are reviewed. These models include simple and fractional random walks, which describe how the scaling of correlation functions and probability densities are related to time series data. Subsequently, it is suggested that a proper methodology for describing the dynamics of fractal time series may well be the fractional calculus, either through the fractional Langevin equation or the fractional diffusion equation. A fractional operator (derivative or integral) acting on a fractal function, yields another fractal function, allowing us to construct a fractional Langevin equation to describe the evolution of a
Fractal profit landscape of the stock market.
Grönlund, Andreas; Yi, Il Gu; Kim, Beom Jun
2012-01-01
We investigate the structure of the profit landscape obtained from the most basic, fluctuation based, trading strategy applied for the daily stock price data. The strategy is parameterized by only two variables, p and q Stocks are sold and bought if the log return is bigger than p and less than -q, respectively. Repetition of this simple strategy for a long time gives the profit defined in the underlying two-dimensional parameter space of p and q. It is revealed that the local maxima in the profit landscape are spread in the form of a fractal structure. The fractal structure implies that successful strategies are not localized to any region of the profit landscape and are neither spaced evenly throughout the profit landscape, which makes the optimization notoriously hard and hypersensitive for partial or limited information. The concrete implication of this property is demonstrated by showing that optimization of one stock for future values or other stocks renders worse profit than a strategy that ignores fluctuations, i.e., a long-term buy-and-hold strategy.
Fractal analysis of agricultural nozzles spray
Directory of Open Access Journals (Sweden)
Francisco Agüera
2012-02-01
Full Text Available Fractal scaling of the exponential type is used to establish the cumulative volume (V distribution applied through agricultural spray nozzles in size x droplets, smaller than the characteristic size X. From exponent d, we deduced the fractal dimension (Df which measures the degree of irregularity of the medium. This property is known as 'self-similarity'. Assuming that the droplet set from a spray nozzle is self-similar, the objectives of this study were to develop a methodology for calculating a Df factor associated with a given nozzle and to determine regression coefficients in order to predict droplet spectra factors from a nozzle, taking into account its own Df and pressure operating. Based on the iterated function system, we developed an algorithm to relate nozzle types to a particular value of Df. Four nozzles and five operating pressure droplet size characteristics were measured using a Phase Doppler Particle Analyser (PDPA. The data input consisted of droplet size spectra factors derived from these measurements. Estimated Df values showed dependence on nozzle type and independence of operating pressure. We developed an exponential model based on the Df to enable us to predict droplet size spectra factors. Significant coefficients of determination were found for the fitted model. This model could prove useful as a means of comparing the behavior of nozzles which only differ in not measurable geometric parameters and it can predict droplet spectra factors of a nozzle operating under different pressures from data measured only in extreme work pressures.
Elasticity of fractal materials using the continuum model with non-integer dimensional space
Tarasov, Vasily E.
2015-01-01
Using a generalization of vector calculus for space with non-integer dimension, we consider elastic properties of fractal materials. Fractal materials are described by continuum models with non-integer dimensional space. A generalization of elasticity equations for non-integer dimensional space, and its solutions for the equilibrium case of fractal materials are suggested. Elasticity problems for fractal hollow ball and cylindrical fractal elastic pipe with inside and outside pressures, for rotating cylindrical fractal pipe, for gradient elasticity and thermoelasticity of fractal materials are solved.
Effective degrees of freedom of a random walk on a fractal
Balankin, Alexander S.
2015-12-01
We argue that a non-Markovian random walk on a fractal can be treated as a Markovian process in a fractional dimensional space with a suitable metric. This allows us to define the fractional dimensional space allied to the fractal as the ν -dimensional space Fν equipped with the metric induced by the fractal topology. The relation between the number of effective spatial degrees of freedom of walkers on the fractal (ν ) and fractal dimensionalities is deduced. The intrinsic time of random walk in Fν is inferred. The Laplacian operator in Fν is constructed. This allows us to map physical problems on fractals into the corresponding problems in Fν. In this way, essential features of physics on fractals are revealed. Particularly, subdiffusion on path-connected fractals is elucidated. The Coulomb potential of a point charge on a fractal embedded in the Euclidean space is derived. Intriguing attributes of some types of fractals are highlighted.
Semiflexible crossing-avoiding trails on plane-filling fractals
International Nuclear Information System (INIS)
Živić, I.; Elezović-Hadžić, S.; Milošević, S.
2015-01-01
We have studied the statistics of semiflexible polymer chains modeled by crossing-avoiding trails (CAT) situated on the family of plane-filling (PF) fractals. The fractals are compact, that is, their fractal dimension d_f is equal to 2 for all members of the fractal family. By applying the exact and Monte Carlo real-space renormalization group method we have calculated the critical exponent ν, which governs the scaling behavior of the end-to-end distance of the polymer, as well as the entropic critical exponent γ, for a large set of fractals, and various values of polymer flexibility. Our results, obtained for CAT model on PF fractals, show that both critical exponents depend on the polymer flexibility, in such a way that less flexible polymer chains display enlarged values of ν, and diminished values of γ. We have compared the obtained results for CAT model with the known results for the self-avoiding walk and self-avoiding trail models and discussed the influence of excluded volume effect on the values of semiflexible polymer critical exponents, for a large set of studied compact fractals.
ABC of multi-fractal spacetimes and fractional sea turtles
Energy Technology Data Exchange (ETDEWEB)
Calcagni, Gianluca [Instituto de Estructura de la Materia, CSIC, Madrid (Spain)
2016-04-15
We clarify what it means to have a spacetime fractal geometry in quantum gravity and show that its properties differ from those of usual fractals. A weak and a strong definition of multi-scale and multi-fractal spacetimes are given together with a sketch of the landscape of multi-scale theories of gravitation. Then, in the context of the fractional theory with q-derivatives, we explore the consequences of living in a multi-fractal spacetime. To illustrate the behavior of a non-relativistic body, we take the entertaining example of a sea turtle. We show that, when only the time direction is fractal, sea turtles swim at a faster speed than in an ordinary world, while they swim at a slower speed if only the spatial directions are fractal. The latter type of geometry is the one most commonly found in quantum gravity. For time-like fractals, relativistic objects can exceed the speed of light, but strongly so only if their size is smaller than the range of particle-physics interactions. We also find new results about log-oscillating measures, the measure presentation and their role in physical observations and in future extensions to nowhere-differentiable stochastic spacetimes. (orig.)
Convergence of trajectories in fractal interpolation of stochastic processes
International Nuclear Information System (INIS)
MaIysz, Robert
2006-01-01
The notion of fractal interpolation functions (FIFs) can be applied to stochastic processes. Such construction is especially useful for the class of α-self-similar processes with stationary increments and for the class of α-fractional Brownian motions. For these classes, convergence of the Minkowski dimension of the graphs in fractal interpolation of the Hausdorff dimension of the graph of original process was studied in [Herburt I, MaIysz R. On convergence of box dimensions of fractal interpolation stochastic processes. Demonstratio Math 2000;4:873-88.], [MaIysz R. A generalization of fractal interpolation stochastic processes to higher dimension. Fractals 2001;9:415-28.], and [Herburt I. Box dimension of interpolations of self-similar processes with stationary increments. Probab Math Statist 2001;21:171-8.]. We prove that trajectories of fractal interpolation stochastic processes converge to the trajectory of the original process. We also show that convergence of the trajectories in fractal interpolation of stochastic processes is equivalent to the convergence of trajectories in linear interpolation
ABC of multi-fractal spacetimes and fractional sea turtles
International Nuclear Information System (INIS)
Calcagni, Gianluca
2016-01-01
We clarify what it means to have a spacetime fractal geometry in quantum gravity and show that its properties differ from those of usual fractals. A weak and a strong definition of multi-scale and multi-fractal spacetimes are given together with a sketch of the landscape of multi-scale theories of gravitation. Then, in the context of the fractional theory with q-derivatives, we explore the consequences of living in a multi-fractal spacetime. To illustrate the behavior of a non-relativistic body, we take the entertaining example of a sea turtle. We show that, when only the time direction is fractal, sea turtles swim at a faster speed than in an ordinary world, while they swim at a slower speed if only the spatial directions are fractal. The latter type of geometry is the one most commonly found in quantum gravity. For time-like fractals, relativistic objects can exceed the speed of light, but strongly so only if their size is smaller than the range of particle-physics interactions. We also find new results about log-oscillating measures, the measure presentation and their role in physical observations and in future extensions to nowhere-differentiable stochastic spacetimes. (orig.)
ABC of multi-fractal spacetimes and fractional sea turtles
Calcagni, Gianluca
2016-04-01
We clarify what it means to have a spacetime fractal geometry in quantum gravity and show that its properties differ from those of usual fractals. A weak and a strong definition of multi-scale and multi-fractal spacetimes are given together with a sketch of the landscape of multi-scale theories of gravitation. Then, in the context of the fractional theory with q-derivatives, we explore the consequences of living in a multi-fractal spacetime. To illustrate the behavior of a non-relativistic body, we take the entertaining example of a sea turtle. We show that, when only the time direction is fractal, sea turtles swim at a faster speed than in an ordinary world, while they swim at a slower speed if only the spatial directions are fractal. The latter type of geometry is the one most commonly found in quantum gravity. For time-like fractals, relativistic objects can exceed the speed of light, but strongly so only if their size is smaller than the range of particle-physics interactions. We also find new results about log-oscillating measures, the measure presentation and their role in physical observations and in future extensions to nowhere-differentiable stochastic spacetimes.
Gustavo de Souza Verissimo
2007-01-01
Este trabalho consiste do desenvolvimento de um conector de cisalhamento em chapa dentada para estruturas mistas de aço e concreto, incluindo o estudo do seu comportamento. O trabalho envolve uma ampla investigação para definição da geometria do conector, um programa experimental, o desenvolvimento de uma equação de resistência e o treinamento de redes neurais para a predição da resposta do conector. O programa experimental, envolvendo 41 ensaios tipo push-out, conforme a EN 1994-1-1:2004, fo...
Quantitative assessment of early diabetic retinopathy using fractal analysis.
Cheung, Ning; Donaghue, Kim C; Liew, Gerald; Rogers, Sophie L; Wang, Jie Jin; Lim, Shueh-Wen; Jenkins, Alicia J; Hsu, Wynne; Li Lee, Mong; Wong, Tien Y
2009-01-01
Fractal analysis can quantify the geometric complexity of the retinal vascular branching pattern and may therefore offer a new method to quantify early diabetic microvascular damage. In this study, we examined the relationship between retinal fractal dimension and retinopathy in young individuals with type 1 diabetes. We conducted a cross-sectional study of 729 patients with type 1 diabetes (aged 12-20 years) who had seven-field stereoscopic retinal photographs taken of both eyes. From these photographs, retinopathy was graded according to the modified Airlie House classification, and fractal dimension was quantified using a computer-based program following a standardized protocol. In this study, 137 patients (18.8%) had diabetic retinopathy signs; of these, 105 had mild retinopathy. Median (interquartile range) retinal fractal dimension was 1.46214 (1.45023-1.47217). After adjustment for age, sex, diabetes duration, A1C, blood pressure, and total cholesterol, increasing retinal vascular fractal dimension was significantly associated with increasing odds of retinopathy (odds ratio 3.92 [95% CI 2.02-7.61] for fourth versus first quartile of fractal dimension). In multivariate analysis, each 0.01 increase in retinal vascular fractal dimension was associated with a nearly 40% increased odds of retinopathy (1.37 [1.21-1.56]). This association remained after additional adjustment for retinal vascular caliber. Greater retinal fractal dimension, representing increased geometric complexity of the retinal vasculature, is independently associated with early diabetic retinopathy signs in type 1 diabetes. Fractal analysis of fundus photographs may allow quantitative measurement of early diabetic microvascular damage.
Fractal physiology and the fractional calculus: a perspective
Directory of Open Access Journals (Sweden)
Bruce J West
2010-10-01
Full Text Available This paper presents a restricted overview of Fractal Physiology focusing on the complexity of the human body and the characterization of that complexity through fractal measures and their dynamics, with fractal dynamics being described by the fractional calculus. We review the allometric aggregation approach to the processing of physiologic time series as a way of determining the fractal character of the underlying phenomena. This straight forward method establishes the scaling behavior of complex physiologic networks and some dynamic models capable of generating such scaling are reviewed. These models include simple and fractional random walks, which describe how the scaling of correlation functions and probability densities are related to time series data. Subsequently, it is suggested that a proper methodology for describing the dynamics of fractal time series may well be the fractional calculus, either through the fractional Langevin equation or the fractional diffusion equation. Fractional operators acting on fractal functions yield fractal functions, allowing us to construct a fractional Langevin equation to describe the evolution of a fractal statistical process. Control of physiologic complexity is one of the goals of medicine. Allometric control incorporates long-time memory, inverse power-law (IPL correlations, and long-range interactions in complex phenomena as manifest by IPL distributions. We hypothesize that allometric control, rather than homeostatic control, maintains the fractal character of erratic physiologic time series to enhance the robustness of physiological networks. Moreover, allometric control can be described using the fractional calculus to capture the dynamics of complex physiologic networks. This hypothesis is supported by a number of physiologic time series data.
Moisture diffusivity in structure of random fractal fiber bed
Energy Technology Data Exchange (ETDEWEB)
Zhu, Fanglong, E-mail: zhufanglong_168@163.com [College of Textile, Zhongyuan University of Technology, Zhengzhou City (China); The Chinese People' s Armed Police Forces Academy, Langfan City (China); Zhou, Yu; Feng, Qianqian [College of Textile, Zhongyuan University of Technology, Zhengzhou City (China); Xia, Dehong [School of Mechanical Engineering, University of Science and Technology, Beijing (China)
2013-11-08
A theoretical expression related to effective moisture diffusivity to random fiber bed is derived by using fractal theory and considering both parallel and perpendicular channels to diffusion flow direction. In this Letter, macroporous structure of hydrophobic nonwoven material is investigated, and Knudsen diffusion and surface diffusion are neglected. The effective moisture diffusivity predicted by the present fractal model are compared with water vapor transfer rate (WVTR) experiment data and calculated values obtained from other theoretical models. This verifies the validity of the present fractal diffusivity of fibrous structural beds.
A fractal analysis of the public transportation system of Paris
L Benguigui
1995-01-01
An analysis of the railway networks of the public transportation system of Paris, based on the notion of fractals, is presented. The two basic networks, (metropolitan and suburban) which have different functions, have also a different fractal dimension: 1.8 for the metropolitan network, and 1.5 for the suburban network. By means of computer simulation, it is concluded that the true dimension of the metro network is probably 2.0. A fractal model of the suburban network, with the same features ...
Fractal studies on the positron annihilation in metals
International Nuclear Information System (INIS)
Lung, C.W.
1994-06-01
Traditionally, the Euclidean lines, circles and spheres have served as the basis of the intuitive understanding of the geometry of nature. Recently, the concept of fractals has caught the imagination of scientists in many fields. This paper is to continue our previous work on position annihilation near fractal surfaces to demonstrate that the concept of fractals provides a powerful tool for understanding the structure and properties of defects and rough surfaces in relation to positron annihilation studies. Some problems on Berry geometrical phase have also been discussed. (author). 15 refs, fig., 1 tab
Fractal growth in impurity-controlled solidification in lipid monolayers
DEFF Research Database (Denmark)
Fogedby, Hans C.; Sørensen, Erik Schwartz; Mouritsen, Ole G.
1987-01-01
A simple two-dimensional microscopic model is proposed to describe solidifcation processes in systems with impurities which are miscible only in the fluid phase. Computer simulation of the model shows that the resulting solids are fractal over a wide range of impurity concentrations and impurity...... diffusional constants. A fractal-forming mechanism is suggested for impurity-controlled solidification which is consistent with recent experimental observations of fractal growth of solid phospholipid domains in monolayers. The Journal of Chemical Physics is copyrighted by The American Institute of Physics....
Some fractal properties of the percolating backbone in two dimensions
International Nuclear Information System (INIS)
Laidlaw, D.; MacKay, G.; Jan, N.
1987-01-01
A new algorithm is presented, based on elements of artificial intelligence theory, to determine the fractal properties of the backbone of the incipient infinite cluster. It is found that fractal dimensionality of the backbone is d/sub f//sup BB/ = 1.61 +/- 0.01, the chemical dimensionality is d/sub t/ = 1.40 +/- 0.01, and the fractal dimension of the minimum path d/sub min/ = 1.15 +/- 0.02 for the two-dimensional triangular lattice
Delay Bound: Fractal Traffic Passes through Network Servers
Directory of Open Access Journals (Sweden)
Ming Li
2013-01-01
Full Text Available Delay analysis plays a role in real-time systems in computer communication networks. This paper gives our results in the aspect of delay analysis of fractal traffic passing through servers. There are three contributions presented in this paper. First, we will explain the reasons why conventional theory of queuing systems ceases in the general sense when arrival traffic is fractal. Then, we will propose a concise method of delay computation for hard real-time systems as shown in this paper. Finally, the delay computation of fractal traffic passing through severs is presented.
An Efficient Computational Technique for Fractal Vehicular Traffic Flow
Directory of Open Access Journals (Sweden)
Devendra Kumar
2018-04-01
Full Text Available In this work, we examine a fractal vehicular traffic flow problem. The partial differential equations describing a fractal vehicular traffic flow are solved with the aid of the local fractional homotopy perturbation Sumudu transform scheme and the local fractional reduced differential transform method. Some illustrative examples are taken to describe the success of the suggested techniques. The results derived with the aid of the suggested schemes reveal that the present schemes are very efficient for obtaining the non-differentiable solution to fractal vehicular traffic flow problem.
FRACTAL IMAGE FEATURE VECTORS WITH APPLICATIONS IN FRACTOGRAPHY
Directory of Open Access Journals (Sweden)
Hynek Lauschmann
2011-05-01
Full Text Available The morphology of fatigue fracture surface (caused by constant cycle loading is strictly related to crack growth rate. This relation may be expressed, among other methods, by means of fractal analysis. Fractal dimension as a single numerical value is not sufficient. Two types of fractal feature vectors are discussed: multifractal and multiparametric. For analysis of images, the box-counting method for 3D is applied with respect to the non-homogeneity of dimensions (two in space, one in brightness. Examples of application are shown: images of several fracture surfaces are analyzed and related to crack growth rate.
Shower fractal dimension analysis in a highly-granular calorimeter
Ruan, M
2014-01-01
We report on an investigation of the self-similar structure of particle showers recorded at a highly-granular calorimeter. On both simulated and experimental data, a strong correlation between the number of hits and the spatial scale of the readout channels is observed, from which we define the shower fractal dimension. The measured fractal dimension turns out to be strongly dependent on particle type, which enables new approaches for particle identification. A logarithmic dependence of the particle energy on the fractal dimension is also observed.
Fractal aspects and convergence of Newton`s method
Energy Technology Data Exchange (ETDEWEB)
Drexler, M. [Oxford Univ. Computing Lab. (United Kingdom)
1996-12-31
Newton`s Method is a widely established iterative algorithm for solving non-linear systems. Its appeal lies in its great simplicity, easy generalization to multiple dimensions and a quadratic local convergence rate. Despite these features, little is known about its global behavior. In this paper, we will explain a seemingly random global convergence pattern using fractal concepts and show that the behavior of the residual is entirely explicable. We will also establish quantitative results for the convergence rates. Knowing the mechanism of fractal generation, we present a stabilization to the orthodox Newton method that remedies the fractal behavior and improves convergence.
A fractal model of the Universe
Gottlieb, Ioan
The book represents a revisioned, extended, completed and translated version of the book "Superposed Universes. A scientific novel and a SF story" (1995). The book contains a hypothesis by the author concerning the complexity of the Nature. An introduction to the theories of numbers, manyfolds and topology is given. The possible connection with the theory of evolution of the Universe is discussed. The book contains also in the last chapter a SF story based on the hypothesis presented. A connection with fractals theory is given. A part of his earlier studies (1955-1956) were subsequently published without citation by Ali Kyrala (Phys. Rev. vol.117, No.5, march 1, 1960). The book contains as an important appendix the early papers (some of which are published in the coauthoprship with his scientific advisors): 1) T.T. Vescan, A. Weiszmann and I.Gottlieb, Contributii la studiul problemelor geometrice ale teoriei relativitatii restranse. Academia R.P.R. Baza Timisoara. Lucrarile consfatuirii de geometrie diferentiala din 9-12 iunie 1955. In this paper the authors show a new method of the calculation of the metrics. 2) Jean Gottlieb, L'hyphotese d'un modele de la structure de la matiere, Revista Matematica y Fisica Teorica, Serie A, Volumen XY, No.1, y.2, 1964 3) I. Gottlieb, Some hypotheses on space, time and gravitation, Studies in Gravitation Theory, CIP Press, Bucharest, 1988, pp.227-234 as well as some recent papers (published in the coauthorship with his disciples): 4)M. Agop, Gottlieb speace-time. A fractal axiomatic model of the Universe. in Particles and Fields, Editors: M.Agop and P.D. Ioannou, Athens University Press, 2005, pp. 59-141 5) I. Gottlieb, M.Agop and V.Enache, Games with Cantor's dust. Chaos, Solitons and Fractals, vol.40 (2009) pp. 940-945 6) I. Gottlieb, My picture over the World, Bull. of the Polytechnic Institute of Iasi. Tom LVI)LX, Fasc. 1, 2010, pp. 1-18. The book contains also a dedication to father Vasile Gottlieb and wife Cleopatra
Transient effects in friction fractal asperity creep
Goedecke, Andreas
2013-01-01
Transient friction effects determine the behavior of a wide class of mechatronic systems. Classic examples are squealing brakes, stiction in robotic arms, or stick-slip in linear drives. To properly design and understand mechatronic systems of this type, good quantitative models of transient friction effects are of primary interest. The theory developed in this book approaches this problem bottom-up, by deriving the behavior of macroscopic friction surfaces from the microscopic surface physics. The model is based on two assumptions: First, rough surfaces are inherently fractal, exhibiting roughness on a wide range of scales. Second, transient friction effects are caused by creep enlargement of the real area of contact between two bodies. This work demonstrates the results of extensive Finite Element analyses of the creep behavior of surface asperities, and proposes a generalized multi-scale area iteration for calculating the time-dependent real contact between two bodies. The toolset is then demonstrated both...
