WorldWideScience

Sample records for geomagnetic field effects

  1. Effects of geomagnetic activity on the mesospheric electric fields

    Directory of Open Access Journals (Sweden)

    A. M. Zadorozhny

    Full Text Available The results of three series of rocket measurements of mesospheric electric fields carried out under different geomagnetic conditions at polar and high middle latitudes are analysed. The measurements show a clear dependence of the vertical electric fields on geomagnetic activity at polar and high middle latitudes. The vertical electric fields in the lower mesosphere increase with the increase of geomagnetic indexes Kp and ∑Kp. The simultaneous increase of the vertical electric field strength and ion conductivity was observed in the mesosphere during geomagnetic disturbances. This striking phenomenon was displayed most clearly during the solar proton events of October, 1989 accompanied by very strong geomagnetic storm (Kp=8+. A possible mechanism of generation of the vertical electric fields in the mesosphere caused by gravitational sedimentation of charged aerosol particles is discussed. Simultaneous existence in the mesosphere of both the negative and positive multiply charged aerosol particles of different sizes is assumed for explanation of the observed V/m vertical electric fields and their behaviour under geomagnetically disturbed conditions.

    Keywords. Atmospheric composition and structure (aerosols and particles · Ionosphere (electric fields and currents · Meteorology and atmospheric dynamics (atmospheric electricity

  2. Effects of geomagnetic activity on the mesospheric electric fields

    Directory of Open Access Journals (Sweden)

    A. M. Zadorozhny

    1998-12-01

    Full Text Available The results of three series of rocket measurements of mesospheric electric fields carried out under different geomagnetic conditions at polar and high middle latitudes are analysed. The measurements show a clear dependence of the vertical electric fields on geomagnetic activity at polar and high middle latitudes. The vertical electric fields in the lower mesosphere increase with the increase of geomagnetic indexes Kp and ∑Kp. The simultaneous increase of the vertical electric field strength and ion conductivity was observed in the mesosphere during geomagnetic disturbances. This striking phenomenon was displayed most clearly during the solar proton events of October, 1989 accompanied by very strong geomagnetic storm (Kp=8+. A possible mechanism of generation of the vertical electric fields in the mesosphere caused by gravitational sedimentation of charged aerosol particles is discussed. Simultaneous existence in the mesosphere of both the negative and positive multiply charged aerosol particles of different sizes is assumed for explanation of the observed V/m vertical electric fields and their behaviour under geomagnetically disturbed conditions.Keywords. Atmospheric composition and structure (aerosols and particles · Ionosphere (electric fields and currents · Meteorology and atmospheric dynamics (atmospheric electricity

  3. Geomagnetic field of earth

    International Nuclear Information System (INIS)

    Delipetrev, Marjan; Delipetrev, Blagoj; Panovska, Sanja

    2008-01-01

    In this paper is introduced the theory of geomagnetic field of the Earth. A homogenous and isotropic sphere is taken for a model of Earth with a bar magnet at its center as a magnetic potential. The understanding of the real origin of geomagnetic field produced from differential rotation of inner core with respect to the outer core of Earth is here presented. Special attention is given to the latest observed data of the established net of geomagnetic repeat stations in the Republic of Macedonia. Finally, the maps of elements of geomagnetic field and the equation for calculation of normal magnetic field of Earth are provided. (Author)

  4. Geomagnetic field, global pattern

    OpenAIRE

    Macmillan, Susan

    2011-01-01

    The geomagnetic field is generated in the fluid outer core region of the Earth by electrical currents flowing in the slowly moving molten iron. In addition to sources in the Earth’s core, the geomagnetic field observable on the Earth’s surface has sources in the crust and in the ionosphere and magnetosphere. The signal from the core dominates, accounting for over 95% of the field at the Earth’s surface. The geomagnetic field varies on a range of scales, both temporal and spatial; the...

  5. International Geomagnetic Reference Field

    DEFF Research Database (Denmark)

    Finlay, Chris; Maus, S.; Beggan, C. D.

    2010-01-01

    The eleventh generation of the International Geomagnetic Reference Field (IGRF) was adopted in December 2009 by the International Association of Geomagnetism and Aeronomy Working Group V‐MOD. It updates the previous IGRF generation with a definitive main field model for epoch 2005.0, a main field...... model for epoch 2010.0, and a linear predictive secular variation model for 2010.0–2015.0. In this note the equations defining the IGRF model are provided along with the spherical harmonic coefficients for the eleventh generation. Maps of the magnetic declination, inclination and total intensity...

  6. Geomagnetic Field During a Reversal

    Science.gov (United States)

    Heirtzler, J. R.

    2003-01-01

    It has frequently been suggested that only the geomagnetic dipole, rather than higher order poles, reverse during a geomagnetic field reversal. Under this assumption the geomagnetic field strength has been calculated for the surface of the Earth for various steps of the reversal process. Even without an eminent a reversal of the field, extrapolation of the present secular change (although problematic) shows that the field strength may become zero in some geographic areas within a few hundred years.

  7. Geological support for the Umbrella Effect as a link between geomagnetic field and climate

    Science.gov (United States)

    Kitaba, Ikuko; Hyodo, Masayuki; Nakagawa, Takeshi; Katoh, Shigehiro; Dettman, David L.; Sato, Hiroshi

    2017-01-01

    The weakening of the geomagnetic field causes an increase in galactic cosmic ray (GCR) flux. Some researchers argue that enhanced GCR flux might lead to a climatic cooling by increasing low cloud formation, which enhances albedo (umbrella effect). Recent studies have reported geological evidence for a link between weakened geomagnetic field and climatic cooling. However, more work is needed on the mechanism of this link, including whether the umbrella effect is playing a central role. In this research, we present new geological evidence that GCR flux change had a greater impact on continental climate than on oceanic climate. According to pollen data from Osaka Bay, Japan, the decrease in temperature of the Siberian air mass was greater than that of the Pacific air mass during geomagnetic reversals in marine isotope stages (MIS) 19 and 31. Consequently, the summer land-ocean temperature gradient was smaller, and the summer monsoon was weaker. Greater terrestrial cooling indicates that a reduction of insolation is playing a key role in the link between the weakening of the geomagnetic field and climatic cooling. The most likely candidate for the mechanism seems to be the increased albedo of the umbrella effect. PMID:28091595

  8. Statistical analysis of geomagnetic field variations during solar eclipses

    Science.gov (United States)

    Kim, Jung-Hee; Chang, Heon-Young

    2018-04-01

    We investigate the geomagnetic field variations recorded by INTERMAGNET geomagnetic observatories, which are observed while the Moon's umbra or penumbra passed over them during a solar eclipse event. Though it is generally considered that the geomagnetic field can be modulated during solar eclipses, the effect of the solar eclipse on the observed geomagnetic field has proved subtle to be detected. Instead of exploring the geomagnetic field as a case study, we analyze 207 geomagnetic manifestations acquired by 100 geomagnetic observatories during 39 solar eclipses occurring from 1991 to 2016. As a result of examining a pattern of the geomagnetic field variation on average, we confirm that the effect can be seen over an interval of 180 min centered at the time of maximum eclipse on a site of a geomagnetic observatory. That is, demonstrate an increase in the Y component of the geomagnetic field and decreases in the X component and the total strength of the geomagnetic field. We also find that the effect can be overwhelmed, depending more sensitively on the level of daily geomagnetic events than on the level of solar activity and/or the phase of solar cycle. We have demonstrated it by dividing the whole data set into subsets based on parameters of the geomagnetic field, solar activity, and solar eclipses. It is suggested, therefore, that an evidence of the solar eclipse effect can be revealed even at the solar maximum, as long as the day of the solar eclipse is magnetically quiet.

  9. Geomagnetic and strong static magnetic field effects on growth and chlorophyll a fluorescence in Lemna minor.

    Science.gov (United States)

    Jan, Luka; Fefer, Dušan; Košmelj, Katarina; Gaberščik, Alenka; Jerman, Igor

    2015-04-01

    The geomagnetic field (GMF) varies over Earth's surface and changes over time, but it is generally not considered as a factor that could influence plant growth. The effects of reduced and enhanced GMFs and a strong static magnetic field on growth and chlorophyll a (Chl a) fluorescence of Lemna minor plants were investigated under controlled conditions. A standard 7 day test was conducted in extreme geomagnetic environments of 4 µT and 100 µT as well as in a strong static magnetic field environment of 150 mT. Specific growth rates as well as slow and fast Chl a fluorescence kinetics were measured after 7 days incubation. The results, compared to those of controls, showed that the reduced GMF significantly stimulated growth rate of the total frond area in the magnetically treated plants. However, the enhanced GMF pointed towards inhibition of growth rate in exposed plants in comparison to control, but the difference was not statistically significant. This trend was not observed in the case of treatments with strong static magnetic fields. Our measurements suggest that the efficiency of photosystem II is not affected by variations in GMF. In contrast, the strong static magnetic field seems to have the potential to increase initial Chl a fluorescence and energy dissipation in Lemna minor plants. © 2015 Wiley Periodicals, Inc.

  10. Qualitative and quantitative estimations of the effect of geomagnetic field variations on human brain functional state

    International Nuclear Information System (INIS)

    Belisheva, N.K.; Popov, A.N.; Petukhova, N.V.; Pavlova, L.P.; Osipov, K.S.; Tkachenko, S.Eh.; Baranova, T.I.

    1995-01-01

    The comparison of functional dynamics of human brain with reference to qualitative and quantitative characteristics of local geomagnetic field (GMF) variations was conducted. Steady and unsteady states of human brain can be determined: by geomagnetic disturbances before the observation period; by structure and doses of GMF variations; by different combinations of qualitative and quantitative characteristics of GMF variations. Decrease of optimal GMF activity level and the appearance of aperiodic disturbances of GMF can be a reason of unsteady brain's state. 18 refs.; 3 figs

  11. The effect of the August 11, 1999 total solar eclipse on the geomagnetic field

    Czech Academy of Sciences Publication Activity Database

    Střeštík, Jaroslav

    2001-01-01

    Roč. 31, č. 1 (2001), s. 331-334 ISSN 1335-2806. [IAGA Workshop /9./. Hurbanovo, 12.06.2000-18.06.2000] R&D Projects: GA ČR GA205/99/0915 Institutional research plan: CEZ:AV0Z3012916 Keywords : solar eclipse * diurnal variation * geomagnetic field Subject RIV: DE - Earth Magnetism, Geodesy, Geography

  12. The Geomagnetic Field During a Reversal

    Science.gov (United States)

    Heirtzler, James R.

    2003-01-01

    By modifying the IGRF it is possible to learn what may happen to the geomagnetic field during a geomagnetic reversal. If the entire IGRF reverses then the declination and inclination only reverse when the field strength is zero. If only the dipole component of the IGRF reverses a large geomagnetic field remains when the dipole component is zero and he direction of the field at the end of the reversal is not exactly reversed from the directions at the beginning of the reversal.

  13. Effect of local perturbations of the geomagnetic field on cosmic ray cutoff rigidities at Jungfraujoch and Kiel

    International Nuclear Information System (INIS)

    Flueckiger, E.O.; Smart, D.F.; Shea, M.A.

    1983-01-01

    We have investigated the effect of local perturbations of the geomagnetic field on the vertical cosmic ray cutoff rigidities at Jungfraujoch and Kiel as representative mid-latitude neutron monitor stations. The main, effective, and Stoermer vertical cutoff rigidities and their changes were determined by utilizing the trajectory-tracing technique in a magnetic field which is modeled as a simple dipole field to which the disturbance field is superposed. It was found that the cosmic ray cutoff rigidities are most sensitive to variations of the z component of the geomagnetic field at geomagnetic latitudes -20 0 0 and at longitudes within 90 0 to the east of these northern hemisphere stations. Furthermore, cutoff rigidity variations at Kiel are predominantly due to changes of the geomagnetic field within geocentric distances 2.5R/sub E/< r<6R/sub E/, whereas at Jungfraujoch changes in cutoff rigidities are caused almost exclusively by magnetic disturbances within 1R/sub E/< r<4.5R/sub E/. For both locations the dependence of the main, effective, and Stoermer vertical cutoff rigidities on the radial, latitudinal and longitudinal structure of the magnetic perturbations is given explicitly. The results are discussed with respect to the theory by Treiman (1953) describing the effect of a ring current on cosmic ray cutoff rigidities. It is also shown that for the analysis of the characteristic properties of the correlation between cutoff rigidity variations and specific geomagnetic perturbations the rigidity corresponding to the first ''discontinuity band'' of the rigidity spectrum is an extremely useful parameter

  14. The geomagnetic field gradient tensor

    DEFF Research Database (Denmark)

    Kotsiaros, Stavros; Olsen, Nils

    2012-01-01

    We develop the general mathematical basis for space magnetic gradiometry in spherical coordinates. The magnetic gradient tensor is a second rank tensor consisting of 3 × 3 = 9 spatial derivatives. Since the geomagnetic field vector B is always solenoidal (∇ · B = 0) there are only eight independent...... tensor elements. Furthermore, in current free regions the magnetic gradient tensor becomes symmetric, further reducing the number of independent elements to five. In that case B is a Laplacian potential field and the gradient tensor can be expressed in series of spherical harmonics. We present properties...... of the magnetic gradient tensor and provide explicit expressions of its elements in terms of spherical harmonics. Finally we discuss the benefit of using gradient measurements for exploring the Earth’s magnetic field from space, in particular the advantage of the various tensor elements for a better determination...

  15. Geomagnetic Observations for Main Field Studies

    DEFF Research Database (Denmark)

    Matzka, Jürgen; Chulliat, A.; Mandea, M.

    2010-01-01

    Direct measurements of the geomagnetic field have been made for more than 400 years, beginning with individual determinations of the angle between geographic and magnetic North. This was followed by the start of continuous time series of full vector measurements at geomagnetic observatories...... and the beginning of geomagnetic repeat stations surveys in the 19th century. In the second half of the 20th century, true global coverage with geomagnetic field measurements was accomplished by magnetometer payloads on low-Earth-orbiting satellites. This article describes the procedures and instruments...... for magnetic field measurements on ground and in space and covers geomagnetic observatories, repeat stations, automatic observatories, satellites and historic observations. Special emphasis is laid on the global network of geomagnetic observatories....

  16. How the geomagnetic field vector reverses polarity

    Science.gov (United States)

    Prevot, M.; Mankinen, E.A.; Gromme, C.S.; Coe, R.S.

    1985-01-01

    A highly detailed record of both the direction and intensity of the Earth's magnetic field as it reverses has been obtained from a Miocene volcanic sequence. The transitional field is low in intensity and is typically non-axisymmetric. Geomagnetic impulses corresponding to astonishingly high rates of change of the field sometimes occur, suggesting that liquid velocity within the Earth's core increases during geomagnetic reversals. ?? 1985 Nature Publishing Group.

  17. Solar activity effects on cosmic ray intensity and geomagnetic field variation

    International Nuclear Information System (INIS)

    Shukla, A.K.; Shukla, J.P.; Sharma, S.M.; Singh, R.L.; Agrawal, S.P.

    1978-01-01

    An analysis has been performed to statistically correlate the date of solar flare occurrence and its importance with the short term cosmic ray intensity decreases (observed by the high latitude neutron monitors) as well as with the geomagnetic field fluctuation indices (Asub(p) and Dsub(st)), during the period 1973-1976. This period has the particular advantage of being close to a solar minimum to avoid the ambiguity due to closely spaced solar flares. It is found that the intensity decrease starts at least 2-3 days after the date of bright solar flares of Imp 1B, 2B or 3B and the amplitude of the decrease increases with the importance of the solar flare. (author)

  18. Geometric effects of ICMEs on geomagnetic storms

    Science.gov (United States)

    Cho, KyungSuk; Lee, Jae-Ok

    2017-04-01

    It has been known that the geomagnetic storm is occurred by the interaction between the Interplanetary Coronal Mass Ejection (ICME) and the Earth's magnetosphere; especially, the southward Bz component of ICME is thought as the main trigger. In this study, we investigate the relationship between Dst index and solar wind conditions; which are the southward Bz, electric field (VBz), and time integral of electric field as well as ICME parameters derived from toroidal fitting model in order to find what is main factor to the geomagnetic storm. We also inspect locations of Earth in ICMEs to understand the geometric effects of the Interplanetary Flux Ropes (IFRs) on the geomagnetic storms. Among 59 CDAW ICME lists, we select 30 IFR events that are available by the toroidal fitting model and classify them into two sub-groups: geomagnetic storms associated with the Magnetic Clouds (MCs) and the compression regions ahead of the MCs (sheath). The main results are as follows: (1) The time integral of electric field has a higher correlation coefficient (cc) with Dst index than the other parameters: cc=0.85 for 25 MC events and cc=0.99 for 5 sheath events. (2) The sheath associated intense storms (Dst ≤-100nT) having usually occur at flank regions of ICMEs while the MC associated intense storms occur regardless of the locations of the Earth in ICMEs. The strength of a geomagnetic storm strongly depends on electric field of IFR and durations of the IFR passages through the Earth.

  19. Geomagnetic field evolution during the Laschamp excursion

    Science.gov (United States)

    Leonhardt, Roman; Fabian, Karl; Winklhofer, Michael; Ferk, Annika; Laj, Carlo; Kissel, Catherine

    2009-02-01

    Since the last geomagnetic reversal, 780,000 years ago, the Earth's magnetic field repeatedly dropped dramatically in intensity. This has often been associated with large variations in local field direction, but without a persistent global polarity flip. The structure and dynamics of geomagnetic excursions, and especially the difference between excursions and polarity reversals, have remained elusive so far. For the best documented excursion, the Laschamp event at 41,000 years BP, we have reconstructed the evolution of the global field morphology by using a Bayesian inversion of several high-resolution palaeomagnetic records. We have obtained an excursion scenario in which inverse magnetic flux patches at the core-mantle boundary emerge near the equator and then move poleward. Contrary to the situation during the last reversal (Leonhardt, R., Fabian, K., 2007. Paleomagnetic reconstruction of the global geomagnetic field evolution during the Matuyama/Brunhes transition: Iterative Bayesian inversion and independent verification. Earth Planet. Sci. Lett. 253, 172-195), these flux patches do not cross the hydrodynamic boundary of the inner-core tangent cylinder. While the last geomagnetic reversal began with a substantial increase in the strength of the non-dipolar field components, prior to the Laschamp excursion, both dipolar and non-dipolar field decay at the same rate. This result suggests that the nature of an upcoming geomagnetic field instability can be predicted several hundred years in advance. Even though during the Laschamp excursion the dipolar field at the Earth's surface was dominant, the reconstructed dynamic non-dipolar components lead to considerable deviations among predicted records at different locations. The inverse model also explains why at some locations no directional change during the Laschamp excursion is observed.

  20. Effects of Hypomagnetic Conditions and Reversed Geomagnetic Field on Calcium-Dependent Proteases of Invertebrates and Fish

    Science.gov (United States)

    Kantserova, N. P.; Krylov, V. V.; Lysenko, L. A.; Ushakova, N. V.; Nemova, N. N.

    2017-12-01

    The effects of hypomagnetic conditions and the reversal of the geomagnetic field (GMF) on intracellular Ca2+-dependent proteases (calpains) of fish and invertebrates have been studied in vivo and in vitro. It is found that the intravital exposure of examined animals to hypomagnetic conditions leads to a significant decrease in its calpain activity. The activity of preparations of calcium-dependent proteases was tested in separate experiments. It is shown that preparations of Ca2+-dependent proteases from invertebrates and fish are also inactivated substantially under effect of hypomagnetic conditions. The ambiguous results obtained in the experiments with a reversed GMF do not make it possible to discuss the biological response of calcium-dependent proteases to the reversal of the GMF.

  1. Midlatitude cooling caused by geomagnetic field minimum during polarity reversal.

    Science.gov (United States)

    Kitaba, Ikuko; Hyodo, Masayuki; Katoh, Shigehiro; Dettman, David L; Sato, Hiroshi

    2013-01-22

    The climatic effects of cloud formation induced by galactic cosmic rays (CRs) has recently become a topic of much discussion. The CR-cloud connection suggests that variations in geomagnetic field intensity could change climate through modulation of CR flux. This hypothesis, however, is not well-tested using robust geological evidence. Here we present paleoclimate and paleoenvironment records of five interglacial periods that include two geomagnetic polarity reversals. Marine oxygen isotope stages 19 and 31 contain both anomalous cooling intervals during the sea-level highstands and the Matuyama-Brunhes and Lower Jaramillo reversals, respectively. This contrasts strongly with the typical interglacial climate that has the temperature maximum at the sea-level peak. The cooling occurred when the field intensity dropped to 40% increase in CR flux. The climate warmed rapidly when field intensity recovered. We suggest that geomagnetic field intensity can influence global climate through the modulation of CR flux.

  2. Surface electric fields for North America during historical geomagnetic storms

    Science.gov (United States)

    Wei, Lisa H.; Homeier, Nichole; Gannon, Jennifer L.

    2013-01-01

    To better understand the impact of geomagnetic disturbances on the electric grid, we recreate surface electric fields from two historical geomagnetic storms—the 1989 “Quebec” storm and the 2003 “Halloween” storms. Using the Spherical Elementary Current Systems method, we interpolate sparsely distributed magnetometer data across North America. We find good agreement between the measured and interpolated data, with larger RMS deviations at higher latitudes corresponding to larger magnetic field variations. The interpolated magnetic field data are combined with surface impedances for 25 unique physiographic regions from the United States Geological Survey and literature to estimate the horizontal, orthogonal surface electric fields in 1 min time steps. The induced horizontal electric field strongly depends on the local surface impedance, resulting in surprisingly strong electric field amplitudes along the Atlantic and Gulf Coast. The relative peak electric field amplitude of each physiographic region, normalized to the value in the Interior Plains region, varies by a factor of 2 for different input magnetic field time series. The order of peak electric field amplitudes (largest to smallest), however, does not depend much on the input. These results suggest that regions at lower magnetic latitudes with high ground resistivities are also at risk from the effect of geomagnetically induced currents. The historical electric field time series are useful for estimating the flow of the induced currents through long transmission lines to study power flow and grid stability during geomagnetic disturbances.

  3. Uncertainty Quantification in Geomagnetic Field Modeling

    Science.gov (United States)

    Chulliat, A.; Nair, M. C.; Alken, P.; Meyer, B.; Saltus, R.; Woods, A.

    2017-12-01

    Geomagnetic field models are mathematical descriptions of the various sources of the Earth's magnetic field, and are generally obtained by solving an inverse problem. They are widely used in research to separate and characterize field sources, but also in many practical applications such as aircraft and ship navigation, smartphone orientation, satellite attitude control, and directional drilling. In recent years, more sophisticated models have been developed, thanks to the continuous availability of high quality satellite data and to progress in modeling techniques. Uncertainty quantification has become an integral part of model development, both to assess the progress made and to address specific users' needs. Here we report on recent advances made by our group in quantifying the uncertainty of geomagnetic field models. We first focus on NOAA's World Magnetic Model (WMM) and the International Geomagnetic Reference Field (IGRF), two reference models of the main (core) magnetic field produced every five years. We describe the methods used in quantifying the model commission error as well as the omission error attributed to various un-modeled sources such as magnetized rocks in the crust and electric current systems in the atmosphere and near-Earth environment. A simple error model was derived from this analysis, to facilitate usage in practical applications. We next report on improvements brought by combining a main field model with a high resolution crustal field model and a time-varying, real-time external field model, like in NOAA's High Definition Geomagnetic Model (HDGM). The obtained uncertainties are used by the directional drilling industry to mitigate health, safety and environment risks.

  4. Interplanetary magnetic field associated changes in cosmic ray intensity and geomagnetic field during 1973-75

    International Nuclear Information System (INIS)

    Singh, R.L.; Shukla, J.P.; Shukla, A.K.; Sharma, S.M.; Agrawal, S.P.

    1979-01-01

    The effects of interplanetary magnetic field (IMF) B and its Bsub(z) component on cosmic ray intensity and geomagnetic field variations have been examined for the period 1973-75. It is observed that: (1) B >= 10γ (magnetic blobs) is pre-requisite in producing cosmic ray intensity and geomagnetic field variations of varying magnitudes, (2) the longer existence of magnetic blobs on successive days produces larger decreases in cosmic ray intensity and geomagnetic field and (3) the southward component (Bsub(z)) of IMF generally gives rise to large Asub(p) changes, though it is not effective in producing cosmic ray intensity decreases. (auth.)

  5. Mathematical Properties Relevant to Geomagnetic Field Modeling

    DEFF Research Database (Denmark)

    Sabaka, Terence J.; Hulot, Gauthier; Olsen, Nils

    2010-01-01

    be directly measured. In this chapter, the mathematical foundation of global (as opposed to regional) geomagnetic field modeling is reviewed, and the spatial modeling of the field in spherical coordinates is focussed. Time can be dealt with as an independent variable and is not explicitly considered......Geomagnetic field modeling consists in converting large numbers of magnetic observations into a linear combination of elementary mathematical functions that best describes those observations.The set of numerical coefficients defining this linear combination is then what one refers.......The relevant elementary mathematical functions are introduced, their properties are reviewed, and how they can be used to describe the magnetic field in a source-free (such as the Earth’s neutral atmosphere) or source-dense (such as the ionosphere) environment is explained. Completeness and uniqueness...

  6. Mathematical Properties Relevant to Geomagnetic Field Modeling

    DEFF Research Database (Denmark)

    Sabaka, Terence J.; Hulot, Gauthier; Olsen, Nils

    2014-01-01

    be directly measured. In this chapter, the mathematical foundation of global (as opposed to regional) geomagnetic field modeling is reviewed, and the spatial modeling of the field in spherical coordinates is focused. Time can be dealt with as an independent variable and is not explicitly considered......Geomagnetic field modeling consists in converting large numbers of magnetic observations into a linear combination of elementary mathematical functions that best describes those observations. The set of numerical coefficients defining this linear combination is then what one refers....... The relevant elementary mathematical functions are introduced, their properties are reviewed, and how they can be used to describe the magnetic field in a source-free (such as the Earth’s neutral atmosphere) or source-dense (such as the ionosphere) environment is explained. Completeness and uniqueness...

  7. Domino model for geomagnetic field reversals.

    Science.gov (United States)

    Mori, N; Schmitt, D; Wicht, J; Ferriz-Mas, A; Mouri, H; Nakamichi, A; Morikawa, M

    2013-01-01

    We solve the equations of motion of a one-dimensional planar Heisenberg (or Vaks-Larkin) model consisting of a system of interacting macrospins aligned along a ring. Each spin has unit length and is described by its angle with respect to the rotational axis. The orientation of the spins can vary in time due to spin-spin interaction and random forcing. We statistically describe the behavior of the sum of all spins for different parameters. The term "domino model" in the title refers to the interaction among the spins. We compare the model results with geomagnetic field reversals and dynamo simulations and find strikingly similar behavior. The aggregate of all spins keeps the same direction for a long time and, once in a while, begins flipping to change the orientation by almost 180 degrees (mimicking a geomagnetic reversal) or to move back to the original direction (mimicking an excursion). Most of the time the spins are aligned or antialigned and deviate only slightly with respect to the rotational axis (mimicking the secular variation of the geomagnetic pole with respect to the geographic pole). Reversals are fast compared to the times in between and they occur at random times, both in the model and in the case of the Earth's magnetic field.

  8. Geomagnetic Field Variation during Winter Storm at Localized ...

    Indian Academy of Sciences (India)

    that transports plasma and magnetic flux which create the geomagnetic field variation. Key words. Dst—vertical component of interplanetary magnetic field and geomagnetic field components. 1. Introduction. The magnetic field is one of the important properties of the earth. The main magnetic field originates from ...

  9. Geomagnetic effects caused by rocket exhaust jets

    Directory of Open Access Journals (Sweden)

    Lipko Yu.V.

    2016-09-01

    Full Text Available In the space experiment Radar–Progress, we have made 33 series of measurements of geomagnetic variations during ignitions of engines of Progress cargo spacecraft in low Earth orbit. We used magneto-measuring complexes, installed at observatories of the Institute of Solar-Terrestrial Physics of Siberian Branch of the Russian Academy of Sciences, and magnetotelluric equipment of a mobile complex. We assumed that engine running can cause geomagnetic disturbances in field tubes crossed by the spacecraft. When analyzing experimental data, we took into account the following space weather factors: solar wind parameters, total daily mid-latitude geomagnetic activity index Kр, geomagnetic auroral electrojet index AE, global geomagnetic activity. The empirical data we obtained indicate that 18 of the 33 series showed geomagnetic variations with various periods.

  10. Can the tardigrade Hypsibius dujardini survive in the absence of the geomagnetic field?

    Directory of Open Access Journals (Sweden)

    Weronika Erdmann

    Full Text Available Earth's geomagnetic field has undergone critical changes in the past. Studies on the influence of the magnetic field on Earth's organisms are crucial for the understanding of evolution of life on Earth and astrobiological considerations. Numerous studies conducted both on plants and animals confirmed the significant influence of the geomagnetic field on the metabolism of living organisms. Water bears (Tardigrada, which are a mong the most resistant animals due to their cryptobiotic abilities, show significant resistance to a number of environmental stressors, but the influence of the geomagnetic field on their fitness has not been addressed before. In our studies, we used eutardigrade Hypsibius dujardini to analyse whether isolation from the geomagnetic field had an effect on mortality. We found that Hypsibius dujardini specimens demonstrated relatively high mortality during anhydrobiosis, also in control groups exposed to the normal geomagnetic field. Moreover, similar mortality was observed in anhydrobiotic specimens isolated from the geomagnetic field. However, a significant difference was noted between tardigrade survival and the moment of their isolation from the geomagnetic field. In particular, tardigrade mortality substantially increased in absence of a magnetic field during the process of entering anhydrobiosis and returning to active life. Our results suggest that these processes rely on complex metabolic processes that are critically influenced by the geomagnetic field.

  11. Atmospheric helium and geomagnetic field reversals.

    Science.gov (United States)

    Sheldon, W. R.; Kern, J. W.

    1972-01-01

    The problem of the earth's helium budget is examined in the light of recent work on the interaction of the solar wind with nonmagnetic planets. It is proposed that the dominant mode of helium (He4) loss is ion pumping by the solar wind during geomagnetic field reversals, when the earth's magnetic field is very small. The interaction of the solar wind with the earth's upper atmosphere during such a period is found to involve the formation of a bow shock. The penetration altitude of the shock-heated solar plasma is calculated to be about 700 km, and ionization rates above this level are estimated for a cascade ionization (electron avalanche) process to average 10 to the 9th power ions/sq cm/sec. The calculated ionization rates and the capacity of the solar wind to remove ionized helium (He4) from the upper atmosphere during geomagnetic dipole reversals are sufficient to yield a secular equilibrium over geologic time scales. The upward transport of helium from the lower atmosphere under these conditions is found to be adequate to sustain the proposed loss rate.

  12. The response of European Daphnia magna Straus and Australian Daphnia carinata King to changes in geomagnetic field.

    Science.gov (United States)

    Krylov, Viacheslav V; Bolotovskaya, Irina V; Osipova, Elena A

    2013-03-01

    This study investigates the effects of lifelong exposure to reversed geomagnetic and zero geomagnetic fields (the latter means absence of geomagnetic field) on the life history of Daphnia carinata King from Australia and Daphnia magna Straus from Europe. Considerable deviation in the geomagnetic field from the usual strength, leads to a decrease in daphnia size and life span. Reduced brood sizes and increased body length of neonates are observed in D. magna exposed to unusual magnetic background. The most apparent effects are induced by zero geomagnetic field in both species of Daphnia. A delay in the first reproduction in zero geomagnetic field is observed only in D. magna. No adaptive maternal effects to reversed geomagnetic field are found in a line of D. magna maintained in these magnetic conditions for eight generations. Integrally, the responses of D. magna to unusual geomagnetic conditions are more extensive than that in D. carinata. We suggest that the mechanism of the effects of geomagnetic field reversal on Daphnia may be related to differences in the pattern of distribution of the particles that have a magnetic moment, or to moving charged organic molecules owing to a change in combined outcome and orientation of the geomagnetic field and Earth's gravitational field. The possibility of modulation of self-oscillating processes with changes in geomagnetic field is also discussed.

  13. The effect of the geomagnetic field on cosmic ray energy estimates and large scale anisotropy searches on data from the Pierre Auger Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Abreu, P.; /Lisbon, IST; Aglietta, M.; /IFSI, Turin; Ahn, E.J.; /Fermilab; Albuquerque, I.F.M.; /Sao Paulo U.; Allard, D.; /APC, Paris; Allekotte, I.; /Centro Atomico Bariloche; Allen, J.; /New York U.; Allison, P.; /Ohio State U.; Alvarez Castillo, J.; /Mexico U., ICN; Alvarez-Muniz, J.; /Santiago de Compostela U.; Ambrosio, M.; /Naples U. /INFN, Naples /Nijmegen U., IMAPP

    2011-11-01

    We present a comprehensive study of the influence of the geomagnetic field on the energy estimation of extensive air showers with a zenith angle smaller than 60{sup o}, detected at the Pierre Auger Observatory. The geomagnetic field induces an azimuthal modulation of the estimated energy of cosmic rays up to the {approx} 2% level at large zenith angles. We present a method to account for this modulation of the reconstructed energy. We analyse the effect of the modulation on large scale anisotropy searches in the arrival direction distributions of cosmic rays. At a given energy, the geomagnetic effect is shown to induce a pseudo-dipolar pattern at the percent level in the declination distribution that needs to be accounted for. In this work, we have identified and quantified a systematic uncertainty affecting the energy determination of cosmic rays detected by the surface detector array of the Pierre Auger Observatory. This systematic uncertainty, induced by the influence of the geomagnetic field on the shower development, has a strength which depends on both the zenith and the azimuthal angles. Consequently, we have shown that it induces distortions of the estimated cosmic ray event rate at a given energy at the percent level in both the azimuthal and the declination distributions, the latter of which mimics an almost dipolar pattern. We have also shown that the induced distortions are already at the level of the statistical uncertainties for a number of events N {approx_equal} 32 000 (we note that the full Auger surface detector array collects about 6500 events per year with energies above 3 EeV). Accounting for these effects is thus essential with regard to the correct interpretation of large scale anisotropy measurements taking explicitly profit from the declination distribution.

  14. Geomagnetic Field (Gmf) and Plant Evolution: Investigating the Effects of Gmf Reversal on Arabidopsis thaliana Development and Gene Expression.

    Science.gov (United States)

    Bertea, Cinzia M; Narayana, Ravishankar; Agliassa, Chiara; Rodgers, Christopher T; Maffei, Massimo E

    2015-11-30

    One of the most stimulating observations in plant evolution is a correlation between the occurrence of geomagnetic field (GMF) reversals (or excursions) and the moment of the radiation of Angiosperms. This led to the hypothesis that alterations in GMF polarity may play a role in plant evolution. Here, we describe a method to test this hypothesis by exposing Arabidopsis thaliana to artificially reversed GMF conditions. We used a three-axis magnetometer and the collected data were used to calculate the magnitude of the GMF. Three DC power supplies were connected to three Helmholtz coil pairs and were controlled by a computer to alter the GMF conditions. Plants grown in Petri plates were exposed to both normal and reversed GMF conditions. Sham exposure experiments were also performed. Exposed plants were photographed during the experiment and images were analyzed to calculate root length and leaf areas. Arabidopsis total RNA was extracted and Quantitative Real Time-PCR (qPCR) analyses were performed on gene expression of CRUCIFERIN 3 (CRU3), copper transport protein1 (COTP1), Redox Responsive Transcription Factor1 (RRTF1), Fe Superoxide Dismutase 1, (FSD1), Catalase3 (CAT3), Thylakoidal Ascorbate Peroxidase (TAPX), a cytosolic Ascorbate Peroxidase1 (APX1), and NADPH/respiratory burst oxidase protein D (RbohD). Four different reference genes were analysed to normalize the results of the qPCR. The best of the four genes was selected and the most stable gene for normalization was used. Our data show for the first time that reversing the GMF polarity using triaxial coils has significant effects on plant growth and gene expression. This supports the hypothesis that GMF reversal contributes to inducing changes in plant development that might justify a higher selective pressure, eventually leading to plant evolution.

  15. International Geomagnetic Reference Field: the 12th generation

    DEFF Research Database (Denmark)

    Thébault, Erwan; Finlay, Chris; Beggan, Ciarán D.

    2015-01-01

    The 12th generation of the International Geomagnetic Reference Field (IGRF) was adopted in December 2014 by the Working Group V-MOD appointed by the International Association of Geomagnetism and Aeronomy (IAGA). It updates the previous IGRF generation with a definitive main field model for epoch ...

  16. The Egyptian geomagnetic reference field to the Epoch, 2010.0

    Directory of Open Access Journals (Sweden)

    H.A. Deebes

    2017-06-01

    The geomagnetic anomaly maps, the normal geomagnetic field maps with their corresponding secular variation maps, the normal geomagnetic field equations of the geomagnetic elements (EGRF and their corresponding secular variations equations, are outlined. The anomalous sites, as discovered from the anomaly maps are, only, mentioned. In addition, a correlation between the International Geomagnetic Reference Field (IGRF 2010.0 and the Egyptian Geomagnetic Reference Field (EGRF 2010 is indicated.

  17. Characteristic features of the geomagnetic field of the Earth

    International Nuclear Information System (INIS)

    Petrova, G.N.

    1978-01-01

    The laws of the earth magnetism permitting to make a model of the earth magnetic field are popularly investigated. The modern methods of investigations used in the development of geomagnetism and determining the quantity and direction of the earth magnetic field from the moment of rock formation are described. Considered are the characteristic peculiarities of geomagnetic field: the inclination of the magnetic axis to the rotational axis of the Earth, the western drift of the geomagnetic field, the magnetic field asymmetry, its pole exchange and secular variations. The sources of the continuous magnetic field are investigated. The theory of hydromagnatic dinamo operating in the earth core is described. According to the invariance of the geomagnetic field characteristics it is possible to assume that the core has not significantly evolved for milliard years

  18. The Holocene Geomagnetic Field: Spikes, Low Field Anomalies, and Asymmetries

    Science.gov (United States)

    Constable, C.

    2017-12-01

    Our understanding of the Holocene magnetic field is constrained by individual paleomagnetic records of variable quality and resolution, composite regional secular variation curves, and low resolution global time-varying geomagnetic field models. Although spatial and temporal data coverages have greatly improved in recent years, typical views of millennial-scale secular variation and the underlying physical processes continue to be heavily influenced by more detailed field structure and short term variability inferred from the historical record and modern observations. Recent models of gyre driven decay of the geomagnetic dipole on centennial time scales, and studies of the evolution of the South Atlantic Anomaly provide one prominent example. Since 1840 dipole decay has largely been driven by meridional flux advection, with generally smaller fairly steady contributions from magnetic diffusion. The decay is dominantly associated with geomagnetic activity in the Southern Hemisphere. In contrast to the present decay, dipole strength generally grew between 1500 and 1000 BC, sustaining high but fluctuating values around 90-100 ZAm2 until after 1500 AD. Thus high dipole moments appear to have been present shortly after 1000 AD at the time of the Levantine spikes, which represent extreme variations in regional geomagnetic field strength. It has been speculated that the growth in dipole moment originated from a strong flux patch near the equatorial region at the core-mantle boundary that migrated north and west to augment the dipole strength, suggesting the presence of a large-scale anticyclonic gyre in the northern hemisphere, not totally unlike the southern hemisphere flow that dominates present day dipole decay. The later brief episodes of high field strength in the Levant may have contributed to prolonged values of high dipole strength until the onset of dipole decay in the late second millennium AD. This could support the concept of a large-scale stable flow

  19. Dynamical similarity of geomagnetic field reversals.

    Science.gov (United States)

    Valet, Jean-Pierre; Fournier, Alexandre; Courtillot, Vincent; Herrero-Bervera, Emilio

    2012-10-04

    No consensus has been reached so far on the properties of the geomagnetic field during reversals or on the main features that might reveal its dynamics. A main characteristic of the reversing field is a large decrease in the axial dipole and the dominant role of non-dipole components. Other features strongly depend on whether they are derived from sedimentary or volcanic records. Only thermal remanent magnetization of lava flows can capture faithful records of a rapidly varying non-dipole field, but, because of episodic volcanic activity, sequences of overlying flows yield incomplete records. Here we show that the ten most detailed volcanic records of reversals can be matched in a very satisfactory way, under the assumption of a common duration, revealing common dynamical characteristics. We infer that the reversal process has remained unchanged, with the same time constants and durations, at least since 180 million years ago. We propose that the reversing field is characterized by three successive phases: a precursory event, a 180° polarity switch and a rebound. The first and third phases reflect the emergence of the non-dipole field with large-amplitude secular variation. They are rarely both recorded at the same site owing to the rapidly changing field geometry and last for less than 2,500 years. The actual transit between the two polarities does not last longer than 1,000 years and might therefore result from mechanisms other than those governing normal secular variation. Such changes are too brief to be accurately recorded by most sediments.

  20. Interaction of the geomagnetic field with northward interplanetary magnetic field

    Science.gov (United States)

    Bhattarai, Shree Krishna

    The interaction of the solar wind with Earth's magnetic field causes the transfer of momentum and energy from the solar wind to geospace. The study of this interaction is gaining significance as our society is becoming more and more space based, due to which, predicting space weather has become more important. The solar wind interacts with the geomagnetic field primarily via two processes: viscous interaction and the magnetic reconnection. Both of these interactions result in the generation of an electric field in Earth's ionosphere. The overall topology and dynamics of the magnetosphere, as well as the electric field imposed on the ionosphere, vary with speed, density, and magnetic field orientation of the solar wind as well as the conductivity of the ionosphere. In this dissertation, I will examine the role of northward interplanetary magnetic field (IMF) and discuss the global topology of the magnetosphere and the interaction with the ionosphere using results obtained from the Lyon-Fedder-Mobarry (LFM) simulation. The electric potentials imposed on the ionosphere due to viscous interaction and magnetic reconnection are called the viscous and the reconnection potentials, respectively. A proxy to measure the overall effect of these potentials is to measure the cross polar potential (CPP). The CPP is defined as the difference between the maximum and the minimum of the potential in a given polar ionosphere. I will show results from the LFM simulation showing saturation of the CPP during periods with purely northward IMF of sufficiently large magnitude. I will further show that the viscous potential, which was assumed to be independent of IMF orientation until this work, is reduced during periods of northward IMF. Furthermore, I will also discuss the implications of these results for a simulation of an entire solar rotation.

  1. Biological effects of geomagnetic storms

    International Nuclear Information System (INIS)

    Chibisov, S.M.; Breus, T.K.; Levitin, A.E.; Drogova, G.M.; AN SSSR, Moscow; AN SSSR, Moscow

    1995-01-01

    Six physiological parameters of cardio-vascular system of rabbits and ultrastructure of cardiomyocytes were investigated during two planetary geomagnetic storms. At the initial and main phase of the storm the normal circadian structure in each cardiovascular parameter was lost. The disynchronozis was growing together with the storm and abrupt drop of cardia activity was observed during the main phase of storm. The main phase of storm followed by the destruction and degradation of cardiomyocytes. Parameters of cardia activity became substantially synchronized and characterized by circadian rhythm structure while the amplitude of deviations was still significant at the recovery stage of geomagnetic storm. 3 refs.; 7 figs

  2. Geomagnetic storm effects on GPS based navigation

    Directory of Open Access Journals (Sweden)

    P. V. S. Rama Rao

    2009-05-01

    Full Text Available The energetic events on the sun, solar wind and subsequent effects on the Earth's geomagnetic field and upper atmosphere (ionosphere comprise space weather. Modern navigation systems that use radio-wave signals, reflecting from or propagating through the ionosphere as a means of determining range or distance, are vulnerable to a variety of effects that can degrade the performance of the navigational systems. In particular, the Global Positioning System (GPS that uses a constellation of earth orbiting satellites are affected due to the space weather phenomena.

    Studies made during two successive geomagnetic storms that occurred during the period from 8 to 12 November 2004, have clearly revealed the adverse affects on the GPS range delay as inferred from the Total Electron Content (TEC measurements made from a chain of seven dual frequency GPS receivers installed in the Indian sector. Significant increases in TEC at the Equatorial Ionization anomaly crest region are observed, resulting in increased range delay during the periods of the storm activity. Further, the storm time rapid changes occurring in TEC resulted in a number of phase slips in the GPS signal compared to those on quiet days. These phase slips often result in the loss of lock of the GPS receivers, similar to those that occur during strong(>10 dB L-band scintillation events, adversely affecting the GPS based navigation.

  3. A study of geomagnetic field variations along the 80° S geomagnetic parallel

    Directory of Open Access Journals (Sweden)

    S. Lepidi

    2017-01-01

    Full Text Available The availability of measurements of the geomagnetic field variations in Antarctica at three sites along the 80° S geomagnetic parallel, separated by approximately 1 h in magnetic local time, allows us to study the longitudinal dependence of the observed variations. In particular, using 1 min data from Mario Zucchelli Station, Scott Base and Talos Dome, a temporary installation during 2007–2008 Antarctic campaign, we investigated the diurnal variation and the low-frequency fluctuations (approximately in the Pc5 range, ∼ 1–7 mHz. We found that the daily variation is clearly ordered by local time, suggesting a predominant effect of the polar extension of midlatitude ionospheric currents. On the other hand, the pulsation power is dependent on magnetic local time maximizing around magnetic local noon, when the stations are closer to the polar cusp, while the highest coherence between pairs of stations is observed in the magnetic local nighttime sector. The wave propagation direction observed during selected events, one around local magnetic noon and the other around local magnetic midnight, is consistent with a solar-wind-driven source in the daytime and with substorm-associated processes in the nighttime.

  4. Geomagnetic field models for satellite angular motion studies

    Science.gov (United States)

    Ovchinnikov, M. Yu.; Penkov, V. I.; Roldugin, D. S.; Pichuzhkina, A. V.

    2018-03-01

    Four geomagnetic field models are discussed: IGRF, inclined, direct and simplified dipoles. Geomagnetic induction vector expressions are provided in different reference frames. Induction vector behavior is compared for different models. Models applicability for the analysis of satellite motion is studied from theoretical and engineering perspectives. Relevant satellite dynamics analysis cases using analytical and numerical techniques are provided. These cases demonstrate the benefit of a certain model for a specific dynamics study. Recommendations for models usage are summarized in the end.

  5. Polar cap geomagnetic field responses to solar sector changes

    International Nuclear Information System (INIS)

    Campbell, W.H.

    1976-01-01

    I made a computerized analysis of digitized magnetograms from Alert, Thule, Resolute Bay, Mould Bay, and Godhavn for 1965 and from Thule and Vostok for 1967 to determine the characteristic features of the day-to-day geomagnetic field variations related to the interplanetary solar sector field direction. Higher invariant latitude stations showed the sector effects most clearly. A sector-related phase shift in the characteristic diurnal variation of the field occurred principally for the dayside vertical geomagnetic component. The amplitude of this diurnal variation was related to Ap and could not be used to identify the sector direction. The quiet nighttime level of field Z component rose and fell on days when the interplanetary magnetic field was directed toward or away from the sun, respectively. When a station's base level field was determined from quiet magnetospheric conditions by using days with low values of Dst and AE indices, the mean field level of the Z component for the whole day increased or decreased (often over 100 γ) from this level as the solar sector direction was toward or away, respectively. With respect to the earth's main field direction the souther polar station field level changes were opposite those at the northern stations. This level shift corresponded with the two solar field directions during the summer months at polar stations for about 70% of the days in 1965 and 88% of the days in 1967. In 1967 the standoff locations of the magnetopause and magnetoshock boundaries were abotu 1 R/sub E/ more distant from the earth for the average toward sector days than for the away sector days

  6. On the scaling features of high-latitude geomagnetic field fluctuations during a large geomagnetic storm

    Science.gov (United States)

    De Michelis, Paola; Federica Marcucci, Maria; Consolini, Giuseppe

    2015-04-01

    Recently we have investigated the spatial distribution of the scaling features of short-time scale magnetic field fluctuations using measurements from several ground-based geomagnetic observatories distributed in the northern hemisphere. We have found that the scaling features of fluctuations of the horizontal magnetic field component at time scales below 100 minutes are correlated with the geomagnetic activity level and with changes in the currents flowing in the ionosphere. Here, we present a detailed analysis of the dynamical changes of the magnetic field scaling features as a function of the geomagnetic activity level during the well-known large geomagnetic storm occurred on July, 15, 2000 (the Bastille event). The observed dynamical changes are discussed in relationship with the changes of the overall ionospheric polar convection and potential structure as reconstructed using SuperDARN data. This work is supported by the Italian National Program for Antarctic Research (PNRA) - Research Project 2013/AC3.08 and by the European Community's Seventh Framework Programme ([FP7/2007-2013]) under Grant no. 313038/STORM and

  7. Statistical analysis of geomagnetic field variations during the partial solar eclipse on 2011 January 4 in Turkey

    International Nuclear Information System (INIS)

    Ateş, Abdullah; Levent Ekinci, Yunus; Buyuksarac, Aydin; Aydemir, Attila; Demirci, Alper

    2015-01-01

    Some geophysical parameters, such as those related to gravitation and the geomagnetic field, could change during solar eclipses. In order to observe geomagnetic fluctuations, geomagnetic measurements were carried out in a limited time frame during the partial solar eclipse that occurred on 2011 January 4 and was observed in Canakkale and Ankara, Turkey. Additionally, records of the geomagnetic field spanning 24 hours, obtained from another observatory (in Iznik, Turkey), were also analyzed to check for any peculiar variations. In the data processing stage, a polynomial fit, following the application of a running average routine, was applied to the geomagnetic field data sets. Geomagnetic field data sets indicated there was a characteristic decrease at the beginning of the solar eclipse and this decrease can be well-correlated with previous geomagnetic field measurements that were taken during the total solar eclipse that was observed in Turkey on 2006 March 29. The behavior of the geomagnetic field is also consistent with previous observations in the literature. As a result of these analyses, it can be suggested that eclipses can cause a shielding effect on the geomagnetic field of the Earth. (paper)

  8. Turbulent Diffusion of the Geomagnetic Field and Dynamo Theories

    OpenAIRE

    Filippi, Enrico

    2016-01-01

    The thesis deals with the Dynamo Theories of the Earth’s Magnetic Field and mainly deepens the turbulence phenomena in the fluid Earth’s core. Indeed, we think that these phenomena are very important to understand the recent decay of the geomagnetic field. The thesis concerns also the dynamics of the outer core and some very rapid changes of the geomagnetic field observed in the Earth’s surface and some aspects regarding the (likely) isotropic turbulence in the Magnetohydrodynamics. These top...

  9. International Geomagnetic Reference Field: the 12th generation

    OpenAIRE

    Thébault , Erwan; Finlay , Christopher ,; Beggan , Ciarán ,; Alken , Patrick; Aubert , Julien ,; Barrois , Olivier; Bertrand , François; Bondar , Tatiana; Boness , Axel; Brocco , Laura; Canet , Elisabeth ,; Chambodut , Aude; Chulliat , Arnaud ,; Coïsson , Pierdavide ,; Civet , François

    2015-01-01

    International audience; The 12th generation of the International Geomagnetic Reference Field (IGRF) was adopted in December 2014 by the Working Group V-MOD appointed by the International Association of Geomagnetism and Aeronomy (IAGA). It updates the previous IGRF generation with a definitive main field model for epoch 2010.0, a main field model for epoch 2015.0, and a linear annual predictive secular variation model for 2015.0-2020.0. Here, we present the equations defining the IGRF model, p...

  10. Linkage between the Biosphere and Geomagnetic field: Knowns and Unknowns

    Science.gov (United States)

    Pan, Y.; Zhu, R.

    2017-12-01

    The geomagnetic field extends from Earth's interior into space, and protects our planets habitability by shielding the planet from solar winds and cosmic rays. Recently, single zircon paleomagnetic study provides evidence of the field to ages as old as 4.2 Ga. Many great questions remain, including whether the emergence of life on Earth was a consequence of the field's protection, how organisms utilize the field, and if field variations (polarity reversal, excursion and secular variation) impact the evolution of the biosphere. In the past decade, great efforts have been made to probe these very complex and great challenging questions through the inter-disciplinary subject of biogeomagnetism. Numerous birds, fish, sea turtles, bats and many other organisms utilize the geomagnetic field during orientation and long-distance navigation. We recently found that bats, the second most abundant order of mammals, can use the direction of magnetic field with a weak strength comparable to polarity transitions/excursions, which is indicative of advanced magnetoreception developed in bats co-evolving with the geomagnetic field since the Eocene. Magnetotactic bacteria swim along the geomagnetic field lines by synthesizing intracellular nano-sized and chain-arranged magnetic minerals (magnetosomes). Recent field surveys in China, Europe, America and Australia have shown that these microbes are ubiquitous in aqueous habitats. Both their biogeography distribution and magnetotactic swimming speed are field intensity dependent. On the other hand, it is increasingly accepted that the geomagnetic field influences life through several indirect pathways. For example, it has been discovered that solar wind erosion enhanced the atmospheric oxygen escape during periods of weak magnetic field and global mean ionospheric electron density profiles can be affected by geomagnetic field strength variation. In addition, depletion of the ozone layer during a weak magnetic field could result in

  11. Evaluation of candidate geomagnetic field models for IGRF-12

    OpenAIRE

    Erwan Thébault; Christopher C. Finlay; Patrick Alken; Ciaran D. Beggan; Elisabeth Canet; Arnaud Chulliat; Benoit Langlais; V. Lesur; Frank J. Lowes; Chandrasekharan Manoj; Martin Rother; Reyko Schachtschneider

    2015-01-01

    Background: The 12th revision of the International Geomagnetic Reference Field (IGRF) was issued in December 2014 by the International Association of Geomagnetism and Aeronomy (IAGA) Division V Working Group V-MOD (http://www.ngdc.noaa.gov/IAGA/vmod/igrf.html). This revision comprises new spherical harmonic main field models for epochs 2010.0 (DGRF-2010) and 2015.0 (IGRF-2015) and predictive linear secular variation for the interval 2015.0-2020.0 (SV-2010-2015). Findings: The models were deri...

  12. Characterization and demonstration results of a SQUID magnetometer system developed for geomagnetic field measurements

    Science.gov (United States)

    Kawai, J.; Miyamoto, M.; Kawabata, M.; Nosé, M.; Haruta, Y.; Uehara, G.

    2017-08-01

    We characterized a low temperature superconducting quantum interference device (SQUID) magnetometer system developed for high-sensitivity geomagnetic field measurement, and demonstrated the detection of weak geomagnetic signals. The SQUID magnetometer system is comprised of three-axis SQUID magnetometers housed in a glass fiber reinforced plastic cryostat, readout electronics with flux locked loop (FLL), a 24-bit data logger with a global positioning system and batteries. The system noise was approximately 0.2 pT √Hz- 1/2 in the 1-50 Hz frequency range. This performance was determined by including the thermal noise and the shielding effect of the copper shield, which covered the SQUID magnetometers to eliminate high-frequency interference. The temperature drift of the system was ˜0.8 pT °C- 1 in an FLL operation. The system operated for a month using 33 l liquid helium. Using this system, we performed the measurements of geomagnetic field in the open-air, far away from the city. The system could detect weak geomagnetic signals such as the Schumann resonance with sixth harmonics, and the ionospheric Alfvén resonance appearing at night, for the north-south and east-west components of the geomagnetic field. We confirm that the system was capable of high-sensitivity measurement of the weak geomagnetic activities.

  13. Anomalous changes of vertical geomagnetic field in Kamchatka

    Directory of Open Access Journals (Sweden)

    Moroz Yuriy

    2016-01-01

    Full Text Available Secular variations of the vertical geomagnetic field at Paratunka (Kamchatka, Kakioka (Honshu, Mamambetsu (Hokkaido and Patrony (Irkutsk are considered from 1968 to 2014. Comparative analysis of secular variations showed that from 1968 to 2001, similar variations with the intensity of first hundreds on nT are obvious at four observatories. For the following period from 2001 to 2014, the secular variation at Paratunka observatory differs from other observatories. This disagreement of the secular geomagnetic variation at Paratunka observatory is timed to the increase of seismicity at the depth of 400-700 km in South Kamchatka region. It is suggested that in the result of increase of the seismicity in the region of transition from the upper to lower mantle, physical and chemical processes became more active. That caused formation of a large geo-electrical inhomogeneity which affected the behavior of the vertical component of geomagnetic field.

  14. Geomagnetic storms and electric fields in the equatorial ionosphere

    International Nuclear Information System (INIS)

    Rastogi, R.G.

    1977-01-01

    Using direct measurements of equatorial electric field during a geomagnetic storm it is shown that the large decrease in the field observed near the dip equator is due to the reversal of the equatorial electrojet current. This is caused by the imposition of an additional westward electric field on the equatorial ionosphere which was originated by the interaction of solar wind with the interplanetary magnetic field. (author)

  15. Letter to the Editor: Geomagnetic storm effects at low latitudes

    Directory of Open Access Journals (Sweden)

    R. G. Rastogi

    Full Text Available The geomagnetic horizontal (H field from the chain of nine observatories in India are used to study the storm-time and disturbance daily variations. The peak decrease in storm-time variation in H showed significant enhancements at the equatorial electrojet stations over and above the normally expected decrease due to the ring current effects corrected for geomagnetic latitudes. The disturbance daily variation of H at equatorial stations showed a large decrease around midday hours over and above the usual dawn-maximum and dusk-minimum seen at any mid-latitude stations around the world. These slow and persistent additional decreases of H of disturbance daily variation at equatorial latitudes could be the effect of a westward electric field due to the Disturbance Ionospheric dynamo coupled with abnormally large electrical conductivities in the E region over the equator.Key words. Ionosphere (electric fields and currents · Magnetospheric physics (electric fields; storms and substorms

  16. Letter to the Editor: Geomagnetic storm effects at low latitudes

    Directory of Open Access Journals (Sweden)

    R. G. Rastogi

    1999-03-01

    Full Text Available The geomagnetic horizontal (H field from the chain of nine observatories in India are used to study the storm-time and disturbance daily variations. The peak decrease in storm-time variation in H showed significant enhancements at the equatorial electrojet stations over and above the normally expected decrease due to the ring current effects corrected for geomagnetic latitudes. The disturbance daily variation of H at equatorial stations showed a large decrease around midday hours over and above the usual dawn-maximum and dusk-minimum seen at any mid-latitude stations around the world. These slow and persistent additional decreases of H of disturbance daily variation at equatorial latitudes could be the effect of a westward electric field due to the Disturbance Ionospheric dynamo coupled with abnormally large electrical conductivities in the E region over the equator.Key words. Ionosphere (electric fields and currents · Magnetospheric physics (electric fields; storms and substorms

  17. Solar causes of the excitation of earth electric currents and of geomagnetic field disturbances

    International Nuclear Information System (INIS)

    Krivsky, L.

    1977-01-01

    A survey is given of the effects of solar activity on geomagnetic and geoelectric disturbances. Indexes are given showing changes in the magnetic field, the occurrence of calm geomagnetic days related to solar activity, proton solar flares and electrical currents in the high layers of the atmosphere in the polar region, powerfull solar activity and electric currents in the polar region, the time rise of shock waves in the development of proton flares and the boundaries of sector structures of the interplanetary magnetic field and its effect on the Earth. It is stated that the geoelectric and geomagnetic fields are affected by the discrete phenomena of solar activity and by the transition of the quasimagnetic sectors of interplanetary fields. (J.P.)

  18. Evaluation of candidate geomagnetic field models for IGRF-12

    DEFF Research Database (Denmark)

    Thébault, Erwan; Finlay, Chris; Alken, Patrick

    2015-01-01

    Background: The 12th revision of the International Geomagnetic Reference Field (IGRF) was issued in December 2014 by the International Association of Geomagnetism and Aeronomy (IAGA) Division V Working Group V-MOD (http://www.ngdc.noaa.gov/IAGA/vmod/igrf.html). This revision comprises new spherical...... by the British Geological Survey (UK), DTU Space (Denmark), ISTerre (France), IZMIRAN (Russia), NOAA/NGDC (USA), GFZ Potsdam (Germany), NASA/GSFC (USA), IPGP (France), LPG Nantes (France), and ETH Zurich (Switzerland). Each candidate model was carefully evaluated and compared to all other models and a mean model...

  19. Geomagnetic core field models in the satellite era

    DEFF Research Database (Denmark)

    Lesur, Vincent; Olsen, Nils; Thomson, Alan W. P.

    2011-01-01

    After a brief review of the theoretical basis and difficulties that modelers are facing, we present three recent models of the geomagnetic field originating in the Earth’s core. All three modeling approaches are using recent observatory and near-Earth orbiting survey satellite data. In each case...

  20. Change of the radiocarbon natural level in the Earth atmosphere and geomagnetic field

    International Nuclear Information System (INIS)

    Vasil'ev, S.S.; Dergachev, V.A.

    1995-01-01

    Harmonic spectral analysis of change of radiocarbon concentration on the Earth atmosphere during the last 7000 years, including time intervals of both high and low intensity of the Earth magnetic field, was conducted. The effect of geomagnetic field on a harmonic amplitudes and frequencies in variations of radiocarbon concentration, conditioned by solar activity, was shown

  1. Mid-latitude Geomagnetic Field Analysis Using BOH Magnetometer: Preliminary Results

    Directory of Open Access Journals (Sweden)

    Junga Hwang

    2011-09-01

    Full Text Available Korea Astronomy and Space Science Institute researchers have installed and operated magnetometers at Mt. Bohyun Observatory to measure the Earth's magnetic field variations in South Korea. We, in 2007, installed a fluxgate magnetometer (RFP-523C to measure H, D, and Z components of the geomagnetic field. In addition, in 2009, we installed a Overhauser proton sensor to measure the absolute total magnetic field F and a three-axis magneto-impedance sensor for spectrum analysis. Currently three types of magnetometer data have been accumulated. In this paper, we provide the preliminary and the first statistical analysis using the BOH magnetometer installed at Mt. Bohyun Observatory. By superposed analysis, we find that daily variations of H, D, and Z shows similar tendency, that is, about 30 minutes before the meridian (11:28 a minimum appears and the time after about 3 hours and 30 minutes (15:28 a maximum appears. Also, a quiet interval start time (19:06 is near the sunset time, and a quiet interval end time (06:40 is near the sunrise time. From the sunset to the sunrise, the value of H has a nearly constant interval, that is, the sun affects the changes in H values. Seasonal variations show similar dependences to the sun. Local time variations show that noon region has the biggest variations and midnight region has the smallest variations. We compare the correlations between geomagnetic variations and activity indices as we expect the geomagnetic variation would contain the effects of geomagnetic activity variations. As a result, the correlation coefficient between H and Dst is the highest (r = 0.947, and other AL, AE, AU index and showed a high correlation. Therefore, the effects of geomagnetic storms and geomagnetic substorms might contribute to the geomagnetic changes significantly.

  2. Modeling the ocean effect of geomagnetic storms

    DEFF Research Database (Denmark)

    Olsen, Nils; Kuvshinov, A.

    2004-01-01

    At coastal sites, geomagnetic variations for periods shorter than a few days are strongly distorted by the conductivity of the nearby sea-water. This phenomena, known as the ocean (or coast) effect, is strongest in the magnetic vertical component. We demonstrate the ability to predict the ocean...... if the oceans are considered. Our analysis also indicates a significant local time asymmetry (i.e., contributions from spherical harmonics other than P-I(0)), especially during the main phase of the storm....

  3. Basic Geomagnetic Network of the Republic of Croatia 2004 – 2012, with Geomagnetic Field Maps for 2009.5 epoch

    Directory of Open Access Journals (Sweden)

    Mario Brkić

    2013-12-01

    Full Text Available After more than half a century, scientific book Basic Geomagnetic Network of the Republic of Croatia 2004 – 2012, with Geomagnetic Field Maps for 2009.5 epoch describes the recent geomagnetic field on Croatian territory. A review of research in the past decade as well as the original solutions makes the book a document of contribution to geodesy and geomagnetism in Croatia.The book’s introduction gives an overview of two centuries of history and the strategic, security, economic and scientific significance of knowing the geomagnetic field on the Croatian territory. All the activities related to the updating of the geomagnetic information, which took place in the last decade, signified a big step toward the countries where geomagnetic survey is a mature scientific and technical discipline, and a scientific contribution to understanding of the nature of the Earth's magnetism.The declination, inclination and total intensity maps (along with the normal annual changes for the epoch 2009.5 are given in the Appendix. The book Basic Geomagnetic Network of the Republic of Croatia 2004 – 2012, with Geomagnetic Field Maps for 2009.5 epoch (ISBN 978-953-293-521-9 is published by the State Geodetic Administration of the Republic of Croatia. Beside editor in chief, M. Brkić, the authors are: E. Vujić, D. Šugar, E. Jungwirth, D. Markovinović, M. Rezo, M. Pavasović, O. Bjelotomić, M. Šljivarić, M. Varga and V. Poslončec-Petrić. The book contains 48 pages and 3 maps, and is published in 200 copies. CIP record is available in digital catalogue of the National and University Library in Zagreb under number 861937.

  4. The CHAOS-4 geomagnetic field model

    DEFF Research Database (Denmark)

    Olsen, Nils; Lühr, H.; Finlay, Chris

    2014-01-01

    We present CHAOS-4, a new version in the CHAOS model series, which aims to describe the Earth's magnetic field with high spatial and temporal resolution. Terms up to spherical degree of at least n = 85 for the lithospheric field, and up to n = 16 for the time-varying core field are robustly...... to the core field, but the high-degree lithospheric field is regularized for n > 85. CHAOS-4 model is derived by merging two submodels: its low-degree part has been derived using similar model parametrization and data sets as used for previous CHAOS models (but of course including more recent data), while its...

  5. Feasibility of artificial geomagnetic field generation by a superconducting ring network

    International Nuclear Information System (INIS)

    Motojima, Osamu; Yanagi, Nagato

    2008-05-01

    The geomagnetic field shields the Earth from a large proportion of incoming radiation, and has thus played a key role in sustaining life on Earth. Paleomagnetic measurements have shown that the geomagnetic field undergoes many reversals of polarity. Continuous observations of the field intensity have revealed a weakening of approximately 10% over the last 150 years. If we assume that this trend indicates the onset of polarity reversal, the geomagnetic field, particularly the dipole component, may weaken sufficiently over the next thousand years to expose the atmosphere and nearby space to significantly increased levels of cosmic and solar radiation. This may have a serious impact on vital infrastructure such as satellites, air traffic, and electricity networks, as well as on global climate changes, indicating that measures should better be taken in an attempt to support the limited protection provided by the remaining higher-order multipole fields and atmosphere. Here we show that a series of planet-encircling superconducting rings can provide an artificial geomagnetic field equivalent to 10% of the present-day field necessary to prevent adverse effects. A feasible system consists of 12 latitudinal high-temperature superconducting rings, each carrying 6.4 MA current with a modest 1 GW of power requirement. (author)

  6. The International Geomagnetic Reference Field: the twelfth generation

    Science.gov (United States)

    Thebault, Erwan; Finlay, Christopher; The IGRF Working Group

    2015-04-01

    The IGRF is an internationally-agreed reference model of the Earth's magnetic field produced under the auspices of the International Association of Geomagnetism and Aeronomy. The IGRF-12 is the latest update of this well-known model which is used each year by many thousands of users for both industrial and scientific purposes. In October 2014, ten institutions worldwide have made contributions to the IGRF. These models were evaluated and the twelfth generation of the International Geomagnetic Reference Field (IGRF) was adopted in December 2014. In this presentation, we will report on the IGRF activities, briefly describe the candidate models, summarize the evaluation of models performed by different independent teams, show how the IGRF-12 models were calculated and finally discuss some of the main magnetic features of this new model.

