WorldWideScience

Sample records for geology

  1. Geology

    Data.gov (United States)

    Kansas Data Access and Support Center — This database is an Arc/Info implementation of the 1:500,000 scale Geology Map of Kansas, M­23, 1991. This work wasperformed by the Automated Cartography section of...

  2. Geologic Time.

    Science.gov (United States)

    Newman, William L.

    One of a series of general interest publications on science topics, the booklet provides those interested in geologic time with an introduction to the subject. Separate sections discuss the relative time scale, major divisions in geologic time, index fossils used as guides for telling the age of rocks, the atomic scale, and the age of the earth.…

  3. Destination: Geology?

    Science.gov (United States)

    Price, Louise

    2016-04-01

    "While we teach, we learn" (Roman philosopher Seneca) One of the most beneficial ways to remember a theory or concept is to explain it to someone else. The offer of fieldwork and visits to exciting destinations is arguably the easiest way to spark a students' interest in any subject. Geology at A-Level (age 16-18) in the United Kingdom incorporates significant elements of field studies into the curriculum with many students choosing the subject on this basis and it being a key factor in consolidating student knowledge and understanding. Geology maintains a healthy annual enrollment with interest in the subject increasing in recent years. However, it is important for educators not to loose sight of the importance of recruitment and retention of students. Recent flexibility in the subject content of the UK curriculum in secondary schools has provided an opportunity to teach the basic principles of the subject to our younger students and fieldwork provides a valuable opportunity to engage with these students in the promotion of the subject. Promotion of the subject is typically devolved to senior students at Hessle High School and Sixth Form College, drawing on their personal experiences to engage younger students. Prospective students are excited to learn from a guest speaker, so why not use our most senior students to engage and promote the subject rather than their normal subject teacher? A-Level geology students embarking on fieldwork abroad, understand their additional responsibility to promote the subject and share their understanding of the field visit. They will typically produce a series of lessons and activities for younger students using their newly acquired knowledge. Senior students also present to whole year groups in seminars, sharing knowledge of the location's geology and raising awareness of the exciting destinations offered by geology. Geology fieldwork is always planned, organised and led by the member of staff to keep costs low, with recent visits

  4. Geologic studies

    International Nuclear Information System (INIS)

    Wayland, T.E.; Rood, A.

    1983-01-01

    The modern Great Divide Basin is the end product of natural forces influenced by the Green River lake system, Laramide tectonism, and intermittent volcanic events. It ranks as one of the most complex structural and stratigtaphic features within the Tertiary basins of Wyoming. Portions of the Great Divide Basin and adjoining areas in Wyoming have been investigated by applying detailed and region exploration methods to known uranium deposits located within the Red Desert portions of the basin. Geologic field investigations conducted by Bendix Field Engineering Corporaton (Bendix) were restricted to reconnaissance observations made during infrequent visits to the project area by various Bendix personnel. Locations of the most comprehensive field activities are shown in Figure II-1. The principal source fo data for geologic studies of the Red Desert project area has been information and materials furnished by industry. Several hundred holes have been drilled by various groups to delineate the uranium deposits. Results from Bendix-drilled holes at selected locations within the project area are summarized in Table II-1. Additional details and gross subsurface characteristics are illustrated in cross sections; pertinent geologic features are illustrated in plan maps. Related details of continental sedimentation that pertain to the Wyoming Basins generally, and the project area specificially, are discussed in subsections of this Geologic Studies section

  5. Planetary geology

    CERN Document Server

    Gasselt, Stephan

    2018-01-01

    This book provides an up-to-date interdisciplinary geoscience-focused overview of solid solar system bodies and their evolution, based on the comparative description of processes acting on them. Planetary research today is a strongly multidisciplinary endeavor with efforts coming from engineering and natural sciences. Key focal areas of study are the solid surfaces found in our Solar System. Some have a direct interaction with the interplanetary medium and others have dynamic atmospheres. In any of those cases, the geological records of those surfaces (and sub-surfaces) are key to understanding the Solar System as a whole: its evolution and the planetary perspective of our own planet. This book has a modular structure and is divided into 4 sections comprising 15 chapters in total. Each section builds upon the previous one but is also self-standing. The sections are:  Methods and tools Processes and Sources  Integration and Geological Syntheses Frontiers The latter covers the far-reaching broad topics of exo...

  6. Geology and bedrock engineering

    International Nuclear Information System (INIS)

    1985-11-01

    This book deals with geology of Korea which includes summary, geology in central part and southern part in Korea and characteristic of geology structure, limestone like geology property of limestone, engineered property of limestone, and design and construction case in limestone area. It also introduces engineered property of the cenozoic, clay rock and shale, geologic and engineered property of phyllite and stratum.

  7. Old Geology and New Geology

    Science.gov (United States)

    2003-01-01

    [figure removed for brevity, see original site] Released 28 May 2003Mangala Vallis one of the large outflow channels that channeled large quantities of water into the northern lowlands, long ago on geological timescales. This valley is one of the few in the southern hemisphere, as well as one of the few west of the Tharsis bulge. A closer look at the channel shows more recent weathering of the old water channel: the walls of the channel show small, dark slope streaks that form in dusty areas; and much of the surrounding terrain has subtle linear markings trending from the upper left to the lower right, which are probably features sculpted and streamlined by the wind. Geology still shapes the surface of Mars today, but its methods over the eons have changed.Image information: VIS instrument. Latitude -6, Longitude 209.6 East (150.4 West). 19 meter/pixel resolution.Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  8. California Geological Survey Geologic Map Index

    Data.gov (United States)

    California Natural Resource Agency — All the individual maps from the Geologic Atlas of California and the Regional Geologic map series have been georeferenced for display in a GIS (and viewable online...

  9. Engineering Geology | Alaska Division of Geological & Geophysical Surveys

    Science.gov (United States)

    Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska content Engineering Geology Additional information Engineering Geology Posters and Presentations Alaska Alaska MAPTEACH Tsunami Inundation Mapping Engineering Geology Staff Projects The Engineering Geology

  10. Geology of Uruguay review

    International Nuclear Information System (INIS)

    Gomez Rifas, C.

    2011-01-01

    This work is about the Uruguay geology review.This country has been a devoted to breeding cattle and agriculture.The evolution of geological knowledge begun with Dr. Karl Walther who published 53 papers between 1909 and 1948.

  11. Geological Services Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Researchers use computed tomography (CT) scanners at NETL’s Geological Services Laboratory in Morgantown, WV, to peer into geologic core samples to determine how...

  12. Mercury's Early Geologic History

    Science.gov (United States)

    Denevi, B. W.; Ernst, C. M.; Klima, R. L.; Robinson, M. S.

    2018-05-01

    A combination of geologic mapping, compositional information, and geochemical models are providing a better understanding of Mercury's early geologic history, and allow us to place it in the context of the Moon and the terrestrial planets.

  13. The geological attitude

    International Nuclear Information System (INIS)

    Fuller, J.G.C.M.

    1992-01-01

    This paper discusses geological activity which takes place mainly in response to industrial and social pressures. Past geological reaction to these pressures profoundly altered popular conceptions of time, the Church, man, and the balance of nature. The present-day circumstances of geology are not essentially different from those of the past. Petroleum geology in North American illustrates the role of technology in determining the style and scope of geological work. Peaks of activity cluster obviously on the introduction from time to time of new instrumental capabilities (geophysical apparatus, for example), although not infrequently such activity is testing concepts or relationships perceived long before. Organic metamorphism and continental drift provide two examples. The petroleum industry now faces the dilemma of satisfying predicted demands for fuel, without doing irreparable injury to its environment of operation. Awareness of man's place in nature, which is a fundamental perception of geology, governs the geological attitude

  14. Environmental geology and hydrology

    Science.gov (United States)

    Nakić, Zoran; Mileusnić, Marta; Pavlić, Krešimir; Kovač, Zoran

    2017-10-01

    Environmental geology is scientific discipline dealing with the interactions between humans and the geologic environment. Many natural hazards, which have great impact on humans and their environment, are caused by geological settings. On the other hand, human activities have great impact on the physical environment, especially in the last decades due to dramatic human population growth. Natural disasters often hit densely populated areas causing tremendous death toll and material damage. Demand for resources enhanced remarkably, as well as waste production. Exploitation of mineral resources deteriorate huge areas of land, produce enormous mine waste and pollute soil, water and air. Environmental geology is a broad discipline and only selected themes will be presented in the following subchapters: (1) floods as natural hazard, (2) water as geological resource and (3) the mining and mineral processing as types of human activities dealing with geological materials that affect the environment and human health.