Fractal diffusion coefficient from dynamical zeta functions
Energy Technology Data Exchange (ETDEWEB)
Cristadoro, Giampaolo [Max Planck Institute for the Physics of Complex Systems, Noethnitzer Str. 38, D 01187 Dresden (Germany)
2006-03-10
Dynamical zeta functions provide a powerful method to analyse low-dimensional dynamical systems when the underlying symbolic dynamics is under control. On the other hand, even simple one-dimensional maps can show an intricate structure of the grammar rules that may lead to a non-smooth dependence of global observables on parameters changes. A paradigmatic example is the fractal diffusion coefficient arising in a simple piecewise linear one-dimensional map of the real line. Using the Baladi-Ruelle generalization of the Milnor-Thurnston kneading determinant, we provide the exact dynamical zeta function for such a map and compute the diffusion coefficient from its smallest zero. (letter to the editor)
Fractal diffusion coefficient from dynamical zeta functions
International Nuclear Information System (INIS)
Cristadoro, Giampaolo
2006-01-01
Dynamical zeta functions provide a powerful method to analyse low-dimensional dynamical systems when the underlying symbolic dynamics is under control. On the other hand, even simple one-dimensional maps can show an intricate structure of the grammar rules that may lead to a non-smooth dependence of global observables on parameters changes. A paradigmatic example is the fractal diffusion coefficient arising in a simple piecewise linear one-dimensional map of the real line. Using the Baladi-Ruelle generalization of the Milnor-Thurnston kneading determinant, we provide the exact dynamical zeta function for such a map and compute the diffusion coefficient from its smallest zero. (letter to the editor)
Stochastic and fractal analysis of fracture trajectories
Bessendorf, Michael H.
1987-01-01
Analyses of fracture trajectories are used to investigate structures that fall between 'micro' and 'macro' scales. It was shown that fracture trajectories belong to the class of nonstationary processes. It was also found that correlation distance, which may be related to a characteristic size of a fracture process, increases with crack length. An assemblage of crack trajectory processes may be considered as a diffusive process. Chudnovsky (1981-1985) introduced a 'crack diffusion coefficient' d which reflects the ability of the material to deviate the crack trajectory from the most energetically efficient path and thus links the material toughness to its structure. For the set of fracture trajectories in AISI 304 steel, d was found to be equal to 1.04 microns. The fractal dimension D for the same set of trajectories was found to be 1.133.
Fractal like charge transport in polyaniline nanostructures
International Nuclear Information System (INIS)
Nath, Chandrani; Kumar, A.
2013-01-01
The structural and electrical properties of camphorsulfonic acid (CSA) doped nanotubes, and hydrochloric acid (HCl) doped nanofibers and nanoparticles of polyaniline have been studied as a function of doping level. The crystallinity increases with doping for all the nanostructures. Electrical transport measurements in the temperature range of 5–300 K show an increase in conductivity with doping for the nanostructures. All the nanostructures exhibit metal to insulator (MIT) transition below 40 K. The metallic behavior is ascribed to the electron–electron interaction effects. In the insulating regime of the nanotubes conduction follows the Mott quasi-1D variable range hopping model, whereas the conduction in the nanofibers and nanoparticles occur by variable range hopping of charge carriers among superlocalized states without and with Coulomb interaction, respectively. The smaller dopant size in case of HCl makes the polymer fractal resulting in superlocalization of electronic wave-functions. The confined morphology of the nanoparticles results in effective Coulomb interaction dominating the intersite hopping
Proteins in solution: Fractal surfaces in solutions
Directory of Open Access Journals (Sweden)
R. Tscheliessnig
2016-02-01
Full Text Available The concept of the surface of a protein in solution, as well of the interface between protein and 'bulk solution', is introduced. The experimental technique of small angle X-ray and neutron scattering is introduced and described briefly. Molecular dynamics simulation, as an appropriate computational tool for studying the hydration shell of proteins, is also discussed. The concept of protein surfaces with fractal dimensions is elaborated. We finish by exposing an experimental (using small angle X-ray scattering and a computer simulation case study, which are meant as demonstrations of the possibilities we have at hand for investigating the delicate interfaces that connect (and divide protein molecules and the neighboring electrolyte solution.
From Fractal Trees to Deltaic Networks
Cazanacli, D.; Wolinsky, M. A.; Sylvester, Z.; Cantelli, A.; Paola, C.
2013-12-01
Geometric networks that capture many aspects of natural deltas can be constructed from simple concepts from graph theory and normal probability distributions. Fractal trees with symmetrical geometries are the result of replicating two simple geometric elements, line segments whose lengths decrease and bifurcation angles that are commonly held constant. Branches could also have a thickness, which in the case of natural distributary systems is the equivalent of channel width. In river- or wave-dominated natural deltas, the channel width is a function of discharge. When normal variations around the mean values for length, bifurcating angles, and discharge are applied, along with either pruning of 'clashing' branches or merging (equivalent to channel confluence), fractal trees start resembling natural deltaic networks, except that the resulting channels are unnaturally straight. Introducing a bifurcation probability fewer, naturally curved channels are obtained. If there is no bifurcation, the direction of each new segment depends on the direction the previous segment upstream (correlated random walk) and, to a lesser extent, on a general direction of growth (directional bias). When bifurcation occurs, the resulting two directions also depend on the bifurcation angle and the discharge split proportions, with the dominant branch following the direction of the upstream parent channel closely. The bifurcation probability controls the channel density and, in conjunction with the variability of the directional angles, the overall curvature of the channels. The growth of the network in effect is associated with net delta progradation. The overall shape and shape evolution of the delta depend mainly on the bifurcation angle average size and angle variability coupled with the degree of dominant direction dependency (bias). The proposed algorithm demonstrates how, based on only a few simple rules, a wide variety of channel networks resembling natural deltas, can be replicated
Iterons, fractals and computations of automata
Siwak, Paweł
1999-03-01
Processing of strings by some automata, when viewed on space-time (ST) diagrams, reveals characteristic soliton-like coherent periodic objects. They are inherently associated with iterations of automata mappings thus we call them the iterons. In the paper we present two classes of one-dimensional iterons: particles and filtrons. The particles are typical for parallel (cellular) processing, while filtrons, introduced in (32) are specific for serial processing of strings. In general, the images of iterated automata mappings exhibit not only coherent entities but also the fractals, and quasi-periodic and chaotic dynamics. We show typical images of such computations: fractals, multiplication by a number, and addition of binary numbers defined by a Turing machine. Then, the particles are presented as iterons generated by cellular automata in three computations: B/U code conversion (13, 29), majority classification (9), and in discrete version of the FPU (Fermi-Pasta-Ulam) dynamics (7, 23). We disclose particles by a technique of combinational recoding of ST diagrams (as opposed to sequential recoding). Subsequently, we recall the recursive filters based on FCA (filter cellular automata) window operators, and considered by Park (26), Ablowitz (1), Fokas (11), Fuchssteiner (12), Bruschi (5) and Jiang (20). We present the automata equivalents to these filters (33). Some of them belong to the class of filter automata introduced in (30). We also define and illustrate some properties of filtrons. Contrary to particles, the filtrons interact nonlocally in the sense that distant symbols may influence one another. Thus their interactions are very unusual. Some examples have been given in (32). Here we show new examples of filtron phenomena: multifiltron solitonic collisions, attracting and repelling filtrons, trapped bouncing filtrons (which behave like a resonance cavity) and quasi filtrons.
Fractals and Forecasting in Earthquakes and Finance
Rundle, J. B.; Holliday, J. R.; Turcotte, D. L.
2011-12-01
It is now recognized that Benoit Mandelbrot's fractals play a critical role in describing a vast range of physical and social phenomena. Here we focus on two systems, earthquakes and finance. Since 1942, earthquakes have been characterized by the Gutenberg-Richter magnitude-frequency relation, which in more recent times is often written as a moment-frequency power law. A similar relation can be shown to hold for financial markets. Moreover, a recent New York Times article, titled "A Richter Scale for the Markets" [1] summarized the emerging viewpoint that stock market crashes can be described with similar ideas as large and great earthquakes. The idea that stock market crashes can be related in any way to earthquake phenomena has its roots in Mandelbrot's 1963 work on speculative prices in commodities markets such as cotton [2]. He pointed out that Gaussian statistics did not account for the excessive number of booms and busts that characterize such markets. Here we show that both earthquakes and financial crashes can both be described by a common Landau-Ginzburg-type free energy model, involving the presence of a classical limit of stability, or spinodal. These metastable systems are characterized by fractal statistics near the spinodal. For earthquakes, the independent ("order") parameter is the slip deficit along a fault, whereas for the financial markets, it is financial leverage in place. For financial markets, asset values play the role of a free energy. In both systems, a common set of techniques can be used to compute the probabilities of future earthquakes or crashes. In the case of financial models, the probabilities are closely related to implied volatility, an important component of Black-Scholes models for stock valuations. [2] B. Mandelbrot, The variation of certain speculative prices, J. Business, 36, 294 (1963)
A variable-order fractal derivative model for anomalous diffusion
Directory of Open Access Journals (Sweden)
Liu Xiaoting
2017-01-01
Full Text Available This paper pays attention to develop a variable-order fractal derivative model for anomalous diffusion. Previous investigations have indicated that the medium structure, fractal dimension or porosity may change with time or space during solute transport processes, results in time or spatial dependent anomalous diffusion phenomena. Hereby, this study makes an attempt to introduce a variable-order fractal derivative diffusion model, in which the index of fractal derivative depends on temporal moment or spatial position, to characterize the above mentioned anomalous diffusion (or transport processes. Compared with other models, the main advantages in description and the physical explanation of new model are explored by numerical simulation. Further discussions on the dissimilitude such as computational efficiency, diffusion behavior and heavy tail phenomena of the new model and variable-order fractional derivative model are also offered.
Integration of Fractal Biosensor in a Digital Microfluidic Platform
Mashraei, Yousof; Sivashankar, Shilpa; Buttner, Ulrich; Salama, Khaled N.
2016-01-01
fractal electrode biosensor that is used for both droplet actuation and sensing C-reactive protein (CRP) concentration levels to assess cardiac disease risk. Our proposed electrode is the first two-terminal electrode design to be integrated into DMF
Vortex-ring-fractal Structure of Atom and Molecule
International Nuclear Information System (INIS)
Osmera, Pavel
2010-01-01
This chapter is an attempt to attain a new and profound model of the nature's structure using a vortex-ring-fractal theory (VRFT). Scientists have been trying to explain some phenomena in Nature that have not been explained so far. The aim of this paper is the vortex-ring-fractal modeling of elements in the Mendeleev's periodic table, which is not in contradiction to the known laws of nature. We would like to find some acceptable structure model of the hydrogen as a vortex-fractal-coil structure of the proton and a vortex-fractal-ring structure of the electron. It is known that planetary model of the hydrogen atom is not right, the classical quantum model is too abstract. Our imagination is that the hydrogen is a levitation system of the proton and the electron. Structures of helium, oxygen, and carbon atoms and a hydrogen molecule are presented too.
Biometric feature extraction using local fractal auto-correlation
International Nuclear Information System (INIS)
Chen Xi; Zhang Jia-Shu
2014-01-01
Image texture feature extraction is a classical means for biometric recognition. To extract effective texture feature for matching, we utilize local fractal auto-correlation to construct an effective image texture descriptor. Three main steps are involved in the proposed scheme: (i) using two-dimensional Gabor filter to extract the texture features of biometric images; (ii) calculating the local fractal dimension of Gabor feature under different orientations and scales using fractal auto-correlation algorithm; and (iii) linking the local fractal dimension of Gabor feature under different orientations and scales into a big vector for matching. Experiments and analyses show our proposed scheme is an efficient biometric feature extraction approach. (condensed matter: structural, mechanical, and thermal properties)
Modelling, fabrication and characterisation of THz fractal meta-materials
DEFF Research Database (Denmark)
Xiao, S.; Zhou, L.; Malureanu, Radu
2011-01-01
We present theoretical predictions, fabrication procedure and characterisation results of fractal metamaterials for the THz frequency range. The characterisation results match well the predicted response thus validating both the fabrication procedure as well as the simulation one. Such systems sh...
The colours of infinity the beauty and power of fractals
Lesmoir-Gordon, Nigel
2010-01-01
The groundbreaking documentary (accompanying this book) has been shown in over 50 countries around the world. The contributors to the film are joined in this comprehensive survey of fractal theory and practice by leading experts in the field.
RF MEMS Fractal Capacitors With High Self-Resonant Frequencies
Elshurafa, Amro M.; Emira, Ahmed; Radwan, Ahmed Gomaa; Salama, Khaled N.
2012-01-01
This letter demonstrates RF microelectromechanical systems (MEMS) fractal capacitors possessing the highest reported self-resonant frequencies (SRFs) in PolyMUMPS to date. Explicitly, measurement results show SRFs beyond 20 GHz. Furthermore, quality
Solar Cycle Phase Dependence of Supergranular Fractal Dimension
Indian Academy of Sciences (India)
Solar Cycle Phase Dependence of Supergranular Fractal Dimension ... NIE Institute of Technology, Mysore, India. ... This means that each accepted article is being published immediately online with DOI and article citation ID with starting page ...
Wetting characteristics of 3-dimensional nanostructured fractal surfaces
Davis, Ethan; Liu, Ying; Jiang, Lijia; Lu, Yongfeng; Ndao, Sidy
2017-01-01
This article reports the fabrication and wetting characteristics of 3-dimensional nanostructured fractal surfaces (3DNFS). Three distinct 3DNFS surfaces, namely cubic, Romanesco broccoli, and sphereflake were fabricated using two-photon direct laser writing. Contact angle measurements were performed on the multiscale fractal surfaces to characterize their wetting properties. Average contact angles ranged from 66.8° for the smooth control surface to 0° for one of the fractal surfaces. The change in wetting behavior was attributed to modification of the interfacial surface properties due to the inclusion of 3-dimensional hierarchical fractal nanostructures. However, this behavior does not exactly obey existing surface wetting models in the literature. Potential applications for these types of surfaces in physical and biological sciences are also discussed.
Two Dimensional Drug Diffusion Between Nanoparticles and Fractal Tumors
Samioti, S. E.; Karamanos, K.; Tsiantis, A.; Papathanasiou, A.; Sarris, I.
2017-11-01
Drug delivery methods based on nanoparticles are some of the most promising medical applications in nanotechnology to treat cancer. It is observed that drug released by nanoparticles to the cancer tumors may be driven by diffusion. A fractal tumor boundary of triangular Von Koch shape is considered here and the diffusion mechanism is studied for different drug concentrations and increased fractality. A high order Finite Elements method based on the Fenics library is incorporated in fine meshes to fully resolve these irregular boundaries. Drug concentration, its transfer rates and entropy production are calculated in an up to forth order fractal iteration boundaries. We observed that diffusion rate diminishes for successive prefractal generations. Also, the entropy production around the system changes greatly as the order of the fractal curve increases. Results indicate with precision where the active sites are, in which most of the diffusion takes place and thus drug arrives to the tumor.
Fractal based curves in musical creativity: A critical annotation
Georgaki, Anastasia; Tsolakis, Christos
In this article we examine fractal curves and synthesis algorithms in musical composition and research. First we trace the evolution of different approaches for the use of fractals in music since the 80's by a literature review. Furthermore, we review representative fractal algorithms and platforms that implement them. Properties such as self-similarity (pink noise), correlation, memory (related to the notion of Brownian motion) or non correlation at multiple levels (white noise), can be used to develop hierarchy of criteria for analyzing different layers of musical structure. L-systems can be applied in the modelling of melody in different musical cultures as well as in the investigation of musical perception principles. Finally, we propose a critical investigation approach for the use of artificial or natural fractal curves in systematic musicology.
Hyper-Fractal Analysis: A visual tool for estimating the fractal dimension of 4D objects
Grossu, I. V.; Grossu, I.; Felea, D.; Besliu, C.; Jipa, Al.; Esanu, T.; Bordeianu, C. C.; Stan, E.
2013-04-01
This work presents a new version of a Visual Basic 6.0 application for estimating the fractal dimension of images and 3D objects (Grossu et al. (2010) [1]). The program was extended for working with four-dimensional objects stored in comma separated values files. This might be of interest in biomedicine, for analyzing the evolution in time of three-dimensional images. New version program summaryProgram title: Hyper-Fractal Analysis (Fractal Analysis v03) Catalogue identifier: AEEG_v3_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEEG_v3_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Standard CPC license, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 745761 No. of bytes in distributed program, including test data, etc.: 12544491 Distribution format: tar.gz Programming language: MS Visual Basic 6.0 Computer: PC Operating system: MS Windows 98 or later RAM: 100M Classification: 14 Catalogue identifier of previous version: AEEG_v2_0 Journal reference of previous version: Comput. Phys. Comm. 181 (2010) 831-832 Does the new version supersede the previous version? Yes Nature of problem: Estimating the fractal dimension of 4D images. Solution method: Optimized implementation of the 4D box-counting algorithm. Reasons for new version: Inspired by existing applications of 3D fractals in biomedicine [3], we extended the optimized version of the box-counting algorithm [1, 2] to the four-dimensional case. This might be of interest in analyzing the evolution in time of 3D images. The box-counting algorithm was extended in order to support 4D objects, stored in comma separated values files. A new form was added for generating 2D, 3D, and 4D test data. The application was tested on 4D objects with known dimension, e.g. the Sierpinski hypertetrahedron gasket, Df=ln(5)/ln(2) (Fig. 1). The algorithm could be extended, with minimum effort, to
Spectral Analysis and Dirichlet Forms on Barlow-Evans Fractals
Steinhurst, Benjamin; Teplyaev, Alexander
2012-01-01
We show that if a Barlow-Evans Markov process on a vermiculated space is symmetric, then one can study the spectral properties of the corresponding Laplacian using projective limits. For some examples, such as the Laakso spaces and a Spierpinski P\\^ate \\`a Choux, one can develop a complete spectral theory, including the eigenfunction expansions that are analogous to Fourier series. Also, one can construct connected fractal spaces isospectral to the fractal strings of Lapidus and van Frankenhu...
Fractal dimension evolution and spatial replacement dynamics of urban growth
International Nuclear Information System (INIS)
Chen Yanguang
2012-01-01
Highlights: ► The fractal dimension growth can be modeled by Boltzmann’s equation. ► Boltzmann’s model suggests urban spatial replacement dynamics. ► If the rate of urban growth is too high, periodic oscillations or chaos will arise. ► Chaos is associated with fractals by the fractal dimension evolution model. ► The fractal dimension of urban form implies the space-filling ratio of a city. - Abstract: This paper presents a new perspective of looking at the relation between fractals and chaos by means of cities. Especially, a principle of space filling and spatial replacement is proposed to interpret the fractal dimension of urban form. The fractal dimension evolution of urban growth can be empirically modeled with Boltzmann’s equation. For the normalized data, Boltzmann’s equation is just equivalent to the logistic function. The logistic equation can be transformed into the well-known 1-dimensional logistic map, which is based on a 2-dimensional map suggesting spatial replacement dynamics of city development. The 2-dimensional recurrence relations can be employed to generate the nonlinear dynamical behaviors such as bifurcation and chaos. A discovery is thus made in this article that, for the fractal dimension growth following the logistic curve, the normalized dimension value is the ratio of space filling. If the rate of spatial replacement (urban growth) is too high, the periodic oscillations and chaos will arise. The spatial replacement dynamics can be extended to general replacement dynamics, and bifurcation and chaos mirror a process of complex replacement.
The Validity of Dimensional Regularization Method on Fractal Spacetime
Directory of Open Access Journals (Sweden)
Yong Tao
2013-01-01
Full Text Available Svozil developed a regularization method for quantum field theory on fractal spacetime (1987. Such a method can be applied to the low-order perturbative renormalization of quantum electrodynamics but will depend on a conjectural integral formula on non-integer-dimensional topological spaces. The main purpose of this paper is to construct a fractal measure so as to guarantee the validity of the conjectural integral formula.
Gap sequence, Lipschitz equivalence and box dimension of fractal sets
International Nuclear Information System (INIS)
Rao Hui; Yang Yamin; Ruan Huojun
2008-01-01
We introduce a notion of gap sequences for compact sets E subset of R d , which is a generalization of the gap sequences of compact sets on the real line. We show that if the gap sequences of two fractal sets are not equivalent, then these two sets cannot be Lipschitz equivalent, where the latter fact is usually very hard to verify. Finally, we show that for some typical fractal sets, the gap sequences characterize the upper box dimension
Transmission and reflection properties of terahertz fractal metamaterials
DEFF Research Database (Denmark)
Malureanu, Radu; Lavrinenko, Andrei; Cooke, David
2010-01-01
We use THz time-domain spectroscopy to investigate transmission and reflection properties of metallic fractal metamaterial structures. We observe loss of free-space energy at certain resonance frequencies, indicating excitation of surface modes of the metamaterial.......We use THz time-domain spectroscopy to investigate transmission and reflection properties of metallic fractal metamaterial structures. We observe loss of free-space energy at certain resonance frequencies, indicating excitation of surface modes of the metamaterial....
Nanoparticles dynamics on a surface: fractal pattern formation and fragmentation
DEFF Research Database (Denmark)
Dick, Veronika V.; Solov'yov, Ilia; Solov'yov, Andrey V.
2010-01-01
In this paper we review our recent results on the formation and the post-growth relaxation processes of nanofractals on surface. For this study we developed a method which describes the internal dynamics of particles in a fractal and accounts for their diffusion and detachment. We demonstrate...... that these kinetic processes determine the final shape of the islands on surface after post-growth relaxation. We consider different scenarios of fractal relaxation and analyze the time evolution of the island's morphology....
Factorial moment and fractal analysis of γ families
International Nuclear Information System (INIS)
Kalmakhelidze, M.Eh.; Roinishvili, N.N.; Svanidze, M.S.; Khizanishvili, L.A.; Chadranyan, L.Kh.
1997-01-01
Factorial and fractal methods were applied to nuclear-electromagnetic cascades in the atmosphere (γ families) to find sensitivity of these methods to multiparticle fluctuations in γ families. Averaged parameters of factorial and fractal methods of the real families were compared with the same quantities for the statistical set of random families. The correlations between the same parameters for families divided into sectors and into rings are studied. The correlations between different parameters for the same families divided into sectors are investigated
Random a-adic groups and random net fractals
Energy Technology Data Exchange (ETDEWEB)
Li Yin [Department of Mathematics, Nanjing University, Nanjing 210093 (China)], E-mail: Lyjerry7788@hotmail.com; Su Weiyi [Department of Mathematics, Nanjing University, Nanjing 210093 (China)], E-mail: suqiu@nju.edu.cn
2008-08-15
Based on random a-adic groups, this paper investigates the relationship between the existence conditions of a positive flow in a random network and the estimation of the Hausdorff dimension of a proper random net fractal. Subsequently we describe some particular random fractals for which our results can be applied. Finally the Mauldin and Williams theorem is shown to be very important example for a random Cantor set with application in physics as shown in E-infinity theory.
Nonlinear internal friction, chaos, fractal and musical instruments
International Nuclear Information System (INIS)
Sun, Z.Q.; Lung, C.W.