  7. Evaluation of geomagnetic field models using magnetometer measurements for satellite attitude determination system at low earth orbits: Case studies

    Science.gov (United States)

    Cilden-Guler, Demet; Kaymaz, Zerefsan; Hajiyev, Chingiz

    2018-01-01

    In this study, different geomagnetic field models are compared in order to study the errors resulting from the representation of magnetic fields that affect the satellite attitude system. For this purpose, we used magnetometer data from two Low Earth Orbit (LEO) spacecraft and the geomagnetic models IGRF-12 (Thébault et al., 2015) and T89 (Tsyganenko, 1989) models to study the differences between the magnetic field components, strength and the angle between the predicted and observed vector magnetic fields. The comparisons were made during geomagnetically active and quiet days to see the effects of the geomagnetic storms and sub-storms on the predicted and observed magnetic fields and angles. The angles, in turn, are used to estimate the spacecraft attitude and hence, the differences between model and observations as well as between two models become important to determine and reduce the errors associated with the models under different space environment conditions. We show that the models differ from the observations even during the geomagnetically quiet times but the associated errors during the geomagnetically active times increase. We find that the T89 model gives closer predictions to the observations, especially during active times and the errors are smaller compared to the IGRF-12 model. The magnitude of the error in the angle under both environmental conditions was found to be less than 1°. For the first time, the geomagnetic models were used to address the effects of the near Earth space environment on the satellite attitude.

  8. Spatial power spectrum of the geomagnetic field since 1945

    International Nuclear Information System (INIS)

    Senanayake, W.E.

    1987-04-01

    The Geomagnetic field for the period 1945-1990 has been analyzed in terms of Spatial Power Spectra of the Main Field and its Secular Variation. It is observed that for the above interval, the magnetic energy density at the core-mantle boundary is almost conserved. This supports the idea that an exchange of energy between different spherical harmonic constituents could occur. The distinctive behaviour of the first two terms (Dipole and Quadrupole), as seen from the spectra of the main field and secular variation, probably indicates somewhat different feature associated with the field origin. (author). 28 refs, 3 figs, 1 tab

  9. No alignment of cattle along geomagnetic field lines found

    OpenAIRE

    Hert, J.; Jelinek, L.; Pekarek, L.; Pavlicek, A.

    2011-01-01

    This paper presents a study of the body orientation of domestic cattle on free pastures in several European states, based on Google satellite photographs. In sum, 232 herds with 3412 individuals were evaluated. Two independent groups participated in our study and came to the same conclusion that, in contradiction to the recent findings of other researchers, no alignment of the animals and of their herds along geomagnetic field lines could be found. Several possible reasons for this discrepanc...

  10. The CHAOS-4 Geomagnetic Field Model

    DEFF Research Database (Denmark)

    Olsen, Nils; Finlay, Chris; Lühr, H.

    We present CHAOS-4, a new version in the CHAOS model series, which aims at describing the Earth's magnetic field with high spatial resolution (terms up to spherical degree n=90 for the crustal field, and up to n=16 for the time-varying core field are robustly determined) and high temporal...... between the coordinate systems of the vector magnetometer and of the star sensor providing attitude information). The final CHAOS-4 model is derived by merging two sub-models: its low-degree part has been obtained using similar model parameterization and data sets as used for previous CHAOS models (but...

  11. Archaeomagnetic Dating in Europe Using a Global Geomagnetic Field Model

    Science.gov (United States)

    Lodge, A.; Suttie, N.; Holme, R.; Shaw, J.; Hill, M. J.; Linford, P.

    2009-12-01

    Using up-to-date archaeomagnetic data from Europe and CALS7K.2 as an apriori model, we produce a global geomagnetic field model to be used for archaeomagnetic dating in Europe. More details on the modelling process will be presented elsewhere (in session GP12, abstract: Geophysical insights from archaeomagnetic dating). Here we apply the global geomagnetic field model to a series of test cases from both recently published data and unpublished data to demonstrate its application to archaeomagnetic dating. We compare the results produced using our model with those from the spherical cap harmonic model, SCHA.DIF.3K (Pavón-Carrasco et al., 2009), the global geomagnetic field model, ARCH3K.1 (Korte et al., 2009) and those produced using the palaeosecular variation curves generated using Bayesian statistics (Lanos, 2004). We include examples which emphasise the importance of using three component data (declination, inclination and intensity) to produce an improved archaeomagnetic date. In addition to the careful selection of an appropriate model for archaeomagnetic dating, the choice of errors on the model curves is vital for providing archaeologists with an age range of possible dates. We discuss how best to constrain the errors on the model curves and alternative ways to the mathematical method of Lanos (2004) for producing an archaeomagnetic date for archaeologists.

  12. A model of the FAD redox cycle describes the dynamics of the effect of the geomagnetic field on the human visual system.

    Science.gov (United States)

    Thoss, Franz; Bartsch, Bengt

    2017-12-01

    In experimental studies, we could show that the visual threshold of man is influenced by the geomagnetic field. One of the results was that the threshold shows periodic fluctuations when the vertical component of the field is reversed periodically. The maximum of these oscillations occurred at a period duration of 110 s. To explain this phenomenon, we chose the process that likely underlies the navigation of birds in the geomagnetic field: the light reaction of the FAD component of cryptochrome in the retina. The human retina contains cryptpochrome like the bird retina. Based on the investigations of Müller and Ahmad (J Biol Chem 286:21033-21040, 2011) and Solov'yov and Schulten (J Phys Chem B 116:1089-1099, 2012), we designed a model of the light-induced reduction and subsequent reoxidation of FAD. This model contains a radical pair, whose interconversion dynamics are affected by the geomagnetic field. The parameters of the model were partly calculated from the data of our experimental investigation and partly taken from the results of other authors. These parameters were then optimized by adjusting the model behaviour to the experimental results. The simulation of the finished model shows that the concentrations of all substances included show really oscillations with the frequency of the modelled magnetic field. After optimization of the parameters, the oscillations of FAD and FADH* show maximal amplitude at a period duration of 110 s, as was observed in the experiment. This makes it most likely that the signal, which influences the visual system, originates from FADH* (signalling state).

  13. Forecasting intense geomagnetic activity using interplanetary magnetic field data

    Science.gov (United States)

    Saiz, E.; Cid, C.; Cerrato, Y.

    2008-12-01

    Southward interplanetary magnetic fields are considered traces of geoeffectiveness since they are a main agent of magnetic reconnection of solar wind and magnetosphere. The first part of this work revises the ability to forecast intense geomagnetic activity using different procedures available in the literature. The study shows that current methods do not succeed in making confident predictions. This fact led us to develop a new forecasting procedure, which provides trustworthy results in predicting large variations of Dst index over a sample of 10 years of observations and is based on the value Bz only. The proposed forecasting method appears as a worthy tool for space weather purposes because it is not affected by the lack of solar wind plasma data, which usually occurs during severe geomagnetic activity. Moreover, the results obtained guide us to provide a new interpretation of the physical mechanisms involved in the interaction between the solar wind and the magnetosphere using Faraday's law.

  14. Chandler wobbles and the geomagnetic field

    Science.gov (United States)

    Flodmark, Stig; Davstad, K.

    1986-11-01

    Paleomagnetic motion of the magnetic pole is explained by angular momentum balance between the magnetic field, inner core, outer core, and mantle. The Chandler wobbles are explained as a nutation of the mantle and crust, caused by transfer of angular momentum between the core and mantle. Evidence is found for the atmosphere not to be fully responsible for the annual oscillation period of the Chandler wobbles. The main reasons for the principal periods of 12 and 14 months are found to be the flattenings of mantle and core, respectively. The fluid core rotates collectively, as a consequence of globally coworking long-distance electromagnetic coupling. Short-distance forces may locally displace fluid core material without essentially deforming its ellipsoid of inertia. The longitudinal polar drifts of the mantle and outer core are also explained by core-mantle interaction. The core is found to force the Chandler period on the mantle, and it has high wobbling energy in comparison with the mantle.

  15. Effect of geomagnetic storms on VHF scintillations observed at low latitude

    Science.gov (United States)

    Singh, S. B.; Patel, Kalpana; Singh, A. K.

    2018-06-01

    A geomagnetic storm affects the dynamics and composition of the ionosphere and also offers an excellent opportunity to study the plasma dynamics. In the present study, we have used the VHF scintillations data recorded at low latitude Indian station Varanasi (Geomag. latitude = 14^{°}55^' }N, long. = 154^{°}E) which is radiated at 250 MHz from geostationary satellite UFO-02 during the period 2011-2012 to investigate the effects of geomagnetic storms on VHF scintillation. Various geomagnetic and solar indices such as Dst index, Kp index, IMF Bz and solar wind velocity (Vx) are used to describe the geomagnetic field variation observed during geomagnetic storm periods. These indices are very helpful to find out the proper investigation and possible interrelation between geomagnetic storms and observed VHF scintillation. The pre-midnight scintillation is sometimes observed when the main phase of geomagnetic storm corresponds to the pre-midnight period. It is observed that for geomagnetic storms for which the recovery phase starts post-midnight, the probability of occurrence of irregularities is enhanced during this time and extends to early morning hours.

  16. Diurnal and Seasonal Variations in Mid-Latitude Geomagnetic Field During International Quiet Days: BOH Magnetometer

    Directory of Open Access Journals (Sweden)

    Junga Hwang

    2012-12-01

    Full Text Available Korea Astronomy and Space Science Institute researchers have installed and operated magnetometers at Bohyunsan Observatory to measure the Earth's magnetic field variations in South Korea. In 2007, we installed a fluxgate magnetometer (RFP-523C to measure H, D, and Z components of the geomagnetic field. In addition, in 2009, we installed a Overhauser proton sensor to measure the absolute total magnetic field F and a three-axis magneto-impedance sensor for spectrum analysis. Currently three types of magnetometer data have been accumulated. In this paper, we use the H, D, Z components of fluxgate magnetometer data to investigate the characteristics of mid-latitude geomagnetic field variation. To remove the temporary changes in Earth’s geomagnetic filed by space weather, we use the international quiet days’ data only. In other words, we performed a superposed epoch analysis using five days per each month during 2008-2011. We find that daily variations of H, D, and Z shows similar tendency compared to previous results using all days. That is, H, D, Z all three components’ quiet intervals terminate near the sunrise and shows maximum 2-3 hours after the culmination and the quiet interval start from near the sunset. Seasonal variations show similar dependences to the Sun. As it becomes hot season, the geomagnetic field variation’s amplitude becomes large and the quiet interval becomes shortened. It is well-known that these variations are effects of Sq current system in the Earth’s atmosphere. We confirm that the typical mid-latitude geomagnetic field variations due to the Sq current system by excluding all possible association with the space weather.

  17. The Earth's revolution, Moon phase, Syzygy astronomy events, their effect in disturbances of the Earth's geomagnetic field, and the ``Magnetic Storm Double Time Method'' for predicting the occurrence time, magnitude and epicenter location of earthquakes

    Science.gov (United States)

    Chen, I. W.

    2003-04-01

    An increasing number of geomagnetic observation stations were established and operated in China since 1966 to the 1980s (and until present), effectively covering a large area of the nation. Close relativity between magnetic storms and earthquakes, as well as close relativity between the regional differences of magnetic disturbance recorded by these stations and the epicenter location of earthquakes, was discovered and observed by Tie-zheng Zhang during1966 - 1969. On such basis during 1969/1970, Zhang developed the “Magnetic Storm Double Time Method” for predicting the occurrence time, magnitude and epicenter location of EQs. By this method,.Zhang successfully predicted the Yunnan Tonghai Ms7.7 EQ Jan. 5, 1970 (occurrence date only), the Bohai ML5.2 EQ, Feb. 12, 1970 and other EQs, including the Haicheng Ms7.3 EQ Feb. 4, 1975, and the Tangshan Ms7.8 EQ July 28, 1976. On the basis of this method, Z.P. Shen developed the “Geomagnetic Deflection Angle Double Time Method” in 1970, and later developed the “Magnetic Storm - Moon Phase Double Time Method” in 1990s. With this method, Shen is able to predict the occurrence dates of most of the strongest EQs Ms37.5 on the Earth since 1991. Zhang also discovered that strong EQs often correspond with a number of sets of magnetic storms. Z.Q. Ren discovered close relativity exists between Syzygy astronomy events and such sets of magnetic storm as well as the occurrence dates of strong EQs. Computerized calculation of historical magnetic storm and EQ data proves the effectiveness of this method. Over 3,000 days of geomagnetic isoline images are computer processed by the Author from over 400,000 geomagnetic field data obtained by Zhang from over 100 geomagnetic observation stations during 1966 - 1984. Clear relativity is shown between the Earth’s revolution, Moon phases, Syzygy astronomy events related to the Earth, and their disturbance effect on the Earth’s geomagnetic field and the occurrence of EQs.

  18. Surface electric fields and geomagnetically induced currents in the Scottish Power grid during the 30 October 2003 geomagnetic storm

    OpenAIRE

    Thomson, Alan W.P.; McKay, Allan J.; Clarke, Ellen; Reay, Sarah J.

    2005-01-01

    A surface electric field model is used to estimate the UK surface E field during the 30 October 2003 severe geomagnetic storm. This model is coupled with a power grid model to determine the flow of geomagnetically induced currents (GIC) through the Scottish part of the UK grid. Model data are compared with GIC measurements at four sites in the power network. During this storm, measured and modeled GIC levels exceeded 40 A, and the surface electric field reached 5 V/km at sites in ...

  19. Shannon information of the geomagnetic field for the past 7000 years

    OpenAIRE

    De Santis, A.; Qamili, E.

    2010-01-01

    The present behaviour of the geomagnetic field as expressed by the International Geomagnetic Reference Field (IGRF) deserves special attention when compared with that shown over the past few thousands of years by two paleomagnetic/archeomagnetic models, CALS3K and CALS7K. The application of the Information theory in terms of Shannon Information and K-entropy to these models shows characteristics of an instable geomagnetic field. Although the result is mitigated when we correct the CALS7K mode...

  20. Exploration of geomagnetic field anomaly with balloon for geophysical research

    Science.gov (United States)

    Jia, Wen-Kui

    The use of a balloon to explore the geomagnetic field anomaly in the area east of Beijing is demonstrated. The present results are compared with those of aerial surveys. Descriptions are given of the fluxgate magnetometer, the sensor's attitude control and measurement, and data transmission and processing. At an altitude of about 30 km, a positive anomaly of the vertical component of about 100 nanoteslas was measured. The results suggest that, for this particular area, the shallow layer of a small-scale geological structure differs from the deep layer of a large-scale geological structure.

  1. The Study of Westward Drift in the Main Geomagnetic Field

    OpenAIRE

    Bayanjargal, G.

    2013-01-01

    We have obtained a solution for the velocity of westward drift from the induction equation in which an approach for main geomagnetic field was built. Distribution functions B(r, t) entered into the induction equation have been built by the observatories' data in North America and the Europe from 1991 to 2006. The longitudinal −0.123 degree/year and latitudinal 0.068 degree/year drifts were defined in North America. And the longitudinal −0.257 degree/year drift was defined in Europe from 1991...

  2. The Study of Westward Drift in the Main Geomagnetic Field

    Directory of Open Access Journals (Sweden)

    G. Bayanjargal

    2013-01-01

    Full Text Available We have obtained a solution for the velocity of westward drift from the induction equation in which an approach for main geomagnetic field was built. Distribution functions B(r, t entered into the induction equation have been built by the observatories' data in North America and the Europe from 1991 to 2006. The longitudinal −0.123 degree/year and latitudinal 0.068 degree/year drifts were defined in North America. And the longitudinal −0.257 degree/year drift was defined in Europe from 1991 to 2006. These drifts are similar to results of other studies.

  3. Archeomagnetic Intensity Spikes: Global or Regional Geomagnetic Field Features?

    Directory of Open Access Journals (Sweden)

    Monika Korte

    2018-03-01

    Full Text Available Variations of the geomagnetic field prior to direct observations are inferred from archeo- and paleomagnetic experiments. Seemingly unusual variations not seen in the present-day and historical field are of particular interest to constrain the full range of core dynamics. Recently, archeomagnetic intensity spikes, characterized by very high field values that appear to be associated with rapid secular variation rates, have been reported from several parts of the world. They were first noted in data from the Levant at around 900 BCE. A recent re-assessment of previous and new Levantine data, involving a rigorous quality assessment, interprets the observations as an extreme local geomagnetic high with at least two intensity spikes between the 11th and 8th centuries BCE. Subsequent reports of similar features from Asia, the Canary Islands and Texas raise the question of whether such features might be common occurrences, or whether they might even be part of a global magnetic field feature. Here we use spherical harmonic modeling to test two hypotheses: firstly, whether the Levantine and other potential spikes might be associated with higher dipole field intensity than shown by existing global field models around 1,000 BCE, and secondly, whether the observations from different parts of the world are compatible with a westward drifting intense flux patch. Our results suggest that the spikes originate from intense flux patches growing and decaying mostly in situ, combined with stronger and more variable dipole moment than shown by previous global field models. Axial dipole variations no more than 60% higher than observed in the present field, probably within the range of normal geodynamo behavior, seem sufficient to explain the observations.

  4. The Geomagnetic Field and Correlations with Multiple Sclerosis: A Possible Etiology of Disease

    Science.gov (United States)

    Wade, Brett

    Multiple sclerosis (MS) is a complex autoimmune disease that results in a demyelinating process of the central nervous system. It is the most common, progressive, neurological disease affecting young adults, and there is no cure. A curious feature of MS is its distinct global prevalence with high rates of occurrence between 40 and 60 degrees latitude. While genetics may partially explain this phenomenon, studies have shown that the influence of genetics is modest. Many non-genetic variables, such as viruses, vitamin D, smoking, diet, hormones, etc., have been shown to be related to the expression of MS but none of these variables have been determined to be necessarily strong enough to exclude other factors. The geomagnetic field, which is a non-uniform, three dimensional entity which protects all living things from ionizing radiation, is suggested in this research to be related to global MS prevalence. This study hypothesized that either the total field, the vertical field, or the horizontal field strength of the geomagnetic field will be correlated with MS. Using secondary sources of prevalence studies (N=131) and geomagnetic data, the results supported all three hypotheses with the strongest correlation being an inverse relationship between the horizontal field and MS (r = -.607). The explanation for the inverse relationship being most strongly correlated with MS prevalence is explained by the fact that the horizontal aspect of the geomagnetic field has a protective effect from incoming cosmic radiation. Chronic exposure to high levels of background radiation can have deleterious health effects. This research suggests that living in areas of a weak horizontal field increases a person's exposure to ionizing radiation and therefore increases the risk for developing MS. While it was not the intention of this research, it became clear that an explanation which explained the results of this research and also attempted to unify the mechanisms of all non

  5. The geomagnetic field - An explanation for the microturbulence in coaxial gun plasmas

    Science.gov (United States)

    Mather, J. W.; Ahluwalia, H. S.

    1988-01-01

    The complexity introduced by the geomagnetic field in several regions of a coaxial gun plasma device is described. It is shown that the annihilation of the swept-up geomagnetic flux, trapped within the highly compressed turbulent plasma, provides an explanation for varied performance and experimental results. The results indicate that the device should be aligned along the direction of the local geomagnetic field or enclosed in a mu-metal shield.

  6. Letter to the Editor: Geomagnetic storm effects at low latitudes

    OpenAIRE

    R. G. Rastogi; R. G. Rastogi

    1999-01-01

    The geomagnetic horizontal (H) field from the chain of nine observatories in India are used to study the storm-time and disturbance daily variations. The peak decrease in storm-time variation in H showed significant enhancements at the equatorial electrojet stations over and above the normally expected decrease due to the ring current effects corrected for geomagnetic latitudes. The disturbance daily variation of H at equatorial stations showed a large decrease around midday...

  7. Effects of geomagnetic storm on low latitude ionospheric total ...

    Indian Academy of Sciences (India)

    1Department of Physics, Tripura University, Suryamaninagar, Tripura 799 022, India. ... the fact that the electro-dynamic effect of geomagnetic storms around EIA region is more effective than ... causes range of error in GPS communication.

  8. Motility of magnetotactic bacteria/MTB to Geomagnetic fields

    Science.gov (United States)

    Hidajatullah-Maksoed, Fatahillah

    2016-03-01

    Bacteria with motility directed by a local geomagnetic fields have been observed in marine sediments'' discussed by R. Blakemore, 1975. Magnetotactic bacteria/MTB discovered in 1963 by Salvatore Bellini. For ``off-axis electron holography in the transmission electron microscope was used to correlates the physical & magnetic microstructure of magnetite nanocrystals in magnetotactic bacteria'' sought ``single-domain magnetite in hemopelagic sediments'' from JF Stolz. Otherwise, for potential source of bioproducts- product meant from result to multiplier -of magnetotactic bacteria[ACV Araujo, et.al, 2014 ] of marine drugs retrieved the `measurement of cellular chemotaxis with ECIS/Taxis, from KM Pietrosimone, 2012, whereas after ``earth magnetic field role on small living models'' are other interpretation of ``taxis'' as a movement of a cell instead usual ``tax'' for yew's taxus cuspidate, hired car & taxes in financial realms. Acknowledgements to HE. Mr. H. TUK SETYOHADI, Jl. Sriwijaya Raya 3, South-Jakarta, INDONESIA.

  9. Geomagnetism 4

    CERN Document Server

    Jacobs, John A

    2013-01-01

    Geomagnetism, Volume 4 focuses on the processes, methodologies, technologies, and approaches involved in geomagnetism, including electric fields, solar wind plasma, pulsations, and gravity waves.The selection first offers information on solar wind, magnetosphere, and the magnetopause of the Earth. Discussions focus on magnetopause structure and transfer processes, magnetosphere electric fields, geomagnetically trapped radiation, microstructure of the solar wind plasma, and hydro magnetic fluctuations and discontinuities. The text then examines geomagnetic tail, neutral upper atmosphere, and ge

  10. Analysis of Geomagnetic Field Variations during Total Solar Eclipses Using INTERMAGNET Data

    Science.gov (United States)

    KIM, J. H.; Chang, H. Y.

    2017-12-01

    We investigate variations of the geomagnetic field observed by INTERMAGNET geomagnetic observatories over which the totality path passed during a solar eclipse. We compare results acquired by 6 geomagnetic observatories during the 4 total solar eclipses (11 August 1999, 1 August 2008, 11 July 2010, and 20 March 2015) in terms of geomagnetic and solar ecliptic parameters. These total solar eclipses are the only total solar eclipse during which the umbra of the moon swept an INTERMAGNET geomagnetic observatory and simultaneously variations of the geomagnetic field are recorded. We have confirmed previous studies that increase BY and decreases of BX, BZ and F are conspicuous. Interestingly, we have noted that variations of geomagnetic field components observed during the total solar eclipse at Isla de Pascua Mataveri (Easter Island) in Chile (IPM) in the southern hemisphere show distinct decrease of BY and increases of BX and BZ on the contrary. We have found, however, that variations of BX, BY, BZ and F observed at Hornsund in Norway (HRN) seem to be dominated by other geomagnetic occurrence. In addition, we have attempted to obtain any signatures of influence on the temporal behavior of the variation in the geomagnetic field signal during the solar eclipse by employing the wavelet analysis technique. Finally, we conclude by pointing out that despite apparent success a more sophisticate and reliable algorithm is required before implementing to make quantitative comparisons.

  11. The Egyptian geomagnetic reference field to the Epoch, 2010.0

    Science.gov (United States)

    Deebes, H. A.; Abd Elaal, E. M.; Arafa, T.; Lethy, A.; El Emam, A.; Ghamry, E.; Odah, H.

    2017-06-01

    The present work is a compilation of two tasks within the frame of the project ;Geomagnetic Survey & Detailed Geomagnetic Measurements within the Egyptian Territory; funded by the ;Science and Technology Development Fund agency (STDF);. The National Research Institute of Astronomy and Geophysics (NRIAG), has conducted a new extensive land geomagnetic survey that covers the whole Egyptian territory. The field measurements have been done at 3212 points along all the asphalted roads, defined tracks, and ill-defined tracks in Egypt; with total length of 11,586 km. In the present work, the measurements cover for the first time new areas as: the southern eastern borders of Egypt including Halayeb and Shlatin, the Quattara depresion in the western desert, and the new roads between Farafra and Baharia oasis. Also marine geomagnetic survey have been applied for the first time in Naser lake. Misallat and Abu-Simble geomagnetic observatories have been used to reduce the field data to the Epoch 2010. During the field measurements, whenever possible, the old stations occupied by the previous observers have been re-occupied to determine the secular variations at these points. The geomagnetic anomaly maps, the normal geomagnetic field maps with their corresponding secular variation maps, the normal geomagnetic field equations of the geomagnetic elements (EGRF) and their corresponding secular variations equations, are outlined. The anomalous sites, as discovered from the anomaly maps are, only, mentioned. In addition, a correlation between the International Geomagnetic Reference Field (IGRF) 2010.0 and the Egyptian Geomagnetic Reference Field (EGRF) 2010 is indicated.

  12. Initial geomagnetic field model from Magsat vector data

    Science.gov (United States)

    Langel, R. A.; Mead, G. D.; Lancaster, E. R.; Estes, R. H.; Fabiano, E. B.

    1980-01-01

    Magsat data from the magnetically quiet days of November 5-6, 1979, were used to derive a thirteenth degree and order spherical harmonic geomagnetic field model, MGST(6/80). The model utilized both scalar and high-accuracy vector data and fit that data with root-mean-square deviations of 8.2, 6.9, 7.6 and 7.4 nT for the scalar magnitude, B(r), B(theta), and B(phi), respectively. The model includes the three first-order coefficients of the external field. Comparison with averaged Dst indicates that zero Dst corresponds with 25 nT of horizontal field from external sources. When compared with earlier models, the earth's dipole moment continues to decrease at a rate of about 26 nT/yr. Evaluation of earlier models with Magsat data shows that the scalar field at the Magsat epoch is best predicted by the POGO(2/72) model but that the WC80, AWC/75 and IGS/75 are better for predicting vector fields.

  13. Radiophysical and geomagnetic effects of rocket burn and launch in the near-the-earth environment

    CERN Document Server

    Chernogor, Leonid F

    2013-01-01

    Radiophysical and Geomagnetic Effects of Rocket Burn and Launch in the Near-the-Earth Environment describes experimental and theoretical studies on the effects of rocket burns and launchings on the near-the-Earth environment and geomagnetic fields. It illuminates the main geophysical and radiophysical effects on the ionosphere and magnetosphere surrounding the Earth that accompany rocket or cosmic apparatus burns and launchings from 1,000 to 10,000 kilometers.The book analyzes the disturbances of plasma and the ambient magnetic and electric fields in the near-Earth environment from rocket burn

  14. The geomagnetic field - An explanation for the microturbulence in coaxial gun plasmas

    International Nuclear Information System (INIS)

    Mather, J.W.; Ahluwalia, H.S.

    1988-01-01

    The authors describe the complexity introduced by the geomagnetic field in several regions of a coaxial gun plasma device. It is shown that the annihilation of the swept-up geomagnetic flux, trapped within the highly compressed turbulent plasma, provides an explanation for varied performance and experimental results

  15. Studies of the influence of the geomagnetic field on the sensitivity of gamma-ray observatories

    International Nuclear Information System (INIS)

    Krause, Maria

    2011-02-01

    Cherenkov Telescope Array (CTA) will be a ground-based high energy gamma radiation detector. This radiation is detected by the measurement of particle showers in the atmosphere. The questions of the origin of the cosmic radiation, the functional principle of cosmic particle accelerators in the area of black holes or the nature of the dark matter are in the scientific goals of CTA. At the moment the instrument is in the planning phase and first results will probably be in 2014. The site of the instrument has an immediate influence on the sensitivity e.g. due to the weather, the height above sea level. Several possible sites for CTA are being considered at the moment including Namibia, Argentina, Canary Islands and Mexico. The geomagnetic field affects the development of showers and distorts the images of the air shower in the telescope. The aim of this work is to quantify the influence of the strength and the direction of the geomagnetic field at the different possible locations on the sensitivity of CTA using Monte Carlo simulations of particle showers. Firstly, we simulated the lateral distribution at the twelve sites. The geomagnetic field of the sites was obtained from the National Geographic Data Center (NGDC). To study the influence of the Earth's magnetic field, we held the altitude of the sites constant at 2000 m. Hence, we could choose two sites per hemisphere which could be potential candidates for the Cherenkov Telescope Array: BeaufortWest (South Africa), El Leoncito (Argentina), La Palma (Canary Islands) and San Pedro Martir (Mexico). To compare the results with a site which is already known, we chose the observatory H.E.S.S. in Namibia. After the study of the energy thresholds and the effective areas we decided in favour of two sites, one in the southern and one in the northern hemisphere. Considering the influence of the geomagnetic field on the predictions, the southern observatory should be in Beaufort West in South Africa. The northern array of CTA

  16. Studies of the influence of the geomagnetic field on the sensitivity of gamma-ray observatories

    Energy Technology Data Exchange (ETDEWEB)

    Krause, Maria

    2011-02-15

    Cherenkov Telescope Array (CTA) will be a ground-based high energy gamma radiation detector. This radiation is detected by the measurement of particle showers in the atmosphere. The questions of the origin of the cosmic radiation, the functional principle of cosmic particle accelerators in the area of black holes or the nature of the dark matter are in the scientific goals of CTA. At the moment the instrument is in the planning phase and first results will probably be in 2014. The site of the instrument has an immediate influence on the sensitivity e.g. due to the weather, the height above sea level. Several possible sites for CTA are being considered at the moment including Namibia, Argentina, Canary Islands and Mexico. The geomagnetic field affects the development of showers and distorts the images of the air shower in the telescope. The aim of this work is to quantify the influence of the strength and the direction of the geomagnetic field at the different possible locations on the sensitivity of CTA using Monte Carlo simulations of particle showers. Firstly, we simulated the lateral distribution at the twelve sites. The geomagnetic field of the sites was obtained from the National Geographic Data Center (NGDC). To study the influence of the Earth's magnetic field, we held the altitude of the sites constant at 2000 m. Hence, we could choose two sites per hemisphere which could be potential candidates for the Cherenkov Telescope Array: BeaufortWest (South Africa), El Leoncito (Argentina), La Palma (Canary Islands) and San Pedro Martir (Mexico). To compare the results with a site which is already known, we chose the observatory H.E.S.S. in Namibia. After the study of the energy thresholds and the effective areas we decided in favour of two sites, one in the southern and one in the northern hemisphere. Considering the influence of the geomagnetic field on the predictions, the southern observatory should be in Beaufort West in South Africa. The northern array

  17. Particle precipitation events in the South Atlantic Magnetic Anomaly (SAMA) and geomagnetic field

    International Nuclear Information System (INIS)

    Sanchez Bettucci, L.; Caraballo, R.; Da Silva Barbosa, C.

    2003-01-01

    Particle precipitation events in the South Atlantic Magnetic Anomaly (SAMA) have been correlated with impulses in the H component of the geomagnetic field. Sudden changes in the H component of the geomagnetic field can produce high intensity peaks in geomagnetic induced currents (GIC) at the Earth’s surface. The effects related to electron precipitation on the upper and middle atmosphere are still not well understood, especially in the area of the SAMA. This study focuses on the Halloween magnetic storm (29-31 October 2003) and two of the largest magnetic storms occurred in 2011. Data from POES and DMSP satellites have been contrasted with the Vassoura s magnetic observatory records and the GIC in a H V transformer neutral at Itumbiara substation (central Brazilian area) to look for possible correlations between d H, the GIC and the precipitation flux of ultrarelativistic electrons. The observations suggest some overlap between episodes of intense precipitation of electrons in the inner radiation belt and impulsive changes in these variables

  18. Quasi-biennial oscillations in the geomagnetic field: Their global characteristics and origin

    DEFF Research Database (Denmark)

    Ou, Jiaming; Du, Aimin; Finlay, Chris

    2017-01-01

    Quasi-biennial oscillations (QBOs), with periods in the range 1–3 years, have been persistently observed in the geomagnetic field. They provide unique information on the mechanisms by which magnetospheric and ionospheric current systems are modulated on interannual timescales and are also of cruc...... primarily originates from the current systems due to the solar wind-magnetosphere-ionosphere coupling process....... postmidnight sectors, and the results from spherical harmonic analysis, verify that the majority of geomagnetic QBO is of external origin. We furthermore find a very high correlation between the geomagnetic QBO and the QBOs in solar wind speed and solar wind dynamic pressure. This suggests the geomagnetic QBO......Quasi-biennial oscillations (QBOs), with periods in the range 1–3 years, have been persistently observed in the geomagnetic field. They provide unique information on the mechanisms by which magnetospheric and ionospheric current systems are modulated on interannual timescales and are also...

  19. The Swarm Initial Field Model for the 2014 Geomagnetic Field

    Science.gov (United States)

    Olsen, Nils; Hulot, Gauthier; Lesur, Vincent; Finlay, Christopher C.; Beggan, Ciaran; Chulliat, Arnaud; Sabaka, Terence J.; Floberghagen, Rune; Friis-Christensen, Eigil; Haagmans, Roger

    2015-01-01

    Data from the first year of ESA's Swarm constellation mission are used to derive the Swarm Initial Field Model (SIFM), a new model of the Earth's magnetic field and its time variation. In addition to the conventional magnetic field observations provided by each of the three Swarm satellites, explicit advantage is taken of the constellation aspect by including east-west magnetic intensity gradient information from the lower satellite pair. Along-track differences in magnetic intensity provide further information concerning the north-south gradient. The SIFM static field shows excellent agreement (up to at least degree 60) with recent field models derived from CHAMP data, providing an initial validation of the quality of the Swarm magnetic measurements. Use of gradient data improves the determination of both the static field and its secular variation, with the mean misfit for east-west intensity differences between the lower satellite pair being only 0.12 nT.

  20. The Swarm Initial Field Model for the 2014 geomagnetic field

    DEFF Research Database (Denmark)

    Olsen, Nils; Hulot, Gauthier; Lesur, Vincent

    2015-01-01

    agreement (up to at least degree 60) with recent field models derived from CHAMP data, providing an initial validation of the quality of the Swarm magnetic measurements. Use of gradient data improves the determination of both the static field and its secular variation, with the mean misfit for East...

  1. Shannon information of the geomagnetic field for the past 7000 years

    Directory of Open Access Journals (Sweden)

    A. De Santis

    2010-02-01

    Full Text Available The present behaviour of the geomagnetic field as expressed by the International Geomagnetic Reference Field (IGRF deserves special attention when compared with that shown over the past few thousands of years by two paleomagnetic/archeomagnetic models, CALS3K and CALS7K. The application of the Information theory in terms of Shannon Information and K-entropy to these models shows characteristics of an instable geomagnetic field. Although the result is mitigated when we correct the CALS7K model for its typical spectral damping, the present geomagnetic field as represented by IGRF is still rather distinct, at least for the past 4000 years, a result that is further confirmed by the CALS3K model. This is consistent with a significant global critical state started at around 1750, and still present, characterised by significant decays of the geomagnetic dipole, energy and Shannon information and high K-entropy. The details of how these characteristics may develop are not clear, since the present state could move toward an excursion or a geomagnetic polarity reversal, but we cannot exclude the possibility that the "critical" behaviour will become again more "normal", stopping the apparent trend of the recent geomagnetic field decay.

  2. Stochastic forecasting of the geomagnetic field from the COV-OBS.x1 geomagnetic field model, and candidate models for IGRF-12

    DEFF Research Database (Denmark)

    Gillet, Nicolas; Barrois, Olivier; Finlay, Chris

    2015-01-01

    the ‘observations’ uncertainties in data assimilation schemes for the study of the outer core dynamics.We also present and illustrate a stochastic algorithm designed to forecast the geomagnetic field. The radial field at the outer core surface is advected by core motions governed by an auto-regressive process...... filter algorithm. We show that the envelope of forecasts includes the observed secular variation of the geomagnetic field over 5-year intervals, even in the case of rapid changes. In a purpose of testing hypotheses about the core dynamics, this prototype method could be implemented to build the ‘state...

  3. Thermal interaction of the core and the mantle and long-term behavior of the geomagnetic field

    Science.gov (United States)

    Jones, G. M.

    1977-01-01

    The effects of temperature changes at the earth's core-mantle boundary on the velocity field of the core are analyzed. It is assumed that the geomagnetic field is maintained by thermal convection in the outer core. A model for the thermal interaction of the core and the mantle is presented which is consistent with current views on the presence of heat sources in the core and the properties of the lower mantle. Significant long-term variations in the frequency of geomagnetic reversals may be the result of fluctuating temperatures at the core-mantle boundary, caused by intermittent convection in the lower mantle. The thermal structure of the lower mantle region D double prime, extending from 2700 to 2900 km in depth, constitutes an important test of this hypothesis and offers a means of deciding whether the geomagnetic dynamo is thermally driven.

  4. High resolution geomagnetic field observations at Terra Nova bay, Antarctica

    Directory of Open Access Journals (Sweden)

    P. Palangio

    1996-06-01

    Full Text Available he preliminary results obtained from the analysis in the micropulsation frequency range of high time resolution magnetic field data recorded at the Antarctic Italian geomagnetic observatory at Terra Nova Bay for 11 consecutive days in February 1994 are reported. The spectral index over the whole Pcl-Pc5 frequency range is of the order of 3.5 and its value significantly increases beyond about 50 mHz. Spectral peaks in the Pc3 frequency range are common, especially during the daytime hours, and are probably due to the direct penetration of upstream waves in the cusp region. From the local time distribution of the micro pulsation power, a signifi - cant activity enhancement around the local magnetic noon emerges, in agreement with previous observations. The analysis of the signal polarisation characteristics in the horizontal plane shows a predominant CW polarisation in the Pcl-Pc3 frequency ranges with the major axis of the polarisation ellipse in the first quadrant.

  5. Power spectrum of the geomagnetic field by the maximum entropy method

    International Nuclear Information System (INIS)

    Kantor, I.J.; Trivedi, N.B.

    1980-01-01

    Monthly mean values of Vassouras (state of Rio de Janeiro) geomagnetic field are analyzed us the maximum entropy method. The method is described and compared with other methods of spectral analysis, and its advantages and disadvantages are presented. (Author) [pt

  6. Propagation of low frequency geomagnetic field fluctuations in Antarctica: comparison between two polar cap stations

    Directory of Open Access Journals (Sweden)

    L. Santarelli

    2007-11-01

    Full Text Available We conduct a statistical analysis of the coherence and phase difference of low frequency geomagnetic fluctuations between two Antarctic stations, Mario Zucchelli Station (geographic coordinates: 74.7° S, 164.1° E; corrected geomagnetic coordinates: 80.0° S, 307.7° E and Scott Base (geographic coordinates: 77.8° S 166.8° E; corrected geomagnetic coordinates: 80.0° S 326.5° E, both located in the polar cap. Due to the relative position of the stations, whose displacement is essentially along a geomagnetic parallel, the phase difference analysis allows to determine the direction of azimuthal propagation of geomagnetic fluctuations. The results show that coherent fluctuations are essentially detectable around local geomagnetic midnight and, in a minor extent, around noon; moreover, the phase difference reverses in the night time hours, indicating a propagation direction away from midnight, and also around local geomagnetic noon, indicating a propagation direction away from the subsolar point. The nigh time phase reversal is more clear for southward interplanetary magnetic field conditions, suggesting a relation with substorm activity.

    The introduction, in this analysis, of the Interplanetary Magnetic Field conditions, gave interesting results, indicating a relation with substorm activity during nighttime hours.

    We also conducted a study of three individual pulsation events in order to find a correspondence with the statistical behaviour. In particular, a peculiar event, characterized by quiet magnetospheric and northward interplanetary magnetic field conditions, shows a clear example of waves propagating away from the local geomagnetic noon; two more events, occurring during southward interplanetary magnetic field conditions, in one case even during a moderate storm, show waves propagating away from the local geomagnetic midnight.

  7. Propagation of low frequency geomagnetic field fluctuations in Antarctica: comparison between two polar cap stations

    Directory of Open Access Journals (Sweden)

    L. Santarelli

    2007-11-01

    Full Text Available We conduct a statistical analysis of the coherence and phase difference of low frequency geomagnetic fluctuations between two Antarctic stations, Mario Zucchelli Station (geographic coordinates: 74.7° S, 164.1° E; corrected geomagnetic coordinates: 80.0° S, 307.7° E and Scott Base (geographic coordinates: 77.8° S 166.8° E; corrected geomagnetic coordinates: 80.0° S 326.5° E, both located in the polar cap. Due to the relative position of the stations, whose displacement is essentially along a geomagnetic parallel, the phase difference analysis allows to determine the direction of azimuthal propagation of geomagnetic fluctuations. The results show that coherent fluctuations are essentially detectable around local geomagnetic midnight and, in a minor extent, around noon; moreover, the phase difference reverses in the night time hours, indicating a propagation direction away from midnight, and also around local geomagnetic noon, indicating a propagation direction away from the subsolar point. The nigh time phase reversal is more clear for southward interplanetary magnetic field conditions, suggesting a relation with substorm activity. The introduction, in this analysis, of the Interplanetary Magnetic Field conditions, gave interesting results, indicating a relation with substorm activity during nighttime hours. We also conducted a study of three individual pulsation events in order to find a correspondence with the statistical behaviour. In particular, a peculiar event, characterized by quiet magnetospheric and northward interplanetary magnetic field conditions, shows a clear example of waves propagating away from the local geomagnetic noon; two more events, occurring during southward interplanetary magnetic field conditions, in one case even during a moderate storm, show waves propagating away from the local geomagnetic midnight.

  8. Regional 3-D Modeling of Ground Geoelectric Field for the Northeast United States due to Realistic Geomagnetic Disturbances

    Science.gov (United States)

    Ivannikova, E.; Kruglyakov, M.; Kuvshinov, A. V.; Rastaetter, L.; Pulkkinen, A. A.; Ngwira, C. M.

    2017-12-01

    During extreme space weather events electric currents in the Earth's magnetosphere and ionosphere experience large variations, which leads to dramatic intensification of the fluctuating magnetic field at the surface of the Earth. According to Faraday's law of induction, the fluctuating geomagnetic field in turn induces electric field that generates harmful currents (so-called "geomagnetically induced currents"; GICs) in grounded technological systems. Understanding (via modeling) of the spatio-temporal evolution of the geoelectric field during enhanced geomagnetic activity is a key consideration in estimating the hazard to technological systems from space weather. We present the results of ground geoelectric field modeling for the Northeast United States, which is performed with the use of our novel numerical tool based on integral equation approach. The tool exploits realistic regional three-dimensional (3-D) models of the Earth's electrical conductivity and realistic global models of the spatio-temporal evolution of the magnetospheric and ionospheric current systems responsible for geomagnetic disturbances. We also explore in detail the manifestation of the coastal effect (anomalous intensification of the geoelectric field near the coasts) in this region.

  9. Simulation of the cosmic ray Moon shadow in the geomagnetic field

    International Nuclear Information System (INIS)

    Di Sciascio, Giuseppe; Iuppa, Roberto

    2011-01-01

    An accurate Monte Carlo simulation of the deficit of primary cosmic rays in the direction of the Moon has been developed to interpret the observations reported in the TeV energy region until now. Primary particles are propagated through the geomagnetic field in the Earth-Moon system. The algorithm is described and the contributions of the detector resolution and of the geomagnetic field are disentangled.

  10. Theory of geomagnetic effects of cosmic rays: its past and presence

    Energy Technology Data Exchange (ETDEWEB)

    Gall, R [Universidad Nacional Autonoma de Mexico, Mexico City. Inst. de Geofisica

    1981-03-01

    The interest expressed by Lemaitre and Vallarta in the nature of universal corpuscular radiation, remnant of the exploded primogenitive atom, culminated in 1932, in the development of their theory of the geomagnetic effects of cosmic rays, a tool since its publication, basic to cosmic radiation research and to the advancement of cosmic ray astronomy. Between 1940 and 1960 challenging experimental data from proliferating cosmic radiation stations and of direct detection techniques provided geomagnetic field models for greater theoretical precision. The discoveries since the advent of the space age of the Earth's cavity and geomagnetic tail, and of the nonrelativistic solar cosmic rays have resulted in a new branch of the theory dealing with magnetosphere effects in the propagation of low energy cosmic radiations. The theory's importance and application to cosmic bodies other than the Earth is discussed.

  11. Fast directional changes in the geomagnetic field recovered from archaeomagnetism of ancient Israel

    Science.gov (United States)

    Shaar, R.; Hassul, E.; Raphael, K.; Ebert, Y.; Marco, S.; Nowaczyk, N. R.; Ben-Yosef, E.; Agnon, A.

    2017-12-01

    Recent archaeomagnetic intensity data from the Levant revealed short-term sub-centennial changes in the geomagnetic field such as `archaeomagnetic jerks' and `geomagnetic spikes'. To fully understand the nature of these fast variations a complementary high-precision time-series of geomagnetic field direction is required. To this end we investigated 35 heat impacted archaeological objects from Israel, including cooking ovens, furnaces, and burnt walls. We combine the new dataset with previously unpublished data and construct the first archaeomagnetic compilation of Israel which, at the moment, consists of a total of 57 directions. Screening out poor quality data leaves 30 acceptable archaeomagnetic directions, 25 of which spanning the period between 1700 BCE to 400 BCE. The most striking result of this dataset is a large directional anomaly with deviation of 20°-25° from geocentric axial dipole direction during the 9th century BCE. This anomaly in field direction is contemporaneous with the Levantine Iron Age Anomaly (LIAA) - a local geomagnetic anomaly over the Levant that was characterized by a high averaged geomagnetic field (nearly twice of today's field) and short decadal-scale geomagnetic spikes.

  12. Possible relationship between the Earth's rotation variations and geomagnetic field reversals over the past 510 Myr

    OpenAIRE

    Pacca, Igor G.; Frigo, Everton; Hartmann, Gelvam A.

    2015-01-01

    The Earth's rotation can change as a result of several internal and external processes, each of which is at a different timescale. Here, we present some possible connections between the Earth's rotation variations and the geomagnetic reversal frequency rates over the past 120 Myr. In addition, we show the possible relationship between the geomagnetic field reversal frequency and the δ18O oscillations. Because the latter reflects the glacial and interglacial periods, we hypothesize that it can...

  13. The Ranges Of Subauroral Geomagnetic Field Elements | Rabiu ...

    African Journals Online (AJOL)

    Nigeria Journal of Pure and Applied Physics ... An anomaly in seasonal response of range at high solar activity is observed on disturbed condition. ... apart from the anomaly - maintain the order e>j>d of seasonal variation which is in agreement with the popular equinoctial maximum observed in geomagnetic activity.

  14. ANOMALOUS CHANGES OF THE GEOMAGNETIC FIELD VERTICAL COMPONENT IN KAMCHATKA

    Directory of Open Access Journals (Sweden)

    Smirnov, S.E.

    2016-11-01

    Full Text Available Statistical estimates of the effect in the electric field of the surface layer of the atmosphere parameters, such as time of the beginning, time of a maximum, its intensity and duration, were obtained. It was shown experimentally that the diurnal variation maximum of atmospheric electric field intensity is associated with air temperature height distribution. Power spectra of time variations of electric field intensity in the near ground atmosphere and of the horizontal component of geomagnetic field were under study. It was shown that there are oscillations with the periods of T _ 2, 0–2,5 hours in the power spectra of these parameters during a day. A possible mechanism of generation of these oscillations was proposed. It is associated with vortex motion of convective cells arising during the sunrise in the atmosphere exchange layer.

  15. Westward equatorial electrojet during daytime hours. [relation to geomagnetic horizontal field depression

    Science.gov (United States)

    Rastogi, R. G.

    1974-01-01

    The phenomenon of the depression of the geomagnetic horizontal field during the daytime hours of magnetically quiet days at equatorial stations is described. These events are generally seen around 0700 and 1600 LT, being more frequent during the evening than the morning hours. The evening events are more frequent during periods of low solar activity and in the longitude region of weak equatorial electrojet currents. The latitudinal extent of the phenomenon is limited to the normal equatorial electrojet region, and on some occasions the phenomenon is not seen at both stations, separated by only a few hours in longitude. During such an event, the latitudinal profile of the geomagnetic vertical field across the equator is reversed, the ionospheric drift near the equator is reversed toward the east, the q type of sporadic E layer is completely absent, and the height of the peak ionization in the F2 region is decreased. It is suggested that these effects are caused by a narrow band of current flowing westward in the E region of the ionosphere and within the latitude region of the normal equatorial electrojet, due to the reversal of the east-west electrostatic field at low latitudes.

  16. Spatial correlation structure of the ionosphere predicted by geomagnetic indices and application to global field modelling

    Science.gov (United States)

    Holschneider, M.; Ferrat, K.; Lesur, V.; Stolle, C.

    2017-12-01

    Ionospheric fields are modelled in terms of random structures taking into account a mean behaviour as well as random fluctuations which are described through two point correlation kernels. These kernels are estimated from long time series of numerical simulations from various models. These correlations are best expressed in SM system of coordinates. For the moment we limit ourselves to spatial correlations only in this coordinate system. We study the influence of various indices as possible predictor parameters for these correlations as well as seasonal effects. The various time series of ionospheric fields are stored in a HDF5 database which is accessible via a web interface. The obtained correlation structures serve as prior information to separate external and internal field components from observatory based measurements. We present a model that predicts the correlations as a function of time and some geomagnetic indices. First results of the inversion from observatory data are presented.

  17. The impact of coronal mass ejection on the horizontal geomagnetic fields and the induced geoelectric fields

    Science.gov (United States)

    Falayi, E. O.; Adebesin, B. O.; Bolaji, O. S.

    2018-02-01

    This work investigates the influence of coronal mass ejection (CME) on the time derivatives of horizontal geomagnetic and geoelectric fields, proxy parameters for identifying GICs. 16 events were identified for the year 2003 from the CORONAS-PHOTON spacecraft. Five of the events (May 29, June 9, October 28, October 29, and November 4) were extensively discussed over four magnetic observatories, were analyzed using the time derivatives of the horizontal geomagnetic (dH/dt) and geoelectric (EH) fields obtained from data of the INTERMAGNET network. It was observed that energy distributions of the wavelet power spectrum of the horizontal geoelectric field are noticed at the nighttime on both 29 May and 9 June 2003 across the stations. Daytime and nighttime intensification of energy distribution of the wavelet power spectrum of the horizontal geoelectric field are observed on both 28 and 29 October 2003 due to strong westward electrojet. The 4 November 2003 event depicts daytime amplification of energy distributions of the wavelet power spectrum across the stations. The highest correlation magnitude is obtained in the event of 4 November 2003 between dH/dt and EH relationships during the intense solar flare of class X 17.4. We observed that the correlation magnitude between dH/dt and EH increases with increase in CME activity. We concluded that the response of the surface impedance model for different stations plays a key role in determining the surface electric field strength, due to large electric field changes at different stations.

  18. Palaeomagnetic evidence for the persistence or recurrence of geomagnetic main field anomalies in the South Atlantic

    Science.gov (United States)

    Shah, Jay; Koppers, Anthony A. P.; Leitner, Marko; Leonhardt, Roman; Muxworthy, Adrian R.; Heunemann, Christoph; Bachtadse, Valerian; Ashley, Jack A. D.; Matzka, Jürgen

    2016-05-01

    We present a dataset of a full-vector palaeomagnetic study of Late Pleistocene lavas from the island Tristan da Cunha in the South Atlantic Ocean. The current day geomagnetic field intensity in this region is approximately 25 μT, compared to an expected value of ∼43 μT; this phenomenon is known as the South Atlantic geomagnetic Anomaly (SAA). Geomagnetic field models extending back to the last 10 ka find no evidence for this being a persistent feature of the geomagnetic field, albeit, all models are constructed from data which is particularly sparse in the southern hemisphere. New 40Ar/39Ar incremental heating dating indicates the studied lavas from Tristan da Cunha extruded between 90 and 46 ka. Palaeointensity estimations of eight lava flows made using the Thellier method yield an average palaeointensity of 18 ± 6 μT and virtual axial dipole moment (VADM) of 3.1 ± 1.2 ×1022 Am2. The lava flows demonstrate four time intervals comparable to the present day SAA, where the average VADM of the Tristan da Cunha lavas is weaker than the global VADM average. This suggests a persistent or recurring low intensity anomaly to the main geomagnetic field similar to the SAA existed in the South Atlantic between 46 and 90 ka.

  19. Geomagnetic activity effects on plasma sheet energy conversion

    Directory of Open Access Journals (Sweden)

    M. Hamrin

    2010-10-01

    Full Text Available In this article we use three years (2001, 2002, and 2004 of Cluster plasma sheet data to investigate what happens to localized energy conversion regions (ECRs in the plasma sheet during times of high magnetospheric activity. By examining variations in the power density, E·J, where E is the electric field and J is the current density obtained by Cluster, we have studied the influence on Concentrated Load Regions (CLRs and Concentrated Generator Regions (CGRs from variations in the geomagnetic disturbance level as expressed by the Kp, the AE, and the Dst indices. We find that the ECR occurrence frequency increases during higher magnetospheric activities, and that the ECRs become stronger. This is true both for CLRs and for CGRs, and the localized energy conversion therefore concerns energy conversion in both directions between the particles and the fields in the plasma sheet. A higher geomagnetic activity hence increases the general level of energy conversion in the plasma sheet. Moreover, we have shown that CLRs live longer during magnetically disturbed times, hence converting more electromagnetic energy. The CGR lifetime, on the other hand, seems to be unaffected by the geomagnetic activity level. The evidence for increased energy conversion during geomagnetically disturbed times is most clear for Kp and for AE, but there are also some indications that energy conversion increases during large negative Dst. This is consistent with the plasma sheet magnetically mapping to the auroral zone, and therefore being more tightly coupled to auroral activities and variations in the AE and Kp indices, than to variations in the ring current region as described by the Dst index.

  20. Paleomagnetic record of a geomagnetic field reversal from late miocene mafic intrusions, southern nevada.

    Science.gov (United States)

    Ratcliff, C D; Geissman, J W; Perry, F V; Crowe, B M; Zeitler, P K

    1994-10-21

    Late Miocene (about 8.65 million years ago) mafic intrusions and lava flows along with remagnetized host rocks from Paiute Ridge, southern Nevada, provide a high-quality paleomagnetic record of a geomagnetic field reversal. These rocks yield thermoremanent magnetizations with declinations of 227 degrees to 310 degrees and inclinations of -7 degrees to 49 degrees , defining a reasonably continuous virtual geomagnetic pole path over west-central Pacific longitudes. Conductive cooling estimates for the intrusions suggest that this field transition, and mafic magmatism, lasted only a few hundred years. Because this record comes principally from intrusive rocks, rather than sediments or lavas, it is important in demonstrating the longitudinal confinement of the geomagnetic field during a reversal.

  1. The effect of geomagnetic storms on suicide

    African Journals Online (AJOL)

    QuickSilver

    of possible low-frequency electromagnetic field disturbances from the solar terrestrial .... tion in the magnetic field of the earth can be observed on the .... Perception and Motor Skills 1973; 36: 1131-1159. ... Manual of the international statistical.

  2. Orbital Noise of the Earth Causes Intensity Fluctuation in the Geomagnetic Field

    Science.gov (United States)

    Liu, Han-Shou; Kolenkiewicz, R.; Wade, C., Jr.

    2003-01-01

    Orbital noise of Earth's obliquity can provide an insight into the core of the Earth that causes intensity fluctuations in the geomagnetic field. Here we show that noise spectrum of the obliquity frequency have revealed a series of frequency periods centered at 250-, 1OO-, 50-, 41-, 30-, and 26-kyr which are almost identical with the observed spectral peaks from the composite curve of 33 records of relative paleointensity spanning the past 800 kyr (Sint-800 data). A continuous record for the past two million years also reveals the presence of the major 100 kyr periodicity in obliquity noise and geomagnetic intensity fluctuations. These results of correlation suggest that obliquity noise may power the dynamo, located in the liquid outer core of the Earth, which generates the geomagnetic field.

  3. The Distribution of Geomagnetic Field Components on the Southern Part of the Korean Peninsula for Epoch 2010.0

    Directory of Open Access Journals (Sweden)

    Mutaek Lim

    2011-05-01

    Full Text Available NGII(National Geography Information Institute of Korea consigned KIGAM(Korea Institute of Geoscience & Mineral Resources to do absolute geomagnetic measurements on 32 geomagnetic repeat stations evenly distributed on the southern part of Korean Peninsula in the year 2010 and to produce geomagnetic field components' distribution maps for the year 2010.0. The result of the processing of the measured data, i. e., the geomagnetic field components' distribution, shows a near similarity with that calculated from IGRF-11 although the latter was processed without any real geomagnetic data measured on the Korean Peninsula as an input. This implies that we installed the repeat stations on sites with good geomagnetic conditions and that our result in accordance with the IGRF represents well the regional distribution trend, i. e., it is dominated by relatively long wavelength components.

  4. Effect of geomagnetic storms on the daytime low-latitude thermospheric wave dynamics

    Science.gov (United States)

    Karan, Deepak K.; Pallamraju, Duggirala

    2018-05-01

    The equatorial- and low-latitude thermospheric dynamics is affected by both equatorial electrodynamics and neutral wave dynamics, the relative variation of which is dependent on the prevalent background conditions, which in turn has a seasonal dependence. Depending on the ambient thermospheric conditions, varying effects of the geomagnetic disturbances on the equatorial- and low-latitude thermosphere are observed. To investigate the effect of these disturbances on the equatorial- and low-latitude neutral wave dynamics, daytime airglow emission intensities at OI 557.7 nm, OI 630.0 nm, and OI 777.4 nm are used. These emissions from over a large field-of-view (FOV∼1000) have been obtained using a high resolution slit spectrograph, MISE (Multiwavelength Imaging Spectrograph using Echelle grating), from a low-latitude location, Hyderabad (17.50N, 78.40E; 8.90N MLAT), in India. Variations of the dayglow emission intensities are investigated during three geomagnetic disturbance events that occurred in different seasons. It is seen that the neutral dayglow emission intensities at all the three wavelengths showed different type of variations with the disturbance storm time (Dst) index in different seasons. Even though the dayglow emission intensities over low-latitude regions are sensitive to the variation in the equatorial electric fields, during periods of geomagnetic disturbances, especially in solstices, these are dependent on thermospheric O/N2 values. This shows the dominance of neutral dynamics over electrodynamics in the low-latitude upper atmosphere during geomagnetic disturbances. Further, spectral analyses have been carried out to obtain the zonal scale sizes in the gravity wave regime and their diurnal distributions are compared for geomagnetic quiet and disturbed days. Broadly, the zonal scales seem to be breaking into various scale sizes on days of geomagnetic disturbances when compared to those on quiet days. This contrast in the diurnal distribution of the

  5. Impacts of ionospheric electric fields on the GPS tropospheric delays during geomagnetic storms in Antarctica

    International Nuclear Information System (INIS)

    Suparta, W

    2017-01-01

    This paper aimed to overview the interaction of the thunderstorm with the ionospheric electric fields during major geomagnetic storms in Antarctica through the GPS tropospheric delays. For the purpose of study, geomagnetic activity and electric fields data for the period from 13 to 21 March 2015 representing the St. Patrick’s Day storm is analyzed. To strengthen the analysis, data for the period of 27 October to 1 st November 2003 representing for the Halloween storm is also compared. Our analysis showed that both geomagnetic storms were severe ( Ap ≥ 100 nT), where the intensity of Halloween storm is double compared to St. Patrick’s Day storm. For the ionospheric electric field, the peaks were dropped to -1.63 mV/m and -2.564 mV/m for St. Patrick and Halloween storms, respectively. At this time, the interplanetary magnetic field Bz component was significantly dropped to -17.31 nT with Ap > 150 nT (17 March 2015 at 19:20 UT) and -26.51 nT with Ap = 300 nT (29 October 2003 at 19:40 UT). For both geomagnetic storms, the electric field was correlated well with the ionospheric activity where tropospheric delays show a different characteristic. (paper)

  6. Fast geomagnetic Field Intensity Variations between 1400 and 400 BCE: New Archaeointensity Data from Germany

    Science.gov (United States)

    Hervé, G.; Schnepp, E.; Metzler-Nebelsick, C.; Lhuillier, F.; Gilder, S.; Genevey, A.; Fassbinder, J.; Gallet, Y.

    2017-12-01

    Thirty-five mean archaeointensity data were obtained on ceramic sherds dated between 1400 and 400 BCE from sites located near Munich, Germany. The 453 sherds were collected from 52 graves, pits and wells dated by archaeological correlation, radiocarbon and/or dendrochronology. Rock magnetic analyses indicate that the remanent magnetization was mainly carried by magnetite. Data from Thellier-Thellier experiments were corrected for anisotropy and cooling rate effects. Triaxe and multispecimen (MSP-DSC) protocols were also measured on a subset of specimens. Around 60% of the samples provide reliable results when using stringent criteria selection. The 35 average archaeointensity values based on 154 pots are consistent with previous data and triple the Western Europe database between 1400 and 400 BCE. A secular variation curve for central-western Europe, built using a Bayesian approach, shows a double oscillation in geomagnetic field strength with intensity maxima of 70 μT around 1000-900 BCE and another up to 90 μT around 600-500 BCE. The maximum rate of variation was 0.25 μT/yr circa 700 BCE. The secular variation trend in Western Europe is similar to that observed in the Middle East and the Caucasus except that we find no evidence for hyper-rapid field variations (i.e. geomagnetic spikes). Virtual Axial Dipole Moments from Western Europe, the Middle East and central Asia differ by more than 20 ZA·m2 prior to 600 BCE, which signifies a departure from an axial dipole field especially between 1000 and 600 BCE. Our observations suggest that the regional Levantine Iron Age anomaly has been accompanied by an increase of the axial dipole moment together with a tilt of the dipole.

  7. Applying inversion techniques to derive source currents and geoelectric fields for geomagnetically induced current calculations

    Directory of Open Access Journals (Sweden)

    J. S. de Villiers

    2014-10-01

    Full Text Available This research focuses on the inversion of geomagnetic variation field measurement to obtain source currents in the ionosphere. During a geomagnetic disturbance, the ionospheric currents create magnetic field variations that induce geoelectric fields, which drive geomagnetically induced currents (GIC in power systems. These GIC may disturb the operation of power systems and cause damage to grounded power transformers. The geoelectric fields at any location of interest can be determined from the source currents in the ionosphere through a solution of the forward problem. Line currents running east–west along given surface position are postulated to exist at a certain height above the Earth's surface. This physical arrangement results in the fields on the ground having the magnetic north and down components, and the electric east component. Ionospheric currents are modelled by inverting Fourier integrals (over the wavenumber of elementary geomagnetic fields using the Levenberg–Marquardt technique. The output parameters of the inversion model are the current strength, height and surface position of the ionospheric current system. A ground conductivity structure with five layers from Quebec, Canada, based on the Layered-Earth model is used to obtain the complex skin depth at a given angular frequency. This paper presents preliminary and inversion results based on these structures and simulated geomagnetic fields. The results show some interesting features in the frequency domain. Model parameters obtained through inversion are within 2% of simulated values. This technique has applications for modelling the currents of electrojets at the equator and auroral regions, as well as currents in the magnetosphere.

  8. Geomagnetic field variations at the equatorial electrojet station in Sri Lanka, Peredinia

    Directory of Open Access Journals (Sweden)

    R. G. Rastogi

    2004-09-01

    Full Text Available The paper discusses the variations of the horizontal (H, vertical (Z and eastward (Y components of the geomagnetic field at Peredinia (PRD, an electrojet station in Sri Lanka, with the time of the day, season, sudden commencement (SSC and during geomagnetic storms. The daily variation of H showed a large peak around midday. The daily variation of Z appeared to be almost a time gradient curve of the daily variation of H, showing a maximum around 09:00 LT (75° EMT when the H field was increasing fastest and not at noon when Δ H was the maximum. Storm time variation of H resembled the variation of the Dst index but that of Z showed a large minimum about 2-3h before the time of minimum Dst or at the time of maximum time gradient of Dst variation. These features are compared with corresponding variations at the equatorial stations Trivandrum (TRD in India, and remarkable similarity in all observations is noticed at PRD and TRD. It is suggested that the observed abnormal features of Z variations at electrojet stations in India-Sri Lanka are due to (i direct effect of the ionospheric electrojet current (ii the induction effect of the image current by the average spatially extended conductivity region and (iii the induction current in the local subsurface conductor. It is suggested that the conductor responsible for the observed features in Z in India and Sri Lanka has to have extended spatial domain to latitudes well south of India, rather than confined to narrow Palk Strait.

  9. Evaluation of a new paleosecular variation activity index as a diagnostic tool for geomagnetic field variations

    Science.gov (United States)

    Panovska, Sanja; Constable, Catherine

    2015-04-01

    Geomagnetic indices like Dst, K and A, have been used since the early twentieth century to characterize activity in the external part of the modern geomagnetic field and as a diagnostic for space weather. These indices reflect regional and global activity and serve as a proxy for associated physical processes. However, no such tools are yet available for the internal geomagnetic field driven by the geodynamo in Earth's liquid outer core. To some extent this reflects limited spatial and temporal sampling for longer timescales associated with paleomagnetic secular variation, but recent efforts in both paleomagnetic data gathering and modeling activity suggest that longer term characterization of the internal geomagnetic weather/climate and its variability would be useful. Specifically, we propose an index for activity in paleosecular variation, useful as both a local and global measure of field stability during so-called normal secular variation and as a means of identifying more extreme behavior associated with geomagnetic excursions and reversals. To date, geomagnetic excursions have been identified by virtual geomagnetic poles (VGPs) deviating more than some conventional limit from the geographic pole (often 45 degrees), and/or by periods of significant intensity drops below some critical value, for example 50% of the present-day field. We seek to establish a quantitative definition of excursions in paleomagnetic records by searching for synchronous directional deviations and lows in relative paleointensity. We combine paleointensity variations with deviations from the expected geocentric axial dipole (GAD) inclination in a single parameter, which we call the paleosecular variation (PSV) activity index. This new diagnostic can be used on any geomagnetic time series (individual data records, model predictions, spherical harmonic coefficients, etc.) to characterize the level of paleosecular variation activity, find excursions, or even study incipient reversals

  10. Investigation of geomagnetic field forecasting and fluid dynamics of the core

    Science.gov (United States)

    Benton, E. R. (Principal Investigator)

    1981-01-01

    The discovery of simple, theoretically sound upper limits for geomagnetic moments (dipole, quadrupole, etc.) provides a significant use of MAGSAT data, establishes useful constraints for future magnetic models, and bears strongly on the probable time required before the next polarity reversal can occur. The field models of MAGSAT data are of prime use and are highly suitable as supplied to date.

  11. Sources of the Geomagnetic Field and theModern Data That Enable Their Investigation

    DEFF Research Database (Denmark)

    Olsen, Nils; Hulot, Gauthier; Sabaka, Terence J.

    2010-01-01

    Abstract The geomagnetic field one canmeasure at the Earth’s surface or on board satellites is the sumof contributions frommany different sources.These sources have different physical origins and can be found both below (in the form of electrical currents and magnetized material) and above (only...

  12. On a forecast of geomagnetic activity according to magnetic fields on the Sun

    International Nuclear Information System (INIS)

    Ponyavin, D.I.; Pudovkin, M.I.

    1988-01-01

    Technique for tracking the current layer orientation in the solar corona and solar wind high-velocity flux sources is suggested according to the observation of large-scale magnetic fields at the Sun. Ionospheric magnetic fields in potential approximation are extrapolated to the Sun atmosphere high layers - in the region of probable formation of solar wind and interplanetary magnetic field. The chart of isocline-lines of field vector even inclination to the surface of R=1.8R sun radius sphere is plotted according to the calculated magnetic field. Daily plotting of such charts allows to continuosly track the large-scale structure and evolution of solar wind and interplanetary magnetic field. Th comparison of isoclinic charts with geomagnetic activity for October 1982 has shown the principal possibility to use this technique for the purposes of geomagnetic activity forecasting

  13. Towards a fully self-consistent inversion combining historical and paleomagnetic data for geomagnetic field reconstructions

    Science.gov (United States)

    Arneitz, P.; Leonhardt, R.; Fabian, K.; Egli, R.