  15. Geology of Mars

    International Nuclear Information System (INIS)

    Soderblom, L.A.

    1988-01-01

    The geology of Mars and the results of the Mariner 4, 6/7, and 9 missions and the Viking mission are reviewed. The Mars chronology and geologic modification are examined, including chronological models for the inactive planet, the active planet, and crater flux. The importance of surface materials is discussed and a multispectral map of Mars is presented. Suggestions are given for further studies of the geology of Mars using the Viking data. 5 references

  16. Geology's Impact on Culture

    Science.gov (United States)

    Pizzorusso, Ann

    2017-04-01

    Most people consider geology boring, static and difficult. The fields of astronomy and physics have "rebranded" themselves with exciting programs formatted so as to be readily understandable to the general public. The same thing can be done for geology. My research on geology's influence on other disciplines has resulted in a book, Tweeting da Vinci, in which I was able to show how geology affected Italy's art, architecture, medicine, religion, literature, engineering and just about everything else. The reaction to the book and my lectures by both students and the general public has been very positive, including four gold medals, with reviews and comments indicating that they never knew geology could be so exciting. The book is very user friendly, packed with facts, full-color photos, paintings, sketches and illustrations. Complex aspects of geology are presented in an easily understandable style. Widely diverse topics—such as gemology, folk remedies, grottoes, painting, literature, physics and religion—are stitched together using geology as a thread. Quoting everyone from Pliny the Elder to NASA physicist Friedemann Freund, the work is solidly backed scholarship that reads as easily as a summer novel. The book can be used in classes such as physics, chemistry, literature, art history, medicine, Classical Studies, Latin, Greek and Italian. By incorporating a "geologic perspective" in these courses, it can be perceived as a more "all encompassing" discipline and encourage more students to study it. The lectures I have given on college campuses have resulted in students seeing their own majors from a different perspective and some have even signed up for introductory geology courses. One college organized summer course to the Bay of Naples based on the book. We followed the geology as well as the culture of the area and the students were profoundly moved. To encourage dialog, the book is linked to Facebook, Twitter and Instagram. This has enabled followers from

  17. AEGIS geologic simulation model

    International Nuclear Information System (INIS)

    Foley, M.G.

    1982-01-01

    The Geologic Simulation Model (GSM) is used by the AEGIS (Assessment of Effectiveness of Geologic Isolation Systems) program at the Pacific Northwest Laboratory to simulate the dynamic geology and hydrology of a geologic nuclear waste repository site over a million-year period following repository closure. The GSM helps to organize geologic/hydrologic data; to focus attention on active natural processes by requiring their simulation; and, through interactive simulation and calibration, to reduce subjective evaluations of the geologic system. During each computer run, the GSM produces a million-year geologic history that is possible for the region and the repository site. In addition, the GSM records in permanent history files everything that occurred during that time span. Statistical analyses of data in the history files of several hundred simulations are used to classify typical evolutionary paths, to establish the probabilities associated with deviations from the typical paths, and to determine which types of perturbations of the geologic/hydrologic system, if any, are most likely to occur. These simulations will be evaluated by geologists familiar with the repository region to determine validity of the results. Perturbed systems that are determined to be the most realistic, within whatever probability limits are established, will be used for the analyses that involve radionuclide transport and dose models. The GSM is designed to be continuously refined and updated. Simulation models are site specific, and, although the submodels may have limited general applicability, the input data equirements necessitate detailed characterization of each site before application

  18. Field Geology/Processes

    Science.gov (United States)

    Allen, Carlton; Jakes, Petr; Jaumann, Ralf; Marshall, John; Moses, Stewart; Ryder, Graham; Saunders, Stephen; Singer, Robert

    1996-01-01

    The field geology/process group examined the basic operations of a terrestrial field geologist and the manner in which these operations could be transferred to a planetary lander. Four basic requirements for robotic field geology were determined: geologic content; surface vision; mobility; and manipulation. Geologic content requires a combination of orbital and descent imaging. Surface vision requirements include range, resolution, stereo, and multispectral imaging. The minimum mobility for useful field geology depends on the scale of orbital imagery. Manipulation requirements include exposing unweathered surfaces, screening samples, and bringing samples in contact with analytical instruments. To support these requirements, several advanced capabilities for future development are recommended. Capabilities include near-infrared reflectance spectroscopy, hyper-spectral imaging, multispectral microscopy, artificial intelligence in support of imaging, x ray diffraction, x ray fluorescence, and rock chipping.

  19. Global Journal of Geological Sciences

    African Journals Online (AJOL)

    Global Journal of Geological Sciences is aimed at promoting research in all areas of Geological Sciences including geochemistry, geophysics, engineering geology, hydrogeology, petrology, mineralogy, geochronology, tectonics, mining, structural geology, marine geology, space science etc. Visit the Global Journal Series ...

  20. Global Journal of Geological Sciences: Editorial Policies

    African Journals Online (AJOL)

    Focus and Scope. Global Journal of Geological Sciences is aimed at promoting research in all areas of geological Sciences including Petrology, Mineralogy, geophysics, hydrogeology, Engineering geology, Petroleum geology, Palaeontology, environmental geology, Economic geology, etc.

  1. Geological heritage of Morocco

    International Nuclear Information System (INIS)

    Elhadi, H.; Tahiri, A.

    2012-01-01

    Full text: The soil and subsoil of Morocco are rich in geological phenomena that bear the imprint of a history that goes back in time more than 2000 million years. Very many sites geologically remarkable exposed in accessible outcrops, with good quality remain unknown to the general public and therefore deserve to be vulgarized. It is a memory to acquaint to the present generations but also to preserve for future generations. In total, a rich geological heritage in many ways: Varied landscapes, international stratotypes, various geological structures, varied rocks, mineral associations, a huge procession of fossiles, remnants of oceanic crust (ophiolites) among oldests ones in the world (800my), etc... For this geological heritage, an approach of an overall inventory is needed, both regionally and nationally, taking into account all the skills of the earth sciences. This will put the item on the natural (geological) potentialities as a lever for sustainable regional development. For this, it is necessary to implement a strategy of ''geoconservation'' for the preservation and assessment of the geological heritage.

  2. Fundamentals of Structural Geology

    Science.gov (United States)

    Pollard, David D.; Fletcher, Raymond C.

    2005-09-01

    Fundamentals of Structural Geology provides a new framework for the investigation of geological structures by integrating field mapping and mechanical analysis. Assuming a basic knowledge of physical geology, introductory calculus and physics, it emphasizes the observational data, modern mapping technology, principles of continuum mechanics, and the mathematical and computational skills, necessary to quantitatively map, describe, model, and explain deformation in Earth's lithosphere. By starting from the fundamental conservation laws of mass and momentum, the constitutive laws of material behavior, and the kinematic relationships for strain and rate of deformation, the authors demonstrate the relevance of solid and fluid mechanics to structural geology. This book offers a modern quantitative approach to structural geology for advanced students and researchers in structural geology and tectonics. It is supported by a website hosting images from the book, additional colour images, student exercises and MATLAB scripts. Solutions to the exercises are available to instructors. The book integrates field mapping using modern technology with the analysis of structures based on a complete mechanics MATLAB is used to visualize physical fields and analytical results and MATLAB scripts can be downloaded from the website to recreate textbook graphics and enable students to explore their choice of parameters and boundary conditions The supplementary website hosts color images of outcrop photographs used in the text, supplementary color images, and images of textbook figures for classroom presentations The textbook website also includes student exercises designed to instill the fundamental relationships, and to encourage the visualization of the evolution of geological structures; solutions are available to instructors

  3. Uruguayan South Geology

    International Nuclear Information System (INIS)

    Guillemain, H.

    1980-01-01

    This monograph is about the sedimentary geological formation in the southern of Uruguay. According to the previous Gondwana studies there are several concordances between the Uruguayan and Brazilian ground.