1995-08-01
Nonlinear and structure sensitive internal friction phenomena in materials are used for characterizing musical instruments. It may be one of the most important factors influencing timbre of instruments. As a nonlinear dissipated system, chaos and fractals are fundamental peculiarities of sound spectra. It is shown that the concept of multi range fractals can be used to decompose the frequency spectra of melody. New approaches are suggested to improve the fabrication, property characterization and physical understanding of instruments. (author). 18 refs, 4 figs
Experimental study of circle grid fractal pattern on turbulent intensity in pipe flow
International Nuclear Information System (INIS)
Manshoor, B; Zaman, I; Othman, M F; Khalid, Amir
2013-01-01
Fractal turbulence is deemed much more efficient than grid turbulence in terms of a turbulence generation. In this paper, the hotwire experimental results for the circle grids fractal pattern as a turbulent generator will be presented. The self-similar edge characteristic of the circle grid fractal pattern is thought to play a vital role in the enhancement of turbulent intensity. Three different beta ratios of perforated plates based on circle grids fractal pattern were used in the experimental work and each paired with standard circle grids with similar porosity. The objectives were to study the fractal scaling influence on the flow and also to explore the potential of the circle grids fractal pattern in enhancing the turbulent intensity. The results provided an excellent insight of the fractal generated turbulence and the fractal flow physics. Across the circle grids fractal pattern, the pressure drop was lower but the turbulent intensity was higher than those across the paired standard circle grids
Energy Technology Data Exchange (ETDEWEB)
Araujo, Carlos Eduardo S. [Universidade Federal de Campina Grande, PB (Brazil). Programa de Recursos Humanos 25 da ANP]. E-mail: carlos@dme.ufcg.edu.br; Silva, Rosana M. da [Universidade Federal de Campina Grande, PB (Brazil). Dept. de Matematica e Estatistica]. E-mail: rosana@dme.ufcg.edu.br
2004-07-01
This work presents an implementation of a synthetic model of a channel found in oil reservoir. The generation these models is one of the steps to the characterization and simulation of the equal probable three-dimensional geological scenery. O implemented model was obtained from fitting techniques of geometric modeling of curves and surfaces to the geological parameters (width, thickness, sinuosity and preferential direction) that defines the form to be modeled. The parameter sinuosity is related with the parameter wave length and the local amplitude of the channel, the parameter preferential direction indicates the way of the flow and the declivity of the channel. The modeling technique used to represent the surface of the channel is the sweeping technique, the consist in effectuate a translation operation from a curve along a guide curve. The guide curve, in our implementation, was generated by the interpolation of points obtained form sampled values or simulated of the parameter sinuosity, using the cubic splines of Bezier technique. A semi-ellipse, determinate by the parameter width and thickness, representing a transversal section of the channel, is the transferred curve through the guide curve, generating the channel surface. (author)
Energy Technology Data Exchange (ETDEWEB)
Rodrigues, Leticia Jenisch
2011-01-15
In its classical formulation, the Dancoff factor for a perfectly absorbing fuel rod is defined as the relative reduction in the incurrent of resonance neutrons into the rod in the presence of neighboring rods, as compared to the incurrent into a single fuel rod immersed in an infinite moderator. Alternatively, this factor can be viewed as the probability that a neutron emerging from the surface of a fuel rod will enter another fuel rod without any collision in the moderator or cladding. For perfectly absorbing fuel these definitions are equivalent. In the last years, several works appeared in literature reporting improvements in the calculation of Dancoff factors, using both the classical and the collision probability definitions. In this work, we step further reporting Dancoff factors for perfectly absorbing (Black) and partially absorbing (Grey) fuel rods calculated by the collision probability method, in cluster cells with square outer boundaries. In order to validate the results, comparisons are made with the equivalent cylindricalized cell in hypothetical test cases. The calculation is performed considering specularly reflecting boundary conditions, for the square lattice, and diffusive reflecting boundary conditions, for the cylindrical geometry. The results show the expected asymptotic behavior of the solution with increasing cell sizes. In addition, Dancoff factors are computed for the Canadian cells CANDU-37 and CANFLEX by the Monte Carlo and Direct methods. Finally, the effective multiplication factors, k{sub eff}, for these cells (cluster cell with square outer boundaries and the equivalent cylindricalized cell) are also computed, and the differences reported for the cases using the perfect and partial absorption assumptions. (author)
Exploring the relationship between fractal features and bacterial essential genes
International Nuclear Information System (INIS)
Yu Yong-Ming; Yang Li-Cai; Zhao Lu-Lu; Liu Zhi-Ping; Zhou Qian
2016-01-01
Essential genes are indispensable for the survival of an organism in optimal conditions. Rapid and accurate identifications of new essential genes are of great theoretical and practical significance. Exploring features with predictive power is fundamental for this. Here, we calculate six fractal features from primary gene and protein sequences and then explore their relationship with gene essentiality by statistical analysis and machine learning-based methods. The models are applied to all the currently available identified genes in 27 bacteria from the database of essential genes (DEG). It is found that the fractal features of essential genes generally differ from those of non-essential genes. The fractal features are used to ascertain the parameters of two machine learning classifiers: Naïve Bayes and Random Forest. The area under the curve (AUC) of both classifiers show that each fractal feature is satisfactorily discriminative between essential genes and non-essential genes individually. And, although significant correlations exist among fractal features, gene essentiality can also be reliably predicted by various combinations of them. Thus, the fractal features analyzed in our study can be used not only to construct a good essentiality classifier alone, but also to be significant contributors for computational tools identifying essential genes. (paper)
Heterogeneity of cerebral blood flow: a fractal approach
International Nuclear Information System (INIS)
Kuikka, J.T.; Hartikainen, P.
2000-01-01
Aim: We demonstrate the heterogeneity of regional cerebral blood flow using a fractal approach and single-photon emission computed tomography (SPECT). Method: Tc-99m-labelled ethylcysteine dimer was injected intravenously in 10 healthy controls and in 10 patients with dementia of frontal lobe type. The head was imaged with a gamma camera and transaxial, sagittal and coronal slices were reconstructed. Two hundred fifty-six symmetrical regions of interest (ROIs) were drawn onto each hemisphere of functioning brain matter. Fractal analysis was used to examine the spatial heterogeneity of blood flow as a function of the number of ROIs. Results: Relative dispersion (=coefficient of variation of the regional flows) was fractal-like in healthy subjects and could be characterized by a fractal dimension of 1.17±0.05 (mean±SD) for the left hemisphere and 1.15±0.04 for the right hemisphere, respectively. The fractal dimension of 1.0 reflects completely homogeneous blood flow and 1.5 indicates a random blood flow distribution. Patients with dementia of frontal lobe type had a significantly lower fractal dimension of 1.04±0.03 than in healthy controls. (orig.) [de
Wang, Xujing; Becker, Frederick F.; Gascoyne, Peter R. C.
2010-01-01
The scale-invariant property of the cytoplasmic membrane of biological cells is examined by applying the Minkowski–Bouligand method to digitized scanning electron microscopy images of the cell surface. The membrane is found to exhibit fractal behavior, and the derived fractal dimension gives a good description of its morphological complexity. Furthermore, we found that this fractal dimension correlates well with the specific membrane dielectric capacitance derived from the electrorotation measurements. Based on these findings, we propose a new fractal single-shell model to describe the dielectrics of mammalian cells, and compare it with the conventional single-shell model (SSM). We found that while both models fit with experimental data well, the new model is able to eliminate the discrepancy between the measured dielectric property of cells and that predicted by the SSM. PMID:21198103
Metasurface base on uneven layered fractal elements for ultra-wideband RCS reduction
Su, Jianxun; Cui, Yueyang; Li, Zengrui; Yang, Yaoqing Lamar; Che, Yongxing; Yin, Hongcheng
2018-03-01
A novel metasurface based on uneven layered fractal elements is designed and fabricated for ultra-wideband radar cross section (RCS) reduction in this paper. The proposed metasurface consists of two fractal subwavelength elements with different layer thickness. The reflection phase difference of 180° (±37°) between two unit cells covers an ultra-wide frequency range. Ultra-wideband RCS reduction results from the phase cancellation between two local waves produced by these two unit cells. The diffuse scattering of electromagnetic (EM) waves is caused by the randomized phase distribution, leading to a low monostatic and bistatic RCS simultaneously. This metasurface can achieve -10dB RCS reduction in an ultra-wide frequency range from 6.6 to 23.9 GHz with a ratio bandwidth (fH/fL) of 3.62:1 under normal incidences for both x- and y-polarized waves. Both the simulation and the measurement results are consistent to verify this excellent RCS reduction performance of the proposed metasurface.
Fractal geometry of the drainage network of the Caeté river watershed, Alfredo Wagner-SC
Vestena, Leandro Redin; Kobiyama, Masato
2010-01-01
Os objetivos deste trabalho foram estimar e avaliar a dimensão fractal da rede de drenagem da bacia hidrográfica do Caeté, em Alfredo Wagner, SC, a partir de diferentes métodos, com o propósito de caracterizar as formas geomorfológicas irregulares. A rede de drenagem apresenta propriedades multifractais. As dimensões fractais para os segmentos individuais (df) e para a rede de drenagem inteira (Df) foram determinadas por métodos que se fundamentaram nas razões de Horton e pelo método da conta...
Fractal correlation property of heart rate variability in chronic obstructive pulmonary disease
Directory of Open Access Journals (Sweden)
Tatiana D Carvalho
2011-01-01
Full Text Available Tatiana D Carvalho1,2, Carlos Marcelo Pastre1, Moacir Fernandes de Godoy3, Celso Fereira2, Fábio O Pitta1,4, Luiz Carlos de Abreu5, Ercy Mara Cipulo Ramos1, Vitor E Valenti2,5, Luiz Carlos Marques Vanderlei11Departamento de Fisioterapia da Faculdade de Ciências e Tecnologia, Universidade Estadual Paulista, Presidente Prudente, São Paulo, Brasil; 2Departamento de Medicina, Disciplina de Cardiologia, Universidade Federal de São Paulo, São Paulo, Brasil; 3Departamento de Cardiologia e Cirurgia Cardiovascular, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, São Paulo, Brasil; 4Laboratório de Pesquisa em Fisioterapia Pulmonar, Departamento de Fisioterapia, Universidade Estadual de Londrina, Londrina, Brasil; 5Departamento de Morfologia e Fisiologia da Faculdade de Medicina do ABC, Santo André, BrasilBackground: It was reported that autonomic nervous system function is altered in subjects with chronic obstructive pulmonary disease (COPD. We evaluated short- and long-term fractal exponents of heart rate variability (HRV in COPD subjects.Patients and methods: We analyzed data from 30 volunteers, who were divided into two groups according to spirometric values: COPD (n = 15 and control (n = 15. For analysis of HRV indices, HRV was recorded beat by beat with the volunteers in the supine position for 30 minutes. We analyzed the linear indices in the time (SDNN [standard deviation of normal to normal] and RMSSD [root-mean square of differences] and frequency domains (low frequency [LF], high frequency [HF], and LF/HF, and the short- and long-term fractal exponents were obtained by detrended fluctuation analysis. We considered P < 0.05 to be a significant difference.Results: COPD patients presented reduced levels of all linear exponents and decreased short-term fractal exponent (alpha-1: 0.899 ± 0.18 versus 1.025 ± 0.09, P = 0.026. There was no significant difference between COPD and control groups in alpha-2 and alpha-1
Naturaleza fractal en redes de cristales de grasas
Directory of Open Access Journals (Sweden)
Gómez Herrera, C.
2004-06-01
Full Text Available The determination of the mechanical and rheological characterisÂtics of several plastic fats requires a detailed understanding of the microstructure of the fat crystal network aggregates. The (or A fractal approach is useful for the characterization of this microsÂtructure. This review begins with information on fractality and statistical self-similar structure. Estimations for fractal dimension by means of equations relating the volume fraction of solid fat to shear elastic modulus G' in linear region are described. The influence of interesterification on fractal dimension decrease (from 2, 46 to 2 ,15 for butterfat-canola oil blends is notable . This influence is not significant for fat blends without butterfat. The need for an increase in research concerning the relationship between fractality and rheology in plastic fats is emphasized.La determinación de las características mecánicas y reológicas de ciertas grasas plásticas requiere conocimientos detallados sobre las microestructuras de los agregados que forman la red de cristales grasos. El estudio de la naturaleza fractal de estas microestructuras resulta útil para su caracÂterización. Este artículo de información se inicia con descripciones de la dimensión fractal y de la "autosimilitud estadística". A continuación se describe el cálculo de la dimensión fractal mediante ecuaciones que relacionan la fracción en volumen de grasa sólida con el módulo de recuperación (G' dentro de un comportamiento viscoelástico lineal. Se destaca la influencia que la interesterificación ejerce sobre la dimensión fractal de una mezcla de grasa láctea y aceite de canola (que pasa de 2,64 a 2,15. Esta influencia no se presenta en mezclas sin grasa láctea. Se insiste sobre la necesidad de incrementar las investiÂgaciones sobre la relación entre reología y estructura fractal en grasas plásticas.
Directory of Open Access Journals (Sweden)
Jian Xiong
2015-01-01
Full Text Available We mainly focus on the Permian, Lower Cambrian, Lower Silurian, and Upper Ordovician Formation; the fractal dimensions of marine shales in southern China were calculated using the FHH fractal model based on the low-pressure nitrogen adsorption analysis. The results show that the marine shales in southern China have the dual fractal characteristics. The fractal dimension D1 at low relative pressure represents the pore surface fractal characteristics, whereas the fractal dimension D2 at higher relative pressure describes the pore structure fractal characteristics. The fractal dimensions D1 range from 2.0918 to 2.718 with a mean value of 2.4762, and the fractal dimensions D2 range from 2.5842 to 2.9399 with a mean value of 2.8015. There are positive relationships between fractal dimension D1 and specific surface area and total pore volume, whereas the fractal dimensions D2 have negative correlation with average pore size. The larger the value of the fractal dimension D1 is, the rougher the pore surface is, which could provide more adsorption sites, leading to higher adsorption capacity for gas. The larger the value of the fractal dimension D2 is, the more complicated the pore structure is, resulting in the lower flow capacity for gas.
Persistent fluctuations in stride intervals under fractal auditory stimulation.
Directory of Open Access Journals (Sweden)
Vivien Marmelat
Full Text Available Stride sequences of healthy gait are characterized by persistent long-range correlations, which become anti-persistent in the presence of an isochronous metronome. The latter phenomenon is of particular interest because auditory cueing is generally considered to reduce stride variability and may hence be beneficial for stabilizing gait. Complex systems tend to match their correlation structure when synchronizing. In gait training, can one capitalize on this tendency by using a fractal metronome rather than an isochronous one? We examined whether auditory cues with fractal variations in inter-beat intervals yield similar fractal inter-stride interval variability as isochronous auditory cueing in two complementary experiments. In Experiment 1, participants walked on a treadmill while being paced by either an isochronous or a fractal metronome with different variation strengths between beats in order to test whether participants managed to synchronize with a fractal metronome and to determine the necessary amount of variability for participants to switch from anti-persistent to persistent inter-stride intervals. Participants did synchronize with the metronome despite its fractal randomness. The corresponding coefficient of variation of inter-beat intervals was fixed in Experiment 2, in which participants walked on a treadmill while being paced by non-isochronous metronomes with different scaling exponents. As expected, inter-stride intervals showed persistent correlations similar to self-paced walking only when cueing contained persistent correlations. Our results open up a new window to optimize rhythmic auditory cueing for gait stabilization by integrating fractal fluctuations in the inter-beat intervals.
Persistent fluctuations in stride intervals under fractal auditory stimulation.
Marmelat, Vivien; Torre, Kjerstin; Beek, Peter J; Daffertshofer, Andreas
2014-01-01
Stride sequences of healthy gait are characterized by persistent long-range correlations, which become anti-persistent in the presence of an isochronous metronome. The latter phenomenon is of particular interest because auditory cueing is generally considered to reduce stride variability and may hence be beneficial for stabilizing gait. Complex systems tend to match their correlation structure when synchronizing. In gait training, can one capitalize on this tendency by using a fractal metronome rather than an isochronous one? We examined whether auditory cues with fractal variations in inter-beat intervals yield similar fractal inter-stride interval variability as isochronous auditory cueing in two complementary experiments. In Experiment 1, participants walked on a treadmill while being paced by either an isochronous or a fractal metronome with different variation strengths between beats in order to test whether participants managed to synchronize with a fractal metronome and to determine the necessary amount of variability for participants to switch from anti-persistent to persistent inter-stride intervals. Participants did synchronize with the metronome despite its fractal randomness. The corresponding coefficient of variation of inter-beat intervals was fixed in Experiment 2, in which participants walked on a treadmill while being paced by non-isochronous metronomes with different scaling exponents. As expected, inter-stride intervals showed persistent correlations similar to self-paced walking only when cueing contained persistent correlations. Our results open up a new window to optimize rhythmic auditory cueing for gait stabilization by integrating fractal fluctuations in the inter-beat intervals.
Bony change of apical lesion healing process using fractal analysis
Energy Technology Data Exchange (ETDEWEB)
Lee, Ji Min; Park, Hyok; Jeong, Ho Gul; Kim, Kee Deog; Park, Chang Seo [Yonsei University College of Medicine, Seoul (Korea, Republic of)
2005-06-15
To investigate the change of bone healing process after endodontic treatment of the tooth with an apical lesion by fractal analysis. Radiographic images of 35 teeth from 33 patients taken on first diagnosis, 6 months, and 1 year after endodontic treatment were selected. Radiographic images were taken by JUPITER computerized Dental X-ray System. Fractal dimensions were calculated three times at each area by Scion Image PC program. Rectangular region of interest (30 x 30) were selected at apical lesion and normal apex of each image. The fractal dimension at apical lesion of first diagnosis (L{sub 0}) is 0.940 {+-} 0.361 and that of normal area (N{sub 0}) is 1.186 {+-} 0.727 (p<0.05). Fractal dimension at apical lesion of 6 months after endodontic treatment (L{sub 1}) is 1.076 {+-} 0.069 and that of normal area (N{sub 1}) is 1.192 {+-} 0.055 (p<0.05). Fractal dimension at apical lesion of 1 year after endodontic treatment (L{sub 2}) is 1.163 {+-} 0.074 and that of normal area (N{sub 2}) is 1.225 {+-} 0.079 (p<0.05). After endodontic treatment, the fractal dimensions at each apical lesions depending on time showed statistically significant difference. And there are statistically significant different between normal area and apical lesion on first diagnosis, 6 months after, 1 year after. But the differences were grow smaller as time flows. The evaluation of the prognosis after the endodontic treatment of the apical lesion was estimated by bone regeneration in apical region. Fractal analysis was attempted to overcome the limit of subjective reading, and as a result the change of the bone during the healing process was able to be detected objectively and quantitatively.
Bioinspired fractal electrodes for solar energy storages.
Thekkekara, Litty V; Gu, Min
2017-03-31
Solar energy storage is an emerging technology which can promote the solar energy as the primary source of electricity. Recent development of laser scribed graphene electrodes exhibiting a high electrical conductivity have enabled a green technology platform for supercapacitor-based energy storage, resulting in cost-effective, environment-friendly features, and consequent readiness for on-chip integration. Due to the limitation of the ion-accessible active porous surface area, the energy densities of these supercapacitors are restricted below ~3 × 10 -3 Whcm -3 . In this paper, we demonstrate a new design of biomimetic laser scribed graphene electrodes for solar energy storage, which embraces the structure of Fern leaves characterized by the geometric family of space filling curves of fractals. This new conceptual design removes the limit of the conventional planar supercapacitors by significantly increasing the ratio of active surface area to volume of the new electrodes and reducing the electrolyte ionic path. The attained energy density is thus significantly increased to ~10 -1 Whcm -3 - more than 30 times higher than that achievable by the planar electrodes with ~95% coulombic efficiency of the solar energy storage. The energy storages with these novel electrodes open the prospects of efficient self-powered and solar-powered wearable, flexible and portable applications.
Bioinspired fractal electrodes for solar energy storages
Thekkekara, Litty V.; Gu, Min
2017-03-01
Solar energy storage is an emerging technology which can promote the solar energy as the primary source of electricity. Recent development of laser scribed graphene electrodes exhibiting a high electrical conductivity have enabled a green technology platform for supercapacitor-based energy storage, resulting in cost-effective, environment-friendly features, and consequent readiness for on-chip integration. Due to the limitation of the ion-accessible active porous surface area, the energy densities of these supercapacitors are restricted below ~3 × 10-3 Whcm-3. In this paper, we demonstrate a new design of biomimetic laser scribed graphene electrodes for solar energy storage, which embraces the structure of Fern leaves characterized by the geometric family of space filling curves of fractals. This new conceptual design removes the limit of the conventional planar supercapacitors by significantly increasing the ratio of active surface area to volume of the new electrodes and reducing the electrolyte ionic path. The attained energy density is thus significantly increased to ~10-1 Whcm-3- more than 30 times higher than that achievable by the planar electrodes with ~95% coulombic efficiency of the solar energy storage. The energy storages with these novel electrodes open the prospects of efficient self-powered and solar-powered wearable, flexible and portable applications.
Using Dimension Theory to Analyze and Classify the Generation of Fractal Sets
National Research Council Canada - National Science Library
Casey, Stephen D
1996-01-01
... of) fractal sets and the underlying dimension theory. The computer is ideally suited to implement the recursive algorithms needed to create these sets, thus giving researchers a laboratory for studying fractals and their corresponding dimensions...
The fractal nature materials microstructure influence on electrochemical energy sources
Directory of Open Access Journals (Sweden)
Mitić V.V.
2015-01-01
Full Text Available With increasing of the world energy crisis, research for new, renewable and alternative energy sources are in growth. The focus is on research areas, sometimes of minor importance and applications, where the different synthesis methods and microstructure properties optimization, performed significant improvement of output materials’ and components’ electro-physical properties, which is important for higher energy efficiency and in the electricity production (batteries and battery systems, fuel cells and hydrogen energy contribution. Also, the storage tanks capacity improvement, for the energy produced on such way, which is one of the most important development issues in the energy sphere, represents a very promising research and application area. Having in mind, the results achieved in the electrochemical energy sources field, especially electrolyte development, these energy sources, materials fractal nature optimization analysis contribution, have been investigated. Based on materials fractal structure research field, particularly electronic materials, we have performed microstructure influence parameters research in electrochemistry area. We have investigated the Ho2O3 concentration influence (from 0.01wt% to 1wt% and sintering temperature (from 1320°C to 1380°C, as consolidation parameters, and thus, also open the electrochemical function fractalization door and in the basic thermodynamic parameters the fractal correction introduced. The fractal dimension dependence on additive concentration is also investigated. [Projekat Ministarstva nauke Republike Srbije, br. 172057: Directed synthesis, structure and properties of multifunctional materials
Electrical conductivity modeling in fractal non-saturated porous media
Wei, W.; Cai, J.; Hu, X.; Han, Q.