    2017-12-01

    Historical and paleomagnetic data are the two main sources of information about the long-term geomagnetic field evolution. Historical observations extend to the late Middle Ages, and prior to the 19th century, they consisted mainly of pure declination measurements from navigation and orientation logs. Field reconstructions going back further in time rely solely on magnetization acquired by rocks, sediments, and archaeological artefacts. The combined dataset is characterized by a strongly inhomogeneous spatio-temporal distribution and highly variable data reliability and quality. Therefore, an adequate weighting of the data that correctly accounts for data density, type, and realistic error estimates represents the major challenge for an inversion approach. Until now, there has not been a fully self-consistent geomagnetic model that correctly recovers the variation of the geomagnetic dipole together with the higher-order spherical harmonics. Here we present a new geomagnetic field model for the last 4 kyrs based on historical, archeomagnetic and volcanic records. The iterative Bayesian inversion approach targets the implementation of reliable error treatment, which allows different record types to be combined in a fully self-consistent way. Modelling results will be presented along with a thorough analysis of model limitations, validity and sensitivity.

  14. Application of the SP algorithm to the INTERMAGNET magnetograms of the disturbed geomagnetic field

    Science.gov (United States)

    Sidorov, R. V.; Soloviev, A. A.; Bogoutdinov, Sh. R.

    2012-05-01

    The algorithmic system developed in the Laboratory of Geoinformatics at the Geophysical Center, Russian Academy of Sciences, which is intended for recognizing spikes on the magnetograms from the global network INTERMAGNET provides the possibility to carry out retrospective analysis of the magnetograms from the World Data Centers. Application of this system to the analysis of the magnetograms allows automating the job of the experts-interpreters on identifying the artificial spikes in the INTERMAGNET data. The present paper is focused on the SP algorithm (abbreviated from SPIKE) which recognizes artificial spikes on the records of the geomagnetic field. Initially, this algorithm was trained on the magnetograms of 2007 and 2008, which recorded the quiet geomagnetic field. The results of training and testing showed that the algorithm is quite efficient. Applying this method to the problem of recognizing spikes on the data for periods of enhanced geomagnetic activity is a separate task. In this short communication, we present the results of applying the SP algorithm trained on the data of 2007 to the INTERMAGNET magnetograms for 2003 and 2005 sampled every minute. This analysis shows that the SP algorithm does not exhibit a worse performance if applied to the records of a disturbed geomagnetic field.

  15. Quasi-biennial oscillations in the geomagnetic field: Their global characteristics and origin

    DEFF Research Database (Denmark)

    Ou, Jiaming; Du, Aimin; Finlay, Chris

    2017-01-01

    of second-order derivatives of the geomagnetic X, Y, and Z components reveals salient QBO signals at periods of 1.3, 1.7, 2.2, 2.9, and 5.0 years, with the most prominent peak at 2.2 years. The signature of geomagnetic QBO is generally stronger in the X and Z components and with larger amplitudes...... on geomagnetically disturbed days. The amplitude of the QBO in the X component decreases from the equator to the poles, then shows a local maximum at subauroral and auroral zones. The QBO in the Z component enhances from low latitudes toward the polar regions. At high latitudes (poleward of 50°) the geomagnetic QBO...... exhibits stronger amplitudes during LT 00:00–06:00, depending strongly on the geomagnetic activity level, while at low latitudes the main effect is in the afternoon sector. These results indicate that the QBOs at low-to-middle latitudes and at high latitudes are influenced by different magnetospheric...

  16. A field like today's? The strength of the geomagnetic field 1.1 billion years ago

    Science.gov (United States)

    Sprain, Courtney J.; Swanson-Hysell, Nicholas L.; Fairchild, Luke M.; Gaastra, Kevin

    2018-06-01

    Palaeomagnetic data from ancient rocks are one of the few types of observational data that can be brought to bear on the long-term evolution of Earth's core. A recent compilation of palaeointensity estimates from throughout Earth history has been interpreted to indicate that Earth's magnetic field strength increased in the Mesoproterozoic (between 1.5 and 1.0 billion years ago), with this increase taken to mark the onset of inner core nucleation. However, much of the data within the Precambrian palaeointensity database are from Thellier-style experiments with non-ideal behaviour that manifests in results such as double-slope Arai plots. Choices made when interpreting these data may significantly change conclusions about long-term trends in the intensity of Earth's geomagnetic field. In this study, we present new palaeointensity results from volcanics of the ˜1.1-billion-year-old North American Midcontinent Rift. While most of the results exhibit non-ideal double-slope or sagging behaviour in Arai plots, some flows have more ideal single-slope behaviour leading to palaeointensity estimates that may be some of the best constraints on the strength of Earth's field for this time. Taken together, new and previously published palaeointensity data from the Midcontinent Rift yield a median field strength estimate of 56.0 ZAm2—very similar to the median for the past 300 Myr. These field strength estimates are distinctly higher than those for the preceding billion years (Ga) after excluding ca. 1.3 Ga data that may be biased by non-ideal behaviour—consistent with an increase in field strength in the late Mesoproterozoic. However, given that ˜90 per cent of palaeointensity estimates from 1.1 to 0.5 Ga come from the Midcontinent Rift, it is difficult to evaluate whether these high values relative to those estimated for the preceding billion years are the result of a stepwise, sustained increase in dipole moment. Regardless, palaeointensity estimates from the Midcontinent

  17. Modeling Geoelectric Fields and Geomagnetically Induced Currents Around New Zealand to Explore GIC in the South Island's Electrical Transmission Network

    Science.gov (United States)

    Divett, T.; Ingham, M.; Beggan, C. D.; Richardson, G. S.; Rodger, C. J.; Thomson, A. W. P.; Dalzell, M.

    2017-10-01

    Transformers in New Zealand's South Island electrical transmission network have been impacted by geomagnetically induced currents (GIC) during geomagnetic storms. We explore the impact of GIC on this network by developing a thin-sheet conductance (TSC) model for the region, a geoelectric field model, and a GIC network model. (The TSC is composed of a thin-sheet conductance map with underlying layered resistivity structure.) Using modeling approaches that have been successfully used in the United Kingdom and Ireland, we applied a thin-sheet model to calculate the electric field as a function of magnetic field and ground conductance. We developed a TSC model based on magnetotelluric surveys, geology, and bathymetry, modified to account for offshore sediments. Using this representation, the thin sheet model gave good agreement with measured impedance vectors. Driven by a spatially uniform magnetic field variation, the thin-sheet model results in electric fields dominated by the ocean-land boundary with effects due to the deep ocean and steep terrain. There is a strong tendency for the electric field to align northwest-southeast, irrespective of the direction of the magnetic field. Applying this electric field to a GIC network model, we show that modeled GIC are dominated by northwest-southeast transmission lines rather than east-west lines usually assumed to dominate.

  18. Crustal geomagnetic field - Two-dimensional intermediate-wavelength spatial power spectra

    Science.gov (United States)

    Mcleod, M. G.

    1983-01-01

    Two-dimensional Fourier spatial power spectra of equivalent magnetization values are presented for a region that includes a large portion of the western United States. The magnetization values were determined by inversion of POGO satellite data, assuming a magnetic crust 40 km thick, and were located on an 11 x 10 array with 300 km grid spacing. The spectra appear to be in good agreement with values of the crustal geomagnetic field spatial power spectra given by McLeod and Coleman (1980) and with the crustal field model given by Serson and Hannaford (1957). The spectra show evidence of noise at low frequencies in the direction along the satellite orbital track (N-S). indicating that for this particular data set additional filtering would probably be desirable. These findings illustrate the value of two-dimensional spatial power spectra both for describing the geomagnetic field statistically and as a guide for diagnosing possible noise sources.

  19. Evaluating secular acceleration in geomagnetic field model GRIMM-3

    Science.gov (United States)

    Lesur, V.; Wardinski, I.

    2012-12-01

    Secular acceleration of the magnetic field is the rate of change of its secular variation. One of the main results of studying magnetic data collected by the German survey satellite CHAMP was the mapping of field acceleration and its evolution in time. Questions remain about the accuracy of the modeled acceleration and the effect of the applied regularization processes. We have evaluated to what extent the regularization affects the temporal variability of the Gauss coefficients. We also obtained results of temporal variability of the Gauss coefficients where alternative approaches to the usual smoothing norms have been applied for regularization. Except for the dipole term, the secular acceleration of the Gauss coefficients is fairly well described up to spherical harmonic degree 5 or 6. There is no clear evidence from observatory data that the spectrum of this acceleration is underestimated at the Earth surface. Assuming a resistive mantle, the observed acceleration supports a characteristic time scale for the secular variation of the order of 11 years.

  20. On the relevance of source effects in geomagnetic pulsations for induction soundings

    Science.gov (United States)

    Neska, Anne; Tadeusz Reda, Jan; Leszek Neska, Mariusz; Petrovich Sumaruk, Yuri

    2018-03-01

    This study is an attempt to close a gap between recent research on geomagnetic pulsations and their usage as source signals in electromagnetic induction soundings (i.e., magnetotellurics, geomagnetic depth sounding, and magnetovariational sounding). The plane-wave assumption as a precondition for the proper performance of these methods is partly violated by the local nature of field line resonances which cause a considerable portion of pulsations at mid latitudes. It is demonstrated that and explained why in spite of this, the application of remote reference stations in quasi-global distances for the suppression of local correlated-noise effects in induction arrows is possible in the geomagnetic pulsation range. The important role of upstream waves and of the magnetic equatorial region for such applications is emphasized. Furthermore, the principal difference between application of reference stations for local transfer functions (which result in sounding curves and induction arrows) and for inter-station transfer functions is considered. The preconditions for the latter are much stricter than for the former. Hence a failure to estimate an inter-station transfer function to be interpreted in terms of electromagnetic induction, e.g., because of field line resonances, does not necessarily prohibit use of the station pair for a remote reference estimation of the impedance tensor.

  1. On the relevance of source effects in geomagnetic pulsations for induction soundings

    Directory of Open Access Journals (Sweden)

    A. Neska

    2018-03-01

    Full Text Available This study is an attempt to close a gap between recent research on geomagnetic pulsations and their usage as source signals in electromagnetic induction soundings (i.e., magnetotellurics, geomagnetic depth sounding, and magnetovariational sounding. The plane-wave assumption as a precondition for the proper performance of these methods is partly violated by the local nature of field line resonances which cause a considerable portion of pulsations at mid latitudes. It is demonstrated that and explained why in spite of this, the application of remote reference stations in quasi-global distances for the suppression of local correlated-noise effects in induction arrows is possible in the geomagnetic pulsation range. The important role of upstream waves and of the magnetic equatorial region for such applications is emphasized. Furthermore, the principal difference between application of reference stations for local transfer functions (which result in sounding curves and induction arrows and for inter-station transfer functions is considered. The preconditions for the latter are much stricter than for the former. Hence a failure to estimate an inter-station transfer function to be interpreted in terms of electromagnetic induction, e.g., because of field line resonances, does not necessarily prohibit use of the station pair for a remote reference estimation of the impedance tensor.

  2. Mechanism of the relations between the changes of the geomagnetic field, solar corpuscular radiation, atmospheric circulation, and climate

    International Nuclear Information System (INIS)

    Bucha, Vaclav

    1980-01-01

    The correlations between geomagnetic, climatic, and meteorological phenomena were investigated with the object of demonstrating the function of the geomagnetic pole and changes of its position in controlling the climate and weather. A tentative model has been proposed to enable one to understand the causes of the generation of glacial and interglacial periods, as well as the causes which effect changes of climate (Bucha, 1976a). The analyses of various types of geomagnetic and atmospheric manifestations have disclosed certain associations. The coincidence in the occurrence of increased spectral densities with regard to geomagnetic activity and the variations of atmospheric pressure over the geomagnetic pole shows the relation between their periodicities. The results imply that the changes in the intensity of corpuscular radiation, indicated by geomagnetic activity, affect the temperature and pressure patterns over the geomagnetic pole and polar region significantly, so that a pronounced modification of the general circulation may take place, as shown schematically (Bucha, 1976b). As a result of investigating the relations between the variations of geomagnetic activity and meteorological factors a mechanism of solar-terrestrial relationships and a model of the changes of atmospheric circulation in the Northern Hemisphere are proposed; this provides a probable explanation of the causes of the fluctuation of the climate, of dry and cold periods and of differing vegetation conditions in various years in dependence on the intensity of geomagnetic activity (Bucha, 1976b, 1977a). (author)

  3. Elimination of the geomagnetic field stimulates the proliferation of mouse neural progenitor and stem cells

    Directory of Open Access Journals (Sweden)

    Jing-Peng Fu

    2016-08-01

    Full Text Available Abstract Living organisms are exposed to the geomagnetic field (GMF throughout their lifespan. Elimination of the GMF, resulting in a hypogeomagnetic field (HMF, leads to central nervous system dysfunction and abnormal development in animals. However, the cellular mechanisms underlying these effects have not been identified so far. Here, we show that exposure to an HMF (<200 nT, produced by a magnetic field shielding chamber, promotes the proliferation of neural progenitor/stem cells (NPCs/NSCs from C57BL/6 mice. Following seven-day HMF-exposure, the primary neurospheres (NSs were significantly larger in size, and twice more NPCs/NSCs were harvested from neonatal NSs, when compared to the GMF controls. The self-renewal capacity and multipotency of the NSs were maintained, as HMF-exposed NSs were positive for NSC markers (Nestin and Sox2, and could differentiate into neurons and astrocyte/glial cells and be passaged continuously. In addition, adult mice exposed to the HMF for one month were observed to have a greater number of proliferative cells in the subventricular zone. These findings indicate that continuous HMF-exposure increases the proliferation of NPCs/NSCs, in vitro and in vivo. HMF-disturbed NPCs/NSCs production probably affects brain development and function, which provides a novel clue for elucidating the cellular mechanisms of the bio-HMF response.

  4. Cloud-based calculators for fast and reliable access to NOAA's geomagnetic field models

    Science.gov (United States)

    Woods, A.; Nair, M. C.; Boneh, N.; Chulliat, A.

    2017-12-01

    While the Global Positioning System (GPS) provides accurate point locations, it does not provide pointing directions. Therefore, the absolute directional information provided by the Earth's magnetic field is of primary importance for navigation and for the pointing of technical devices such as aircrafts, satellites and lately, mobile phones. The major magnetic sources that affect compass-based navigation are the Earth's core, its magnetized crust and the electric currents in the ionosphere and magnetosphere. NOAA/CIRES Geomagnetism (ngdc.noaa.gov/geomag/) group develops and distributes models that describe all these important sources to aid navigation. Our geomagnetic models are used in variety of platforms including airplanes, ships, submarines and smartphones. While the magnetic field from Earth's core can be described in relatively fewer parameters and is suitable for offline computation, the magnetic sources from Earth's crust, ionosphere and magnetosphere require either significant computational resources or real-time capabilities and are not suitable for offline calculation. This is especially important for small navigational devices or embedded systems, where computational resources are limited. Recognizing the need for a fast and reliable access to our geomagnetic field models, we developed cloud-based application program interfaces (APIs) for NOAA's ionospheric and magnetospheric magnetic field models. In this paper we will describe the need for reliable magnetic calculators, the challenges faced in running geomagnetic field models in the cloud in real-time and the feedback from our user community. We discuss lessons learned harvesting and validating the data which powers our cloud services, as well as our strategies for maintaining near real-time service, including load-balancing, real-time monitoring, and instance cloning. We will also briefly talk about the progress we achieved on NOAA's Big Earth Data Initiative (BEDI) funded project to develop API

  5. Day-to-Day Variability of H and Z Components of the Geomagnetic Field at the African Longitudes

    OpenAIRE

    Obiekezie, T. N.; Obiadazie, S. C.; Agbo, G. A.

    2013-01-01

    The Day-to-day variability of the geomagnetic field elements at the African longitudes has been studied for the year 1987 using geomagnetic data obtained from four different African observatories. The analysis was carried out on solar quiet days using hourly values of the Horizontal, , and vertical, , geomagnetic field values. The results of this study confirm that Sq is a very changeable phenomenon, with a strong day-to-day variation. This day-to-day variation is seen to be superimposed on m...

  6. Evaluation of candidate geomagnetic field models for IGRF-11

    DEFF Research Database (Denmark)

    Finlay, Chris; Maus, S.; Beggan, C. D.

    2010-01-01

    variations between candidates originate. A retrospective analysis of IGRF-10 main field candidates for epoch 2005.0 and predictive secular variation candidates for 2005.0–2010.0 using the new IGRF-11 models as a reference is also reported. The high quality and consistency of main field models derived using...

  7. Pioneer 7 observations of plasma flow and field reversal regions in the distant geomagnetic tail

    International Nuclear Information System (INIS)

    Walker, R.C.; Villante, U.; Lazarus, A.J.

    1975-01-01

    We present the results of an extensive analysis of plasma and magnetic field data from Pioneer 7 taken in the geomagnetic tail approximately 1000 R/sub E/ downstream from earth. The principal observations are (1) measurable fluxes of protons in the tail, flowing away from earth, sometimes with a double-peaked velocity distribution; (2) field reversal regions in which the field changes from radial to antiradial by a vector rotation in the north-south plane; and (3) general characteristics of the tail similar to those observed near earth with good correlation between taillike magnetic fields and plasma

  8. The International Geomagnetic Reference Field (IGRF) generation 12: BGS candidates and final models

    OpenAIRE

    Beggan, Ciaran D.; Hamilton, Brian; Taylor, Victoria; Macmillan, Susan; Thomson, Alan

    2015-01-01

    The International Geomagnetic Reference Field (IGRF) model is a reference main field magnetic model updated on a quinquennial basis. The latest revision (generation 12) was released in January 2015. The IGRF-12 consists of a definitive model (DGRF2010) of the main field for 2010.0, a model for the field at 2015.0 (IGRF2015) and a prediction of secular variation (IGRF-12 SV) for the forthcoming five years until 2020.0. The remaining coefficients of IGRF-12 are unchanged from IGRF-11. Nin...

  9. Pioneer 7 observations of plasma flow and field reversal regions in the distant geomagnetic tail

    Science.gov (United States)

    Walker, R. C.; Lazarus, A. J.; Villante, U.

    1975-01-01

    The present paper gives the results of an extensive analysis of plasma and magnetic-field data from Pioneer 7 taken in the geomagnetic tail approximately 1000 earth radii downstream from earth. The principal observations are: (1) measurable fluxes of protons in the tail, flowing away from earth, sometimes with a double-peaked velocity distribution; (2) field reversal regions in which the field changes from radial to antiradial by a vector rotation in the north-south plane; and (3) general characteristics of the tail similar to those observed near earth with good correlation between taillike magnetic fields and plasma.

  10. Seasonal variations of the high-latitude geomagnetic field intensity in the northern hemisphere

    International Nuclear Information System (INIS)

    Rivin, Yu.R.; Chkhaidze, Z.Sh.

    1994-01-01

    Seasonal variation of the geomagnetic field three components is investigated using the data of the USA observatories chain separately for polar region, auroral zone and middle latitudes beginning from 1950. The variation consists of an annual and half-yearly waves. main attention is paid to time variability of the annual wave phase in the auroral zone, that is connected with superposition of waves of western and eastern jets

  11. Role of the Hermanus Magnetic Observatory in geomagnetic-field research

    CSIR Research Space (South Africa)

    Sutcliffe, PR

    1995-08-01

    Full Text Available supplemented by induction magnetometer data from the low latitude Hermanus Magnetic Obser- vatory and fluxgate magnetometer data from the EISCAT Magnetometer Cross (Liihr et al., 1984) which is located below the STARE field... the removal of the Sq variation when processing satel~te magnetometer data over Southern Africa and be usefully incorporated into a navigation system based on magnetometer technology. 2.1 GEOMAGNETIC Pi 2 PULSATIONS Pi 2...

  12. Strong geomagnetic activity forecast by neural networks under dominant southern orientation of the interplanetary magnetic field

    Czech Academy of Sciences Publication Activity Database

    Valach, F.; Bochníček, Josef; Hejda, Pavel; Revallo, M.

    2014-01-01

    Roč. 53, č. 4 (2014), s. 589-598 ISSN 0273-1177 R&D Projects: GA AV ČR(CZ) IAA300120608; GA MŠk OC09070 Institutional support: RVO:67985530 Keywords : geomagnetic activity * interplanetary magnetic field * artificial neural network * ejection of coronal mass * X-ray flares Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 1.358, year: 2014

  13. Regional estimation of geomagnetically induced currents based on the local magnetic or electric field

    Directory of Open Access Journals (Sweden)

    Viljanen Ari

    2015-01-01

    Full Text Available Previous studies have demonstrated a close relationship between the time derivative of the horizontal geomagnetic field vector (dH/dt and geomagnetically induced currents (GIC at a nearby location in a power grid. Similarly, a high correlation exists between GIC and the local horizontal geoelectric field (E, typically modelled from a measured magnetic field. Considering GIC forecasting, it is not feasible to assume that detailed prediction of time series will be possible. Instead, other measures summarising the activity level over a given period are preferable. In this paper, we consider the 30-min maximum of dH/dt or E as a local activity indicator (|dH/dt|30 or |E|30. Concerning GIC, we use the sum of currents through the neutral leads at substations and apply its 30-min maximum as a regional activity measure (GIC30. We show that |dH/dt|30 at a single point yields a proxy for GIC activity in a larger region. A practical consequence is that if |dH/dt|30 can be predicted at some point then it is also possible to assess the expected GIC level in the surrounding area. As is also demonstrated, |E|30 and GIC30 depend linearly on |dH/dt|30, so there is no saturation with increasing geomagnetic activity contrary to often used activity indices.

  14. Coronal mass ejection and stream interaction region characteristics and their potential geomagnetic effectiveness

    International Nuclear Information System (INIS)

    Lindsay, G.M.; Russell, C.T.; Luhmann, J.G.

    1995-01-01

    Previous studies have indicated that the largest geomagnetic storms are caused by extraordinary increases in the solar wind velocity and/or southward interplanetary magnetic field (IMF) produced by coronal mass ejections (CMEs) and their associated interplanetary shocks. However, much more frequent small to moderate increases in solar wind velocity and compressions in the IMF can be caused by either coronal mass ejections or fast/slow stream interactions. This study examines the relative statistics of the magnitudes of disturbances associated with the passage of both interplanetary coronal mass ejections and stream interaction regions, using an exceptionally continuous interplanetary database from the Pioneer Venus Orbiter at 0.7 AU throughout most of solar cycle 21. It is found that both stream interaction and CMEs produce magnetic fields significantly larger than the nominal IMF. Increases in field magnitude that are up to 2 and 3 times higher than the ambient field are observed for stream interaction regions and CMEs, respectively. Both stream interactions and CMEs produce large positive and negative Β z components at 0.7 AU, but only CMEs produce Β z magnitudes greater than 35 nT. CMEs are often associated with sustained periods of positive or negative Β z whereas stream interaction regions are more often associated with fluctuating Β z . CMEs tend to produce larger solar wind electric fields than stream interactions. Yet stream interactions tend to produce larger dynamic pressures than CMEs. Dst predictions based on solar wind duskward electric field and dynamic pressure indicate that CMEs produce the largest geomagnetic disturbances while the low-speed portion of stream interaction regions are least geomagnetically effective. Both stream interaction regions and CMEs contribute to low and moderate levels of activity with relative importance determined by their solar-cycle-dependent occurrence rates

  15. Simulation of geomagnetic field variations during an intensive magnetic storm

    International Nuclear Information System (INIS)

    Fel'dshtejn, Ya.I.; Dremukhin, L.A.; Veshcherova, U.B.

    1993-01-01

    The intensity of asymmetric part of magnetic field of ring current is closely linked with energy flow entering the magnetosphere from solar wind. Quantitative description assumes usage of data on parameters of solar wind before few hours

  16. Signatures of storm sudden commencements in geomagnetic H, Y and Z fields at Indian observatories during 1958−1992

    Directory of Open Access Journals (Sweden)

    R. G. Rastogi

    1999-11-01

    Full Text Available The work describes an intensive study of storm sudden commencement (SSC impulses in horizontal (H, eastward (Y and vertical (Z fields at four Indian geomagnetic observatories between 1958–1992. The midday maximum of ΔH has been shown to exist even at the low-latitude station Alibag which is outside the equatorial electrojet belt, suggesting that SSC is associated with an eastward electric field at equatorial and low latitudes. The impulses in Y field are shown to be linearly and inversely related to ΔH at Annamalainagar and Alibag. The average SC disturbance vector is shown to be about 10–20°W of the geomagnetic meridian. The local time variation of the angle is more westerly during dusk hours in summer and around dawn in the winter months. This clearly suggests an effect of the orientation of shock front plane of the solar plasma with respect to the geomagnetic meridian. The ΔZ at SSC have a positive impulse as in ΔH. The ratio of ΔZ/ΔH are abnormally large exceeding 1.0 in most of the cases at Trivandrum. The latitudinal variation of ΔZ shows a tendency towards a minimum over the equator during the nighttime hours. These effects are explained as (1 resulting from the electromagnetic induction effects due to the equatorial electrojet current in the subsurface conducting layers between India and Sri Lanka, due to channelling of ocean currents through the Palk Strait and (2 due to the concentration of induced currents over extended latitude zones towards the conducting graben between India and Sri Lanka just south of Trivandrum.Key words. Interplanetary physics (interplanetary shocks · Ionosphere (equatorial ionosphere · Magnetospheric physics (storms and substorms

  17. Effect of the August 11, 1999 total solar eclipse on geomagnetic pulsations

    Czech Academy of Sciences Publication Activity Database

    Pal, B.; Heilig, B.; Zieger, B.; Szendröi, J.; Verö, J.; Lühr, H.; Yumoto, K.; Tanaka, Y.; Střeštík, Jaroslav

    2007-01-01

    Roč. 42, č. 1 (2007), s. 23-58 ISSN 1217-8977 Institutional research plan: CEZ:AV0Z30120515 Keywords : field line resonance * geomagnetic pulsations * solar eclipse Subject RIV: DE - Earth Magnetism, Geodesy, Geography

  18. Can a nightside geomagnetic Delta H observed at the equator manifest a penetration electric field?

    Science.gov (United States)

    Wei, Y.; Fraenz, M.; Dubinin, E.; He, M.; Ren, Z.; Zhao, B.; Liu, J.; Wan, W.; Yumoto, K.; Watari, S.; Alex, S.

    2013-06-01

    A prompt penetration electric field (PPEF) usually manifests itself in the form of an equatorial ionospheric electric field being in correlation with a solar wind electric field. Due to the strong Cowling conductivity, a PPEF on the dayside can be inferred from Delta H (ΔH), which is the difference in the magnitudes of the horizontal (H) component between a magnetometer at the magnetic equator and one off the equator. This paper aims to investigate the performance of ΔH in response to a PPEF on the nightside, where the Cowling conductivity is not significant. We first examine the strongest geomagnetically active time during the 20 November 2003 superstorm when the Dst drops to -473 nT and show that the nightside ΔH can indeed manifest a PPEF but with local time dependence and longitude dependence. We then examine a moderately active time by taking advantage of the multiple-penetration event during 11-16 November 2003 when the Dst remains greater than -60 nT. During this event, a series of PPEF pulses recorded in Peru, Japan, and India form a database, allowing us to examine PPEF effects at different local times and longitudes. The results show that (1) the nightside ΔH was caused by attenuation of the effects of the polar electric field with decreasing latitude; (2) the nightside ΔH can manifest a PPEF at least in the midnight-dawn sector (0000-0500 LT), but not always; and (3) the magnitude of the nightside ΔH in the midnight-dawn sector in Peru is on average only 1/18 of that of the dayside ΔH in response to a given PPEF.

  19. 40Ar/39Ar Dating of the Brunhes-Matuyama Geomagnetic Field Reversal.

    Science.gov (United States)

    Baksi, A K; Hsu, V; McWilliams, M O; Farrar, E

    1992-04-17

    Magnetostratigraphic studies are widely used in conjunction with the geomagnetic polarity time scale (GPTS) to date events in the range 0 to 5 million years ago. A critical tie point on the GPTS is the potassium-argon age of the most recent (Brunhes-Matuyama) geomagnetic field reversal. Astronomical values for the forcing frequencies observed in the oxygen isotope record in Ocean Drilling Project site 677 suggest that the age of this last reversal is 780 ka (thousand years ago), whereas the potassium-argon-based estimate is 730 ka. Results from 4039; Ar incremental heating studies on a series of lavas from Maui that straddle the Brunhes-Matuyama reversal give an age of 783 + 11 ka, in agreement with the astronomically derived value. The astronomically based technique appears to be a viable tool for dating young sedimentary sequences.

  20. The signature of the 2011 Tohoku mega earthquake on the geomagnetic field measurements in Japan

    Directory of Open Access Journals (Sweden)

    E.M. Takla

    2013-12-01

    Full Text Available On 11 March 2011 at 05:46:23 UTC, a mega earthquake (EQ with magnitude (Mw 9.0 [The 2011 Tohoku Earthquake] occurred at a depth of about 24 km near the East coast of Honshu Island, Japan as a result of a thrust faulting on or near the subduction plate boundary between the Pacific and North American plates. Geomagnetic data from MAGDAS and Geospatial Information Authority of Japan (GSI networks have been analyzed to examine the signature of the 2011 Tohoku earthquake on the geomagnetic field measurements in Japan. Results of data analysis indicate about 5 nT increase in the total geomagnetic field intensity in the vicinity of the epicenter of 2011Tohoku EQ compared with other reference stations. Moreover, the annual range of the Z-component daily variations tends to decrease near the epicenter before the occurrence of the Tohoku EQ. Concerning the ULF emissions; the Pc 3 amplitude ratio (ZPc3/HPc3 near the epicenter at the Onagawa [ONW] station showed a good correlation with other remote reference stations before the Tohoku EQ but it started to decrease with no correlation to other stations a few weeks before the 2011 Tohoku EQ. On the other hand, the Pc 3 amplitude ratio at ONW station showed a clear anti-correlation compared with reference stations after the 2011 Tohoku EQ.

  1. The correlation between geomagnetic field reversals, Hawaiian volcanism, and the motion of the Pacific plate

    Directory of Open Access Journals (Sweden)

    W. Dong

    1996-06-01

    Full Text Available The correlation between geomagnetic field reversals and volcanism is investigated, according to the speculated consequence on volcanoes of the transient electric currents in the geodynamo, through Joule's heating, before and after every reversal event. We evaluate the temporal variation during the last ~ 70 Ma both of the magma emplacement rate Q(t from the Hawaii hot spot, and of the speed v(t of the Pacific plate, by means of the observed volumes of islands and seamounts along the Hawaii/Emperor Seamounts chain, and their respective radiometric datings. Results confirm expectations. A justification of the volcanic crises that lead to the generation of the large igneous provinces during the last ~ 250 Ma also emerged. We describe in detail the complex pattern of the timings of the different effects. Joule's power is generally responsible for ~ 75-80% of magmatism, and friction power only for ~ 20-25%; but, on some occasions almost ~ 100% is fuelled by friction alone. The visco-elastic coupling between lithosphere and asthenosphere results ~ 96% viscous, and ~ 4% elastic.

  2. Possible relationship between the Earth’s rotation variations and geomagnetic field reversals over the past 510 Myr

    Directory of Open Access Journals (Sweden)

    Igor Gil Pacca

    2015-04-01

    Full Text Available The Earth’s rotation can change as a result of several internal and external processes, each of which is at a different timescale. Here, we present some possible connections between the Earth’s rotation variations and the geomagnetic reversal frequency rates over the past 120 Myr. In addition, we show the possible relationship between the geomagnetic field reversal frequency and the δ18O oscillations. Because the latter reflects the glacial and interglacial periods, we hypothesize that it can be used as a possible indicator to explain the length of day (LOD variations and consequently the reversal field frequency over the past 510 Myr. Therefore, our analysis suggests that the relationships between the geomagnetic reversal frequency rates and the Earth’s rotation changes during the Phanerozoic. However, more reversal data are required for periods before the KRS to strengthen the perspective of using the geomagnetic reversal data as a marker for the LOD variations through geological times.

  3. ANOMALOUS CHANGES OF THE GEOMAGNETIC FIELD VERTICAL COMPONENT IN KAMCHATKA

    Directory of Open Access Journals (Sweden)

    Y. F. Moroz

    2016-11-01

    Full Text Available Secular changes of the lithospheric electric conductivity were analyzed based on the monitoring data of the Earth’s electric field over the period from 2001 to 2014. Those measures were carried out in Verchniya Paratunka, Tundroviy, and Shipunskiy that are located alongside the coastline of the Avacha Bay of Kamchatka and where the catastrophic earthquake is to be expected according the long-term forecast. It is noticed that the changes in behavior of the secular movements of the lithospheric electric conductivity sannual average values represented with changes at along and transverse directions of the seismic focal zone extension. A great many of such changes were detected on the Shipunskiy peninsula.

  4. New paleomagnetic data from Siberia: Non-uniformitarian geomagnetic field around the Proterozoic-Phanerozoic boundary?

    Science.gov (United States)

    Pavlov, V.; Shatsillo, A.; Kouznetsov, N.; Gazieva, E.

    2017-12-01

    There is a range of evidence, mainly from sedimentary and volcanic rocks of the Laurentia and Baltica cratons, that argue for the anomalous character of the Ediacaran-Early Cambrian paleomagnetic record. This feature could be linked either to some peculiarities of the paleomagnetic record itself or to some unusual geophysical event that would have taken place around the Proterozoic-Phanerozoic boundary (e.g., true polar wander or nonuniformitarian geomagnetic field behavior). In the latter case, the traces of this event should be observed in Ediacaran-Early Cambrian rocks anywhere there is a possibility to observe a primary paleomagnetic signal. In previous work, we reported results that suggested an anomalous paleomagnetic record in Siberian Ediacaran-Lower Cambrian rocks. Here we present new Siberian data that indicate a very high geomagnetic reversal frequency during this period and the coexistence of two very different paleomagnetic directions. We speculate that these features could be due either to a near-equatorial geomagnetic dipole during the polarity transitions or to alternation between axial and near equatorial dipoles not directly linked with polarity reversals.

  5. Different geomagnetic indices as an indicator for geo-effective solar storms and human physiological state

    Science.gov (United States)

    Dimitrova, Svetla

    2008-02-01

    A group of 86 healthy volunteers were examined on each working day during periods of high solar activity. Data about systolic and diastolic blood pressure, pulse pressure, heart rate and subjective psycho-physiological complaints were gathered. MANOVA was employed to check the significance of the influence of three factors on the physiological parameters. The factors were as follows: (1) geomagnetic activity estimated by daily amplitude of H-component of the local geomagnetic field, Ap- and Dst-index; (2) gender; and (3) the presence of medication. Average values of systolic, diastolic blood pressure, pulse pressure and subjective complaints of the group were found to increase significantly with geomagnetic activity increment.

  6. CHAOS-2-a geomagnetic field model derived from one decade of continuous satellite data

    DEFF Research Database (Denmark)

    Olsen, Nils; Mandea, M.; Sabaka, T.J.

    2009-01-01

    We have derived a model of the near-Earth's magnetic field using more than 10 yr of high-precision geomagnetic measurements from the three satellites Orsted, CHAMP and SAC-C. This model is an update of the two previous models, CHAOS (Olsen et al. 2006) and xCHAOS (Olsen & Mandea 2008). Data...... by minimizing the second time derivative of the squared magnetic field intensity at the core-mantle boundary. The CHAOS-2 model describes rapid time changes, as monitored by the ground magnetic observatories, much better than its predecessors....

  7. A method to solve the aircraft magnetic field model basing on geomagnetic environment simulation

    International Nuclear Information System (INIS)

    Lin, Chunsheng; Zhou, Jian-jun; Yang, Zhen-yu

    2015-01-01

    In aeromagnetic survey, it is difficult to solve the aircraft magnetic field model by flying for some unman controlled or disposable aircrafts. So a model solving method on the ground is proposed. The method simulates the geomagnetic environment where the aircraft is flying and creates the background magnetic field samples which is the same as the magnetic field arose by aircraft’s maneuvering. Then the aircraft magnetic field model can be solved by collecting the magnetic field samples. The method to simulate the magnetic environment and the method to control the errors are presented as well. Finally, an experiment is done for verification. The result shows that the model solving precision and stability by the method is well. The calculated model parameters by the method in one district can be used in worldwide districts as well. - Highlights: • A method to solve the aircraft magnetic field model on the ground is proposed. • The method solves the model by simulating dynamic geomagnetic environment as in the real flying. • The way to control the error of the method was analyzed. • An experiment is done for verification

  8. Large short-term deviations from dipolar field during the Levantine Iron Age Geomagnetic Anomaly ca. 1050-700 BCE

    Science.gov (United States)

    Shaar, R.; Tauxe, L.; Ebert, Y.

    2017-12-01

    Continuous decadal-resolution paleomagnetic data from archaeological and sedimentary sources in the Levant revealed the existence a local high-field anomaly, which spanned the first 350 years of the first millennium BCE. This so-called "the Levantine Iron Age geomagnetic Anomaly" (LIAA) was characterized by a high averaged geomagnetic field (virtual axial dipole moments, VADM > 140 Z Am2, nearly twice of today's field), short decadal-scale geomagnetic spikes (VADM of 160-185 Z Am2), fast directional and intensity variations, and substantial deviation (20°-25°) from dipole field direction. Similar high field values in the time frame of LIAA have been observed north, and northeast to the Levant: Eastern Anatolia, Turkmenistan, and Georgia. West of the Levant, in the Balkans, field values in the same time are moderate to low. The overall data suggest that the LIAA is a manifestation of a local positive geomagnetic field anomaly similar in magnitude and scale to the presently active negative South Atlantic Anomaly. In this presentation we review the overall archaeomagnetic and sedimentary evidences supporting the local anomaly hypothesis, and compare these observations with today's IGRF field. We analyze the global data during the first two millennia BCE, which suggest some unexpected large deviations from a simple dipolar geomagnetic structure.

  9. Geomagnetic storm effects on the occurrences of ionospheric irregularities over the African equatorial/low-latitude region

    Science.gov (United States)

    Amaechi, P. O.; Oyeyemi, E. O.; Akala, A. O.

    2018-04-01

    The study investigated the effects of intense geomagnetic storms of 2015 on the occurrences of large scale ionospheric irregularities over the African equatorial/low-latitude region. Four major/intense geomagnetic storms of 2015 were analyzed for this study. These storms occurred on 17th March 2015 (-229 nT), 22nd June 2015 (-204 nT), 7th October 2015 (-124 nT), and 20th December 2015 (-170 nT). Total Electron Content (TEC) data obtained from five African Global Navigation Satellite Systems (GNSS) stations, grouped into eastern and western sectors were used to derive the ionospheric irregularities proxy indices, e.g., rate of change of TEC (ROT), ROT index (ROTI) and ROTI daily average (ROTIAVE). These indices were characterized alongside with the disturbance storm time (Dst), the Y component of the Interplanetary Electric Field (IEFy), polar cap (PC) index and the H component of the Earth's magnetic field from ground-based magnetometers. Irregularities manifested in the form of fluctuations in TEC. Prompt penetration of electric field (PPEF) and disturbance dynamo electric field (DDEF) modulated the behaviour of irregularities during the main and recovery phases of the geomagnetic storms. The effect of electric field over both sectors depends on the local time of southward turning of IMF Bz. Consequently, westward electric field inhibited irregularities during the main phase of March and October 2015 geomagnetic storms, while for the June 2015 storm, eastward electric field triggered weak irregularities over the eastern sector. The effect of electric field on irregularities during December 2015 storm was insignificant. During the recovery phase of the storms, westward DDEF suppressed irregularities.

  10. Palaeomagnetic dating method accounting for post-depositional remanence and its application to geomagnetic field modelling

    Science.gov (United States)

    Nilsson, A.; Suttie, N.

    2016-12-01

    Sedimentary palaeomagnetic data may exhibit some degree of smoothing of the recorded field due to the gradual processes by which the magnetic signal is `locked-in' over time. Here we present a new Bayesian method to construct age-depth models based on palaeomagnetic data, taking into account and correcting for potential lock-in delay. The age-depth model is built on the widely used "Bacon" dating software by Blaauw and Christen (2011, Bayesian Analysis 6, 457-474) and is designed to combine both radiocarbon and palaeomagnetic measurements. To our knowledge, this is the first palaeomagnetic dating method that addresses the potential problems related post-depositional remanent magnetisation acquisition in age-depth modelling. Age-depth models, including site specific lock-in depth and lock-in filter function, produced with this method are shown to be consistent with independent results based on radiocarbon wiggle match dated sediment sections. Besides its primary use as a dating tool, our new method can also be used specifically to identify the most likely lock-in parameters for a specific record. We explore the potential to use these results to construct high-resolution geomagnetic field models based on sedimentary palaeomagnetic data, adjusting for smoothing induced by post-depositional remanent magnetisation acquisition. Potentially, this technique could enable reconstructions of Holocene geomagnetic field with the same amplitude of variability observed in archaeomagnetic field models for the past three millennia.

  11. Magnetic Field Perturbations from Currents in the Dark Polar Regions During Quiet Geomagnetic Conditions

    DEFF Research Database (Denmark)

    Friis-Christensen, Eigil; Finlay, Chris; Hesse, M.

    2017-01-01

    In the day-side sunlit polar ionosphere the varying and IMF dependent convection creates strong ionospheric currents even during quiet geomagnetic conditions. Observations during such times are often excluded when using satellite data to model the internal geomagneticmain field. Observations from...... the night-side or local winter during quiet conditions are, however, also influenced by variations in the IMF. In this paper we briefly review the large scale features of the ionospheric currents in the polar regions with emphasis on the current distribution during undisturbed conditions. We examine...

  12. Study of the solar wind coupling to the time difference horizontal geomagnetic field

    Directory of Open Access Journals (Sweden)

    P. Wintoft

    2005-07-01

    Full Text Available The local ground geomagnetic field fluctuations (Δ B are dominated by high frequencies and 83% of the power is located at periods of 32 min or less. By forming 10-min root-mean-square (RMS of Δ B a major part of this variation is captured. Using measured geomagnetic induced currents (GIC, from a power grid transformer in Southern Sweden, it is shown that the 10-min standard deviation GIC may be computed from a linear model using the RMS Δ X and Δ Y at Brorfelde (BFE: 11.67° E, 55.63° N, Denmark, and Uppsala (UPS: 17.35° E, 59.90° N, Sweden, with a correlation of 0.926±0.015. From recurrent neural network models, that are driven by solar wind data, it is shown that the log RMS Δ X and Δ Y at the two locations may be predicted up to 30 min in advance with a correlation close to 0.8: 0.78±0.02 for both directions at BFE; 0.81±0.02 and 0.80±0.02 in the X- and Y-directions, respectively, at UPS. The most important inputs to the models are the 10-min averages of the solar wind magnetic field component Bz and velocity V, and the 10-min standard deviation of the proton number density σn. The average proton number density n has no influence.

    Keywords. Magnetospheric physics (Solar wind - magnetosphere interactions – Geomagnetism and paleomagnetism (Rapid time variations

  13. Sources of the Geomagnetic Field and the Modern Data That Enable Their Investigation

    DEFF Research Database (Denmark)

    Olsen, Nils; Hulot, Gauthier; Sabaka, Terence J.

    2014-01-01

    has a large and complicated magnetic field, a major part of which is produced by a self-sustaining dynamo operating in the fluid outer core. What is measured at or near the surface of the Earth, however, is the superposition of the core field and of additional fields caused by magnetized rocks......The geomagnetic field one can measure at the Earth’s surface or on board satellites is the sum of contributions from many different sources. These sources have different physical origins and can be found both below (in the form of electrical currents and magnetized material) and above (only...... in the form of electrical currents) the Earth’s surface. Each source happens to produce a contribution with rather specific spatio-temporal properties. This fortunate situation is what makes the identification and investigation of the contribution of each source possible, provided appropriate observational...

  14. Geomagnetic storms

    International Nuclear Information System (INIS)

    McNamara, A.G.

    1980-01-01

    Disturbances due to geomagnetic storms can affect the functioning of communications satellites and of power lines and other long conductors. Two general classes of geomagnetic activity can be distinguished: ionospheric current flow (the auroral electrojet), and magnetospheric compression. Super magnetic storms, such as the one of August 1972, can occur at any time and average about 17 occurrences per century. Electrical transmission systems can be made more tolerant of such events at a price, but the most effective way to minimize damage is by better operator training coupled with effective early warning systems. (LL)

  15. Combining virtual observatory and equivalent source dipole approaches to describe the geomagnetic field with Swarm measurements

    Science.gov (United States)

    Saturnino, Diana; Langlais, Benoit; Amit, Hagay; Civet, François; Mandea, Mioara; Beucler, Éric

    2018-03-01

    A detailed description of the main geomagnetic field and of its temporal variations (i.e., the secular variation or SV) is crucial to understanding the geodynamo. Although the SV is known with high accuracy at ground magnetic observatory locations, the globally uneven distribution of the observatories hampers the determination of a detailed global pattern of the SV. Over the past two decades, satellites have provided global surveys of the geomagnetic field which have been used to derive global spherical harmonic (SH) models through some strict data selection schemes to minimise external field contributions. However, discrepancies remain between ground measurements and field predictions by these models; indeed the global models do not reproduce small spatial scales of the field temporal variations. To overcome this problem we propose to directly extract time series of the field and its temporal variation from satellite measurements as it is done at observatory locations. We follow a Virtual Observatory (VO) approach and define a global mesh of VOs at satellite altitude. For each VO and each given time interval we apply an Equivalent Source Dipole (ESD) technique to reduce all measurements to a unique location. Synthetic data are first used to validate the new VO-ESD approach. Then, we apply our scheme to data from the first two years of the Swarm mission. For the first time, a 2.5° resolution global mesh of VO time series is built. The VO-ESD derived time series are locally compared to ground observations as well as to satellite-based model predictions. Our approach is able to describe detailed temporal variations of the field at local scales. The VO-ESD time series are then used to derive global spherical harmonic models. For a simple SH parametrization the model describes well the secular trend of the magnetic field both at satellite altitude and at the surface. As more data will be made available, longer VO-ESD time series can be derived and consequently used to

  16. Multiscale empirical modeling of the geomagnetic field: From storms to substorms

    Science.gov (United States)

    Stephens, G. K.; Sitnov, M. I.; Korth, H.; Gkioulidou, M.; Ukhorskiy, A. Y.; Merkin, V. G.

    2017-12-01

    An advanced version of the TS07D empirical geomagnetic field model, herein called SST17, is used to model the global picture of the geomagnetic field and its characteristic variations on both storm and substorm scales. The new SST17 model uses two regular expansions describing the equatorial currents with each having distinctly different scales, one corresponding to a thick and one to a thin current sheet relative to the thermal ion gyroradius. These expansions have an arbitrary distribution of currents in the equatorial plane that is constrained only by magnetometer data. This multi-scale description allows one to reproduce the current sheet thinning during the growth phase. Additionaly, the model uses a flexible description of field-aligned currents that reproduces their spiral structure at low altitudes and provides a continuous transition from region 1 to region 2 current systems. The empirical picture of substorms is obtained by combining magnetometer data from Geotail, THEMIS, Van Allen Probes, Cluster II, Polar, IMP-8, GOES 8, 9, 10 and 12 and then binning this data based on similar values of the auroral index AL, its time derivative and the integral of the solar wind electric field parameter (from ACE, Wind, and IMP-8) in time over substorm scales. The performance of the model is demonstrated for several events, including the 3 July 2012 substorm, which had multi-probe coverage and a series of substorms during the March 2008 storm. It is shown that the AL binning helps reproduce dipolarization signatures in the northward magnetic field Bz, while the solar wind electric field integral allows one to capture the current sheet thinning during the growth phase. The model allows one to trace the substorm dipolarization from the tail to the inner magnetosphere where the dipolarization of strongly stretched tail field lines causes a redistribution of the tail current resulting in an enhancement of the partial ring current in the premidnight sector.

  17. A study of the geomagnetic indices asymmetry based on the interplanetary magnetic field polarities

    Science.gov (United States)

    El-Borie, M. A.; El-Taher, A. M.; Aly, N. E.; Bishara, A. A.

    2018-05-01

    Data of geomagnetic indices ( aa, Kp, Ap, and Dst) recorded near 1 AU over the period 1967-2016, have been studied based on the asymmetry between the interplanetary magnetic field (IMF) directions above and below of the heliospheric current sheet (HCS). Our results led to the following conclusions: (i) Throughout the considered period, 31 random years (62%) showed apparent asymmetries between Toward (T) and Away (A) polarity days and 19 years (38%) exhibited nearly a symmetrical behavior. The days of A polarity predominated over the T polarity days by 4.3% during the positive magnetic polarity epoch (1991-1999). While the days of T polarity exceeded the days of A polarity by 5.8% during the negative magnetic polarity epoch (2001-2012). (ii) Considerable yearly North-South (N-S) asymmetries of geomagnetic indices observed throughout the considered period. (iii) The largest toward dominant peaks for aa and Ap indices occurred in 1995 near to minimum of solar activity. Moreover, the most substantial away dominant peaks for aa and Ap indices occurred in 2003 (during the descending phase of the solar cycle 23) and in 1991 (near the maximum of solar activity cycle) respectively. (iv) The N-S asymmetry of Kp index indicated a most significant away dominant peak occurred in 2003. (v) Four of the away dominant peaks of Dst index occurred at the maxima of solar activity in the years 1980, 1990, 2000, and 2013. The largest toward dominant peak occurred in 1991 (at the reversal of IMF polarity). (vi) The geomagnetic indices ( aa, Ap, and Kp) all have northern dominance during positive magnetic polarity epoch (1971-1979), while the asymmetries shifts to the southern solar hemisphere during negative magnetic polarity epoch (2001-2012).

  18. POGO satellite orbit corrections: an opportunity to improve the quality of the geomagnetic field measurements?

    DEFF Research Database (Denmark)

    Stockmann, Reto; Christiansen, Freddy; Olsen, Nils

    2015-01-01

    We present an attempt to improve the quality of the geomagnetic field measurements from the Polar Orbiting Geophysical Observatory (POGO) satellite missions in the late 1960s. Inaccurate satellite positions are believed to be a major source of errors for using the magnetic observations for field...... modelling. To improve the data, we use aniterative approach consisting of two main parts: one is a main field modelling process to obtain the radial fieldgradient to perturb the orbits and the other is the state-of-the-art GPS orbit modelling software BERNESE to calculatenew physical orbits. We report....... With this approach, weeliminate the orbit discontinuities at midnight but only tiny quality improvements could be achieved forgeomagnetically quiet data. We believe that improvements to the data are probably still possible, but it would require the original tracking observations to be found....

  19. How does the predicted geomagnetic main field variation alter the thermosphere-ionosphere storm-time response?

    Science.gov (United States)

    Maute, A. I.; Lu, G.; Richmond, A. D.

    2017-12-01

    Earth's magnetic main field plays an important role in the thermosphere-ionosphere (TI) system, as well as its coupling to Earth's magnetosphere. The ionosphere consists of a weakly ionized plasma strongly influenced by the main field and embedded in the thermosphere. Therefore, ion-neutral coupling and ionospheric electrodynamics can influence the plasma distribution and neutral dynamics. There are strong longitude variations of the TI storm response. At high latitude magnetosphere-ionosphere coupling is organized by the geomagnetic main field, leading in general to stronger northern middle latitude storm time response in the American sector due to the geomagnetic dipole location. In addition, the weak geomagnetic main field in the American sector leads to larger local ExB drift and can alter the plasma densities. During geomagnetic storms the intense energy input into the high latitude region is redistributed globally, leading to thermospheric heating, wind circulation changes and alterations of the ionospheric electrodynamics. The storm time changes are measurable in the plasma density, ion drift, temperature, neutral composition, and other parameters. All these changes depend, to some degree, on the geomagnetic main field which changes on decadal time scales. In this study, we employ a forecast model of the geomagnetic main field based on data assimilation and geodynamo modeling [Aubert et al., 2015]. The main field model predicts that in 50 years the South Atlantic Anomaly is further weakened by 2 mT and drifts westward by approximately 10o. The dipole axis moves northward and westward by 2o and 6o, respectively. Simulating the March 2015 geomagnetic storm with the Thermosphere-Ionosphere Electrodynamics General Circulation Model (TIE-GCM) driven by the Assimilative Mapping of Ionospheric Electrodynamics (AMIE), we evaluate the thermosphere-ionosphere response using the geomagnetic main field of 2015, 2065, and 2115. We compare the TI response for 2015 with

  20. Editorial: Topical Volume on Earth's Magnetic Field - Understanding Geomagnetic Sources from the Earth's Interior and its Environment

    DEFF Research Database (Denmark)

    Stolle, Claudia; Olsen, Nils; Richmond, Arthur D.

    2017-01-01

    (seconds to days) magnetic field variations that are caused by currents in the ionosphere and magnetosphere when solar activity, and correspondingly the electric currents in Earth’s environment, are enhanced. However, for studying the internal sources of the geomagnetic field, originating in the core...

  1. Multi-method palaeointensity data of the geomagnetic field during the past 500 kyrs from European volcanoes

    NARCIS (Netherlands)

    Monster, M.W.L.

    2016-01-01

    The Earth’s magnetic field is generated in the liquid outer core of our planet and acts as a shield against harmful radiation from space. Without it, life on Earth would not be possible. However, the geomagnetic field is not stable: its poles continually move around and sometimes even swap positions

  2. Further studies on the problems of geomagnetic field intensity determination from archaeological baked clay materials

    Science.gov (United States)

    Kostadinova-Avramova, M.; Kovacheva, M.

    2015-10-01

    Archaeological baked clay remains provide valuable information about the geomagnetic field in historical past, but determination of the geomagnetic field characteristics, especially intensity, is often a difficult task. This study was undertaken to elucidate the reasons for unsuccessful intensity determination experiments obtained from two different Bulgarian archaeological sites (Nessebar - Early Byzantine period and Malenovo - Early Iron Age). With this aim, artificial clay samples were formed in the laboratory and investigated. The clay used for the artificial samples preparation differs according to its initial state. Nessebar clay was baked in the antiquity, but Malenovo clay was raw, taken from the clay deposit near the site. The obtained artificial samples were repeatedly heated eight times in known magnetic field to 700 °C. X-ray diffraction analyses and rock-magnetic experiments were performed to obtain information about the mineralogical content and magnetic properties of the initial and laboratory heated clays. Two different protocols were applied for the intensity determination-Coe version of Thellier and Thellier method and multispecimen parallel differential pTRM protocol. Various combinations of laboratory fields and mutual positions of the directions of laboratory field and carried thermoremanence were used in the performed Coe experiment. The obtained results indicate that the failure of this experiment is probably related to unfavourable grain sizes of the prevailing magnetic carriers combined with the chosen experimental conditions. The multispecimen parallel differential pTRM protocol in its original form gives excellent results for the artificial samples, but failed for the real samples (samples coming from previously studied kilns of Nessebar and Malenovo sites). Obviously the strong dependence of this method on the homogeneity of the used subsamples hinders its implementation in its original form for archaeomaterials. The latter are often

  3. Electromagnetic core-mantle coupling associated with changes in the geomagnetic dipole field

    International Nuclear Information System (INIS)

    Watanabe, Hidehumi; Yukutake, Takesi.

    1975-01-01

    On a shelluar earth model electromagnetic coupling between the mantle and the core is investigated when the geomagnetic dipole field changes its intensity. Besides electromagnetic interaction between the dipole change and the relative slip of the mantle to the core, coupling of the dipole change with shear motions within the core is considered. If, in the core, the dipole change is limited within a surface layer shallower than a few hundred kilometers, the electromagnetic interaction gives the same order of magnitudes and phases of mantle oscillation as suggested from observation for three different periods, 8000, 400 and 65 years, provided that the electrical conductivity of the bottom part of the mantle is 10 -9 to 10 -8 emu. It is shown that mean motion of the surface shells of the core thus calculated is compatible with the observed variations in the drift velocity of the geomagnetic secular change. Except for surface shells, those in the deep interior is confirmed to oscillate almost with the same angular velocity, like a rigid rotation, for all the periods. (auth.)

  4. Effects of geomagnetic storms on the bottomside ionospheric F region

    Czech Academy of Sciences Publication Activity Database

    Burešová, Dalia

    2005-01-01

    Roč. 35, - (2005), s. 429-439 ISSN 0273-1177 R&D Projects: GA AV ČR(CZ) IAA3042102 Institutional research plan: CEZ:AV0Z30420517 Keywords : Ionosphere * Geomagnetic storm * Bottomside F region electron density Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 0.706, year: 2005

  5. Simulation of ultra-high energy photon propagation in the geomagnetic field

    Science.gov (United States)

    Homola, P.; Góra, D.; Heck, D.; Klages, H.; PeĶala, J.; Risse, M.; Wilczyńska, B.; Wilczyński, H.

    2005-12-01

    The identification of primary photons or specifying stringent limits on the photon flux is of major importance for understanding the origin of ultra-high energy (UHE) cosmic rays. UHE photons can initiate particle cascades in the geomagnetic field, which leads to significant changes in the subsequent atmospheric shower development. We present a Monte Carlo program allowing detailed studies of conversion and cascading of UHE photons in the geomagnetic field. The program named PRESHOWER can be used both as an independent tool or together with a shower simulation code. With the stand-alone version of the code it is possible to investigate various properties of the particle cascade induced by UHE photons interacting in the Earth's magnetic field before entering the Earth's atmosphere. Combining this program with an extensive air shower simulation code such as CORSIKA offers the possibility of investigating signatures of photon-initiated showers. In particular, features can be studied that help to discern such showers from the ones induced by hadrons. As an illustration, calculations for the conditions of the southern part of the Pierre Auger Observatory are presented. Catalogue identifier:ADWG Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADWG Program obtainable: CPC Program Library, Quen's University of Belfast, N. Ireland Computer on which the program has been thoroughly tested:Intel-Pentium based PC Operating system:Linux, DEC-Unix Programming language used:C, FORTRAN 77 Memory required to execute with typical data:Recipes, http://www.nr.com]. Nature of the physical problem:Simulation of a cascade of particles initiated by UHE photon passing through the geomagnetic field above the Earth's atmosphere. Method of solution: The primary photon is tracked until its conversion into ee pair or until it reaches the upper atmosphere. If conversion occurred each individual particle in the resultant preshower is checked for either bremsstrahlung radiation (electrons) or

  6. Non-Dipole Features of the Geomagnetic Field May Persist for Millions of Years

    Science.gov (United States)

    Biasi, J.; Kirschvink, J. L.

    2017-12-01

    Here we present paleointensity results from within the South Atlantic Anomaly (SAA), which is a large non-dipole feature of the geomagnetic field. Within the area of the SAA, anomalous declinations, inclinations, and intensities are observed. Our results suggest that the SAA has been present for at least 5 Ma. This is orders-of-magnitude greater than any previous estimate, and suggests that some non-dipole features do not `average out' over geologic time, which is a fundamental assumption in all paleodirectional studies. The SAA has been steadily growing in size since the first magnetic measurements were made in the South Atlantic, and it is widely believed to have appeared 400 years ago. Recent studies from South Africa (Tarduno et al. (2015)) and Tristan da Cunha (Shah et al. (2016)) have suggested that the SAA has persisted for 1 ka and 96 ka respectively. We conducted paleointensity (PI) experiments on basaltic lavas from James Ross Island, on the Antarctic Peninsula. This large shield volcano has been erupting regularly over the last 6+ Ma (dated via Ar/Ar geochronology), and therefore contains the most complete volcanostratigraphic record in the south Atlantic. Our PI experiments used the Thellier-Thellier method, the IZZI protocol, and the same selection criteria as the Lawrence et al. (2009) study of Ross Island lavas (near McMurdo Station), which is the only comparable PI study on the Antarctic continent. We determined an average paleointensity at JRI of 13.8±5.2 μT, which is far lower than what we would expect from a dipole field (55 μT). In addition, this is far lower than the current value over James Ross Island of 36 μT. These results support the following conclusions: The time-averaged field model of Juarez et al. (1998) and Tauxe et al. (2013) is strongly favored by our PI data. The SAA has persisted over James Ross Island for at least 5 Ma, and has not drifted significantly over that time. The strength of non-dipole features such as the SAA

  7. Effects of geomagnetic storms in the lower ionosphere, middle atmosphere and troposphere.

    Science.gov (United States)

    Lastovicka, J.

    1996-05-01

    Geomagnetic storm effects at heights of about 0-100 km are briefly (not comprehensively) reviewed, with emphasis being paid to middle latitudes, particularly to Europe. Effects of galactic cosmic rays, solar particle events, relativistic and highly relativistic electrons, and IMF sector boundary crossings are briefly mentioned as well. Geomagnetic storms disturb the lower ionosphere heavily at high latitudes and very significantly also at middle latitudes. The effect is almost simultaneous at high latitudes, while an after-effect dominates at middle latitudes. The lower thermosphere is disturbed significantly. In the mesosphere and stratosphere, the effects become weaker and eventually non-detectable. There is an effect in total ozone but only under special conditions. Surprisingly enough, correlations with geomagnetic storms seem to reappear in the troposphere, particularly in the Northern Hemisphere. Atmospheric electricity is affected by geomagnetic storms, as well. We essentially understand the effects of geomagnetic storms in the lower ionosphere, but there is a lack of mechanisms to explain correlations found deeper in the atmosphere, particularly in the troposphere. There seem to be two different groups of effects with possibly different mechanisms - those observed in the lower ionosphere, lower thermosphere and mesosphere, and those observed in the troposphere.

  8. A Statistical Model of the Fluctuations in the Geomagnetic Field from Paleosecular Variation to Reversal

    Science.gov (United States)

    Camps; Prevot

    1996-08-09

    The statistical characteristics of the local magnetic field of Earth during paleosecular variation, excursions, and reversals are described on the basis of a database that gathers the cleaned mean direction and average remanent intensity of 2741 lava flows that have erupted over the last 20 million years. A model consisting of a normally distributed axial dipole component plus an independent isotropic set of vectors with a Maxwellian distribution that simulates secular variation fits the range of geomagnetic fluctuations, in terms of both direction and intensity. This result suggests that the magnitude of secular variation vectors is independent of the magnitude of Earth's axial dipole moment and that the amplitude of secular variation is unchanged during reversals.

  9. On some problems of the dynamics of protons captured by geomagnetic fields

    International Nuclear Information System (INIS)

    Kudela, K.; Dubinski, Yu.

    1977-01-01

    Problems on the dynamics of protons captured by the geomagnetic field is reviewed using new experimental data obtained from artificial satellites. The problems on radial and pitch-angular diffusion of high-energy protons on different L-shells are considered. A good agreement is shown to exist between experimental data and diffusion analysis results. The experimental researches of the changes in the fluxes of quasi-captured, captured, and spilled protons are interpreted as a result of the scattering of protons on lowfrequency waves in the magnetosphere. Presented are the graphs of measurement of the flux of spilled and quasi-ca.ptured protons on different L-shells according to the data obtained from the ''ESRO-1A'' and ''Intercosmos-5'' satellites. To clarify the dynamics of the interaction of protons with waves, it is acknowledged as necessary to pay attention to enhancing the role played by a complex character of experiments

  10. Identification of the different magnetic field contributions during a geomagnetic storm in magnetospheric and ground observations

    Directory of Open Access Journals (Sweden)

    T. Alberti

    2016-11-01

    Full Text Available We used the empirical mode decomposition (EMD to investigate the time variation of the magnetospheric and ground-based observations of the Earth's magnetic field during both quiet and disturbed periods. We found two timescale variations in magnetospheric data which are associated with different magnetospheric current systems and the characteristic diurnal orbital variation, respectively. On the ground we identified three timescale variations related to the solar-wind–magnetosphere high-frequency interactions, the ionospheric processes, and the internal dynamics of the magnetosphere. This approach is able to identify the different physical processes involved in solar-wind–magnetosphere–ionosphere coupling. In addition, the large-timescale contribution can be used as a local index for the identification of the intensity of a geomagnetic storm on the ground.

  11. Re-Evaluation of Geomagnetic Field Observation Data at Syowa Station, Antarctica

    Directory of Open Access Journals (Sweden)

    K Takahashi

    2013-05-01

    Full Text Available The Japanese Antarctic Research Expedition has conducted geomagnetic observations at Syowa Station, Antarctica, since 1966. Geomagnetic variation data measured with a fluxgate magnetometer are not absolute but are relative to a baseline and show drift. To enhance the importance of the geomagnetic data at Syowa Station, therefore, it is necessary to correct the continuous variation data by using absolute baseline values acquired by a magnetic theodolite and proton magnetometer. However, the database of baseline values contains outliers. We detected outliers in the database and then converted the geomagnetic variation data to absolute values by using the reliable baseline values.

  12. Last three millennia Earth's Magnetic field strength in Mesoamerica and southern United States: Implications in geomagnetism and archaeology

    Science.gov (United States)

    Goguitchaichvili, Avto; Ruiz, Rafael García; Pavón-Carrasco, F. Javier; Contreras, Juan Julio Morales; Arechalde, Ana María Soler; Urrutia-Fucugauchi, Jaime

    2018-06-01

    Earth's Magnetic Field variation strength may provide crucial information to understand the geodynamo mechanism and elucidate the conditions on the physics of the Earth's deep interiors. Aimed to reveal the fine characteristics of the geomagnetic field during the last three millennia in Mesoamerica, we analyzed the available absolute geomagnetic intensities associated to absolute radiometric dating as well some ages provided by historical documents. This analysis is achieved using thermoremanent magnetization carried by volcanic lava flows and burned archaeological artefacts. A total of 106 selected intensities from Mesoamerica and other 100 from the southern part of the United States represent the main core of the dataset to construct the variation curve using both combined bootstrap method and temporal penalized B-spline methods. The obtained intensity paleosecular variation curve for Mesoamerica generally disagrees with the values predicted by the global geomagnetic field models. There is rather firm evidence of eastward drift when compared to similar reference curves in Western Europe, Asia and Pacific Ocean. The recent hypothesis about the relationship between the geomagnetic field strength and paleoclimate is also critically analyzed in the light of this new data compilation.

  13. Wp index: A new substorm index derived from high-resolution geomagnetic field data at low latitude

    DEFF Research Database (Denmark)

    Nose, M.; Iyemori, T.; Wang, L.

    2012-01-01

    Geomagnetic field data with high time resolution (typically 1 s) have recently become more commonly acquired by ground stations. Such high time resolution data enable identifying Pi2 pulsations which have periods of 40-150 s and irregular (damped) waveforms. It is well-known that pulsations of th...

  14. The response of the 11 August 1999 total solar eclipse in the geomagnetic field

    Czech Academy of Sciences Publication Activity Database

    Střeštík, Jaroslav

    85-86, 1/3 (2001), s. 561-566 ISSN 0167-9295 R&D Projects: GA ČR GA205/99/0915 Institutional research plan: CEZ:AV0Z3012916 Keywords : geomagnetic pulsations * geomagnetic variations * total solar eclipse Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 1.457, year: 2001

  15. The PhE4-49B photomultiplier spply providing the protection from the geomagnetic field

    International Nuclear Information System (INIS)

    Georgiev, V.V.; Gladyshev, V.A.