  4. Iowa Geologic Sampling Points

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — Point locations of geologic samples/files in the IGS repository. Types of samples include well cuttings, outcrop samples, cores, drillers logs, measured sections,...

  5. Iowa Bedrock Geology

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — The bedrock geologic map portrays the current interpretation of the distribution of various bedrock stratigraphic units present at the bedrock surface. The bedrock...

  6. Thermoluminescence studies in geology

    International Nuclear Information System (INIS)

    Sankaran, A.V.; Sunta, C.M.; Nambi, K.S.V.; Bapat, V.N.

    1980-01-01

    Even though the phenomenon of thermoluminescence is well studied, particularly over last 3 decades, its potentialities in the field of geology have not been adequately evaluated. In this report several useful applications of TL in mineralogy, petrogenesis, stratigraphy, tectonics, ore-prospecting and other branches have been identified with particular emphasis to the Indian scene. Important areas in the country that may provide the basic material for such studies are indicated at the end along with brief geological or mineralogical accounts. (auth.)

  7. Advances in planetary geology

    International Nuclear Information System (INIS)

    1987-06-01

    The surface of Mars displays a broad range of channel and valley features. There is as great a range in morphology as in scale. Some of the features of Martian geography are examined. Geomorphic mapping, crater counts on selected surfaces, and a detailed study of drainage basins are used to trace the geologic evolution of the Margaritifer Sinus Quandrangle. The layered deposits in the Valles Marineris are described in detail and the geologic processes that could have led to their formation are analyzed

  8. Lunar and Planetary Geology

    Science.gov (United States)

    Basilevsky, Alexander T.

    2018-05-01

    Lunar and planetary geology can be described using examples such as the geology of Earth (as the reference case) and geologies of the Earth's satellite the Moon; the planets Mercury, Mars and Venus; the satellite of Saturn Enceladus; the small stony asteroid Eros; and the nucleus of the comet 67P Churyumov-Gerasimenko. Each body considered is illustrated by its global view, with information given as to its position in the solar system, size, surface, environment including gravity acceleration and properties of its atmosphere if it is present, typical landforms and processes forming them, materials composing these landforms, information on internal structure of the body, stages of its geologic evolution in the form of stratigraphic scale, and estimates of the absolute ages of the stratigraphic units. Information about one body may be applied to another body and this, in particular, has led to the discovery of the existence of heavy "meteoritic" bombardment in the early history of the solar system, which should also significantly affect Earth. It has been shown that volcanism and large-scale tectonics may have not only been an internal source of energy in the form of radiogenic decay of potassium, uranium and thorium, but also an external source in the form of gravity tugging caused by attractions of the neighboring bodies. The knowledge gained by lunar and planetary geology is important for planning and managing space missions and for the practical exploration of other bodies of the solar system and establishing manned outposts on them.

  9. Geology at Yucca Mountain

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    Both advocates and critics disagree on the significance and interpretation of critical geological features which bear on the safety and suitability of Yucca Mountain as a site for the construction of a high-level radioactive waste repository. Critics believe that there is sufficient geological evidence to rule the site unsuitable for further investigation. Some advocates claim that there is insufficient data and that investigations are incomplete, while others claim that the site is free of major obstacles. We have expanded our efforts to include both the critical evaluations of existing geological and geochemical data and the collection of field data and samples for the purpose of preparing scientific papers for submittal to journals. Summaries of the critical reviews are presented in this paper

  10. Geological Corrections in Gravimetry

    Science.gov (United States)

    Mikuška, J.; Marušiak, I.

    2015-12-01

    Applying corrections for the known geology to gravity data can be traced back into the first quarter of the 20th century. Later on, mostly in areas with sedimentary cover, at local and regional scales, the correction known as gravity stripping has been in use since the mid 1960s, provided that there was enough geological information. Stripping at regional to global scales became possible after releasing the CRUST 2.0 and later CRUST 1.0 models in the years 2000 and 2013, respectively. Especially the later model provides quite a new view on the relevant geometries and on the topographic and crustal densities as well as on the crust/mantle density contrast. Thus, the isostatic corrections, which have been often used in the past, can now be replaced by procedures working with an independent information interpreted primarily from seismic studies. We have developed software for performing geological corrections in space domain, based on a-priori geometry and density grids which can be of either rectangular or spherical/ellipsoidal types with cells of the shapes of rectangles, tesseroids or triangles. It enables us to calculate the required gravitational effects not only in the form of surface maps or profiles but, for instance, also along vertical lines, which can shed some additional light on the nature of the geological correction. The software can work at a variety of scales and considers the input information to an optional distance from the calculation point up to the antipodes. Our main objective is to treat geological correction as an alternative to accounting for the topography with varying densities since the bottoms of the topographic masses, namely the geoid or ellipsoid, generally do not represent geological boundaries. As well we would like to call attention to the possible distortions of the corrected gravity anomalies. This work was supported by the Slovak Research and Development Agency under the contract APVV-0827-12.

  11. Public perceptions of geology

    Science.gov (United States)

    Gibson, Hazel; Stewart, Iain; Anderson, Mark; Pahl, Sabine; Stokes, Alison

    2014-05-01

    Geological issues are increasingly intruding on the everyday lives of ordinary people. Whether it be onshore exploration and extraction of oil and gas, deep injection of water for geothermal power or underground storage of carbon dioxide and radioactive waste, many communities across Europe are being faced with potentially contested geological activity under their backyard. As well as being able to communicate the technical aspects of such work, geoscience professionals also need to appreciate that for most people the subsurface is an unfamiliar realm. In order to engage communities and individuals in effective dialogue about geological activities, an appreciation of what 'the public' already know and what they want to know is needed, but this is a subject that is in its infancy. In an attempt to provide insight into these key issues, this study examines the concerns the public have, relating to geology, by constructing 'Mental Models' of people's perceptions of the subsurface. General recommendations for public engagement strategies will be presented based on the results of selected case studies; specifically expert and non-expert mental models for communities in the south-west of England.

  12. Geology and land use

    Science.gov (United States)

    Brown, R.D.

    1990-01-01

    Geologists' eyes are trained to find and trace such natural landmarks as flood plains, landslide scars, retreating shoreline bluffs, or surface traces of active earthquake faults. more and more often, in developing areas, we find these obvious signs of trouble being erased by urban development. A geological hazard concealed by landscaping or hosing is fully as dangerous as when it is visible.

  13. Geology of Venus

    International Nuclear Information System (INIS)

    Basilevsky, A.T.; Head, J.W. III.

    1988-01-01

    This paper summarizes the emerging picture of the surface of Venus provided by high-resolution earth-based radar telescopes and orbital radar altimetry and imaging systems. The nature and significance of the geological processes operating there are considered. The types of information needed to complete the picture are addressed. 71 references

  14. Geological impacts on nutrition

    Science.gov (United States)

    This chapter reviews the nutritional roles of mineral elements, as part of a volume on health implications of geology. The chapter addresses the absorption and post-absorptive utilization of the nutritionally essential minerals, including their physiological functions and quantitative requirements....

  15. Research on geological disposal

    International Nuclear Information System (INIS)

    Uchida, Masahiro

    2011-01-01

    The aims of this research are to develop criteria for reviewing acceptability of the adequacy of the result of Preliminary and Detailed Investigations submitted by the implementor, and to establish a basic policy to secure safety for safety review. In FY 2010, 13 geology/climate related events for development of acceptance criteria for reviewing the adequacy of the result of Preliminary and Detailed Investigations were extracted. And the accuracy of geophysical exploration methods necessary for the Preliminary Investigation was evaluated. Regarding the research for safety review, we developed an idea of safety concept of Japanese geological disposal, and analyzed basic safety functions to secure safety. In order to verify the groundwater flow evaluation methods developed in regulatory research, the hydrological and geochemical data at Horonobe, northern Hokkaido were obtained, and simulated result of regional groundwater flow were compared with measured data. And we developed the safety scenario of geology/climate related events categorized by geological and geomorphological properties. Also we created a system to check the quality of research results in Japan and other countries in order to utilize for safety regulation, and developed a database system to compile them. (author)

  16. Geological history of uranium

    International Nuclear Information System (INIS)

    Niini, Heikki

    1989-01-01

    Uranium is widely distributed in continental geological environments. The order of magnitude of uranium abundance in felsitic igneous rocks is 2-15 ppm, whereas it is less than 1 ppm in mafic rocks. Sedimentary rocks show a large range: from less than 0.1 ppm U in certain evaporites to over 100 ppm in phosphate rocks and organogenic matter. The content of U in seawater varies from 0.0005 to 0.005 ppm. The isotopic ratio U-238/U-235 is presently 137.5+-0.5, having gradually increased during geological time. The third natural isotope is U-234. On the basis of three fundamental economic criteria for ore reserves assessment (geological assurance, technical feasibility, and the grade and quantity of the deposits), the author finally comes to the following conclusions: Although the global uranium ores are not geologically renewable but continuously mined, they still, due to exploration and technical development, will tend to progressively increase for centuries to come

  17. Canadian geologic isolation program

    International Nuclear Information System (INIS)

    Dyne, P.J.