2016-12-01
The variety of electrical conductivity in non-saturated conditions is important to study electric conduction in natural sedimentary rocks. The electrical conductivity in completely saturated porous media is a porosity-function representing the complex connected behavior of single conducting phases (pore fluid). For partially saturated conditions, the electrical conductivity becomes even more complicated since the connectedness of pore. Archie's second law is an empirical electrical conductivity-porosity and -saturation model that has been used to predict the formation factor of non-saturated porous rock. However, the physical interpretation of its parameters, e.g., the cementation exponent m and the saturation exponent n, remains questionable. On basis of our previous work, we combine the pore-solid fractal (PSF) model to build an electrical conductivity model in non-saturated porous media. Our theoretical porosity- and saturation-dependent models contain endmember properties, such as fluid electrical conductivities, pore fractal dimension and tortuosity fractal dimension (representing the complex degree of electrical flowing path). We find the presented model with non-saturation-dependent electrical conductivity datasets indicate excellent match between theory and experiments. This means the value of pore fractal dimension and tortuosity fractal dimension change from medium to medium and depends not only on geometrical properties of pore structure but also characteristics of electrical current flowing in the non-saturated porous media.
Fractal Dimension and Maximum Sunspot Number in Solar Cycle
Directory of Open Access Journals (Sweden)
R.-S. Kim
2006-09-01
Full Text Available The fractal dimension is a quantitative parameter describing the characteristics of irregular time series. In this study, we use this parameter to analyze the irregular aspects of solar activity and to predict the maximum sunspot number in the following solar cycle by examining time series of the sunspot number. For this, we considered the daily sunspot number since 1850 from SIDC (Solar Influences Data analysis Center and then estimated cycle variation of the fractal dimension by using Higuchi's method. We examined the relationship between this fractal dimension and the maximum monthly sunspot number in each solar cycle. As a result, we found that there is a strong inverse relationship between the fractal dimension and the maximum monthly sunspot number. By using this relation we predicted the maximum sunspot number in the solar cycle from the fractal dimension of the sunspot numbers during the solar activity increasing phase. The successful prediction is proven by a good correlation (r=0.89 between the observed and predicted maximum sunspot numbers in the solar cycles.
Towards Video Quality Metrics Based on Colour Fractal Geometry
Directory of Open Access Journals (Sweden)
Richard Noël
2010-01-01
Full Text Available Vision is a complex process that integrates multiple aspects of an image: spatial frequencies, topology and colour. Unfortunately, so far, all these elements were independently took into consideration for the development of image and video quality metrics, therefore we propose an approach that blends together all of them. Our approach allows for the analysis of the complexity of colour images in the RGB colour space, based on the probabilistic algorithm for calculating the fractal dimension and lacunarity. Given that all the existing fractal approaches are defined only for gray-scale images, we extend them to the colour domain. We show how these two colour fractal features capture the multiple aspects that characterize the degradation of the video signal, based on the hypothesis that the quality degradation perceived by the user is directly proportional to the modification of the fractal complexity. We claim that the two colour fractal measures can objectively assess the quality of the video signal and they can be used as metrics for the user-perceived video quality degradation and we validated them through experimental results obtained for an MPEG-4 video streaming application; finally, the results are compared against the ones given by unanimously-accepted metrics and subjective tests.
Evaluation of peri-implant bone using fractal analysis
International Nuclear Information System (INIS)
Jung, Yun Hoa
2005-01-01
The purpose of this study was to investigate whether the fractal dimension of successive panoramic radiographs of bone after implant placement is useful in the characterization of structural change in alveolar bone. Twelve subjects with thirty-five implants were retrospectively followed-up from one week to six months after implantation. Thirty-six panoramic radiographs from twelve patients were classified into 1 week. 1-2 months and 3-6 months after implantation and digitized. The windows of bone apical and mesial or distal to the implant were defined as peri apical region of interest (ROI) and inter dental ROI; the fractal dimension of the image was calculated. There was not a statistically significant difference in fractal dimensions during the period up to 6 months after implantation. The fractal dimensions were higher in 13 and 15 mm than 10 and 11.5 mm implant length at inter dental ROIs in 3-6 months after implantation (p<0.01). Longer fixtures showed the higher fractal dimension of bone around implant. This investigation needs further exploration with large numbers of implants for longer follow-up periods.
Fractal Globule as a model of DNA folding in eukaryotes
Imakaev, Maksim; Mirny, Leonid
2012-02-01
A recent study (Lieberman-Aiden et al., Science, 2009) observed that the structure of the genome, on the scale of a few megabases, is consistent with a fractal globule. The fractal globule is a quasi-equilibrium state of a polymer after a rapid collapse. First proposed theoretically in 1988, this structure had never been simulated. Fractal globule was seen as a state, in which each subchain is compact, and doesn't mix with other subchains due to their mutual unentanglement (topological constraints). We use GPU-assisted dynamics to create fractal globules of different sizes and observe their dynamics. Our simulations confirm that a polymer after rapid collapse has compact subchains. We measure the scaling of looping probability of a subchain with it's length, and observe the remarkably robust inverse proportionality. Dynamic simulation of the equilibration of this state show that it exhibits Rose type subdiffusion. Due to diffusion, fractal globule quickly degrades to a quasi-equilibrium state, in which subchains of a polymer are mixed, but topologically unentangled. We propose that separation of spatial and topological equilibration of a polymer chain might have implications in different fields of physics.
Fractal analysis for studying the evolution of forests
International Nuclear Information System (INIS)
Andronache, Ion C.; Ahammer, Helmut; Jelinek, Herbert F.; Peptenatu, Daniel; Ciobotaru, Ana-M.; Draghici, Cristian C.; Pintilii, Radu D.; Simion, Adrian G.
2016-01-01
Highlights: • Legal and illegal deforestation is investigated by fractal analysis. • A new fractal fragmentation index FFI is proposed. • Differences in shapes of forest areas indicate the type of deforestation. • Support of ecological management. - Abstract: Deforestation is an important phenomenon that may create major imbalances in ecosystems. In this study we propose a new mathematical analysis of the forest area dynamic, enabling qualitative as well as quantitative statements and results. Fractal dimensions of the area and the perimeter of a forest were determined using digital images. The difference between fractal dimensions of the area and the perimeter images turned out to be a crucial quantitative parameter. Accordingly, we propose a new fractal fragmentation index, FFI, which is based on this difference and which highlights the degree of compaction or non-compaction of the forest area in order to interpret geographic features. Particularly, this method was applied to forests, where large areas have been legally or illegally deforested. However, these methods can easily be used for other ecological or geographical investigations based on digital images, including deforestation of rainforests.
Fractal geometry in an expanding, one-dimensional, Newtonian universe.
Miller, Bruce N; Rouet, Jean-Louis; Le Guirriec, Emmanuel
2007-09-01
Observations of galaxies over large distances reveal the possibility of a fractal distribution of their positions. The source of fractal behavior is the lack of a length scale in the two body gravitational interaction. However, even with new, larger, sample sizes from recent surveys, it is difficult to extract information concerning fractal properties with confidence. Similarly, three-dimensional N-body simulations with a billion particles only provide a thousand particles per dimension, far too small for accurate conclusions. With one-dimensional models these limitations can be overcome by carrying out simulations with on the order of a quarter of a million particles without compromising the computation of the gravitational force. Here the multifractal properties of two of these models that incorporate different features of the dynamical equations governing the evolution of a matter dominated universe are compared. For each model at least two scaling regions are identified. By employing criteria from dynamical systems theory it is shown that only one of them can be geometrically significant. The results share important similarities with galaxy observations, such as hierarchical clustering and apparent bifractal geometry. They also provide insights concerning possible constraints on length and time scales for fractal structure. They clearly demonstrate that fractal geometry evolves in the mu (position, velocity) space. The observed patterns are simply a shadow (projection) of higher-dimensional structure.
Fractal markets: Liquidity and investors on different time horizons
Li, Da-Ye; Nishimura, Yusaku; Men, Ming
2014-08-01
In this paper, we propose a new agent-based model to study the source of liquidity and the “emergent” phenomenon in financial market with fractal structure. The model rests on fractal market hypothesis and agents with different time horizons of investments. What is interesting is that though the agent-based model reveals that the interaction between these heterogeneous agents affects the stability and liquidity of the financial market the real world market lacks detailed data to bring it to light since it is difficult to identify and distinguish the investors with different time horizons in the empirical approach. results show that in a relatively short period of time fractal market provides liquidity from investors with different horizons and the market gains stability when the market structure changes from uniformity to diversification. In the real world the fractal structure with the finite of horizons can only stabilize the market within limits. With the finite maximum horizons, the greater diversity of the investors and the fractal structure will not necessarily bring more stability to the market which might come with greater fluctuation in large time scale.
A transfer matrix method for the analysis of fractal quantum potentials
International Nuclear Information System (INIS)
Monsoriu, Juan A; Villatoro, Francisco R; Marin, Maria J; UrchueguIa, Javier F; Cordoba, Pedro Fernandez de
2005-01-01
The scattering properties of quantum particles on a sequence of potentials converging towards a fractal one are obtained by means of the transfer matrix method. The reflection coefficients for both the fractal potential and finite periodic potential are calculated and compared. It is shown that the reflection coefficient for the fractal potential has a self-similar structure associated with the fractal distribution of the potential whose degree of self-similarity has been quantified by means of the correlation function
Fractal analytical approach of urban form based on spatial correlation function
International Nuclear Information System (INIS)
Chen, Yanguang
2013-01-01
Highlights: ► Many fractal parameter relations of cities can be derived by scaling analysis. ► The area-radius scaling of cities suggests a spatial correlation function. ► Spectral analysis can be used to estimate fractal dimension values of urban form. ► The valid range of fractal dimension of urban form comes between 1.5 and 2. ► The traditional scale concept will be replaced by scaling concept in geography. -- Abstract: Urban form has been empirically demonstrated to be of scaling invariance and can be described with fractal geometry. However, the rational range of fractal dimension value and the relationships between various fractal indicators of cities are not yet revealed in theory. By mathematical deduction and transform (e.g., Fourier transform), I find that scaling analysis, spectral analysis, and spatial correlation analysis are all associated with fractal concepts and can be integrated into a new approach to fractal analysis of cities. This method can be termed ‘3S analyses’ of urban form. Using the 3S analysis, I derived a set of fractal parameter equations, by which different fractal parameters of cities can be linked up with one another. Each fractal parameter has its own reasonable extent of values. According to the fractal parameter equations, the intersection of the rational ranges of different fractal parameters suggests the proper scale of the fractal dimension of urban patterns, which varies from 1.5 to 2. The fractal dimension equations based on the 3S analysis and the numerical relationships between different fractal parameters are useful for geographers to understand urban evolution and potentially helpful for future city planning
A transfer matrix method for the analysis of fractal quantum potentials
Energy Technology Data Exchange (ETDEWEB)
Monsoriu, Juan A [Departamento de Fisica Aplicada, Universidad Politecnica de Valencia, E-46022 Valencia (Spain); Villatoro, Francisco R [Departamento de Lenguajes y Ciencias de la Computacion, Universidad de Malaga, E-29071 Malaga (Spain); Marin, Maria J [Departamento de Termodinamica, Universitat de Valencia, E-46100 Burjassot (Spain); UrchueguIa, Javier F [Departamento de Fisica Aplicada, Universidad Politecnica de Valencia, E-46022 Valencia (Spain); Cordoba, Pedro Fernandez de [Departamento de Matematica Aplicada, Universidad Politecnica de Valencia, E-46022 Valencia (Spain)
2005-07-01
The scattering properties of quantum particles on a sequence of potentials converging towards a fractal one are obtained by means of the transfer matrix method. The reflection coefficients for both the fractal potential and finite periodic potential are calculated and compared. It is shown that the reflection coefficient for the fractal potential has a self-similar structure associated with the fractal distribution of the potential whose degree of self-similarity has been quantified by means of the correlation function.
Hagerhall, C M; Laike, T; Küller, M; Marcheschi, E; Boydston, C; Taylor, R P
2015-01-01
Psychological and physiological benefits of viewing nature have been extensively studied for some time. More recently it has been suggested that some of these positive effects can be explained by nature's fractal properties. Virtually all studies on human responses to fractals have used stimuli that represent the specific form of fractal geometry found in nature, i.e. statistical fractals, as opposed to fractal patterns which repeat exactly at different scales. This raises the question of whether human responses like preference and relaxation are being driven by fractal geometry in general or by the specific form of fractal geometry found in nature. In this study we consider both types of fractals (statistical and exact) and morph one type into the other. Based on the Koch curve, nine visual stimuli were produced in which curves of three different fractal dimensions evolve gradually from an exact to a statistical fractal. The patterns were shown for one minute each to thirty-five subjects while qEEG was continuously recorded. The results showed that the responses to statistical and exact fractals differ, and that the natural form of the fractal is important for inducing alpha responses, an indicator of a wakefully relaxed state and internalized attention.
Fractal Property in the Light Curve of BL Lac Object S5 0716+714
Indian Academy of Sciences (India)
2016-01-27
Jan 27, 2016 ... In this paper, we compile the historical R-band data of S5 0716+714 from literature and obtain its fractal dimension by using a fractal method and then simulate the data with the Weierstrass–Mandelbrot (W–M) function. It is considered that the light curve has a fractal property.
Form in the Natural Environment: Fractal Computer Graphics and Wassily Kandinsky.
Geake, John; Porter, Jim
1992-01-01
Reports on study of use of fractal geometry in a computer graphics program to improve the perception of intermediate grade level students in their paintings. Finds that students are more likely to use changing shapes and colors after viewing slides of fractal computer graphics. Concludes that fractal computer graphics would make highly engaging…
arXiv Generalized Fragmentation Functions for Fractal Jet Observables
Elder, Benjamin T.; Thaler, Jesse; Waalewijn, Wouter J.; Zhou, Kevin
2017-06-15
We introduce a broad class of fractal jet observables that recursively probe the collective properties of hadrons produced in jet fragmentation. To describe these collinear-unsafe observables, we generalize the formalism of fragmentation functions, which are important objects in QCD for calculating cross sections involving identified final-state hadrons. Fragmentation functions are fundamentally nonperturbative, but have a calculable renormalization group evolution. Unlike ordinary fragmentation functions, generalized fragmentation functions exhibit nonlinear evolution, since fractal observables involve correlated subsets of hadrons within a jet. Some special cases of generalized fragmentation functions are reviewed, including jet charge and track functions. We then consider fractal jet observables that are based on hierarchical clustering trees, where the nonlinear evolution equations also exhibit tree-like structure at leading order. We develop a numeric code for performing this evolution and study its phen...
An integral time series on simulated labeling using fractal structure
International Nuclear Information System (INIS)
Djainal, D.D.
1997-01-01
This research deals with the detection of time series of vertical two-phase flow, in attempt to developed an objective indicator of time series flow patterns. One of new method is fractal analysis which can complement conventional methods in the description of highly irregular fluctuations. in the present work, fractal analysis applied to analyze simulated boiling coolant signal. this simulated signals built by sum random elements in small subchannels of the coolant channel. Two modes are defined and both modes are characterized by their void fractions. in the case of unimodal-PDF signals, the difference between these modes is relative small. on other hand, bimodal-PDF signals have relative large range. in this research, fractal dimension can indicate the characters of that signals simulation
Fractal dimension of microbead assemblies used for protein detection.
Hecht, Ariel; Commiskey, Patrick; Lazaridis, Filippos; Argyrakis, Panos; Kopelman, Raoul
2014-11-10
We use fractal analysis to calculate the protein concentration in a rotating magnetic assembly of microbeads of size 1 μm, which has optimized parameters of sedimentation, binding sites and magnetic volume. We utilize the original Forrest-Witten method, but due to the relatively small number of bead particles, which is of the order of 500, we use a large number of origins and also a large number of algorithm iterations. We find a value of the fractal dimension in the range 1.70-1.90, as a function of the thrombin concentration, which plays the role of binding the microbeads together. This is in good agreement with previous results from magnetorotation studies. The calculation of the fractal dimension using multiple points of reference can be used for any assembly with a relatively small number of particles. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fractal Characteristics Analysis of Blackouts in Interconnected Power Grid
DEFF Research Database (Denmark)
Wang, Feng; Li, Lijuan; Li, Canbing
2018-01-01
The power failure models are a key to understand the mechanism of large scale blackouts. In this letter, the similarity of blackouts in interconnected power grids (IPGs) and their sub-grids is discovered by the fractal characteristics analysis to simplify the failure models of the IPG. The distri......The power failure models are a key to understand the mechanism of large scale blackouts. In this letter, the similarity of blackouts in interconnected power grids (IPGs) and their sub-grids is discovered by the fractal characteristics analysis to simplify the failure models of the IPG....... The distribution characteristics of blackouts in various sub-grids are demonstrated based on the Kolmogorov-Smirnov (KS) test. The fractal dimensions (FDs) of the IPG and its sub-grids are then obtained by using the KS test and the maximum likelihood estimation (MLE). The blackouts data in China were used...
Fractal modeling of fluidic leakage through metal sealing surfaces
Zhang, Qiang; Chen, Xiaoqian; Huang, Yiyong; Chen, Yong
2018-04-01
This paper investigates the fluidic leak rate through metal sealing surfaces by developing fractal models for the contact process and leakage process. An improved model is established to describe the seal-contact interface of two metal rough surface. The contact model divides the deformed regions by classifying the asperities of different characteristic lengths into the elastic, elastic-plastic and plastic regimes. Using the improved contact model, the leakage channel under the contact surface is mathematically modeled based on the fractal theory. The leakage model obtains the leak rate using the fluid transport theory in porous media, considering that the pores-forming percolation channels can be treated as a combination of filled tortuous capillaries. The effects of fractal structure, surface material and gasket size on the contact process and leakage process are analyzed through numerical simulations for sealed ring gaskets.
Application of fractal theory to top-coal caving
International Nuclear Information System (INIS)
Xie, H.; Zhou, H.W.
2008-01-01
The experiences of underground coal mining in China show that coal in a thick hard coal seam with a hard roof, the so-called 'double hard coal seam', is difficult to be excavated by top-coal caving technique. In order to solve the problem, a top-coal weakening technique is proposed in this paper. In the present study, fractal geometry provides a new description of the fracture mechanism for blasting. By means of theoretical analysis of the relationship between the fractal dimension of blasting fragments and the dynamite specific energy, a mechanical model for describing the size distribution of top-coal and the dissipation of blasting energy is proposed. The theoretical results are in agreement with laboratory and in situ test results. Moreover, it is shown that the fractal dimension of coal fragments can be used as an index for optimizing the blasting parameters for a top-coal weakening technique
Fractal analysis of lateral movement in biomembranes.
Gmachowski, Lech
2018-04-01
Lateral movement of a molecule in a biomembrane containing small compartments (0.23-μm diameter) and large ones (0.75 μm) is analyzed using a fractal description of its walk. The early time dependence of the mean square displacement varies from linear due to the contribution of ballistic motion. In small compartments, walking molecules do not have sufficient time or space to develop an asymptotic relation and the diffusion coefficient deduced from the experimental records is lower than that measured without restrictions. The model makes it possible to deduce the molecule step parameters, namely the step length and time, from data concerning confined and unrestricted diffusion coefficients. This is also possible using experimental results for sub-diffusive transport. The transition from normal to anomalous diffusion does not affect the molecule step parameters. The experimental literature data on molecular trajectories recorded at a high time resolution appear to confirm the modeled value of the mean free path length of DOPE for Brownian and anomalous diffusion. Although the step length and time give the proper values of diffusion coefficient, the DOPE speed calculated as their quotient is several orders of magnitude lower than the thermal speed. This is interpreted as a result of intermolecular interactions, as confirmed by lateral diffusion of other molecules in different membranes. The molecule step parameters are then utilized to analyze the problem of multiple visits in small compartments. The modeling of the diffusion exponent results in a smooth transition to normal diffusion on entering a large compartment, as observed in experiments.
Stochastic self-similar and fractal universe
International Nuclear Information System (INIS)
Iovane, G.; Laserra, E.; Tortoriello, F.S.
2004-01-01
The structures formation of the Universe appears as if it were a classically self-similar random process at all astrophysical scales. An agreement is demonstrated for the present hypotheses of segregation with a size of astrophysical structures by using a comparison between quantum quantities and astrophysical ones. We present the observed segregated Universe as the result of a fundamental self-similar law, which generalizes the Compton wavelength relation. It appears that the Universe has a memory of its quantum origin as suggested by R. Penrose with respect to quasi-crystal. A more accurate analysis shows that the present theory can be extended from the astrophysical to the nuclear scale by using generalized (stochastically) self-similar random process. This transition is connected to the relevant presence of the electromagnetic and nuclear interactions inside the matter. In this sense, the presented rule is correct from a subatomic scale to an astrophysical one. We discuss the near full agreement at organic cell scale and human scale too. Consequently the Universe, with its structures at all scales (atomic nucleus, organic cell, human, planet, solar system, galaxy, clusters of galaxy, super clusters of galaxy), could have a fundamental quantum reason. In conclusion, we analyze the spatial dimensions of the objects in the Universe as well as space-time dimensions. The result is that it seems we live in an El Naschie's E-infinity Cantorian space-time; so we must seriously start considering fractal geometry as the geometry of nature, a type of arena where the laws of physics appear at each scale in a self-similar way as advocated long ago by the Swedish school of astrophysics
Fractal Theory for Permeability Prediction, Venezuelan and USA Wells
Aldana, Milagrosa; Altamiranda, Dignorah; Cabrera, Ana
2014-05-01
Inferring petrophysical parameters such as permeability, porosity, water saturation, capillary pressure, etc, from the analysis of well logs or other available core data has always been of critical importance in the oil industry. Permeability in particular, which is considered to be a complex parameter, has been inferred using both empirical and theoretical techniques. The main goal of this work is to predict permeability values on different wells using Fractal Theory, based on a method proposed by Pape et al. (1999). This approach uses the relationship between permeability and the geometric form of the pore space of the rock. This method is based on the modified equation of Kozeny-Carman and a fractal pattern, which allows determining permeability as a function of the cementation exponent, porosity and the fractal dimension. Data from wells located in Venezuela and the United States of America are analyzed. Employing data of porosity and permeability obtained from core samples, and applying the Fractal Theory method, we calculated the prediction equations for each well. At the beginning, this was achieved by training with 50% of the data available for each well. Afterwards, these equations were tested inferring over 100% of the data to analyze possible trends in their distribution. This procedure gave excellent results in all the wells in spite of their geographic distance, generating permeability models with the potential to accurately predict permeability logs in the remaining parts of the well for which there are no core samples, using even porority logs. Additionally, empirical models were used to determine permeability and the results were compared with those obtained by applying the fractal method. The results indicated that, although there are empirical equations that give a proper adjustment, the prediction results obtained using fractal theory give a better fit to the core reference data.