    1980-01-01

    To protect a scintillation detector from the effect of the geomagnetic field it is proposed to use an experimentally selected voltage divider in the FEhU-49B photomultiplier supplying circuit. Employment of such a divider makes it possible to increase the electrostatic field strength in the photomultiplier input chamber which ensures better collection of photoelectrons on the first dynode, to decrease effect of the magnetic field on electron focusing and to increase the first dynode secondary emission coefficient. Selection of photomultiplier supplying conditions is carried out experimentally on a scintillation counter with a plastic scintillator. The potentials of the focusing electrode and the first dynode are adjusted so that the relation between the counting rate at a photomultiplier orientation along the magnetic field lines of force and the counting rate at normal orientation to the lines of force is minimum. Usage of the experimentally selected voltage divider improves the scintillation counter time resolution and decreases the photomultiplier operating supply voltage by 100-150 V. The scintillation counter provided with a proposed divider requires no magnetic shields [ru

  16. The effect of geomagnetic storm on GPS derived total electron content (TEC) at Varanasi, India

    International Nuclear Information System (INIS)

    Kumar, Sanjay; Singh, A K

    2010-01-01

    In this paper we studied the effect of geomagnetic storm on Global Positioning System (GPS) derived total electron content (TEC) at low latitude Varanasi (Geomagnetic lat 14 0 , 55' N, geomagnetic long 154 0 E) during the period of May 2007 to April 2008. During this period 2 storms were found, which were occurred on 20 November 2007 and 9 March 2008. In this study vertical total electron content (VTEC) of single Pseudorandom Noise (PRN) and average of VTEC of same PRN before 10 days of storm, which is called background TEC, were used to see the effect of these storms on the variation of TEC. From this study this is found that during the storm of March 2008 the TEC increases in main phase of storm while in the case of November 2007 storm, TEC decreases during the main phase of storm but increases in the recovery phase (next day) of storm.

  17. An Approach to Model Earth Conductivity Structures with Lateral Changes for Calculating Induced Currents and Geoelectric Fields during Geomagnetic Disturbances

    Directory of Open Access Journals (Sweden)

    Bo Dong

    2015-01-01

    Full Text Available During geomagnetic disturbances, the telluric currents which are driven by the induced electric fields will flow in conductive Earth. An approach to model the Earth conductivity structures with lateral conductivity changes for calculating geoelectric fields is presented in this paper. Numerical results, which are obtained by the Finite Element Method (FEM with a planar grid in two-dimensional modelling and a solid grid in three-dimensional modelling, are compared, and the flow of induced telluric currents in different conductivity regions is demonstrated. Then a three-dimensional conductivity structure is modelled and the induced currents in different depths and the geoelectric field at the Earth’s surface are shown. The geovoltages by integrating the geoelectric field along specific paths can be obtained, which are very important regarding calculations of geomagnetically induced currents (GIC in ground-based technical networks, such as power systems.

  18. Global ionospheric effects of geomagnetic storm on May 2-3, 2010 and their influence on HF radio wave propagation

    Science.gov (United States)

    Kotova, Daria; Klimenko, Maxim; Klimenko, Vladimir; Zakharov, Veniamin

    2013-04-01

    In this work we have investigated the global ionospheric response to geomagnetic storm on May 2-3, 2010 using GSM TIP (Global Self-consistent Model of the Thermosphere, Ionosphere and Protonosphere) simulation results. In the GSM TIP storm time model runs, several input parameters such as cross-polar cap potential difference and R2 FAC (Region 2 Field-Aligned Currents) varied as a function of the geomagnetic activity AE-index. Current simulation also uses the empirical model of high-energy particle precipitation by Zhang and Paxton. In this model, the energy and energy flux of precipitating electrons depend on a 3 hour Kp-index. We also have included the 30 min time delay of R2 FAC variations with respect to the variations of cross-polar cap potential difference. In addition, we use the ground-based ionosonde data for comparison our model results with observations. We present an analysis of the physical mechanisms responsible for the ionospheric effects of geomagnetic storms. The obtained simulation results are used by us as a medium for HF radio wave propagation at different latitudes in quiet conditions, and during main and recovery phase of a geomagnetic storm. To solve the problem of the radio wave propagation we used Zakharov's (I. Kant BFU) model based on geometric optics. In this model the solution of the eikonal equation for each of the two normal modes is reduced using the method of characteristics to the integration of the six ray equation system for the coordinates and momentum. All model equations of this system are solved in spherical geomagnetic coordinate system by the Runge-Kutta method. This model was tested for a plane wave in a parabolic layer. In this study, the complex refractive indices of the ordinary and extraordinary waves at ionospheric heights was calculated for the first time using the global first-principal model of the thermosphere-ionosphere system that describes the parameters of an inhomogeneous anisotropic medium during a

  19. Satellite Geomagnetism

    DEFF Research Database (Denmark)

    Olsen, Nils; Stolle, Claudia

    2012-01-01

    Observations of Earth’s magnetic field from space began more than 50 years ago. A continuous monitoring of the field using low Earth orbit (LEO) satellites, however, started only in 1999, and three satellites have taken highprecision measurements of the geomagnetic field during the past decade....... The unprecedented time-space coverage of their data opened revolutionary new possibilities for monitoring, understanding, and exploring Earth’s magnetic field. In the near future, the three-satellite constellation Swarm will ensure continuity of such measurement and provide enhanced possibilities to improve our...... ability to characterize and understand the many sources that contribute to Earth’s magnetic field. In this review, we summarize investigations of Earth’s interior and environment that have been possible through the analysis of high-precision magnetic field observations taken by LEO satellites....

  20. A simple statistical model for geomagnetic reversals

    Science.gov (United States)

    Constable, Catherine

    1990-01-01

    The diversity of paleomagnetic records of geomagnetic reversals now available indicate that the field configuration during transitions cannot be adequately described by simple zonal or standing field models. A new model described here is based on statistical properties inferred from the present field and is capable of simulating field transitions like those observed. Some insight is obtained into what one can hope to learn from paleomagnetic records. In particular, it is crucial that the effects of smoothing in the remanence acquisition process be separated from true geomagnetic field behavior. This might enable us to determine the time constants associated with the dominant field configuration during a reversal.

  1. ULF fluctuations of the geomagnetic field and ionospheric sounding measurements at low latitudes during the first CAWSES campaign

    Directory of Open Access Journals (Sweden)

    U. Villante

    2006-07-01

    Full Text Available We present an analysis of ULF geomagnetic field fluctuations at low latitudes during the first CAWSES campaign (29 March-3 April 2004. During the whole campaign, mainly in the prenoon sector, a moderate Pc3-4 pulsation activity is observed, clearly related to interplanetary upstream waves. On 3 April, in correspondence to the Earth's arrival of a coronal mass ejection, two SIs are observed whose waveforms are indicative of a contribution of the high-latitude ionospheric currents to the low-latitude ground field. During the following geomagnetic storm, low frequency (Pc5 waves are observed at discrete frequencies. Their correspondence with the same frequencies detected in the radial components of the interplanetary magnetic field and solar wind speed suggests that Alfvénic solar wind fluctuations may act as direct drivers of magnetospheric fluctuations. A cross-phase analysis, using different pairs of stations, is also presented for identifying field line resonant frequencies and monitoring changes in plasmaspheric mass density. Lastly, an analysis of ionospheric vertical soundings, measured at the Rome ionosonde station (41.8° N, 12.5° E, and vertical TEC measurements deduced from GPS signals within an European network shows the relation between the ULF resonances in the inner magnetosphere and thermal plasma density variations during geomagnetically quiet conditions, in contrast to various storm phases at the end of the CAWSES campaign.

  2. Full-vector geomagnetic field records from the East Eifel, Germany

    Science.gov (United States)

    Monster, Marilyn W. L.; Langemeijer, Jaap; Wiarda, Laura R.; Dekkers, Mark J.; Biggin, Andy J.; Hurst, Elliot A.; Groot, Lennart V. de

    2018-01-01

    To create meaningful models of the geomagnetic field, high-quality directional and intensity input data are needed. However, while it is fairly straightforward to obtain directional data, intensity data are much scarcer, especially for periods before the Holocene. Here, we present data from twelve flows (age range ∼ 200 to ∼ 470 ka) in the East Eifel volcanic field (Germany). These sites had been previously studied and are resampled to further test the recently proposed multi-method palaeointensity approach. Samples are first subjected to classic palaeomagnetic and rock magnetic analyses to optimise the subsequent palaeointensity experiments. Four different palaeointensity methods - IZZI-Thellier, the multispecimen method, calibrated pseudo-Thellier, and microwave-Thellier - are being used in the present study. The latter should be considered as supportive because only one or two specimens per site could be processed. Palaeointensities obtained for ten sites pass our selection criteria: two sites are successful with a single approach, four sites with two approaches, three more sites work with three approaches, and one site with all four approaches. Site-averaged intensity values typically range between 30 and 35 μT. No typically low palaeointensity values are found, in line with paleodirectional results which are compatible with regular palaeosecular variation of the Earth's magnetic field. Results from different methods are remarkably consistent and generally agree well with the values previously reported. They appear to be below the average for the Brunhes chron; there are no indications for relatively higher palaeointensities for units younger than 300 ka. However, our young sites could be close in age, and therefore may not represent the average intensity of the paleofield. Three of our sites are even considered coeval; encouragingly, these do yield the same palaeointensity within uncertainty bounds.

  3. Correlations between the geomagnetic field variations, the fluctuations of the earth`s rotation and climate change

    Energy Technology Data Exchange (ETDEWEB)

    Greiner-Mai, H; Jochmann, H

    1995-03-01

    The amplitude spectra of global geophysical phenomena were investigated to motivate research of physical connections between them. The suggested causality was derived from comparison of the spectra, and from cross correlation functions. The following global parameters were discussed: For the earth rotation by the variations of the length of day, for the geomagnetic variation by the global field intensity, changes of the dipole axis and the westward drift, and for climate change by the atmospheric excitation function derived from air pressure variations, and temperature variations. The model of atmospheric excitation, which can be proved most exactly for the annual variations of length of day, is responsible for the 11 and 22 years periods, too. It failed for longer periods, e.g. partially for the 30 years periods and completely for the 60 to 80 years periods, which were also discovered in the mean temperature and geomagnetic field variations. Therefore, it was suggested that longer periods in climate change and in the variations of the earth`s rotation are caused independently by the same process in the earth core, provided that a physical influence of the geomagnetic field on climate will be accepted in future. The investigation was completed by comparison with the spectra of some local temperature variations in Europe. (orig.)

  4. Evaluation of geomagnetic storm effects on the GPS derived Total Electron Content (TEC)

    International Nuclear Information System (INIS)

    Purohit, P K; Atulkar, Roshni; Mansoori, Azad A; Khan, Parvaiz A; Bhawre, Purushottam; Tripathi, Sharad C; Khatarkar, Prakash; Bhardwaj, Shivangi; Aslam, A M; Waheed, Malik A; Gwal, A K

    2015-01-01

    The geomagnetic storm represents the most outstanding example of solar wind- magnetospheric interaction, which causes global disturbances in the geomagnetic field as well as triggers ionospheric disturbances. We study the behaviour of ionospheric Total Electron Content (TEC) during the geomagnetic storms. For this investigation we have selected 47 intense geomagnetic storms (Dst ≤ -100nT) that were observed during the solar cycle 23 i.e. during 1998- 2006. We then categorized these storms into four categories depending upon their solar sources like Magnetic Cloud (MC), Co-rotating Interaction Region (CIR), SH+ICME and SH+MC. We then studied the behaviour of ionospheric TEC at a mid latitude station Usuda (36.13N, 138.36E), Japan during these storm events produced by four different solar sources. During our study we found that the smooth variations in TEC are replaced by rapid fluctuations and the value of TEC is strongly enhanced during the time of these storms belonging to all the four categories. However, the greatest enhancements in TEC are produced during those geomagnetic storms which are either caused by Sheath driven Magnetic cloud (SH+MC) or Sheath driven ICME (SH+ICME). We also derived the correlation between the TEC enhancements produced during storms of each category with the minimum Dst. We found the strongest correlation exists for the SH+ICME category followed by SH+MC, MC and finally CIR. Since the most intense storms were either caused by SH+ICME or SH+MC while the least intense storms were caused by CIR, consequently the correlation was strongest with SH+ICME and SH+MC and least with CIR. (paper)

  5. Recent geomagnetic secular variation from Swarm and ground observatories as estimated in the CHAOS-6 geomagnetic field model

    DEFF Research Database (Denmark)

    Finlay, Chris; Olsen, Nils; Kotsiaros, Stavros

    2016-01-01

    We use more than 2 years of magnetic data from the Swarm mission, and monthly means from 160 ground observatories as available in March 2016, to update the CHAOS time-dependent geomagnetic field model. The new model, CHAOS-6, provides information on time variations of the core-generated part......, jets at low latitudes, for example close to 40 degrees W, that may be responsible for localized SA oscillations. In addition to scalar data from Orsted, CHAMP, SAC-C and Swarm, and vector data from Orsted, CHAMP and Swarm, CHAOS-6 benefits from the inclusion of along-track differences of scalar...... and vector field data from both CHAMP and the three Swarm satellites, as well as east-west differences between the lower pair of Swarm satellites, Alpha and Charlie. Moreover, ground observatory SV estimates are fit to a Huber-weighted rms level of 3.1 nT/year for the eastward components and 3.8 and 3.7 n...

  6. Field-aligned currents observed by CHAMP during the intense 2003 geomagnetic storm events

    Directory of Open Access Journals (Sweden)

    H. Wang

    2006-03-01

    Full Text Available This study concentrates on the characteristics of field-aligned currents (FACs in both hemispheres during the extreme storms in October and November 2003. High-resolution CHAMP magnetic data reflect the dynamics of FACs during these geomagnetic storms, which are different from normal periods. The peak intensity and most equatorward location of FACs in response to the storm phases are examined separately for both hemispheres, as well as for the dayside and nightside. The corresponding large-scale FAC peak densities are, on average, enhanced by about a factor of 5 compared to the quiet-time FACs' strengths. And the FAC densities on the dayside are, on average, 2.5 times larger in the Southern (summer than in the Northern (winter Hemisphere, while the observed intensities on the nightside are comparable between the two hemispheres. Solar wind dynamic pressure is correlated with the FACs strength on the dayside. However, the latitudinal variations of the FACs are compared with the variations in Dst and the interplanetary magnetic field component Bz, in order to determine how these parameters control the large-scale FACs' configuration in the polar region. We have determined that (1 the equatorward shift of FACs on the dayside is directly controlled by the southward IMF Bz and there is a saturation of the latitudinal displacement for large value of negative Bz. In the winter hemisphere this saturation occurs at higher latitudes than in the summer hemisphere. (2 The equatorward expansion of the nightside FACs is delayed with respect to the solar wind input. The poleward recovery of FACs on the nightside is slower than on the dayside. The latitudinal variations on the nightside are better described by the variations of the Dst index. (3 The latitudinal width of the FAC region on the nightside spreads over a wide range of about 25° in latitude.

  7. The Equatorial Scintillations and Space Weather Effects on its Generation during Geomagnetic Storms

    Science.gov (United States)

    Biktash, Lilia

    Great diversity of the ionospheric phenomena leads to a variety of irregularity types with spatial size from many thousands of kilometers to few centimeters and lifetimes from days to fractions of second. Since the ionosphere strongly influences the propagation of radio waves, signal distortions caused by these irregularities affect short-wave transmissions on Earth, transiono-spheric satellite communications and navigation. In this work the solar wind and the equatorial ionosphere parameters, Kp, Dst, AU, AL indices characterized contribution of different mag-netospheric and ionospheric currents to the H-component of geomagnetic field are examined to test the space weather effect on the generation of ionospheric irregularities producing VLF scintillations. According to the results of the current statistical studies, one can predict scintil-lations from Aarons' criteria using the Dst index, which mainly depicts the magnetospheric ring current field. To amplify Aarons' criteria or to propose new criteria for predicting scintillation characteristics is the question. In the present phase of the experimental investigations of elec-tron density irregularities in the ionosphere new ways are opened up because observations in the interaction between the solar wind -magnetosphere -ionosphere during magnetic storms have progressed greatly. We have examined scintillation relation to magnetospheric and ionospheric currents and show that the factor, which presents during magnetic storms to fully inhibit scin-tillation, is the positive Bz-component of the IMF. During the positive Bz IMF F layer cannot raise altitude where scintillations are formed. The auroral indices and Kp do better for the prediction of the ionospheric scintillations at the equator. The interplanetary magnetic field data and models can be used to explain the relationship between the equatorial ionospheric parameters, h'F, foF2, and the equatorial geomagnetic variations with the polar ionosphere cur-rents and

  8. Development of Geomagnetic Monitoring System Using a Magnetometer for the Field

    Science.gov (United States)

    Lee, Young-Cheol; Kim, Sung-Wook; Choi, Eun-Kyeong; Kim, In-Soo

    2014-05-01

    Three institutes including KMA (Korea Meteorological Administration), KSWC (Korean Space Weather Center) of NRRA (National Radio Research Agency) and KIGAM (Korea Institute of Geoscience and Mineral Resources) are now operating magnetic observatories. Those observatories observe the total intensity and three components of geomagnetic element. This paper comes up with a magnetic monitoring system now under development that uses a magnetometer for field survey. In monitoring magnetic variations in areas (active faults or volcanic regions), more reliable results can be obtained when an array of several magnetometers are used rather than a single magnetometer. In order to establish and operate a magnetometer array, such factors as expenses, convenience of the establishment and operation of the array should be taken into account. This study has come up with a magnetic monitoring system complete with a magnetometer for the field survey of our own designing. A magnetic monitoring system, which is composed of two parts. The one is a field part and the other a data part. The field part is composed of a magnetometer, an external memory module, a power supply and a set of data transmission equipment. The data part is a data server which can store the data transmitted from the field part, analyze the data and provide service to the web. This study has developed an external memory module for ENVI-MAG (Scintrex Ltd.) using an embedded Cortex-M3 board, which can be programmed, attach other functional devices (SD memory cards, GPS antennas for time synchronization, ethernet cards and so forth). The board thus developed can store magnetic measurements up to 8 Gbytes, synchronize with the GPS time and transmit the magnetic measurements to the data server which is now under development. A monitoring system of our own developing was installed in Jeju island, taking measurements throughout Korea. Other parts including a data transfer module, a server and a power supply using solar

  9. DTU candidate field models for IGRF-12 and the CHAOS-5 geomagnetic field model

    DEFF Research Database (Denmark)

    Finlay, Chris; Olsen, Nils; Tøffner-Clausen, Lars

    2015-01-01

    We present DTU’s candidate field models for IGRF-12 and the parent field model from which they were derived,CHAOS-5. Ten months of magnetic field observations from ESA’s Swarm mission, together with up-to-date ground observatory monthly means, were used to supplement the data sources previously u...... been documented, but the 2013 pulse has only recently been identified. The spatial signature of the 2013pulse at the core surface, under the Atlantic sector where it is strongest, is well correlated with the 2006 pulse, but anti-correlated with the 2009 pulse....

  10. Harmonic effects of solar geomagnetically induced currents on the electrical distribution system in nuclear power plants

    International Nuclear Information System (INIS)

    Carroll, D.P.; Kasturi, S.; Subudhi, M.; Gunther, W.

    1992-01-01

    Most previous analysis on the effects of geomagnetically induced currents (GIC) on electric utility systems has steady-state phenomena, with the main interest in the generator step-up transformer and the off-site power system. This paper begins to investigate the possible effects that a GIC event might have on the power plant itself, by examining the harmonic distortion that could exist at various voltage levels in the on-site distribution system

  11. Large geomagnetic field anomalies revealed in Bronze to Iron Age archeomagnetic data from Tel Megiddo and Tel Hazor, Israel

    Science.gov (United States)

    Shaar, Ron; Tauxe, Lisa; Ron, Hagai; Ebert, Yael; Zuckerman, Sharon; Finkelstein, Israel; Agnon, Amotz

    2016-05-01

    Geomagnetic field measurements from the past few centuries show heightened secular variation activity in the southern hemisphere associated with the south Atlantic anomaly (SAA). It is uncertain whether geomagnetic anomalies at a similar scale have existed in the past owing to limited coverage and uncertainties in the paleomagnetic database. Here we provide new evidence from archaeological sources in the Levant suggesting a large positive northern hemisphere anomaly, similar in magnitude to the SAA during the 9th-8th centuries BCE, called ;Levantine Iron Age anomaly;. We also report an additional geomagnetic spike in the 8th century. The new dataset comprises 73 high precision paleointensity estimates from ca. 3000 BCE to 732 BCE, and five directional measurements between the 14th and the 9th centuries BCE. Well-dated pottery and cooking ovens were collected from twenty archaeological strata in two large contemporaneous stratigraphical mounds (tells) in Israel: Tel Megiddo and Tel Hazor. The new data are combined with previously published data and interpreted automatically using the PmagPy Thellier GUI program. The Tel Megiddo and Tel Hazor data sets demonstrate excellent internal consistency and remarkable agreement with published data from Mesopotamia (Syria). The data illustrate the evolution of an extreme geomagnetic high that culminated in at least two spikes between the 11th and the 8th centuries BCE (Iron Age in the Levant). The paleomagnetic directional data of the 9th century BCE show positive inclination anomalies, and deviations of up to 22° from the averaged geocentric axial dipole (GAD) direction. From comparison of the Levantine archaeomagnetic data with IGRF model for 2015 we infer the ;Levantine Iron Age anomaly; between the 10th and the 8th centuries BCE is a local positive anomaly. The eastward extent of the anomaly is currently unknown.

  12. A more realistic estimate of the variances and systematic errors in spherical harmonic geomagnetic field models

    DEFF Research Database (Denmark)

    Lowes, F.J.; Olsen, Nils

    2004-01-01

    Most modern spherical harmonic geomagnetic models based on satellite data include estimates of the variances of the spherical harmonic coefficients of the model; these estimates are based on the geometry of the data and the fitting functions, and on the magnitude of the residuals. However...

  13. A kinematic model of vertical geomagnetic field variation resulting from a steady convective flow

    Czech Academy of Sciences Publication Activity Database

    Marsenić, Alexandra

    2014-01-01

    Roč. 108, č. 2 (2014), s. 191-212 ISSN 0309-1929 Grant - others:VEGA(SK) 2/0137/12 Institutional support: RVO:67985530 Keywords : magnetohydrodynamics * induction equation * geomagnetic variation * reversed flux patches Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 0.924, year: 2013

  14. The Earth's passage of the April 11, 1997 coronal ejecta: geomagnetic field fluctuations at high and low latitude during northward interplanetary magnetic field conditions

    Directory of Open Access Journals (Sweden)

    S. Lepidi

    1999-10-01

    Full Text Available An analysis of the low frequency geomagnetic field fluctuations at an Antarctic (Terra Nova Bay and a low latitude (L'Aquila, Italy station during the Earth's passage of a coronal ejecta on April 11, 1997 shows that major solar wind pressure variations were followed at both stations by a high fluctuation level. During northward interplanetary magnetic field conditions and when Terra Nova Bay is close to the local geomagnetic noon, coherent fluctuations, at the same frequency (3.6 mHz and with polarization characteristics indicating an antisunward propagation, were observed simultaneously at the two stations. An analysis of simultaneous measurements from geosynchronous satellites shows evidence for pulsations at approximately the same frequencies also in the magnetospheric field. The observed waves might then be interpreted as oscillation modes, triggered by an external stimulation, extending to a major portion of the Earth's magnetosphere. Key words. Magnetospheric physics (MHD waves and instabilities; solar wind-magnetosphere interactions

  15. Characteristics of the variability of a geomagnetic field for studying the impact of the magnetic storms and substorms on electrical energy systems

    Science.gov (United States)

    Belakhovsky, V. B.; Pilipenko, V. A.; Sakharov, Ya. A.; Selivanov, V. N.

    2018-01-01

    There are numerous models of geomagnetically induced currents in which the role of the main sources is allotted to the variations in the intensity of the auroral electrojet inducing the currents flowing along the latitude. Based on this it is believed that magnetic disturbances mainly threaten technological systems that are elongated in the longitudinal (W-E) direction. In this work, we make an attempt to employ new characteristics to describe the variability of the geomagnetic field during the geomagnetic storm of March 17, 2013. These characteristics, calculated from the data of the IMAGE magnetometer network stations, are compared to the records of the induced currents in the power lines on the Kola Peninsula and in Karelia. The vector technique revealed a considerably lower variability of the horizontal component of the geomagnetic field compared to its derivative. Quantitative estimates of the variability supported the fact that the variations of the field occur on a commensurate scale both in magnitude and direction. These results cannot be accounted for by the simple model of the extended ionospheric current and demonstrate the importance of allowing for small-scale current structures (with the spatial scales of a few hundred km) in the calculations of the geomagnetically induced currents. Our analysis shows that the geomagnetically induced currents are not only hazardous for the technological objects oriented in the longitudinal (W-E) direction but also for those elongated meridionally.

  16. Common origin of positive ionospheric storms at middle latitudes and the geomagnetic activity effect at low latitudes

    International Nuclear Information System (INIS)

    Proelss, G.W.

    1993-01-01

    The author looks for a correlation between two different atmospheric effects. They are a positive atmospheric storm (an anomalous increase in the F2 region ionization density), observed at middle latitudes, and the geomagnetic activity effect (the anomalous changes of temperature and gas density seen in the thermosphere), observed at low latitudes. A temporal correlation is sought to test the argument that both of these effects are the result of travelling atmospheric disturbances (TAD). A TAD is a pulselike atmospheric wave thought to be generated by substorm activity, and to propagate with high velocity (600 m/s) from polar latitudes toward equatorial latitudes. The author looks at data from five separate events correlating magnetic, ionospheric, and neutral atmospheric measurements. The conclusion is that there is a positive correlation between magnetic substorm activity at high latitudes, and positive ionospheric storms at middle latitudes and geomagnetic activity at low latitudes. The time correlations are consistent with high propagation speeds between these events. The author also presents arguments which indicate that the middle latitude positive ionospheric storms are not the result of electric field effects

  17. COMPARATIVE EVALUATION OF THE INFLUENCING EFFECTS OF GEOMAGNETIC SOLAR STORMS ON EARTHQUAKES IN ANATOLIAN PENINSULA

    Directory of Open Access Journals (Sweden)

    Yesugey Sadik Cengiz

    2009-07-01

    Full Text Available Earthquakes are tectonic events that take place within the fractures of the earth's crust, namely faults. Above certain scale, earthquakes can result in widespread fatalities and substantial financial loss. In addition to the movement of tectonic plates relative to each other, it is widely discussed that there are other external influences originate outside earth that can trigger earthquakes. These influences are called "triggering effects". The purpose of this article is to present a statistical view to elaborate if the solar geomagnetic storms trigger earthquakes.As a model, the research focuses on the Anatolian peninsula, presenting 41 years of historical data on magnetic storms and earthquakes collated from national and international resources. As a result of the comparative assessment of the data, it is concluded that the geomagnetic storms do not trigger earthquakes.

  18. Equatorial E Region Electric Fields and Sporadic E Layer Responses to the Recovery Phase of the November 2004 Geomagnetic Storm

    Science.gov (United States)

    Moro, J.; Resende, L. C. A.; Denardini, C. M.; Xu, J.; Batista, I. S.; Andrioli, V. F.; Carrasco, A. J.; Batista, P. P.; Schuch, N. J.

    2017-12-01

    Equatorial E region electric fields (EEFs) inferred from coherent radar data, sporadic-E (Es) layers observed from a digital ionosonde data, and modeling results are used to study the responses of the equatorial E region over São Luís (SLZ, 2.3°S, 44.2°W, -7° dip angle), Brazil, during the super storm of November 2004. The EEF is presented in terms of the zonal (Ey) and vertical (Ez) components in order to analyze the corresponding characteristics of different types of Es seen in ionograms and simulated with the E region ionospheric model. We bring out the variabilities of Ey and Ez components with storm time changes in the equatorial E region. In addition, some aspects of the electric fields and Es behavior in three cases of weak, very weak, and strong Type II occurrences during the recovery phase of the geomagnetic storm are discussed. The connection between the enhanced occurrence and suppressions of the Type II irregularities and the q-type Es (Esq) controlled by electric fields, with the development or disruption of the blanketing sporadic E (Esb) layers produced by wind shear mechanism, is also presented. The mutual presence of Esq along with the Esb occurrences is a clear indicator of the secular drift of the magnetic equator and hence that of the equatorial electrojet (EEJ) over SLZ. The results show evidence about the EEJ and Es layer electrodynamics and coupling during geomagnetic disturbance time electric fields.

  19. Main Geomagnetic Field Models from Oersted and Magsat Data Via a Rigorous General Inverse Theory with Error Bounds

    Science.gov (United States)

    Backus, George E.

    1999-01-01

    The purpose of the grant was to study how prior information about the geomagnetic field can be used to interpret surface and satellite magnetic measurements, to generate quantitative descriptions of prior information that might be so used, and to use this prior information to obtain from satellite data a model of the core field with statistically justifiable error estimates. The need for prior information in geophysical inversion has long been recognized. Data sets are finite, and faithful descriptions of aspects of the earth almost always require infinite-dimensional model spaces. By themselves, the data can confine the correct earth model only to an infinite-dimensional subset of the model space. Earth properties other than direct functions of the observed data cannot be estimated from those data without prior information about the earth. Prior information is based on what the observer already knows before the data become available. Such information can be "hard" or "soft". Hard information is a belief that the real earth must lie in some known region of model space. For example, the total ohmic dissipation in the core is probably less that the total observed geothermal heat flow out of the earth's surface. (In principle, ohmic heat in the core can be recaptured to help drive the dynamo, but this effect is probably small.) "Soft" information is a probability distribution on the model space, a distribution that the observer accepts as a quantitative description of her/his beliefs about the earth. The probability distribution can be a subjective prior in the sense of Bayes or the objective result of a statistical study of previous data or relevant theories.

  20. Latitudinal and longitudinal behavior of the geomagnetic field during a disturbed period: A case study using wavelet techniques

    Science.gov (United States)

    Klausner, Virginia; Domingues, Margarete Oliveira; Mendes, Odim; da Costa, Aracy Mendes; Papa, Andres Reinaldo Rodriguez; Gonzalez, Arian Ojeda

    2016-11-01

    Coronal mass ejections are the primary cause of the highly disturbed conditions observed in the magnetosphere. Momentum and energy from the solar wind are transferred to the Earth's magnetosphere mainly via magnetic reconnection which produces open field lines connecting the Earth magnetic field to the solar wind. Magnetospheric currents are coupled to the ionosphere through field-aligned currents. This particular characteristic of the magnetosphere-ionosphere interconnection is discussed here on the basis of the energy transfer from high (auroral currents) to low-latitudes (ring current). The objective of this work is to examine how the conditions during a magnetic storm can affect the global space and time configuration of the ring current, and, how these processes can affect the region of the South Atlantic Magnetic Anomaly. The H- or X-components of the Earth's magnetic field were examined using a set of six magnetometers approximately aligned around the geographic longitude at about 10 °, 140 ° and 295 ° from latitudes of 70 ° N to 70 ° S and aligned throughout the equatorial region, for the event of October 18-22, 1998. The investigation of simultaneous observations of data measured at different locations makes it possible to determine the effects of the magnetosphere-ionosphere coupling, and, it tries to establish some relationships among them. This work also compares the responses of the aligned magnetic observatories to the responses in the South Atlantic Magnetic Anomaly region. The major contribution of this paper is related to the applied methodology of the discrete wavelet transform. The wavelet coefficients are used as a filter to extract the information in high frequencies of the analyzed magnetogram. They also better represent information about the injections of energy and, consequently, the disturbances of the geomagnetic field measured on the ground. As a result, we present a better way to visualize the correlation between the X- or H

  1. Geomagnetic field and length-of-day fluctuations at decadal and subdecadal time scales. A plea for looking beyond the atmosphere for partners in Earth's rotation

    Science.gov (United States)

    Demetrescu, C.; Dobrica, V.; Stefan, C.

    2017-12-01

    A rich scientific literature is linking length-of-day (LOD) fluctuations to geomagnetic field and flow oscillations in the fluid outer core. We demostrate that the temporal evolution of the geomagnetic field shows the existence of several oscillations at decadal, inter-decadal, and sub-centennial time scales that superimpose on a so-called inter-centennial constituent. We show that while the subcentennial oscillations of the geomagnetic field, produced by torsional oscillations in the core, could be linked to oscillations of LOD at a similar time scale, the oscillations at decadal and sub-decadal time scales, of external origin, can be found in LOD too. We discuss these issues from the perspective of long time-span main field models (gufm1 - Jackson et al., 2000; COV-OBS - Gillet et al., 2013) that are used to retrieve time series of geomagnetic elements in a 2.5x2.5° network. The decadal and sub-decadal constituents of the time series of annual values in LOD and geomagnetic field were separated in the cyclic component of a Hodrick-Prescott filtering applied to data, and shown to highly correlate to variations of external sources such as the magnetospheric ring current.

  2. A study of the effect of geomagnetic storms on low latitude whistlers

    International Nuclear Information System (INIS)

    Rao, Manoranjan; Somayajulu, V.V.; Dikshit, S.K.

    1974-01-01

    This paper presents the results of a detailed study of the influence of geomagnetic storms on low latitude whistlers recorded on ground. Studied in detail is the effect of the geomagnetic storm of March 6-10, 1970 on whistlers recorded at Gulmarg (Geomagnetic coordinates: 24 0 10'N; 147 0 24'E); results of analysis for the earlier storm of January 13-15, 1967 are included for comparison. Some of the important results of the present study are: (i) Both the whistler occurrence rate and dispersion increase simultaneously with Kp, (ii) During the decaying phase of the storm, changes in occurrence rate and in dispersion lag behind those in Kp, (iii) There is an indication of the existence of a cross-over latitude where tube contents may not change appreciably during storm periods, (iv) Multipath whistlers are observed only during disturbed conditions, (v) Duct life ranges between several hours to few days and (vi) Maximum number of ducts is observed during the main and recovery phases of the storm. (auth.)

  3. Toward constructing a time-series of geomagnetic field variations from thermal remanence in slowly cooled igneous rocks

    Science.gov (United States)

    Burns, Z.; Gee, J. S.

    2017-12-01

    Analysis of paleomagnetic data can not only help us to understand the behavior of the ancient magnetic field but may also further our understanding of the current field, as well as of the mechanisms and constraints of the geodynamo and geomagnetic reversals. A question of particular interest is the possible relationship between reversal frequency and geomagnetic field intensity. Some research appears to indicate a correlation between low intensity and high reversal frequency, seeming to support the theory that low field intensity is what makes reversals possible. In order to study this correlation, we obtained several hundred samples from the 182 Ma Dufek Massif, in Antarctica. This intrusion was cooled slowly, at depth, during the high reversal frequency era of the early Jurassic, and most of our samples record multiple polarity intervals. This, combined with their particularly homogeneous magnetic characteristics, makes them ideally suited for recovering a record of geomagnetic field variations. On approximately 300 samples from the lower portion of the intrusion, we performed step-wise thermal demagnetization of the natural remanent magnetization (NRM), followed by thermal demagnetization of a laboratory thermoremance (TRM), imparted as partial TRMs in three orthogonal directions to assess the reliability of the remanence. These two sets of measurements can tell us about the amount and direction of magnetization acquired at each temperature step and the sample's capacity to acquire a remanence. Corrected for anisotropy, the ratio of the NRM/TRM values at each step multiplied by the value of the lab field can give us an estimate of the paleofield intensity. When convolved with a thermal cooling model for the intrusion, this yields a model of the time-varying ancient field during the intrusion's cooling period. Initial analysis of our data shows average field values of around 20 µT and a minimum of four reversals. The average at this high-latitude site is lower

  4. Low-frequency (0.7-7.4 mHz geomagnetic field fluctuations at high latitude: frequency dependence of the polarization pattern

    Directory of Open Access Journals (Sweden)

    L. Cafarella

    2001-06-01

    Full Text Available A statistical analysis of the polarization pattern of low-frequency geomagnetic field fluctuations (0.7-7.4 mHz covering the entire 24-h interval was performed at the Antarctic station Terra Nova Bay (80.0°S geomagnetic latitude throughout 1997 and 1998. The results show that the polarization pattern exhibits a frequency dependence, as can be expected from the frequency dependence of the latitude where the coupling between the magnetospheric compressional mode and the field line resonance takes place. The polarization analysis of single pulsation events shows that wave packets with different polarization sense, depending on frequency, can be simultaneously observed.

  5. Anisotropic diffusion of meteor trails due to the geomagnetic field over King Sejong Station (62.2°S, 58.8°W), Antarctica

    Science.gov (United States)

    Choi, Jong-Min; Kwak, Young-Sil; Kim, Yong Ha; Lee, Changsup; Kim, Jeong-Han; Jee, Geonhwa; Yang, Tae-Yong

    2018-06-01

    We analyzed meteor decay times measured by a VHF meteor radar at King Sejong Station, Antarctica (62.22°S, 58.78°W) to study diffusion processes of the meteor trails above the altitude of ˜93 km. Above this altitude, where the atmospheric density is so dilute that collisions between trail ions and ambient molecules become rare, diffusion of a meteor trail can be greatly affected by the geomagnetic field, resulting in anisotropic distribution of measured decay times over the azimuthal and elevation angles. Our preliminary analysis confirm the anisotropic nature of meteor decay times due to geomagnetic field.

  6. High-resolution empirical geomagnetic field model TS07D: Investigating run-on-request and forecasting modes of operation

    Science.gov (United States)

    Stephens, G. K.; Sitnov, M. I.; Ukhorskiy, A. Y.; Vandegriff, J. D.; Tsyganenko, N. A.

    2010-12-01

    The dramatic increase of the geomagnetic field data volume available due to many recent missions, including GOES, Polar, Geotail, Cluster, and THEMIS, required at some point the appropriate qualitative transition in the empirical modeling tools. Classical empirical models, such as T96 and T02, used few custom-tailored modules to represent major magnetospheric current systems and simple data binning or loading-unloading inputs for their fitting with data and the subsequent applications. They have been replaced by more systematic expansions of the equatorial and field-aligned current contributions as well as by the advanced data-mining algorithms searching for events with the global activity parameters, such as the Sym-H index, similar to those at the time of interest, as is done in the model TS07D (Tsyganenko and Sitnov, 2007; Sitnov et al., 2008). The necessity to mine and fit data dynamically, with the individual subset of the database being used to reproduce the geomagnetic field pattern at every new moment in time, requires the corresponding transition in the use of the new empirical geomagnetic field models. It becomes more similar to runs-on-request offered by the Community Coordinated Modeling Center for many first principles MHD and kinetic codes. To provide this mode of operation for the TS07D model a new web-based modeling tool has been created and tested at the JHU/APL (http://geomag_field.jhuapl.edu/model/), and we discuss the first results of its performance testing and validation, including in-sample and out-of-sample modeling of a number of CME- and CIR-driven magnetic storms. We also report on the first tests of the forecasting version of the TS07D model, where the magnetospheric part of the macro-parameters involved in the data-binning process (Sym-H index and its trend parameter) are replaced by their solar wind-based analogs obtained using the Burton-McPherron-Russell approach.

  7. Diurnal global variability of the Earth's magnetic field during geomagnetically quiet conditions

    Science.gov (United States)

    Klausner, V.

    2012-12-01

    This work proposes a methodology (or treatment) to establish a representative signal of the global magnetic diurnal variation. It is based on a spatial distribution in both longitude and latitude of a set of magnetic stations as well as their magnetic behavior on a time basis. We apply the Principal Component Analysis (PCA) technique using gapped wavelet transform and wavelet correlation. This new approach was used to describe the characteristics of the magnetic variations at Vassouras (Brazil) and 12 other magnetic stations spread around the terrestrial globe. Using magnetograms from 2007, we have investigated the global dominant pattern of the Sq variation as a function of low solar activity. This year was divided into two seasons for seasonal variation analysis: solstices (June and December) and equinoxes (March and September). We aim to reconstruct the original geomagnetic data series of the H component taking into account only the diurnal variations with periods of 24 hours on geomagnetically quiet days. We advance a proposal to reconstruct the Sq baseline using only the PCA first mode. The first interpretation of the results suggests that PCA/wavelet method could be used to the reconstruction of the Sq baseline.

  8. Anomaly of the geomagnetic Sq variation in Japan: effect from 3-D subterranean structure or the ocean effect?

    OpenAIRE

    Kuvshinov, Alexei; Utada, Hisashi

    2017-01-01

    Many years ago Rikitake et al. described the anomalous behaviour of the vertical component Z of the geomagnetic solar quiet (Sq) daily variation field at observatories in central and northern Japan - namely about 2 hr shift of the local noontime peak towards morning hours. They suggested that this anomaly is associated with the anomalous distribution of electrical conductivity in the mantle beneath central Japan. Although a few works have been done to confirm or argue this explanation, no cle...

  9. About temporal evolution of the geomagnetic field in the River Plate region

    International Nuclear Information System (INIS)

    Gianibelli, J.; Quaglino, L.

    2010-01-01

    Permanent Observatories network allows to study the total intensity of the magnetic field of the Earth surface to assess its annual change and inductive effects on networks of large pipes and pipelines. This paper is about the results of the significant decline in the River Plate region. The effects observed in this surface anomaly continue amplified and reaching minimum values

  10. The geomagnetic solar flare effect of 6 july 1968 and its implications

    International Nuclear Information System (INIS)

    Hanumath Sastri, J.

    1975-01-01

    A study of the geomagnetic solar flare effect (SFE) of 6 July 1968 observed at five Indian magnetic observatories lying in the longitude range 72-80 deg E, revealed that this SFE is characterized by a decrease in the H-component at electrojet stations and an increase in the H-component at stations outside the electrojet. Examination of relevant ionogram and magnetogram data of Kodaikanal, a station under the electrojet, for this day indicated the existence of a counter-electrojet just prior to and after the occurence of SFE. The implication of these observations are discussed

  11. Geomagnetic Reversals during the Phanerozoic.

    Science.gov (United States)

    McElhinny, M W

    1971-04-09

    An antalysis of worldwide paleomagnetic measurements suggests a periodicity of 350 x 10(6) years in the polarity of the geomagnetic field. During the Mesozoic it is predominantly normal, whereas during the Upper Paleozoic it is predominantly reversed. Although geomagnetic reversals occur at different rates throughout the Phanerozoic, there appeaars to be no clear correlation between biological evolutionary rates and reversal frequency.

  12. Anomaly of the geomagnetic Sq variation in Japan: effect from 3-D subterranean structure or the ocean effect?

    Science.gov (United States)

    Kuvshinov, Alexei; Utada, Hisashi

    2010-12-01

    Many years ago Rikitake et al. described the anomalous behaviour of the vertical component Z of the geomagnetic solar quiet (Sq) daily variation field at observatories in central and northern Japan - namely about 2 hr shift of the local noontime peak towards morning hours. They suggested that this anomaly is associated with the anomalous distribution of electrical conductivity in the mantle beneath central Japan. Although a few works have been done to confirm or argue this explanation, no clear answer has been obtained so far. The goal of this work is to understand the nature of this anomaly using our 3-D forward solution. The conductivity model of the Earth includes oceans of laterally variable conductance and conducting mantle either spherically symmetric or 3-D underneath. Data from six Japanese observatories at four seasons for two different years of the solar cycle are analysed. As an inducing ionospheric (Sq) current system, we use those provided by the Comprehensive Model (CM4) of Sabaka et al. Our analysis clearly demonstrates that 3-D induction in the ocean is responsible for the anomalous behaviour of Z daily variations in this region. We also show that the effects from a suite of 3-D mantle models that include mantle wedge and subducting slab are minor compared with the ocean effect.

  13. Low frequency geomagnetic field fluctuations at low latitude during the passage of a higher pressure solar wind region

    Directory of Open Access Journals (Sweden)

    U. Villante

    1997-06-01

    Full Text Available The passage of a higher pressure solar wind region at the Earth's orbit marked the onset of low latitude (L=1.6 fluctuations in the frequency range (0.8–5.5 mHz for both the horizontal geomagnetic field components. Spectral peaks mostly occur at the same frequencies as the spectral enhancements which appeared in the long term analysis of experimental measurements from the same station and were tentatively interpreted in terms of ground signatures of global magnetospheric modes. A comparison with simultaneous observations discussed by previous investigations allows us to conclude that the same set of frequencies is enhanced in a wide portion of the Earth's magnetosphere.

  14. Structural and temporal requirements for geomagnetic field reversal deduced from lava flows.

    Science.gov (United States)

    Singer, Brad S; Hoffman, Kenneth A; Coe, Robert S; Brown, Laurie L; Jicha, Brian R; Pringle, Malcolm S; Chauvin, Annick

    2005-03-31

    Reversals of the Earth's magnetic field reflect changes in the geodynamo--flow within the outer core--that generates the field. Constraining core processes or mantle properties that induce or modulate reversals requires knowing the timing and morphology of field changes that precede and accompany these reversals. But the short duration of transitional field states and fragmentary nature of even the best palaeomagnetic records make it difficult to provide a timeline for the reversal process. 40Ar/39Ar dating of lavas on Tahiti, long thought to record the primary part of the most recent 'Matuyama-Brunhes' reversal, gives an age of 795 +/- 7 kyr, indistinguishable from that of lavas in Chile and La Palma that record a transition in the Earth's magnetic field, but older than the accepted age for the reversal. Only the 'transitional' lavas on Maui and one from La Palma (dated at 776 +/- 2 kyr), agree with the astronomical age for the reversal. Here we propose that the older lavas record the onset of a geodynamo process, which only on occasion would result in polarity change. This initial instability, associated with the first of two decreases in field intensity, began approximately 18 kyr before the actual polarity switch. These data support the claim that complete reversals require a significant period for magnetic flux to escape from the solid inner core and sufficiently weaken its stabilizing effect.

  15. Paleomagnetic reconstruction of the global geomagnetic field evolution during the Matuyama/Brunhes transition: Iterative Bayesian inversion and independent verification

    Science.gov (United States)

    Leonhardt, Roman; Fabian, Karl

    2007-01-01

    The Earth's magnetic field changed its polarity from the last reversed into today's normal state approximately 780 000 years ago. While before and after this so called Matuyama/Brunhes reversal, the Earth magnetic field was essentially an axial dipole, the details of its transitional structure are still largely unknown. Here, a Bayesian inversion method is developed to reconstruct the spherical harmonic expansion of this transitional field from paleomagnetic data. This is achieved by minimizing the total variational power at the core-mantle boundary during the transition under paleomagnetic constraints. The validity of the inversion technique is proved in two ways. First by inverting synthetic data sets from a modeled reversal. Here it is possible to reliably reconstruct the Gauss coefficients even from noisy records. Second by iteratively combining four geographically distributed high quality paleomagnetic records of the Matuyama/Brunhes reversal into a single geometric reversal scenario without assuming an a priori common age model. The obtained spatio-temporal reversal scenario successfully predicts most independent Matuyama/Brunhes transitional records. Therefore, the obtained global reconstruction based on paleomagnetic data invites to compare the inferred transitional field structure with results from numerical geodynamo models regarding the morphology of the transitional field. It is found that radial magnetic flux patches form at the equator and move polewards during the transition. Our model indicates an increase of non-dipolar energy prior to the last reversal and a non-dipolar dominance during the transition. Thus, the character and information of surface geomagnetic field records is strongly site dependent. The reconstruction also offers new answers to the question of existence of preferred longitudinal bands during the transition and to the problem of reversal duration. Different types of directional variations of the surface geomagnetic field

  16. Relation of geomagnetic pulsations to parmeters of mid-latitude lower ionosphere

    International Nuclear Information System (INIS)

    Dorokhov, V.L.; Kostrov, L.S.; Martynenko, S.I.; Piven', L.A.; Pushin, V.F.; Shemet, A.S.

    1989-01-01

    Results of experimental investigation of the effect of geomagnetic pulsations on parameters of medium-latitude lower ionosphere with the use of methods of partial reflections and Doppler probing at short waves are presented. The relation between changes in geomagnetic field and intensity of partially reflected radiosignals is detected

  17. Correction of autonomic nervous system indicators due to the effect of geomagnetic perturbations in patients with remote after effects of closed traumatic brain injury

    Directory of Open Access Journals (Sweden)

    V. A. Коrshnyak

    2016-08-01

      Abstract The authors show that in modern biology, life is seen as the ability of living matter, and namely in medicine – the ability of human body, to maintain the existence in natural environment. From this perspective, it is extremely necessary to synchronize the activity of body structures among themselves taking into account the changes of environmental factors. Achieving the harmony between the body activity and environmental changes is carried out using an external pacemaker of life processes’ activity, the role of which is performed by the geomagnetic field (GMF.  This became possible due to the fact that the life processes are cyclical, i.e. they possess rhythmic characteristics, and GMF is an electromagnetic field which is changing its characteristics rhythmically.  The material for the present study were the data obtained during the neurological examination of 20 healthy people and 100 patients with remote consequences of CTBI which were treated in the clinic of autonomic nervous system pathology of the SI "Institute of neurology, psychiatry and narcology of the NAMS of Ukraine". The results investigations have showed that geomagnetic perturbations, which modify the GMF parameters, exacerbate the disorders of VNS in patients with remote after effects of CTBI. It is associated with the increased desynchronization of the activity of suprasegmental structures of VNS and with breach of brain vascular system’s status that occurs during a magnetic storm. The acupuncture that is aimed at restoring of synchronization of activity of suprasegmental structures of VNS significantly reduces its sensitivity to the geomagnetic disturbances. Keywords: magnetic storm, closed head injury, autonomic nervous system.

  18. Relative Paleointensity of the Geomagnetic Field 12-20 kyr. From Sediment Cores, Lake Moreno (Patagonia, Argentina)

    Science.gov (United States)

    Gogorza, C. S.; Irurzun, M. A.; Chaparro, M. A.; Lirio, J. M.; Nunez, H.; Sinito, A. M.

    2007-05-01

    Four cores labeled Lmor1, Lmor2, Lmor3, Lmor98-1, Lmor98-2 from the bottom sediments of Lake Moreno (south-western Argentina) have been used to estimate regional geomagnetic paleointensity. Lake Moreno is on the east side of the Andean Cordillera Patagónica; it is located in the Llao Llao area, San Carlos de Bariloche, Argentina (41° S, 71° 30'W). The following measurements were performed: Natural Remanent Magnetization (NRM), magnetic susceptibility at low and high frequency (specific, X and volumetric, k), Isothermal Remanent Magnetization (IRM) reaching the Saturation Isothermal Remanent Magnetization (SIRM), Back Field, Anhysteric Remanent Magnetization with a direct field of 0.1mT and an alternating field between 2.5 and 100mT (ARM100mT). Associated parameters were calculated: S-ratio, Remanent Coercitive Field (BCR, anhysteric volumetric susceptibility (kanh), SIRM/k, ARM100mT/k, and SIRM/ ARM100mT. The rock magnetic studies indicate that the magnetic mineralogy of the clay-rich sediments is dominated by pseudo- single domain magnetite in a narrow range of grain size (between 1 and 4μm) and concentration (between 0.05 and 0.1%), thereby meeting established criteria for relative paleointensity studies. The remanent magnetization at 20mT (NRM20mT) has been normalized using the anhysteric remanent magnetization at 20mT (ARM20mT), the saturation of the isothermal remanent magnetization at 20mT (SIRM20mT) and k. A comparison of these results with relative paleointensity records obtained in previous works, Lake Escondido (Gogorza et al., 2004) and Lake El Trébol (Gogorza et al., 2006) allows obtaining detailed information about the disagreement observed in the period 12-20 kyr between both records. References Gogorza, C.S.G., J.M. Lirio, H. Nunez, M.A.E. Chaparro, H.R. Bertorello, A.M. Sinito. Paleointensity studies on Holocene-Pleistocene sediments from Lake Escondido, Argentina, Phys. Earth and Planet. Inter. 145: 219-238, 2004. Gogorza, C.S.G., M.A. Irurzun

  19. The effect of the August 11, 1999 total solar eclipse on geomagnetic pulsations

    Czech Academy of Sciences Publication Activity Database

    Střeštík, Jaroslav

    2001-01-01

    Roč. 31, č. 1 (2001), s. 335-338 ISSN 1335-2806. [IAGA Workshop /9./. Hurbanovo, 12.06.2000-18.06.2000] R&D Projects: GA ČR GA205/99/0915 Institutional research plan: CEZ:AV0Z3012916 Keywords : solar eclipse * geomagnetic pulsations * geomagnetic observatories Subject RIV: DE - Earth Magnetism, Geodesy, Geography

  20. Variations of the Geomagnetic Field During the Holocene-Pleistocene: Relative Paleointensity Records From South-Western Argentina

    Science.gov (United States)

    Gogorza, C. S.

    2008-05-01

    I present a review of the research carried out by the Group of Geomagnetism at Universidad Nacional del Centro (Argentina) on paleointensity records from bottom sediments from three lakes: Escondido (Gogorza et al., 2004), Moreno (Gogorza et al., 2006) and El Trébol (Gogorza et al., 2007; Irurzun et al., 2008) (South-Western Argentina, 41° S, 71° 30'W). Based on these studies, we construct a first relative (RPI) stack for South-Western Argentina covering the last 21,000 14C years BP. The degree of down-core homogeneity of magnetic mineral content as well as magnetic mineral concentration and grain sizes vary between all lakes and are quantified by high-resolution rock magnetic measurements. Rock magnetic studies suggest that the main carriers of magnetization are ferrimagnetic minerals, predominantly pseudo-single domain magnetite The remanent magnetization at 20 mT (NRM20mT) was normalized using the anhysteric remanent magnetization at 20mT (ARM20mT), the saturation of the isothermal remanent at 20 mT (SIRM20mT) and the low field magnetic susceptibility {k}. Coherence function analysis indicates that the normalised records are free of environmental influences. Our paleointensity (NRM20mT/ ARM20mT) versus age curve shows a good agreement with published records from other parts of the world suggesting that, in suitable sediments, paleointensity of the geomagnetic field can give a globally coherent, dominantly dipolar signal. References Gogorza, C.S.G., Irurzun, M.A., Chaparro, M.A.E., Lirio, J.M., Nuñez, H., Bercoff, P.G., Sinito, A.M. Relative Paleointensity of the Geomagnetic Field over the last 21,000 years bp from Sediment Cores, Lake El Trébol, (Patagonia, Argentina). Earth, Planets and Space. V58(10), 1323-1332. 2006. Gogorza, C.S.G., Sinito, A.M., Lirio, J.M., Nuñez, H., Chaparro, M.A.E., Bertorello, H.R. Paleointensity Studies on Holocene-Pleistocene Sediments from Lake Escondido, Argentina. Physical of the Earth and Planetary Interiors, Elsevier, ISSN

  1. Ionospheric and induced field leakage in geomagnetic field models, and derivation of candidate models for DGRF 1995 and DGRF 2000

    DEFF Research Database (Denmark)

    Olsen, Nils; Lowes, F.; Sabaka, T.J.

    2005-01-01

    the zonal coefficients g(1)(0), g(3)(0),..., by 1-2 nT. We describe the reason for this contamination, and present a method to correct for it. Since not only OSVM but probably all main field models that are derived primarily from data around local midnight suffer from this effect, the presented scheme can...

  2. Magnetic field effects in proteins

    Science.gov (United States)

    Jones, Alex R.

    2016-06-01

    Many animals can sense the geomagnetic field, which appears to aid in behaviours such as migration. The influence of man-made magnetic fields on biology, however, is potentially more sinister, with adverse health effects being claimed from exposure to fields from mobile phones or high voltage power lines. Do these phenomena have a common, biophysical origin, and is it even plausible that such weak fields can profoundly impact noisy biological systems? Radical pair intermediates are widespread in protein reaction mechanisms, and the radical pair mechanism has risen to prominence as perhaps the most plausible means by which even very weak fields might impact biology. In this New Views article, I will discuss the literature over the past 40 years that has investigated the topic of magnetic field effects in proteins. The lack of reproducible results has cast a shadow over the area. However, magnetic field and spin effects have proven to be useful mechanistic tools for radical mechanism in biology. Moreover, if a magnetic effect on a radical pair mechanism in a protein were to influence a biological system, the conditions necessary for it to do so appear increasing unlikely to have come about by chance.

  3. Effect of geomagnetic storm conditions on the equatorial ionization anomaly and equatorial temperature anomaly

    Science.gov (United States)

    Bharti, Gaurav; Bag, T.; Sunil Krishna, M. V.

    2018-03-01

    The effect of the geomagnetic storm on the equatorial ionization anomaly (EIA) and equatorial temperature anomaly (ETA) has been studied using the atomic oxygen dayglow emissions at 577.7 nm (OI 557.7 nm) and 732.0 nm (OII 732.0 nm). For the purpose of this study, four intense geomagnetic storms during the ascending phase of solar cycle 24 have been considered. This study is primarily based on the results obtained using photochemical models with necessary inputs from theoretical studies and experimental observations. The latest reaction rate coefficients, quantum yields and the corresponding cross-sections have also been incorporated in these models. The volume emission rate of airglow emissions has been calculated using the neutral densities from NRLMSISE-00 and charged densities from IRI-2012 model. The modeled volume emission rate (VER) for OI 557.7 nm shows a positive correlation with the Dst index at 150 km and negative correlation with Dst at 250 and 280 km altitudes. Latitudinal profile of the greenline emission rate at different altitudes show a distinct behaviour similar to what has been observed in EIA with crests on either sides of the equator. The EIA crests are found to show poleward movement in the higher altitude regions. The volume emission rate of 732.0 nm emission shows a strong enhancement during the main phase of the storm. The changes observed in the airglow emission rates are explained with the help of variations induced in neutral densities and parameters related to EIA and ETA. The latitudinal variation of 732.0 nm emission rate is correlated to the variability in EIA during the storm period.

  4. A New View of Long-Term Geomagnetic Field Secular Variation

    Directory of Open Access Journals (Sweden)

    Steve P. Lund

    2018-05-01

    scale is expected even though the detailed scalar directional variability is not coherent on a global scale. The pattern of intensity variability is strongly correlated with the pattern of vector dispersion and excursions on a global scale—high (low intensity is associated with low (high plus excursions vector dispersion. The fact that regional directional variability is always larger than “normal” during low intensity/excursional intervals, even though the effect of true excursional directions was removed, suggests that we need to reevaluate what field variability was like during low intensity/excursional intervals on a global scale and how/why it was different from today's field (last 104 years.

  5. Statistical analysis of geomagnetic field intensity differences between ASM and VFM instruments onboard Swarm constellation

    Science.gov (United States)

    De Michelis, Paola; Tozzi, Roberta; Consolini, Giuseppe

    2017-02-01

    From the very first measurements made by the magnetometers onboard Swarm satellites launched by European Space Agency (ESA) in late 2013, it emerged a discrepancy between scalar and vector measurements. An accurate analysis of this phenomenon brought to build an empirical model of the disturbance, highly correlated with the Sun incidence angle, and to correct vector data accordingly. The empirical model adopted by ESA results in a significant decrease in the amplitude of the disturbance affecting VFM measurements so greatly improving the vector magnetic data quality. This study is focused on the characterization of the difference between magnetic field intensity measured by the absolute scalar magnetometer (ASM) and that reconstructed using the vector field magnetometer (VFM) installed on Swarm constellation. Applying empirical mode decomposition method, we find the intrinsic mode functions (IMFs) associated with ASM-VFM total intensity differences obtained with data both uncorrected and corrected for the disturbance correlated with the Sun incidence angle. Surprisingly, no differences are found in the nature of the IMFs embedded in the analyzed signals, being these IMFs characterized by the same dominant periodicities before and after correction. The effect of correction manifests in the decrease in the energy associated with some IMFs contributing to corrected data. Some IMFs identified by analyzing the ASM-VFM intensity discrepancy are characterized by the same dominant periodicities of those obtained by analyzing the temperature fluctuations of the VFM electronic unit. Thus, the disturbance correlated with the Sun incidence angle could be still present in the corrected magnetic data. Furthermore, the ASM-VFM total intensity difference and the VFM electronic unit temperature display a maximal shared information with a time delay that depends on local time. Taken together, these findings may help to relate the features of the observed VFM-ASM total intensity

  6. Regional-Scale High-Latitude Extreme Geoelectric Fields Pertaining to Geomagnetically Induced Currents

    Science.gov (United States)

    Pulkkinen, Antti; Bernabeu, Emanuel; Eichner, Jan; Viljanen, Ari; Ngwira, Chigomezyo

    2015-01-01

    Motivated by the needs of the high-voltage power transmission industry, we use data from the high-latitude IMAGE magnetometer array to study characteristics of extreme geoelectric fields at regional scales. We use 10-s resolution data for years 1993-2013, and the fields are characterized using average horizontal geoelectric field amplitudes taken over station groups that span about 500-km distance. We show that geoelectric field structures associated with localized extremes at single stations can be greatly different from structures associated with regionally uniform geoelectric fields, which are well represented by spatial averages over single stations. Visual extrapolation and rigorous extreme value analysis of spatially averaged fields indicate that the expected range for 1-in-100-year extreme events are 3-8 V/km and 3.4-7.1 V/km, respectively. The Quebec reference ground model is used in the calculations.

  7. Resonant geomagnetic field oscillations and Birkeland currents in the morning sector

    International Nuclear Information System (INIS)

    Potemra, T.A.; Zanetti, L.J.; Bythrow, P.F.; Erlandson, R.E.; Lundin, R.; Marklund, G.T.; Block, L.P.; Lindqvist, P.A.

    1988-01-01

    Magnetic field, electric field, and particle measurements acquired by the Viking satellite and magnetic field measurements acquired by the Active Magnetosphere Particle Tracer Explorers (AMPTE) CCE satellite have been used to study the relationship between large-scale Birkeland currents and resonant oscillations in the Earth's magnetic field. Region 1, region 2, and northward B Z (NBZ) Birkeland currents were identified with the data acquired by the Viking magnetic field instrument. Magnetic field oscillations, present in each of the 10 consecutive Viking passes studied here, have periods between 1 min. and 6 min. and amplitudes from 5 nT to 60 nT. These oscillations extend from lower L shells where they correlate with the CCCE observations up to at least the interface between the region 1 and region 2 Birkeland current system. The Viking particle observations confirm that the region 1/region 2 interface maps closely to the interface between the low-latitude boundary layer (LLBL) and the central plasma sheet (CPS). Electric and magnetic field variations are closely correlated in the region 1 Birkeland current. In the region 2 system of Birkeland currents, the northward electric and eastward magnetic field components show the same resonance oscillations with the electric field variations leading the magnetic field by approximately 90 degree. There is evidence that the amplitudes of the oscillations observed by Viking are correlated with interplanetary magnetic field (IMF) cone angle. In one case, the energy-time dispersion signature of temporal magnetosheath plasma injection into the low-latitude boundary layer was associated with the resonant oscillations. These relationships and the presence of the resonant oscillations on field lines up to the region 1/region 2 (LLBL/CPS) interface lead us to conclude that there are several features in the solar wind and the direction of the IMF that can initiate magnetospheric pulsations

  8. Challenges Handling Magnetospheric and Ionospheric Signals in Internal Geomagnetic Field Modelling

    DEFF Research Database (Denmark)

    Finlay, Chris; Lesur, V.; Thébault, E.

    2017-01-01

    systems in the ionosphere and magnetosphere. In order to fully exploit magnetic data to probe the physical properties and dynamics of the Earth’s interior, field models with suitable treatments of external sources, and their associated induced signals, are essential. Here we review the methods presently......-by-track analysis to characterize magnetospheric field fluctuations, differences in internal field models that result from alternative treatments of the quiet-time ionospheric field, and challenges associated with rapidly changing, but spatially correlated, magnetic signatures of polar cap current systems. Possible...

  9. Correlations between Geomagnetic Disturbances and Field-Aligned Currents during the 22-29 July 2004 Storm Time Interval

    Science.gov (United States)

    Hood, R.; Woodroffe, J. R.; Morley, S.; Aruliah, A. L.

    2017-12-01

    Using the CHAMP fluxgate magnetometer to calculate field-aligned current (FAC) densities and magnetic latitudes, with SuperMAG ground magnetometers analogously providing ground geomagnetic disturbances (GMD) magnetic perturbations and latitudes, we probe FAC locations and strengths as predictors of GMD locations and strengths. We also study the relationships between solar wind drivers and global magnetospheric activity, and both FACs and GMDs using IMF Bz and the Sym-H index. We present an event study of the 22-29 July 2004 storm time interval, which had particularly large GMDs given its storm intensity. We find no correlation between FAC and GMD magnitudes, perhaps due to CHAMP orbit limitations or ground magnetometer coverage. There is, however, a correlation between IMF Bz and nightside GMD magnitudes, supportive of their generation via tail reconnection. IMF Bz is also correlated with dayside FAC and GMD magnetic latitudes, indicating solar wind as an initial driver. The ring current influence increases during the final storm, with improved correlations between the Sym-H index and both FAC magnetic latitudes and GMD magnitudes. Sym-H index correlations may only be valid for higher intensity storms; a statistical analysis of many storms is needed to verify this.

  10. Signals and noise in measurements of low-frequency geomagnetic fields

    International Nuclear Information System (INIS)

    Nichols, E.A.; Morrison, H.F.; Clarke, J.

    1988-01-01

    The apparent magnetic noise, obtained from the coherency function for two parallel magnetic sensors, generally overstimates sensor noise because the sensors do not measure the same signal. The different signals result from the nonparallel alignment of the sensors and from the additional magnetic signal induced in each sensor by its motion in the Earth's magnetic field. A magnetometer array experiment was completed in Grass Valley, Nevada, to determine the minimum magnetic signal that could be detected in the presence of background natural field variations and motion of the sensor. Superconducting quantum interference device (SQUID) magnetometers with interval biaxial tiltmeters were used to record the magnetic fields and the motion of the sensors

  11. On polar daily geomagnetic variation

    Directory of Open Access Journals (Sweden)

    Paola De Michelis

    2015-11-01

    Full Text Available The aim of this work is to investigate the nature of the daily magnetic field perturbations produced by ionospheric and magnetospheric currents at high latitudes. We analyse the hourly means of the X and Y geomagnetic field components recorded by a meridian chain of permanent geomagnetic observatories in the polar region of the Northern Hemisphere during a period of four years (1995-1998 around the solar minimum. We apply a mathematical method, known as natural orthogonal component (NOC, which is capable of characterizing the dominant modes of the geomagnetic field daily variability through a set of empirical orthogonal functions (EOFs. Using the first two modes we reconstruct a two-dimensional equivalent current representation of the ionospheric electric currents, which contribute substantially to the geomagnetic daily variations. The obtained current structures resemble the equivalent current patterns of DP2 and DP1. We characterize these currents by studying their evolution with the geomagnetic activity level and by analysing their dependence on the interplanetary magnetic field. The obtained results support the idea of a coexistence of two main processes during all analysed period although one of them, the directly driven process, represents the dominant component of the geomagnetic daily variation.

  12. ULF geomagnetic activity effects on tropospheric temperature, specific humidity, and cloud cover in Antarctica, during 2003-2010

    Science.gov (United States)

    Regi, Mauro; Redaelli, Gianluca; Francia, Patrizia; De Lauretis, Marcello

    2017-06-01

    In the present study we investigated the possible relationship between the ULF geomagnetic activity and the variations of several atmospheric parameters. In particular, we compared the ULF activity in the Pc1-2 frequency band (100 mHz-5 Hz), computed from geomagnetic field measurements at Terra Nova Bay in Antarctica, with the tropospheric temperature T, specific humidity Q, and cloud cover (high cloud cover, medium cloud cover, and low cloud cover) obtained from reanalysis data set. The statistical analysis was conducted during the years 2003-2010, using correlation and Superposed Epoch Analysis approaches. The results show that the atmospheric parameters significantly change following the increase of geomagnetic activity within 2 days. These changes are evident in particular when the interplanetary magnetic field Bz component is oriented southward (Bz0). We suggest that both the precipitation of electrons induced by Pc1-2 activity and the intensification of the polar cap potential difference, modulating the microphysical processes in the clouds, can affect the atmosphere conditions.

  13. Periodic auroral forms and geomagnetic field oscillations in the 1400 MLT region

    International Nuclear Information System (INIS)

    Potemra, T.A.; Vo, H.; Venkatesan, D.; Cogger, L.L.; Erlandson, R.E.; Zanetti, L.J.; Bythrow, P.F.; Anderson, B.J.