    1976-01-01

    The Canadian geologic isolation program is directed at examining the potential of (1) salt deposits and (2) hard rock as repositories for radioactive wastes. It was felt essential from the inception that alternative host rocks be evaluated over a fairly large geographical area. The studies on salt deposits to date are based on existing geological information and have identified the areas that show some potential and merit further study. The factors considered include depth, thickness and purity of the deposit, overlying aquifers, and the potential for gas and oil exploration as well as potash recovery. The studies on hard rock are restricted to plutonic igneous rocks in the Ontario part of the Canadian Shield. Because geological information on their nature and extent is sparse, the study is limited to bodies that are well exposed and for which information is available.for which information is available. Field studies in the next two seasons are aimed at mapping the fault and joint patterns and defining the geologic controls on their development. In 1977 and 1978, two or three of the more favorable sites will be mapped in greater detail, and an exploratory drilling program will be established to determine the extent of fracturing at depth and the hydrology of these fractures. Conceptual designs of mined repositories in hard rock are also being made with the hope of identifying, at an early stage in this program, special problems in hard-rock repositories that may require development and study

  18. Geological data integration techniques

    International Nuclear Information System (INIS)

    1988-09-01

    The objectives of this Technical Committee are to bring together current knowledge on geological data handling and analysis technologies as developed in the mineral and petroleum industries for geological, geophysical, geochemical and remote sensing data that can be applied to uranium exploration and resource appraisal. The recommendation for work on this topic was first made at the meeting of the NEA-IAEA Joint Group of Experts on R and D in Uranium Exploration Techniques (Paris, May 1984). In their report, processing of integrated data sets was considered to be extremely important in view of the very extensive data sets built up over the recent years by large uranium reconnaissance programmes. With the development of large, multidisciplinary data sets which includes geochemical, geophysical, geological and remote sensing data, the ability of the geologist to easily interpret large volumes of information has been largely the result of developments in the field of computer science in the past decade. Advances in data management systems, image processing software, the size and speed of computer systems and significantly reduced processing costs have made large data set integration and analysis practical and affordable. The combined signatures which can be obtained from the different types of data significantly enhance the geologists ability to interpret fundamental geological properties thereby improving the chances of finding a significant ore body. This volume is the product of one of a number of activities related to uranium geology and exploration during the past few years with the intent of bringing new technologies and exploration techniques to the IAEA Member States

  19. Geoethics and Forensic Geology

    Science.gov (United States)

    Donnelly, Laurance

    2017-04-01

    The International Union of Geological Sciences (IUGS), Initiative on Forensic Geology (IFG) was set up in 2011 to promote and develop the applications of geology to policing and law enforcement throughout the world. This includes the provision of crime scene examinations, searches to locate graves or items of interest that have been buried beneath the ground surface as part of a criminal act and geological trace analysis and evidence. Forensic geologists may assist the police and law enforcement in a range of ways including for example; homicide, sexual assaults, counter terrorism, kidnapping, humanitarian incidents, environmental crimes, precious minerals theft, fakes and fraudulent crimes. The objective of this paper is to consider the geoethical aspects of forensic geology. This includes both delivery to research and teaching, and contribution to the practical applications of forensic geology in case work. The case examples cited are based on the personal experiences of the authors. Often, the technical and scientific aspect of forensic geology investigation may be the most straightforward, after all, this is what the forensic geologist has been trained to do. The associated geoethical issues can be the most challenging and complex to manage. Generally, forensic geologists are driven to carry-out their research or case work with integrity, honesty and in a manner that is law abiding, professional, socially acceptable and highly responsible. This is necessary in advising law enforcement organisations, society and the scientific community that they represent. As the science of forensic geology begins to advance around the world it is desirable to establish a standard set of principles, values and to provide an agreed ethical a framework. But what are these core values? Who is responsible for producing these? How may these become enforced? What happens when geoethical standards are breached? This paper does not attempt to provide all of the answers, as further work

  20. Engineering geology and environmental protection

    Energy Technology Data Exchange (ETDEWEB)

    Sergeev, E M

    1979-01-01

    A classification is made of the anthropogenic processes in the environment into global, local, universally distributed, zonal, regional, and essentially local processes. Engineering geology is defined as the principal science concerned with the study of the geological medium which in turn involves the study of fossil fuel geology. 22 references.

  1. 77 FR 19032 - Geological Survey

    Science.gov (United States)

    2012-03-29

    ... DEPARTMENT OF THE INTERIOR Geological Survey Announcement of National Geospatial Advisory Committee Meeting AGENCY: U.S. Geological Survey, Interior. ACTION: Notice of meeting. SUMMARY: The National.... Geological Survey (703-648-6283, [email protected] ). Registrations are due by April 13, 2012. While the...

  2. Introduction to ore geology

    International Nuclear Information System (INIS)

    Evans, A.M.

    1987-01-01

    This textbook on ore geology is for second and third year undergraduates and closely parallels the undergraduate course given in this subject at England's University of Leicester. The volume covers three major areas: (1) principles of ore geology, (2) examples of the most important types of ore deposits, and (3) mineralization in space and time. Many chapters have been thoroughly revised for this edition and a chapter on diamonds has been added. Chapters on greisen and pegmatite have also been added, the former in response to the changing situation in tin mining following the recent tin crisis, and the latter in response to suggestions from geologists in a number of overseas countries. Some chapters have been considerably expanded and new sections added, including disseminated gold deposits and unconformity-associated uranium deposits. The author also expands on the importance of viewing mineral deposits from an economic standpoint

  3. Geologic Field Database

    Directory of Open Access Journals (Sweden)

    Katarina Hribernik

    2002-12-01

    Full Text Available The purpose of the paper is to present the field data relational database, which was compiled from data, gathered during thirty years of fieldwork on the Basic Geologic Map of Slovenia in scale1:100.000. The database was created using MS Access software. The MS Access environment ensures its stability and effective operation despite changing, searching, and updating the data. It also enables faster and easier user-friendly access to the field data. Last but not least, in the long-term, with the data transferred into the GISenvironment, it will provide the basis for the sound geologic information system that will satisfy a broad spectrum of geologists’ needs.