Effect of exposure time and image resolution on fractal dimension
International Nuclear Information System (INIS)
An, Byung Mo; Heo, Min Suk; Lee, Seung Pyo; Lee, Sam Sun; Choi, Soon Chul; Park, Tae Won; Kim, Jong Dae
2002-01-01
To evaluate the effect of exposure time and image resolution on fractal dimension calculations for determining the optimal range of these two variances. Thirty-one radiographs of the mandibular angle area of sixteen human dry mandibles were taken at different exposure times (0.01, 0.08, 0.16, 0.25, 0.40, 0.64, and 0.80 s). Each radiograph was digitized at 1200 dpi, 8 bit, 256 gray level using a film scanner. We selected an Region of Interest (ROI) that corresponded to the same region as in each radiograph, but the resolution of ROI was degraded to 1000, 800, 600, 500, 400, 300, 200, and 100 dpi. The fractal dimension was calculated by using the tile-counting method for each image, and the calculated values were then compared statistically. As the exposure time and the image resolution increased, the mean value of the fractal dimension decreased, except the case where exposure time was set at 0.01 seconds (alpha = 0.05). The exposure time and image resolution affected the fractal dimension by interaction (p<0.001). When the exposure time was set to either 0.64 seconds or 0.80 seconds, the resulting fractal dimensions were lower, irrespective of image resolution, than at shorter exposure times (alpha = 0.05). The optimal range for exposure time and resolution was determined to be 0.08-0.40 seconds and from 400-1000 dpi, respectively. Adequate exposure time and image resolution is essential for acquiring the fractal dimension using tile-counting method for evaluation of the mandible.
Fractal analysis of bone architecture at distal radius
International Nuclear Information System (INIS)
Tomomitsu, Tatsushi; Mimura, Hiroaki; Murase, Kenya; Sone, Teruki; Fukunaga, Masao
2005-01-01
Bone strength depends on bone quality (architecture, turnover, damage accumulation, and mineralization) as well as bone mass. In this study, human bone architecture was analyzed using fractal image analysis, and the clinical relevance of this method was evaluated. The subjects were 12 healthy female controls and 16 female patients suspected of having osteoporosis (age range, 22-70 years; mean age, 49.1 years). High-resolution CT images of the distal radius were acquired and analyzed using a peripheral quantitative computed tomography (pQCT) system. On the same day, bone mineral densities of the lumbar spine (L-BMD), proximal femur (F-BMD), and distal radius (R-BMD) were measured by dual-energy X-ray absorptiometry (DXA). We examined the correlation between the fractal dimension and six bone mass indices. Subjects diagnosed with osteopenia or osteoporosis were divided into two groups (with and without vertebral fracture), and we compared measured values between these two groups. The fractal dimension correlated most closely with L-BMD (r=0.744). The coefficient of correlation between the fractal dimension and L-BMD was very similar to the coefficient of correlation between L-BMD and F-BMD (r=0.783) and the coefficient of correlation between L-BMD and R-BMD (r=0.742). The fractal dimension was the only measured value that differed significantly between both the osteopenic and the osteoporotic subjects with and without vertebral fracture. The present results suggest that the fractal dimension of the distal radius can be reliably used as a bone strength index that reflects bone architecture as well as bone mass. (author)
Integration of Fractal Biosensor in a Digital Microfluidic Platform
Mashraei, Yousof
2016-06-08
The digital microfluidic (DMF) platform introduces many applications in biomedical assays. If it is to be commercially available to the public, it needs to have the essential features of smart sensing and a compact size. In this work, we report on a fractal electrode biosensor that is used for both droplet actuation and sensing C-reactive protein (CRP) concentration levels to assess cardiac disease risk. Our proposed electrode is the first two-terminal electrode design to be integrated into DMF platforms. A simulation of the electrical field distribution shows reduced peak intensities and uniform distribution of the field. When compared to a V-notch square electrode, the fractal electrode shows a superior performance in both aspects, i.e. field uniformity and intensity. These improvements are translated into a successful and responsive actuation of a water droplet with 100V. Likewise, the effective dielectric strength is improved by a 33% increase in the fractal electrode breakdown voltage. Additionally, the capability of the fractal electrode to work as a capacitive biosensor is evaluated with CRP quantification test. Selected fractal electrodes undergo a surface treatment to immobilize anti-CRP antibodies on their surface. The measurement shows a response to the added CRP in capacitance within three minutes. When the untreated electrodes were used for quantification, there was no significant change in capacitance, and this suggested that immobilization was necessary. The electrodes configuration in the fabricated DMF platform allows the fractal electrodes to be selectively used as biosensors, which means the device could be integrated into point-of-care applications.
Arctic sea ice melt pond fractal dimension - explained
Popovic, Predrag
As Arctic sea ice starts to melt in the summer, pools of melt water quickly form on its surface, significantly changing its albedo, and impacting its subsequent evolution. These melt ponds often form complex geometric shapes. One characteristic of their shape, the fractal dimension of the pond boundaries, D, when plotted as a function of pond size, has been shown to transition between the two fundamental limits of D = 1 and D = 2 at some critical pond size. Here, we provide an explanation for this behavior. First, using aerial photographs, we show how this fractal transition curve changes with time, and show that there is a qualitative difference in the pond shape as ice transitions from impermeable to permeable. Namely, while ice is impermeable, maximum fractal dimension is less than 2, whereas after it becomes permeable, maximum fractal dimension becomes very close to 2. We then show how the fractal dimension of a collection of overlapping circles placed randomly on a plane also transitions from D = 1 to D = 2 at a size equal to the average size of a single circle. We, therefore, conclude that this transition is a simple geometric consequence of regular shapes connecting. The one physical parameter that can be extracted from the fractal transition curve is the length scale at which transition occurs. We provide a possible explanation for this length scale by noting that the flexural wavelength of the ice poses a fundamental limit on the size of melt ponds on permeable ice. If this is true, melt ponds could be used as a proxy for ice thickness.
Directory of Open Access Journals (Sweden)
Tairone Paiva Leão
2010-08-01
Full Text Available Fractal mathematics has been used to characterize water and solute transport in porous media and also to characterize and simulate porous media properties. The objective of this study was to evaluate the correlation between the soil infiltration parameters sorptivity (S and time exponent (n and the parameters dimension (D and the Hurst exponent (H. For this purpose, ten horizontal columns with pure (either clay or loam and heterogeneous porous media (clay and loam distributed in layers in the column were simulated following the distribution of a deterministic Cantor Bar with fractal dimension H" 0.63. Horizontal water infiltration experiments were then simulated using Hydrus 2D software. The sorptivity (S and time exponent (n parameters of the Philip equation were estimated for each simulation, using the nonlinear regression procedure of the statistical software package SAS®. Sorptivity increased in the columns with the loam content, which was attributed to the relation of S with the capillary radius. The time exponent estimated by nonlinear regression was found to be less than the traditional value of 0.5. The fractal dimension estimated from the Hurst exponent was 17.5 % lower than the fractal dimension of the Cantor Bar used to generate the columns.A matemática fractal tem sido utilizada para caracterizar o transporte de água e solutos em meios porosos e também para simular características físicas e geométricas de meios porosos. O objetivo deste trabalho foi avaliar a correlação entre os parâmetros de infiltração de água sortividade e expoente de tempo (n e os parâmetros dimensão fractal (D e expoente de Hurst (H. Para isso, dez colunas horizontais foram simuladas em computador, sendo preenchidas com material de textura franca ou argilosa, puros ou em combinações de camadas alternadas dos dois materiais, seguindo a distribuição de um Conjunto de Cantor determinístico com dimensão fractal 0,63. As simulações de movimento
Nonlinear dynamics, fractals, cardiac physiology and sudden death
Goldberger, Ary L.
1987-01-01
The authors propose a diametrically opposite viewpoint to the generally accepted tendency of equating healthy function with order and disease with chaos. With regard to the question of sudden cardiac death and chaos, it is suggested that certain features of dynamical chaos related to fractal structure and fractal dynamics may be important organizing principles in normal physiology and that certain pathologies, including ventricular fibrillation, represent a class of 'pathological periodicities'. Some laboratory work bearing on the relation of nonlinear analysis to physiological and pathophysiological data is briefly reviewed, with tentative theories and models described in reference to the mechanism of ventricular fibrillation.
Multi-fractal analysis of highway traffic data
Institute of Scientific and Technical Information of China (English)
Shang Peng-Jian; Shen Jin-Sheng
2007-01-01
The purpose of the present study is to investigate the presence of multi-fractal behaviours in the traffic time series not only by statistical approaches but also by geometrical approaches. The pointwise H(o)lder exponent of a function is calculated by developing an algorithm for the numerical evaluation of H(o)lder exponent of time series. The traffic time series observed on the Beijing Yuquanying highway are analysed. The results from all these methods indicate that the traffic data exhibit the multi-fractal behaviour.
Optimized Ultrawideband and Uniplanar Minkowski Fractal Branch Line Coupler
Directory of Open Access Journals (Sweden)
Mohammad Jahanbakht
2012-01-01
Full Text Available The non-Euclidean Minkowski fractal geometry is used in design, optimization, and fabrication of an ultrawideband (UWB branch line coupler. Self-similarities of the fractal geometries make them act like an infinite length in a finite area. This property creates a smaller design with broader bandwidth. The designed 3 dB microstrip coupler has a single layer and uniplanar platform with quite easy fabrication process. This optimized 180° coupler also shows a perfect isolation and insertion loss over the UWB frequency range of 3.1–10.6 GHz.
Theoretical study of fractal growth and stability on surface
DEFF Research Database (Denmark)
Dick, Veronika V.; Solov'yov, Ilia; Solov'yov, Andrey V.
2009-01-01
We perform a theoretical study of the fractal growing process on surface by using the deposition, diffusion, aggregation method. We present a detailed analysis of the post-growth processes occurring in a nanofractal on surface. For this study we developed a method which describes the internal...... dynamics of particles in a fractal and accounts for their diffusion and detachment. We demonstrate that these kinetic processes are responsible for the formation of the final shape of the islands on surface after the post-growth relaxation....
Hydrophobicity classification of polymeric materials based on fractal dimension
Directory of Open Access Journals (Sweden)
Daniel Thomazini
2008-12-01
Full Text Available This study proposes a new method to obtain hydrophobicity classification (HC in high voltage polymer insulators. In the method mentioned, the HC was analyzed by fractal dimension (fd and its processing time was evaluated having as a goal the application in mobile devices. Texture images were created from spraying solutions produced of mixtures of isopropyl alcohol and distilled water in proportions, which ranged from 0 to 100% volume of alcohol (%AIA. Based on these solutions, the contact angles of the drops were measured and the textures were used as patterns for fractal dimension calculations.
RF MEMS Fractal Capacitors With High Self-Resonant Frequencies
Elshurafa, Amro M.
2012-07-23
This letter demonstrates RF microelectromechanical systems (MEMS) fractal capacitors possessing the highest reported self-resonant frequencies (SRFs) in PolyMUMPS to date. Explicitly, measurement results show SRFs beyond 20 GHz. Furthermore, quality factors higher than 4 throughout a band of 1-15 GHz and reaching as high as 28 were achieved. Additional benefits that are readily attainable from implementing fractal capacitors in MEMS are discussed, including suppressing residual stress warping, eliminating the need for etching holes, and reducing parasitics. The latter benefits were acquired without any fabrication intervention. © 2011 IEEE.
Heritability of retinal vascular fractals: a twin study
DEFF Research Database (Denmark)
Vergmann, Anna Stage; Broe, Rebecca; Kessel, Line
. The retinal vascular fractal dimension was measured using the box-counting method and compared within monozygotic and dizygotic twin pairs using Pearson correlation coefficents. Falconer´s formula and quantitative genetic models were used to determine the genetic component of variation. Results: The retinal...... for quantitative analysis of heritability. The intrapair correlation was markedly higher (0.505, p=0.0002) in monozygotic twins than in dizygotic twins (0.108, p=0.46), corresponding to a heritability h2 for the fractal dimension of 0.79. In quantitative genetic models, 54% of the variation was explained...
The concept of fractal cosmos: II. Modern cosmology
Grujic, P. V.
Development of the concept of fractal cosmos after Anaxagoras has been followed up to the present. It is shown how the concept reappeared in the early Renaissance as a vague idea and subsequently took up a concrete formulation at the beginning of the 20-eth century. The modern cosmology state of affairs has been considered in view of the fractal paradigm and the current disputes and controversies discussed. It is argued that the concept of the hierarchical cosmos is still alive and might become an essential ingredient within the modern view of the universe.
The concept of fractal cosmos: II Modern cosmology
Directory of Open Access Journals (Sweden)
Grujić Petar V.
2002-01-01
Full Text Available Development of the concept of fractal cosmos after Anaxagoras has been followed up to the present. It is shown how the concept reappeared in the early Renaissance as a vague idea and subsequently took up a concrete formulation at the beginning of the 20-eth century. The modern cosmology state of affairs has been considered in view of the fractal paradigm and the current disputes and controversies discussed. It is argued that the concept of the hierarchical cosmos is still alive and might become an essential ingredient within the modern view of the universe.
Analysis of MRI by fractals for prediction of sensory attributes: A case study in loin
DEFF Research Database (Denmark)
Caballero, Daniel; Antequera, Teresa; Caro, Andrés
2018-01-01
This study investigates the use of fractal algorithms to analyse MRI of meat products, specifically loin, in order to determine sensory parameters of loin. For that, the capability of different fractal algorithms was evaluated (Classical Fractal Algorithm, CFA; Fractal Texture Algorithm, FTA...... was analysed. Results on this study firstly demonstrate the capability of fractal algorithms to analyse MRI from meat product. Different combinations of the analysed techniques can be applied for predicting most sensory attributes of loins adequately (R > 0.5). However, the combination of SE, OPFTA and MLR...... offered the most appropriate results. Thus, it could be proposed as an alternative to the traditional food technology methods....
Retinal vascular fractals predict long-term microvascular complications in type 1 diabetes mellitus
DEFF Research Database (Denmark)
Broe, Rebecca; Rasmussen, Malin L; Frydkjaer-Olsen, Ulrik
2014-01-01
: We included 180 patients with type 1 diabetes in a 16 year follow-up study. In baseline retinal photographs (from 1995), all vessels in a zone 0.5-2.0 disc diameters from the disc margin were traced using Singapore Institute Vessel Assessment-Fractal image analysis software. Artefacts were removed......AIMS/HYPOTHESIS: Fractal analysis of the retinal vasculature provides a global measure of the complexity and density of retinal vessels summarised as a single variable: the fractal dimension. We investigated fractal dimensions as long-term predictors of microvasculopathy in type 1 diabetes. METHODS....... Retinal fractal analysis therefore is a potential tool for risk stratification in type 1 diabetes....
Directory of Open Access Journals (Sweden)
Iris Aparecida Custódio
2018-01-01
ída por cinco professoras do ciclo de alfabetização de escolas públicas, quatro pós-graduandas e quatro docentes da universidade. Quinzenalmente, o grupo se reúne para estudar, selecionar tarefas para realizar em sala de aula e compartilhar narrativas das práticas produzidas pelas professoras. O texto focaliza o movimento de significações no decorrer do processo de ensino e aprendizagem de conceitos geométricos com um aluno de um 3º ano do ensino fundamental, diagnosticado com transtorno do espectro autista. Os resultados revelam que as possibilidades de aprendizagem de todos os alunos, com ou sem deficiências, estão atreladas às condições oferecidas pelo meio circundante. Desse modo, enfatizam-se as relações intersubjetivas ocorridas durante as atividades mediadas pelas palavras e instrumentos técnico-semióticos. Ao ensinar, no contexto da política de inclusão escolar, o desafio dos professores é criar as condições educacionais para todos os alunos presentes em sala de aula, sem perder de vista as singularidades. Este estudio se guía por los principios teóricos y metodológicos de la perspectiva histórico-cultural con el fin de contribuir al análisis de los modos de desarrollo de conocimiento por los estudiantes con discapacidades. Se trata de un recorte de una investigación de maestría, desarrollada en el marco del Programa Observatorio de la Educación – OBEDUC (Brasil, que tiene como foco las prácticas de letramento matemático escolar y la formación docente. El equipo del proyecto está formado por cinco profesoras del ciclo de alfabetización de la escuela pública, cuatro alumnas de cursos de postgrado y cuatro profesores universitarios. Quincenalmente, el grupo se reúne para estudiar, seleccionar tareas para realizar en el aula y compartir narrativas de las prácticas producidas por las profesoras. El texto se centra en el movimiento de los significados en el curso del proceso de enseñanza y aprendizaje de conceptos geom
International Nuclear Information System (INIS)
Pyun, Su-Il; Rhee, Chang-Kyu
2004-01-01
Fractal characteristics of mesoporous carbon electrodes were investigated with various pore structures using the N 2 gas adsorption method and the transmission electron microscopy (TEM) image analysis method. The mesoporous carbons with various pore structures were prepared by imprinting mesophase pitch used as a carbonaceous precursor with different colloidal silica particles. All imprinted mesoporous carbons were composed of two groups of pores produced from the carbonisation of mesophase pitch and from the silica imprinting. The overall surface fractal dimensions of the carbon specimens were determined from the analyses of the N 2 gas adsorption isotherms. In order to distinguish the surface fractal dimension of the carbonisation-induced pore surface from that fractal dimension of the silica-imprinted pore surface, the individual surface fractal dimensions were determined from the image analyses of the TEM images. From the comparison of the overall surface fractal dimension with the individual surface fractal dimensions, it was recognised that the overall surface fractal dimension is crucially influenced by the individual surface fractal dimension of the silica-imprinted pore surface. Moreover, from the fact that the silica-imprinted pore surface with broad relative pore size distribution (PSD) gave lower value of the individual surface fractal dimension than that pore surface with narrow relative PSD, it is concluded that as the silica-imprinted pores comprising the carbon specimen agglomerate, the individual surface fractal dimension of that pore surface decreases
Return to axi-symmetry for pipe flows generated after a fractal orifice
Energy Technology Data Exchange (ETDEWEB)
Nicolleau, F C G A, E-mail: F.Nicolleau@Sheffield.ac.uk [SFMG, Department of Mechanical Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD (United Kingdom)
2013-12-15
We present experimental results obtained from pipe flows generated by fractal shaped orifices or openings. We compare different fractal orifices and their efficiencies to re-generate axi-symmetric flows and to return to the standard flow generated by a perforated plate or a circular orifice plate. We consider two families of fractal openings: mono-orifice and complex orifice and emphasize the differences between the two fractal families. For the Reynolds number we used, we found that there is an optimum iteration for the fractal level above which no improvement for practical applications such as flowmetering is to be expected. The main parameters we propose for the characterization of the fractal orifice are the connexity parameter, the symmetry angle and the gap to the wall {delta}*{sub g}. The results presented here are among the first for flows forced through fractal openings and will serve as a reference for future studies and benchmarks for numerical applications. (paper)
Fractal and mechanical micro- and nanorange properties of sylvite and halite crystals
Directory of Open Access Journals (Sweden)
Valery N. Aptukov
2017-09-01
Full Text Available This article involves the treatment of micro- and nanorange scanning and indentation data for salt rock crystals obtained with help of the scanning microscope Dimension Icon using the mathematical models. It also describes the basic methods of fractal analysis. It shows the effectiveness of the method of minimal covering which is chosen to research the fractal properties of salt rock crystal surfaces. The article includes the algorithm of this method and the description of its generalization for the two-dimensional case. The values of fractal index and multifractal parameters have been calculated on the basis of the minimal covering method. The article also involves the anisotropy effects for fractal properties, comparison of fractal behavior on different scale levels. It gives the values of hardness for different parts of the crystals and studies the correlation between hardness and fractal index and describes the character of the influence of fractal dimension on roughness.
Passenger flow analysis of Beijing urban rail transit network using fractal approach
Li, Xiaohong; Chen, Peiwen; Chen, Feng; Wang, Zijia
2018-04-01
To quantify the spatiotemporal distribution of passenger flow and the characteristics of an urban rail transit network, we introduce four radius fractal dimensions and two branch fractal dimensions by combining a fractal approach with passenger flow assignment model. These fractal dimensions can numerically describe the complexity of passenger flow in the urban rail transit network and its change characteristics. Based on it, we establish a fractal quantification method to measure the fractal characteristics of passenger follow in the rail transit network. Finally, we validate the reasonability of our proposed method by using the actual data of Beijing subway network. It has been shown that our proposed method can effectively measure the scale-free range of the urban rail transit network, network development and the fractal characteristics of time-varying passenger flow, which further provides a reference for network planning and analysis of passenger flow.
Return to axi-symmetry for pipe flows generated after a fractal orifice
International Nuclear Information System (INIS)
Nicolleau, F C G A
2013-01-01
We present experimental results obtained from pipe flows generated by fractal shaped orifices or openings. We compare different fractal orifices and their efficiencies to re-generate axi-symmetric flows and to return to the standard flow generated by a perforated plate or a circular orifice plate. We consider two families of fractal openings: mono-orifice and complex orifice and emphasize the differences between the two fractal families. For the Reynolds number we used, we found that there is an optimum iteration for the fractal level above which no improvement for practical applications such as flowmetering is to be expected. The main parameters we propose for the characterization of the fractal orifice are the connexity parameter, the symmetry angle and the gap to the wall δ* g . The results presented here are among the first for flows forced through fractal openings and will serve as a reference for future studies and benchmarks for numerical applications. (paper)
Assessment of textural differentiations in forest resources in Romania using fractal analysis
DEFF Research Database (Denmark)
Andronache, Ion; Fensholt, Rasmus; Ahammer, Helmut
2017-01-01
regions in Romania affected by both deforestation and reforestation using a non-Euclidean method based on fractal analysis.We calculated four fractal dimensions of forest areas: the fractal box-counting dimension of the forest areas, the fractal box-counting dimension of the dilated forest areas......, the fractal dilation dimension and the box-counting dimension of the border of the dilated forest areas. Fractal analysis revealed morpho-structural and textural differentiations of forested, deforested and reforested areas in development regions with dominant mountain relief and high hills (more forested...... and compact organization) in comparison to the development regions dominated by plains or low hills (less forested, more fragmented with small and isolated clusters). Our analysis used the fractal analysis that has the advantage of analyzing the entire image, rather than studying local information, thereby...
DEFF Research Database (Denmark)
Sørensen, Erik Schwartz; Fogedby, Hans C.; Mouritsen, Ole G.
1989-01-01
temperature are studied as functions of temperature, time, and concentration. At zero temperature and high dilution, the growing solid is found to have a fractal morphology and the effective fractal exponent D varies with concentration and ratio of time scales of the two dynamical processes. The mechanism...... responsible for forming the fractal solid is shown to be a buildup of a locally high vacancy concentration in the active growth zone. The growth-probability measure of the fractals is analyzed in terms of multifractality by calculating the f(α) spectrum. It is shown that the basic ideas of relating...... probability measures of static fractal objects to the growth-probability distribution during formation of the fractal apply to the present model. The f(α) spectrum is found to be in the universality class of diffusion-limited aggregation. At finite temperatures, the fractal solid domains become metastable...
Prediction of pork quality parameters by applying fractals and data mining on MRI
DEFF Research Database (Denmark)
Caballero, Daniel; Pérez-Palacios, Trinidad; Caro, Andrés
2017-01-01
This work firstly investigates the use of MRI, fractal algorithms and data mining techniques to determine pork quality parameters non-destructively. The main objective was to evaluate the capability of fractal algorithms (Classical Fractal algorithm, CFA; Fractal Texture Algorithm, FTA and One...... Point Fractal Texture Algorithm, OPFTA) to analyse MRI in order to predict quality parameters of loin. In addition, the effect of the sequence acquisition of MRI (Gradient echo, GE; Spin echo, SE and Turbo 3D, T3D) and the predictive technique of data mining (Isotonic regression, IR and Multiple linear...... regression, MLR) were analysed. Both fractal algorithm, FTA and OPFTA are appropriate to analyse MRI of loins. The sequence acquisition, the fractal algorithm and the data mining technique seems to influence on the prediction results. For most physico-chemical parameters, prediction equations with moderate...