    1990-01-01

    The UV images obtained with the Viking satellite often show bright features which resemble beads or pearls aligned in the east-west direction between noon and 1800 MLT. Viking acquired a series of 25 UV images during a 28-min period on July 29, 1986, which showed a distinct series of periodic bright features in this region. Magnetic field and hot plasma measurements obtained by Viking confirm that the UV emissions are colocated with the field line projection of an upward-flowing region 1 Birkeland current and precipitating energetic (∼200 eV) electrons. The magnetic field and electric field measurements show transverse oscillations with a nearly constant period of about 3.5 min from 67 degree invariant latitude equatorward up to the location of the large-scale Birkeland current system near 76 degree invariant latitude. The electric field oscillations lead the magnetic field oscillations by about a quarter-period. The authors interpret the observed oscillations as standing Alfven waves driven at a frequency near the local resonance frequency by a large-scale wave in the boundary layer. They propose that the energy flux of the precipitating low-energy electrons in this afternoon region is modulated by this boundary wave and produces the periodic UV emission features. The results of this study support the view that large-scale oscillations of magnetospheric boundaries, possibly associated with the Kelvin-Helmholtz instability, can modulate currents, particles, and auroral forms

  14. Variations of plasmaspheric field-aligned electron and ion densities (90-4000 km) during quiet to moderately active (Kp < 4) geomagnetic conditions

    Science.gov (United States)

    Sonwalkar, V. S.; Reddy, A.

    2017-12-01

    Variation in field-aligned electron and ion densities as a function of geomagnetic activity are important parameters in the physics of the thermosphere-ionosphere-magnetosphere coupling. Using whistler mode sounding from IMAGE, we report variations in field-aligned electron density and O+/H+ transition height (HT) during two periods (16-23 Aug 2005; 24 Sep-06 Oct 2005) when geomagnetic conditions were quiet (maximum Kp in the past 24 hours, Kpmax,24 ≤ 2) to moderately active (2 quiet time, during moderate geomagnetic activity: (1) O+/H+ transition height was roughly same; (2) electron density variations below HT showed no trend; (3) electron density above HT increased ( 10-40 %). The measured electron density is in agreement with in situ measurements from CHAMP (350 km) and DMSP (850 km) and past space borne (e. g., ISIS) measurements but the F2 peak density is a factor of 2 lower relative to that measured by ground ionosondes and that predicted by IRI-2012 empirical model. The measured transition height is consistent with OGO 4, Explorer 31, and C/NOFS measurements but is lower than that from IRI-2012. The observed variations in electron density at F2 peak are consistent with past work and are attributed to solar, geomagnetic, and meteorological causes [e. g. Risibeth and Mendillo, 2001; Forbes et al., 2000]. To the best of our knowledge, variations in field-aligned electron density above transition height at mid-latitudes during quiet to moderately active periods have not been reported in the past. Further investigation using physics based models (e. g., SAMI3) is required to explain the observed variations.

  15. The effects of solar-geomagnetically induced currents on electrical systems in nuclear power stations

    International Nuclear Information System (INIS)

    Subudhi, M.; Carroll, D.P.; Kasturi, S.

    1994-01-01

    This report presents the results of a study to evaluate the potential effects of geomagnetically induced currents (GICs) caused by the solar disturbances on the in-plant electrical distribution system and equipment in nuclear power stations. The plant-specific electrical distribution system for a typical nuclear plant is modeled using the ElectroMagnetic Transient Program (EMTP). The computer model simulates online equipment and loads from the station transformer in the switchyard of the power station to the safety-buses at 120 volts to which all electronic devices are connected for plant monitoring. The analytical model of the plant's electrical distribution system is studied to identify the transient effects caused by the half-cycle saturation of the station transformers due to GIC. This study provides results of the voltage harmonics levels that have been noted at various electrical buses inside the plant. The emergency circuits appear to be more susceptible to high harmonics due to the normally light load conditions. In addition to steady-state analysis, this model was further analyzed simulating various plant transient conditions (e.g., loss of load or large motor start-up) occurring during GIC events. Detail models of the plant's protective relaying system employed in bus transfer application were included in this model to study the effects of the harmonic distortion of the voltage input. Potential harmonic effects on the uniterruptable power system (UPS) are qualitatively discussed as well

  16. Electron polar cap and the boundary of open geomagnetic field lines.

    Science.gov (United States)

    Evans, L. C.; Stone, E. C.

    1972-01-01

    A total of 333 observations of the boundary of the polar access region for electrons (energies greater than 530 keV) provides a comprehensive map of the electron polar cap. The boundary of the electron polar cap, which should occur at the latitude separating open and closed field lines, is consistent with previously reported closed field line limits determined from trapped-particle data. The boundary, which is sharply defined, seems to occur at one of three discrete latitudes. Although the electron flux is generally uniform across the polar cap, a limited region of reduced access is observed about 10% of the time.

  17. Reconstruction of geomagnetic activity and near-Earth interplanetary conditions over the past 167 yr – Part 2: A new reconstruction of the interplanetary magnetic field

    Directory of Open Access Journals (Sweden)

    M. Lockwood

    2013-11-01

    Full Text Available We present a new reconstruction of the interplanetary magnetic field (IMF, B for 1846–2012 with a full analysis of errors, based on the homogeneously constructed IDV(1d composite of geomagnetic activity presented in Part 1 (Lockwood et al., 2013a. Analysis of the dependence of the commonly used geomagnetic indices on solar wind parameters is presented which helps explain why annual means of interdiurnal range data, such as the new composite, depend only on the IMF with only a very weak influence of the solar wind flow speed. The best results are obtained using a polynomial (rather than a linear fit of the form B = χ · (IDV(1d − βα with best-fit coefficients χ = 3.469, β = 1.393 nT, and α = 0.420. The results are contrasted with the reconstruction of the IMF since 1835 by Svalgaard and Cliver (2010.

  18. Review Article: On the relation between the seismic activity and the Hurst exponent of the geomagnetic field at the time of the 2000 Izu swarm

    Directory of Open Access Journals (Sweden)

    F. Masci

    2013-09-01

    Full Text Available Many papers document the observation of earthquake-related precursory signatures in geomagnetic field data. However, the significance of these findings is ambiguous because the authors did not adequately take into account that these signals could have been generated by other sources, and the seismogenic origin of these signals have not been validated by comparison with independent datasets. Thus, they are not reliable examples of magnetic disturbances induced by the seismic activity. Hayakawa et al. (2004 claim that at the time of the 2000 Izu swarm the Hurst exponent of the Ultra-Low-Frequency (ULF: 0.001–10 Hz band of the geomagnetic field varied in accord with the energy released by the seismicity. The present paper demonstrates that the behaviour of the Hurst exponent was insufficiently investigated and also misinterpreted by the authors. We clearly show that during the Izu swarm the changes of the Hurst exponent were strongly related to the level of global geomagnetic activity and not to the increase of the local seismic activity.

  19. Solar cycle effect on geomagnetic storms caused by interplanetary magnetic clouds

    Directory of Open Access Journals (Sweden)

    C.-C. Wu

    2006-12-01

    Full Text Available We investigated geomagnetic activity which was induced by interplanetary magnetic clouds during the past four solar cycles, 1965–1998. We have found that the intensity of such geomagnetic storms is more severe in solar maximum than in solar minimum. In addition, we affirm that the average solar wind speed of magnetic clouds is faster in solar maximum than in solar minimum. In this study, we find that solar activity level plays a major role on the intensity of geomagnetic storms. In particular, some new statistical results are found and listed as follows. (1 The intensity of a geomagnetic storm in a solar active period is stronger than in a solar quiet period. (2 The magnitude of negative Bzmin is larger in a solar active period than in a quiet period. (3 Solar wind speed in an active period is faster than in a quiet period. (4 VBsmax in an active period is much larger than in a quiet period. (5 Solar wind parameters, Bzmin, Vmax and VBsmax are correlated well with geomagnetic storm intensity, Dstmin during a solar active period. (6 Solar wind parameters, Bzmin, and VBsmax are not correlated well (very poorly for Vmax with geomagnetic storm intensity during a solar quiet period. (7 The speed of the solar wind plays a key role in the correlation of solar wind parameters vs. the intensity of a geomagnetic storm. (8 More severe storms with Dstmin≤−100 nT caused by MCs occurred in the solar active period than in the solar quiet period.

  20. Geomagnetic radioflash unfold (GRUF)

    International Nuclear Information System (INIS)

    Malik, J.S.

    1975-08-01

    A method of inverting the geomagnetic component of the radioflash signal from a nuclear explosion to obtain the gamma-ray time history was proposed by E. D. Dracott of the Atomic Weapons Research Establishment. A simplified development of an elaboration by B. R. Suydam has been programmed for small calculators in a form suitable for interim field analysis of such data. The development of the program is contained in the report

  1. Accurate Predictions of Mean Geomagnetic Dipole Excursion and Reversal Frequencies, Mean Paleomagnetic Field Intensity, and the Radius of Earth's Core Using McLeod's Rule

    Science.gov (United States)

    Voorhies, Coerte V.; Conrad, Joy

    1996-01-01

    The geomagnetic spatial power spectrum R(sub n)(r) is the mean square magnetic induction represented by degree n spherical harmonic coefficients of the internal scalar potential averaged over the geocentric sphere of radius r. McLeod's Rule for the magnetic field generated by Earth's core geodynamo says that the expected core surface power spectrum (R(sub nc)(c)) is inversely proportional to (2n + 1) for 1 less than n less than or equal to N(sub E). McLeod's Rule is verified by locating Earth's core with main field models of Magsat data; the estimated core radius of 3485 kn is close to the seismologic value for c of 3480 km. McLeod's Rule and similar forms are then calibrated with the model values of R(sub n) for 3 less than or = n less than or = 12. Extrapolation to the degree 1 dipole predicts the expectation value of Earth's dipole moment to be about 5.89 x 10(exp 22) Am(exp 2)rms (74.5% of the 1980 value) and the expected geomagnetic intensity to be about 35.6 (mu)T rms at Earth's surface. Archeo- and paleomagnetic field intensity data show these and related predictions to be reasonably accurate. The probability distribution chi(exp 2) with 2n+1 degrees of freedom is assigned to (2n + 1)R(sub nc)/(R(sub nc). Extending this to the dipole implies that an exceptionally weak absolute dipole moment (less than or = 20% of the 1980 value) will exist during 2.5% of geologic time. The mean duration for such major geomagnetic dipole power excursions, one quarter of which feature durable axial dipole reversal, is estimated from the modern dipole power time-scale and the statistical model of excursions. The resulting mean excursion duration of 2767 years forces us to predict an average of 9.04 excursions per million years, 2.26 axial dipole reversals per million years, and a mean reversal duration of 5533 years. Paleomagnetic data show these predictions to be quite accurate. McLeod's Rule led to accurate predictions of Earth's core radius, mean paleomagnetic field

  2. On the usage of geomagnetic indices for data selection in internal field modelling

    DEFF Research Database (Denmark)

    Kauristie, K.; Morschhauser, A.; Olsen, Nils

    2017-01-01

    are primarily used in data selection criteria for weak magnetic activity.The publicly available extensive data bases of index values are used to derive joint conditional Probability Distribution Functions (PDFs) for different pairs of indices in order to investigate their mutual consistency in describing quiet......) as derived from solar wind observations. We use in our PDF analysis the PC-index as a proxy for MEF and estimate the magnetic activity level at auroral latitudes with the AL-index. With these boundary conditions we conclude that the quiet time conditions that are typically used in main field modelling (PC...

  3. The CHAOS-3 Geomagnetic Field Model and Candidates for the 11th Generation IGRF

    DEFF Research Database (Denmark)

    Olsen, Nils; Mandea, Mioara; Sabaka, Terence J.

    2010-01-01

    As a part of the 11th generation IGRF defined by IAGA, we propose a candidate model for the DGRF 2005, a candidate model for IGRF 2010 and a candidate model for the mean secular variation between 2010 and 2015. These candidate models, the derivation of which is described in the following, are bas...... = 20, described by order 6 splines (with 6-month knot spacing) spanning the time interval 1997.0–2010.0. The third time derivative of the squared magnetic field intensity is regularized at the core-mantle boundary. No spatial regularization is applied....

  4. Geomagnetic field fluctuations during the passage at the Earth’s orbit of the tail of the 15–16 July 2000 ejecta

    Directory of Open Access Journals (Sweden)

    P. Francia

    2002-08-01

    Full Text Available In this work we present the analysis of the geomagnetic field fluctuations observed at different ground stations (approximately along two latitudinal arrays, separated by several hours in local time during the passage at the Earth’s orbit of the tail of the 15–16 July 2000 coronal ejecta. The time interval of interest is characterized by northward interplanetary magnetic field conditions and several changes in the solar wind dynamic pressure. We found at all stations, both in the local morning and in the local evening, simultaneous and highly coherent waves at the same discrete frequencies (~ 1.8 and ~ 3.6 mHz and suggest a possible interpretation in terms of global compressional modes driven by an impulsive variation of the solar wind pressure. Along the array situated in the morning sector, at the highest latitudes, the higher frequency mode seems to couple with the local field line resonance; on the other hand, along the array situated in the evening sector, the characteristics of the observed fluctuations suggest that the highest latitude station could be located at the footprint of open field lines. Our results also show that solar wind pressure variations observed during the recovery phase of the storm do not find correspondence in the geomagnetic field variations, regardless of local time and latitude; conversely, some hours later continuous solar wind pressure variations find a close correspondence in the geomagnetic field variations at all stations.Key words. Magnetospheric physics (solar wind-magnetosphere interaction; MHD waves and instabilities

  5. Full-Vector Geomagnetic Field Records for the Late Quaternary from El Hierro and the Eifel

    Science.gov (United States)

    Monster, M.; de Groot, L. V.; Dekkers, M. J.; van Galen, J. P.; Kuiper, K.; Langemeijer, J.; Wiarda, L. R.

    2015-12-01

    Twenty-eight flows in the age range of c. 100 to c. 500 ka were sampled on the island of El Hierro (Canary Islands, Spain) and twelve in the Eifel (Germany). All sites from the Eifel had been previously dated, whereas the ages of the El Hierro flows were approximated by stratigraphic and directional coherency with a dated section c. 4 km to the north-east. Additionally, seven flows were dated using the ThermoFisher Helix multi-collector mass spectrometer at VU University Amsterdam (the Netherlands). The rocks were subjected to standard rock magnetic and palaeomagnetic experiments. Palaeodirections were obtained using both thermal and alternating-field demagnetisation techniques. Apart from two sites that appear to have been struck by lightning, all sites yielded reliable palaeodirections. Absolute palaeointensities were obtained using three different methods: IZZI-Thellier, the multispecimen protocol and the calibrated pseudo-Thellier technique. Nineteen sites from El Hierro and all twelve sites from the Eifel passed the selection criteria for one or more of these methods, with the pseudo-Thellier technique having the highest success rate (c. 35% for El Hierro and 55% for the Eifel). The palaeointensities obtained for El Hierro were mostly between 20 and 40 μT and for the Eifel between 20 and 50 μT, both with a tendency to be somewhat low compared to the present-day field of c. 39 μT and c. 49 μT, respectively. The pseudo-Thellier and multispecimen methods generally yielded lower palaeointensities than IZZI-Thellier, but no clear trend was visible.

  6. A model of the geomagnetic field and its secular variation for epoch 2000 estimated from Orsted data

    DEFF Research Database (Denmark)

    Olsen, Nils

    2002-01-01

    as measured simultaneously by globally distributed geomagnetic observatories. In addition, the observatory data are used to constrain secular variation. The model is estimated using an iteratively reweighted least-squares method with Huber weights to account for the non-Gaussian data error distribution...

  7. The national geomagnetic initiative

    Science.gov (United States)

    1993-01-01

    The Earth's magnetic field, through its variability over a spectrum of spatial and temporal scales, contains fundamental information on the solid Earth and geospace environment (the latter comprising the atmosphere, ionosphere, and magnetosphere). Integrated studies of the geomagnetic field have the potential to address a wide range of important processes in the deep mantle and core, asthenosphere, lithosphere, oceans, and the solar-terrestrial environment. These studies have direct applications to important societal problems, including resource assessment and exploration, natural hazard mitigation, safe navigation, and the maintenance and survivability of communications and power systems on the ground and in space. Studies of the Earth's magnetic field are supported by a variety of federal and state agencies as well as by private industry. Both basic and applied research is presently supported by several federal agencies, including the National Science Foundation (NSF), U.S. Geological Survey (USGS), U.S. Department of Energy (DOE), National Oceanic and Atmospheric Administration (NOAA), National Aeronautics and Space Administration (NASA), and U.S. Department of Defense (DOD) (through the Navy, Air Force, and Defense Mapping Agency). Although each agency has a unique, well-defined mission in geomagnetic studies, many areas of interest overlap. For example, NASA, the Navy, and USGS collaborate closely in the development of main field reference models. NASA, NSF, and the Air Force collaborate in space physics. These interagency linkages need to be strengthened. Over the past decade, new opportunities for fundamental advances in geomagnetic research have emerged as a result of three factors: well-posed, first-order scientific questions; increased interrelation of research activities dealing with geomagnetic phenomena; and recent developments in technology. These new opportunities can be exploited through a national geomagnetic initiative to define objectives and

  8. Limitations in paleomagnetic data and modelling techniques and their impact on Holocene geomagnetic field models

    DEFF Research Database (Denmark)

    Panovska, S.; Korte, M.; Finlay, Chris

    2015-01-01

    orientation is highlighted by inconsistencies in the West Pacific and Australian sediment records in CALS10k.1b model. Great care must also be taken to assess uncertainties associated with both paleomagnetic and age data and to evaluate the effects of poor data distribution. New consistently allocated....... This would be facilitated by realistic and globally consistent data and age uncertainties from the paleomagnetic community....

  9. Rapid geomagnetic field intensity variations in the Near East during the 6th millennium BC: New archeointensity data from Halafian site Yarim Tepe II (Northern Iraq)

    Science.gov (United States)

    Yutsis-Akimova, Stanislava; Gallet, Yves; Amirov, Shahmardan

    2018-01-01

    We present new archeointensity results from a series of groups of pottery fragments that were collected from the multi-layered archeological site Yarim Tepe II in Northern Iraq (Northern Mesopotamia) dated to the 6th millennium BC. This site comprises a 7-m-thick sequence of archeological deposits encompassing the Middle Halaf, Late Halaf and the Halaf-Ubaid Transitional (HUT), between ∼5750 and ∼5000 BC according to the chronology currently considered for the Halafian archeological period. Three new radiocarbon dates obtained from bone fragments confirm that Yarim Tepe II was likely not occupied before the Middle Halaf, as was independently established from archeological constraints. Archeointensity determinations were carried out using the protocol developed for the Triaxe magnetometer. This procedure takes into account thermoremanent magnetization anisotropy and cooling rate effects. 114 fragments fulfilled our set of archeointensity selection criteria, with intensity data obtained from at least two but most often three specimens per fragment. Mean archeointensity values were estimated for 23 groups of fragments well distributed across the entire stratigraphic sequence from the averaging of the data obtained from a minimum of three fragments per group. These values were dated using a bootstrap procedure relying on the stratigraphic position of the different groups of fragments and on the different age constraints available inside the Yarim Tepe II sequence. The new data show a significant decrease in geomagnetic field intensity by ∼12 μT between the Middle Halaf and the Late Halaf-HUT time interval. This decrease was accompanied by a short intensity peak, which may have lasted only a few decades, around the Middle Halaf-Late Halaf boundary, at ∼5500 BC. This evolution is quite similar to that observed from Syrian and Bulgarian archeointensity data, even though the precise duration of the intensity peak is presently questionable. The Bulgarian data set

  10. Statistical study of interplanetary condition effect on geomagnetic storms: 2. Variations of parameters

    Science.gov (United States)

    Yermolaev, Yu. I.; Lodkina, I. G.; Nikolaeva, N. S.; Yermolaev, M. Yu.

    2011-02-01

    We investigate the behavior of mean values of the solar wind’s and interplanetary magnetic field’s (IMF) parameters and their absolute and relative variations during the magnetic storms generated by various types of the solar wind. In this paper, which is a continuation of paper [1], we, on the basis of the OMNI data archive for the period of 1976-2000, have analyzed 798 geomagnetic storms with D st ≤ -50 nT and their interplanetary sources: corotating interaction regions CIR, compression regions Sheath before the interplanetary CMEs; magnetic clouds MC; “Pistons” Ejecta, and an uncertain type of a source. For the analysis the double superposed epoch analysis method was used, in which the instants of the magnetic storm onset and the minimum of the D st index were taken as reference times. It is shown that the set of interplanetary sources of magnetic storms can be sub-divided into two basic groups according to their slowly and fast varying characteristics: (1) ICME (MC and Ejecta) and (2) CIR and Sheath. The mean values, the absolute and relative variations in MC and Ejecta for all parameters appeared to be either mean or lower than the mean value (the mean values of the electric field E y and of the B z component of IMF are higher in absolute value), while in CIR and Sheath they are higher than the mean value. High values of the relative density variation sN/ are observed in MC. At the same time, the high values for relative variations of the velocity, B z component, and IMF magnitude are observed in Sheath and CIR. No noticeable distinctions in the relationships between considered parameters for moderate and strong magnetic storms were observed.

  11. Space weather events in July 1982 and October 2003 and the effects of geomagnetically induced currents on Swedish technical systems

    Directory of Open Access Journals (Sweden)

    M. Wik

    2009-04-01

    Full Text Available In this paper, we analyse in detail two famous space weather events; a railway problem on 13–14 July 1982 and a power blackout on 30 October 2003. Both occurred in Sweden during very intensive space weather storms and each of them a few years after the sunspot maximum. This paper provides a description of the conditions on the Sun and in the solar wind leading to the two GIC events on the ground. By applying modelling techniques introduced and developed in our previous paper, we also calculate the horizontal geoelectric field at the Earth's surface in southern Sweden during the two storms as well as GIC flowing in the southern Swedish 400 kV power grid during the event in October 2003. The results from the calculations agree with all measured data available. In the July-1982 storm, the geomagnetic field variation, ΔBx, reached values up to ~2500 nT/min and the geoelectric field reached values in the order of several volts per kilometer. In the October-2003 storm, the geomagnetic field fluctuations were smaller. However, GIC of some hundreds of amperes flowed in the power grid during the October-2003 event. Technological issues related to the railway signalling in July 1982 and to the power network equipment in October 2003 are also discussed.

  12. The geomagnetic coast effect at two 80° S stations in Antarctica, observed in the ULF range

    Directory of Open Access Journals (Sweden)

    M. Regi

    2018-02-01

    Full Text Available We examined the coast effect in Antarctica along the 80° S magnetic parallel. We used the geomagnetic field measurements at the two coastal stations of Mario Zucchelli Station and Scott Base, and, as a reference, at the inland temporary station Talos Dome, during 18 January–14 March 2008. Spectral analysis in the Pc5 frequency range (1–7 mHz revealed large differences between coastal and inland stations, such as higher spectral power levels in the vertical component and higher coherence between horizontal and vertical components at coastal stations. Using the interstation method on selected active time intervals, with Talos Dome as a remote reference station, we found that remote reference induction arrows are directed almost perpendicularly with respect to their respective coastlines. Moreover, the single-station analysis shows that at Talos Dome the amplitude of the induction arrows is much smaller than at coastal stations. These results clearly indicate that coast effect at a few hundred kilometers from the coastline is relatively small. The coast effect on polarization parameters was examined, for a Pc5 event that occurred on 11 March 2008. The results evidenced that the azimuthal angle of polarized signals at one of the coastal stations is largely different with respect to the inland station (by  ∼  110°, while the polarization ratio and ellipticity attain comparable values. We proposed a correction method of the polarization parameters, which operates directly in the frequency domain, obtaining comparable azimuthal angles at coastal and inland stations.

  13. Geomagnetic field: Conclusions

    Digital Repository Service at National Institute of Oceanography (India)

    Gorodnitsky, A; Subrahmanyam, A

    stream_size 1 stream_content_type text/plain stream_name Mem_Geol_Soc_India_1998_39_38.pdf.txt stream_source_info Mem_Geol_Soc_India_1998_39_38.pdf.txt Content-Encoding ISO-8859-1 Content-Type text/plain; charset=ISO-8859-1 ...

  14. New parameterization of external and induced fields in geomagnetic field modeling, and a candidate model for IGRF 2005

    DEFF Research Database (Denmark)

    Olsen, Nils; Sabaka, T.J.; Lowes, F.

    2005-01-01

    When deriving spherical harmonic models of the Earth's magnetic field, low-degree external field contributions are traditionally considered by assuming that their expansion coefficient q(1)(0) varies linearly with the D-st-index, while induced contributions are considered assuming a constant ratio...... Q(1) of induced to external coefficients. A value of Q(1) = 0.27 was found from Magsat data and has been used by several authors when deriving recent field models from Orsted and CHAMP data. We describe a new approach that considers external and induced field based on a separation of D-st = E-st + I......-st into external (E-st) and induced (I-st) parts using a 1D model of mantle conductivity. The temporal behavior of q(1)(0) and of the corresponding induced coefficient are parameterized by E-st and I-st, respectively. In addition, we account for baseline-instabilities of D-st by estimating a value of q(1...

  15. The Geomagnetic Field Recorded in Sediments of the Tuzla Section (the Krasnodar Territory, Russia) over the Time Interval 120-70 ka

    DEFF Research Database (Denmark)

    Pilipenko, Olga; Abrahamsen, N.; Trubikhin, V. M.

    2007-01-01

    Petro- and paleomagnetic methods are applied to the study of the lower part of the Early Pleistocene Tuzla section on the Black Sea coast of the Taman Peninsula. This part of the section is composed of marine and lagoonal sediments deposited over the time interval 120-70 ka. The measured curves...... of the variation in the geomagnetic field inclination reveal an anomalous direction dated at ~110 ka which coincides with a similar anomalous direction in the Eltigen section (Ukraine) correlating with the Blake paleomagnetic event. The significant correlation between the time series NRM0.015/SIRM0.015 (Tuzla...

  16. Solar flares associated coronal mass ejection accompanied with DH type II radio burst in relation with interplanetary magnetic field, geomagnetic storms and cosmic ray intensity

    Science.gov (United States)

    Chandra, Harish; Bhatt, Beena

    2018-04-01

    In this paper, we have selected 114 flare-CME events accompanied with Deca-hectometric (DH) type II radio burst chosen from 1996 to 2008 (i.e., solar cycle 23). Statistical analyses are performed to examine the relationship of flare-CME events accompanied with DH type II radio burst with Interplanetary Magnetic field (IMF), Geomagnetic storms (GSs) and Cosmic Ray Intensity (CRI). The collected sample events are divided into two groups. In the first group, we considered 43 events which lie under the CME span and the second group consists of 71 events which are outside the CME span. Our analysis indicates that flare-CME accompanied with DH type II radio burst is inconsistent with CSHKP flare-CME model. We apply the Chree analysis by the superposed epoch method to both set of data to find the geo-effectiveness. We observed different fluctuations in IMF for arising and decay phase of solar cycle in both the cases. Maximum decrease in Dst during arising and decay phase of solar cycle is different for both the cases. It is noted that when flare lie outside the CME span CRI shows comparatively more variation than the flare lie under the CME span. Furthermore, we found that flare lying under the CME span is more geo effective than the flare outside of CME span. We noticed that the time leg between IMF Peak value and GSs, IMF and CRI is on average one day for both the cases. Also, the time leg between CRI and GSs is on average 0 to 1 day for both the cases. In case flare lie under the CME span we observed high correlation (0.64) between CRI and Dst whereas when flare lie outside the CME span a weak correlation (0.47) exists. Thus, flare position with respect to CME span play a key role for geo-effectiveness of CME.

  17. Geomagnetically induced pipe-to-soil voltages in the Czech oil pipelines during October-November 2003

    Directory of Open Access Journals (Sweden)

    P. Hejda

    2005-11-01

    Full Text Available Whereas geomagnetically induced currents are a source of problems for technological systems mainly at high geomagnetic latitudes, strong geomagnetic disturbances can have quite strong effects even at mid-latitudes. This paper deals with the analysis of the pipe-to-soil (P/S voltage measured in oil pipelines in the Czech Republic during the Halloween magnetic storms in 2003. It is shown that the simplest - plane wave and uniform Earth-model of the electric field corresponds well to the measured P/S voltage. Although the largest amplitudes of the geomagnetic field were reached on the onset of the geomagnetic storm, large voltages were also induced in the main and recovery phases due to Pc5 oscillations.

  18. A modeling study of ionospheric F2-region storm effects at low geomagnetic latitudes during 17-22 March 1990

    Directory of Open Access Journals (Sweden)

    A. V. Pavlov

    2006-05-01

    Full Text Available We have presented a comparison between the modeled NmF2 and hmF2, and NmF2 and hmF2, which were observed in the low-latitude ionosphere simultaneously by the Kokubunji, Yamagawa, Okinawa, Manila, Vanimo, and Darwin ionospheric sounders, by the middle and upper atmosphere (MU radar during 17-22 March 1990, and by the Arecibo radar for the time period of 20-22 March 1990. A comparison between the electron and ion temperatures measured by the MU and Arecibo radars and those produced by the model of the ionosphere and plasmasphere is presented. The empirical zonal electric field, the meridional neutral wind taken from the HWM90 wind model, and the NRLMSISE-00 neutral temperature and densities are corrected so that the model results agree reasonably with the ionospheric sounder observations, and the MU and Arecibo radar data. It is proved that the nighttime weakening of the equatorial zonal electric field (in comparison with that produced by the empirical model of Fejer and Scherliess (1997 or Scherliess and Fejer (1999, in combination with the corrected wind-induced plasma drift along magnetic field lines, provides the development of the nighttime enhancements in NmF2 observed over Manila during 17-22 March 1990. As a result, the new physical mechanism of the nighttime NmF2 enhancement formation close to the geomagnetic equator includes the nighttime weakening of the equatorial zonal electric field and equatorward nighttime plasma drift along magnetic field lines caused by neutral wind in the both geomagnetic hemispheres. It is found that the latitudinal positions of the crests depend on the E×B drift velocity and on the neutral wind velocity. The relative role of the main mechanisms of the equatorial anomaly suppression observed during geomagnetic storms is studied for the first time in terms of storm-time variations of the model crest-to-trough ratios of the equatorial anomaly. During most of the studied time period, a total contribution from

  19. Kinematic reversal schemes for the geomagnetic dipole.

    Science.gov (United States)

    Levy, E. H.

    1972-01-01

    Fluctuations in the distribution of cyclonic convective cells, in the earth's core, can reverse the sign of the geomagnetic field. Two kinematic reversal schemes are discussed. In the first scheme, a field maintained by cyclones concentrated at low latitude is reversed by a burst of cyclones at high latitude. Conversely, in the second scheme, a field maintained predominantly by cyclones in high latitudes is reversed by a fluctuation consisting of a burst of cyclonic convection at low latitude. The precise fluid motions which produce the geomagnetic field are not known. However, it appears that, whatever the details are, a fluctuation in the distribution of cyclonic cells over latitude can cause a geomagnetic reversal.

  20. Geomagnetic activity associated with Earth passage of interplanetary shock disturbances and coronal mass ejections

    International Nuclear Information System (INIS)

    Gosling, J.T.; McComas, D.J.; Phillips, J.L.; Bame, S.J.

    1991-01-01

    Previous work indicates that virtually all transient shock wave disturbances in the solar wind are driven by fast coronal mass ejection events (CMEs). Using a recently appreciated capability for distinguishing CMEs in solar wind data in the form of counterstreaming solar wind electron events, this paper explores the overall effectiveness of shock wave disturbances and CMEs in general in stimulating geomagnetic activity. The study is confined to the interval from mid-August 1978 through mid-October 1982, spanning the last solar activity maximum, when ISEE 3 was in orbit about the L1 Lagrange point 220 R e upstream from Earth. The authors find that all but one of the 37 largest geomagnetic storms in that era were associated with Earth passage of CMEs and/or shock disturbances, with the large majority of these storms being associated with interplanetary events where Earth encountered both a shock and the CME driving the shock (shock/CME events). Although CMEs and/or shock disturbances were increasingly the cause of geomagnetic activity as the level of geomagnetic activity increased, many smaller geomagnetic disturbances were unrelated to these events. Further, approximately half of all CMEs and half of all shock disturbances encountered by Earth did not produce any substantial geomagnetic activity as measured by the planetary geomagnetic index Kp. The geomagnetic effectiveness of Earth directed CMEs and shock wave disturbances was directly related to the flow speed, the magnetic field magnitude, and the strength of the southward (GSM) field component associated with the events. The initial speed of a CME close to the Sun appears to be the most crucial factor in determining if an earthward directed event will be effective in exciting a large geomagnetic disturbance

  1. [Seasonal variations in the myocardial infarction incidence and possible effects of geomagnetic micropulsations on the cardiovascular system in humans].

    Science.gov (United States)

    Kleĭmenova, N G; Kozyreva, O V; Breus, T K; Rapoport, S I

    2007-01-01

    The analysis of the ambulance calls in Moscow, related to myocardial infarction (85.000 events), sudden death (71.700 events), and hypertension crises (165.500 events) over the period of 1979-1981 demonstrated their clear seasonal variations with a profound summer minimum and a winter maximum. The same results were obtained in the analysis of statistical monthly data on sudden death from infarction in Bulgaria over the period of 15 years (1970-1985). However, there are a great number of clinical and statistical studies confirming the rises in the incidence of myocardial infarction, hypertension crise, and sudden death during geomagnetic disturbances, which have maximum occurrence near equinox, not in winter. In order to explain this contradiction, we suggested that one of critical factors that affect the human cardiovascular system is geomagnetic micropulsations Pc1 having the frequency comparable with the frequency of heart rate beatings and winter maximum in their occurrence. The results of a comparative analysis of data of ambulance calls in Moscow related to myocardial infarction and sudden death and the catalog of Pc1 observations at the geophysical observatory "Borok" (Yaroslavl region) are presented. It is shown that in approximately 70% of days with an anomalously large number of ambulance calls related to myocardial infarction, Pc1 micropulsations have been registered. The probability of simultaneous occurrence of myocardial infarction and Pc1 in the winter season was 1.5 times greater than their accidental coincidence. Moreover, it was found that in winter the effects of magnetic storms and Pc1 IM(A) were much higher than in summer. We suggested that one of possible reasons for the seasonal variations in the occurrence of myocardial infarction is an increase in the production of the pineal hormone melatonin in winter which leads to an unstable state of the human organism and an increase in its sensitivity to the effect of geomagnetic pulsations.

  2. The effect of solar-geomagnetic activity during and after admission on survival in patients with acute coronary syndromes

    Science.gov (United States)

    Vencloviene, Jone; Babarskiene, Ruta; Milvidaite, Irena; Kubilius, Raimondas; Stasionyte, Jolanta

    2014-08-01

    A number of studies have established the effects of solar-geomagnetic activity on the human cardio-vascular system. It is plausible that the heliophysical conditions existing during and after hospital admission may affect survival in patients with acute coronary syndromes (ACS). We analyzed data from 1,413 ACS patients who were admitted to the Hospital of Kaunas University of Medicine, Lithuania, and who survived for more than 4 days. We evaluated the associations between active-stormy geomagnetic activity (GMA), solar proton events (SPE), and solar flares (SF) that occurred 0-3 days before and after admission, and 2-year survival, based on Cox's proportional-hazards model, controlling for clinical data. After adjustment for clinical variables, active-stormy GMA on the 2nd day after admission was associated with an increased (by 1.58 times) hazard ratio (HR) of cardiovascular death (HR = 1.58, 95 % CI 1.07-2.32). For women, geomagnetic storm (GS) 2 days after SPE occurred 1 day after admission increased the HR by 3.91 times (HR = 3.91, 95 % CI 1.31-11.7); active-stormy GMA during the 2nd-3rd day after admission increased the HR by over 2.5 times (HR = 2.66, 95 % CI 1.40-5.03). In patients aged over 70 years, GS occurring 1 day before or 2 days after admission, increased the HR by 2.5 times, compared to quiet days; GS in conjunction with SF on the previous day, nearly tripled the HR (HR = 3.08, 95 % CI 1.32-7.20). These findings suggest that the heliophysical conditions before or after the admission affect the hazard ratio of lethal outcome; adjusting for clinical variables, these effects were stronger for women and older patients.

  3. Geomagnetic Principal Magnetic Storms

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The abbreviations used for observatory names are as follows: GEOMAGNETIC OBSERVATORIES Code Station Geomagnetic Latitude ABG Alibag AMS Martin de Vivie. These data...

  4. Circulation of the polar thermosphere during geomagnetically quiet and active times as observed by Dynamics Explorer 2

    International Nuclear Information System (INIS)

    McCormac, F.G.; Killeen, T.L.; Thayer, J.P.; Hernandez, G.; Tschan, C.R.; Ponthieu, J.J.; Spencer, N.W.

    1987-01-01

    Neutral wind measurements obtained by instruments on board the Dynamics Explorer 2 (DE 2) spacecraft have been used to study the effects of geomagnetic activity on the circulation of the high-latitude neutral thermosphere for solar maximum conditions during the periods of November 1981 through January 1982 and November 1982 through January 1983. The data have been sorted and ordered according to the two geophysical indices Kp and (auroral electrojet) AE. Simple expressions have been derived which describe (1) the maximum antisunward wind speed in the geomagnetic polar cap, (2) the maximum sunward wind speeds in the dawn and dusk sectors of the auroral oval, and (3) the latitudinal extent of the polar cap antisunward neutral wind as functions of Kp and AE. The results show a positive correlation between the geomagnetic indices and the three characteristic features of the neutral circulation described above. Averaged vector wind fields in geomagnetic coordinates for Kp ≤ 2 and Kp ≥ 4 in both northern and southern hemispheres for the 6 months have been derived from the data. In doing this, a first-order invariance of the neutral wind circulation in geomagnetic coordinates as a function of universal time (UT) was assumed. The results show a two-cell circulation pattern in the northern winter hemisphere for both quiet and active geomagnetic periods. The cell sizes increase with increasing geomagnetic activity. The dusk cell is always dominant. The southern summer hemisphere averages show only the dusk circulation cell for both quiet and active geomagnetic periods. The cell sizes increase with increasing geomagnetic activity. The dusk cell is always dominant. The southern summer hemisphere averages show only the dusk circulation cell for both quiet and active geomagnetic periods. A diminution of this cell occurs for reduced levels of geomagnetic activity

  5. Development of deepsea geomagnetic and electric fields observation system using submarine cables. 2; Kaitei cable riyo no shinkai chijiki denba kansoku station no kaihatsu. 2

    Energy Technology Data Exchange (ETDEWEB)

    Miyazaki, T; Nakatsuka, T; Murakami, Y [Geological Survey of Japan, Tsukuba (Japan); Onishi, N

    1997-10-22

    VENUS Project aims at constructing a deepsea geomagnetic and electric fields observation station to cover the Ryukyu Trench, Philippine Sea, and Mariana Trough, by the reuse of the Okinawa-Guam commercial marine communication cable now out of service. This report deals with a scenario for the development of a geomagnetic/electric observation system as a part of the planned long-term sea bottom observation effort and the installation of equipment therefor. The first stage consists of the towing of a frame mounted with the system equipment and a cable to connect to a data transmission relay and their placement at a specified location on the sea bottom. The cable is extended toward the relay and its leading end is allowed to land near the relay. Next, a manned submersible vessel is used to connect the cable end to the relay, the submersible vessel is next driven along the connection cable toward the system equipment for the determination of the position and orientation of the system equipment, and then electrodes are arrayed at an interval of 20m into an L-letter configuration. The system will be established in March, 1998, on the 4200m-deep continental slope of the Ryukyu Trench approximately 90km southeast of Okinawa. 2 figs., 1 tab.

  6. VLF Wave Properties During Geomagnetic Storms

    Science.gov (United States)

    Blancarte, J.; Artemyev, A.; Mozer, F.; Agapitov, O. V.

    2017-12-01

    Whistler-mode chorus is important for the global dynamics of the inner magnetosphere electron population due to its ability to scatter and accelerate electrons of a wide energy range in the outer radiation belt. The parameters of these VLF emissions change dynamically during geomagnetic storms. Presented is an analysis of four years of Van Allen probe data, utilizing electric and magnetic field in the VLF range focused on the dynamics of chorus wave properties during the enhancement of geomagnetic activity. It is found that VLF emissions respond to geomagnetic storms in more complicated ways than just by affecting the waves' amplitude growth or depletion. Oblique wave amplitudes grow together with parallel waves during periods of intermediate geomagnetic activity, while the occurrence rate of oblique waves decreases during larger geomagnetic storms.

  7. Daily variation characteristics at polar geomagnetic observatories

    Science.gov (United States)

    Lepidi, S.; Cafarella, L.; Pietrolungo, M.; Di Mauro, D.

    2011-08-01

    This paper is based on the statistical analysis of the diurnal variation as observed at six polar geomagnetic observatories, three in the Northern and three in the Southern hemisphere. Data are for 2006, a year of low geomagnetic activity. We compared the Italian observatory Mario Zucchelli Station (TNB; corrected geomagnetic latitude: 80.0°S), the French-Italian observatory Dome C (DMC; 88.9°S), the French observatory Dumont D'Urville (DRV; 80.4°S) and the three Canadian observatories, Resolute Bay (RES; 83.0°N), Cambridge Bay (CBB; 77.0°N) and Alert (ALE, 87.2°N). The aim of this work was to highlight analogies and differences in daily variation as observed at the different observatories during low geomagnetic activity year, also considering Interplanetary Magnetic Field conditions and geomagnetic indices.

  8. Full vector archaeomagnetic records from Anatolia between 2400 and 1350 BCE: Implications for geomagnetic field models and the dating of fires in antiquity

    Science.gov (United States)

    Ertepinar, P.; Langereis, C. G.; Biggin, A. J.; de Groot, L. V.; Kulakoğlu, F.; Omura, S.; Süel, A.

    2016-01-01

    Anatolia, as one of the busiest crossroads of ancient civilizations, provides an ideal platform for archaeomagnetic studies. Previous results from the Middle East have suggested the occurrence of a strong peak in geomagnetic intensity at ∼1000 BCE associated with dramatic field strength variations that could require a radical rethinking of geodynamo theory. The behavior of the field in the centuries preceding this peak remains poorly constrained, however. Here we present the results of full-vector archaeomagnetic experiments performed on 18 sets of samples from three archaeological sites belonging to Assyrian Trade Colony and Hittite periods. Associated rock magnetic analyses showed that the major magnetic carrier is magnetite chemically stable up to 700 °C and the magnetic mineral assemblage is composed mostly of non-interacting PSD grains. The directional results are compared with existing data and with the most recent global geomagnetic field models pfm9k.1b and SHA.DIF.14k. The directions are in remarkably good agreement with SHA.DIF.14k which is based on archaeomagnetic and lava flow data. Together with our earlier results from Anatolia, we triple the existing database of directions for the 700 year long period 2200-1500 BCE, over a large region from Greece to Azerbaijan, and from Moldavia/Ukraine to Egypt. Three archaeointensity methods: thermal IZZI-Thellier, microwave Thellier and the multi-specimen protocol (MSP) produced virtual axial dipole moment estimates (9.0- 10.9 ×1022 Am2) that are somewhat higher than contemporaneous (regional and global) data and model predictions suggesting that the field was already substantially stronger than today more than 800 years prior to the reported peak. In addition to constraining geomagnetic variability, our data also allow us to assign relative dates to inferred fire events in the Assyrian Trade Colony Period sites. This allows us to conclude that the fire events at the largest site, Kültepe, were not all

  9. Zonal wind observations during a geomagnetic storm

    Science.gov (United States)

    Miller, N. J.; Spencer, N. W.

    1986-01-01

    In situ measurements taken by the Wind and Temperature Spectrometer (WATS) onboard the Dynamics Explorer 2 spacecraft during a geomagnetic storm display zonal wind velocities that are reduced in the corotational direction as the storm intensifies. The data were taken within the altitudes 275 to 475 km in the dusk local time sector equatorward of the auroral region. Characteristic variations in the value of the Dst index of horizontal geomagnetic field strength are used to monitor the storm evolution. The detected global rise in atmospheric gas temperature indicates the development of thermospheric heating. Concurrent with that heating, reductions in corotational wind velocities were measured equatorward of the auroral region. Just after the sudden commencement, while thermospheric heating is intense in both hemispheres, eastward wind velocities in the northern hemisphere show reductions ranging from 500 m/s over high latitudes to 30 m/s over the geomagnetic equator. After 10 hours storm time, while northern thermospheric heating is diminishing, wind velocity reductions, distinct from those initially observed, begin to develop over southern latitudes. In the latter case, velocity reductions range from 300 m/s over the highest southern latitudes to 150 m/s over the geomagnetic equator and extend into the Northern Hemisphere. The observations highlight the interhemispheric asymmetry in the development of storm effects detected as enhanced gas temperatures and reduced eastward wind velocities. Zonal wind reductions over high latitudes can be attributed to the storm induced equatorward spread of westward polar cap plasma convection and the resulting plasma-neutral collisions. However, those collisions are less significant over low latitudes; so zonal wind reductions over low latitudes must be attributed to an equatorward extension of a thermospheric circulation pattern disrupted by high latitude collisions between neutrals transported via eastward winds and ions

  10. Toward a possible next geomagnetic transition?

    OpenAIRE

    A. De Santis; E. Qamili; L. Wu

    2013-01-01

    The geomagnetic field is subject to possible reversals or excursions of polarity during its temporal evolution. Considering that: (a) the typical average time between one reversal and the next (the so-called chron) is around 300 000 yr, (b) the last reversal occurred around 780 000 yr ago, (c) more excursions (rapid changes of polarity) can occur within the same chron and (d) the geomagnetic field dipole is currently decreasing, a possible imminent geomagne...

  11. Computation of geomagnetic elements for Nigeria for the year 2000 ...

    African Journals Online (AJOL)

    The Earth's magnetic field may be considered to be the sum of two parts, the main geomagnetic field which originates from the earth's fluid core, and the anomaly field that has its sources in the earth crust. The analysis of the geomagnetic field residual or anomaly, obtained from the difference between these two sources are ...

  12. Morphology in the total electron content under geomagnetic disturbed conditions: results from global ionosphere maps

    Directory of Open Access Journals (Sweden)

    Zhao Biqiang

    2007-07-01

    Full Text Available Using 8-year global ionosphere maps (GIMs of TEC products from the Jet Propulsion Laboratory (JPL, we make a statistical study on the morphology of the global ionospheric behaviors with respect to the geomagnetic disturbances. Results show that the behaviors of TEC during geomagnetic storm present clear seasonal and local time variations under geomagnetic control in a similar way as those of NmF2 (Field and Rishbeth, 1997. A negative phase of TEC occurs with high probability in the summer hemisphere and most prominent near the geomagnetic poles, while a positive phase is obvious in the winter hemisphere and in the far pole region. A negative storm effect toward lower latitudes tends to occur from post-midnight to the morning sector and recedes to high latitude in the afternoon. A positive storm effect is separated by geomagnetic latitudes and magnetic local time. Furthermore, ionospheric responses at different local time sectors with respect to the storm commencement shows very different developing processes corresponding to the evolution of the geomagnetic storm. A daytime positive storm effect is shown to be more prominent in the American region than those in the Asian and European regions, which may suggest a longitudinal effect of the ionospheric storm.

  13. Morphology in the total electron content under geomagnetic disturbed conditions: results from global ionosphere maps

    Directory of Open Access Journals (Sweden)

    Z. Biqiang

    2007-07-01

    Full Text Available Using 8-year global ionosphere maps (GIMs of TEC products from the Jet Propulsion Laboratory (JPL, we make a statistical study on the morphology of the global ionospheric behaviors with respect to the geomagnetic disturbances. Results show that the behaviors of TEC during geomagnetic storm present clear seasonal and local time variations under geomagnetic control in a similar way as those of NmF2 (Field and Rishbeth, 1997. A negative phase of TEC occurs with high probability in the summer hemisphere and most prominent near the geomagnetic poles, while a positive phase is obvious in the winter hemisphere and in the far pole region. A negative storm effect toward lower latitudes tends to occur from post-midnight to the morning sector and recedes to high latitude in the afternoon. A positive storm effect is separated by geomagnetic latitudes and magnetic local time. Furthermore, ionospheric responses at different local time sectors with respect to the storm commencement shows very different developing processes corresponding to the evolution of the geomagnetic storm. A daytime positive storm effect is shown to be more prominent in the American region than those in the Asian and European regions, which may suggest a longitudinal effect of the ionospheric storm.

  14. What do we mean by accuracy in geomagnetic measurements?

    Science.gov (United States)

    Green, A.W.

    1990-01-01

    High accuracy is what distinguishes measurements made at the world's magnetic observatories from other types of geomagnetic measurements. High accuracy in determining the absolute values of the components of the Earth's magnetic field is essential to studying geomagnetic secular variation and processes at the core mantle boundary, as well as some magnetospheric processes. In some applications of geomagnetic data, precision (or resolution) of measurements may also be important. In addition to accuracy and resolution in the amplitude domain, it is necessary to consider these same quantities in the frequency and space domains. New developments in geomagnetic instruments and communications make real-time, high accuracy, global geomagnetic observatory data sets a real possibility. There is a growing realization in the scientific community of the unique relevance of geomagnetic observatory data to the principal contemporary problems in solid Earth and space physics. Together, these factors provide the promise of a 'renaissance' of the world's geomagnetic observatory system. ?? 1990.

  15. Near-Earth Magnetic Field Effects of Large-Scale Magnetospheric Currents

    Science.gov (United States)

    Luehr, Hermann; Xiong, Chao; Olsen, Nils; Le, Guan

    2016-01-01

    Magnetospheric currents play an important role in the electrodynamics of near- Earth space. This has been the topic of many space science studies. Here we focus on the magnetic fields they cause close to Earth. Their contribution to the geomagnetic field is the second largest after the core field. Significant progress in interpreting the magnetic fields from the different sources has been achieved thanks to magnetic satellite missions like Ørsted, CHAMP and now Swarm. Of particular interest for this article is a proper representation of the magnetospheric ring current effect. Uncertainties in modelling its effect still produce the largest residuals between observations and present-day geomagnetic field models. A lot of progress has been achieved so far, but there are still open issues like the characteristics of the partial ring current. Other currents discussed are those flowing in the magnetospheric tail. Also their magnetic contribution at LEO orbits is non-negligible. Treating them as an independent source is a more recent development, which has cured some of the problems in geomagnetic field modelling. Unfortunately there is no index available for characterizing the tail current intensity. Here we propose an approach that may help to properly quantify the magnetic contribution from the tail current for geomagnetic field modelling. Some open questions that require further investigation are mentioned at the end.

  16. An impending geomagnetic transition? Hints from the past

    OpenAIRE

    Laj, Carlo; Kissel, Catherine

    2015-01-01

    The rapid decrease of the geomagnetic field intensity in the last centuries has led to speculations that an attempt to a reversal or an excursion might be under way. Here we investigate this hypothesis by examining past records of geomagnetic field intensity obtained from sedimentary cores and from the study of cosmogenic nuclides. The selected records describe geomagnetic changes with an unprecedented temporal resolution between 20 and 75 kyr B.P. We find that some aspects of the present-day...

  17. Magnetotactic bacteria at the geomagnetic equator

    International Nuclear Information System (INIS)

    Frankel, R.B.; Blakemore, R.P.; Araujo, F.F.T. de; Esquivel, D.M.S.; Danon, J.

    1981-01-01

    Magnetotatic bacteria are observed in freshwater and marine sediments of Fortaleza, Brazil, situated close to the geomagnetic equator. Both South-seeking and North-seeking bacteria are present in roughly equal numbers in the same samples. This observation is consistent with the hypothesis that the vertical component of the geomagnetic field selects the predominant polarity type among magnetotactic bacteria in natural environments. (Author) [pt

  18. Geomagnetic Navigation of Autonomous Underwater Vehicle Based on Multi-objective Evolutionary Algorithm.

    Science.gov (United States)

    Li, Hong; Liu, Mingyong; Zhang, Feihu

    2017-01-01

    This paper presents a multi-objective evolutionary algorithm of bio-inspired geomagnetic navigation for Autonomous Underwater Vehicle (AUV). Inspired by the biological navigation behavior, the solution was proposed without using a priori information, simply by magnetotaxis searching. However, the existence of the geomagnetic anomalies has significant influence on the geomagnetic navigation system, which often disrupts the distribution of the geomagnetic field. An extreme value region may easily appear in abnormal regions, which makes AUV lost in the navigation phase. This paper proposes an improved bio-inspired algorithm with behavior constraints, for sake of making AUV escape from the abnormal region. First, the navigation problem is considered as the optimization problem. Second, the environmental monitoring operator is introduced, to determine whether the algorithm falls into the geomagnetic anomaly region. Then, the behavior constraint operator is employed to get out of the abnormal region. Finally, the termination condition is triggered. Compared to the state-of- the-art, the proposed approach effectively overcomes the disturbance of the geomagnetic abnormal. The simulation result demonstrates the reliability and feasibility of the proposed approach in complex environments.

  19. Properties of Pliocene sedimentary geomagnetic reversal records from the Mediterranean

    NARCIS (Netherlands)

    Linssen, J.H.

    1991-01-01

    In the history of the Earth the dipolar geomagnetic field has frequently reversed polarity. Though this property was already known early this century (Brunhes, 1906), nowadays the characteristics and the origin of polarity transitions are still largely unknown. The geomagnetic field and its

  20. A time-compressed simulated geomagnetic storm influences the nest-exiting flight angles of the stingless bee Tetragonisca angustula

    Science.gov (United States)

    Esquivel, D. M. S.; Corrêa, A. A. C.; Vaillant, O. S.; de Melo, V. Bandeira; Gouvêa, G. S.; Ferreira, C. G.; Ferreira, T. A.; Wajnberg, E.

    2014-03-01

    Insects have been used as models for understanding animal orientation. It is well accepted that social insects such as honeybees and ants use different natural cues in their orientation mechanism. A magnetic sensitivity was suggested for the stingless bee Schwarziana quadripunctata, based on the observation of a surprising effect of a geomagnetic storm on the nest-exiting flight angles. Stimulated by this result, in this paper, the effects of a time-compressed simulated geomagnetic storm (TC-SGS) on the nest-exiting flight angles of another stingless bee, Tetragonisca angustula, are presented. Under an applied SGS, either on the horizontal or vertical component of the geomagnetic field, both nest-exiting flight angles, dip and azimuth, are statistically different from those under geomagnetic conditions. The angular dependence of ferromagnetic resonance (FMR) spectra of whole stingless bees shows the presence of organized magnetic nanoparticles in their bodies, which indicates this material as a possible magnetic detector.

  1. The postsunset vertical plasma drift during geomagnetic storms and its effects on the generation of equatorial spread F

    Science.gov (United States)

    Huang, C.

    2017-12-01

    We will present two distinct phenomena related to the postsunset vertical plasma drift and equatorial spread F (ESF) observed by the Communication/Navigation Outage Forecasting System satellite over six years. The first phenomenon is the behavior of the prereversal enhancement (PRE) of the vertical plasma drift during geomagnetic storms. Statistically, storm-time disturbance dynamo electric fields cause the PRE to decrease from 30 to 0 m/s when Dst changes from -60 to -100 nT, but the PRE does not show obvious variations when Dst varies from 0 to -60 nT. The observations show that the storm activities affect the evening equatorial ionosphere only for Dst correlated with the PRE and that the occurrence of small-amplitude ESF irregularities does not show a clear pattern at low solar activity but is anti-correlated with large-amplitude irregularities and the PRE at moderate solar activity. That is, the months and longitudes with high occurrence probability of large-amplitude irregularities are exactly those with low occurrence probability of small-amplitude irregularities, and vice versa. The generation of large-amplitude ESF irregularities is controlled by the PRE, and the generation of small-amplitude ESF irregularities may be caused by gravity waves and other disturbances, rather than by the PRE.

  2. Thermospheric mass density variations during geomagnetic storms and a prediction model based on the merging electric field

    Directory of Open Access Journals (Sweden)

    R. Liu

    2010-09-01

    Full Text Available With the help of four years (2002–2005 of CHAMP accelerometer data we have investigated the dependence of low and mid latitude thermospheric density on the merging electric field, Em, during major magnetic storms. Altogether 30 intensive storm events (Dstmin<−100 nT are chosen for a statistical study. In order to achieve a good correlation Em is preconditioned. Contrary to general opinion, Em has to be applied without saturation effect in order to obtain good results for magnetic storms of all activity levels. The memory effect of the thermosphere is accounted for by a weighted integration of Em over the past 3 h. In addition, a lag time of the mass density response to solar wind input of 0 to 4.5 h depending on latitude and local time is considered. A linear model using the preconditioned Em as main controlling parameter for predicting mass density changes during magnetic storms is developed: ρ=0.5 Em + ρamb, where ρamb is based on the mean density during the quiet day before the storm. We show that this simple relation predicts all storm-induced mass density variations at CHAMP altitude fairly well especially if orbital averages are considered.

  3. Electric field in the magnetotail depending on the geomagnetic activity level and intensity Esub(y) in the solar wind

    International Nuclear Information System (INIS)

    Pudovkin, M.I.; Osipov, V.V.; Shukhtina, M.A.; Zajtseva, S.A.; AN SSSR, Vladivostok. Dal'nevostochnyh Nauchnyj Tsentr)

    1982-01-01

    The value of the large-scale electric field in the near magnetotail on AE-index variations delay in relation to interplanetary electric field variations is estimated. It is obtained that the electric field value in a tail increases with magnetic activity level. The solar wind electric field under strong magnetic disturbance penetrates into the magnetosphere practically without weakening and is essentially weakened in magneto-quit conditions. Calculated values of the electric field magnitude in the magnetotail (0.01-1mBm) are in agreement with those obtained earlier [ru

  4. Ice ages and geomagnetic reversals

    Science.gov (United States)

    Wu, Patrick

    1992-01-01

    There have been speculations on the relationship between climatic cooling and polarity reversals of the earth's magnetic field during the Pleistocene. Two of the common criticisms on this relationship have been the reality of these short duration geomagnetic events and the accuracy of their dates. Champion et al. (1988) have reviewed recent progress in this area. They identified a total of 10 short-duration polarity events in the last 1 Ma and 6 of these events have been found in volcanic rocks, which also have K-Ar dates. Supposing that the speculated relationship between climatic cooling and geomagnetic reversals actually exist, two mechanisms that assume climatic cooling causes short period magnetic reversals will be investigated. These two methods are core-mantle boundary topography and transfer of the rotational energy to the core.

  5. Thermospheric mass density variations during geomagnetic storms and a prediction model based on the merging electric field

    Science.gov (United States)

    Liu, R.; Lühr, H.; Doornbos, E.; Ma, S.-Y.

    2010-09-01

    With the help of four years (2002-2005) of CHAMP accelerometer data we have investigated the dependence of low and mid latitude thermospheric density on the merging electric field, Em, during major magnetic storms. Altogether 30 intensive storm events (Dstmineffect in order to obtain good results for magnetic storms of all activity levels. The memory effect of the thermosphere is accounted for by a weighted integration of Em over the past 3 h. In addition, a lag time of the mass density response to solar wind input of 0 to 4.5 h depending on latitude and local time is considered. A linear model using the preconditioned color: #000;">Em as main controlling parameter for predicting mass density changes during magnetic storms is developed: ρ=0.5 color: #000;">Em + ρamb, where ρamb is based on the mean density during the quiet day before the storm. We show that this simple relation predicts all storm-induced mass density variations at CHAMP altitude fairly well especially if orbital averages are considered.

  6. Investigation of the Effects of Solar and Geomagnetic Changes on the Total Electron Content: Mid-Latitude Region

    Science.gov (United States)

    Ulukavak, Mustafa; Yalcinkaya, Mualla

    2016-04-01

    The Global Positioning System (GPS) is used as an important tool for ionosphere monitoring and obtaining the Total Electron Content (TEC). GPS satellites, positioned in the Earth's orbit, are used as sensors to investigate the space weather conditions. In this study, solar and geomagnetic activity variations were investigated between the dates 1 March-30 June 2015 for the mid-latitude region. GPS-TEC variations were calculated for each selected International GNSS Service (IGS) station in Europe. GNSS data was obtained from Crustal Dynamics Data and Information System (CDDIS) archive. Solar and geomagnetic activity indices (Kp, F10.7 ve Dst) were obtained from the Oceanic and Atmospheric Administration (NOAA), the Canadian Space Weather Forecast Centre (CSWFC) and Data Analysis Center for geomagnetism and Space Magnetism Graduate School of Science, Kyoto University (WDC) archives. GPS-TEC variations were determined for the quiet periods of the solar and geomagnetic activities. GPS-TEC changes were then compared with respect to the quiet periods of the solar and geomagnetic activities. Global Ionosphere Maps (GIM) IONEX files, obtained from the IGS analysis center, was used to check the robustness of the GPS-TEC variations. The investigations revealed that it is possible to use the GPS-TEC data for monitoring the ionospheric disturbances.

  7. Near-Earth Magnetic Field Effects of Large-Scale Magnetospheric Currents

    DEFF Research Database (Denmark)

    Lühr, Hermann; Xiong, Chao; Olsen, Nils

    2017-01-01

    . Significant progress in interpreting the magnetic fields from the different sources has been achieved thanks to magnetic satellite missions like Ørsted, CHAMP and now Swarm. Of particular interest for this article is a proper representation of the magnetospheric ring current effect. Uncertainties in modelling...... its effect still produce the largest residuals between observations and present-day geomagnetic field models. A lot of progress has been achieved so far, but there are still open issues like the characteristics of the partial ring current. Other currents discussed are those flowing......Magnetospheric currents play an important role in the electrodynamics of near-Earth space. This has been the topic of many space science studies. Here we focus on the magnetic fields they cause close to Earth. Their contribution to the geomagnetic field is the second largest after the core field...

  8. Effects of mid-latitude ionosphere observed from ground-based ionosonde data obtained at Alma-Ata station during strong geomagnetic storms

    International Nuclear Information System (INIS)

    Gordienko, G.I.; Vodynnikov, V.V.; Yakovets, A.E.

    2006-01-01

    The ionospheric effects of fourteen great geomagnetic storms occurred in the 1986-2005 time period observed over Alma-Ata (43.25 N , 76.92 E ) were studied experimentally using ground-based ionosonde. The observations showed a number of unusual (for the Alma-Ata location) ionospheric phenomena during the active phase of geomagnetic storms, along with a negative phase in the ionospheric F2-layer disturbance an anomalous formation of the E, E2, and F1 layers at nighttime, and the appearance of aurora-type sporadic E layers were found. Processes of interaction of energetic neutrals with the upper atmosphere modeled by Bauske et al. (1997) for magnetically distributed condition seem to explain the phenomena of ionization of F1 and E region at night. (author)

  9. Advances in Residential Design Related to the Influence of Geomagnetism

    Directory of Open Access Journals (Sweden)

    Francisco Glaria

    2018-02-01

    Full Text Available Since the origin of the Modern Movement, there has been a basic commitment to improving housing conditions and the well-being of occupants, especially given the prediction that 2/3 of humanity will reside in cities by 2050. Moreover, a compact model of the city with tall buildings and urban densification at this scale will be generated. Continuous constructive and technological advances have developed solid foundations on safety, energy efficiency, habitability, and sustainability in housing design. However, studies on improving the quality of life in these areas continue to be a challenge for architects and engineers. This paper seeks to contribute health-related information to the study of residential design, specifically the influence of the geomagnetic field on its occupants. After compiling information on the effects of geomagnetic fields from different medical studies over 23 years, a case study of a 16-story high-rise building is presented, with the goal of proposing architectural design recommendations for long-term occupation in the same place. The purpose of the present work is three-fold: first, to characterize the geomagnetic field variability of buildings; second, to identify the causes and possible related mechanisms; and third, to define architectural criteria on the arrangement of uses and constructive elements for housing.

  10. Advances in Residential Design Related to the Influence of Geomagnetism

    Science.gov (United States)

    Arnedo, Israel; Sánchez-Ostiz, Ana

    2018-01-01

    Since the origin of the Modern Movement, there has been a basic commitment to improving housing conditions and the well-being of occupants, especially given the prediction that 2/3 of humanity will reside in cities by 2050. Moreover, a compact model of the city with tall buildings and urban densification at this scale will be generated. Continuous constructive and technological advances have developed solid foundations on safety, energy efficiency, habitability, and sustainability in housing design. However, studies on improving the quality of life in these areas continue to be a challenge for architects and engineers. This paper seeks to contribute health-related information to the study of residential design, specifically the influence of the geomagnetic field on its occupants. After compiling information on the effects of geomagnetic fields from different medical studies over 23 years, a case study of a 16-story high-rise building is presented, with the goal of proposing architectural design recommendations for long-term occupation in the same place. The purpose of the present work is three-fold: first, to characterize the geomagnetic field variability of buildings; second, to identify the causes and possible related mechanisms; and third, to define architectural criteria on the arrangement of uses and constructive elements for housing. PMID:29473902

  11. Geomagnetic Storm Sudden Commencements

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Storm Sudden Commencements (ssc) 1868 to present: STORM1 and STORM2 Lists: (Some text here is taken from the International Association of Geomagnetism and Aeronomy...

  12. Geomagnetic Indices Bulletin (GIB)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Geomagnetic Indices Bulletin is a one page sheet containing the magnetic indices Kp, Ap, Cp, An, As, Am and the provisional aa indices. The bulletin is published...

  13. Geomagnetic aa Indices

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The geomagnetic aa indices are the continuation of the series beginning in the year 1868. A full description of these indices is given in the International...

  14. Effective field theories

    International Nuclear Information System (INIS)

    Mack, G.; Kalkreuter, T.; Palma, G.; Speh, M.

    1992-05-01

    Effective field theories encode the predictions of a quantum field theory at low energy. The effective theory has a fairly low utraviolet cutoff. As a result, loop corrections are small, at least if the effective action contains a term which is quadratic in the fields, and physical predictions can be read straight from the effective Lagrangean. Methods will be discussed how to compute an effective low energy action from a given fundamental action, either analytically or numerically, or by a combination of both methods. Basically, the idea is to integrate out the high frequency components of fields. This requires the choice of a 'blockspin', i.e. the specification af a low frequency field as a function of the fundamental fields. These blockspins will be fields of the effective field theory. The blockspin need not be a field of the same type as one of the fundamental fields, and it may be composite. Special features of blockspin in nonabelian gauge theories will be discussed in some detail. In analytical work and in multigrid updating schemes one needs interpolation kernels A from coarse to fine grid in addition to the averaging kernels C which determines the blockspin. A neural net strategy for finding optimal kernels is presented. Numerical methods are applicable to obtain actions of effective theories on lattices of finite volume. The special case of a 'lattice' with a single site (the constraint effective potential) is of particular interest. In a higgs model, the effective action reduces in this case to the free energy, considered as a function of a gauge covariant magnetization. Its shape determines the phase structure of the theory. Its loop expansion with and without gauge fields can be used to determine finite size corrections to numerical data. (orig.)

  15. Geomagnetic observations on Tristan da Cunha, South Atlantic Ocean

    DEFF Research Database (Denmark)

    Matzka, J.; Olsen, Nils; Maule, C. F.

    2009-01-01

    Few geomagnetic ground observations exist of the Earth's strongest core field anomaly, the South Atlantic Anomaly (SAA). The geomagnetic repeat station on the island Tristan da Cunha, located half-way between South Africa and South America at 37 degrees 05' S, 12 degrees 18' W, is therefore of cr...

  16. Thermospheric mass density variations during geomagnetic storms and a prediction model based on the merging electric field

    NARCIS (Netherlands)

    Liu, R.; Lühr, H.; Doornbos, E.; Ma, S.Y.

    2010-01-01

    With the help of four years (2002–2005) of CHAMP accelerometer data we have investigated the dependence of low and mid latitude thermospheric density on the merging electric field, Em, during major magnetic storms. Altogether 30 intensive storm events (Dstmin

  17. Effective quantum field theories

    International Nuclear Information System (INIS)

    Georgi, H.M.