  4. Research on geological disposal

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    The aims of this research are to develop criteria for reviewing reliability and suitability of the result from Preliminary Investigations to be submitted by the implementer, and to establish a basic policy for safety review. For development of reliability and suitability criteria for reviewing the result of Preliminary Investigations, we evaluated the uncertainties and their influence from limited amount of investigations, as well as we identified important procedures during investigations and constructions of models, as follows: (1) uncertainties after limited amount of geological exploration and drilling, (2) influence of uncertainties in regional groundwater flow model, (3) uncertainties of DFN (Discrete Fracture Network) models in the fractured rock, (4) analyzed investigation methods described in implementer's report, and (5) identified important aspects in investigation which need to be reviewed and follow QA (Quality Assurance). For development of reliability and suitability criteria for reviewing the result of Detailed Investigations, we analyzed important aspects in investigation which supplies data to design and safety assessment, as well as studied the applicability of pressure interference data during excavation to verify hydrogeological model. Regarding the research for safety review, uncertainties of geologic process in long time-scale was studied. In FY2012, we started to evaluate the structural stabilities of concrete and bentonite in disposal environment. Finally, we continued to accumulate the knowledge on geological disposal into the database system. (author)

  5. Geological remote sensing

    Science.gov (United States)

    Bishop, Charlotte; Rivard, Benoit; de Souza Filho, Carlos; van der Meer, Freek

    2018-02-01

    Geology is defined as the 'study of the planet Earth - the materials of which it is made, the processes that act on these materials, the products formed, and the history of the planet and its life forms since its origin' (Bates and Jackson, 1976). Remote sensing has seen a number of variable definitions such as those by Sabins and Lillesand and Kiefer in their respective textbooks (Sabins, 1996; Lillesand and Kiefer, 2000). Floyd Sabins (Sabins, 1996) defined it as 'the science of acquiring, processing and interpreting images that record the interaction between electromagnetic energy and matter' while Lillesand and Kiefer (Lillesand and Kiefer, 2000) defined it as 'the science and art of obtaining information about an object, area, or phenomenon through the analysis of data acquired by a device that is not in contact with the object, area, or phenomenon under investigation'. Thus Geological Remote Sensing can be considered the study of, not just Earth given the breadth of work undertaken in planetary science, geological features and surfaces and their interaction with the electromagnetic spectrum using technology that is not in direct contact with the features of interest.

  6. Geologic sources of energy

    Science.gov (United States)

    Bundtzen, Thomas K.; Nokleberg, Warren J.; Bundtzen, Thomas K.; Nokleberg, Warren J.; Price, Raymond A.; Scholl, David W.; Stone, David B.

    2017-01-01

    This chapter describes the exploration, development, and geologic setting of petroleum resources (including tar sands), coal resources (including coalbed methane), and geothermal energy resources of the Northern Cordillera.For petroleum resources, the chapter describes: (1) the history of petroleum development and production, first for Alaska and then for the Canadian Cordillera; and (2) generalized basin analysis geologic settings for the six major petroleum basins that are illustrated in summary maps and cross sections. Subsequent sections of the chapter describe the nature and geologic setting of tar sand resources, geothermal energy resources, and coal resources. The area distribution of the energy resources of the region are depicted in the Energy Resources Map that has multiple layers that can be displayed in various arrangements. Employing this map in a separate window while reading the text will be greatly beneficial. Many geographic names are employed in the descriptions throughout this chapter. While reading this chapter, viewing the Geographic Regions Layer of the Energy Resources Map, as needed, will be valuable.

  7. Tsunami geology in paleoseismology

    Science.gov (United States)

    Yuichi Nishimura,; Jaffe, Bruce E.

    2015-01-01

    The 2004 Indian Ocean and 2011 Tohoku-oki disasters dramatically demonstrated the destructiveness and deadliness of tsunamis. For the assessment of future risk posed by tsunamis it is necessary to understand past tsunami events. Recent work on tsunami deposits has provided new information on paleotsunami events, including their recurrence interval and the size of the tsunamis (e.g. [187–189]). Tsunamis are observed not only on the margin of oceans but also in lakes. The majority of tsunamis are generated by earthquakes, but other events that displace water such as landslides and volcanic eruptions can also generate tsunamis. These non-earthquake tsunamis occur less frequently than earthquake tsunamis; it is, therefore, very important to find and study geologic evidence for past eruption and submarine landslide triggered tsunami events, as their rare occurrence may lead to risks being underestimated. Geologic investigations of tsunamis have historically relied on earthquake geology. Geophysicists estimate the parameters of vertical coseismic displacement that tsunami modelers use as a tsunami's initial condition. The modelers then let the simulated tsunami run ashore. This approach suffers from the relationship between the earthquake and seafloor displacement, the pertinent parameter in tsunami generation, being equivocal. In recent years, geologic investigations of tsunamis have added sedimentology and micropaleontology, which focus on identifying and interpreting depositional and erosional features of tsunamis. For example, coastal sediment may contain deposits that provide important information on past tsunami events [190, 191]. In some cases, a tsunami is recorded by a single sand layer. Elsewhere, tsunami deposits can consist of complex layers of mud, sand, and boulders, containing abundant stratigraphic evidence for sediment reworking and redeposition. These onshore sediments are geologic evidence for tsunamis and are called ‘tsunami deposits’ (Figs. 26

  8. Safeguards for geological repositories

    International Nuclear Information System (INIS)

    Fattah, A.

    2000-01-01

    Direct disposal of spent nuclear fuel in geological repositories is a recognised option for closing nuclear fuel cycles. Geological repositories are at present in stages of development in a number of countries and are expected to be built and operated early next century. A State usually has an obligation to safely store any nuclear material, which is considered unsuitable to re-enter the nuclear fuel cycle, isolated from the biosphere. In conjunction with this, physical protection has to be accounted for to prevent inadvertent access to such material. In addition to these two criteria - which are fully under the State's jurisdiction - a third criterion reflecting international non-proliferation commitments needs to be addressed. Under comprehensive safeguards agreements a State concedes verification of nuclear material for safeguards purposes to the IAEA. The Agency can thus provide assurance to the international community that such nuclear material has been used for peaceful purposes only as declared by the State. It must be emphasised that all three criteria mentioned constitute a 'unit'. None can be sacrificed for the sake of the other, but compromises may have to be sought in order to make their combination as effective as possible. Based on comprehensive safeguards agreements signed and ratified by the State, safeguards can be terminated only when the material has been consumed or diluted in such a way that it can no longer be utilised for any nuclear activities or has become practicably irrecoverable. As such safeguards for nuclear material in geological repositories have to be continued even after the repository has been back-filled and sealed. The effective application of safeguards must assure continuity-of-knowledge that the nuclear material in the repository has not been diverted for an unknown purpose. The nuclear material disposed in a geological repository may eventually have a higher and long term proliferation risk because the inventory is

  9. Okinawa, Japan: Geologic Battleground

    Science.gov (United States)

    Waymack, S. W.; Carrington, M. P.; Harpp, K. S.

    2005-12-01

    One of our main goals as instructors, particularly in introductory courses, is to impart students with an appreciation of how geology has influenced the course of human events. Despite the apparent accessibility of such topics, communicating this in a lively, relevant, and effective way often proves difficult. We use a series of historical events, the Pacific island hopping campaign of WWII, to engage students in an active, guided inquiry exercise to explore how terrain and the underlying geology of an area can shape historical events. Teams of students are assigned the role of planning either the defense or occupation of Okinawa Island, in the Ryukyu arc, in a theoretical version of the 1945 conflict. Students are given a package of information, including geologic and topographic maps, a list of military resources available to them at the time, and some historical background. Students also have access to "reconnaissance" images, 360o digital panoramas of the landscape of Okinawa, keyed to their maps. Each team has a week to plan their strategies and carry out additional research, which they subsequently bring to the table in the form of a written battle plan. With an instructor as arbiter, teams alternate drawing their maneuvers on a map of the island, to which the other team then responds. This continues one move at a time, until the instructor declares a victor. Throughout the exercise, the instructor guides students through analysis of each strategic decision in light of the island's structure and topography, with an emphasis on the appropriate interpretation of the maps. Students soon realize that an understanding of the island's terrain literally meant the difference between life and death for civilians and military participants alike in 1945. The karst landscape of Okinawa posed unique obstacles to both the Japanese and the American forces, including difficult landing sites, networks of natural caves, and sequences of hills aligned perpendicular to the

  10. Lectures in isotope geology

    International Nuclear Information System (INIS)

    Jaeger, E.; Hunziker, J.C.

    1979-01-01

    Designed for a introductory course in geochronology and the geochemistry of stable isotopes, this text has been written by recognized experts in the field. Emphasis is on the interpretation and on applications, and examples of these are offered along with each technique. Extraterrestrial applications have been avoided and the treatment of pure experimentation has been kept at a minimum. This text will be appreciated by geologists who want to learn more about methods used in isotope geology, how they can be applied, and how to gauge their usefulness. (orig.) [de

  11. Terrestrial analogs, planetary geology, and the nature of geological reasoning

    Science.gov (United States)

    Baker, Victor R.