Fractal properties of background noise and target signal enhancement using CSEM data
Benavides, Alfonso; Everett, Mark E.; Pierce, Carl; Nguyen, Cam
2003-09-01
Controlled-source electromagnetic (CSEM) spatial profiles and 2-D conductivity maps were obtained on the Brazos Valley, TX floodplain to study the fractal statistics of geological signals and effects of man-made conductive targets using Geonics EM34, EM31 and EM63. Using target-free areas, a consistent power-law power spectrum (|A(k)| ~ k ^-β) for the profiles was found with β values typical of fractional Brownian motion (fBm). This means that the spatial variation of conductivity does not correspond to Gaussian statistics, where there are spatial correlations at different scales. The presence of targets tends to flatten the power-law power spectrum (PS) at small wavenumbers. Detection and localization of targets can be achieved using short-time Fourier transform (STFT). The presence of targets is enhanced because the signal energy is spread to higher wavenumbers (small scale numbers) in the positions occupied by the targets. In the case of poor spatial sampling or small amount of data, the information available from the power spectrum is not enough to separate spatial correlations from target signatures. Advantages are gained by using the spatial correlations of the fBm in order to reject the background response, and to enhance the signals from highly conductive targets. This approach was tested for the EM31 using a pre-processing step that combines apparent conductivity readings from two perpendicular transmitter-receiver orientations at each station. The response obtained using time-domain CSEM is influence to a lesser degree by geological noise and the target response can be processed to recover target features. The homotopy method is proposed to solve the inverse problem using a set of possible target models and a dynamic library of responses used to optimize the starting model.
A fractal model for intergranular fractures in nanocrystals
International Nuclear Information System (INIS)
Lung, C.W.; Xiong, L.Y.; Zhou, X.Z.
1993-09-01
A fractal model for intergranular fractures in nanocrystals is proposed to explain the dependence of fracture toughness with grain size in this range of scale. Based on positron annihilation and internal friction experimental results, we point out that the assumption of a constant grain boundary thickness in previous models is too simplified to be true. (author). 7 refs, 6 figs
Fractal-like dimension of nanometer Diesel soot particles
Energy Technology Data Exchange (ETDEWEB)
Skillas, G.; Baltensperger, U. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Siegmann, K. [Eidgenoessische Technische Hochschule, Zurich (Switzerland)
1997-11-01
Measurements with a low-pressure impactor and a differential mobility analyser were conducted for Diesel soot at various engine loads. By means of these measurements a fractal-like dimension of Diesel soot particles, with diameters ranging from 55 up to 260 nm, was established. (author) 2 figs., 7 refs.
Fractals and the Large-Scale Structure in the Universe
Indian Academy of Sciences (India)
of fractals. Measuring the Length of a Curve. Consider the problem of measuring the length of a ..... a two dimensional smooth surface embedded in 3 dimen- ... interesting measure of a I-dimensional object is its length and not the volume.
Turbulent premixed flames on fractal-grid-generated turbulence
Energy Technology Data Exchange (ETDEWEB)
Soulopoulos, N; Kerl, J; Sponfeldner, T; Beyrau, F; Hardalupas, Y; Taylor, A M K P [Mechanical Engineering Department, Imperial College London, London SW7 2AZ (United Kingdom); Vassilicos, J C, E-mail: ns6@ic.ac.uk [Department of Aeronautics, Imperial College London, London SW7 2AZ (United Kingdom)
2013-12-15
A space-filling, low blockage fractal grid is used as a novel turbulence generator in a premixed turbulent flame stabilized by a rod. The study compares the flame behaviour with a fractal grid to the behaviour when a standard square mesh grid with the same effective mesh size and solidity as the fractal grid is used. The isothermal gas flow turbulence characteristics, including mean flow velocity and rms of velocity fluctuations and Taylor length, were evaluated from hot-wire measurements. The behaviour of the flames was assessed with direct chemiluminescence emission from the flame and high-speed OH-laser-induced fluorescence. The characteristics of the two flames are considered in terms of turbulent flame thickness, local flame curvature and turbulent flame speed. It is found that, for the same flow rate and stoichiometry and at the same distance downstream of the location of the grid, fractal-grid-generated turbulence leads to a more turbulent flame with enhanced burning rate and increased flame surface area. (paper)
Wetting characteristics of 3-dimensional nanostructured fractal surfaces
Energy Technology Data Exchange (ETDEWEB)
Davis, Ethan, E-mail: ethan.davis4@huskers.unl.edu [Nano & Microsystems Research Laboratory, Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, W342 Nebraska Hall, Lincoln, NE 68588-0526 (United States); Liu, Ying; Jiang, Lijia; Lu, Yongfeng [Laser Assisted Nano Engineering Lab, Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, 209N Scott Engineering Center, Lincoln, NE 68588-0511 (United States); Ndao, Sidy, E-mail: sndao2@unl.edu [Nano & Microsystems Research Laboratory, Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, W342 Nebraska Hall, Lincoln, NE 68588-0526 (United States)
2017-01-15
Highlights: • Hierarchically structured surfaces were fabricated on the micro/nano-scale. • These structures reduced the contact angle of the inherently hydrophilic material. • Similar surfaces have applications in two-phase heat transfer and microfluidics. - Abstract: This article reports the fabrication and wetting characteristics of 3-dimensional nanostructured fractal surfaces (3DNFS). Three distinct 3DNFS surfaces, namely cubic, Romanesco broccoli, and sphereflake were fabricated using two-photon direct laser writing. Contact angle measurements were performed on the multiscale fractal surfaces to characterize their wetting properties. Average contact angles ranged from 66.8° for the smooth control surface to 0° for one of the fractal surfaces. The change in wetting behavior was attributed to modification of the interfacial surface properties due to the inclusion of 3-dimensional hierarchical fractal nanostructures. However, this behavior does not exactly obey existing surface wetting models in the literature. Potential applications for these types of surfaces in physical and biological sciences are also discussed.
Model to estimate fractal dimension for ion-bombarded materials
Energy Technology Data Exchange (ETDEWEB)
Hu, A., E-mail: hu77@purdue.edu; Hassanein, A.
2014-03-15
Comprehensive fractal Monte Carlo model ITMC-F (Hu and Hassanein, 2012 [1]) is developed based on the Monte Carlo ion bombardment simulation code, i.e., Ion Transport in Materials and Compounds (ITMC) code (Hassanein, 1985 [2]). The ITMC-F studies the impact of surface roughness on the angular dependence of sputtering yield. Instead of assuming material surfaces to be flat or composed of exact self-similar fractals in simulation, we developed a new method to describe the surface shapes. Random fractal surfaces which are generated by midpoint displacement algorithm and support vector machine algorithm are combined with ITMC. With this new fractal version of ITMC-F, we successfully simulated the angular dependence of sputtering yield for various ion-target combinations, with the input surface roughness exponent directly depicted from experimental data (Hu and Hassanein, 2012 [1]). The ITMC-F code showed good agreement with the experimental data. In advanced, we compare other experimental sputtering yield with the results from ITMC-F to estimate the surface roughness exponent for ion-bombarded material in this research.
Depth-To-Basement Mapping Using Fractal Technique: Application ...
African Journals Online (AJOL)
... and can thus be obtained at source level. Application to aeromagnetic data from the Chad basin north eastern Nigeria produced a basement relief which range from depths of 2.47 km to 5.40 km with an average of 3.92 +- 0.66 km. Keywords: Fractal, depth, basement, spectra, aeromagnetic. Nigerian Journal of Physics Vol ...
Generalized Warburg impedance on realistic self-affine fractals ...
Indian Academy of Sciences (India)
Administrator
Generalized Warburg impedance on realistic self-affine fractals: Comparative study of statistically corrugated and isotropic roughness. RAJESH KUMAR and RAMA KANT. Journal of Chemical Sciences, Vol. 121, No. 5, September 2009, pp. 579–588. 1. ( ) c. L. R ω on page 582, column 2, para 2, after eq (8) should read as ...
Molecularly-Limited Fractal Surface Area of Mineral Powders
Directory of Open Access Journals (Sweden)
Petr Jandacka
2016-05-01
Full Text Available The topic of the specific surface area (SSA of powders is not sufficiently described in the literature in spite of its nontrivial contribution to adsorption and dissolution processes. Fractal geometry provides a way to determine this parameter via relation SSA ~ x(D − 3s(2 − D, where x (m is the particle size and s (m is a scale. Such a relation respects nano-, micro-, or macro-topography on the surface. Within this theory, the fractal dimension 2 ≤ D < 3 and scale parameter s plays a significant role. The parameter D may be determined from BET or dissolution measurements on several samples, changing the powder particle sizes or sizes of adsorbate molecules. If the fractality of the surface is high, the SSA does not depend on the particle size distribution and vice versa. In this paper, the SSA parameter is analyzed from the point of view of adsorption and dissolution processes. In the case of adsorption, a new equation for the SSA, depending on the term (2 − D∙(s2 − sBET/sBET, is derived, where sBET and s2 are effective cross-sectional diameters for BET and new adsorbates. Determination of the SSA for the dissolution process appears to be very complicated, since the fractality of the surface may change in the process. Nevertheless, the presented equations have good application potential.
Random fractal characters and length uncertainty of the continental ...
Indian Academy of Sciences (India)
According to fractal theory, the divider dimension more accurately represents the irregularity of a ... Mark 1987), and it has a threshold value between .... We used up to 20 step lengths. (2.5, 5 .... Variations of the D-value rates between the num-.
Spatial Behaviour of Singularities in Fractal- and Gaussian Speckle Fields
DEFF Research Database (Denmark)
Angelsky, Oleg V.; Maksimyak, Alexander P.; Maksimyak, Peter P.
2009-01-01
Peculiarities of the spatial behaviour of the dislocation lines resulting from scattering of coherent radiation from random and fractal rough surfaces are studied. The technique of optical correlation is proposed for diagnostics of phase singularities in a complex speckle field by comparing...
[Modeling continuous scaling of NDVI based on fractal theory].
Luan, Hai-Jun; Tian, Qing-Jiu; Yu, Tao; Hu, Xin-Li; Huang, Yan; Du, Ling-Tong; Zhao, Li-Min; Wei, Xi; Han, Jie; Zhang, Zhou-Wei; Li, Shao-Peng
2013-07-01
Scale effect was one of the very important scientific problems of remote sensing. The scale effect of quantitative remote sensing can be used to study retrievals' relationship between different-resolution images, and its research became an effective way to confront the challenges, such as validation of quantitative remote sensing products et al. Traditional up-scaling methods cannot describe scale changing features of retrievals on entire series of scales; meanwhile, they are faced with serious parameters correction issues because of imaging parameters' variation of different sensors, such as geometrical correction, spectral correction, etc. Utilizing single sensor image, fractal methodology was utilized to solve these problems. Taking NDVI (computed by land surface radiance) as example and based on Enhanced Thematic Mapper Plus (ETM+) image, a scheme was proposed to model continuous scaling of retrievals. Then the experimental results indicated that: (a) For NDVI, scale effect existed, and it could be described by fractal model of continuous scaling; (2) The fractal method was suitable for validation of NDVI. All of these proved that fractal was an effective methodology of studying scaling of quantitative remote sensing.
Generating hierarchical scale free-graphs from fractals
Komjáthy, J.; Simon, K.
2011-01-01
Motivated by the hierarchial network model of E. Ravasz, A.-L. Barabási, and T. Vicsek, we introduce deterministic scale-free networks derived from a graph directed self-similar fractal ¿. With rigorous mathematical results we verify that our model captures some of the most important features of
Fractal Image Coding Based on a Fitting Surface
Directory of Open Access Journals (Sweden)
Sheng Bi
2014-01-01
Full Text Available A no-search fractal image coding method based on a fitting surface is proposed. In our research, an improved gray-level transform with a fitting surface is introduced. One advantage of this method is that the fitting surface is used for both the range and domain blocks and one set of parameters can be saved. Another advantage is that the fitting surface can approximate the range and domain blocks better than the previous fitting planes; this can result in smaller block matching errors and better decoded image quality. Since the no-search and quadtree techniques are adopted, smaller matching errors also imply less number of blocks matching which results in a faster encoding process. Moreover, by combining all the fitting surfaces, a fitting surface image (FSI is also proposed to speed up the fractal decoding. Experiments show that our proposed method can yield superior performance over the other three methods. Relative to range-averaged image, FSI can provide faster fractal decoding process. Finally, by combining the proposed fractal coding method with JPEG, a hybrid coding method is designed which can provide higher PSNR than JPEG while maintaining the same Bpp.
Cathodic Arcs From Fractal Spots to Energetic Condensation
Anders, Andre
2009-01-01
Emphasizes the fractal character of cathode spots, and describes strongly fluctuating plasma properties such as the presence of multiply charged ions that move with supersonic velocity. This book also deals with issues, such as arc source construction, and macroparticle removal. It is intended for scientists, practitioners, and students alike
Fractal analysis of electrolytically-deposited palladium hydride dendrites
International Nuclear Information System (INIS)
Bursill, L.A.; Julin, Peng; Xudong, Fan.
1990-01-01
The fractal scaling characteristics of the surface profile of electrolytically-deposited palladium hydride dendritic structures have been obtained using conventional and high resolution transmission electron microscopy. The results are in remarkable agreement with the modified diffusion-limited aggregation model. 19 refs., 3 tabs., 13 figs
Near Neighbor Distribution in Sets of Fractal Nature
Czech Academy of Sciences Publication Activity Database
Jiřina, Marcel
2013-01-01
Roč. 5, č. 1 (2013), s. 159-166 ISSN 2150-7988 R&D Projects: GA MŠk(CZ) LG12020 Institutional support: RVO:67985807 Keywords : nearest neighbor * fractal set * multifractal * Erlang distribution Subject RIV: BB - Applied Statistics, Operational Research http://www.mirlabs.org/ijcisim/regular_papers_2013/Paper91.pdf
New fractal structures for frequencies close to the visible range
DEFF Research Database (Denmark)
Malureanu, Radu; Sandru, A.; Andryieuski, Andrei
2011-01-01
In this paper we present a new type of fractal resonator to be used in the red/NIR region of the spectra. The structure presents high-transmission band in 795-825nm range. The stop band is in the 683-731 nm range. Due to the huge difference in the spectra within such a short range, the structure...
Near-Field Optical Microscopy of Fractal Structures
DEFF Research Database (Denmark)
Coello, Victor; Bozhevolnyi, Sergey I.
1999-01-01
Using a photon scanning tunnelling microscope combined with a shear-force feedback system, we image both topographical and near-field optical images (at the wavelengths of 633 and 594 nm) of silver colloid fractals. Near-field optical imaging is calibrated with a standing evanescent wave pattern...
An event driven algorithm for fractal cluster formation
González, S.; Thornton, Anthony Richard; Luding, Stefan
2010-01-01
A new cluster based event-driven algorithm is developed to simulate the formation of clusters in a two dimensional gas: particles move freely until they collide and "stick" together irreversibly. These clusters aggregate into bigger structures in an isotompic way, forming fractal structures whose
Fractal Model for Acoustic Absorbing of Porous Fibrous Metal Materials
Directory of Open Access Journals (Sweden)
Weihua Chen
2016-01-01
Full Text Available To investigate the changing rules between sound absorbing performance and geometrical parameters of porous fibrous metal materials (PFMMs, this paper presents a fractal acoustic model by incorporating the static flow resistivity based on Biot-Allard model. Static flow resistivity is essential for an accurate assessment of the acoustic performance of the PFMM. However, it is quite difficult to evaluate the static flow resistivity from the microstructure of the PFMM because of a large number of disordered pores. In order to overcome this difficulty, we firstly established a static flow resistivity formula for the PFMM based on fractal theory. Secondly, a fractal acoustic model was derived on the basis of the static flow resistivity formula. The sound absorption coefficients calculated by the presented acoustic model were validated by the values of Biot-Allard model and experimental data. Finally, the variation of the surface acoustic impedance, the complex wave number, and the sound absorption coefficient with the fractal dimensions were discussed. The research results can reveal the relationship between sound absorption and geometrical parameters and provide a basis for improving the sound absorption capability of the PFMMs.
A new modified fast fractal image compression algorithm
DEFF Research Database (Denmark)
Salarian, Mehdi; Nadernejad, Ehsan; MiarNaimi, Hossein
2013-01-01
In this paper, a new fractal image compression algorithm is proposed, in which the time of the encoding process is considerably reduced. The algorithm exploits a domain pool reduction approach, along with the use of innovative predefined values for contrast scaling factor, S, instead of searching...
Can fractal objects operate as efficient inline mixers?
Laizet, Sylvain; Vassilicos, John; Turbulence, Mixing; Flow Control Group Team
2011-11-01
Recently, Hurst & Vassilicos, PoF 2007, Seoud & Vassilicos, PoF 2007, Mazellier & Vassilicos, PoF, 2010 used different multiscale grids to generate turbulence in a wind tunnel and have shown that complex multiscale boundary/initial conditions can drastically influence the behaviour of a turbulent flow, but that the detailled specific nature of the multiscale geometry matters too. Multiscale (fractal) objects can be designed to be immersed in any fluid flow where there is a need to control and design the turbulence generated by the object. Different types of multiscale objects can be designed as different types of energy-efficient mixers with varying degrees of high turbulent intensities, small pressure drop and downstream distance from the grid where the turbulence is most vigorous. Here, we present a 3D DNS study of the stirring and mixing of a passive scalar by turbulence generated with either a fractal square grid or a regular grid in the presence of a mean scalar gradient. The results show that: (1) there is a linear increase for the passive scalar variance for both grids, (2) the passive scalar variance is ten times bigger for the fractal grid, (3) the passive scalar flux is constant after the production region for both grids, (4) the passive scalar flux is enhanced by an order of magnitude for the fractal grid. We acknowledge support from EPSRC, UK.
Koch fractals in physical optics and their Fraunhofer diffraction patterns
Czech Academy of Sciences Publication Activity Database
Horváth, P.; Šmíd, Petr; Vašková, I.; Hrabovský, M.
2010-01-01
Roč. 121, č. 2 (2010), s. 206-2134 ISSN 0030-4026 R&D Projects: GA MŠk(CZ) 1M06002 Institutional research plan: CEZ:AV0Z10100522 Keywords : Koch fractal s * Fraunhofer diffraction patterns Subject RIV: BH - Optics, Masers, Lasers Impact factor: 0.454, year: 2010
A possible dynamical process leading to fractal structures
Indian Academy of Sciences (India)
In this paper, we propose a stochastic evolution of the early Universe which can lead to a fractal correlation in galactic distribution in the Universe. The stochastic equation of state, due to fluctuating creation rates of various components in a many-component fluid, leads to a fluctuating expansion rate for the Universe in the ...
Fractals and the Large-Scale Structure in the Universe
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 7; Issue 4. Fractals and the Large-Scale Structure in the Universe - Is the Cosmological Principle Valid? A K Mittal T R Seshadri. General Article Volume 7 Issue 4 April 2002 pp 39-47 ...
An event driven algorithm for fractal cluster formation
González, S.; Gonzalez Briones, Sebastián; Thornton, Anthony Richard; Luding, Stefan
2011-01-01
A new cluster based event-driven algorithm is developed to simulate the formation of clusters in a two dimensional gas: particles move freely until they collide and "stick" together irreversibly. These clusters aggregate into bigger structures in an isotompic way, forming fractal structures whose
Higgs field and cosmological parameters in the fractal quantum system
Directory of Open Access Journals (Sweden)
Abramov Valeriy
2017-01-01
Full Text Available For the fractal model of the Universe the relations of cosmological parameters and the Higgs field are established. Estimates of the critical density, the expansion and speed-up parameters of the Universe (the Hubble constant and the cosmological redshift; temperature and anisotropy of the cosmic microwave background radiation were performed.
Fractal dimension at the phase transition of inhomogeneous cellular automata
International Nuclear Information System (INIS)
da Silva, L.R.
1988-01-01
For random binary mixtures of cellular automata in the square lattice, calculations are made of the fractal dimensions associated with the damage spreading and the propagation time of damage at the transition to chaos. Two rules are mixed and universalities of these quantities are sought with respect to change of the rules
Fractal characterization for noise signal validation in power reactors
International Nuclear Information System (INIS)
Aguilar Martinez, Omar
2003-01-01
Up to now, a great variety of methods is used for the dynamical characterization of different components of Nuclear Power Plants (NPPs). With this aim, time and spectral analysis are usually considered, and different tools of non-stationary and non-gaussian analysis are also presented. When applying non-lineal dynamics theory for noise signal validation purposes in power reactors, the extraction of fractal echoes plays a main role. Fractal characterization for noise signal validation purposes can be integrated to the task of processing and acquisition of time signals in noise (fluctuation parameters) analysis systems. The possibility of discrimination between deterministic chaotic signals and pure noise signals has been incorporated, as a complement; to noise signals analysis in normal and anomalous operational conditions in NPPs using a fractal approach. In this work the detailed analysis of a neutronic sensor response is considered and the fractal characterization of its dynamics state (i.e. sensor line) for noise signal classification, it is presented. The experiment from where the time series (signals) were obtained, was carried out at the Research Reactor of the Technical University of Budapest, Hungary, during a model experiment for ageing process study of in-core neutron detectors (author)
Numerical modeling of fine particle fractal aggregates in turbulent flow
Directory of Open Access Journals (Sweden)
Cao Feifeng
2015-01-01
Full Text Available A method for prediction of fine particle transport in a turbulent flow is proposed, the interaction between particles and fluid is studied numerically, and fractal agglomerate of fine particles is analyzed using Taylor-expansion moment method. The paper provides a better understanding of fine particle dynamics in the evolved flows.
Toward a new “Fractals-General Science”
Directory of Open Access Journals (Sweden)
Hassen Taher Dorrah
2014-09-01
Full Text Available A recent study has shown that everywhere real systems follow common “fractals-general stacking behavior” during their change pathways (or evolutionary life cycles. This fact leads to the emergence of the new discipline “Fractals-General Science” as a mother-discipline (and acting as upper umbrella of existing natural and applied sciences to commonly handle their fractals-general change behavior. It is, therefore, the main targets of this short communication are to present the motives, objectives, relations with other existing sciences, and the development map of such new science. It is discussed that there are many foreseen illustrative applications in geology, archeology, astronomy, life sciences, ecology, environmental science, hydrology, agronomy, engineering, materials sciences, chemistry, nanotechnology, biology, medicine, psychiatry, sociology, humanities, education, and arts that could effectively lead the implementation and experimentation of such new science. It is highlighted that the new “Fractals-General Science” could provide through multi-stacking representations the necessary platforms for investigating interactions and mutual changes between real life systems belonging to several sciences and disciplines. Examples are handling problems of the processing of basic formation and changes of matter and substances, propagation of combined corrosion, creep, fatigue and sedimentation of engineering and industrial systems, and the progressing of humans’ evolutionary life cycles.