    1993-01-01

    The most appropriate description of particle interactions in the language of quantum field theory depends on the energy at which the interactions are studied; the description is in terms of an ''effective field theory'' that contains explicit reference only to those particles that are actually important at the energy being studied. The various themes of the article are: local quantum field theory, quantum electrodynamics, new physics, dimensional parameters and renormalizability, socio-dynamics of particle theory, spontaneously broken gauge theories, scale dependence, grand unified and effective field theories. 2 figs

  18. Analysis of Total Electron Content and Electron Density Profile during Different Geomagnetic Storms

    Science.gov (United States)

    Chapagain, N. P.; Rana, B.; Adhikari, B.

    2017-12-01

    Total Electron content (TEC) and electron density are the key parameters in the mitigation of ionospheric effects on radio communication system. Detail study of the TEC and electron density variations has been carried out during geomagnetic storms, with longitude and latitude, for four different locations: (13˚N -17˚N, 88˚E -98˚E), (30˚N-50˚N, 120˚W -95˚W), (29˚S-26˚S, 167˚W-163˚W,) and (60˚S-45˚S, 120˚W-105˚W) using the Gravity Recovery and Climate Experiment (GRACE) satellite observations. In order to find the geomagnetic activity, the solar wind parameters such as north-south component of inter planetary magnetic field (Bz), plasma drift velocity (Vsw), flow pressure (nPa), AE, Dst and Kp indices were obtained from Operating Mission as Nodes on the Internet (OMNI) web system. The data for geomagnetic indices have been correlated with the TEC and electron density for four different events of geomagnetic storms on 6 April 2008, 27 March 2008, 4 September 2008, and 11 October 2008. The result illustrates that the observed TEC and electron density profile significantly vary with longitudes and latitudes. This study illustrates that the values of TEC and the vertical electron density profile are influenced by the solar wind parameters associated with solar activities. The peak values of electron density and TEC increase as the geomagnetic storms become stronger. Similarly, the electron density profile varies with altitudes, which peaks around the altitude range of about 250- 350 km, depending on the strength of geomagnetic storms. The results clearly show that the peak electron density shifted to higher altitude (from about 250 km to 350 km) as the geomagnetic disturbances becomes stronger.

  19. A high-resolution, 60 kyr record of the relative geomagnetic field intensity from Lake Towuti, Indonesia

    Science.gov (United States)

    Kirana, Kartika Hajar; Bijaksana, Satria; King, John; Tamuntuan, Gerald Hendrik; Russell, James; Ngkoimani, La Ode; Dahrin, Darharta; Fajar, Silvia Jannatul

    2018-02-01

    Past changes in the Earth's magnetic field can be highlighted through reconstructions of magnetic paleointensity. Many magnetic field variation features are global, and can be used for the detailed correlation and dating of sedimentary records. On the other hand, sedimentary magnetic records also exhibit features on a regional, rather than a global scale. Therefore, the development of regional scale magnetic field reconstructions is necessary to optimize magnetic paleointensity dating. In this paper, a 60 thousand year (kyr) paleointensity record is presented, using the core TOW10-9B of Lake Towuti, located in the island of Sulawesi, Indonesia, as a part of the ongoing research towards understanding the Indonesian environmental history, and reconstructing a high-resolution regional magnetic record from dating the sediments. Located in the East Sulawesi Ophiolite Belt, the bedrock surrounding Lake Towuti consists of ultramafic rocks that render the lake sediments magnetically strong, creating challenges in the reconstruction of the paleointensity record. These sediment samples were subject to a series of magnetic measurements, followed by testing the obtained paleointensity records resulting from normalizing natural remanent magnetization (NRM) against different normalizing parameters. These paleointensity records were then compared to other regional, as well as global, records of magnetic paleointensity. The results show that for the magnetically strong Lake Towuti sediments, an anhysteretic remanent magnetization (ARM) is the best normalizer. A series of magnetic paleointensity excursions are observed during the last 60 kyr, including the Laschamp excursion at 40 kyr BP, that provide new information about the magnetic history and stratigraphy of the western tropical Pacific region. We conclude that the paleointensity record of Lake Towuti is reliable and in accordance with the high-quality regional and global trends.

  20. Ionospheric effects at low latitudes during the March 22, 1979, geomagnetic storm

    International Nuclear Information System (INIS)

    Fesen, C.G.; Crowley, G.; Roble, R.G.

    1989-01-01

    This paper investigates the response of the equatorial ionosphere to the neutral atmosphere perturbations produced by the magnetic storm of March 22, 1979. A numerical model of the equatorial ionosphere is used to calculate the maximum electron densities and F layer heights associated with a storm-perturbed neutral atmosphere and circulation model. Possible electric field perturbations due to the storm are ignored. The neutral atmosphere and dynamics are simulated by the National Center for Atmospheric Research thermospheric general circulation model (TGCM) for the storm day of March 22, 1979, and the preceding quiet day. The most striking feature of the TGCM storm day simulations is the presence of waves in the neutral composition, wind, and temperature fields which propagate from high latitudes to the equator. The TGCM-calculated fields for the two days are input into a low-latitude ionosphere model which calculates n max and h max between ±20 degree dip latitude. The calculated nighttime 6300-angstrom airglow emission and the altitude profiles of electron concentration are also highly perturbed by the storm. Examination of ionosonde data for March 22, 1979, shows remarkable agreement between the measured and predicted changes in f 0 F 2 and h max near 140 degree W. Poorer agreement near 70 degree W may be due to the neglect of electric field perturbations and the approximations inherent in the modeling. The results of these simulations indicate that the major factor influencing the storm time ionospheric behavior in this case is the neutral wind

  1. The correspondence between dayside long-period geomagnetic pulsations and the open-closed field line boundary

    Science.gov (United States)

    Pilipenko, V. A.; Kozyreva, O. V.; Lorentzen, D. A.; Baddeley, L. J.

    2018-05-01

    Long-period pulsations in the nominal Pc5-6 band (periods about 3-15 min) have been known to be a persistent feature of dayside high latitudes. A mixture of broadband Irregular Pulsations at Cusp Latitudes (IPCL) and narrowband P≿5 waves is often observed. The mechanism and origin of IPCL have not been firmly established yet. Magnetopause surface eigenmodes were suggested as a potential source of high-latitude ULF waves with frequencies less than 2 mHz. A ground response to these modes is expected to be beneath the ionospheric projection of the open-closed field line boundary (OCB). To unambiguously resolve a possible association of IPCL with the magnetopause surface modes, multi-instrument observation data from Svalbard have been analyzed. We examine the latitudinal structure of high-latitude pulsations in the Pc5-6 band recorded by magnetometers covering near-cusp latitudes. This structure is compared with an instant location of the equatorward boundary of the cusp aurora, assumed to be a proxy of the OCB. The optical OCB latitude has been identified by an automatic algorithm, using data from the meridian scanning photometer at Longyearbyen, Svalbard. The comparison has shown that the latitudinal maximum of the broadband IPCL maximizes about 2°-3° deeper in the magnetosphere than the OCB optical proxy. Therefore, these pulsations cannot be associated with the ground image of the magnetopause surface modes. It is likely that an essentially non-dipole geometry of field lines and a high variability of the magnetopause region may suppress the excitation efficiency. The obtained result imposes important limitations on possible mechanisms of high-latitude dayside ULF variations.

  2. Transequatorial magnetic flux loops on the sun: a possible new source of geomagnetic storms

    Directory of Open Access Journals (Sweden)

    Takao Saito

    2009-11-01

    Full Text Available Following the traditional way of expression, geomagnetic storms have been classified into three types; flare-type Sc storms, CH-type Sg storms, and DB-type Sc storms (Sc:sudden commencement;CH:coronal hole;g:gradual;DB:disparition brusque.We have discovered that some transequatorial loops (TEL give rise to geomagnetic storms, when the TEL explodes near the central meridian of the sun. The axial magnetic direction of the TEL can be inferred, since TELs connect sunspot groups or remnant magnetic regions between the northern and southern hemispheres. Since the axial fields tend to have a large Bz component in interplanetary space, we have examined various effects on the configuration of geomagnetic storms. Topics are proposed for future works on the TEL-type Sc storms.

  3. Fourteen years of geomagnetic daily variation at Mario Zucchelli Station (Antarctica

    Directory of Open Access Journals (Sweden)

    A. Meloni

    2007-06-01

    Full Text Available During the 1986-87 austral summer a geomagnetic observatory was installed at the Italian Antarctic Base Mario Zucchelli Station. In the first three years continuous time variation monitoring and absolute measurements of the geomagnetic field were carried out only during summer expeditions. Starting 1991 an automatic acquisition system, operating through all the year, was put in operation. We present here some peculiarities of the daily variation as observed for fourteen years (1987-2000. The availability of a long series of data has allowed the definition of seasonal, as well as solar cycle effects, on short time variations as observed at a cusp-cap observatory. In particular, contrary to mid latitude behaviour, a clear dependence of the daily variation amplitude on the global geomagnetic K index was well defined.

  4. How the effects of winds and electric fields in F2-layer storms vary with latitude and longitude - A theoretical study

    Science.gov (United States)

    Mendillo, M.; He, X.-Q.; Rishbeth, H.

    1992-01-01

    The effects of thermospheric winds and electric fields on the ionospheric F2-layer are controlled by the geometry of the magnetic field, and so vary with latitude and longitude. A simple model of the daytime F2-layer is adopted and the effects at midlatitudes (25-65 deg geographic) of three processes that accompany geomagnetic storms: (1) thermospheric changes due to auroral heating; (2) equatorward winds that tend to cancel the quiet-day poleward winds; and (3) the penetration of magnetospheric electric fields are studied. At +/- 65 deg, the effects of heating and electric fields are strongest in the longitudes toward which the geomagnetic dipole is tilted, i.e., the North American and the South Indian Ocean sectors. Because of the proximity of the geomagnetic equator to the East Asian and South American sectors, the reverse is true at +/- 25 deg.

  5. New directional archeomagnetic data of burned cave sediments from Switzerland and geomagnetic field variations in Central Europe

    Science.gov (United States)

    Kapper, K. L.; Donadini, F.; Mauvilly, M.; Panovska, S.; Hirt, A. M.

    2014-08-01

    This paper presents new directional archeomagnetic data from nine Meso-/Neolithic fireplaces, sampled in a cave shelter, at Arconciel, in western Switzerland. Rock magnetic measurements indicate a homogenous magnetic mineralogy in all fireplaces, with magnetite as the main magnetic carrier. The remanent magnetization is stable and generally shows one characteristic directional component. Nine new directions, which were obtained from Arconciel, are combined with 356 other archeomagnetic data from a circular area with a radius of 700 km around this site, to obtain a penalized least square spline fit for the past 9000 yr. We found in general good agreement with other local compilations, such as the Balkan curve, the regional SCHA.DIF.8k model and with lake sediments from UK, Fennoscandia and Switzerland. Nevertheless, a time lag of several centuries is observed for a declination maximum between the archeomagnetic spline fit and the other European data records around 5900 BC. This time lag is also observed in the Swiss lake sediment record; therefore we interpret this shift as a local feature of the Earth's magnetic field.

  6. New detailed holocene paleomagnetic records with anomalous geomagnetic field behavior in Argentina Nuevos registros paleomagnéticos holocenos detallados con comportamiento anómalo del campo magnético terrestre en Argentina

    Directory of Open Access Journals (Sweden)

    Hugo G Nami

    2012-12-01

    Full Text Available Detailed palaeomagnetic studies were performed in several archaeological and geological sections dated with diverse relative and absolute methods. Data from 360 cores obtained in eight sites across eastern Argentina are reported. Characteristic remanence magnetization directions were determined by progressive alternating field demagnetization. Remanence directions showed anomalous geomagnetic field behavior far from the present magnetic field bearing oblique normal, oblique reverse and reverse polarities for the latest Pleistocene and Holocene, as well as evidence of possible field excursions recorded in several stratigraphic sections spanning ~11-0.5 kya. Computed virtual geomagnetic poles from those directions tend to be concentrated over North America, Europe, Eastern Asia, Africa and Australia. The hypothesis of the anomalous geomagnetic field directions is probably related with 14C fluctuations and solar activity.Se realizaron estudios paleomagnéticos detallados en varias secciones sedimentarias arqueológicas y geológicas fechadas con diversos métodos de datación absoluta y relativa. Se reportan resultados obtenidos de 360 muestras recogidas en ocho sitios localizados en el este de Argentina. La magnetización remanente característica fue determinada por desmagnetización progresiva utilizando campos alternos. Las direcciones remanentes mostraron conductas anómalas del campo geomagnético lejanas al campo actual mostrando polaridades oblicuas normales, oblicuas reversas y reversas con evidencia de posibles excursiones geomagnéticas registradas en varias secciones con un lapso temporal de ~11-0.5 kya. Los polos geomagnéticos virtuales computados a partir de las direcciones tienden a concentrarse sobre Norteamérica, Europa, Este de Asia, África y Australia. Se discute la hipótesis que la conducta anómala del campo magnético terrestre probablemente se relacione con las fluctuaciones de la producción de 14C y la actividad solar.

  7. Time variations in geomagnetic intensity

    Science.gov (United States)

    Valet, Jean-Pierre

    2003-03-01

    After many years spent by paleomagnetists studying the directional behavior of the Earth's magnetic field at all possible timescales, detailed measurements of field intensity are now needed to document the variations of the entire vector and to analyze the time evolution of the field components. A significant step has been achieved by combining intensity records derived from archeological materials and from lava flows in order to extract the global field changes over the past 12 kyr. A second significant step was due to the emergence of coherent records of relative paleointensity using the remanent magnetization of sediments to retrace the evolution of the dipole field. A third step was the juxtaposition of these signals with those derived from cosmogenic isotopes. Contemporaneous with the acquisition of records, new techniques have been developed to constrain the geomagnetic origin of the signals. Much activity has also been devoted to improving the quality of determinations of absolute paleointensity from volcanic rocks with new materials, proper selection of samples, and investigations of complex changes in magnetization during laboratory experiments. Altogether these developments brought us from a situation where the field changes were restricted to the past 40 kyr to the emergence of a coherent picture of the changes in the geomagnetic dipole moment for at least the past 1 Myr. On longer timescales the field variability and its average behavior is relatively well documented for the past 400 Myr. Section 3 gives a summary of most methods and techniques that are presently used to track the field intensity changes in the past. In each case, current limits and potential promises are discussed. The section 4 describes the field variations measured so far over various timescales covered by the archeomagnetic and the paleomagnetic records. Preference has always been given to composite records and databases in order to extract and discuss major and global geomagnetic

  8. Average configuration of the geomagnetic tail

    International Nuclear Information System (INIS)

    Fairfield, D.H.

    1979-01-01

    Over 3000 hours of Imp 6 magnetic field data obtained between 20 and 33 R/sub E/ in the geomagnetic tail have been used in a statistical study of the tail configuration. A distribution of 2.5-min averages of B/sub z/ as a function of position across the tail reveals that more flux crosses the equatorial plane near the dawn and dusk flanks (B-bar/sub z/=3.γ) than near midnight (B-bar/sub z/=1.8γ). The tail field projected in the solar magnetospheric equatorial plane deviates from the x axis due to flaring and solar wind aberration by an angle α=-0.9 Y/sub SM/-2.7, where Y/sub SM/ is in earth radii and α is in degrees. After removing these effects, the B/sub y/ component of the tail field is found to depend on interplanetary sector structure. During an 'away' sector the B/sub y/ component of the tail field is on average 0.5γ greater than that during a 'toward' sector, a result that is true in both tail lobes and is independent of location across the tail. This effect means the average field reversal between northern and southern lobes of the tail is more often 178 0 rather than the 180 0 that is generally supposed

  9. Effect of TADs on the F-region of Low midlatitude ionosphere during intense geomagnetic storm.

    Science.gov (United States)

    Upadhayaya, Arun Kumar; Joshi, Shivani; Singh Dabas, Raj; Das, Rupesh M.; Yadav, Sneha

    Effect of TAD's on the F region ionosphere of low-mid latitude ionosphere during three intense storms of20 th Nov,2003(-422nT),30 th Oct 2003(-383nT),07Nov,2004(-373nT)respectively are studued using ionosonde data of Delhi(28ø N 77øE).It has been seen that the electon density profile in the F1 region are greatly influenced by the TAD's presence. Further the pre-existing F1 cusp become better devloped during the passage of TAD's.

  10. Space Weather Monitoring for ISS Geomagnetic Storm Studies

    Science.gov (United States)

    Minow, Joseph I.; Parker, Linda Neergaard

    2013-01-01

    The International Space Station (ISS) space environments community utilizes near real time space weather data to support a variety of ISS engineering and science activities. The team has operated the Floating Potential Measurement Unit (FPMU) suite of plasma instruments (two Langmuir probes, a floating potential probe, and a plasma impedance probe) on ISS since 2006 to obtain in-situ measurements of plasma density and temperature along the ISS orbit and variations in ISS frame potential due to electrostatic current collection from the plasma environment (spacecraft charging) and inductive (vxB) effects from the vehicle motion across the Earth s magnetic field. An ongoing effort is to use FPMU for measuring the ionospheric response to geomagnetic storms at ISS altitudes and investigate auroral charging of the vehicle as it passes through regions of precipitating auroral electrons. This work is challenged by restrictions on FPMU operations that limit observation time to less than about a third of a year. As a result, FPMU campaigns ranging in length from a few days to a few weeks are typically scheduled weeks in advance for ISS engineering and payload science activities. In order to capture geomagnetic storm data under these terms, we monitor near real time space weather data from NASA, NOAA, and ESA sources to determine solar wind disturbance arrival times at Earth likely to be geoeffective (including coronal mass ejections and high speed streams associated with coronal holes) and activate the FPMU ahead of the storm onset. Using this technique we have successfully captured FPMU data during a number of geomagnetic storm periods including periods with ISS auroral charging. This presentation will describe the strategies and challenges in capturing FPMU data during geomagnetic storms, the near real time space weather resources utilized for monitoring the space weather environment, and provide examples of auroral charging data obtained during storm operations.

  11. Research on Stealthy Headphone Detector Based on Geomagnetic Sensor

    Directory of Open Access Journals (Sweden)

    Liu Ya

    2016-01-01

    Full Text Available A kind of stealth headphone detector based on geomagnetic sensor has been developed to deal with the stealth headphones which are small, extremely stealthy and hard to detect. The U.S. PNI geomagnetic sensor is chosen to obtain magnetic field considering the strong magnetic performance of stealth headphones. The earth’s magnetic field at the geomagnetic sensor is eliminated by difference between two geomagnetic sensors, and then weak variations of magnetic field is detected. STM8S103K2 is chosen as the central controlling chip, which is connected to LED, buzzer and LCD 1602. As shown by the experimental results, the probe is not liable to damage by the magnetic field and the developed device has high sensitivity, low False Positive Rate (FAR and satisfactory reliability.

  12. Properties of Pliocene sedimentary geomagnetic reversal records from the Mediterranean

    OpenAIRE

    Linssen, J.H.

    1991-01-01

    In the history of the Earth the dipolar geomagnetic field has frequently reversed polarity. Though this property was already known early this century (Brunhes, 1906), nowadays the characteristics and the origin of polarity transitions are still largely unknown. The geomagnetic field and its variations are recorded in rocks as a natural remanent magnetization (NRM) during the formation of these rocks. The study of the NRM in sedimentary reversal records is the subject of this dissertation.

  13. Coronal mass ejections and large geomagnetic storms

    International Nuclear Information System (INIS)

    Gosling, J.T.; Bame, S.J.; McComas, D.J.; Phillips, J.L.

    1990-01-01

    Previous work indicates that coronal mass ejection (CME) events in the solar wind at 1 AU can be identified by the presence of a flux of counterstreaming solar wind halo electrons (above about 80 eV). Using this technique to identify CMEs in 1 AU plasma data, the authors find that most large geomagnetic storms during the interval surrounding the last solar maximum (Aug. 1978-Oct. 1982) were associated with Earth-passage of interplanetary disturbances in which the Earth encountered both a shock and the CME driving the shock. However, only about one CME in six encountered by Earth was effective in causing a large geomagnetic storm. Slow CMEs which did not interact strongly with the ambient solar wind ahead were particularly ineffective in a geomagnetic sense

  14. Geomagnetic secular variation at the African observatories

    International Nuclear Information System (INIS)

    Haile, T.

    2002-10-01

    Geomagnetic data from ten observatories in the African continent with time series data length of more than three decades have been analysed. All-day annual mean values of the D, H and Z components were used to study secular variations in the African region. The residuals in D, H and Z components obtained after removing polynomial fits have been examined in relation to the sunspot cycle. The occurrence of the 1969-1970 worldwide geomagnetic impulse in each observatory is studied. It is found that the secular variation in the field can be represented for most of the observatories with polynomials of second or third degree. Departures from these trends are observed over the Southern African region where strong local magnetic anomalies have been observed. The residuals in the geomagnetic field components have been shown to exhibit parallelism with the periods corresponding to double solar cycle for some of the stations. A clear latitudinal distribution in the geomagnetic component that exhibits the 1969-70 jerk is shown. The jerk appears in the plots of the first differences in H for the southern most observatories of Hermanus, Hartebeesthoek, and Tsuemb, while the Z plots show the jerk for near equatorial and equatorial stations of Antananarivo, Luanda Belas, Bangui and Addis Ababa. There is some indication for this jerk in the first difference plots of D for the northern stations of M'Bour and Tamanrasset. The plots of D rather strongly suggest the presence of a jerk around 1980 at most of the stations. (author)

  15. Geographical localisation of the geomagnetic secular variation

    DEFF Research Database (Denmark)

    Aubert, Julien; Finlay, Chris; Olsen, Nils

    2013-01-01

    the model and geomagnetic data previously processed in the same way. Our results suggest that conservation of angular momentum and heterogeneous thermochemical boundary control in the coupled inner core / outer core / mantle system are central to understanding how Earth’s magnetic field currently evolves......., westward moving, magnetic flux patches at the core surface. Despite its successes in explaining the main morphological properties of Earth’s magnetic field, self-consistent numerical modelling of the geodynamo has so far failed to reproduce this field variation pattern. Furthermore its magnetohydrodynamic...... control from either, or both, the inner-core boundary and the core-mantle boundary. In addition to presenting an Earth-like magnetic field morphology, these new numerical models also reproduce the morphology and localization of geomagnetic secular variation. In our models, the conservation of the angular...

  16. An Impending geomagnetic transition? Hints from the past.

    Directory of Open Access Journals (Sweden)

    Carlo eLAJ

    2015-10-01

    Full Text Available The rapid decrease of the geomagnetic field intensity in the last centuries has led to speculations that an attempt to a reversal or an excursion might be under way. Here we investigate this hypothesis by examining past records of geomagnetic field intensity obtained from sedimentary cores and from the study of cosmogenic nuclides. The selected records describe geomagnetic changes with an unprecedented temporal resolution between 20 and 75 kyr B.P. We find that some aspects of the present-day geomagnetic field have some similarities with those documented for the Laschamp excursion 41 kyr ago. Under the assumption that the dynamo processes for an eventual future reversal or excursion would be similar to those of the Laschamp excursion, we tentatively suggest that, whilst irreversible processes that will drive the geodynamo into a polarity change may have already started, a reversal or an excursion should not be expected before 500 to 1000 years.

  17. Effective quantum field theories

    International Nuclear Information System (INIS)

    Georgi, H.M.

    1989-01-01

    Certain dimensional parameters play a crucial role in the understanding of weak and strong interactions based on SU(2) x U(1) and SU(3) symmetry group theories and of grand unified theories (GUT's) based on SU(5). These parameters are the confinement scale of quantum chromodynamics and the breaking scales of SU(2) x U(1) and SU(5). The concepts of effective quantum field theories and renormalisability are discussed with reference to the economics and ethics of research. (U.K.)

  18. Dynamics of the Solar Wind Electromagnetic Energy Transmission Into Magnetosphere during Large Geomagnetic Storms

    Science.gov (United States)

    Kuznetsova, Tamara; Laptukhov, Alexej; Petrov, Valery

    Causes of the geomagnetic activity (GA) in the report are divided into temporal changes of the solar wind parameters and the changes of the geomagnetic moment orientation relative directions of the solar wind electric and magnetic fields. Based on our previous study we concluded that a reconnection based on determining role of mutual orientation of the solar wind electric field and geomagnetic moment taking into account effects of the Earth's orbital and daily motions is the most effective compared with existing mechanisms. At present a reconnection as paradigma that has applications in broad fields of physics needs analysis of experimental facts to be developed. In terms of reconnection it is important not only mutual orientation of vectors describing physics of interaction region but and reconnection rate which depends from rate of energy flux to those regions where the reconnection is permitted. Applied to magnetosphere these regions first of all are dayside magnetopause and polar caps. Influence of rate of the energy flux to the lobe magnetopause (based on calculations of the Poyting electromagnetic flux component controlling the reconnection rate along the solar wind velocity Pv) on planetary GA (Dst, Kp indices) is investigated at different phases of geomagnetic storms. We study also the rate of energy flux to the polar caps during storms (based on calculations of the Poyting flux vector component along the geomagnetic moment Pm) and its influence on magnetic activity in the polar ionosphere: at the auroral zone (AU,AL indices). Results allow to evaluate contributions of high and low latitude sources of electromagnetic energy to the storm development and also to clear mechanism of the electromagnetic energy transmission from the solar wind to the magnetosphere. We evaluate too power of the solar wind electromagnetic energy during well-known large storms and compare result with power of the energy sources of other geophysical processes (atmosphere, ocean

  19. Adaptive cancellation of geomagnetic background noise for magnetic anomaly detection using coherence

    International Nuclear Information System (INIS)

    Liu, Dunge; Xu, Xin; Huang, Chao; Zhu, Wanhua; Liu, Xiaojun; Fang, Guangyou; Yu, Gang

    2015-01-01

    Magnetic anomaly detection (MAD) is an effective method for the detection of ferromagnetic targets against background magnetic fields. Currently, the performance of MAD systems is mainly limited by the background geomagnetic noise. Several techniques have been developed to detect target signatures, such as the synchronous reference subtraction (SRS) method. In this paper, we propose an adaptive coherent noise suppression (ACNS) method. The proposed method is capable of evaluating and detecting weak anomaly signals buried in background geomagnetic noise. Tests with real-world recorded magnetic signals show that the ACNS method can excellently remove the background geomagnetic noise by about 21 dB or more in high background geomagnetic field environments. Additionally, as a general form of the SRS method, the ACNS method offers appreciable advantages over the existing algorithms. Compared to the SRS method, the ACNS algorithm can eliminate the false target signals and represents a noise suppressing capability improvement of 6.4 dB. The positive outcomes in terms of intelligibility make this method a potential candidate for application in MAD systems. (paper)

  20. The geomagnetic cutoff rigidities at high latitudes for different solar wind and geomagnetic conditions

    International Nuclear Information System (INIS)

    Chu, W.; Univ. of Chinese Academy of Sciences, Beijing; Qin, G.

    2016-01-01

    Studying the access of the cosmic rays (CRs) into the magnetosphere is important to understand the coupling between the magnetosphere and the solar wind. In this paper we numerically studied CRs' magnetospheric access with vertical geomagnetic cutoff rigidities using the method proposed by Smart and Shea (1999). By the study of CRs' vertical geomagnetic cutoff rigidities at high latitudes we obtain the CRs' window (CRW) whose boundary is determined when the vertical geomagnetic cutoff rigidities drop to a value lower than a threshold value. Furthermore, we studied the area of CRWs and found out they are sensitive to different parameters, such as the z component of interplanetary magnetic field (IMF), the solar wind dynamic pressure, AE index, and Dst index. It was found that both the AE index and Dst index have a strong correlation with the area of CRWs during strong geomagnetic storms. However, during the medium storms, only AE index has a strong correlation with the area of CRWs, while Dst index has a much weaker correlation with the area of CRWs. This result on the CRW can be used for forecasting the variation of the cosmic rays during the geomagnetic storms.

  1. Risk Analysis and Forecast Service for Geomagnetically Induced Currents in Europe

    Science.gov (United States)

    Wik, Magnus; Pirjola, Risto; Viljanen, Ari; Lundstedt, Henrik

    Geomagnetically induced currents (GIC), occurring during magnetic storms, pose a widespread natural disaster risk to the reliable operation of electric power transmission grids, oil and gas pipelines, telecommunication cables and railway systems. The solar magnetic activity is the cause of GIC. Solar coronal holes can cause recurrent inter-vals of raised geomagnetic activity, and coronal mass ejections (CME) at the Sun, sometimes producing very high speed plasma clouds with enhanced magnetic fields and particle densities, can cause the strongest geomagnetic storms. When the solar wind interacts with the geomag-netic field, energy is transferred to the magnetosphere, driving strong currents in the ionosphere. When these currents change in time a geoelectric field is induced at the surface of the Earth and in the ground. Finally, this field drives GIC in the ground and in any technological conductor systems. The worst consequence of a severe magnetic storm within a power grid is a complete blackout, as happened in the province of Québec, Canada, in March 1989, and in the city of Malmü, Sweden, in October 2003. Gas and oil pipelines are not regarded as vulnerable to the immediate impact of GIC, but the corrosion rate of buried steel pipes can increase due to GIC, which may thus shorten the lifetime of a pipe. European Risk from Geomagnetically Induced Currents (EURISGIC) is an EU project, that, if approved, will produce the first European-wide real-time prototype forecast service of GIC in power systems, based on in-situ solar wind observations and comprehensive simulations of the Earth's magnetosphere. This project focuses on high-voltage power transmission networks, which are probably currently the most susceptible to GIC effects. Geomagnetic storms cover large geographical regions, at times the whole globe. Consequently, power networks are rightly described as being European critical infrastructures whose disruption or destruction could have a significant impact

  2. Geomagnetic Storm Impact On GPS Code Positioning

    Science.gov (United States)

    Uray, Fırat; Varlık, Abdullah; Kalaycı, İbrahim; Öǧütcü, Sermet

    2017-04-01

    This paper deals with the geomagnetic storm impact on GPS code processing with using GIPSY/OASIS research software. 12 IGS stations in mid-latitude were chosen to conduct the experiment. These IGS stations were classified as non-cross correlation receiver reporting P1 and P2 (NONCC-P1P2), non-cross correlation receiver reporting C1 and P2 (NONCC-C1P2) and cross-correlation (CC-C1P2) receiver. In order to keep the code processing consistency between the classified receivers, only P2 code observations from the GPS satellites were processed. Four extreme geomagnetic storms October 2003, day of the year (DOY), 29, 30 Halloween Storm, November 2003, DOY 20, November 2004, DOY 08 and four geomagnetic quiet days in 2005 (DOY 92, 98, 99, 100) were chosen for this study. 24-hour rinex data of the IGS stations were processed epoch-by-epoch basis. In this way, receiver clock and Earth Centered Earth Fixed (ECEF) Cartesian Coordinates were solved for a per-epoch basis for each day. IGS combined broadcast ephemeris file (brdc) were used to partly compensate the ionospheric effect on the P2 code observations. There is no tropospheric model was used for the processing. Jet Propulsion Laboratory Application Technology Satellites (JPL ATS) computed coordinates of the stations were taken as true coordinates. The differences of the computed ECEF coordinates and assumed true coordinates were resolved to topocentric coordinates (north, east, up). Root mean square (RMS) errors for each component were calculated for each day. The results show that two-dimensional and vertical accuracy decreases significantly during the geomagnetic storm days comparing with the geomagnetic quiet days. It is observed that vertical accuracy is much more affected than the horizontal accuracy by geomagnetic storm. Up to 50 meters error in vertical component has been observed in geomagnetic storm day. It is also observed that performance of Klobuchar ionospheric correction parameters during geomagnetic storm

  3. Holographic effective field theories

    Energy Technology Data Exchange (ETDEWEB)

    Martucci, Luca [Dipartimento di Fisica ed Astronomia “Galileo Galilei' , Università di Padova,and INFN - Sezione di Padova, Via Marzolo 8, I-35131 Padova (Italy); Zaffaroni, Alberto [Dipartimento di Fisica, Università di Milano-Bicocca,and INFN - Sezione di Milano-Bicocca, I-20126 Milano (Italy)

    2016-06-28

    We derive the four-dimensional low-energy effective field theory governing the moduli space of strongly coupled superconformal quiver gauge theories associated with D3-branes at Calabi-Yau conical singularities in the holographic regime of validity. We use the dual supergravity description provided by warped resolved conical geometries with mobile D3-branes. Information on the baryonic directions of the moduli space is also obtained by using wrapped Euclidean D3-branes. We illustrate our general results by discussing in detail their application to the Klebanov-Witten model.

  4. Higgs Effective Field Theories

    CERN Document Server

    2016-01-01

    The main focus of this meeting is to present new theoretical advancements related to effective field theories, evaluate the impact of initial results from the LHC Run2, and discuss proposals for data interpretation/presentation during Run2. A crucial role of the meeting is to bring together theorists from different backgrounds and with different viewpoints and to extend bridges towards the experimental community. To this end, we would like to achieve a good balance between senior and junior speakers, enhancing the visibility of younger scientists while keeping some overview talks.

  5. Geomagnetic response to sudden expansions of the magnetosphere

    International Nuclear Information System (INIS)

    Araki, Tohru; Nagano, Hiroshi

    1988-01-01

    The geomagnetic response to five successive sudden expansions of the magnetosphere was examined by the use of magnetic data observed on the ground and by satellites. At the geosynchronous orbit between 0800 and 1100 LT the magnetic field component parallel to Earth's rotation axis decreased successively. The amplitude and the fall time of each decrease were 20-30 nT and 2.5-3.5 min, respectively. The decrease was propagated about 10 min later to the distance of about 31 R E from Earth in the antisunward direction, indicating propagation speed of about 300 km/s. The H component of ground magnetograms from low-latitude stations showed decreases with waveform similar to that at the geosynchronous orbit, but each decrease at the dayside equator was greatly enhanced and preceded by a short small positive impulse. Each of the corresponding geomagnetic variations at high latitude stations consisted of two successive sharp pulses of opposite sense with 2-3 min duration. The dominant component and the sense of these high-latitude pulses were highly dependent upon local time and latitude. The distribution of equivalent ionospheric current arrows for each high-latitude pulse showed clear twin vortices centered at 70-76 degree geomagnetic latitude in the dayside and was approximately symmetric with respect to the noon meridian. The current direction of the vortices was reversed from the first pulse to the second. it suggests successive appearance of a dawn-to-dusk and then a dusk-to-dawn electric field, both of which were transmitted from the magnetosphere to the polar ionosphere. The effect of ionospheric currents due to these polar electric fields was superposed on the simple magnetic decrease produced by an expansion of the whole magnetosphere and produced the complex waveform distribution on the ground

  6. Influence of geomagnetic activity and atmospheric pressure in hypertensive adults.

    Science.gov (United States)

    Azcárate, T; Mendoza, B

    2017-09-01

    We performed a study of the systolic and diastolic arterial blood pressure behavior under natural variables such as the atmospheric pressure and the horizontal geomagnetic field component. We worked with a group of eight adult hypertensive volunteers, four men and four women, with ages between 18 and 27 years in Mexico City during a geomagnetic storm in 2014. The data was divided by gender, age, and day/night cycle. We studied the time series using three methods: correlations, bivariate analysis, and superposed epoch (within a window of 2 days around the day of occurrence of a geomagnetic storm) analysis, between the systolic and diastolic blood pressure and the natural variables. The correlation analysis indicated a correlation between the systolic and diastolic blood pressure and the atmospheric pressure and the horizontal geomagnetic field component, being the largest during the night. Furthermore, the correlation and bivariate analyses showed that the largest correlations are between the systolic and diastolic blood pressure and the horizontal geomagnetic field component. Finally, the superposed epoch analysis showed that the largest number of significant changes in the blood pressure under the influence of geomagnetic field occurred in the systolic blood pressure for men.

  7. Influence of geomagnetic activity and atmospheric pressure in hypertensive adults

    Science.gov (United States)

    Azcárate, T.; Mendoza, B.

    2017-09-01

    We performed a study of the systolic and diastolic arterial blood pressure behavior under natural variables such as the atmospheric pressure and the horizontal geomagnetic field component. We worked with a group of eight adult hypertensive volunteers, four men and four women, with ages between 18 and 27 years in Mexico City during a geomagnetic storm in 2014. The data was divided by gender, age, and day/night cycle. We studied the time series using three methods: correlations, bivariate analysis, and superposed epoch (within a window of 2 days around the day of occurrence of a geomagnetic storm) analysis, between the systolic and diastolic blood pressure and the natural variables. The correlation analysis indicated a correlation between the systolic and diastolic blood pressure and the atmospheric pressure and the horizontal geomagnetic field component, being the largest during the night. Furthermore, the correlation and bivariate analyses showed that the largest correlations are between the systolic and diastolic blood pressure and the horizontal geomagnetic field component. Finally, the superposed epoch analysis showed that the largest number of significant changes in the blood pressure under the influence of geomagnetic field occurred in the systolic blood pressure for men.

  8. Statistical study of waves distribution in the inner magnetosphere using geomagnetic indices and solar wind parameters

    Science.gov (United States)

    Aryan, H.; Yearby, K.; Balikhin, M. A.; Krasnoselskikh, V.; Agapitov, O. V.

    2013-12-01

    The interaction of gyroresonant wave particles with chorus waves largely determine the dynamics of the Earth's radiation belts that effects the acceleration and loss of radiation belt electrons. The common approach is to present model waves distribution in the inner magnetosphere under different values of geomagnetic activity as expressed by the geomagnetic indices. However it is known that solar wind parameters such as bulk velocity (V) and density (n) are more effective in the control of high energy fluxes at the geostationary orbit. Therefore in the present study the set of parameters of the wave distribution is expanded to include the solar wind parameters in addition to the geomagnetic indices. The present study examines almost four years (01, January, 2004 to 29, September, 2007) of Cluster STAFF-SA, Double Star TC1 and OMNI data in order to present a combined model of wave magnetic field intensities for the chorus waves as a function of magnetic local time (MLT), L-shell (L*), geomagnetic activity, and solar wind velocity and density. Generally, the largest wave intensities are observed during average solar wind velocities (3006cm-3. On the other hand the wave intensity is lower and limited between 06:00 to 18:00 MLT for V700kms-1.

  9. A Probabilistic Assessment of the Next Geomagnetic Reversal

    OpenAIRE

    Buffett, B; Davis, W

    2018-01-01

    ©2018. American Geophysical Union. All Rights Reserved. Deterministic forecasts for the next geomagnetic reversal are not feasible due to large uncertainties in the present-day state of the Earth's core. A more practical approach relies on probabilistic assessments using paleomagnetic observations to characterize the amplitude of fluctuations in the geomagnetic dipole. We use paleomagnetic observations for the past 2 Myr to construct a stochastic model for the axial dipole field and apply wel...

  10. The Distribution of Chorus and Plasmaspheric Hiss Waves in the Inner Magnetospahere as Functions of Geomagnetic Activity and Solar Wind Parameters as Observed by The Van Allen Probes.

    Science.gov (United States)

    Aryan, H.; Sibeck, D. G.; Balikhin, M. A.; Agapitov, O. V.; Kletzing, C.

    2015-12-01

    The dynamics of the radiation belts is dependent upon the acceleration and loss of radiation belt electrons that is largely determined by the interaction of georesonant wave particles with chorus and plasmaspheric hiss waves. The distribution of these waves in the inner magnetosphere is commonly presented as a function of geomagnetic activity as expressed by the geomagnetic indices (Ae, Kp, and Dst). However, it has been shown that not all geomagnetic storms necessarily increase the flux of energetic electrons at the radiation belts. In fact, almost 20% of all geomagnetic storms cause a decrease in the flux of energetic electrons, while 30% has relatively no effect. Also, the geomagnetic indices are indirect, nonspecific parameters compiled from imperfectly covered ground based measurements that lack time history. This emphasises the need to present wave distributions as a function of both geomagnetic activity and solar wind parameters, such as velocity (V), density (n), and interplanetary magnetic field component (Bz), that are known to be predominantly effective in the control of radiation belt energetic electron fluxes. This study presents the distribution of chorus and plasmaspheric hiss waves in the inner magnetosphere as functions of both geomagnetic activity and solar wind parameters for different L-shell, magnetic local time, and magnetic latitude. This study uses almost three years of data measured by the EMFISIS on board the Van Allen Probes. Initial results indicate that the intensity of chorus and plasmaspheric hiss emissions are not only dependent on the geomagnetic activity but also dependent on solar wind parameters. The largest average wave intensities are observed with equatorial chorus in the region 4

  11. The solar and interplanetary causes of the recent minimum in geomagnetic activity (MGA23: a combination of midlatitude small coronal holes, low IMF BZ variances, low solar wind speeds and low solar magnetic fields

    Directory of Open Access Journals (Sweden)

    B. T. Tsurutani

    2011-05-01

    Full Text Available Minima in geomagnetic activity (MGA at Earth at the ends of SC23 and SC22 have been identified. The two MGAs (called MGA23 and MGA22, respectively were present in 2009 and 1997, delayed from the sunspot number minima in 2008 and 1996 by ~1/2–1 years. Part of the solar and interplanetary causes of the MGAs were exceptionally low solar (and thus low interplanetary magnetic fields. Another important factor in MGA23 was the disappearance of equatorial and low latitude coronal holes and the appearance of midlatitude coronal holes. The location of the holes relative to the ecliptic plane led to low solar wind speeds and low IMF (Bz variances (σBz2 and normalized variances (σBz2/B02 at Earth, with concomitant reduced solar wind-magnetospheric energy coupling. One result was the lowest ap indices in the history of ap recording. The results presented here are used to comment on the possible solar and interplanetary causes of the low geomagnetic activity that occurred during the Maunder Minimum.

  12. Total electron content responses to HILDCAAs and geomagnetic storms over South America

    Science.gov (United States)

    Mara de Siqueira Negreti, Patricia; Rodrigues de Paula, Eurico; Nicoli Candido, Claudia Maria

    2017-12-01

    Total electron content (TEC) is extensively used to monitor the ionospheric behavior under geomagnetically quiet and disturbed conditions. This subject is of greatest importance for space weather applications. Under disturbed conditions the two main sources of electric fields, which are responsible for changes in the plasma drifts and for current perturbations, are the short-lived prompt penetration electric fields (PPEFs) and the longer-lasting ionospheric disturbance dynamo (DD) electric fields. Both mechanisms modulate the TEC around the globe and the equatorial ionization anomaly (EIA) at low latitudes. In this work we computed vertical absolute TEC over the low latitude of South America. The analysis was performed considering HILDCAA (high-intensity, long-duration, continuous auroral electrojet (AE) activity) events and geomagnetic storms. The characteristics of storm-time TEC and HILDCAA-associated TEC will be presented and discussed. For both case studies presented in this work (March and August 2013) the HILDCAA event follows a geomagnetic storm, and then a global scenario of geomagnetic disturbances will be discussed. Solar wind parameters, geomagnetic indices, O / N2 ratios retrieved by GUVI instrument onboard the TIMED satellite and TEC observations will be analyzed and discussed. Data from the RBMC/IBGE (Brazil) and IGS GNSS networks were used to calculate TEC over South America. We show that a HILDCAA event may generate larger TEC differences compared to the TEC observed during the main phase of the precedent geomagnetic storm; thus, a HILDCAA event may be more effective for ionospheric response in comparison to moderate geomagnetic storms, considering the seasonal conditions. During the August HILDCAA event, TEC enhancements from ˜ 25 to 80 % (compared to quiet time) were observed. These enhancements are much higher than the quiet-time variability observed in the ionosphere. We show that ionosphere is quite sensitive to solar wind forcing and

  13. Total electron content responses to HILDCAAs and geomagnetic storms over South America

    Directory of Open Access Journals (Sweden)

    P. M. de Siqueira Negreti

    2017-12-01

    Full Text Available Total electron content (TEC is extensively used to monitor the ionospheric behavior under geomagnetically quiet and disturbed conditions. This subject is of greatest importance for space weather applications. Under disturbed conditions the two main sources of electric fields, which are responsible for changes in the plasma drifts and for current perturbations, are the short-lived prompt penetration electric fields (PPEFs and the longer-lasting ionospheric disturbance dynamo (DD electric fields. Both mechanisms modulate the TEC around the globe and the equatorial ionization anomaly (EIA at low latitudes. In this work we computed vertical absolute TEC over the low latitude of South America. The analysis was performed considering HILDCAA (high-intensity, long-duration, continuous auroral electrojet (AE activity events and geomagnetic storms. The characteristics of storm-time TEC and HILDCAA-associated TEC will be presented and discussed. For both case studies presented in this work (March and August 2013 the HILDCAA event follows a geomagnetic storm, and then a global scenario of geomagnetic disturbances will be discussed. Solar wind parameters, geomagnetic indices, O ∕ N2 ratios retrieved by GUVI instrument onboard the TIMED satellite and TEC observations will be analyzed and discussed. Data from the RBMC/IBGE (Brazil and IGS GNSS networks were used to calculate TEC over South America. We show that a HILDCAA event may generate larger TEC differences compared to the TEC observed during the main phase of the precedent geomagnetic storm; thus, a HILDCAA event may be more effective for ionospheric response in comparison to moderate geomagnetic storms, considering the seasonal conditions. During the August HILDCAA event, TEC enhancements from  ∼  25 to 80 % (compared to quiet time were observed. These enhancements are much higher than the quiet-time variability observed in the ionosphere. We show that ionosphere is quite sensitive to

  14. Waveguide propagation of electromagnetic waves in high-density ducts aligned along the geomagnetic field in the near-equatorial magnetospheric region

    International Nuclear Information System (INIS)

    Kaufman, R.N.

    1988-01-01

    Waveguide propagation of electromagnetic waves in axial symmetric ducts with increased plasma density aligned along the constant external magnetic field is considered for frequencies, being higher than low-hybrid, in the WKB approximation. In this case tunnel effects leading to captured wave damping are taken into account. Conditions for waveguide propagation and the logarithmic decrement of damping are found. Field construction is performed using the systems of axially symmetric WKB solutions of the Maxwell equations

  15. A Probabilistic Assessment of the Next Geomagnetic Reversal

    Science.gov (United States)

    Buffett, Bruce; Davis, William

    2018-02-01

    Deterministic forecasts for the next geomagnetic reversal are not feasible due to large uncertainties in the present-day state of the Earth's core. A more practical approach relies on probabilistic assessments using paleomagnetic observations to characterize the amplitude of fluctuations in the geomagnetic dipole. We use paleomagnetic observations for the past 2 Myr to construct a stochastic model for the axial dipole field and apply well-established methods to evaluate the probability of the next geomagnetic reversal as a function of time. For a present-day axial dipole moment of 7.6 × 1022 A m2, the probability of the dipole entering a reversed state is less than 2% after 20 kyr. This probability rises to 11% after 50 kyr. An imminent geomagnetic reversal is not supported by paleomagnetic observations. The current rate of decline in the dipole moment is unusual but within the natural variability predicted by the stochastic model.

  16. Statistical Study of False Alarms of Geomagnetic Storms

    DEFF Research Database (Denmark)

    Leer, Kristoffer; Vennerstrøm, Susanne; Veronig, A.

    . A subset of these halo CMEs did not cause a geomagnetic storm the following four days and have therefore been considered as false alarms. The properties of these events are investigated and discussed here. Their statistics are compared to the geo-effective CMEs. The ability to identify potential false......Coronal Mass Ejections (CMEs) are known to cause geomagnetic storms on Earth. However, not all CMEs will trigger geomagnetic storms, even if they are heading towards the Earth. In this study, front side halo CMEs with speed larger than 500 km/s have been identified from the SOHO LASCO catalogue...

  17. Magnetic local time dependence of geomagnetic disturbances contributing to the AU and AL indices

    DEFF Research Database (Denmark)

    Tomita, S; Nose´, M; Iyemori, T

    2010-01-01

    activity in the auroral zone. In the present study, we examine magnetic local time (MLT) dependence of geomagnetic field variations contributing to the AU and AL indices. We use 1-min geomagnetic field data obtained in 2003. It is found that both AU and AL indices have two ranges of MLT (AU: 15:00-22:00MLT...

  18. Advancements in Chinese Geomagnetism and Aeronomy during the Last Thirty Years,

    Science.gov (United States)

    1981-02-09

    movements of charged particles in geomagnetic fields and neutral line magnetic fields and they vigorously initiated simulated tests. References (120-121... telluric prospecting and related probems; (6) Magnetic prospecting and interpretation of data; (7) Some research on geomagnetic instruments; (8

  19. Stochastic Inversion of Geomagnetic Observatory Data Including Rigorous Treatment of the Ocean Induction Effect With Implications for Transition Zone Water Content and Thermal Structure

    Science.gov (United States)

    Munch, F. D.; Grayver, A. V.; Kuvshinov, A.; Khan, A.

    2018-01-01

    In this paper we estimate and invert local electromagnetic (EM) sounding data for 1-D conductivity profiles in the presence of nonuniform oceans and continents to most rigorously account for the ocean induction effect that is known to strongly influence coastal observatories. We consider a new set of high-quality time series of geomagnetic observatory data, including hitherto unused data from island observatories installed over the last decade. The EM sounding data are inverted in the period range 3-85 days using stochastic optimization and model exploration techniques to provide estimates of model range and uncertainty. The inverted conductivity profiles are best constrained in the depth range 400-1,400 km and reveal significant lateral variations between 400 km and 1,000 km depth. To interpret the inverted conductivity anomalies in terms of water content and temperature, we combine laboratory-measured electrical conductivity of mantle minerals with phase equilibrium computations. Based on this procedure, relatively low temperatures (1200-1350°C) are observed in the transition zone (TZ) underneath stations located in Southern Australia, Southern Europe, Northern Africa, and North America. In contrast, higher temperatures (1400-1500°C) are inferred beneath observatories on islands, Northeast Asia, and central Australia. TZ water content beneath European and African stations is ˜0.05-0.1 wt %, whereas higher water contents (˜0.5-1 wt %) are inferred underneath North America, Asia, and Southern Australia. Comparison of the inverted water contents with laboratory-constrained water storage capacities suggests the presence of melt in or around the TZ underneath four geomagnetic observatories in North America and Northeast Asia.

  20. Lower thermosphere (80-100 km) dynamics response to solar and geomagnetic activity: Overview

    International Nuclear Information System (INIS)

    Kazimirovsky, E.S.

    1989-01-01

    The variations of solar and geomagnetic activity may affect the thermosphere circulation via plasma heating and electric fields, especially at high latitudes. The possibility exists that the energy involved in auroral and magnetic storms can produce significant changes of mesosphere and lower thermosphere wind systems. A study of global radar measurements of winds at 80 to 100 km region revealed the short term effects (correlation between wind field and geomagnetic storms) and long term variations over a solar cycle. It seems likely that the correlation results from a modification of planetary waves and tides propagated from below, thus altering the dynamical regime of the thermosphere. Sometimes the long term behavior points rather to a climatic variation with the internal atmospheric cause than to a direct solar control

  1. Long-Term Geomagnetically Induced Current Observations From New Zealand: Peak Current Estimates for Extreme Geomagnetic Storms

    Science.gov (United States)

    Rodger, Craig J.; Mac Manus, Daniel H.; Dalzell, Michael; Thomson, Alan W. P.; Clarke, Ellen; Petersen, Tanja; Clilverd, Mark A.; Divett, Tim

    2017-11-01

    Geomagnetically induced current (GIC) observations made in New Zealand over 14 years show induction effects associated with a rapidly varying horizontal magnetic field (dBH/dt) during geomagnetic storms. This study analyzes the GIC observations in order to estimate the impact of extreme storms as a hazard to the power system in New Zealand. Analysis is undertaken of GIC in transformer number six in Islington, Christchurch (ISL M6), which had the highest observed currents during the 6 November 2001 storm. Using previously published values of 3,000 nT/min as a representation of an extreme storm with 100 year return period, induced currents of 455 A were estimated for Islington (with the 95% confidence interval range being 155-605 A). For 200 year return periods using 5,000 nT/min, current estimates reach 755 A (confidence interval range 155-910 A). GIC measurements from the much shorter data set collected at transformer number 4 in Halfway Bush, Dunedin, (HWB T4), found induced currents to be consistently a factor of 3 higher than at Islington, suggesting equivalent extreme storm effects of 460-1,815 A (100 year return) and 460-2,720 A (200 year return). An estimate was undertaken of likely failure levels for single-phase transformers, such as HWB T4 when it failed during the 6 November 2001 geomagnetic storm, identifying that induced currents of 100 A can put such transformer types at risk of damage. Detailed modeling of the New Zealand power system is therefore required to put this regional analysis into a global context.

  2. Electric field effects on ionospheric and thermospheric parameters above the EISCAT station for summer conditions

    Directory of Open Access Journals (Sweden)

    V. V. Klimenko

    Full Text Available Numerical calculations of the thermospheric and ionospheric parameters above EISCAT are presented for quiet geomagnetic conditions in summer. The Global Self-consistent Model of the Thermosphere, Ionosphere and Protonosphere (GSM TIP was used. The numerical results were obtained both with a self-consistent calculation of the electric fields of magnetospheric and dynamo-action origin and with the magnetospheric electric fields only. It was found that the dynamo-electric field has some effect on the ionospheric convection pattern during quiet geomagnetic conditions. It has a marked effect mainly on the zonal neutral wind component above EISCAT (±20 m/s at 140 km altitude. We have studied the effects of various field-aligned current (FAC distributions on thermosphere/ionosphere parameters and we show that a qualitative agreement can be obtained with region-I and -II FAC zones at 75° and 65° geomagnetic latitude, respectively. The maximum FAC intensities have been assumed at 03–21 MLT for both regions with peak values of 2.5×10–7 A m–2 (region I and 1.25×10–7 A m–2 (region II. These results are in agreement with statistical potential distribution and FAC models constructed by use of EISCAT data. The lack of decreased electron density in the night-time sector as observed by the EISCAT radar was found to be due to the spatial distribution of ionospheric convection resulting from electric fields of magnetospheric origin.

    Key words. Electric fields and currents · Ionosphere- atmosphere interactions · Modelling and forecasting

  3. Electric field effects on ionospheric and thermospheric parameters above the EISCAT station for summer conditions

    Directory of Open Access Journals (Sweden)

    V. V. Klimenko

    1998-10-01

    Full Text Available Numerical calculations of the thermospheric and ionospheric parameters above EISCAT are presented for quiet geomagnetic conditions in summer. The Global Self-consistent Model of the Thermosphere, Ionosphere and Protonosphere (GSM TIP was used. The numerical results were obtained both with a self-consistent calculation of the electric fields of magnetospheric and dynamo-action origin and with the magnetospheric electric fields only. It was found that the dynamo-electric field has some effect on the ionospheric convection pattern during quiet geomagnetic conditions. It has a marked effect mainly on the zonal neutral wind component above EISCAT (±20 m/s at 140 km altitude. We have studied the effects of various field-aligned current (FAC distributions on thermosphere/ionosphere parameters and we show that a qualitative agreement can be obtained with region-I and -II FAC zones at 75° and 65° geomagnetic latitude, respectively. The maximum FAC intensities have been assumed at 03–21 MLT for both regions with peak values of 2.5×10–7 A m–2 (region I and 1.25×10–7 A m–2 (region II. These results are in agreement with statistical potential distribution and FAC models constructed by use of EISCAT data. The lack of decreased electron density in the night-time sector as observed by the EISCAT radar was found to be due to the spatial distribution of ionospheric convection resulting from electric fields of magnetospheric origin.Key words. Electric fields and currents · Ionosphere- atmosphere interactions · Modelling and forecasting

  4. Geomagnetic fluctuations during a polarity transition

    Science.gov (United States)

    Audunsson, Haraldur; Levi, Shaul

    1997-01-01

    The extensive Roza Member of the Columbia River Basalt Group (Washington State) has intermediate paleomagnetic directions, bracketed by underlying normal and overlying reverse polarity flows. A consistent paleomagnetic direction was measured at 11 widely distributed outcrops; the average direction has a declination of 189° and an inclination of -5°, with greater variation in the inclination [Rietman, 1966]. In this study the Roza Member was sampled in two Pasco Basin drillcores, where it is a single cooling unit and its thickness exceeds 50 m. Excellent core recovery allowed uniform and dense sampling of the drillcores. During its protracted cooling, the Roza flow in the drillcores recorded part of a 15.5 Ma geomagnetic polarity transition. The inclination has symmetric, quasicyclic intraflow variation, while the declination is nearly constant, consistent with the results from the outcrops. Thermal models of the cooling flow provide the timing for remanence acquisition. The inclination is inferred to have progressed from 0° to -15° and back to -3°over a period of 15 to 60 years, at rates of 1.6° to 0.5°/yr. Because the geomagnetic intensity was probably weak during the transition, these apparently high rates of change are not significantly different from present-day secular variation. These results agree with the hypothesis that normal secular variation persists through geomagnetic transitions. The Iow-amplitude quasicyclical fluctuations of the field over tens of years, recorded by Roza, suggest that the geomagnetic field reverses in discrete steps, and that more than 15-60 years were required to complete this reversal.

  5. The effects of neutral inertia on ionospheric currents in the high-latitude thermosphere following a geomagnetic storm

    International Nuclear Information System (INIS)

    Deng, W.; Killeen, T.L.; Burns, A.G.; Roble, R.G.; Slavin, J.A.; Wharton, L.E.

    1993-01-01

    The authors extend previous work with a National Center for Atmospheric Research (NCAR) thermosphere/ionosphere general circulation model (TIGCM), to study dynamo effects in the high latitude thermosphere. Ionospheric convection can drive neutral currents in much the same pattern by means of ion drag reactions. It has been observed that ion currents established during magnetic storms can induce neutral currents which persist for hours after the end of the storm. Model results have shown that such currents can account for up to 80 percent of the Hall currents in the period immediately following storms. Here this previous work is extended and compared with experimental observations. The authors simulate time dependent Hall currents, field-aligned currents, and electrical power fluxes coupling the magnetosphere and ionosphere. They discuss their results in terms of a loaded magnetosphere, which accounts for the fact that the neutral currents can also induce currents and electric fields in the ionosphere

  6. Geomagnetic storm under laboratory conditions: randomized experiment

    Science.gov (United States)

    Gurfinkel, Yu I.; Vasin, A. L.; Pishchalnikov, R. Yu; Sarimov, R. M.; Sasonko, M. L.; Matveeva, T. A.

    2017-10-01

    The influence of the previously recorded geomagnetic storm (GS) on human cardiovascular system and microcirculation has been studied under laboratory conditions. Healthy volunteers in lying position were exposed under two artificially created conditions: quiet (Q) and storm (S). The Q regime playbacks a noise-free magnetic field (MF) which is closed to the natural geomagnetic conditions on Moscow's latitude. The S regime playbacks the initially recorded 6-h geomagnetic storm which is repeated four times sequentially. The cardiovascular response to the GS impact was assessed by measuring capillary blood velocity (CBV) and blood pressure (BP) and by the analysis of the 24-h ECG recording. A storm-to-quiet ratio for the cardio intervals (CI) and the heart rate variability (HRV) was introduced in order to reveal the average over group significant differences of HRV. An individual sensitivity to the GS was estimated using the autocorrelation function analysis of the high-frequency (HF) part of the CI spectrum. The autocorrelation analysis allowed for detection a group of subjects of study which autocorrelation functions (ACF) react differently in the Q and S regimes of exposure.

  7. Geomagnetic storm under laboratory conditions: randomized experiment.

    Science.gov (United States)

    Gurfinkel, Yu I; Vasin, A L; Pishchalnikov, R Yu; Sarimov, R M; Sasonko, M L; Matveeva, T A

    2018-04-01

    The influence of the previously recorded geomagnetic storm (GS) on human cardiovascular system and microcirculation has been studied under laboratory conditions. Healthy volunteers in lying position were exposed under two artificially created conditions: quiet (Q) and storm (S). The Q regime playbacks a noise-free magnetic field (MF) which is closed to the natural geomagnetic conditions on Moscow's latitude. The S regime playbacks the initially recorded 6-h geomagnetic storm which is repeated four times sequentially. The cardiovascular response to the GS impact was assessed by measuring capillary blood velocity (CBV) and blood pressure (BP) and by the analysis of the 24-h ECG recording. A storm-to-quiet ratio for the cardio intervals (CI) and the heart rate variability (HRV) was introduced in order to reveal the average over group significant differences of HRV. An individual sensitivity to the GS was estimated using the autocorrelation function analysis of the high-frequency (HF) part of the CI spectrum. The autocorrelation analysis allowed for detection a group of subjects of study which autocorrelation functions (ACF) react differently in the Q and S regimes of exposure.

  8. Selective cooling on land supports cloud formation by cosmic ray during geomagnetic reversals

    Science.gov (United States)

    Kitaba, I.; Hyodo, M.; Nakagawa, T.; Katoh, S.; Dettman, D. L.; Sato, H.

    2017-12-01

    On geological time scales, the galactic cosmic ray (GCR) flux at the Earth's surface has increased significantly during many short time intervals. There is a growing body of evidence that suggests that climatic cooling occurred during these episodes. Cloud formation by GCR has been claimed as the most likely cause of the linkage. However, the mechanism is not fully understood due to the difficulty of accurately estimating the amount of cloud cover in the geologic past. Our study focused on the geomagnetic field and climate in East Asia. The Earth's magnetic field provides a shield against GCR. The East Asian climate reflects the temperature balance between the Eurasian landmass and the Pacific Ocean that drives monsoon circulation.Two geomagnetic polarity reversals occurred at 780 ka and 1,070 ka. At these times the geomagnetic field decreased to about 10% of its present level causing a near doubling of the GCR flux. Temperature and rainfall amounts during these episodes were reconstructed using pollen in sediment cores from Osaka Bay, Japan. The results show a more significant temperature drop on the Eurasian continent than over the Pacific, and a decrease of summer rainfall in East Asia (i.e. a weakening of East Asian summer monsoon). These observed climate changes can be accounted for if the landmasses were more strongly cooled than the oceans. The simplest mechanism behind such asymmetric cooling is the so-called `umbrella effect' (increased cloud cover blocking solar radiation) that induces greater cooling of objects with smaller heat capacities.

  9. Geomagnetic Observatory Database February 2004

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA National Centers for Environmental Information (formerly National Geophysical Data Center) maintains an active database of worldwide geomagnetic observatory...

  10. Coronal mass ejections and disturbances in solar wind plasma parameters in relation with geomagnetic storms

    International Nuclear Information System (INIS)

    Verma, P L; Singh, Puspraj; Singh, Preetam

    2014-01-01

    Coronal Mass Ejections (CMEs) are the drastic solar events in which huge amount of solar plasma materials are ejected into the heliosphere from the sun and are mainly responsible to generate large disturbances in solar wind plasma parameters and geomagnetic storms in geomagnetic field. We have studied geomagnetic storms, (Dst ≤-75 nT) observed during the period of 1997-2007 with Coronal Mass Ejections and disturbances in solar wind plasma parameters (solar wind temperature, velocity, density and interplanetary magnetic field) .We have inferred that most of the geomagnetic storms are associated with halo and partial halo Coronal Mass Ejections (CMEs).The association rate of halo and partial halo coronal mass ejections are found 72.37 % and 27.63 % respectively. Further we have concluded that geomagnetic storms are closely associated with the disturbances in solar wind plasma parameters. We have determined positive co-relation between magnitudes of geomagnetic storms and magnitude of jump in solar wind plasma temperature, jump in solar wind plasma density, jump in solar wind plasma velocity and jump in average interplanetary magnetic field with co-relation co-efficient 0 .35 between magnitude of geomagnetic storms and magnitude of jump in solar wind plasma temperature, 0.19 between magnitude of geomagnetic storms and magnitude of jump in solar wind density, 0.34 between magnitude of geomagnetic storms and magnitude of jump in solar wind plasma velocity, 0.66 between magnitude of geomagnetic storms and magnitude of jump in average interplanetary magnetic field respectively. We have concluded that geomagnetic storms are mainly caused by Coronal Mass Ejections and disturbances in solar wind plasma parameters that they generate.

  11. Intermittency and multifractional Brownian character of geomagnetic time series

    Directory of Open Access Journals (Sweden)

    G. Consolini

    2013-07-01

    Full Text Available The Earth's magnetosphere exhibits a complex behavior in response to the solar wind conditions. This behavior, which is described in terms of mutifractional Brownian motions, could be the consequence of the occurrence of dynamical phase transitions. On the other hand, it has been shown that the dynamics of the geomagnetic signals is also characterized by intermittency at the smallest temporal scales. Here, we focus on the existence of a possible relationship in the geomagnetic time series between the multifractional Brownian motion character and the occurrence of intermittency. In detail, we investigate the multifractional nature of two long time series of the horizontal intensity of the Earth's magnetic field as measured at L'Aquila Geomagnetic Observatory during two years (2001 and 2008, which correspond to different conditions of solar activity. We propose a possible double origin of the intermittent character of the small-scale magnetic field fluctuations, which is related to both the multifractional nature of the geomagnetic field and the intermittent character of the disturbance level. Our results suggest a more complex nature of the geomagnetic response to solar wind changes than previously thought.

  12. Solar cycle 22 control on daily geomagnetic variation at Terra Nova Bay (Antarctica

    Directory of Open Access Journals (Sweden)

    P. Palangio

    1998-06-01

    Full Text Available Nine summer geomagnetic observatory data (1986-1995 from Terra Nova Bay Base, Antarctica (Lat.74.690S, Long. 164.120E, 80.040S magnetic latitude are used to investigate the behaviour of the daily variation of the geomagnetic field at polar latitude. The instrumentation includes a proton precession magnetometer for total intensity |F| digital recordings; DI magnetometers for absolute measuring of the angular elements D and I and a three axis flux-gate system for acquiring H,D Z time variation data. We find that the magnetic time variation amplitude follows the solar cycle evolution and that the ratio between minimum solar median and maximum solar median is between 2-3 for intensive elements (H and Z and 1.7 for declination(D. The solar cycle effect on geomagnetic daily variation elements amplitude in Antarctica, in comparison with previous studies, is then probably larger than expected. As a consequence, the electric current system that causes the daily magnetic field variation reveals a quite large solar cycle effect at Terra Nova Bay.

  13. Manifestation of interplanetary medium parameters in development of a geomagnetic storm initial phase

    International Nuclear Information System (INIS)

    Chkhetiya, A.M.

    1988-01-01

    The role of solar wind plasma parameters in formation of a geomagnetic storm initial phase is refined. On the basis of statistical analysis an empirical formula relating the interplanetary medium parameters (components of interplanetary magnetic field, proton velocity and concentration) and D st -index during the geomagnetic storm initial phase is proposed

  14. New forecasting methods of the intensity and time development of geomagnetic and ionospheric storms

    International Nuclear Information System (INIS)

    Akasofu, S.I.

    1981-01-01

    The main phase of a geomagnetic storm develops differently from one storm to another. A description is given of the solar wind quantity which controls directly the development of the main phase of geomagnetic storms. The parameters involved include the solar wind speed, the magnetic field intensity, and the polar angle of the solar wind magnetic field projected onto the dawn-dusk plane. A redefinition of geomagnetic storm and auroral activity is given. It is pointed out that geomagnetic disturbances are caused by the magnetic fields of electric currents which are generated by the solar wind-magnetosphere dynamo. Attention is given to approaches for forecasting the occurrence and intensity of geomagnetic storms and ionospheric disturbances

  15. Fluxgate Magnetometer Array for Geomagnetic Abnormal Phenomena Tracking

    Directory of Open Access Journals (Sweden)

    Xiaomei Wang

    2011-06-01

    Full Text Available The objective of this project is to develop a flexible observation mode for a geomagnetic abnormal phenomena tracking system. The instrument, based on ring core fluxgate magnetometer technology, improves the field environment performance. Using wireless technology provides on-the-spot mobile networking for the observational data, with efficient access to the earthquake precursor observation network. It provides a powerful detection method for earthquake short-term prediction through installation of a low-noise fluxgate magnetometer array, intensely observing the phenomenon of geomagnetic disturbances and abnormal low-frequency electromagnetic signals in different latitudes, then carrying out observational data processing and exploring the relationship between earthquake activity and geomagnetic field changes.