    2014-05-01

    Analogical reasoning is critical to planetary geology, but its role can be misconstrued by those unfamiliar with the practice of that science. The methodological importance of analogy to geology lies in the formulation of genetic hypotheses, an absolutely essential component of geological reasoning that was either ignored or denigrated by most 20th century philosophers of science, who took the theoretical/ experimental methodology of physics to be the sole model for all of scientific inquiry. Following the seminal 19th century work of Grove Karl Gilbert, an early pioneer of planetary geology, it has long been recognized that broad experience with and understanding of terrestrial geological phenomena provide geologists with their most effective resource for the invention of potentially fruitful, working hypotheses. The actions of (1) forming such hypotheses, (2) following their consequences, and (3) testing those consequences comprise integral parts of effective geological practice in regard to the understanding of planetary surfaces. Nevertheless, the logical terminology and philosophical bases for such practice will be unfamiliar to most planetary scientists, both geologists and nongeologists. The invention of geological hypotheses involves both inductive inferences of the type Gilbert termed “empiric classification” and abductive inferences of a logical form made famous by the 19th century American logician Charles Sanders Peirce. The testing and corroboration of geological hypotheses relies less on the correspondence logic of theoretical/ experimental sciences, like physics, and more on the logic of consistency, coherence, and consilience that characterizes the investigative and historical sciences of interpretation exemplified by geology.

  12. Geologic environmental study

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chun Soo; Bae, Dae Seok; Kim, Kyung Su; Park, Byung Yoon; Koh, Young Kown; Chun, Kwan Sik; Kim, Jhin Wung

    2000-05-01

    The geoscience research works are focused on the production of geologic basic data accompanying with the technical development of geology and hydrogeologic characterization. The lithology of the Korean peninsula consists of a complex structure of 29 rock types from Archean to Quaternary. The wide distribution of Mesozoic plutonic rock is an important consideration as a potential host rock allowing flexibility of siting. The recent tectonic activities are limited to localized particular area, which can be avoided by excluding in the early stage of siting. Three rock types such as plutonic rocks, crystalline gneisses and massive volcanic rocks were suggested as the preferred host rocks for the further study on HLW disposal system. This report contains grouping of regional faults, and on the distributional characteristics of faults and fractures(zones) in terms of lithological domain and tectonical provinces. The regional groundwater regime can be grouped into 3 regimes by tectonic setting and four groundwater regions based on an altitute. Groundwaters can be grouped by their chemistry and host rocks. The origin of groundwater was proposed by isotope ({sup 1}8O, {sup 2}H, {sup 1}3C, {sup 3}4S, {sup 8}7Sr, {sup 1}5N) studies and the residence time of groundwater was inferred from their tritium contents. Based on the geochemical and isotope characteristics, the geochemical evolutions of each types of groundwater were simulated using SOLVEQ/CHILLER and PHREEQC programs.

  13. Geologic environmental study

    International Nuclear Information System (INIS)

    Kim, Chun Soo; Bae, Dae Seok; Kim, Kyung Su; Park, Byung Yoon; Koh, Young Kown; Chun, Kwan Sik; Kim, Jhin Wung

    2000-05-01

    The geoscience research works are focused on the production of geologic basic data accompanying with the technical development of geology and hydrogeologic characterization. The lithology of the Korean peninsula consists of a complex structure of 29 rock types from Archean to Quaternary. The wide distribution of Mesozoic plutonic rock is an important consideration as a potential host rock allowing flexibility of siting. The recent tectonic activities are limited to localized particular area, which can be avoided by excluding in the early stage of siting. Three rock types such as plutonic rocks, crystalline gneisses and massive volcanic rocks were suggested as the preferred host rocks for the further study on HLW disposal system. This report contains grouping of regional faults, and on the distributional characteristics of faults and fractures(zones) in terms of lithological domain and tectonical provinces. The regional groundwater regime can be grouped into 3 regimes by tectonic setting and four groundwater regions based on an altitute. Groundwaters can be grouped by their chemistry and host rocks. The origin of groundwater was proposed by isotope ( 1 8O, 2 H, 1 3C, 3 4S, 8 7Sr, 1 5N) studies and the residence time of groundwater was inferred from their tritium contents. Based on the geochemical and isotope characteristics, the geochemical evolutions of each types of groundwater were simulated using SOLVEQ/CHILLER and PHREEQC programs

  14. Geology of kilauea volcano

    Science.gov (United States)

    Moore, R.B.; Trusdell, F.A.

    1993-01-01

    This paper summarizes studies of the structure, stratigraphy, petrology, drill holes, eruption frequency, and volcanic and seismic hazards of Kilauea volcano. All the volcano is discussed, but the focus is on its lower cast rift zone (LERZ) because active exploration for geothermal energy is concentrated in that area. Kilauea probably has several separate hydrothermal-convection systems that develop in response to the dynamic behavior of the volcano and the influx of abundant meteoric water. Important features of some of these hydrothermal-convection systems are known through studies of surface geology and drill holes. Observations of eruptions during the past two centuries, detailed geologic mapping, radiocarbon dating, and paleomagnetic secular-variation studies indicate that Kilauea has erupted frequently from its summit and two radial rift zones during Quaternary time. Petrologic studies have established that Kilauea erupts only tholeiitic basalt. Extensive ash deposits at Kilauea's summit and on its LERZ record locally violent, but temporary, disruptions of local hydrothermal-convection systems during the interaction of water or steam with magma. Recent drill holes on the LERZ provide data on the temperatures of the hydrothermal-convection systems, intensity of dike intrusion, porosity and permeability, and an increasing amount of hydrothermal alteration with depth. The prehistoric and historic record of volcanic and seismic activity indicates that magma will continue to be supplied to deep and shallow reservoirs beneath Kilauea's summit and rift zones and that the volcano will be affected by eruptions and earthquakes for many thousands of years. ?? 1993.

  15. Practical aspects of geological prediction

    International Nuclear Information System (INIS)

    Mallio, W.J.; Peck, J.H.

    1981-01-01

    Nuclear waste disposal requires that geology be a predictive science. The prediction of future events rests on (1) recognizing the periodicity of geologic events; (2) defining a critical dimension of effect, such as the area of a drainage basin, the length of a fault trace, etc; and (3) using our understanding of active processes the project the frequency and magnitude of future events in the light of geological principles. Of importance to nuclear waste disposal are longer term processes such as continental denudation and removal of materials by glacial erosion. Constant testing of projections will allow the practical limits of predicting geological events to be defined. 11 refs

  16. Geology of Europa

    Science.gov (United States)

    Greeley, R.; Chyba, C.; Head, J. W.; McCord, T.; McKinnon, W. B.; Pappalardo, R. T.

    2004-01-01

    Europa is a rocky object of radius 1565 km (slightly smaller than Earth s moon) and has an outer shell of water composition estimated to be of order 100 km thick, the surface of which is frozen. The total volume of water is about 3 x 10(exp 9) cubic kilometers, or twice the amount of water on Earth. Moreover, like its neighbor Io, Europa experiences internal heating generated from tidal flexing during its eccentric orbit around Jupiter. This raises the possibility that some of the water beneath the icy crust is liquid. The proportion of rock to ice, the generation of internal heat, and the possibility of liquid water make Europa unique in the Solar System. In this chapter, we outline the sources of data available for Europa (with a focus on the Galileo mission), review previous and on-going research on its surface geology, discuss the astrobiological potential of Europa, and consider plans for future exploration.

  17. Geology of National Parks

    Science.gov (United States)

    Stoffer, Philip W.

    2008-01-01

    This is a set of two sheets of 3D images showing geologic features of many National Parks. Red-and-cyan viewing glasses are need to see the three-dimensional effect. A search on the World Wide Web will yield many sites about anaglyphs and where to get 3D glasses. Red-blue glasses will do but red-cyan glasses are a little better. This publication features a photo quiz game: Name that park! where you can explore, interpret, and identify selected park landscapes. Can you identify landscape features in the images? Can you explain processes that may have helped form the landscape features? You can get the answers online.

  18. Geological terrain models

    Science.gov (United States)

    Kaupp, V. H.; Macdonald, H. C.; Waite, W. P.