Dynamical agents' strategies and the fractal market hypothesis
Czech Academy of Sciences Publication Activity Database
Vácha, Lukáš; Vošvrda, Miloslav
2005-01-01
Roč. 14, č. 2 (2005), s. 172-179 ISSN 1210-0455 Grant - others:GA UK(CZ) 454/2004/A EK/FSV Institutional research plan: CEZ:AV0Z10750506 Keywords : efficient market hypothesis * fractal market hypothesis * agent's investment horizons Subject RIV: AH - Economics
Fractal Image Filters for Specialized Image Recognition Tasks
2010-02-11
colorful than lines and circles drawn on papyrus: their depth and beauty are advertised to a broad audience via computer graphics represen- tations of... colours were obtained with the aid of a fractal transformation from the attractor to the small picture of the yellow �ower. as being the !-limit set of
Fractal scale-free networks resistant to disease spread
International Nuclear Information System (INIS)
Zhang, Zhongzhi; Zhou, Shuigeng; Zou, Tao; Chen, Guisheng
2008-01-01
The conventional wisdom is that scale-free networks are prone to epidemic propagation; in the paper we demonstrate that, on the contrary, disease spreading is inhibited in fractal scale-free networks. We first propose a novel network model and show that it simultaneously has the following rich topological properties: scale-free degree distribution, tunable clustering coefficient, 'large-world' behavior, and fractal scaling. Existing network models do not display these characteristics. Then, we investigate the susceptible–infected–removed (SIR) model of the propagation of diseases in our fractal scale-free networks by mapping it to the bond percolation process. We establish the existence of non-zero tunable epidemic thresholds by making use of the renormalization group technique, which implies that power law degree distribution does not suffice to characterize the epidemic dynamics on top of scale-free networks. We argue that the epidemic dynamics are determined by the topological properties, especially the fractality and its accompanying 'large-world' behavior
Wetting characteristics of 3-dimensional nanostructured fractal surfaces
International Nuclear Information System (INIS)
Davis, Ethan; Liu, Ying; Jiang, Lijia; Lu, Yongfeng; Ndao, Sidy
2017-01-01
Highlights: • Hierarchically structured surfaces were fabricated on the micro/nano-scale. • These structures reduced the contact angle of the inherently hydrophilic material. • Similar surfaces have applications in two-phase heat transfer and microfluidics. - Abstract: This article reports the fabrication and wetting characteristics of 3-dimensional nanostructured fractal surfaces (3DNFS). Three distinct 3DNFS surfaces, namely cubic, Romanesco broccoli, and sphereflake were fabricated using two-photon direct laser writing. Contact angle measurements were performed on the multiscale fractal surfaces to characterize their wetting properties. Average contact angles ranged from 66.8° for the smooth control surface to 0° for one of the fractal surfaces. The change in wetting behavior was attributed to modification of the interfacial surface properties due to the inclusion of 3-dimensional hierarchical fractal nanostructures. However, this behavior does not exactly obey existing surface wetting models in the literature. Potential applications for these types of surfaces in physical and biological sciences are also discussed.
Field and electric potential of conductors with fractal geometry
Energy Technology Data Exchange (ETDEWEB)
Assis, Thiago A de; Mota, Fernando de B; Miranda, Jose G V; Andrade, Roberto F S; Castilho, Caio M C de [Instituto de Fisica, Universidade Federal da Bahia, Campus Universitario da Federacao, 40210-340, Salvador (Brazil)
2007-11-28
In this study, the behavior of the electric field and its potential are investigated in a region bounded by a rough fractal surface and a distant plane. Both boundaries, maintained at distinct potential values, are assumed to be conductors and, as such, the electric potential is obtained by numerically solving Laplace's equation subject to the appropriate Dirichlet's condition. The rough boundaries, generated by the ballistic deposition and fractal Brownian motion methods, are characterized by the values of the surface roughness W and the local fractal dimension df = 3-{alpha}, where {alpha} is the usual roughness exponent. The equipotential surfaces, obtained from Laplace's equation, are characterized by these same parameters. Results presented show how df depends on the potential value, on the method used to generate the boundary and on W. The behavior of the electric field with respect to the equipotential surface is also considered. Its average intensity was found to increase as a function of the average distance from the equipotential to the fractal boundary; however, its intensity reaches a maximum before decreasing towards an asymptotic constant value, an effect that increases as the value of W increases.
Field and electric potential of conductors with fractal geometry
International Nuclear Information System (INIS)
Assis, Thiago A de; Mota, Fernando de B; Miranda, Jose G V; Andrade, Roberto F S; Castilho, Caio M C de
2007-01-01
In this study, the behavior of the electric field and its potential are investigated in a region bounded by a rough fractal surface and a distant plane. Both boundaries, maintained at distinct potential values, are assumed to be conductors and, as such, the electric potential is obtained by numerically solving Laplace's equation subject to the appropriate Dirichlet's condition. The rough boundaries, generated by the ballistic deposition and fractal Brownian motion methods, are characterized by the values of the surface roughness W and the local fractal dimension df = 3-α, where α is the usual roughness exponent. The equipotential surfaces, obtained from Laplace's equation, are characterized by these same parameters. Results presented show how df depends on the potential value, on the method used to generate the boundary and on W. The behavior of the electric field with respect to the equipotential surface is also considered. Its average intensity was found to increase as a function of the average distance from the equipotential to the fractal boundary; however, its intensity reaches a maximum before decreasing towards an asymptotic constant value, an effect that increases as the value of W increases
Estimation of soil water retention curve using fractal dimension ...
African Journals Online (AJOL)
The soil water retention curve (SWRC) is a fundamental hydraulic property majorly used to study flow transport in soils and calculate plant-available water. Since, direct measurement of SWRC is time-consuming and expensive, different models have been developed to estimate SWRC. In this study, a fractal-based model ...
The crack energy absorptive capacity of composites with fractal structure
International Nuclear Information System (INIS)
Lung, C.W.
1990-11-01
This paper discusses the energy absorptive capacity of composites with fibers of fractal structures. It is found that this kind of structure may increase the absorption energy during the crack propagation and hence the fracture toughness of composites. (author). 10 refs, 6 figs, 2 tabs
Fractal flow design how to design bespoke turbulence and why
Vassilicos, Christos
2016-01-01
This book focuses on turbulent flows generated and/or influenced by multiscale/fractal structures. It consists of six chapters which demonstrate, each one in its own way, how such structures and objects can be used to design bespoke turbulence for particular applications and also how they can be used for fundamental studies of turbulent flows.
From quantum fields to fractal structures: intermittency in particle physics
International Nuclear Information System (INIS)
Peschanski, R.
1991-01-01
Some features and theoretical interpretations of the intermittency phenomenon observed in high-energy multi-particle production are recalled. One develops on the various connections found with fractal structuration of fluctuations in turbulence, spin-glass physics and aggregation phenomena described by the non-linear Smoluchowski equation. This may lead to a new approach to quantum field properties
Thermal properties of bodies in fractal and cantorian physics
International Nuclear Information System (INIS)
Zmeskal, Oldrich; Buchnicek, Miroslav; Vala, Martin
2005-01-01
Fundamental laws describing the heat diffusion in fractal environment are discussed. It is shown that for the three-dimensional space the heat radiation process occur in structures with fractal dimension D element of heat conduction and convection have the upper hand (generally in the real gases). To describe the heat diffusion a new law has been formulated. Its validity is more general than the Plank's radiation law based on the quantum heat diffusion theory. The energy density w = f (K, D), where K is the fractal measure and D is the fractal dimension exhibit typical dependency peaking with agreement with Planck's radiation law and with the experimental data for the absolutely black body in the energy interval kT m m kT m ∼ 1.5275. The agreement of the fractal model with the experimental outcomes is documented for the spectral characteristics of the Sun. The properties of stellar objects (black holes, relict radiation, etc.) and the elementary particles fields and interactions between them (quarks, leptons, mesons, baryons, bosons and their coupling constants) will be discussed with the help of the described mathematic apparatus in our further contributions. The general gas law for real gases in its more applicable form than the widely used laws (e.g. van der Waals, Berthelot, Kammerlingh-Onnes) has been also formulated. The energy density, which is in this case represented by the gas pressure p = f (K, D), can gain generally complex value and represents the behaviour of real (cohesive) gas in interval D element of (1,3>. The gas behaves as the ideal one only for particular values of the fractal dimensions (the energy density is real-valued). Again, it is shown that above the critical temperature (kT > K h c) and for fractal dimension D m > 2.0269 the results are comparable to the kinetics theory of real (ideal) gas (van der Waals equation of state, compressibility factor, Boyle's temperature). For the critical temperature (K h c = kT r ) the compressibility
Bony change of apical lesion healing process using fractal analysis
International Nuclear Information System (INIS)
Lee, Ji Min; Park, Hyok; Jeong, Ho Gul; Kim, Kee Deog; Park, Chang Seo
2005-01-01
To investigate the change of bone healing process after endodontic treatment of the tooth with an apical lesion by fractal analysis. Radiographic images of 35 teeth from 33 patients taken on first diagnosis, 6 months, and 1 year after endodontic treatment were selected. Radiographic images were taken by JUPITER computerized Dental X-ray System. Fractal dimensions were calculated three times at each area by Scion Image PC program. Rectangular region of interest (30 x 30) were selected at apical lesion and normal apex of each image. The fractal dimension at apical lesion of first diagnosis (L 0 ) is 0.940 ± 0.361 and that of normal area (N 0 ) is 1.186 ± 0.727 (p 1 ) is 1.076 ± 0.069 and that of normal area (N 1 ) is 1.192 ± 0.055 (p 2 ) is 1.163 ± 0.074 and that of normal area (N 2 ) is 1.225 ± 0.079 (p<0.05). After endodontic treatment, the fractal dimensions at each apical lesions depending on time showed statistically significant difference. And there are statistically significant different between normal area and apical lesion on first diagnosis, 6 months after, 1 year after. But the differences were grow smaller as time flows. The evaluation of the prognosis after the endodontic treatment of the apical lesion was estimated by bone regeneration in apical region. Fractal analysis was attempted to overcome the limit of subjective reading, and as a result the change of the bone during the healing process was able to be detected objectively and quantitatively.
A study of complexity of oral mucosa using fractal geometry
Directory of Open Access Journals (Sweden)
S R Shenoi
2017-01-01
Full Text Available Background: The oral mucosa lining the oral cavity is composed of epithelium supported by connective tissue. The shape of the epithelial-connective tissue interface has traditionally been used to describe physiological and pathological changes in the oral mucosa. Aim: The aim is to evaluate the morphometric complexity in normal, dysplastic, well-differentiated, and moderately differentiated squamous cell carcinoma (SCC of the oral mucosa using fractal geometry. Materials and Methods: A total of 80 periodic acid–Schiff stained histological images of four groups: normal mucosa, dysplasia, well-differentiated SCC, and moderately differentiated SCC were verified by the gold standard. These images were then subjected to fractal analysis. Statistical Analysis: ANOVA and post hoc test: Bonferroni was applied. Results: Fractal dimension (FD increases as the complexity increases from normal to dysplasia and then to SCC. Normal buccal mucosa was found to be significantly different from dysplasia and the two grades of SCC (P < 0.05. ANOVA of fractal scores of four morphometrically different groups of buccal mucosa was significantly different with F (3,76 = 23.720 and P< 0.01. However, FD of dysplasia was not significantly different from well-differentiated and moderately differentiated SCC (P = 1.000 and P = 0.382, respectively. Conclusion: This study establishes FD as a newer tool in differentiating normal tissue from dysplastic and neoplastic tissue. Fractal geometry is useful in the study of both physiological and pathological changes in the oral mucosa. A new grading system based on FD may emerge as an adjuvant aid in cancer diagnosis.
Self-Similarity of Plasmon Edge Modes on Koch Fractal Antennas.
Bellido, Edson P; Bernasconi, Gabriel D; Rossouw, David; Butet, Jérémy; Martin, Olivier J F; Botton, Gianluigi A
2017-11-28
We investigate the plasmonic behavior of Koch snowflake fractal geometries and their possible application as broadband optical antennas. Lithographically defined planar silver Koch fractal antennas were fabricated and characterized with high spatial and spectral resolution using electron energy loss spectroscopy. The experimental data are supported by numerical calculations carried out with a surface integral equation method. Multiple surface plasmon edge modes supported by the fractal structures have been imaged and analyzed. Furthermore, by isolating and reproducing self-similar features in long silver strip antennas, the edge modes present in the Koch snowflake fractals are identified. We demonstrate that the fractal response can be obtained by the sum of basic self-similar segments called characteristic edge units. Interestingly, the plasmon edge modes follow a fractal-scaling rule that depends on these self-similar segments formed in the structure after a fractal iteration. As the size of a fractal structure is reduced, coupling of the modes in the characteristic edge units becomes relevant, and the symmetry of the fractal affects the formation of hybrid modes. This analysis can be utilized not only to understand the edge modes in other planar structures but also in the design and fabrication of fractal structures for nanophotonic applications.
Short-term prediction method of wind speed series based on fractal interpolation
International Nuclear Information System (INIS)
Xiu, Chunbo; Wang, Tiantian; Tian, Meng; Li, Yanqing; Cheng, Yi
2014-01-01
Highlights: • An improved fractal interpolation prediction method is proposed. • The chaos optimization algorithm is used to obtain the iterated function system. • The fractal extrapolate interpolation prediction of wind speed series is performed. - Abstract: In order to improve the prediction performance of the wind speed series, the rescaled range analysis is used to analyze the fractal characteristics of the wind speed series. An improved fractal interpolation prediction method is proposed to predict the wind speed series whose Hurst exponents are close to 1. An optimization function which is composed of the interpolation error and the constraint items of the vertical scaling factors in the fractal interpolation iterated function system is designed. The chaos optimization algorithm is used to optimize the function to resolve the optimal vertical scaling factors. According to the self-similarity characteristic and the scale invariance, the fractal extrapolate interpolation prediction can be performed by extending the fractal characteristic from internal interval to external interval. Simulation results show that the fractal interpolation prediction method can get better prediction result than others for the wind speed series with the fractal characteristic, and the prediction performance of the proposed method can be improved further because the fractal characteristic of its iterated function system is similar to that of the predicted wind speed series
Fractales y series de datos geofísicos
Directory of Open Access Journals (Sweden)
Montes Vides Luis Alfredo
1993-10-01
Full Text Available
There is a new Geometry which provides a potentially tool for the characterization of geophysical data: The Fractal Geometry. Generally, Geophysical data consist of records in time or data series, for example yearly records of temperature, and they show a random behavior or variation on both a short and a long-term time scale. The trace of a record is a curve with a fractal dimension D, and it is characterized by an exponent H. In this paper, the Hurt's rescaled range analysis method is used to determine the fractal dimension of a geophysical data serie D and H, his self-affinity measure.
La geometría de fractales ha surgido como una herramienta potencialmente útil para la caracterización de datos en Geofísica. Comúnmente, los datos geofísicos conforman series de tiempo, que exhiben un comportamiento aleatorio o variación a corto y a largo plazo. Un ejemplo típico son los registros anuales de temperatura. La traza de un registro es una curva con una dimensión fractal D, caracterizada por un exponente H.
En el presente trabajo se utiliza el método de análisis de rango en cambios de escala, creado por H. E. Hurst, para determinar la dimensión fractal de una serie de datos geofísicos, y su medida de auto-afinidad.
Energy Technology Data Exchange (ETDEWEB)
Estrada, Claudio A; Arancibia, Camilo [Centro de Investigacion en Energia UNAM, Temixco, Morelos (Mexico); Hernandez, Nestor [Centro Nacional de Investigacion y Desarrollo Tecnologico, Cuernavaca, Morelos (Mexico)
2000-07-01
The optimal geometry and dimensions for the receiver of a parabolic solar concentrator based on microwave communication antenna are obtained. First, the experiments for the determination of the angular error of the concentrator and the dimensions of its focal region are described. Results are also presented for the ray tracing study, from which the optimal characteristics of the receiver are obtained according to the experimental results. As the aluminum antenna has a rim angle of 90 Celsius degrees, it is necessary to use a cavity receiver to allow external as well as internal absorption of radiative flux. Cylindrical, conical and spherical geometric were considered, as well as combinations of them. The best results are achieved using a conical cavity. Its dimensions are calculated to maximize the radiative transfer efficiency from the aperture of the concentrator to the receiver. [Spanish] Se determinan la geometria y dimensiones optimas del receptor de un concentrador solar parabolico obtenido a partir de una antena de telecomunicaciones para microondas. Primeramente se describen los experimentos realizados para obtener el valor del error angular asociado al concentrador y de las dimensiones de su region focal. Tambien se presentan los resultados del estudio optico de trazado de rayos, que permitio determinar teoricamente las caracteristicas del receptor, de acuerdo a los resultados de los experimentos. Debido a que la antena de aluminio tiene un angulo de borde de 90 grados Celcius, es necesario usar un receptor tipo cavidad que permita la captacion de energia tanto interna como externa. Se consideraron geometrias cilindrica, conica, esferica y combinaciones entre ellas, resultando ser la conica la que da los mejores resultados. Las dimensiones del receptor fueron determinadas maximizando la eficiencia del transporte de radiacion de la apertura del concentrador al receptor.
Directory of Open Access Journals (Sweden)
Wolliver Anderson Dias
2011-04-01
Full Text Available Brasil possui grande quantidade de áreas destinadas a pastagens, de modo que tal atividade influência consideravelmente nos processos geomorfológicos. O presente trabalho buscou avaliar os efeitos do pastoreio na erosão de margens de rio em áreas de Faxinal no município de Guarapuava – PR. Avaliou-se os efeitos do gado sobre os aspectos físicos das margens, bem como, utilizou-se de técnicas volumétricas e de avaliações na geometria do canal para se constatar a influencia do pastoreio sobre a erosão. Observou-se que o gado acelerou significativamente os processos geomorfológicos nas zonas ripárias, portando-se como importante agente modelador da paisagem.
Fractal Dimension of Fracture Surface in Rock Material after High Temperature
Directory of Open Access Journals (Sweden)
Z. Z. Zhang
2015-01-01
Full Text Available Experiments on granite specimens after different high temperature under uniaxial compression were conducted and the fracture surfaces were observed by scanning electron microscope (SEM. The fractal dimensions of the fracture surfaces with increasing temperature were calculated, respectively. The fractal dimension of fracture surface is between 1.44 and 1.63. Its value approximately goes up exponentially with the increase of temperature. There is a quadratic polynomial relationship between the rockburst tendency and fractal dimension of fracture surface; namely, a fractal dimension threshold can be obtained. Below the threshold value, a positive correlativity shows between rockburst tendency and fractal dimension; when the fractal dimension is greater than the threshold value, it shows an inverse correlativity.
Vector calculus in non-integer dimensional space and its applications to fractal media
Tarasov, Vasily E.
2015-02-01
We suggest a generalization of vector calculus for the case of non-integer dimensional space. The first and second orders operations such as gradient, divergence, the scalar and vector Laplace operators for non-integer dimensional space are defined. For simplification we consider scalar and vector fields that are independent of angles. We formulate a generalization of vector calculus for rotationally covariant scalar and vector functions. This generalization allows us to describe fractal media and materials in the framework of continuum models with non-integer dimensional space. As examples of application of the suggested calculus, we consider elasticity of fractal materials (fractal hollow ball and fractal cylindrical pipe with pressure inside and outside), steady distribution of heat in fractal media, electric field of fractal charged cylinder. We solve the correspondent equations for non-integer dimensional space models.
Temporal fractals in seabird foraging behaviour: diving through the scales of time
Macintosh, Andrew J. J.; Pelletier, Laure; Chiaradia, Andre; Kato, Akiko; Ropert-Coudert, Yan
2013-05-01
Animal behaviour exhibits fractal structure in space and time. Fractal properties in animal space-use have been explored extensively under the Lévy flight foraging hypothesis, but studies of behaviour change itself through time are rarer, have typically used shorter sequences generated in the laboratory, and generally lack critical assessment of their results. We thus performed an in-depth analysis of fractal time in binary dive sequences collected via bio-logging from free-ranging little penguins (Eudyptula minor) across full-day foraging trips (216 data points; 4 orders of temporal magnitude). Results from 4 fractal methods show that dive sequences are long-range dependent and persistent across ca. 2 orders of magnitude. This fractal structure correlated with trip length and time spent underwater, but individual traits had little effect. Fractal time is a fundamental characteristic of penguin foraging behaviour, and its investigation is thus a promising avenue for research on interactions between animals and their environments.
Pulmonary vasculature in dogs assessed by three-dimensional fractal analysis and chemometrics
DEFF Research Database (Denmark)
Müller, Anna V; Marschner, Clara B; Kristensen, Annemarie T
2017-01-01
Fractal analysis of canine pulmonary vessels could allow quantification of their space-filling properties. Aims of this prospective, analytical, cross-sectional study were to describe methods for reconstructing three dimensional pulmonary arterial vascular trees from computed tomographic pulmonary...... angiogram, applying fractal analyses of these vascular trees in dogs with and without diseases that are known to predispose to thromboembolism, and testing the hypothesis that diseased dogs would have a different fractal dimension than healthy dogs. A total of 34 dogs were sampled. Based on computed...... for each dog using a semiautomated segmentation technique. Vascular three-dimensional reconstructions were then evaluated using fractal analysis. Fractal dimensions were analyzed, by group, using analysis of variance and principal component analysis. Fractal dimensions were significantly different among...
Predicting beauty: fractal dimension and visual complexity in art.
Forsythe, A; Nadal, M; Sheehy, N; Cela-Conde, C J; Sawey, M
2011-02-01
Visual complexity has been known to be a significant predictor of preference for artistic works for some time. The first study reported here examines the extent to which perceived visual complexity in art can be successfully predicted using automated measures of complexity. Contrary to previous findings the most successful predictor of visual complexity was Gif compression. The second study examined the extent to which fractal dimension could account for judgments of perceived beauty. The fractal dimension measure accounts for more of the variance in judgments of perceived beauty in visual art than measures of visual complexity alone, particularly for abstract and natural images. Results also suggest that when colour is removed from an artistic image observers are unable to make meaningful judgments as to its beauty. ©2010 The British Psychological Society.