  16. Recent investigation at INPE in magnetospheric physics and geomagnetism

    International Nuclear Information System (INIS)

    Gonzales, W.D.; Trivedi, N.B.

    1984-01-01

    During recent years the following research activities related to the earth's magnetosphere have been intensified: a) studies on electric field and energy transfer from the solar wind to the magnetosphere; b) studies on high latitude magnetospheric electric fields and on their penetration into the plasmasphere; c) measurements of atmospheric-large scale-electric fields, related to the low latitude magnetospheric-ionospheric coupling and to the local atmospheric electrodynamics, using detectors on board stratospheric balloons; and d) measurements of atmospheric X-rays, related to the process of energetic particle precipitation at the South Atlantic Magnetic Anomaly, using detectors also on board stratospheric balloons. Similarly, the following research activities related to geomagnetism are being pursued: a) studies on the variability of the geomagnetic field and on the dynamics of the equatorial electrojet from local geomagnetic field measurements; b) studies on terrestrial electromagnetic induction through local measurements of the geo-electromagnetic field; and c) studies on the influence of geomagnetic activity on particle precipitation at the South Atlantic Magnetic Anomaly. (Author) [pt

  17. Eliminating large-scale magnetospheric current perturbations from long-term geomagnetic observatory data

    Science.gov (United States)

    Pick, L.; Korte, M. C.

    2016-12-01

    Magnetospheric currents generate the largest external contribution to the geomagnetic field observed on Earth. Of particular importance is the solar-driven effect of the ring current whose fluctuations overlap with internal field secular variation (SV). Recent core field models thus co-estimate this effect but their validity is limited to the last 15 years offering satellite data. We aim at eliminating magnetospheric modulation from the whole geomagnetic observatory record from 1840 onwards in order to obtain clean long-term SV that will enhance core flow and geodynamo studies.The ring current effect takes form of a southward directed external dipole field aligned with the geomagnetic main field axis. Commonly the Dst index (Sugiura, 1964) is used to parametrize temporal variations of this dipole term. Because of baseline instabilities, the alternative RC index was derived from hourly means of 21 stations spanning 1997-2013 (Olsen et al., 2014). We follow their methodology based on annual means from a reduced station set spanning 1960-2010. The absolute level of the variation so determined is "hidden" in the static lithospheric offsets taken as quiet-time means. We tackle this issue by subtracting crustal biases independently calculated for each observatory from an inversion of combined Swarm satellite and observatory data.Our index reproduces the original annual RC index variability with a reasonable offset of -10 nT in the reference time window 2000-2010. Prior to that it depicts a long-term trend consistent with the external dipole term from COV-OBS (Gillet et al., 2013), being the only long-term field model available for comparison. Sharper variations that are better correlated with the Ap index than the COV-OBS solution lend support to the usefulness of our initial modeling approach. Following a detailed sensitivity study of station choice future work will focus on increasing the resolution from annual to hourly means.

  18. The statistical analysis of the Geomagnetically Induced Current events occurred in Guangdong, China during the declining phase of solar cycle 23 (2003–2006)

    Science.gov (United States)

    Ni, Y. Y.

    2018-03-01

    We study the interplanetary causes of intense geomagnetic storms (Dst ≤ -100 nT) and the corresponding Geomagnetically Induced Current (GIC) events occurred in Ling’ao nuclear power station, Guangdong during the declining phase of solar cycle 23 (2003–2006). The result shows that sMC (a magnetic cloud with a shock), SH (sheath) and SH+MC (a sheath followed by a magnetic cloud) are the three most common interplanetary structures responsible for the storms which will cause GIC events in this period. As an interplanetary structure, CIR (corotating interaction regions) also plays an important role, however, the CIR-driven storms have a relatively minor effect to the GIC. Among the interplanetary parameters, the solar wind velocity and the southward component of the IMF (interplanetary magnetic field) are more important than solar wind density and the temperature to a geomagnetic storm and GIC.

  19. Multi-Instrument Observations of a Geomagnetic Storm and its Effects on the Arctic Ionosphere: A Case Study of the 19 February 2014 Storm

    DEFF Research Database (Denmark)

    Durgonics, Tibor; Komjathy, Attila; Verkhoglyadova, Olga

    2017-01-01

    We present a multi-instrumented approach for the analysis of the Arctic ionosphere during the 19 February 2014 highly complex, multiphase geomagnetic storm, which had the largest impact on the disturbance storm-time (Dst) index that year. The geomagnetic storm was the result of two powerful Earth......-directed coronal mass ejections (CMEs). It produced a strong long lasting negative storm phase over Greenland with a dominant energy input in the polar-cap. We employed GNSS networks, geomagnetic observatories, and a specific ionosonde station in Greenland. We complemented the approach with spaceborne measurements...... specifically found that, (1) Thermospheric O/N2 measurements demonstrated significantly lower values over the Greenland sector than prior to the storm-time. (2) An increased ion flow in the topside ionosphere was observed during the negative storm phase. (3) Negative storm phase was a direct consequence...

  20. Global Ultra-Low-Frequency Geomagnetic Pulsations Associated with the March 24, 1991 Geomagnetic Storm

    Directory of Open Access Journals (Sweden)

    Nan-Wei Chen Jann-Yenq Liu

    2008-01-01

    Full Text Available On 24 March 1991, global ultra-low-frequency (ULF pulsations (1.1 - 3.3 mHz observed in the magnetosphere as well as on the ground were studied via analyzing magnetic field data obtained from a global network, comprising ground-based observatories and geosynchronous satellites. In the magnetosphere, the compressional and transverse components of the magnetic fields recorded at two satellites, GOES 6 and GOES 7, showed dominant fluctuations when they were in the vicinity of the noon sector, whereas the transverse fluctuations became dominant when they were at the dawn side. Similarly, on the ground, the H and D components had major fluctuations along with an increase in amplitude from low to high geomagnetic latitudes. In addition, the amplitude of the ULF pulsation was enhanced at the dawn and dusk sides. The geomagnetic pulsations propagated anti-sunward and were of counterclockwise and clockwise elliptical polarizations at the dawn and dusk sides respectively. The counterclockwise elliptical polarization reversed to a clockwise elliptical polarization at geomagnetic local noon and linear polarization was observed during the reversal. It appears that the analysis of the global network data not only provided us with a study of the characteristics of the waves in the magnetosphere and on the ground but also provided us with correlations between the geosynchronous and ground observations, which should be essential to the determination of possible mechanisms of this storm-related wave event.

  1. Climatologies of nighttime upper thermospheric winds measured by ground-based Fabry-Perot interferometers during geomagnetically quiet conditions: 2. High-latitude circulation and interplanetary magnetic field dependence

    DEFF Research Database (Denmark)

    Emmert, J.T.; Hernandez, G.; Jarvis, M.J.

    2006-01-01

    We analyze upper thermospheric (similar to 250 km) nighttime horizontal neutral wind patterns, during geomagnetically quiet (Kp S), Halley (76 degrees S, 27 degrees W), Millstone Hill (43 degrees N, 72 degrees W), Sondre...

  2. Methodology for simulation of geomagnetically induced currents in power systems

    Directory of Open Access Journals (Sweden)

    Boteler David

    2014-07-01

    Full Text Available To assess the geomagnetic hazard to power systems it is useful to be able to simulate the geomagnetically induced currents (GIC that are produced during major geomagnetic disturbances. This paper examines the methodology used in power system analysis and shows how it can be applied to modelling GIC. Electric fields in the area of the power network are used to determine the voltage sources or equivalent current sources in the transmission lines. The power network can be described by a mesh impedance matrix which is combined with the voltage sources to calculate the GIC in each loop. Alternatively the power network can be described by a nodal admittance matrix which is combined with the sum of current sources into each node to calculate the nodal voltages which are then used to calculate the GIC in the transmission lines and GIC flowing to ground at each substation. Practical calculations can be made by superposition of results calculated separately for northward and eastward electric fields. This can be done using magnetic data from a single observatory to calculate an electric field that is a uniform approximation of the field over the area of the power system. It is also shown how the superposition of results can be extended to use data from two observatories: approximating the electric field by a linear variation between the two observatory locations. These calculations provide an efficient method for simulating the GIC that would be produced by historically significant geomagnetic storm events.

  3. Organic tunnel field effect transistors

    KAUST Repository

    Tietze, Max Lutz; Lussem, Bjorn; Liu, Shiyi

    2017-01-01

    Various examples are provided for organic tunnel field effect transistors (OTFET), and methods thereof. In one example, an OTFET includes a first intrinsic layer (i-layer) of organic semiconductor material disposed over a gate insulating layer

  4. Morphology of geomagnetic storms, recorded at Hurbanovo, and its relation to solar activity

    International Nuclear Information System (INIS)

    Ochabova, P.; Psenakova, M.

    1977-01-01

    The morphological structure of geomagnetic storms was investigated using the data on 414 storms, recorded in the years 1949 to 1968 at the Geomagnetic Observatory of Hurbanovo (phi=47.9 deg N, lambda=18.2 deg E). These data also formed a suitable basis for investigating the effect of the solar activity on the characteristic features of storms. The storm-time variation of the geomagnetic field was considered after the Sq-variation had been eliminated. The sets of storms, i.e. 263 storms recorded at a time of high sunspot activity and 151 storms recorded at a time of low activity, were divided into 7 groups, depending on the duration of their initial phase. In 92% of the investigated storms the increase in the horizontal component lasted from 0 to 15 hrs. The effect of the solar activity was markedly reflected in the occurrence of very severe storms, as well as in the maximum decrease in the H-component in the main phase. This can also be seen in the rate at which the storms recover. (author)

  5. Improving geomagnetic observatory data in the South Atlantic Anomaly

    Science.gov (United States)

    Matzka, Jürgen; Morschhauser, Achim; Brando Soares, Gabriel; Pinheiro, Katia

    2016-04-01

    The Swarm mission clearly proofs the benefit of coordinated geomagnetic measurements from a well-tailored constellation in order to recover as good as possible the contributions of the various geomagnetic field sources. A similar truth applies to geomagnetic observatories. Their scientific value can be maximised by properly arranging the position of individual observatories with respect to the geometry of the external current systems in the ionosphere and magnetosphere, with respect to regions of particular interest for secular variation, and with respect to regions of anomalous electric conductivity in the ground. Here, we report on our plans and recent efforts to upgrade geomagnetic observatories and to recover unpublished data from geomagnetic observatories at low latitudes in the South Atlantic Anomaly. In particular, we target the magnetic equator with the equatorial electrojet and low latitudes to characterise the Sq- and ring current. The observatory network that we present allows also to study the longitudinal structure of these external current systems. The South Atlantic Anomaly region is very interesting due to its secular variation. We will show newly recovered data and comparisons with existing data sets. On the technical side, we introduce low-power data loggers. In addition, we use mobile phone data transfer, which is rapidly evolving in the region and allows timely data access and quality control at remote sites that previously were not connected to the internet.

  6. Westward ionospheric currents over the dip equator during geomagnetic disturbances

    International Nuclear Information System (INIS)

    Rastogi, R.G.

    1975-01-01

    During geomagnetic disturbed periods, the q type of sporadic E layer near the dip equator is shown to disappear with maximum error of five minutes during the period when the difference of the geomagnetic H field between the equatorial and non-equatorial station decreases below the night level. These periods are identified with the reversal to westward direction of the electrojet currents at the base of the E region around 100 km level irrespective of the changes in the S/subq/ current system which might be produced by the disturbance

  7. Transport from chaotic orbits in the geomagnetic tail

    International Nuclear Information System (INIS)

    Horton, W.; Tajima, T.

    1991-01-01

    The rapid change in direction and magnitude of the magnetic field vector in crossing the quasineutral sheet in the geomagnetic tail leads to deterministic Hamiltonian chaos. The finite correlation times in the single particle orbits due to the continuum of orbital frequencies leads to well-defined collisionless transport coefficients. The transport coefficients are derived for plasma trapped in the quasineutral sheet

  8. Sensitivity of the Geomagnetic Octupole to a Stably Stratified Layer in the Earth's Core

    Science.gov (United States)

    Yan, C.; Stanley, S.

    2017-12-01

    The presence of a stably stratified layer at the top of the core has long been proposed for Earth, based on evidence from seismology and geomagnetic secular variation. Geodynamo modeling offers a unique window to inspect the properties and dynamics in Earth's core. For example, numerical simulations have shown that magnetic field morphology is sensitive to the presence of stably stratified layers in a planet's core. Here we use the mMoSST numerical dynamo model to investigate the effects of a thin stably stratified layer at the top of the fluid outer core in Earth on the resulting large-scale geomagnetic field morphology. We find that the existence of a stable layer has significant influence on the octupolar component of the magnetic field in our models, whereas the quadrupole doesn't show an obvious trend. This suggests that observations of the geomagnetic field can be applied to provide information of the properties of this plausible stable layer, such as how thick and how stable this layer could be. Furthermore, we have examined whether the dominant thermal signature from mantle tomography at the core-mantle boundary (CMB) (a degree & order 2 spherical harmonic) can influence our results. We found that this heat flux pattern at the CMB has no outstanding effects on the quadrupole and octupole magnetic field components. Our studies suggest that if there is a stably stratified layer at the top of the Earth's core, it must be limited in terms of stability and thickness, in order to be compatible with the observed paleomagnetic record.

  9. Resolving issues concerning Eskdalemuir geomagnetic hourly values

    Directory of Open Access Journals (Sweden)

    S. Macmillan

    2011-02-01

    Full Text Available The hourly values of the geomagnetic field from 1911 to 1931 derived from measurements made at Eskdalemuir observatory in the UK, and available online from the World Data Centre for Geomagnetism at http://www.wdc.bgs.ac.uk/, have now been corrected. Previously they were 2-point averaged and transformed from the original north, east and vertical down values in the tables in the observatory yearbooks. This paper documents the course of events from discovering the post-processing done to the data to the final resolution of the problem. As it was through the development of a new index, the Inter-Hour Variability index, that this post-processing came to light, we provide a revised series of this index for Eskdalemuir and compare it with that from another European observatory. Conclusions of studies concerning long-term magnetic field variability and inferred solar variability, whilst not necessarily consistent with one another, are not obviously invalidated by the incorrect hourly values from Eskdalemuir. This series of events illustrates the challenges that lie ahead in removing any remaining errors and inconsistencies in the data holdings of different World Data Centres.

  10. Ten cycles of solar and geomagnetic activity

    International Nuclear Information System (INIS)

    Legrand, J.P.

    1981-01-01

    Series of 110 years of sunspot numbers and indices of geomagnetic activity are used with 17 years of solar wind data in order to study through solar cycles both stream and shock event solar activity. According to their patterns on Bartels diagrams of geomagnetic indices, stable wind streams and transient solar activities are separated from each other. Two classes of stable streams are identified: equatorial streams occurring sporadically, for several months, during the main phase of sunspot cycles and both polar streams established, for several years, at each cycle, before sunspot minimum. Polar streams are the first activity of solar cycles. For study of the relationship between transient geomagnetic phenomena and sunspot activity, we raise the importance of the contribution, at high spot number, of severe storms and, at low spot number, of short lived and unstable streams. Solar wind data are used to check and complete the above results. As a conclusion, we suggest a unified scheme of solar activity evolution with a starting point every eleventh year, a total duration of 17 years and an overlapping of 6 years between the first and the last phase of both successive series of phenomena: first, from polar field reversal to sunspot minimum, a phase of polar wind activity of the beginning cycle is superimposed on the weak contribution of shock events of the ending cycle; secondly, an equatorial phase mostly of shock events is superimposed on a variable contribution of short lived and sporadic stable equatorial stream activities; and thirdly a phase of low latitude shock events is superimposed on the polar stream interval of the following cycle. (orig.)

  11. Variability Analysis of the Horizontal Geomagnetic Component: A Case Study Based on Records from Vassouras Observatory (Brazil)

    Science.gov (United States)

    Klausner, Virginia; Papa, Andres; Mendes, Odim; Oliveira Domingues, Margarete

    It is well known that any of the components of the magnetic field measured on the Earth's surface presents characteristic frequencies with 24, 12, 8 and 6-hour period. Those typical kinds of oscillations of the geomagnetic field are known as solar quiet variation and are primary due to the global thermotidal wind systems which conduct currents flowing in the "dynamo region" of the ionosphere, the E-region. In this study, the horizontal component amplitude observed by ground-based observatories belonged to the INTERMAGNET network have been used to analyze the global pattern variance of the Sq variation. In particular we focused our attention on Vassouras Observatory (VSS), Rio de Janeiro, Brazil, which has been active since 1915. In the next years, a brazilian network of magnetometers will be implemented and VSS can be used as reference. This work aims mainly to highlight and interpret these quiet daily variations over the Brazilian sector compared to the features from other magnetic stations reasonably distributed over the whole Earth's surface. The methodological approach is based on wavelet cross-correlation technique. This technique is useful to isolate the period of the spectral components of geomagnetic field in each station and to correlate them as function of scale (period) between VSS and the other stations. The wavelet cross-correlation coefficient strongly depends on the scale. We study the geomagnetically quiet days at equinox and solstice months during low and high solar activity. As preliminary remarks, the results show that the records in the magnetic stations have primary a latitudinal dependence affected by the time of year and level of solar activity. On the other hand, records of magnetic stations located at the same dip latitude but at different longitude presented some peculiarities. These results indicated that the winds driven the dynamo are very sensitive of the location of the geomagnetic station, i. e., its effects depend upon the direction

  12. Mantle superplumes induce geomagnetic superchrons

    Directory of Open Access Journals (Sweden)

    Peter eOlson

    2015-07-01

    Full Text Available We use polarity reversal systematics from numerical dynamos to quantify the hypothesis that the modulation of geomagnetic reversal frequency, including geomagnetic superchrons, results from changes in core heat flux related to growth and collapse of lower mantle superplumes. We parameterize the reversal frequency sensitivity from numerical dynamos in terms of average core heat flux normalized by the difference between the present-day core heat flux and the core heat flux at geomagnetic superchron onset. A low-order polynomial fit to the 0-300 Ma Geomagnetic Polarity Time Scale (GPTS reveals that a decrease in core heat flux relative to present-day of approximately 30% can account for the Cretaceous Normal Polarity and Kiaman Reverse Polarity Superchrons, whereas the hyper-reversing periods in the Jurassic require a core heat flux equal to or higher than present-day. Possible links between GPTS transitions, large igneous provinces (LIPs, and the two lower mantle superplumes are explored. Lower mantle superplume growth and collapse induce GPTS transitions by increasing and decreasing core heat flux, respectively. Age clusters of major LIPs postdate transitions from hyper-reversing to superchron geodynamo states by 30-60 Myr, suggesting that superchron onset may be contemporaneous with LIP-forming instabilities produced during collapses of lower mantle superplumes.

  13. CM5, a Pre-Swarm Comprehensive Geomagnetic Field Model Derived from Over 12 Yr of CHAMP, Orsted, SAC-C and Observatory Data

    Science.gov (United States)

    Sabaka, Terence J.; Olsen, Nils; Tyler, Robert H.; Kuvshinov, Alexey

    2014-01-01

    A comprehensive magnetic field model named CM5 has been derived from CHAMP, Ørsted and SAC-C satellite and observatory hourly-means data from 2000 August to 2013 January using the Swarm Level-2 Comprehensive Inversion (CI) algorithm. Swarm is a recently launched constellation of three satellites to map the Earth's magnetic field. The CI technique includes several interesting features such as the bias mitigation scheme known as Selective Infinite Variance Weighting (SIVW), a new treatment for attitude error in satellite vector measurements, and the inclusion of 3-D conductivity for ionospheric induction. SIVW has allowed for a much improved lithospheric field recovery over CM4 by exploiting CHAMP along-track difference data yielding resolution levels up to spherical harmonic degree 107, and has allowed for the successful extraction of the oceanic M2 tidal magnetic field from quiet, nightside data. The 3-D induction now captures anomalous Solar-quiet features in coastal observatory daily records. CM5 provides a satisfactory, continuous description of the major magnetic fields in the near-Earth region over this time span, and its lithospheric, ionospheric and oceanic M2 tidal constituents may be used as validation tools for future Swarm Level-2 products coming from the CI algorithm and other dedicated product algorithms.

  14. Quantum effects in strong fields

    International Nuclear Information System (INIS)

    Roessler, Lars

    2014-01-01

    This work is devoted to quantum effects for photons in spatially inhomogeneous fields. Since the purely analytical solution of the corresponding equations is an unsolved problem even today, a main aspect of this work is to use the worldline formalism for scalar QED to develop numerical algorithms for correlation functions beyond perturbative constructions. In a first step we take a look at the 2-Point photon correlation function, in order to understand effects like vacuum polarization or quantum reflection. For a benchmark test of the numerical algorithm we reproduce analytical results in a constant magnetic background. For inhomogeneous fields we calculate for the first time local refractive indices of the quantum vacuum. In this way we find a new de-focusing effect of inhomogeneous magnetic fields. Furthermore the numerical algorithm confirms analytical results for quantum reflection obtained within the local field approximation. In a second step we take a look at higher N-Point functions, with the help of our numerical algorithm. An interesting effect at the level of the 3-Point function is photon splitting. First investigations show that the Adler theorem remains also approximately valid for inhomogeneous fields.

  15. The Geomagnetic Control Concept of The Ionospheric Long- Term Trends

    Science.gov (United States)

    Mikhailov, A. V.

    The geomagnetic control concept has been developed to explain long-term trends of the electron concentration in the F2 and E ionospheric regions. Periods with negative and positive foF2, hmF2 and foE trends correspond to the periods of increasing or decreasing geomagnetic activity with the turning points around the end of 1950s, 1960s, and 1980s where trends change their signs. Strong latitudinal and diurnal variations revealed for the foF2 and hmF2 trends can be explained by neutral composition, temperature and thermospheric wind changes. Particle precipitation is important in the auroral zone. The newly proposed concept proceeds from a natural origin of the F2-layer trends rather than an artificial one related to the greenhouse effect. Using the proposed method a very long-term foF2 and foE trends related with general increase of geomagnetic activity in the 20th century has been revealed for the first time. The firstly revealed relationship of the foE trends with geomagnetic activity is due to nitric oxide variations at the E-region heights. This "natural" relationship of the foE trends with geomagnetic activity breaks down around 1970 on many stations presumably due to chemical polution of the upper atmosphere. The increasing rate of rocket and satellite launchings in the late 1960s is considered as a reason.

  16. Green corona, geomagnetic activity and radar meteor rates

    International Nuclear Information System (INIS)

    Prikryl, P.

    1979-01-01

    The short-term dependence of radar meteor rates on geomagnetic activity and/or central meridian passage (CMP) of bright or faint green corona regions is studied. A superimposed-epoch analysis was applied to radar meteor observations from the Ottawa patrol radar (Springhill, Ont.) and Ksub(p)-indices of geomagnetic activity for the period 1963 to 1967. During the minimum of solar activity (1963 to 1965) the CMP of bright coronal regions was followed by the maximum in the daily rates of persistent meteor echoes (>=4s), and the minimum in the daily sums of Ksub(p)-indices whereas the minimum or the maximum, respectively, occurs after the CMP of faint coronal regions. The time delay between the CMP of coronal structures and the corresponding maxima or minima is found to be 3 to 4 days. However, for the period immediately after the minimum of solar activity (1966 to 1967) the above correlation with the green corona is void both for the geomagnetic activity and radar meteor rates. An inverse correlation was found between the radar meteor rates and the geomagnetic activity irrespective of the solar activity. The observed effect can be ascribed to the solar-wind-induced ''geomagnetic'' heating of the upper atmosphere and to the subsequent change in the density gradient in the meteor zone. (author)

  17. IMF sector behavior estimated from geomagnetic data at South Pole

    International Nuclear Information System (INIS)

    Matsushita, S.; Xu, W.h.

    1981-01-01

    IMF sector behavior which has previously been estimated from the geomagnetic data at Godhavn is confirmed by study of the data at South Pole for 1959--1970 with the same estimation technique, taking the difference between northern and southern hemispheres into consideration. A method to improve (about 18%) the agreement between assigned and actual sector structures by study of the data at the two stations is suggested. Geomagnetic disturbance effects on sector estimation are discussed, and reversed sector effects in winter are given special emphasis

  18. Tunneling field effect transistor technology

    CERN Document Server

    Chan, Mansun

    2016-01-01

    This book provides a single-source reference to the state-of-the art in tunneling field effect transistors (TFETs). Readers will learn the TFETs physics from advanced atomistic simulations, the TFETs fabrication process and the important roles that TFETs will play in enabling integrated circuit designs for power efficiency. · Provides comprehensive reference to tunneling field effect transistors (TFETs); · Covers all aspects of TFETs, from device process to modeling and applications; · Enables design of power-efficient integrated circuits, with low power consumption TFETs.

  19. Graphene field-effect devices

    Science.gov (United States)

    Echtermeyer, T. J.; Lemme, M. C.; Bolten, J.; Baus, M.; Ramsteiner, M.; Kurz, H.

    2007-09-01

    In this article, graphene is investigated with respect to its electronic properties when introduced into field effect devices (FED). With the exception of manual graphene deposition, conventional top-down CMOS-compatible processes are applied. Few and monolayer graphene sheets are characterized by scanning electron microscopy, atomic force microscopy and Raman spectroscopy. The electrical properties of monolayer graphene sandwiched between two silicon dioxide films are studied. Carrier mobilities in graphene pseudo-MOS structures are compared to those obtained from double-gated Graphene-FEDs and silicon metal-oxide-semiconductor field-effect-transistors (MOSFETs).

  20. Force balance near an X line along which E x J is less than 0. [plasma transfer from closed to open field lines in geomagnetic tail

    Science.gov (United States)

    Lyons, L. R.; Pridmore-Brown, D. C.

    1992-01-01

    Conditions for which particle motion within the current sheet in the vicinity of an X line can give a current in the direction appropriate for E x J is less than 0. The way in which the balance between gyroviscosity and the electric force along an X line is maintained for any E x J is shown. It is concluded that observational evidence for the occasional existence of E x J is less than 0 along an X line provides support for the suggestion that collisionless graviscosity, rather than resistivity, balances the electric force along an X line. It is found that there is a maximum electric field magnitude for particles to be able to carry a significant current. For parameters typical of the distant magnetotail, the critical electric field magnitude was found to be about 0.15 mV/m, which is of the order of, though somewhat less than, the potential electric field magnitudes expected in the magnetotail. This maximum allowable field magnitude is about the same for protons as it is for electrons in the magnetotail.

  1. CM5, a pre-Swarm comprehensive geomagnetic field model derived from over 12 yr of CHAMP, Ørsted, SAC-C and observatory data

    DEFF Research Database (Denmark)

    Sabaka, Terence J.; Olsen, Nils; Tyler, Robert H.

    2015-01-01

    A comprehensive magnetic field model named CM5 has been derived from CHAMP, Orsted and SAC-C satellite and observatory hourly-means data from 2000 August to 2013 January using the Swarm Level-2 Comprehensive Inversion (CI) algorithm. Swarm is a recently launched constellation of three satellites ...

  2. Long-Term Seafloor Electromagnetic Observation in the Northwest Pacific May Detect the Vector Geomagnetic Secular Variation

    Directory of Open Access Journals (Sweden)

    H Toh

    2010-03-01

    Full Text Available Sea Floor ElectroMagnetic Stations (SFEMSs are now operating at two deep seafloor sites called the 'WPB' and the 'NWP' in the West Philippine Basin and the Northwest Pacific Basin, respectively. One of the main objectives of the SFEMSs is to detect the geomagnetic secular variations on the deep seafloor where long-term geomagnetic observations have not so far been achieved. SFEMSs can measure the absolute geomagnetic total force as well as the geomagnetic vector field with precise attitude monitoring systems. The vector geomagnetic time-series that was observed for more than 5 years revealed that the westward drift of the equatorial dipole dominates in the geomagnetic secular variation at the NWP.

  3. Biological effects of electromagnetic fields

    International Nuclear Information System (INIS)

    David, E.

    1993-01-01

    In this generally intelligible article, the author describes at first the physical fundamentals of electromagnetic fields and their basic biological significance and effects for animals and human beings before dealing with the discussion regarding limiting values and dangers. The article treats possible connections with leukaemia as well as ith melatonine production more detailed. (vhe) [de

  4. Synaptic Effects of Electric Fields

    Science.gov (United States)

    Rahman, Asif

    Learning and sensory processing in the brain relies on the effective transmission of information across synapses. The strength and efficacy of synaptic transmission is modifiable through training and can be modulated with noninvasive electrical brain stimulation. Transcranial electrical stimulation (TES), specifically, induces weak intensity and spatially diffuse electric fields in the brain. Despite being weak, electric fields modulate spiking probability and the efficacy of synaptic transmission. These effects critically depend on the direction of the electric field relative to the orientation of the neuron and on the level of endogenous synaptic activity. TES has been used to modulate a wide range of neuropsychiatric indications, for various rehabilitation applications, and cognitive performance in diverse tasks. How can a weak and diffuse electric field, which simultaneously polarizes neurons across the brain, have precise changes in brain function? Designing therapies to maximize desired outcomes and minimize undesired effects presents a challenging problem. A series of experiments and computational models are used to define the anatomical and functional factors leading to specificity of TES. Anatomical specificity derives from guiding current to targeted brain structures and taking advantage of the direction-sensitivity of neurons with respect to the electric field. Functional specificity originates from preferential modulation of neuronal networks that are already active. Diffuse electric fields may recruit connected brain networks involved in a training task and promote plasticity along active synaptic pathways. In vitro, electric fields boost endogenous synaptic plasticity and raise the ceiling for synaptic learning with repeated stimulation sessions. Synapses undergoing strong plasticity are preferentially modulated over weak synapses. Therefore, active circuits that are involved in a task could be more susceptible to stimulation than inactive circuits

  5. Latitude dependence of long-term geomagnetic activity and its solar wind drivers

    Energy Technology Data Exchange (ETDEWEB)

    Myllys, M. [Helsinki Univ. (Finland). Dept. of Physics; Partamies, N. [Finnish Meteorological Institute, Helsinki (Finland); University Centre in Svalbard, Longyearbyen (Norway). Dept. of Arctic Geophysics; Juusola, L. [Finnish Meteorological Institute, Helsinki (Finland)

    2015-09-01

    To validate the usage of global indices in studies of geomagnetic activity, we have examined the latitude dependence of geomagnetic variations in Fennoscandia and Svalbard from 1994 to 2010. Daily standard deviation (SD) values of the horizontal magnetic field have been used as a measure of the ground magnetic disturbance level.We found that the timing of the geomagnetic minimum depends on the latitude region: corresponding to the minimum of sunspot cycle 22 (in 1996), the geomagnetic minimum occurred between the geomagnetic latitudes 57-61 in 1996 and at the latitudes 64-67 in 1997, which are the average auroral oval latitudes. During sunspot cycle 23, all latitude regions experienced the minimum in 2009, a year after the sunspot minimum. These timing differences are due to the latitude dependence of the 10 s daily SD on the different solar wind drivers. In the latitude region of 64-67 , the impact of the high-speed solar wind streams (HSSs) on the geomagnetic activity is the most pronounced compared to the other latitude groups, while in the latitude region of 57-61 , the importance of the coronal mass ejections (CMEs) dominates. The geomagnetic activity maxima during ascending solar cycle phases are typically caused by CME activity and occur especially in the oval and sub-auroral regions. The strongest geomagnetic activity occurs during the descending solar cycle phases due to a mixture of CME and HSS activity. Closer to the solar minimum, less severe geomagnetic activity is driven by HSSs and mainly visible in the poleward part of the auroral region. According to our study, however, the timing of the geomagnetic activity minima (and maxima) in different latitude bands is different, due to the relative importance of different solar wind drivers at different latitudes.

  6. Latitude dependence of long-term geomagnetic activity and its solar wind drivers

    International Nuclear Information System (INIS)

    Myllys, M.

    2015-01-01

    To validate the usage of global indices in studies of geomagnetic activity, we have examined the latitude dependence of geomagnetic variations in Fennoscandia and Svalbard from 1994 to 2010. Daily standard deviation (SD) values of the horizontal magnetic field have been used as a measure of the ground magnetic disturbance level.We found that the timing of the geomagnetic minimum depends on the latitude region: corresponding to the minimum of sunspot cycle 22 (in 1996), the geomagnetic minimum occurred between the geomagnetic latitudes 57-61 in 1996 and at the latitudes 64-67 in 1997, which are the average auroral oval latitudes. During sunspot cycle 23, all latitude regions experienced the minimum in 2009, a year after the sunspot minimum. These timing differences are due to the latitude dependence of the 10 s daily SD on the different solar wind drivers. In the latitude region of 64-67 , the impact of the high-speed solar wind streams (HSSs) on the geomagnetic activity is the most pronounced compared to the other latitude groups, while in the latitude region of 57-61 , the importance of the coronal mass ejections (CMEs) dominates. The geomagnetic activity maxima during ascending solar cycle phases are typically caused by CME activity and occur especially in the oval and sub-auroral regions. The strongest geomagnetic activity occurs during the descending solar cycle phases due to a mixture of CME and HSS activity. Closer to the solar minimum, less severe geomagnetic activity is driven by HSSs and mainly visible in the poleward part of the auroral region. According to our study, however, the timing of the geomagnetic activity minima (and maxima) in different latitude bands is different, due to the relative importance of different solar wind drivers at different latitudes.

  7. On induction effects of geomagnetic daily variations from equatorial electrojet and solar quiet sources at low and middle latitudes

    DEFF Research Database (Denmark)

    Kuvshinov, A.; Manoj, C; Olsen, Nils

    2007-01-01

    by the comprehensive model of Sabaka et al.(2004). The three-dimensional (3-D) conductivity model of the Earth includes oceans of laterally variable conductance and a spherical conductor (1-D) underneath. Our model studies demonstrate that induction effects in Z due to the EEJ are negligible everywhere inland for all...

  8. Geomagnetic response of interplanetary coronal mass ejections in the Earth's magnetosphere

    Science.gov (United States)

    Badruddin; Mustajab, F.; Derouich, M.

    2018-05-01

    A coronal mass ejections (CME) is the huge mass of plasma with embedded magnetic field ejected abruptly from the Sun. These CMEs propagate into interplanetary space with different speed. Some of them hit the Earth's magnetosphere and create many types of disturbances; one of them is the disturbance in the geomagnetic field. Individual geomagnetic disturbances differ not only in their magnitudes, but the nature of disturbance is also different. It is, therefore, desirable to understand these differences not only to understand the physics of geomagnetic disturbances but also to understand the properties of solar/interplanetary structures producing these disturbances of different magnitude and nature. In this work, we use the spacecraft measurements of CMEs with distinct magnetic properties propagating in the interplanetary space and generating disturbances of different levels and nature. We utilize their distinct plasma and field properties to search for the interplanetary parameter(s) playing important role in influencing the geomagnetic response of different coronal mass ejections.

  9. Predictions of local ground geomagnetic field fluctuations during the 7-10 November 2004 events studied with solar wind driven models

    Directory of Open Access Journals (Sweden)

    P. Wintoft

    2005-11-01

    Full Text Available The 7-10 November 2004 period contains two events for which the local ground magnetic field was severely disturbed and simultaneously, the solar wind displayed several shocks and negative Bz periods. Using empirical models the 10-min RMS and at Brorfelde (BFE, 11.67° E, 55.63° N, Denmark, are predicted. The models are recurrent neural networks with 10-min solar wind plasma and magnetic field data as inputs. The predictions show a good agreement during 7 November, up until around noon on 8 November, after which the predictions become significantly poorer. The correlations between observed and predicted log RMS is 0.77 during 7-8 November but drops to 0.38 during 9-10 November. For RMS the correlations for the two periods are 0.71 and 0.41, respectively. Studying the solar wind data for other L1-spacecraft (WIND and SOHO it seems that the ACE data have a better agreement to the near-Earth solar wind during the first two days as compared to the last two days. Thus, the accuracy of the predictions depends on the location of the spacecraft and the solar wind flow direction. Another finding, for the events studied here, is that the and models showed a very different dependence on Bz. The model is almost independent of the solar wind magnetic field Bz, except at times when Bz is exceptionally large or when the overall activity is low. On the contrary, the model shows a strong dependence on Bz at all times.

  10. Predictions of local ground geomagnetic field fluctuations during the 7-10 November 2004 events studied with solar wind driven models

    Directory of Open Access Journals (Sweden)

    P. Wintoft

    2005-11-01

    Full Text Available The 7-10 November 2004 period contains two events for which the local ground magnetic field was severely disturbed and simultaneously, the solar wind displayed several shocks and negative Bz periods. Using empirical models the 10-min RMS and at Brorfelde (BFE, 11.67° E, 55.63° N, Denmark, are predicted. The models are recurrent neural networks with 10-min solar wind plasma and magnetic field data as inputs. The predictions show a good agreement during 7 November, up until around noon on 8 November, after which the predictions become significantly poorer. The correlations between observed and predicted log RMS is 0.77 during 7-8 November but drops to 0.38 during 9-10 November. For RMS the correlations for the two periods are 0.71 and 0.41, respectively. Studying the solar wind data for other L1-spacecraft (WIND and SOHO it seems that the ACE data have a better agreement to the near-Earth solar wind during the first two days as compared to the last two days. Thus, the accuracy of the predictions depends on the location of the spacecraft and the solar wind flow direction. Another finding, for the events studied here, is that the and models showed a very different dependence on Bz. The model is almost independent of the solar wind magnetic field Bz, except at times when Bz is exceptionally large or when the overall activity is low. On the contrary, the model shows a strong dependence on Bz at all times.

  11. On the average configuration of the geomagnetic tail

    International Nuclear Information System (INIS)

    Fairfield, D.H.

    1978-03-01

    Over 3000 hours of IMP-6 magnetic field data obtained between 20 and 33 R sub E in the geomagnetic tail have been used in a statistical study of the tail configuration. A distribution of 2.5 minute averages of B sub Z as a function of position across the tail reveals that more flux crosses the equatorial plane near the dawn and dusk flanks than near midnight. The tail field projected in the solar magnetospheric equatorial plane deviates from the X axis due to flaring and solar wind aberration by an angle alpha = -0.9 y sub SM - 1.7, where y/sub SM/ is in earth radii and alpha is in degrees. After removing these effects the Y component of the tail field is found to depend on interplanetary sector structure. During an away sector the B/sub Y/ component of the tail field is on average 0.5 gamma greater than that during a toward sector, a result that is true in both tail lobes and is independent of location across the tail

  12. Double streams of protons in the distant geomagnetic tail

    Science.gov (United States)

    Villante, U.; Lazarus, A. J.

    1975-01-01

    Two intermingled streams of protons have been observed in the distant geomagnetic tail. The number densities of the two streams are comparable, and their velocity difference tends to lie along the field direction. The lower-velocity stream is probably composed of magnetosheath protons which have diffused through the boundary of the distant tail. The higher-velocity stream appears to originate in the field reversal region.

  13. Double streams of protons in the distant geomagnetic tail

    International Nuclear Information System (INIS)

    Villante, U.; Lazarus, A.J.

    1975-01-01

    Two intermingled streams of protons have been observed in the distant geomagnetic tail. The number densities of the two streams are comparable, and their velocity difference tends to lie along the field direction. The lower-velocity stream is probably composed of magnetosheath protons which have diffused through the boundary of the distant tail. The higher-velocity stream appears to originate in the field reversal region

  14. Origins of the semiannual variation of geomagnetic activity in 1954 and 1996

    Directory of Open Access Journals (Sweden)

    L. Svalgaard

    Full Text Available We investigate the cause of the unusually strong semiannual variation of geomagnetic activity observed in the solar minimum years of 1954 and 1996. For 1996 we separate the contributions of the three classical modulation mechanisms (axial, equinoctial, and Russell-McPherron to the six-month wave in the aam index and find that all three contribute about equally. This is in contrast to the longer run of geomagnetic activity (1868-1998 over which the equinoctial effect accounts for ∼70% of the semiannual variation. For both 1954 and 1996, we show that the Russell-McPherron effect was enhanced by the Rosenberg-Coleman effect (an axial polarity effect which increased the amount of the negative (toward Sun [positive (away from Sun] polarity field observed during the first [second] half of the year; such fields yield a southward component in GSM coordinates. Because this favourable condition occurs only for alternate solar cycles, the marked semiannual variation in 1954 and 1996 is a manifestation of the 22-year cycle of geomagnetic activity. The 11-year evolution of the heliospheric current sheet (HCS also contributes to the strong six-month wave during these years. At solar minimum, the streamer belt at the base of the HCS is located near the solar equator, permitting easier access to high speed streams from polar coronal holes when the Earth is at its highest heliographic latitudes in March and September. Such an axial variation in solar wind speed was observed for 1996 and is inferred for 1954. Key words. Magnetosphere (solar wind – magnetosphere interactions; storms and substorms

  15. Origins of the semiannual variation of geomagnetic activity in 1954 and 1996

    Directory of Open Access Journals (Sweden)

    E. W. Cliver

    2004-01-01

    Full Text Available We investigate the cause of the unusually strong semiannual variation of geomagnetic activity observed in the solar minimum years of 1954 and 1996. For 1996 we separate the contributions of the three classical modulation mechanisms (axial, equinoctial, and Russell-McPherron to the six-month wave in the aam index and find that all three contribute about equally. This is in contrast to the longer run of geomagnetic activity (1868-1998 over which the equinoctial effect accounts for ∼70% of the semiannual variation. For both 1954 and 1996, we show that the Russell-McPherron effect was enhanced by the Rosenberg-Coleman effect (an axial polarity effect which increased the amount of the negative (toward Sun [positive (away from Sun] polarity field observed during the first [second] half of the year; such fields yield a southward component in GSM coordinates. Because this favourable condition occurs only for alternate solar cycles, the marked semiannual variation in 1954 and 1996 is a manifestation of the 22-year cycle of geomagnetic activity. The 11-year evolution of the heliospheric current sheet (HCS also contributes to the strong six-month wave during these years. At solar minimum, the streamer belt at the base of the HCS is located near the solar equator, permitting easier access to high speed streams from polar coronal holes when the Earth is at its highest heliographic latitudes in March and September. Such an axial variation in solar wind speed was observed for 1996 and is inferred for 1954. Key words. Magnetosphere (solar wind – magnetosphere interactions; storms and substorms

  16. Prospects of hydrocarbon deposits exploration using the method of induced polarization during geomagnetic-variation profiling

    Directory of Open Access Journals (Sweden)

    К. М. Ермохин

    2017-10-01

    Full Text Available Traditionally it is believed that the effect of induced polarization is an interfering factor for the measurement of electromagnetic fields and their interpretation during conducting works using magnetotelluric sounding and geomag-netic-variation profiling methods. A new method is proposed for isolating the effects of induced polarization during geomagnetic-variation profiling aimed at searching for hydrocarbon deposits on the basis of phase measurements during the conduct of geomagnetic-variation profiling. The phenomenon of induced polarization is proposed to be used as a special exploration mark for deep-lying hydrocarbon deposits. The traditional method of induced polarization uses artificial field sources, the powers of which are principally insufficient to reach depths of 3-5 km, which leads to the need to search for alternative - natural sources in the form of telluric and magnetotelluric fields. The proposed method makes it possible to detect and interpret the effects of induced polarization from deep-seated oil and gas reservoirs directly, without relying on indirect signs.

  17. Optimal Transmission Line Switching under Geomagnetic Disturbances

    International Nuclear Information System (INIS)

    Lu, Mowen; Nagarajan, Harsha; Yamangil, Emre; Bent, Russell; Backhaus, Scott

    2017-01-01

    Recently, there have been increasing concerns about how geomagnetic disturbances (GMDs) impact electrical power systems. Geomagnetically-induced currents (GICs) can saturate transformers, induce hot spot heating and increase reactive power losses. These effects can potentially cause catastrophic damage to transformers and severely impact the ability of a power system to deliver power. To address this problem, we develop a model of GIC impacts to power systems that includes 1) GIC thermal capacity of transformers as a function of normal Alternating Current (AC) and 2) reactive power losses as a function of GIC. We also use this model to derive an optimization problem that protects power systems from GIC impacts through line switching, generator dispatch, and load shedding. We then employ state-of-the-art convex relaxations of AC power flow equations to lower bound the objective. We demonstrate the approach on a modified RTS96 system and UIUC 150-bus system and show that line switching is an effective means to mitigate GIC impacts. We also provide a sensitivity analysis of decisions with respect to GMD direction.

  18. Geomagnetic storm effects in ionospheric TEC at an euatorial station: contribution of EXB drifts and meridional neutral winds

    International Nuclear Information System (INIS)

    Dabas, R.S.; Jain, A.R.

    1985-01-01

    Storm-time variations in TEC measurements at the Indian station Ootacamund with IEC data for four stations in the anomaly region. Variations in Nsub(T)(OOTY) are found to be smaller compared to those observed at anomaly stations. The equatorial electrojet control of Nsub(T)(OOTY) is weaker compared to that of Nsub(m)F2. This result and absence of midday biteout in Nsub(T)(OOTY) are interpreted in terms of plasma exchange between ionosphere and plasmasphere which, to some extent, compensates the loss of plasma in the column due to E x B drifts. The anomaly depth is found to be well correlated with the electrojet strength. It is also noticed that for the same anomaly is weaker on a storm day than for quiet days. This is interpreted in terms of converging equatorward meridional winds. Thus, ionosphere-plasmasphere plasma exchange and, during disturbed period, the converging equatorward meridional winds also have significant effects on the distribution of ionization at these latitudes though the E x B drifts are most important in affecting the ionization distribution at low latitudes. (author)

  19. Effective potentials for twisted fields

    International Nuclear Information System (INIS)

    Banach, R.

    1981-01-01

    Minus the density of the effective action, evaluated at the lowest eigenfunction of the (space-time) derivative part of the second (functional) derivative of the classical action, is proposed as a generalised definition of the effective potential, applicable to twisted as well as untwisted sectors of a field theory. The proposal is corroborated by several specific calculations in the twisted sector, namely phi 4 theory (real and complex) and wrong-sign-Gordon theory, in an Einstein cylinder, where the exact integrability of the static solutions confirms the effective potential predictions. Both models exhibit a phase transition, which the effective potential locates, and the one-loop quantum shift in the critical radius is computed for the real phi 4 model, being a universal result. Topological mass generation at the classical level is pointed out, and the exactness of the classical effective potential approximation for complex phi 4 is discussed. (author)

  20. Effective field theory dimensional regularization

    International Nuclear Information System (INIS)

    Lehmann, Dirk; Prezeau, Gary

    2002-01-01

    A Lorentz-covariant regularization scheme for effective field theories with an arbitrary number of propagating heavy and light particles is given. This regularization scheme leaves the low-energy analytic structure of Greens functions intact and preserves all the symmetries of the underlying Lagrangian. The power divergences of regularized loop integrals are controlled by the low-energy kinematic variables. Simple diagrammatic rules are derived for the regularization of arbitrary one-loop graphs and the generalization to higher loops is discussed

  1. Effective field theory dimensional regularization

    Science.gov (United States)

    Lehmann, Dirk; Prézeau, Gary

    2002-01-01

    A Lorentz-covariant regularization scheme for effective field theories with an arbitrary number of propagating heavy and light particles is given. This regularization scheme leaves the low-energy analytic structure of Greens functions intact and preserves all the symmetries of the underlying Lagrangian. The power divergences of regularized loop integrals are controlled by the low-energy kinematic variables. Simple diagrammatic rules are derived for the regularization of arbitrary one-loop graphs and the generalization to higher loops is discussed.

  2. The effective crystal field potential

    CERN Document Server

    Mulak, J

    2000-01-01

    As it results from the very nature of things, the spherical symmetry of the surrounding of a site in a crystal lattice or an atom in a molecule can never occur. Therefore, the eigenfunctions and eigenvalues of any bound ion or atom have to differ from those of spherically symmetric respective free ions. In this way, the most simplified concept of the crystal field effect or ligand field effect in the case of individual molecules can be introduced. The conventional notion of the crystal field potential is narrowed to its non-spherical part only through ignoring the dominating spherical part which produces only a uniform energy shift of gravity centres of the free ion terms. It is well understood that the non-spherical part of the effective potential "seen" by open-shell electrons localized on a metal ion plays an essential role in most observed properties. Light adsorption, electron paramagnetic resonance, inelastic neutron scattering and basic characteristics derived from magnetic and thermal measurements, ar...

  3. Biological effects of electromagnetic fields

    International Nuclear Information System (INIS)

    Gabriel, C.

    1996-01-01

    The effects of electromagnetic (em) fields on biological systems were first observed and exploited well over a century ago. Concern over the possible health hazards of human exposure to such fields developed much later. It is now well known that excessive exposure to em fields may have in undesirable biological consequences. Standards were introduced to determine what constitute an excessive exposure and how to avoid it. Current concern over the issue of hazards stems mainly from recent epidemiological studies of exposed populations and also from the results of laboratory experiments in which whole animals are exposed in vivo or tissue and cell cultures exposed in vitro to low levels of irradiation. The underlying fear is the possibility of a causal relationship between chronic exposure to low field levels and some forms of cancer. So far the evidence does not add up to a firm statement on the matter. At present it is not known how and at what level, if at all, can these exposure be harmful to human health. This state of affair does not provide a basis for incorporating the outcome of such research in exposure standards. This paper will give a brief overview of the research in this field and how it is evaluated for the purpose of producing scientifically based standards. The emphasis will be on the physical, biophysical and biological mechanisms implicated in the interaction between em fields and biological systems. Understanding such mechanisms leads not only to a more accurate evaluation of their health implications but also to their optimal utilization, under controlled conditions, in biomedical applications. (author)

  4. A new regard about Surlari National Geomagnetic Observatory

    Science.gov (United States)

    Asimopolos, Laurentiu; Asimopolos, Natalia-Silvia; Pestina, Agata-Monica

    2010-05-01

    Geomagnetic field study in Romanian stations has started with irregular measurements in late XIXth century. In 1943, the foundation of Surlari National Geomagnetic Observatory (SNGO) marks the beginning of a new era in the systematic study of geomagnetic field by a continuous registration of its variations and by carrying out standard absolute measurements in a fundamental station. The location of the observatory meets the highest exigencies, being situated in physical-geological conditions of a uniform local field, at a reasonably long distance from human activities. Its laboratories observe strict conditions of non-magnetism, ensuring the possibility of absolute standard measurements (national magnetic standards) for all the units in the country, civil or military, which are endowed with equipment based on geomagnetic metrology. These basic conditions have allowed the observatory to become by developing its initial preoccupations a centre of complex geomagnetic research, constantly involved in national and international issues, promoting new themes in our country and bringing significant contributions. During the last two decades, infrastructure and equipment used in monitoring geomagnetic field at European and planetary level have experienced a remarkable development. New registering techniques have allowed a complete to automate of data acquisition, and sampling step and their precision increased by two classes of size. Systems of transmitting these data in real time to world collecting centres have resulted in the possibility of approaching globalize studies, suitable for following some phenomena at planetary scale. At the same time, a significant development in the procedures of processing primary data has been registered, based on standardized programmes. The new stage of this fundamental research, largely applicable in various fields, is also marked by the simultaneous observation of space-time distribution of terrestrial electromagnetic field by means of

  5. Transitional geomagnetic impulse hypothesis: Geomagnetic fact or rock-magnetic artifact?

    Science.gov (United States)

    Camps, Pierre; Coe, Robert S.; PréVot, Michel

    1999-08-01

    A striking feature of the Steens Mountain (Oregon) geomagnetic polarity reversal is the two (maybe three) extremely rapid field directional changes (6 degrees per day) proposed to account for unusual behavior in direction of remanent magnetization in a single lava flow. Each of these very fast field changes, or impulses, is associated with a large directional gap (some 90°) in the record. In order to check the spatial reproducibility of the paleomagnetic signal over distances up to several kilometers, we have carried out a paleomagnetic investigation of two new sections (B and F) in the Steens summit region which cover the second and the third directional gap. The main result is the description of two new directions, which are located between the pre second and post second impulse directions. These findings weigh against the hypothesis that the geomagnetic field cause the unusual intraflow fluctuations, which now appears to be more ad hoc as an explanation of the paleomagnetic data. However, the alternative baking hypothesis remains also ad hoc since we have to assume variable rock magnetic properties that we have not yet been able to detect within the flows at the original section Steens A and D 1.5 km to the north. In addition, new results for 22 transitional and normal lava flows in section B are presented that correlate well with earlier results from section A.

  6. New insights on geomagnetic storms from observations and modeling

    Energy Technology Data Exchange (ETDEWEB)

    Jordanova, Vania K [Los Alamos National Laboratory

    2009-01-01

    Understanding the response at Earth of the Sun's varying energy output and forecasting geomagnetic activity is of central interest to space science, since intense geomagnetic storms may cause severe damages on technological systems and affect communications. Episodes of southward (Bzfield (IMF) which lead to disturbed geomagnetic conditions are associated either with coronal mass ejections (CMEs) and possess long and continuous negative IMF Bz excursions, or with high speed solar wind streams (HSS) whose geoeffectiveness is due to IMF Bz profiles fluctuating about zero with various amplitudes and duration. We show examples of ring current simulations during two geomagnetic storms representative of each interplanetary condition with our kinetic ring current atmosphere interactions model (RAM), and investigate the mechanisms responsible for trapping particles and for causing their loss. We find that periods of increased magnetospheric convection coinciding with enhancements of plasma sheet density are needed for strong ring current buildup. During the HSS-driven storm the convection potential is highly variable and causes small sporadic injections into the ring current. The long period of enhanced convection during the CME-driven storm causes a continuous ring current injection penetrating to lower L shells and stronger ring current buildup.

  7. Casimir effect for interacting fields

    International Nuclear Information System (INIS)

    Kay, B.S.

    1982-01-01

    The author discusses some recent work on the Casimir effect: that is the problem of renormalizing Tsub(μγ) on locally-flat space-times. That is on space-times which, while topologically non-trivial are locally Minkowskian - with vanishing local curvature. The author has developed a systematic method for calculating this Casimir effect for interacting fields to arbitrary order in perturbation theory - and for arbitrary components of Tsub(μγ) which he describes in general and then illustrates it by describing first order perturbation theory calculations for a lambdaphi 4 theory for the two models: the cylinder space-time and the parallel plates. (Auth.)

  8. Paleointensity Behavior and Intervals Between Geomagnetic Reversals in the Last 167 Ma

    Science.gov (United States)

    Kurazhkovskii, A. Yu.; Kurazhkovskaya, N. A.; Klain, B. I.

    2018-01-01

    The results of comparative analysis of the behavior of paleointensity and polarity (intervals between reversals) of the geomagnetic field for the last 167 Ma are presented. Similarities and differences in the behavior of these characteristics of the geomagnetic field are discussed. It is shown that bursts of paleointensity and long intervals between reversals occurred at high mean values of paleointensity in the Cretaceous and Paleogene. However, there are differences between the paleointensity behavior and the reversal regime: (1) the characteristic times of paleointensity variations are less than the characteristic times of the frequency of geomagnetic reversals, (2) the achievement of maximum values of paleointensity at the Cretaceous-Paleogene boundary and the termination of paleointensity bursts after the boundary of 45-40 Ma are not marked by explicit features in the geomagnetic polarity behavior.

  9. Cosmogenic 10Be signature of geomagnetic dipole moment variations over the last 2 Ma

    Science.gov (United States)

    Simon, Q.; Thouveny, N.; Bourlès, D. L.; Valet, J. P.; Bassinot, F. C.; Savranskaia, T.; Duvivier, A.; Choy, S.; Gacem, L.; Villedieu, A.

    2017-12-01

    Long-term variations of the geomagnetic dipole moment (GDM) during periods of stable polarity and in transitional states (reversals and excursions) provide key information for understanding the geodynamo regime. Authigenic 10Be/9Be ratios (Be-ratio, proxy of atmospheric 10Be production) from marine sedimentary cores give independent and additional insights on the evolution of the geomagnetic intensity, completing information from absolute and relative paleointensity (RPI) records. Here we present new Be-ratio results obtained on several marine cores from the North Atlantic, Indian and Pacific Oceans which permit to extent into the Matuyama chron our previous 10Be-derived GDM reconstructions (Simon et al., 2016 JGR 121). Stratigraphic offsets measured between Be-ratio peaks and the corresponding RPI minima in each studied cores are assigned to (post-) detrital remanent magnetization (pDRM) effects leading to magnetization locking-in delays varying from 0 to 16 cm (up to 12 ka). All these results were compiled in order to obtain a continuous Be-ratio record covering the last 2 Ma. 10Be overproduction episodes triggered by geomagnetic dipole moment lows (GDL) linked to polarity reversals and excursions confirm the global control exerted by the GDM on cosmogenic radionuclides production. A dipole moment reconstruction derived from the Be-ratio stack (BeDiMo2Ma) was calibrated using absolute paleointensity data. This independent record completes the available paleomagnetic RPI records and permits: 1) to confront and increase the robustness and precision of GDM reconstructions; and, 2) to better constrain geomagnetic field instabilities during the mid- to late- Matuyama chron. Our new 10Be derived inventory is fully compatible with the GDL series linked to polarity reversals (Matuyama-Brunhes transition, Jaramillo and Olduvai boundaries), geomagnetic events (Cobb Mountain, Réunion) and Brunhes' excursions (e.g. Laschamp, Blake, Iceland-Basin, Big Lost). It further

  10. Up-to-date Geomagnetic Coordinate Transforms with AACGM

    Science.gov (United States)

    Stephens, G. K.; Morrison, D.; Barnes, R. J.; Potter, M.; Schaefer, R. K.

    2017-12-01

    Geomagnetic plasmas organize along magnetic field lines, thus, it is often appropriate to use magnetic field line conjunctions for comparisons between spacecraft observations. Due to the expense of tracing magnetic field lines, the Altitude-Adjusted Corrected GeoMagnetic (AACGM) coordinate system is used. The (AACGM) coordinates are defined by the best fit dipole of the Earth's magnetic field and have been a standard tool used by the SPA community for a long time. However, standard 5 year updated coefficients for this transform are no longer available after the 2010 set. A new version of AACGM (V2 - Shepard, 2014) has been defined. AACGM V2 is fit to a spherical harmonic expansion. A pitfall with this V2 coordinate system is that it is undefined near the magnetic equator, which is problematic for determining conjunctions for spacecraft that with ground stations that pass through these regions. We have derived a new set of coefficients valid for the current epoch that allow us to continue to use the original version of AACGM. We also explore the errors that are introduced by ignoring the magnetic field caused by magnetospheric electric currents. The derived coefficients are made available to the public along with Java software that can be used to evaluate the AACGM coordinates. Shepard, S., 2014, Altitude-Adjusted Corrected Geomagnetic Coordinates: Definition and Functional Approximations, Jour. Geophys. Res., 119, 020264, DOI:10.1002/2014JA020264

  11. Geomagnetically trapped carbon, nitrogen, and oxygen nuclei.

    Science.gov (United States)

    Mogro-Campero, A.

    1972-01-01

    Results of measurements carried out with the University of Chicago nuclear composition telescope on the Ogo 5 satellite, establishing the presence of 13- to 33-MeV/nucleon geomagnetically trapped C and O nuclei, with some evidence for N nuclei. These trapped nuclei were found at L less than or equal to 5 and near the geomagnetic equator. The data cover the period from Mar. 3, 1968, to Dec. 31, 1969. The distribution of CNO flux as a function of L is given. No change in the intensity of the average trapped CNO flux was detected by comparing data for 1968 and 1969. The results reported set a new value for the observed high energy limit of trapping as described by the critical adiabaticity parameter. The penetration of solar flare CNO up to L = 4 was observed twice in 1968, in disagreement with Stormer theory predictions. The effects of these results on some models for the origin of the trapped radiation are discussed.

  12. Earth orientation and its excitations by atmosphere, oceans, and geomagnetic jerks

    OpenAIRE

    Vondrák J.; Ron C.

    2015-01-01

    In addition to torques exerted by the Moon, Sun, and planets, changes of the Earth orientation parameters (EOP) are known to be caused also by excitations by the atmosphere and oceans. Recently appeared studies, hinting that geomagnetic jerks (GMJ, rapid changes of geomagnetic field) might be associated with sudden changes of phase and amplitude of EOP (Holme and de Viron 2005, 2013, Gibert and Le Mouёl 2008, Malkin 2013). We (Ron et al. 2015) used addition...

  13. Wind response in the lower thermosphere to the geomagnetic storm on March, 1989

    International Nuclear Information System (INIS)

    Kazimirovskij, Eh.S.; Vergasova, G.V.

    1991-01-01

    The horizontal wind response in the ionospheric D region above Irkutsk to the geomagnetic storm on March 13, 1989 is studied. The geomagnetic storm response is expressed through a stability loss of the wind system, a great speed increase of the meridional and zonal wind, in particular, and their dispersions, respectively, as well as changes in the semidaily tidal phase. The proof of the fact that the Earth magnetic field disturbances destabilize the system of horizontal winds in the lower ionosphere is given

  14. Fringing-field effects in acceleration columns

    International Nuclear Information System (INIS)

    Yavor, M.I.; Weick, H.; Wollnik, H.

    1999-01-01

    Fringing-field effects in acceleration columns are investigated, based on the fringing-field integral method. Transfer matrices at the effective boundaries of the acceleration column are obtained, as well as the general transfer matrix of the region separating two homogeneous electrostatic fields with different field strengths. The accuracy of the fringing-field integral method is investigated

  15. Ambipolar phosphorene field effect transistor.

    Science.gov (United States)

    Das, Saptarshi; Demarteau, Marcel; Roelofs, Andreas

    2014-11-25

    In this article, we demonstrate enhanced electron and hole transport in few-layer phosphorene field effect transistors (FETs) using titanium as the source/drain contact electrode and 20 nm SiO2 as the back gate dielectric. The field effect mobility values were extracted to be ∼38 cm(2)/Vs for electrons and ∼172 cm(2)/Vs for the holes. On the basis of our experimental data, we also comprehensively discuss how the contact resistances arising due to the Schottky barriers at the source and the drain end effect the different regime of the device characteristics and ultimately limit the ON state performance. We also propose and implement a novel technique for extracting the transport gap as well as the Schottky barrier height at the metal-phosphorene contact interface from the ambipolar transfer characteristics of the phosphorene FETs. This robust technique is applicable to any ultrathin body semiconductor which demonstrates symmetric ambipolar conduction. Finally, we demonstrate a high gain, high noise margin, chemical doping free, and fully complementary logic inverter based on ambipolar phosphorene FETs.

  16. A global geomagnetic model based on historical and paleomagnetic data

    Science.gov (United States)

    Arneitz, P.; Leonhardt, R.; Fabian, K.

    2015-12-01

    Two main types of data are available to reconstruct the temporal and spatial geomagnetic field evolution. Historical instrumental measurements (direct data) extend from present day to the late Middle Age, and, prior the 19th century, consist mainly of declination values. Further back in the past, field reconstructions rely exclusively on the magnetization acquired by archaeological artefacts and rocks or sediments (indirect data). The major challenges for a reliable inversion approach are the inhomogeneous data distribution, the highly variable data quality, and inconsistent quality parameters. Available historical, archeomagnetic and volcanic records have been integrated into a single database together with corresponding metadata. This combination of compilations enables a joint evaluation of geomagnetic field records from different origins. In particular, data reliability and quality of indirect records are investigated using a detailed comparison with their direct counterparts. The collection forms the basis for combined inverse modeling of the geomagnetic field evolution. The iterative Bayesian inversion approach targets the implementation of reliable error treatments, which allow to combine data from different sources. Furthermore, a verification method scrutinizing the limitations of the applied inversion scheme and the used datasets is developed. Here, we will present strategies for the integration of different data types into the modeling procedure. The obtained modeling results and their validity will be discussed.

  17. Statistical Properties of Geomagnetic Activity Indices and Solar Wind Parameters

    Directory of Open Access Journals (Sweden)

    Jung-Hee Kim

    2014-06-01

    Full Text Available As the prediction of geomagnetic storms is becoming an important and practical problem, conditions in the Earth’s magnetosphere have been studied rigorously in terms of those in the interplanetary space. Another approach to space weather forecast is to deal with it as a probabilistic geomagnetic storm forecasting problem. In this study, we carry out detailed statistical analysis of solar wind parameters and geomagnetic indices examining the dependence of the distribution on the solar cycle and annual variations. Our main findings are as follows: (1 The distribution of parameters obtained via the superimposed epoch method follows the Gaussian distribution. (2 When solar activity is at its maximum the mean value of the distribution is shifted to the direction indicating the intense environment. Furthermore, the width of the distribution becomes wider at its maximum than at its minimum so that more extreme case can be expected. (3 The distribution of some certain heliospheric parameters is less sensitive to the phase of the solar cycle and annual variations. (4 The distribution of the eastward component of the interplanetary electric field BV and the solar wind driving function BV2, however, appears to be all dependent on the solar maximum/minimum, the descending/ascending phases of the solar cycle and the equinoxes/solstices. (5 The distribution of the AE index and the Dst index shares statistical features closely with BV and BV2 compared with other heliospheric parameters. In this sense, BV and BV2 are more robust proxies of the geomagnetic storm. We conclude by pointing out that our results allow us to step forward in providing the occurrence probability of geomagnetic storms for space weather and physical modeling.

  18. Modeling Geomagnetic Variations using a Machine Learning Framework

    Science.gov (United States)

    Cheung, C. M. M.; Handmer, C.; Kosar, B.; Gerules, G.; Poduval, B.; Mackintosh, G.; Munoz-Jaramillo, A.; Bobra, M.; Hernandez, T.; McGranaghan, R. M.

    2017-12-01

    We present a framework for data-driven modeling of Heliophysics time series data. The Solar Terrestrial Interaction Neural net Generator (STING) is an open source python module built on top of state-of-the-art statistical learning frameworks (traditional machine learning methods as well as deep learning). To showcase the capability of STING, we deploy it for the problem of predicting the temporal variation of geomagnetic fields. The data used includes solar wind measurements from the OMNI database and geomagnetic field data taken by magnetometers at US Geological Survey observatories. We examine the predictive capability of different machine learning techniques (recurrent neural networks, support vector machines) for a range of forecasting times (minutes to 12 hours). STING is designed to be extensible to other types of data. We show how STING can be used on large sets of data from different sensors/observatories and adapted to tackle other problems in Heliophysics.

  19. Penetration of geomagnetic pulsations from one polar cao cap to the other one

    International Nuclear Information System (INIS)

    Mal'tsev, Yu.P.; Lyatskij, V.B.