    1981-01-01

    The initial phase of a program to determine the best interpretation strategy and sensor configuration for a radar remote sensing system for geologic applications is discussed. In this phase, terrain modeling and radar image simulation were used to perform parametric sensitivity studies. A relatively simple computer-generated terrain model is presented, and the data base, backscatter file, and transfer function for digital image simulation are described. Sets of images are presented that simulate the results obtained with an X-band radar from an altitude of 800 km and at three different terrain-illumination angles. The simulations include power maps, slant-range images, ground-range images, and ground-range images with statistical noise incorporated. It is concluded that digital image simulation and computer modeling provide cost-effective methods for evaluating terrain variations and sensor parameter changes, for predicting results, and for defining optimum sensor parameters.

  19. Radon as geological tracer

    Energy Technology Data Exchange (ETDEWEB)

    Lacerda, T.; Anjos, R.M. [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil). Inst. de Fisica; Valladares, D.L.; Rizzotto, M.; Velasco, H.; Ayub, J. Juri [Universidad Nacional de San Luis (Argentina). Inst. de Matematica Aplicada San Luis (IMASL); Silva, A.A.R. da; Yoshimura, E.M. [Universidade de Sao Paulo (IF/USP), SP (Brazil). Inst. de Fisica

    2012-07-01

    Full text: This work presents measurements of {sup 222}Rn levels performed in La Carolina gold mine and Los Condores tungsten mine at the province of San Luis, Argentina, today used for tourist visitation, and can evaluate the potential use of such radioactive noble gas as tracer or marker for geological processes in underground environments. By concentrations of {sup 40}K, {sup 232}Th and {sup 23}'8U were also measured in the walls of tunnels were determined the rocks mineral composition, what indicated that the mines have the same composition. In this sense, we used nuclear trace plastic detectors CR-39, gamma spectrometry of rock samples and Geiger-Muller (GM) monitors The patterns of radon gas transportation processes revealed that La Carolina could be interpreted through a model based on a radioactive gas confined into a single entrance tube, with constant cross section and air velocity. Los Condores, which has a second main entrance, could be interpreted through a model based on a radioactive gas confined into a two entrance tube, allowing a chimney effect for air circulation. The results showed the high potential of using {sup 222}Rn as a geological tracer. In what concerns the occupational hazard, in summer (time of more intense tourist activity in the mine) La Carolina presented a mean concentration of the radioactive noble gas that exceeds in four times the action level of 1,5 kBq m{sup -3} recommended by the International Commission of Radiological Protection (ICRP). The chimney effect shows the low mean concentration of radon in Los Condores. (author)

  20. Radon as geological tracer

    International Nuclear Information System (INIS)

    Lacerda, T.; Anjos, R.M.; Silva, A.A.R. da; Yoshimura, E.M.

    2012-01-01

    Full text: This work presents measurements of 222 Rn levels performed in La Carolina gold mine and Los Condores tungsten mine at the province of San Luis, Argentina, today used for tourist visitation, and can evaluate the potential use of such radioactive noble gas as tracer or marker for geological processes in underground environments. By concentrations of 40 K, 232 Th and 23 '8U were also measured in the walls of tunnels were determined the rocks mineral composition, what indicated that the mines have the same composition. In this sense, we used nuclear trace plastic detectors CR-39, gamma spectrometry of rock samples and Geiger-Muller (GM) monitors The patterns of radon gas transportation processes revealed that La Carolina could be interpreted through a model based on a radioactive gas confined into a single entrance tube, with constant cross section and air velocity. Los Condores, which has a second main entrance, could be interpreted through a model based on a radioactive gas confined into a two entrance tube, allowing a chimney effect for air circulation. The results showed the high potential of using 222 Rn as a geological tracer. In what concerns the occupational hazard, in summer (time of more intense tourist activity in the mine) La Carolina presented a mean concentration of the radioactive noble gas that exceeds in four times the action level of 1,5 kBq m -3 recommended by the International Commission of Radiological Protection (ICRP). The chimney effect shows the low mean concentration of radon in Los Condores. (author)

  1. Geology of Kilauea volcano

    Energy Technology Data Exchange (ETDEWEB)

    Moore, R.B. (Geological Survey, Denver, CO (United States). Federal Center); Trusdell, F.A. (Geological Survey, Hawaii National Park, HI (United States). Hawaiian Volcano Observatory)

    1993-08-01

    This paper summarizes studies of the structure, stratigraphy, petrology, drill holes, eruption frequency, and volcanic and seismic hazards of Kilauea volcano. All the volcano is discussed, but the focus is on its lower east rift zone (LERZ) because active exploration for geothermal energy is concentrated in that area. Kilauea probably has several separate hydrothermal-convection systems that develop in response to the dynamic behavior of the volcano and the influx of abundant meteoric water. Important features of some of these hydrothermal-convection systems are known through studies of surface geology and drill holes. Observations of eruptions during the past two centuries, detailed geologic mapping, radiocarbon dating, and paleomagnetic secular-variation studies indicate that Kilauea has erupted frequently from its summit and two radial rift zones during Quaternary time. Petrologic studies have established that Kilauea erupts only tholeiitic basalt. Extensive ash deposits at Kilauea's summit and on its LERZ record locally violent, but temporary, disruptions of local hydrothermal-convection systems during the interaction of water or steam with magma. Recent drill holes on the LERZ provide data on the temperatures of the hydrothermal-convection systems, intensity of dike intrusion, porosity and permeability, and an increasing amount of hydrothermal alteration with depth. The prehistoric and historic record of volcanic and seismic activity indicates that magma will continue to be supplied to deep and shallow reservoirs beneath Kilauea's summit and rift zones and that the volcano will be affected by eruptions and earthquakes for many thousands of years. 71 refs., 2 figs.

  2. Hydrogeological Properties of Geological Elements in Geological Model around KURT

    Energy Technology Data Exchange (ETDEWEB)

    Park, Kyung Woo; Kim, Kyung Soo; Koh, Yong Kwon; Choi, Jong Won [Korea Atomic Energy Institue, Daejeon (Korea, Republic of)

    2012-09-15

    To develop site characterization technologies for a radioactive waste disposal research in KAERI, the geological and hydrogeological investigations have been carried out since 1997. In 2006, the KURT (KAERI Underground Research Tunnel) was constructed to study a solute migration, a microbiology and an engineered barrier system as well as deeply to understand geological environments in in-situ condition. This study is performed as one of the site characterization works around KURT. Several investigations such as a lineament analysis, a borehole/tunnel survey, a geophyscial survey and logging in borehole, were used to construct the geological model. As a result, the geological model is constructed, which includes the lithological model and geo-structural model in this study. Moreover, from the results of the in-situ hydraulic tests, the hydrogeological properties of elements in geological model were evaluated.

  3. Study on geology and geological structure based on literature studies

    International Nuclear Information System (INIS)

    Funaki, Hironori; Ishii, Eiichi; Yasue, Ken-ichi; Takahashi, Kazuharu

    2005-03-01

    Japan Nuclear Cycle Development Institute (JNC) is proceeding with underground research laboratory (URL) project for the sedimentary rock in Horonobe, Hokkaido. This project is an investigation project which is planned over 20 years. Surface-based investigations (Phase 1) have been conducted for the present. The purposes of the Phase 1 are to construct the geological environment model (geological-structural, hydrogeological, and hydrochemical models) and to confirm the applicability of investigation technologies for the geological environment. The geological-structural model comprises the base for the hydrogeological and hydrochemical models. We constructed the geological-structural model by mainly using data obtained from literature studies. Particulars regarding which data the model is based on and who has performed the interpretation are also saved for traceability. As a result, we explain the understanding of degree and the need of information on stratigraphy and discontinuous structure. (author)

  4. Hydrogeological Properties of Geological Elements in Geological Model around KURT

    International Nuclear Information System (INIS)

    Park, Kyung Woo; Kim, Kyung Soo; Koh, Yong Kwon; Choi, Jong Won

    2012-01-01

    To develop site characterization technologies for a radioactive waste disposal research in KAERI, the geological and hydrogeological investigations have been carried out since 1997. In 2006, the KURT (KAERI Underground Research Tunnel) was constructed to study a solute migration, a microbiology and an engineered barrier system as well as deeply to understand geological environments in in-situ condition. This study is performed as one of the site characterization works around KURT. Several investigations such as a lineament analysis, a borehole/tunnel survey, a geophyscial survey and logging in borehole, were used to construct the geological model. As a result, the geological model is constructed, which includes the lithological model and geo-structural model in this study. Moreover, from the results of the in-situ hydraulic tests, the hydrogeological properties of elements in geological model were evaluated.