Porosity-dependent fractal nature of the porous silicon surface
Energy Technology Data Exchange (ETDEWEB)
Rahmani, N.; Dariani, R. S., E-mail: dariani@alzahra.ac.ir [Department of Physics, Alzahra University, Tehran, 1993893973 (Iran, Islamic Republic of)
2015-07-15
Porous silicon films with porosity ranging from 42% to 77% were fabricated by electrochemical anodization under different current density. We used atomic force microscopy and dynamic scaling theory for deriving the surface roughness profile and processing the topography of the porous silicon layers, respectively. We first compared the topography of bare silicon surface with porous silicon and then studied the effect of the porosity of porous silicon films on their scaling behavior by using their self-affinity nature. Our work demonstrated that silicon compared to the porous silicon films has the highest Hurst parameter, indicating that the formation of porous layer due to the anodization etching of silicon surface leads to an increase of its roughness. Fractal analysis revealed that the evolution of the nanocrystallites’ fractal dimension along with porosity. Also, we found that both interface width and Hurst parameter are affected by the increase of porosity.
On the fractal characterization of Paretian Poisson processes
Eliazar, Iddo I.; Sokolov, Igor M.
2012-06-01
Paretian Poisson processes are Poisson processes which are defined on the positive half-line, have maximal points, and are quantified by power-law intensities. Paretian Poisson processes are elemental in statistical physics, and are the bedrock of a host of power-law statistics ranging from Pareto's law to anomalous diffusion. In this paper we establish evenness-based fractal characterizations of Paretian Poisson processes. Considering an array of socioeconomic evenness-based measures of statistical heterogeneity, we show that: amongst the realm of Poisson processes which are defined on the positive half-line, and have maximal points, Paretian Poisson processes are the unique class of 'fractal processes' exhibiting scale-invariance. The results established in this paper are diametric to previous results asserting that the scale-invariance of Poisson processes-with respect to physical randomness-based measures of statistical heterogeneity-is characterized by exponential Poissonian intensities.
International trade network: fractal properties and globalization puzzle.
Karpiarz, Mariusz; Fronczak, Piotr; Fronczak, Agata
2014-12-12
Globalization is one of the central concepts of our age. The common perception of the process is that, due to declining communication and transport costs, distance becomes less and less important. However, the distance coefficient in the gravity model of trade, which grows in time, indicates that the role of distance increases rather than decreases. This, in essence, captures the notion of the globalization puzzle. Here, we show that the fractality of the international trade system (ITS) provides a simple solution for the puzzle. We argue that the distance coefficient corresponds to the fractal dimension of ITS. We provide two independent methods, the box counting method and spatial choice model, which confirm this statement. Our results allow us to conclude that the previous approaches to solving the puzzle misinterpreted the meaning of the distance coefficient in the gravity model of trade.
Two-dimensional fractal geometry, critical phenomena and conformal invariance
International Nuclear Information System (INIS)
Duplantier, B.
1988-01-01
The universal properties of critical geometrical systems in two-dimensions (2D) like the O (n) and Potts models, are described in the framework of Coulomb gas methods and conformal invariance. The conformal spectrum of geometrical critical systems obtained is made of a discrete infinite series of scaling dimensions. Specific applications involve the fractal properties of self-avoiding walks, percolation clusters, and also some non trivial critical exponents or fractal dimensions associated with subsets of the planar Brownian motion. The statistical mechanics of the same critical models on a random 2D lattice (namely in presence of a critically-fluctuating metric, in the so-called 2D quantum gravity) is also addressed, and the above critical geometrical systems are shown to be exactly solvable in this case. The new ''gravitational'' conformal spectrum so derived is found to satisfy the recent Knizhnik, Polyakov and Zamolodchikov quadratic relation which links it to the standard conformal spectrum in the plane
Novel welding image processing method based on fractal theory
Institute of Scientific and Technical Information of China (English)
陈强; 孙振国; 肖勇; 路井荣
2002-01-01
Computer vision has come into used in the fields of welding process control and automation. In order to improve precision and rapidity of welding image processing, a novel method based on fractal theory has been put forward in this paper. Compared with traditional methods, the image is preliminarily processed in the macroscopic regions then thoroughly analyzed in the microscopic regions in the new method. With which, an image is divided up to some regions according to the different fractal characters of image edge, and the fuzzy regions including image edges are detected out, then image edges are identified with Sobel operator and curved by LSM (Lease Square Method). Since the data to be processed have been decreased and the noise of image has been reduced, it has been testified through experiments that edges of weld seam or weld pool could be recognized correctly and quickly.
Characteristics of Pore Structure and Fractal Dimension of Isometamorphic Anthracite
Directory of Open Access Journals (Sweden)
Di Gao
2017-11-01
Full Text Available The geologic conditions of No. 3 coal seams are similar to Sihe and Zhaozhuang Collieries, however, the gas production is significantly different. To better understand the effect of pores, by means of experimental measurements and quantitative analysis, the pore properties of high-rank isometamorphic anthracite were thoroughly studied. Our study showed that the pore structures were predominantly adsorptive, accounting for more than 88% of the specific surface area. The coal pores showed typical three-stage fractal characteristics at boundary points of 1 nm and 9 nm (7 nm of coal samples from Zhaozhuang Colliery, and the fractal dimension with 1–9 nm (or 1–7 nm, as being significantly larger than those measured outside the given ranges. Pores in samples from Sihe Colliery were mainly open spherical or ellipsoidal pores in shape; conversely, those from Zhaozhuang Colliery were mainly Y-shaped, V-shaped, or ‘ink-bottle’ type.
Measurement of DEM roughness using the local fractal dimension
Taud, Hind; Parrot, Jean-François
2008-01-01
Les relations entre les traits géomorphologiques et la rugosité de surface des Modèles Numériques de Terrain (MNT) ont été étudiées par l’intermédiaire de la géométrie fractale. La dimension fractale dans l’espace à trois dimensions est estimée localement sur la surface du MNT. Cette mesure se fait à l’aide d’une procédure dérivée de la technique du « comptage de boîtes ». Ce traitement a été appliqué sur deux zones tests choisies pour leurs différences lithologiques et tectoniques. La premiè...
Irreducible fractal structures for Moran's theorems
Energy Technology Data Exchange (ETDEWEB)
Fernandez-Martinez, M.; Sanchez-Granero, M.A.
2017-07-01
Along this talk, we shall deal with a classical problem in Fractal Geometry consisting of the calculation of the similarity dimension of self-similar sets. Clasically, the open set condition has been understood as the right separation condition for IFS-attractors since it becomes a sufficient (though not necessary) condition allowing to easily calculate their similarity dimensions. However, it depends on an external open set. Our contribution consists of a novel separation condition for self-similar sets we shall characterize in terms of the natural fractal structure which any IFS-attractor can be endowed with. We justify that such a separation condition is weaker than the strong open set condition and allows to prove some Moran's type theorems. (Author)
Directory of Open Access Journals (Sweden)
Antonio Ibáñez-Molina
2014-11-01
Full Text Available El cerebro en acción es un sistema no lineal en el que no existe una relación evidente entre las causas y las consecuencias de un estado determinado: cambios sutiles en un estímulo pueden generar patrones corticales radicalmente distintos. Si las distintas funciones cognitivas surgen de este sistema complejo, es fundamental la introducción de métodos no lineales en el estudio de la relación mente-cerebro. En este artículo hacemos hincapié en la naturaleza fractal del electroencefalograma (EEG y repasamos la relación entre la dimensión fractal del EEG y distintos estados mentales.
Research on the fractal structure in the Chinese stock market
Zhuang, Xin-tian; Huang, Xiao-yuan; Sha, Yan-li
2004-02-01
Applying fractal theory, this paper probes and discusses self-similarity and scale invariance of the Chinese stock market. It analyses three kinds of scale indexes, i.e., autocorrelation index, Hurst index and the scale index on the basis of detrended fluctuation analysis (DFA) algorithm and promotes DFA into a recursive algorithm. Using the three kinds of scale indexes, we conduct empirical research on the Chinese Shanghai and Shenzhen stock markets. The results indicate that the rate of returns of the two stock markets does not obey the normal distribution. A correlation exists between the stock price indexes over time scales. The stock price indexes exhibit fractal time series. It indicates that the policy guide hidden at the back influences the characteristic of the Chinese stock market.
Integrated quantitative fractal polarimetric analysis of monolayer lung cancer cells
Shrestha, Suman; Zhang, Lin; Quang, Tri; Farrahi, Tannaz; Narayan, Chaya; Deshpande, Aditi; Na, Ying; Blinzler, Adam; Ma, Junyu; Liu, Bo; Giakos, George C.
2014-05-01
Digital diagnostic pathology has become one of the most valuable and convenient advancements in technology over the past years. It allows us to acquire, store and analyze pathological information from the images of histological and immunohistochemical glass slides which are scanned to create digital slides. In this study, efficient fractal, wavelet-based polarimetric techniques for histological analysis of monolayer lung cancer cells will be introduced and different monolayer cancer lines will be studied. The outcome of this study indicates that application of fractal, wavelet polarimetric principles towards the analysis of squamous carcinoma and adenocarcinoma cancer cell lines may be proved extremely useful in discriminating among healthy and lung cancer cells as well as differentiating among different lung cancer cells.
Excitation gap of fractal quantum hall states in graphene
International Nuclear Information System (INIS)
Luo, Wenchen; Chakraborty, Tapash
2016-01-01
In the presence of a magnetic field and an external periodic potential the Landau level spectrum of a two-dimensional electron gas exhibits a fractal pattern in the energy spectrum which is described as the Hofstadter’s butterfly. In this work, we develop a Hartree–Fock theory to deal with the electron-electron interaction in the Hofstadter’s butterfly state in a finite-size graphene with periodic boundary conditions, where we include both spin and valley degrees of freedom. We then treat the butterfly state as an electron crystal so that we could obtain the order parameters of the crystal in the momentum space and also in an infinite sample. A phase transition between the liquid phase and the fractal crystal phase can be observed. The excitation gaps obtained in the infinite sample is comparable to those in the finite-size study, and agree with a recent experimental observation. (paper)
Fractal approach to computer-analytical modelling of tree crown
International Nuclear Information System (INIS)
Berezovskaya, F.S.; Karev, G.P.; Kisliuk, O.F.; Khlebopros, R.G.; Tcelniker, Yu.L.
1993-09-01
In this paper we discuss three approaches to the modeling of a tree crown development. These approaches are experimental (i.e. regressive), theoretical (i.e. analytical) and simulation (i.e. computer) modeling. The common assumption of these is that a tree can be regarded as one of the fractal objects which is the collection of semi-similar objects and combines the properties of two- and three-dimensional bodies. We show that a fractal measure of crown can be used as the link between the mathematical models of crown growth and light propagation through canopy. The computer approach gives the possibility to visualize a crown development and to calibrate the model on experimental data. In the paper different stages of the above-mentioned approaches are described. The experimental data for spruce, the description of computer system for modeling and the variant of computer model are presented. (author). 9 refs, 4 figs
Fractal Based Triple Band High Gain Monopole Antenna
Pandey, Shashi Kant; Pandey, Ganga Prasad; Sarun, P. M.
2017-10-01
A novel triple-band microstrip fed planar monopole antenna is proposed and investigated. A fractal antenna is created by iterating a narrow pulse (NP) generator model at upper side of modified ground plane, which has a rhombic patch, for enhancing the bandwidth and gain. Three iterations are carried out to study the effects of fractal geometry on the antenna performance. The proposed antenna can operate over three frequency ranges viz, 3.34-4.8 GHz, 5.5-10.6 GHz and 13-14.96 GHz suitable for WLAN 5.2/5.8 GHz, WiMAX 3.5/5.5 GHz and X band applications respectively. Simulated and measured results are in good agreements with each others. Results show that antenna provides wide/ultra wide bandwidths, monopole like radiation patterns and very high antenna gains over the operating frequency bands.
Fractal dimension analysis in a highly granular calorimeter
Ruan, M; Brient, J.C; Jeans, D; Videau, H
2015-01-01
The concept of “particle flow” has been developed to optimise the jet energy resolution by distinguishing the different jet components. A highly granular calorimeter designed for the particle flow algorithm provides an unprecedented level of detail for the reconstruction of calorimeter showers and enables new approaches to shower analysis. In this paper the measurement and use of the fractal dimension of showers is described. The fractal dimension is a characteristic number that measures the global compactness of the shower. It is highly dependent on the primary particle type and energy. Its application in identifying particles and estimating their energy is described in the context of a calorimeter designed for the International Linear Collider.
Dielectric dispersion of porous media as a fractal phenomenon
Thevanayagam, S.
1997-09-01
It is postulated that porous media is made up of fractal solid skeleton structure and fractal pore surface. The model thus developed satisfies measured anomalous dielectric behavior of three distinctly different porous media: kaolin, montmorillonite, and shaly sand rock. It is shown that the underlying mechanism behind dielectric dispersion in the kHz range to high MHz range is indeed Maxwell-Wagner mechanism but modified to take into account the multiphase nature of the porous media as opposed to the traditional two-phase Maxwell-Wagner charge accumulation effect. The conductivity of the surface water associated with the solid surface and charge accumulation across the surface irregularities, asperity, and bridging between particles at the micro-scale-level pores are shown to contribute to this modified Maxwell-Wagner mechanism. The latter is dominant at low frequencies. The surface water thickness is calculated to be about 2-6 nm for a variety of porous media.
Infrared Image Segmentation by Combining Fractal Geometry with Wavelet Transformation
Directory of Open Access Journals (Sweden)
Xionggang Tu
2014-11-01
Full Text Available An infrared image is decomposed into three levels by discrete stationary wavelet transform (DSWT. Noise is reduced by wiener filter in the high resolution levels in the DSWT domain. Nonlinear gray transformation operation is used to enhance details in the low resolution levels in the DSWT domain. Enhanced infrared image is obtained by inverse DSWT. The enhanced infrared image is divided into many small blocks. The fractal dimensions of all the blocks are computed. Region of interest (ROI is extracted by combining all the blocks, which have similar fractal dimensions. ROI is segmented by global threshold method. The man-made objects are efficiently separated from the infrared image by the proposed method.
Directory of Open Access Journals (Sweden)
Edvan Cordeiro de Miranda
2015-06-01
Full Text Available ResumoEste trabalho tem por objetivo estudar a influência do tecimento na soldagem TIG com alimentação de arame frio em único passe visando à aplicação futura em revestimento de ligas de níquel, considerando a análise das características geométricas e diluição, de forma a adequar estes revestimentos para as indústrias do Setor de Petróleo e Gás Natural. A baixa diluição é necessária para evitar a redução das propriedades de resistência à corrosão dos revestimentos. As soldagens foram realizadas utilizando um robô industrial e um alimentador automático de arame frio. A liga usada como metal de adição foi a AWS ER NiCrMo-3 (Inconel 625 e o substrato foi o aço ASTM A516 Gr. 60. Foram realizadas soldagens com alimentação automática de arame frio na condição sem tecimento e com tecimento tipo triangular, variando a energia em três níveis. Os resultados mostraram que o uso do tecimento influencia consideravelmente a geometria do cordão de solda e o nível de diluição. Com uso do tecimento o reforço do cordão de solda reduziu e a largura aumentou, proporcionando uma melhor distribuição de material sobre a peça, reduzindo com isso a razão reforço/largura (R/L, parâmetro este que indica o grau de convexidade do cordão de solda. Uma razão R/L alta, indica que o grau de convexidade pode ser excessivo, dificultando com isso uma adequada sobreposição de passes para soldagem posterior de revestimentos, com a possibilidade de formação de vazios entre os mesmos. Quanto a penetração e a diluição, ambas apresentaram comportamentos similares, com redução de forma significativa nas condições em que o tecimento é empregado. Estes resultados mostram que o uso do tecimento garante uma combinação de baixa razão R/L com baixa diluição, condição esta desejável para soldagem de revestimentos.
Estudo de vibrações em auto-tensionador de transmissão por correias
Ubirajara Garcia
2009-01-01
Resumo: Neste trabalho desenvolve-se um método, que permite avaliações de parâmetros, para o estudo do projeto de um sistema auto-tensionador no controle de suas vibrações transversais e forças atuantes. Parâmetros construtivos e operacionais, como: a geometria, inércia, rigidez da mola do auto-tensionador, rigidez da correia e condições de operação, como: frequências de excitação, forças estáticas e dinâmicas são obtidas em um sistema auto-tensionador de transmissão por correias, aplicados e...
Fractal image coding by an approximation of the collage error
Salih, Ismail; Smith, Stanley H.
1998-12-01
In fractal image compression an image is coded as a set of contractive transformations, and is guaranteed to generate an approximation to the original image when iteratively applied to any initial image. In this paper we present a method for mapping similar regions within an image by an approximation of the collage error; that is, range blocks can be approximated by a linear combination of domain blocks.
On fractal space-time and fractional calculus
Directory of Open Access Journals (Sweden)
Hu Yue
2016-01-01
Full Text Available This paper gives an explanation of fractional calculus in fractal space-time. On observable scales, continuum models can be used, however, when the scale tends to a smaller threshold, a fractional model has to be adopted to describe phenomena in micro/nano structure. A time-fractional Fornberg-Whitham equation is used as an example to elucidate the physical meaning of the fractional order, and its solution process is given by the fractional complex transform.
Zipf’s law, 1/f noise, and fractal hierarchy
International Nuclear Information System (INIS)
Chen Yanguang
2012-01-01
Highlights: ► I developed a general scaling method based on hierarchies of cites. ► Hierarchy is classified into three types based on monofractal and multifractals. ► Zipf’s law can be used to estimate the capacity dimension of a multifractal set. ► I derive the self-similar hierarchy from the rank-size distribution. ► The hierarchical scaling method can be applied to the 1/f spectra. - Abstract: Fractals, 1/f noise, and Zipf’s laws are frequently observed within the natural living world as well as in social institutions, representing three signatures of complex systems. All these observations are associated with scaling laws and therefore have created much research interest in many diverse scientific circles. However, the inherent relationships between these scaling phenomena are not yet clear. In this paper, theoretical demonstration and mathematical experiments based on urban studies are employed to reveal the analogy between fractal patterns, 1/f spectra, and the Zipf distribution. First, the multifractal process empirically suggests the Zipf distribution. Second, a 1/f spectrum is mathematically identical to Zipf’s law. Third, both 1/f spectra and Zipf’s law can be converted into a self-similar hierarchy. Fourth, fractals, 1/f spectra, Zipf’s law can be rescaled with similar exponential laws and power laws. The self-similar hierarchy is a more general scaling method which can be used to unify different scaling phenomena and rules in both physical and social systems such as cities, rivers, earthquakes, fractals, 1/f noise, and rank-size distributions. The mathematical laws of this hierarchical structure can provide us with a holistic perspective of looking at complexity and complex systems.
Fractal dimension and turbulence in Giant HII Regions
International Nuclear Information System (INIS)
Caicedo-Ortiz, H E; Santiago-Cortes, E; López-Bonilla, J; er piso, CP 07738, México D.F (Mexico))" data-affiliation=" (ESFM, Instituto Politécnico Nacional, Edif. 9, 1er piso, CP 07738, México D.F (Mexico))" >Castañeda, H O
2015-01-01
We have measured the fractal dimensions of the Giant HII Regions Hubble X and Hubble V in NGC6822 using images obtained with the Hubble's Wide Field Planetary Camera 2 (WFPC2). These measures are associated with the turbulence observed in these regions, which is quantified through the velocity dispersion of emission lines in the visible. Our results suggest low turbulence behaviour
Random fractal structures in North American energy markets
Energy Technology Data Exchange (ETDEWEB)
Serletis, Apostolos [Calgary Univ., Dept. of Economics, Calgary, AB (Canada); Andreadis, Ioannis [European Univ. of the Hague, Center of Management Studies, The Hague (Netherlands)
2004-05-01
This paper uses daily observations on West Texas Intermediate (WTI) crude oil prices at Chicago and Henry Hub natural gas prices at LA (over the deregulated period of the 1990s) and various tests from statistics and dynamical systems theory to support a random fractal structure for North American energy markets. In particular, this evidence is supported by the Vassilicos et al. (1993) multifractal structure test and the Ghashghaie et al. [Nature 381 (1996) 767] turbulent behavior test. (Author)
Crossover from Nonequilibrium Fractal Growth to Equilibrium Compact Growth
DEFF Research Database (Denmark)
Sørensen, Erik Schwartz; Fogedby, Hans C.; Mouritsen, Ole G.
1988-01-01
Solidification controlled by vacancy diffusion is studied by Monte Carlo simulations of a two-dimensional Ising model defined by a Hamiltonian which models a thermally driven fluid-solid phase transition. The nonequilibrium morphology of the growing solid is studied as a function of time as the s...... as the system relaxes into equilibrium described by a temperature. At low temperatures the model exhibits fractal growth at early times and crossover to compact solidification as equilibrium is approached....
Fractal analysis reveals reduced complexity of retinal vessels in CADASIL.
Directory of Open Access Journals (Sweden)
Michele Cavallari
2011-04-01
Full Text Available The Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL affects mainly small cerebral arteries and leads to disability and dementia. The relationship between clinical expression of the disease and progression of the microvessel pathology is, however, uncertain as we lack tools for imaging brain vessels in vivo. Ophthalmoscopy is regarded as a window into the cerebral microcirculation. In this study we carried out an ophthalmoscopic examination in subjects with CADASIL. Specifically, we performed fractal analysis of digital retinal photographs. Data are expressed as mean fractal dimension (mean-D, a parameter that reflects complexity of the retinal vessel branching. Ten subjects with genetically confirmed diagnosis of CADASIL and 10 sex and age-matched control subjects were enrolled. Fractal analysis of retinal digital images was performed by means of a computer-based program, and the data expressed as mean-D. Brain MRI lesion volume in FLAIR and T1-weighted images was assessed using MIPAV software. Paired t-test was used to disclose differences in mean-D between CADASIL and control groups. Spearman rank analysis was performed to evaluate potential associations between mean-D values and both disease duration and disease severity, the latter expressed as brain MRI lesion volumes, in the subjects with CADASIL. The results showed that mean-D value of patients (1.42±0.05; mean±SD was lower than control (1.50±0.04; p = 0.002. Mean-D did not correlate with disease duration nor with MRI lesion volumes of the subjects with CADASIL. The findings suggest that fractal analysis is a sensitive tool to assess changes of retinal vessel branching, likely reflecting early brain microvessel alterations, in CADASIL patients.
Renormalization, unstable manifolds, and the fractal structure of mode locking
International Nuclear Information System (INIS)
Cvitanovic, P.; Jensen, M.H.; Kadanoff, L.P.; Procaccia, I.
1985-01-01
The apparent universality of the fractal dimension of the set of quasiperiodic windings at the onset of chaos in a wide class of circle maps is described by construction of a universal one-parameter family of maps which lies along the unstable manifold of the renormalization group. The manifold generates a universal ''devil's staircase'' whose dimension agrees with direct numerical calculations. Applications to experiments are discussed
The use of fractal tones in tinnitus patient management
Directory of Open Access Journals (Sweden)
Robert W Sweetow
2013-01-01
Full Text Available A variety of noises have been employed for decades in an effort to facilitate habituation, mask, or suppress tinnitus. Many of these sounds have reportedly provided benefit, but success has not been universal. More recently, musical stimuli have been added as a sound therapy component. The potential advantages of using such stimuli, in particular fractal tones, in combination with amplification are discussed in this paper.