    1982-01-01

    A theoretical study is made of penetration of geomagnetic pulsations, excited in one polar cap in the region of open field lines, into the other one. The geomagnetic pulsations excited in a polar cap in the region of open field lines are also observed in the opposite polar cap. This is connected with the flow of ionospheric perturbation currents from one hemisphere to another over the boundary of the region with closed magnetic lines. In case of long-period oscillations under symmetrical conditions, both in the north and south polar caps, the ionospheric effect of the opposite hemisphere results in the fact that the electrical currents flowing from a source to the polar cap boundary grow 1.5 times as high. In case of short-period oscillations a portion of longitudinal current flowing between the hemispheres is branched away for polarization currents. As a result, the electrical field and currents in the ionosphere of the opposite hemisphere can substantially decrease as compared to the long-period oscillations

  20. Geomagnetic response to solar and interplanetary disturbances

    Directory of Open Access Journals (Sweden)

    Maris Georgeta

    2013-07-01

    Full Text Available The space weather discipline involves different physical scenarios, which are characterised by very different physical conditions, ranging from the Sun to the terrestrial magnetosphere and ionosphere. Thanks to the great modelling effort made during the last years, a few Sun-to-ionosphere/thermosphere physics-based numerical codes have been developed. However, the success of the prediction is still far from achieving the desirable results and much more progress is needed. Some aspects involved in this progress concern both the technical progress (developing and validating tools to forecast, selecting the optimal parameters as inputs for the tools, improving accuracy in prediction with short lead time, etc. and the scientific development, i.e., deeper understanding of the energy transfer process from the solar wind to the coupled magnetosphere-ionosphere-thermosphere system. The purpose of this paper is to collect the most relevant results related to these topics obtained during the COST Action ES0803. In an end-to-end forecasting scheme that uses an artificial neural network, we show that the forecasting results improve when gathering certain parameters, such as X-ray solar flares, Type II and/or Type IV radio emission and solar energetic particles enhancements as inputs for the algorithm. Regarding the solar wind-magnetosphere-ionosphere interaction topic, the geomagnetic responses at high and low latitudes are considered separately. At low latitudes, we present new insights into temporal evolution of the ring current, as seen by Burton’s equation, in both main and recovery phases of the storm. At high latitudes, the PCC index appears as an achievement in modelling the coupling between the upper atmosphere and the solar wind, with a great potential for forecasting purposes. We also address the important role of small-scale field-aligned currents in Joule heating of the ionosphere even under non-disturbed conditions. Our scientific results in

  1. Geomagnetic Core Field Secular Variation Models

    DEFF Research Database (Denmark)

    Gillet, N.; Lesur, V.; Olsen, Nils

    2010-01-01

    highlight the difficulty of resolving the time variability of the high degree secular variation coefficients (i.e. the secular acceleration), arising for instance from the challenge to properly separate sources of internal and of external origin. In addition, the regularisation process may also result...

  2. Pliocene geomagnetic polarity epochs

    Science.gov (United States)

    Dalrymple, G.B.; Cox, A.; Doell, Richard R.; Gromme, C.S.

    1967-01-01

    A paleomagnetic and K-Ar dating study of 44 upper Miocene and Pliocene volcanic units from the western United States suggests that the frequency of reversals of the earth's magnetic field during Pliocene time may have been comparable with that of the last 3.6 m.y. Although the data are too limited to permit the formal naming of any new polarity epochs or events, four polarity transitions have been identified: the W10 R/N boundary at 3.7 ?? 0.1 m.y., the A12 N/R boundary at 4.9 ?? 0.1 m.y., the W32 N/R boundary at 9.0 ?? 0.2m.y., and the W36 R/N boundary at 10.8 ?? 0.3 - 1.0 m.y. The loss of absolute resolution of K-Ar dating in older rocks indicates that the use of well defined stratigraphic successions to identify and date polarity transitions will be important in the study of Pliocene and older reversals. ?? 1967.

  3. Geomagnetic secular variation at Addis Ababa over the last four ...

    African Journals Online (AJOL)

    Addis Ababa Observatory (aae) geomagnetic data analysed over the time-span 1958—1998 show that the annual mean values of the intensity have decreased since 1965 from 36186 nT to 35950 nT at a non-linear regression rate of 8—9 nT per year. Directional changes in the Earth's magnetic field that could be ...

  4. Mathematical models of some geomagnetic storms with SC

    International Nuclear Information System (INIS)

    Ivanova, P.K.

    1990-01-01

    Regressive equations for H horizontal component of three geomagnetic storms with Sc:0.1.03.82, 24.01.74 and 23.03.69 -are calculated using step-by-step regression analysis. These equations relate H with parameters of solar wind and interplanetary magnetic field. Nonlinear, square, logarithmic and trigonometric dependences are considered, as well. Most essential parameters, which contribute mostly into Sc, are determined from multiplicity (46 factors) of independent parameters

  5. The Development of Models for Assessment of the Geomagnetically Induced Currents Impact on Electric Power Grids during Geomagnetic Storms

    Directory of Open Access Journals (Sweden)

    VAKHNINA, V. V.

    2015-02-01

    Full Text Available A model and an algorithm for the calculation of the functioning of an electric power grid of arbitrary configuration and complexity during geomagnetic storms were developed. The calculations were performed in the MATLAB mathematical package and the Simulink environment. The binding of objects to geographical coordinates is realized in the model, which enables to determine the matrix of potentials of geoelectric fields in nodal points. In order to define the instantaneous magnetizing currents, the power transformers are designed on the basis of the T-shaped equivalent circuit with a nonlinear mutual inductance of magnetization branch. Calculation of RMS values of active, reactive and total power values in all the elements is done with regard to the impact of harmonic components of the current and voltage. The results of modeling of the impact of geomagnetic storms of various intensity with the west-east direction of the geoelectric field vector for Samara region electric power grid are given.

  6. Distinct Pattern of Solar Modulation of Galactic Cosmic Rays above a High Geomagnetic Cutoff Rigidity

    Science.gov (United States)

    Mangeard, Pierre-Simon; Clem, John; Evenson, Paul; Pyle, Roger; Mitthumsiri, Warit; Ruffolo, David; Sáiz, Alejandro; Nutaro, Tanin

    2018-05-01

    Solar modulation refers to Galactic cosmic-ray variations with the ∼11 yr sunspot cycle and ∼22 yr solar magnetic cycle and is relevant to the space radiation environment and effects on Earth’s atmosphere. Its complicated dependence on solar and heliospheric conditions is only roughly understood and has been empirically modeled in terms of a single modulation parameter. Most analyses of solar modulation use neutron monitor (NM) data from locations with relatively low geomagnetic cutoff rigidity, i.e., the threshold for cosmic rays to penetrate Earth’s magnetic field. The Princess Sirindhorn Neutron Monitor at Doi Inthanon, Thailand, has the world’s highest cutoff rigidity (≈17 GV) where observations span a complete solar modulation cycle (since late 2007). The pattern of solar modulation at Doi Inthanon during 2011–2014 was qualitatively very different from that at a low geomagnetic cutoff and is not well described by the same modulation parameter. At other times, NM count rates from Doi Inthanon and McMurdo, Antarctica (cutoff ∼1 GV), were linearly correlated and confirm the observation from latitude surveys in the previous solar cycle that the slope of the correlation changes with solar magnetic polarity. Low solar magnetic tilt angles (magnetic field, which is consistent with an increase in diffusion at high rigidity short-circuiting the effects of drifts and the heliospheric current sheet.

  7. The effect of longitudinal conductance variations on the ionospheric prompt penetration electric fields

    Science.gov (United States)

    Sazykin, S.; Wolf, R.; Spiro, R.; Fejer, B.

    Ionospheric prompt penetration electric fields of magnetospheric origin, together with the atmospheric disturbance dynamo, represent the most important parameters controlling the storm-time dynamics of the low and mid-latitude ionosphere. These prompt penetration fields result from the disruption of region-2 field-aligned shielding currents during geomagnetically disturbed conditions. Penetration electric fields con- trol, to a large extent, the generation and development of equatorial spread-F plasma instabilities as well as other dynamic space weather phenomena in the ionosphere equatorward of the auroral zone. While modeling studies typically agree with average patterns of prompt penetration fields, experimental results suggest that longitudinal variations of the ionospheric con- ductivities play a non-negligible role in controlling spread-F phenomena, an effect that has not previously been modeled. We present first results of modeling prompt pene- tration electric fields using a version of the Rice Convection Model (RCM) that allows for longitudinal variations in the ionospheric conductance tensor. The RCM is a first- principles numerical ionosphere-magnetosphere coupling model that solves for the electric fields, field-aligned currents, and particle distributions in the ionosphere and inner/middle magnetosphere. We compare these new theoretical results with electric field observations.

  8. Electromagnetic field effects in explosives

    Science.gov (United States)

    Tasker, Douglas

    2009-06-01

    Present and previous research on the effects of electromagnetic fields on the initiation and detonation of explosives and the electromagnetic properties of explosives are reviewed. Among the topics related to detonating explosives are: measurements of conductivity; enhancement of performance; and control of initiation and growth of reaction. Hayes...()^1 showed a strong correlation of peak electrical conductivity with carbon content of the detonation products. Ershov.......^2 linked detailed electrical conductivity measurements with reaction kinetics and this work was extended to enhance detonation performance electrically;...^3 for this, electrical power densities of the order of 100 TW/m^2 of explosive surface normal to the detonation front were required. However, small electrical powers are required to affect the initiation and growth of reaction.......^4,5 A continuation of this work will be reported. LA-UR 09-00873 .^1 B. Hayes, Procs. of 4th Symposium (International) on Detonation (1965), p. 595. ^2 A. Ershov, P. Zubkov, and L. Luk'yanchikov, Combustion, Explosion, and Shock Waves 10, 776-782 (1974). ^3 M. Cowperthwaite, Procs. 9th Detonation Symposium (1989), p. 388-395. ^4 M. A. Cook and T. Z. Gwyther, ``Influence of Electric Fields on Shock to Detonation Transition,'' (1965). ^5 D. Salisbury, R. Winter, and L. Biddle, Procs. of the APS Topical Conference on Shock Compression of Condensed Matter (2005) p. 1010-1013.

  9. Renormalons in effective field theories

    International Nuclear Information System (INIS)

    Luke, M.; Manohar, A.V.; Savage, M.J.

    1995-01-01

    We investigate the high-order behavior of perturbative matching conditions in effective field theories. These series are typically badly divergent, and are not Borel summable due to infrared and ultraviolet renormalons which introduce ambiguities in defining the sum of the series. We argue that, when treated consistently, there is no physical significance to these ambiguities. Although nonperturbative matrix elements and matching conditions are in general ambiguous, the ambiguity in any physical observable is always higher order in 1/M than the theory has been defined. We discuss the implications for the recently noticed infrared renormalon in the pole mass of a heavy quark. We show that a ratio of form factors in exclusive Λ b decays (which is related to the pole mass) is free from renormalon ambiguities regardless of the mass used as the expansion parameter of heavy quark effective theory. The renormalon ambiguities also cancel in inclusive heavy hadron decays. Finally, we demonstrate the cancellation of renormalons in a four-Fermi effective theory obtained by integrating out a heavy colored scalar

  10. Geomagnetic Observatory Data for Real-Time Applications

    Science.gov (United States)

    Love, J. J.; Finn, C. A.; Rigler, E. J.; Kelbert, A.; Bedrosian, P.

    2015-12-01

    The global network of magnetic observatories represents a unique collective asset for the scientific community. Historically, magnetic observatories have supported global magnetic-field mapping projects and fundamental research of the Earth's interior and surrounding space environment. More recently, real-time data streams from magnetic observatories have become an important contributor to multi-sensor, operational monitoring of evolving space weather conditions, especially during magnetic storms. In this context, the U.S. Geological Survey (1) provides real-time observatory data to allied space weather monitoring projects, including those of NOAA, the U.S. Air Force, NASA, several international agencies, and private industry, (2) collaborates with Schlumberger to provide real-time geomagnetic data needed for directional drilling for oil and gas in Alaska, (3) develops products for real-time evaluation of hazards for the electric-power grid industry that are associated with the storm-time induction of geoelectric fields in the Earth's conducting lithosphere. In order to implement strategic priorities established by the USGS Natural Hazards Mission Area and the National Science and Technology Council, and with a focus on developing new real-time products, the USGS is (1) leveraging data management protocols already developed by the USGS Earthquake Program, (2) developing algorithms for mapping geomagnetic activity, a collaboration with NASA and NOAA, (3) supporting magnetotelluric surveys and developing Earth conductivity models, a collaboration with Oregon State University and the NSF's EarthScope Program, (4) studying the use of geomagnetic activity maps and Earth conductivity models for real-time estimation of geoelectric fields, (5) initiating geoelectric monitoring at several observatories, (6) validating real-time estimation algorithms against historical geomagnetic and geoelectric data. The success of these long-term projects is subject to funding constraints

  11. On an effect of the interplanetary magnetic field sector structure on the upper Earth's ionosphere

    International Nuclear Information System (INIS)

    Kolomijtsev, O.P.; Livshits, M.A.; Soboleva, T.N.

    1985-01-01

    According to the data from vertical probing stations, changes are studied in the critical frequency and height of the ionosphere F2 layer after the Earth crosses the boundaries of the interplanetary magnetic field (IMF) sectors in the periods of equinox during decreases in the solar activity. A reversal of the IMF sign causes ionospheric effects, which in some cases are comparable, as to the value, with the effects observed in the presence of flares and strong geomagnetic perturbations. The IMF sector sign reversal is a key momentum, stimulating such changes in the Earth's magnetosphere state which result in the rearrangement of the ionosphere structure near the maximum of electron concentration on the planetary scale

  12. Analysis of the geomagnetic activity of the Dst index and self-affine fractals using wavelet transforms

    Directory of Open Access Journals (Sweden)

    H. L. Wei

    2004-01-01

    Full Text Available The geomagnetic activity of the Dst index is analyzed using wavelet transforms and it is shown that the Dst index possesses properties associated with self-affine fractals. For example, the power spectral density obeys a power-law dependence on frequency, and therefore the Dst index can be viewed as a self-affine fractal dynamic process. In fact, the behaviour of the Dst index, with a Hurst exponent H≈0.5 (power-law exponent β≈2 at high frequency, is similar to that of Brownian motion. Therefore, the dynamical invariants of the Dst index may be described by a potential Brownian motion model. Characterization of the geomagnetic activity has been studied by analysing the geomagnetic field using a wavelet covariance technique. The wavelet covariance exponent provides a direct effective measure of the strength of persistence of the Dst index. One of the advantages of wavelet analysis is that many inherent problems encountered in Fourier transform methods, such as windowing and detrending, are not necessary.

  13. Low-altitude trapped protons at the geomagnetic equator

    Science.gov (United States)

    Guzik, T. G.; Miah, M. A.; Mitchell, J. M.; Wefel, J. P.

    1989-01-01

    Geomagnetically trapped protons in the 0.6- to 9-MeV energy range were measured at latitudes near the geomagnetic equator by the Phoenix 1 experiment on board the S81-1 mission from May to November 1982. The protons show a distribution in latitude along the line of minimum magnetic field strength with a full width at half maximum of about 10 deg but with no appreciable longitudinal variation. Between 170 and 290 Km the peak proton flux shows a fifth-power altitude dependence, in contrast to previous measurements at higher altitudes, possibly demonstrating source attenuation. The efficiency of the telescope is calculated as a function of particle pitch angle and used to investigate the time dependence (1969-1982) of the intensity.

  14. Low-altitude trapped protons at the geomagnetic equator

    International Nuclear Information System (INIS)

    Guzik, T.G.; Miah, M.A.; Mitchell, J.W.; Wefel, J.P.

    1989-01-01

    Geomagnetically trapped protons in the 0.6- to 9-MeV energy range were measured at latitudes near the geomagnetic equator by the Phoenix 1 experiment on board the S81-1 mission from May to November 1982. The protons show a distribution in latitude along the line of minimum magnetic field strength with a full width at half maximum of ∼10 0 but with no appreciable longitudinal variation. Between 170 and 290 km the peak proton flux shows a fifth-power altitude dependence, in contrast to previous measurements at higher altitudes, possibly demonstrating source attenuation. The efficiency of the telescope is calculated as a function of particle pitch angle and used to investigate the time dependence (1969--1982) of the intensity. copyright American Geophysical Union 1989

  15. An association between geomagnetic activity and dream bizarreness.

    Science.gov (United States)

    Lipnicki, Darren M

    2009-07-01

    Daily disturbances of the earth's magnetic field produce variations in geomagnetic activity (GMA) that are reportedly associated with widespread effects on human health and behaviour. Some of these effects could be mediated by an established influence of GMA on the secretion of melatonin. There is evidence from unrelated research that melatonin influences dream bizarreness, and it is hypothesised here that there is an association between GMA and dream bizarreness. Also reported is a preliminary test of this hypothesis, a case study in which the dreams recorded over 6.5 years by a young adult male were analysed. Reports of dreams from the second of two consecutive days of either low or high GMA (K index sum or = 28) were self-rated for bizarreness on a 1-5 scale. Dreams from low GMA periods (n=69, median bizarreness=4) were found to be significantly more bizarre than dreams from high GMA periods (n=85, median bizarreness=3; p=0.006), supporting the hypothesised association between GMA and dream bizarreness. Studies with larger samples are needed to verify this association, and to determine the extent to which melatonin may be involved. Establishing that there is an association between GMA and dream bizarreness would have relevance for neurophysiological theories of dreaming, and for models of psychotic symptoms resembling bizarre dream events.

  16. All-sky-imaging capabilities for ionospheric space weather research using geomagnetic conjugate point observing sites

    Science.gov (United States)

    Martinis, C.; Baumgardner, J.; Wroten, J.; Mendillo, M.

    2018-04-01

    Optical signatures of ionospheric disturbances exist at all latitudes on Earth-the most well known case being visible aurora at high latitudes. Sub-visual emissions occur equatorward of the auroral zones that also indicate periods and locations of severe Space Weather effects. These fall into three magnetic latitude domains in each hemisphere: (1) sub-auroral latitudes ∼40-60°, (2) mid-latitudes (20-40°) and (3) equatorial-to-low latitudes (0-20°). Boston University has established a network of all-sky-imagers (ASIs) with sites at opposite ends of the same geomagnetic field lines in each hemisphere-called geomagnetic conjugate points. Our ASIs are autonomous instruments that operate in mini-observatories situated at four conjugate pairs in North and South America, plus one pair linking Europe and South Africa. In this paper, we describe instrument design, data-taking protocols, data transfer and archiving issues, image processing, science objectives and early results for each latitude domain. This unique capability addresses how a single source of disturbance is transformed into similar or different effects based on the unique "receptor" conditions (seasonal effects) found in each hemisphere. Applying optical conjugate point observations to Space Weather problems offers a new diagnostic approach for understanding the global system response functions operating in the Earth's upper atmosphere.

  17. Modeling quantization effects in field effect transistors

    International Nuclear Information System (INIS)

    Troger, C.

    2001-06-01

    Numerical simulation in the field of semiconductor device development advanced to a valuable, cost-effective and flexible facility. The most widely used simulators are based on classical models, as they need to satisfy time and memory constraints. To improve the performance of field effect transistors such as MOSFETs and HEMTs these devices are continuously scaled down in their dimensions. Consequently the characteristics of such devices are getting more and more determined by quantum mechanical effects arising from strong transversal fields in the channel. In this work an approach based on a two-dimensional electron gas is used to describe the confinement of the carriers. Quantization is considered in one direction only. For the derivation of a one-dimensional Schroedinger equation in the effective mass framework a non-parabolic correction for the energy dispersion due to Kane is included. For each subband a non-parabolic dispersion relation characterized by subband masses and subband non-parabolicity coefficients is introduced and the parameters are calculated via perturbation theory. The method described in this work has been implemented in a software tool that performs a self-consistent solution of Schroedinger- and Poisson-equation for a one-dimensional cut through a MOS structure or heterostructure. The calculation of the carrier densities is performed assuming Fermi-Dirac statistics. In the case of a MOS structure a metal or a polysilicon gate is considered and an arbitrary gate bulk voltage can be applied. This allows investigating quantum mechanical effects in capacity calculations, to compare the simulated data with measured CV curves and to evaluate the results obtained with a quantum mechanical correction for the classical electron density. The behavior of the defined subband parameters is compared to the value of the mass and the non-parabolicity coefficient from the model due to Kane. Finally the presented characterization of the subbands is applied

  18. Reply to Comment on ``Effects of fast and slow solar wind on the correlations between interplanetary medium and geomagnetic activity'' by C. B. Wang and J. K. Chao

    Science.gov (United States)

    Ballatore, Paola

    2003-10-01

    The paper [2002] (the paper commented) shows that the statistical significance of the correlations between the interplanetary parameters and the geomagnetic indices (Kp or Dst) is generally less significant during the fastest solar wind. On the other hand, at these fast solar wind periods, the significance of the Kp versus Dst correlation is equal to or higher than during slower solar wind. These results, together with further observations related to substorm periods and with previously published findings, are interpreted in terms of a difference in the interplanetary-magnetospheric coupling for solar wind faster or slower than a certain threshold (identified between about 500 and 600 km/s). Specifically, it is suggested that a possible linear approximation of the geomagnetic-interplanetary coupling is more appropriate during solar wind speed (Vsw) slower than this threshold, being nonlinear processes more dominant during the fastest speeds. This reply highlights that the correlation coefficients shown by [2003] are in agreement with these findings. In addition, Wang and Chao show that the statistical significance of the difference between the correlation coefficients for Vsw ≥ 550 km/s and those for Vsw Wang and Chao is wrong. Moreover, Wang and Chao recalculate the correlations between the interplanetary parameters and the ΔDst instead of Dst; in fact they note that the time derivative of this index (not the index itself) is driven by the interplanetary medium. Here we note that on the contrary, they show that the correlation coefficients between interplanetary parameters and Dst are larger than those obtained using ΔDst and we suggest a possible interpretation in terms of nonlinearity.

  19. Modeling geomagnetic induced currents in Australian power networks

    Science.gov (United States)

    Marshall, R. A.; Kelly, A.; Van Der Walt, T.; Honecker, A.; Ong, C.; Mikkelsen, D.; Spierings, A.; Ivanovich, G.; Yoshikawa, A.

    2017-07-01

    Geomagnetic induced currents (GICs) have been considered an issue for high-latitude power networks for some decades. More recently, GICs have been observed and studied in power networks located in lower latitude regions. This paper presents the results of a model aimed at predicting and understanding the impact of geomagnetic storms on power networks in Australia, with particular focus on the Queensland and Tasmanian networks. The model incorporates a "geoelectric field" determined using a plane wave magnetic field incident on a uniform conducting Earth, and the network model developed by Lehtinen and Pirjola (1985). Model results for two intense geomagnetic storms of solar cycle 24 are compared with transformer neutral monitors at three locations within the Queensland network and one location within the Tasmanian network. The model is then used to assess the impacts of the superintense geomagnetic storm of 29-31 October 2003 on the flow of GICs within these networks. The model results show good correlation with the observations with coefficients ranging from 0.73 to 0.96 across the observing sites. For Queensland, modeled GIC magnitudes during the superstorm of 29-31 October 2003 exceed 40 A with the larger GICs occurring in the south-east section of the network. Modeled GICs in Tasmania for the same storm do not exceed 30 A. The larger distance spans and general east-west alignment of the southern section of the Queensland network, in conjunction with some relatively low branch resistance values, result in larger modeled GICs despite Queensland being a lower latitude network than Tasmania.

  20. Organic tunnel field effect transistors

    KAUST Repository

    Tietze, Max Lutz

    2017-06-29

    Various examples are provided for organic tunnel field effect transistors (OTFET), and methods thereof. In one example, an OTFET includes a first intrinsic layer (i-layer) of organic semiconductor material disposed over a gate insulating layer; source (or drain) contact stacks disposed on portions of the first i-layer; a second i-layer of organic semiconductor material disposed on the first i-layer surrounding the source (or drain) contact stacks; an n-doped organic semiconductor layer disposed on the second i-layer; and a drain (or source) contact layer disposed on the n-doped organic semiconductor layer. The source (or drain) contact stacks can include a p-doped injection layer, a source (or drain) contact layer, and a contact insulating layer. In another example, a method includes disposing a first i-layer over a gate insulating layer; forming source or drain contact stacks; and disposing a second i-layer, an n-doped organic semiconductor layer, and a drain or source contact.

  1. Variations in the geomagnetic dipole moment during the Holocene and the past 50 kyr

    Science.gov (United States)

    Knudsen, Mads Faurschou; Riisager, Peter; Donadini, Fabio; Snowball, Ian; Muscheler, Raimund; Korhonen, Kimmo; Pesonen, Lauri J.

    2008-07-01

    All absolute paleointensity data published in peer-reviewed journals were recently compiled in the GEOMAGIA50 database. Based on the information in GEOMAGIA50, we reconstruct variations in the geomagnetic dipole moment over the past 50 kyr, with a focus on the Holocene period. A running-window approach is used to determine the axial dipole moment that provides the optimal least-squares fit to the paleointensity data, whereas associated error estimates are constrained using a bootstrap procedure. We subsequently compare the reconstruction from this study with previous reconstructions of the geomagnetic dipole moment, including those based on cosmogenic radionuclides ( 10Be and 14C). This comparison generally lends support to the axial dipole moments obtained in this study. Our reconstruction shows that the evolution of the dipole moment was highly dynamic, and the recently observed rates of change (5% per century) do not appear unique. We observe no apparent link between the occurrence of archeomagnetic jerks and changes in the geomagnetic dipole moment, suggesting that archeomagnetic jerks most likely represent drastic changes in the orientation of the geomagnetic dipole axis or periods characterized by large secular variation of the non-dipole field. This study also shows that the Holocene geomagnetic dipole moment was high compared to that of the preceding ˜ 40 kyr, and that ˜ 4 · 10 22 Am 2 appears to represent a critical threshold below which geomagnetic excursions and reversals occur.

  2. A Quaternary Geomagnetic Instability Time Scale

    Science.gov (United States)

    Singer, B. S.

    2013-12-01

    Reversals and excursions of Earth's geomagnetic field create marker horizons that are readily detected in sedimentary and volcanic rocks worldwide. An accurate and precise chronology of these geomagnetic field instabilities is fundamental to understanding several aspects of Quaternary climate, dynamo processes, and surface processes. For example, stratigraphic correlation between marine sediment and polar ice records of climate change across the cryospheres benefits from a highly resolved record of reversals and excursions. The temporal patterns of dynamo behavior may reflect physical interactions between the molten outer core and the solid inner core or lowermost mantle. These interactions may control reversal frequency and shape the weak magnetic fields that arise during successive dynamo instabilities. Moreover, weakening of the axial dipole during reversals and excursions enhances the production of cosmogenic isotopes that are used in sediment and ice core stratigraphy and surface exposure dating. The Geomagnetic Instability Time Scale (GITS) is based on the direct dating of transitional polarity states recorded by lava flows using the 40Ar/39Ar method, in parallel with astrochronologic age models of marine sediments in which O isotope and magnetic records have been obtained. A review of data from Quaternary lava flows and sediments yields a GITS comprising 10 polarity reversals and 27 excursions during the past 2.6 million years. Nine of the ten reversals bounding chrons and subchrons are associated with 40Ar/39Ar ages of transitionally-magnetized lava flows. The tenth, the Guass-Matuyama chron boundary, is tightly bracketed by 40Ar/39Ar dated ash deposits. Of the 27 well-documented excursions, 14 occurred during the Matuyama chron and 13 during the Brunhes chron; 19 have been dated directly using the 40Ar/39Ar method on transitionally-magnetized volcanic rocks and form the backbone of the GITS. Excursions are clearly not the rare phenomena once thought

  3. Earth orientation and its excitations by atmosphere, oceans, and geomagnetic jerks

    Directory of Open Access Journals (Sweden)

    Vondrák J.

    2015-01-01

    Full Text Available In addition to torques exerted by the Moon, Sun, and planets, changes of the Earth orientation parameters (EOP are known to be caused also by excitations by the atmosphere and oceans. Recently appeared studies, hinting that geomagnetic jerks (GMJ, rapid changes of geomagnetic field might be associated with sudden changes of phase and amplitude of EOP (Holme and de Viron 2005, 2013, Gibert and Le Mouёl 2008, Malkin 2013. We (Ron et al. 2015 used additional excitations applied at the epochs of GMJ to derive its influence on motion of the spin axis of the Earth in space (precession-nutation. We demonstrated that this effect, if combined with the influence of the atmosphere and oceans, improves substantially the agreement with celestial pole offsets observed by Very Long-Baseline Interferometry. Here we concentrate our efforts to study possible influence of GMJ on temporal changes of all five Earth orientation parameters defining the complete Earth orientation in space. Numerical integration of Brzeziński's broad-band Liouville equations (Brzeziński 1994 with atmospheric and oceanic excitations, combined with expected GMJ effects, is used to derive EOP and compare them with their observed values. We demonstrate that the agreement between all five Earth orientation parameters integrated by this method and those observed by space geodesy is improved substantially if the influence of additional excitations at GMJ epochs is added to excitations by the atmosphere and oceans.

  4. Earth Orientation and Its Excitations by Atmosphere, Oceans, and Geomagnetic Jerks

    Science.gov (United States)

    Vondrák, J.; Ron, C.

    2015-12-01

    In addition to torques exerted by the Moon, Sun, and planets, changes of the Earth orientation parameters (EOP) are known to be caused also by excitations by the atmosphere and oceans. Recently appeared studies, hinting that geomagnetic jerks (GMJ, rapid changes of geomagnetic field) might be associated with sudden changes of phase and amplitude of EOP (Holme and de Viron 2005, 2013, Gibert and Le Mouël 2008, Malkin 2013). We (Ron et al. 2015) used additional excitations applied at the epochs of GMJ to derive its influence on motion of the spin axis of the Earth in space (precession-nutation). We demonstrated that this effect, if combined with the influence of the atmosphere and oceans, improves substantially the agreement with celestial pole offsets observed by Very Long-Baseline Interferometry. Here we concentrate our efforts to study possible influence of GMJ on temporal changes of all five Earth orientation parameters defining the complete Earth orientation in space. Numerical integration of Brzeziński's broad-band Liouville equations (Brzeziński 1994) with atmospheric and oceanic excitations, combined with expected GMJ effects, is used to derive EOP and compare them with their observed values. We demonstrate that the agreement between all five Earth orientation parameters integrated by this method and those observed by space geodesy is improved substantially if the influence of additional excitations at GMJ epochs is added to excitations by the atmosphere and oceans.

  5. Solar wind and geomagnetism: toward a standard classification of geomagnetic activity from 1868 to 2009

    Directory of Open Access Journals (Sweden)

    J. L. Zerbo

    2012-02-01

    Full Text Available We examined solar activity with a large series of geomagnetic data from 1868 to 2009. We have revisited the geomagnetic activity classification scheme of Legrand and Simon (1989 and improve their scheme by lowering the minimum Aa index value for shock and recurrent activity from 40 to 20 nT. This improved scheme allows us to clearly classify about 80% of the geomagnetic activity in this time period instead of only 60% for the previous Legrand and Simon classification.

  6. Analysis of the positive ionospheric response to a moderate geomagnetic storm using a global numerical model

    Directory of Open Access Journals (Sweden)

    A. A. Namgaladze

    2000-04-01

    Full Text Available Current theories of F-layer storms are discussed using numerical simulations with the Upper Atmosphere Model, a global self-consistent, time dependent numerical model of the thermosphere-ionosphere-plasmasphere-magnetosphere system including electrodynamical coupling effects. A case study of a moderate geomagnetic storm at low solar activity during the northern winter solstice exemplifies the complex storm phenomena. The study focuses on positive ionospheric storm effects in relation to thermospheric disturbances in general and thermospheric composition changes in particular. It investigates the dynamical effects of both neutral meridional winds and electric fields caused by the disturbance dynamo effect. The penetration of short-time electric fields of magnetospheric origin during storm intensification phases is shown for the first time in this model study. Comparisons of the calculated thermospheric composition changes with satellite observations of AE-C and ESRO-4 during storm time show a good agreement. The empirical MSISE90 model, however, is less consistent with the simulations. It does not show the equatorward propagation of the disturbances and predicts that they have a gentler latitudinal gradient. Both theoretical and experimental data reveal that although the ratio of [O]/[N2] at high latitudes decreases significantly during the magnetic storm compared with the quiet time level, at mid to low latitudes it does not increase (at fixed altitudes above the quiet reference level. Meanwhile, the ionospheric storm is positive there. We conclude that the positive phase of the ionospheric storm is mainly due to uplifting of ionospheric F2-region plasma at mid latitudes and its equatorward movement at low latitudes along geomagnetic field lines caused by large-scale neutral wind circulation and the passage of travelling atmospheric disturbances (TADs. The calculated zonal electric field disturbances also help to create the positive ionospheric

  7. Analysis of the positive ionospheric response to a moderate geomagnetic storm using a global numerical model

    Directory of Open Access Journals (Sweden)

    A. A. Namgaladze

    Full Text Available Current theories of F-layer storms are discussed using numerical simulations with the Upper Atmosphere Model, a global self-consistent, time dependent numerical model of the thermosphere-ionosphere-plasmasphere-magnetosphere system including electrodynamical coupling effects. A case study of a moderate geomagnetic storm at low solar activity during the northern winter solstice exemplifies the complex storm phenomena. The study focuses on positive ionospheric storm effects in relation to thermospheric disturbances in general and thermospheric composition changes in particular. It investigates the dynamical effects of both neutral meridional winds and electric fields caused by the disturbance dynamo effect. The penetration of short-time electric fields of magnetospheric origin during storm intensification phases is shown for the first time in this model study. Comparisons of the calculated thermospheric composition changes with satellite observations of AE-C and ESRO-4 during storm time show a good agreement. The empirical MSISE90 model, however, is less consistent with the simulations. It does not show the equatorward propagation of the disturbances and predicts that they have a gentler latitudinal gradient. Both theoretical and experimental data reveal that although the ratio of [O]/[N2] at high latitudes decreases significantly during the magnetic storm compared with the quiet time level, at mid to low latitudes it does not increase (at fixed altitudes above the quiet reference level. Meanwhile, the ionospheric storm is positive there. We conclude that the positive phase of the ionospheric storm is mainly due to uplifting of ionospheric F2-region plasma at mid latitudes and its equatorward movement at low latitudes along geomagnetic field lines caused by large-scale neutral wind circulation and the passage of travelling atmospheric disturbances (TADs. The calculated zonal electric field disturbances also help

  8. Issues of effective field theories with resonances

    International Nuclear Information System (INIS)

    Gegelia, J.; Japaridze, G.

    2014-01-01

    We address some issues of renormalization and symmetries of effective field theories with unstable particles - resonances. We also calculate anomalous contributions in the divergence of the singlet axial current in an effective field theory of massive SU(N) Yang-Mills fields interacting with fermions and discuss their possible relevance to the strong CP problem. (author)

  9. Acceleration and loss of relativistic electrons during small geomagnetic storms.

    Science.gov (United States)

    Anderson, B R; Millan, R M; Reeves, G D; Friedel, R H W

    2015-12-16

    Past studies of radiation belt relativistic electrons have favored active storm time periods, while the effects of small geomagnetic storms ( D s t  > -50 nT) have not been statistically characterized. In this timely study, given the current weak solar cycle, we identify 342 small storms from 1989 through 2000 and quantify the corresponding change in relativistic electron flux at geosynchronous orbit. Surprisingly, small storms can be equally as effective as large storms at enhancing and depleting fluxes. Slight differences exist, as small storms are 10% less likely to result in flux enhancement and 10% more likely to result in flux depletion than large storms. Nevertheless, it is clear that neither acceleration nor loss mechanisms scale with storm drivers as would be expected. Small geomagnetic storms play a significant role in radiation belt relativistic electron dynamics and provide opportunities to gain new insights into the complex balance of acceleration and loss processes.

  10. Remagnetization of lava flows spanning the last geomagnetic reversal

    Science.gov (United States)

    Vella, Jérôme; Carlut, Julie; Valet, Jean-Pierre; Goff, Maxime Le; Soler, Vicente; Lopes, Fernando

    2017-08-01

    Large directional changes of remanent magnetization within lava flows that cooled during geomagnetic reversals have been reported in several studies. A geomagnetic scenario implies extremely rapid geomagnetic changes of several degrees per day, thus difficult to reconcile with the rate of the earth's core liquid motions. So far, no complete rock magnetic model provides a clear explanation. We revisited lava flows sandwiched between an underlying reverse and an overlying normal polarity flow marking the last reversal in three distinct volcanic sequences of the La Palma Island (Canary archipelago, Spain) that are characterized by a gradual evolution of the direction of their remanent magnetization from bottom to top. Cleaning efficiency of thermal demagnetization was not improved by very rapid heating and cooling rates as well as by continuous demagnetization using a Triaxe magnetometer. We did not observe partial self-reversals and minor changes in magnetic grain sizes are not related to the within-flow directional changes. Microscopic observations indicate poor exsolution, which suggests post-cooling thermochemical remagnetization processes. This scenario is strongly reinforced by laboratory experiments that show large resistance to thermal demagnetization when thermoremanence was acquired over a long time period. We speculate that in the present situation exsolution was reactivated during in field reheating and yielded formation of new magnetite, yet magnetic domain state rearrangements could also play a role. Initial reheating when the overlying flow took place, albeit moderate (less than 200-300 °C), was enough to produce overlying components with significantly higher unblocking temperatures.

  11. A first generation numerical geomagnetic storm prediction scheme

    International Nuclear Information System (INIS)

    Akasofu, S.-I.; Fry, C.F.

    1986-01-01

    Because geomagnetic and auroral disturbances cause significant interference on many electrical systems, it is essential to develop a reliable geomagnetic and auroral storm prediction scheme. A first generation numerical prediction scheme has been developed. The scheme consists of two major computer codes which in turn consist of a large number of subroutine codes and of empirical relationships. First of all, when a solar flare occurs, six flare parameters are determined as the input data set for the first code which is devised to show the simulated propagation of solar wind disturbances in the heliosphere to a distance of 2 a.u. Thus, one can determine the relative location of the propagating disturbances with the Earth's position. The solar wind speed and the three interplanetary magnetic field (IMF) components are then computed as a function of time at the Earth's location or any other desired (space probe) locations. These quantities in turn become the input parameters for the second major code which computes first the power of the solar wind-magnetosphere dynamo as a function of time. The power thus obtained and the three IMF components can be used to compute or infer: the predicted geometry of the auroral oval; the cross-polar cap potential; the two geomagnetic indices AE and Dst; the total energy injection rate into the polar ionosphere; and the atmospheric temperature, etc. (author)

  12. Role of the magnetospheric and ionospheric currents in the generation of the equatorial scintillations during geomagnetic storms

    Directory of Open Access Journals (Sweden)

    L. Z. Biktash

    2004-09-01

    Full Text Available The equatorial ionosphere parameters, Kp, Dst, AU and AL indices characterized contribution of different magnetospheric and ionospheric currents to the H-component of geomagnetic field are examined to test the geomagnetic activity effect on the generation of ionospheric irregularities producing VLF scintillations. According to the results of the current statistical studies, one can predict near 70% of scintillations from Aarons' criteria using the Dst index, which mainly depicts the magnetospheric ring current field. To amplify Aarons' criteria or to propose new criteria for predicting scintillation characteristics is the question. In the present phase of the experimental investigations of electron density irregularities in the ionosphere new ways are opened up because observations in the interaction between the solar wind - magnetosphere - ionosphere during magnetic storms have progressed greatly. According to present view, the intensity of the electric fields and currents at the polar regions, as well as the magnetospheric ring current intensity, are strongly dependent on the variations of the interplanetary magnetic field. The magnetospheric ring current cannot directly penetrate the equatorial ionosphere and because of this difficulties emerge in explaining its relation to scintillation activity. On the other hand, the equatorial scintillations can be observed in the absence of the magnetospheric ring current. It is shown that in addition to Aarons' criteria for the prediction of the ionospheric scintillations, models can be used to explain the relationship between the equatorial ionospheric parameters, h'F, foF2, and the equatorial geomagnetic variations with the polar ionosphere currents and the solar wind.

  13. Geomagnetism solid Earth and upper atmosphere perspectives

    CERN Document Server

    Basavaiah, Nathani

    2011-01-01

    This volume elaborates several important aspects of solid Earth geomagnetism. It covers all the basics of the subject, including biomagnetism and instrumentation, and offers a number of practical applications with carefully selected examples and illustrations.

  14. The Challenge Posed by Geomagnetic Activity to Electric Power Reliability: Evidence From England and Wales

    Science.gov (United States)

    Forbes, Kevin F.; St. Cyr, O. C.

    2017-10-01

    This paper addresses whether geomagnetic activity challenged the reliability of the electric power system during part of the declining phase of solar cycle 23. Operations by National Grid in England and Wales are examined over the period of 11 March 2003 through 31 March 2005. This paper examines the relationship between measures of geomagnetic activity and a metric of challenged electric power reliability known as the net imbalance volume (NIV). Measured in megawatt hours, NIV represents the sum of all energy deployments initiated by the system operator to balance the electric power system. The relationship between geomagnetic activity and NIV is assessed using a multivariate econometric model. The model was estimated using half-hour settlement data over the period of 11 March 2003 through 31 December 2004. The results indicate that geomagnetic activity had a demonstrable effect on NIV over the sample period. Based on the parameter estimates, out-of-sample predictions of NIV were generated for each half hour over the period of 1 January to 31 March 2005. Consistent with the existence of a causal relationship between geomagnetic activity and the electricity market imbalance, the root-mean-square error of the out-of-sample predictions of NIV is smaller; that is, the predictions are more accurate, when the statistically significant estimated effects of geomagnetic activity are included as drivers in the predictions.

  15. A study of solar and interplanetary parameters of CMEs causing major geomagnetic storms during SC 23

    Directory of Open Access Journals (Sweden)

    C. Oprea

    2013-08-01

    Full Text Available In this paper we analyse 25 Earth-directed and strongly geoeffective interplanetary coronal mass ejections (ICMEs which occurred during solar cycle 23, using data provided by instruments on SOHO (Solar and Heliospheric Observatory, ACE (Advanced Composition Explorer and geomagnetic stations. We also examine the in situ parameters, the energy transfer into magnetosphere, and the geomagnetic indexes. We compare observed travel times with those calculated by observed speeds projected into the plane of the sky and de-projected by a simple model. The best fit was found with the projected speeds. No correlation was found between the importance of a flare and the geomagnetic Dst (disturbance storm time index. By comparing the in situ parameters with the Dst index we find a strong connection between some of these parameters (such as Bz, Bs · V and the energy transfer into the magnetosphere with the strength of the geomagnetic storm. No correlation was found with proton density and plasma temperature. A superposed epoch analysis revealed a strong dependence of the Dst index on the southward component of interplanetary magnetic field, Bz, and to the Akasofu coupling function, which evaluates the energy transfer between the ICME and the magnetosphere. The analysis also showed that the geomagnetic field at higher latitudes is disturbed before the field around the Earth's equator.

  16. Construction of an Overhauser magnetic gradiometer and the applications in geomagnetic observation and ferromagnetic target localization

    Science.gov (United States)

    Liu, H.; Dong, H.; Liu, Z.; Ge, J.; Bai, B.; Zhang, C.

    2017-10-01

    The proton precession magnetometer with single sensor is commonly used in geomagnetic observation and magnetic anomaly detection. Due to technological limitations, the measurement accuracy is restricted by several factors such as the sensor performance, frequency measurement precision, instability of polarization module, etc. Aimed to improve the anti-interference ability, an Overhauser magnetic gradiometer with dual sensor structure was designed. An alternative design of a geomagnetic sensor with differential dual-coil structure was presented. A multi-channel frequency measurement algorithm was proposed to increase the measurement accuracy. A silicon oscillator was adopted to resolve the instability of polarization system. This paper briefly discusses the design and development of the gradiometer and compares the data recorded by this instrument with a commonly used commercially Overhauser magnetometer in the world market. The proposed gradiometer records the earth magnetic field in 24 hours with measurement accuracy of ± 0.3 nT and a sampling rate of 3 seconds per sample. The quality of data recorded is excellent and consistent with the commercial instrument. In addition, experiments of ferromagnetic target localization were conducted. This gradiometer shows a strong ability in magnetic anomaly detection and localization. To sum up, it has the advantages of convenient operation, high precision, strong anti-interference, etc., which proves the effectiveness of the dual sensor structure Overhauser magnetic gradiometer.

  17. Anomalous short period geomagnetic variations at two stations in Sri Lanka

    International Nuclear Information System (INIS)

    Kunaratnam, K.

    1986-08-01

    An analysis of the rates of change in the geomagnetic field components in the period range 20-600 sec recorded at Kondavil and Hikkaduwa, two stations in the equatorial electrojet belt near the northern and south western coasts respectively of Sri Lanka, shows anomalous variations. The results confirm induced current concentration in the Palk Strait and deflection of induced currents around the southerncoast of Sri Lanka postulated by earlier workers from observations of SSC and Bay events at Indian stations and from analogue and numerical model studies. At Kondavil, which is situated close to the geomagnetic equator, no appreciable difference in the night-time and day-time values of ΔZ/ΔH and ΔD/ΔH ratios was noticed while at Hikkaduwa, a station situated under the edge of the equatorial electrojet belt, a day-time enhancement of ΔZ/ΔH ratios was found at all periods in the observed range. An enhancement of the H component at Colombo over that at Hikkaduwa was also found at short periods, the enhancement being greater at day-time. The day-time enhancement in the ΔZ/ΔH ratios at Hikkaduwa and in the ratio of the H components at Colombo and Hikkaduwa could be due to the effect of the equatorial electrojet on the short period variations. (author)

  18. Construction of an Overhauser magnetic gradiometer and the applications in geomagnetic observation and ferromagnetic target localization

    International Nuclear Information System (INIS)

    Liu, H.; Dong, H.; Ge, J.; Zhang, C.; Liu, Z.; Bai, B.

    2017-01-01

    The proton precession magnetometer with single sensor is commonly used in geomagnetic observation and magnetic anomaly detection. Due to technological limitations, the measurement accuracy is restricted by several factors such as the sensor performance, frequency measurement precision, instability of polarization module, etc. Aimed to improve the anti-interference ability, an Overhauser magnetic gradiometer with dual sensor structure was designed. An alternative design of a geomagnetic sensor with differential dual-coil structure was presented. A multi-channel frequency measurement algorithm was proposed to increase the measurement accuracy. A silicon oscillator was adopted to resolve the instability of polarization system. This paper briefly discusses the design and development of the gradiometer and compares the data recorded by this instrument with a commonly used commercially Overhauser magnetometer in the world market. The proposed gradiometer records the earth magnetic field in 24 hours with measurement accuracy of ± 0.3 nT and a sampling rate of 3 seconds per sample. The quality of data recorded is excellent and consistent with the commercial instrument. In addition, experiments of ferromagnetic target localization were conducted. This gradiometer shows a strong ability in magnetic anomaly detection and localization. To sum up, it has the advantages of convenient operation, high precision, strong anti-interference, etc., which proves the effectiveness of the dual sensor structure Overhauser magnetic gradiometer.

  19. A Study on the Model of Detecting the Variation of Geomagnetic Intensity Based on an Adapted Motion Strategy

    Directory of Open Access Journals (Sweden)

    Hong Li

    2017-12-01

    Full Text Available By simulating the geomagnetic fields and analyzing thevariation of intensities, this paper presents a model for calculating the objective function ofan Autonomous Underwater Vehicle (AUVgeomagnetic navigation task. By investigating the biologically inspired strategies, the AUV successfullyreachesthe destination duringgeomagnetic navigation without using the priori geomagnetic map. Similar to the pattern of a flatworm, the proposed algorithm relies on a motion pattern to trigger a local searching strategy by detecting the real-time geomagnetic intensity. An adapted strategy is then implemented, which is biased on the specific target. The results show thereliabilityandeffectivenessofthe proposed algorithm.

  20. Geomagnetic storms in the Antarctic F-region

    International Nuclear Information System (INIS)

    Wrenn, G.L.; Rodger, A.S.; Rishbeth, H.

    1987-01-01

    New analysis procedures are used to show that the main phase mid-latitude storm effects conform to consistent patterns in local time when suitable selection rules are applied, with averaging over several years. Changes in the maximum plasma frequency, foF2, with respect to estimated quiet-time values, are analysed in terms of asub(p)(t), a new geomagnetic index derived to take account of integrated disturbance. Reduction of foF2 is greatest during the early morning hours, in summer, at higher geomagnetic latitudes, near solar minimum and through the more active periods. The various dependencies are quantitatively determined for the first time by creating an average 'steady state' disturbance, rather than following specific storm events. This approach permits tests of competing theories using available modelling programs. (author)

  1. The effect of solar-geomagnetic activity during hospital admission on coronary events within 1 year in patients with acute coronary syndromes

    Science.gov (United States)

    Vencloviene, J.; Babarskiene, R.; Milvidaite, I.; Kubilius, R.; Stasionyte, J.

    2013-12-01

    Some evidence indicates the deterioration of the cardiovascular system during space storms. It is plausible that the space weather conditions during and after hospital admission may affect the risk of coronary events in patients with acute coronary syndromes (ACS). We analyzed the data of 1400 ACS patients who were admitted to the Hospital Lithuanian University of Health Sciences, and who survived for more than 4 days. We evaluated the associations between geomagnetic storms (GS), solar proton events (SPE), and solar flares (SF) that occurred 0-3 days before and after hospital admission and the risk of cardiovascular death (CAD), non-fatal ACS, and coronary artery bypass grafting (CABG) during a period of 1 year; the evaluation was based on the multivariate logistic model, controlling for clinical data. After adjustment for clinical variables, GS occurring in conjunction with SF 1 day before admission increased the risk of CAD by over 2.5 times. GS 2 days after SPE occurred 1 day after admission increased the risk of CAD and CABG by over 2.8 times. The risk of CABG increased by over 2 times in patients admitted during the day of GS and 1 day after SPE. The risk of ACS was by over 1.63 times higher for patients admitted 1 day before or after solar flares.

  2. Special issue “International Geomagnetic Reference Field—the twelfth generation”

    DEFF Research Database (Denmark)

    Thébault, E.; Finlay, C. C.; Toh, H.

    2015-01-01

    This special issue of Earth, Planets and Space, synthesizes the efforts made during the construction of the twelfth generation of the International Geomagnetic Reference Field (IGRF-12) that was released online in December 2014 (http://www.ngdc.noaa.gov/IAGA/vmod/ igrf.html). The IGRF-12 is a ser......This special issue of Earth, Planets and Space, synthesizes the efforts made during the construction of the twelfth generation of the International Geomagnetic Reference Field (IGRF-12) that was released online in December 2014 (http://www.ngdc.noaa.gov/IAGA/vmod/ igrf.html). The IGRF-12...

  3. Local geomagnetic events associated with displacements on the san andreas fault.

    Science.gov (United States)

    Breiner, S; Kovach, R L

    1967-10-06

    The piezomagnetic properties of rock suggest that a change in subsurface stress will manifest itself as a change in the magnetic susceptibility and remanent magnetization and hence the local geomagnetic field. A differential array of magnetometers has been operating since late 1965 on the San Andreas fault in the search for piezomagnetic signals under conditions involving active fault stress. Local changes in the geomagnetic field have been observed near Hollister, California, some tens of hours preceding the onset of abrupt creep displacement on the San Andreas fault.

  4. Long-term trends of foE and geomagnetic activity variations

    Directory of Open Access Journals (Sweden)

    A. V. Mikhailov

    2003-03-01

    Full Text Available A relationship between foE trends and geomagnetic activity long-term variations has been revealed for the first time. By analogy with earlier obtained results on the foF2 trends it is possible to speak about the geomagnetic control of the foE long-term trends as well. Periods of increasing geomagnetic activity correspond to negative foE trends, while these trends are positive for the decreasing phase of geomagnetic activity. This "natural" relationship breaks down around 1970 (on some stations later when pronounced positive foE trends have appeared on most of the stations considered. The dependence of foE trends on geomagnetic activity can be related with nitric oxide variations at the E-layer heights. The positive foE trends that appeared after the "break down" effect may also be explained by the [NO] decrease which is not related to geomagnetic activity variations. But negative trends or irregular foE variations on some stations for the same time period require some different mechanism. Chemical pollution of the lower thermosphere due to the anthropogenic activity may be responsible for such abnormal foE behavior after the end of the 1960s.Key words. Ionosphere (ionosphere-atmosphere interactions; ionospheric disturbances

  5. Effective theories of single field inflation when heavy fields matter

    CERN Document Server

    Achucarro, Ana; Hardeman, Sjoerd; Palma, Gonzalo A; Patil, Subodh P

    2012-01-01

    We compute the low energy effective field theory (EFT) expansion for single-field inflationary models that descend from a parent theory containing multiple other scalar fields. By assuming that all other degrees of freedom in the parent theory are sufficiently massive relative to the inflaton, it is possible to derive an EFT valid to arbitrary order in perturbations, provided certain generalized adiabaticity conditions are respected. These conditions permit a consistent low energy EFT description even when the inflaton deviates off its adiabatic minimum along its slowly rolling trajectory. By generalizing the formalism that identifies the adiabatic mode with the Goldstone boson of this spontaneously broken time translational symmetry prior to the integration of the heavy fields, we show that this invariance of the parent theory dictates the entire non-perturbative structure of the descendent EFT. The couplings of this theory can be written entirely in terms of the reduced speed of sound of adiabatic perturbat...

  6. Toward establishing a definitive Late-Mid Jurassic (M-series) Geomagnetic Polarity Reversal Time Scale through unraveling the nature of Jurassic Quiet Zone.

    Science.gov (United States)

    Tominaga, M.; Tivey, M.; Sager, W.

    2017-12-01

    Two major difficulties have hindered improving the accuracy of the Late-Mid Jurassic geomagnetic polarity time scale: a dearth of reliable high-resolution radiometric dates and the lack of a continuous Jurassic geomagnetic polarity time scale (GPTS) record. We present the latest effort towards establishing a definitive Mid Jurassic to Early Cretaceous (M-series) GPTS model using three high-resolution, multi-level (sea surface [0 km], mid-water [3 km], and near-source [5.2 km]) marine magnetic profiles from a seamount-free corridor adjacent to the Waghenaer Fracture Zone in the western Pacific Jurassic Quiet Zone (JQZ). The profiles show a global coherency in magnetic anomaly correlations between two mid ocean ridge systems (i.e., Japanese and Hawaiian lineations). Their unprecedented high data resolution documents a detailed anomaly character (i.e., amplitudes and wavelengths). We confirm that this magnetic anomaly record shows a coherent anomaly sequence from M29 back in time to M42 with previously suggested from the Japanese lineation in the Pigafetta Basin. Especially noticeable is the M39-M41 Low Amplitude Zone defined in the Pigafetta Bsin, which potentially defines the bounds of JQZ seafloor. We assessed the anomaly source with regard to the crustal architecture, including the effects of Cretaceous volcanism on crustal magnetization and conclude that the anomaly character faithfully represents changes in geomagnetic field intensity and polarity over time and is mostly free of any overprint of the original Jurassic magnetic remanence by later Cretaceous volcanism. We have constructed polarity block models (RMS Japanese M-series sequence. The anomalously high reversal rates during a period of apparent low field intensity suggests a unique period of geomagnetic field behavior in Earth's history.

  7. Geomagnetism during solar cycle 23: Characteristics

    Directory of Open Access Journals (Sweden)

    Jean-Louis Zerbo

    2013-05-01

    Full Text Available On the basis of more than 48 years of morphological analysis of yearly and monthly values of the sunspot number, the aa index, the solar wind speed and interplanetary magnetic field, we point out the particularities of geomagnetic activity during the period 1996–2009. We especially investigate the last cycle 23 and the long minimum which followed it. During this period, the lowest values of the yearly averaged IMF (3 nT and yearly averaged solar wind speed (364 km/s are recorded in 1996, and 2009 respectively. The year 2003 shows itself particular by recording the highest value of the averaged solar wind (568 km/s, associated to the highest value of the yearly averaged aa index (37 nT. We also find that observations during the year 2003 seem to be related to several coronal holes which are known to generate high-speed wind stream. From the long time (more than one century study of solar variability, the present period is similar to the beginning of twentieth century. We especially present the morphological features of solar cycle 23 which is followed by a deep solar minimum.

  8. Genetic effects of nonionizing electromagnetic fields

    International Nuclear Information System (INIS)

    Lai, Henry

    2001-01-01

    Due to the increased use of electricity and wireless communication devices, there is a concern on whether exposure to nonionizing electromagnetic fields (50/60 Hz fields and radiofrequency radiation) can lead to harmful health effects, particularly, genetic effects and cancer development. This presentation will review recent research on genetic effects of power line frequency and radiofrequency electromagnetic fields. Even though the mechanism of interaction is still unknown, there is increasing evidence that these electromagnetic fields at low intensities can cause genetic damage in cells. There is also evidence suggesting that the effects are caused by oxidative stress. (author)

  9. Paleomagnetic evidence for the persistence or recurrence of the South Atlantic geomagnetic Anomaly

    Science.gov (United States)

    Shah, Jay; Koppers, Anthony A. P.; Leitner, Marko; Leonhardt, Roman; Muxworthy, Adrian R.; Heunemann, Christoph; Bachtadse, Valerian; Ashley, Jack A. D.; Matzka, Jürgen

    2017-04-01

    The South Atlantic geomagnetic Anomaly (SAA) is known as a region of the geomagnetic field that is approximately 25 μT in intensity, compared to an expected value of ˜43 μT. Geomagnetic field models do not find evidence for the SAA being a persistent feature of the geomagnetic field, however these models are constructed from paleomagnetic data that is sparse in the southern hemisphere. We present a full-vector paleomagnetic study of 40Ar/39Ar dated Late Pleistocene lavas from Tristan da Cunha in the South Atlantic Ocean (Shah et al., 2016; EPSL). Paleointensity estimations using the Thellier method of eight lava flows yield an average paleointensity of the Tristan da Cunha lavas as 18 ± 6 μT and an average virtual axial dipole moment (VADM) of 3.1 ± 1.2 × 1022 Am2. Comparing the VADM of the lava flows against the PADM2M, PINT and SINT-800 databases indicates that the lava flows represent four distinct periods of anomalously weak intensity in the South Atlantic between 43 and 90 ka ago, constrained by newly obtained 40Ar/39Ar ages. This anomalously weak intensity in the Late Pleistocene is similar to the present-day SAA and SAA-like anomalous behavior found in the recent archeomagnetic study by Tarduno et al. (2015; Nat. Commun.). Our dataset provides evidence for the persistence or recurrence of geomagnetic main field anomalies in the South Atlantic, and potentially indicates such anomalies are the geomagnetic field manifestation of the long-existing core-mantle boundary heterogeneity seismically identified as the African Large Low Velocity Shear Province (LLSVP).

  10. Gravitational dynamos and the low-frequency geomagnetic secular variation.

    Science.gov (United States)

    Olson, P

    2007-12-18

    Self-sustaining numerical dynamos are used to infer the sources of low-frequency secular variation of the geomagnetic field. Gravitational dynamo models powered by compositional convection in an electrically conducting, rotating fluid shell exhibit several regimes of magnetic field behavior with an increasing Rayleigh number of the convection, including nearly steady dipoles, chaotic nonreversing dipoles, and chaotic reversing dipoles. The time average dipole strength and dipolarity of the magnetic field decrease, whereas the dipole variability, average dipole tilt angle, and frequency of polarity reversals increase with Rayleigh number. Chaotic gravitational dynamos have large-amplitude dipole secular variation with maximum power at frequencies corresponding to a few cycles per million years on Earth. Their external magnetic field structure, dipole statistics, low-frequency power spectra, and polarity reversal frequency are comparable to the geomagnetic field. The magnetic variability is driven by the Lorentz force and is characterized by an inverse correlation between dynamo magnetic and kinetic energy fluctuations. A constant energy dissipation theory accounts for this inverse energy correlation, which is shown to produce conditions favorable for dipole drift, polarity reversals, and excursions.

  11. Analysis of the monitoring data of geomagnetic storm interference in the electrification system of a high-speed railway

    Science.gov (United States)

    Liu, Lianguang; Ge, Xiaoning; Zong, Wei; Zhou, You; Liu, Mingguang

    2016-10-01

    To study the impact of geomagnetic storm on the equipment of traction electrification system in the high-speed railway, geomagnetically induced current (GIC) monitoring devices were installed in the Hebi East traction power supply substation of the Beijing-Hong Kong Dedicated Passenger Line in January 2015, and GICs were captured during the two geomagnetic storms on 17 March and 23 June 2015. In order to investigate the GIC flow path, both in the track circuit and in the traction network adopting the autotransformer feeding system, a GIC monitor plan was proposed for the electrical system in the Hebi East traction power supply substation. This paper analyzes the correlation between the GIC captured on 17 March and the geomagnetic data obtained from the Malingshan Geomagnetic Observatory and presents a regression analysis between the measured GIC and the calculated geoelectric fields on 23 June in the high-speed railway. The maximum GICs measured in the track circuit are 1.08 A and 1.74 A during the two geomagnetic storms. We find that it is necessary to pay attention on the throttle transformers and track circuits, as the most sensitive elements responding to the extreme geomagnetic storms in the high-speed railway.

  12. Long-term biases in geomagnetic K and aa indices

    Science.gov (United States)

    Love, J.J.

    2011-01-01

    Analysis is made of the geomagnetic-activity aa index and its source K-index data from groups of ground-based observatories in Britain, and Australia, 1868.0-2009.0, solar cycles 11-23. The K data show persistent biases, especially for high (low) K-activity levels at British (Australian) observatories. From examination of multiple subsets of the K data we infer that the biases are not predominantly the result of changes in observatory location, localized induced magnetotelluric currents, changes in magnetometer technology, or the modernization of K-value estimation methods. Instead, the biases appear to be artifacts of the latitude-dependent scaling used to assign K values to particular local levels of geomagnetic activity. The biases are not effectively removed by weighting factors used to estimate aa. We show that long-term averages of the aa index, such as annual averages, are dominated by medium-level geomagnetic activity levels having K values of 3 and 4. ?? 2011 Author(s).

  13. Long-term biases in geomagnetic K and aa indices

    Directory of Open Access Journals (Sweden)

    J. J. Love

    2011-08-01

    Full Text Available Analysis is made of the geomagnetic-activity aa index and its source K-index data from groups of ground-based observatories in Britain, and Australia, 1868.0–2009.0, solar cycles 11–23. The K data show persistent biases, especially for high (low K-activity levels at British (Australian observatories. From examination of multiple subsets of the K data we infer that the biases are not predominantly the result of changes in observatory location, localized induced magnetotelluric currents, changes in magnetometer technology, or the modernization of K-value estimation methods. Instead, the biases appear to be artifacts of the latitude-dependent scaling used to assign K values to particular local levels of geomagnetic activity. The biases are not effectively removed by weighting factors used to estimate aa. We show that long-term averages of the aa index, such as annual averages, are dominated by medium-level geomagnetic activity levels having K values of 3 and 4.

  14. Towards accurate simulation of fringe field effects

    International Nuclear Information System (INIS)

    Berz, M.; Erdelyi, B.; Makino, K.

    2001-01-01

    In this paper, we study various fringe field effects. Previously, we showed the large impact that fringe fields can have on certain lattice scenarios of the proposed Neutrino Factory. Besides the linear design of the lattice, the effects depend strongly on the details of the field fall off. Various scenarios are compared. Furthermore, in the absence of detailed information, we study the effects for the LHC, a case where the fringe fields are known, and try to draw some conclusions for Neutrino Factory lattices

  15. Effective Field Theory on Manifolds with Boundary

    Science.gov (United States)

    Albert, Benjamin I.

    In the monograph Renormalization and Effective Field Theory, Costello made two major advances in rigorous quantum field theory. Firstly, he gave an inductive position space renormalization procedure for constructing an effective field theory that is based on heat kernel regularization of the propagator. Secondly, he gave a rigorous formulation of quantum gauge theory within effective field theory that makes use of the BV formalism. In this work, we extend Costello's renormalization procedure to a class of manifolds with boundary and make preliminary steps towards extending his formulation of gauge theory to manifolds with boundary. In addition, we reorganize the presentation of the preexisting material, filling in details and strengthening the results.

  16. An introduction to effective field theory

    International Nuclear Information System (INIS)

    Donoghue, John F.

    1999-01-01

    In these lectures I describe the main ideas of effective field theory. These are first illustrated using QED and the linear sigma model as examples. Calculational techniques using both Feynman diagrams and dispersion relations are introduced. Within QCD, chiral perturbation theory is a complete effective field theory, and I give a guide to some calculations in the literature which illustrates key ideas. (author)

  17. Geomagnetic spikes on the core-mantle boundary

    Science.gov (United States)

    Davies, C. J.; Constable, C.

    2017-12-01

    Extreme variations of Earth's magnetic field occurred in the Levantine region around 1000 BC, where the field intensity rose and fell by a factor of 2-3 over a short time and confined spatial region. There is presently no coherent link between this intensity spike and the generating processes in Earth's liquid core. Here we test the attribution of a surface spike to a flux patch visible on the core-mantle boundary (CMB), calculating geometric and energetic bounds on resulting surface geomagnetic features. We show that the Levantine intensity high must span at least 60 degrees in longitude. Models providing the best trade-off between matching surface spike intensity, minimizing L1 and L2 misfit to the available data and satisfying core energy constraints produce CMB spikes 8-22 degrees wide with peak values of O(100) mT. We propose that the Levantine spike grew in place before migrating northward and westward, contributing to the growth of the axial dipole field seen in Holocene field models. Estimates of Ohmic dissipation suggest that diffusive processes, which are often neglected, likely govern the ultimate decay of geomagnetic spikes. Using these results, we search for the presence of spike-like features in geodynamo simulations.

  18. Biological effects of electromagnetic fields

    African Journals Online (AJOL)

    2012-02-28

    Feb 28, 2012 ... radiofrequency emitting sources are radars, mobile phones and their base stations, ... and industrial applications, could have effect on living organisms. ...... Hazards of Electromagnetic Pollution (Msc Thesis). Department of ...

  19. A superposed epoch analysis of geomagnetic storms

    Directory of Open Access Journals (Sweden)

    J. R. Taylor

    1994-06-01

    Full Text Available A superposed epoch analysis of geomagnetic storms has been undertaken. The storms are categorised via their intensity (as defined by the Dst index. Storms have also been classified here as either storm sudden commencements (SSCs or storm gradual commencements (SGCs, that is all storms which did not begin with a sudden commencement. The prevailing solar wind conditions defined by the parameters solar wind speed (vsw, density (ρsw and pressure (Psw and the total field and the components of the interplanetary magnetic field (IMF during the storms in each category have been investigated by a superposed epoch analysis. The southward component of the IMF, appears to be the controlling parameter for the generation of small SGCs (-100 nT< minimum Dst ≤ -50 nT for ≥ 4 h, but for SSCs of the same intensity solar wind pressure is dominant. However, for large SSCs (minimum Dst ≤ -100 nT for ≥ 4 h the solar wind speed is the controlling parameter. It is also demonstrated that for larger storms magnetic activity is not solely driven by the accumulation of substorm activity, but substantial energy is directly input via the dayside. Furthermore, there is evidence that SSCs are caused by the passage of a coronal mass ejection, whereas SGCs result from the passage of a high speed/ slow speed coronal stream interface. Storms are also grouped by the sign of Bz during the first hour epoch after the onset. The sign of Bz at t = +1 h is the dominant sign of the Bz for ~24 h before the onset. The total energy released during storms for which Bz was initially positive is, however, of the same order as for storms where Bz was initially negative.

  20. Longitudinal study of the ionospheric response to the geomagnetic storm of 15 May 2005 and manifestation of TADs

    Directory of Open Access Journals (Sweden)

    S. Sharma

    2011-06-01

    Full Text Available Response of low latitude ionosphere to the geomagnetic storm of 15 May 2005 has been studied using total electron content (TEC data, obtained from three GPS stations namely, Yibal, Udaipur and Kunming situated near the northern crest of equatorial ionization anomaly at different longitudes. Solar wind parameters, north-south component of the interplanetary magnetic field (IMF Bz and AE index data have been used to infer the strength of the geomagnetic storm. A large value of eastward interplanetary electric field at 06:15 UT, during the time of maximum southward IMF Bz has been used to infer the transmission of an eastward prompt penetration electric field (PPEF which resulted in a peak in TEC at 07:45 UT due to the local uplift of plasma in the low latitudes near the anomaly crest over a wide range of longitudes. Wave-like modulations superposed over the second enhancement in TEC between 09:15 UT to 10:30 UT have been observed at all the three stations. The second enhancement in TEC along with the modulations of up to 5 TECU have been attributed to the combined effect of super plasma fountain and traveling atmospheric disturbances (TAD. Observed large enhancements in TEC are a cause of concern for satellite based navigation and ground positioning. Increased [O/N2] ratio between 09:15 UT to 10:15 UT when modulations in TEC have been also observed, confirms the presence of TADs over a wide range of longitudes.