  5. Geologic Framework Model (GFM2000)

    International Nuclear Information System (INIS)

    T. Vogt

    2004-01-01

    The purpose of this report is to document the geologic framework model, version GFM2000 with regard to input data, modeling methods, assumptions, uncertainties, limitations, and validation of the model results, and the differences between GFM2000 and previous versions. The version number of this model reflects the year during which the model was constructed. This model supersedes the previous model version, documented in Geologic Framework Model (GFM 3.1) (CRWMS M and O 2000 [DIRS 138860]). The geologic framework model represents a three-dimensional interpretation of the geology surrounding the location of the monitored geologic repository for spent nuclear fuel and high-level radioactive waste at Yucca Mountain. The geologic framework model encompasses and is limited to an area of 65 square miles (168 square kilometers) and a volume of 185 cubic miles (771 cubic kilometers). The boundaries of the geologic framework model (shown in Figure 1-1) were chosen to encompass the exploratory boreholes and to provide a geologic framework over the area of interest for hydrologic flow and radionuclide transport modeling through the unsaturated zone (UZ). The upper surface of the model is made up of the surface topography and the depth of the model is constrained by the inferred depth of the Tertiary-Paleozoic unconformity. The geologic framework model was constructed from geologic map and borehole data. Additional information from measured stratigraphic sections, gravity profiles, and seismic profiles was also considered. The intended use of the geologic framework model is to provide a geologic framework over the area of interest consistent with the level of detailed needed for hydrologic flow and radionuclide transport modeling through the UZ and for repository design. The model is limited by the availability of data and relative amount of geologic complexity found in an area. The geologic framework model is inherently limited by scale and content. The grid spacing used in

  6. Geologic Framework Model (GFM2000)

    Energy Technology Data Exchange (ETDEWEB)

    T. Vogt

    2004-08-26

    The purpose of this report is to document the geologic framework model, version GFM2000 with regard to input data, modeling methods, assumptions, uncertainties, limitations, and validation of the model results, and the differences between GFM2000 and previous versions. The version number of this model reflects the year during which the model was constructed. This model supersedes the previous model version, documented in Geologic Framework Model (GFM 3.1) (CRWMS M&O 2000 [DIRS 138860]). The geologic framework model represents a three-dimensional interpretation of the geology surrounding the location of the monitored geologic repository for spent nuclear fuel and high-level radioactive waste at Yucca Mountain. The geologic framework model encompasses and is limited to an area of 65 square miles (168 square kilometers) and a volume of 185 cubic miles (771 cubic kilometers). The boundaries of the geologic framework model (shown in Figure 1-1) were chosen to encompass the exploratory boreholes and to provide a geologic framework over the area of interest for hydrologic flow and radionuclide transport modeling through the unsaturated zone (UZ). The upper surface of the model is made up of the surface topography and the depth of the model is constrained by the inferred depth of the Tertiary-Paleozoic unconformity. The geologic framework model was constructed from geologic map and borehole data. Additional information from measured stratigraphic sections, gravity profiles, and seismic profiles was also considered. The intended use of the geologic framework model is to provide a geologic framework over the area of interest consistent with the level of detailed needed for hydrologic flow and radionuclide transport modeling through the UZ and for repository design. The model is limited by the availability of data and relative amount of geologic complexity found in an area. The geologic framework model is inherently limited by scale and content. The grid spacing used in the

  7. Synthetic geology - Exploring the "what if?" in geology

    Science.gov (United States)

    Klump, J. F.; Robertson, J.

    2015-12-01

    The spatial and temporal extent of geological phenomena makes experiments in geology difficult to conduct, if not entirely impossible and collection of data is laborious and expensive - so expensive that most of the time we cannot test a hypothesis. The aim, in many cases, is to gather enough data to build a predictive geological model. Even in a mine, where data are abundant, a model remains incomplete because the information at the level of a blasting block is two orders of magnitude larger than the sample from a drill core, and we have to take measurement errors into account. So, what confidence can we have in a model based on sparse data, uncertainties and measurement error? Synthetic geology does not attempt to model the real world in terms of geological processes with all their uncertainties, rather it offers an artificial geological data source with fully known properties. On the basis of this artificial geology, we can simulate geological sampling by established or future technologies to study the resulting dataset. Conducting these experiments in silico removes the constraints of testing in the field or in production, and provides us with a known ground-truth against which the steps in a data analysis and integration workflow can be validated.Real-time simulation of data sources can be used to investigate crucial questions such as the potential information gain from future sensing capabilities, or from new sampling strategies, or the combination of both, and it enables us to test many "what if?" questions, both in geology and in data engineering. What would we be able to see if we could obtain data at higher resolution? How would real-time data analysis change sampling strategies? Does our data infrastructure handle many new real-time data streams? What feature engineering can be deducted for machine learning approaches? By providing a 'data sandbox' able to scale to realistic geological scenarios we hope to start answering some of these questions.

  8. A state geological survey commitment to environmental geology - the Texas Bureau of Economic Geology

    International Nuclear Information System (INIS)

    Wermund, E.G.

    1990-01-01

    In several Texas environmental laws, the Bureau of Economic Geology is designated as a planning participant and review agency in the process of fulfilling environmental laws. Two examples are legislation on reclamation of surface mines and regulation of processing low level radioactive wastes. Also, the Bureau is the principal geological reviewer of all Environmental Assessments and Environmental Impact Statements which the Office of the Governor circulates for state review on all major developmental activities in Texas. The BEG continues its strong interest in environmental geology. In February 1988, it recommitted its Land Resources Laboratory, initiated in 1974, toward fulfilling needs of state, county, and city governments for consultation and research on environmental geologic problems. An editorial from another state geological survey would resemble the about description of texas work in environmental geology. State geological surveys have led federal agencies into many developments of environmental geology, complemented federal efforts in their evolution, and continued a strong commitment to the maintenance of a quality environment through innovative geologic studies

  9. On the Geologic Time Scale

    NARCIS (Netherlands)

    Gradstein, F.M.; Ogg, J.G.; Hilgen, F.J.

    2012-01-01

    This report summarizes the international divisions and ages in the Geologic Time Scale, published in 2012 (GTS2012). Since 2004, when GTS2004 was detailed, major developments have taken place that directly bear and have considerable impact on the intricate science of geologic time scaling. Precam

  10. The Geologic Nitrogen Cycle

    Science.gov (United States)

    Johnson, B. W.; Goldblatt, C.

    2013-12-01

    N2 is the dominant gas in Earth's atmosphere, and has been so through the majority of the planet's history. Originally thought to only be cycled in significant amounts through the biosphere, it is becoming increasingly clear that a large degree of geologic cycling can occur as well. N is present in crustal rocks at 10s to 100s of ppm and in the mantle at 1s to perhaps 10s of ppm. In light of new data, we present an Earth-system perspective of the modern N cycle, an updated N budget for the silicate Earth, and venture to explain the evolution of the N cycle over time. In an fashion similar to C, N has a fast, biologically mediated cycle and a slower cycle driven by plate tectonics. Bacteria fix N2 from the atmosphere into bioavailable forms. N is then cycled through the food chain, either by direct consumption of N-fixing bacteria, as NH4+ (the primary waste form), or NO3- (the most common inorganic species in the modern ocean). Some organic material settles as sediment on the ocean floor. In anoxic sediments, NH4+ dominates; due to similar ionic radii, it can readily substitute for K+ in mineral lattices, both in sedimentary rocks and in oceanic lithosphere. Once it enters a subduction zone, N may either be volatilized and returned to the atmosphere at arc volcanoes as N2 or N2O, sequestered into intrusive igneous rocks (as NH4+?), or subducted deep into the mantle, likely as NH4+. Mounting evidence indicates that a significant amount of N may be sequestered into the solid Earth, where it may remain for long periods (100s m.y.) before being returned to the atmosphere/biosphere by volcanism or weathering. The magnitude fluxes into the solid Earth and size of geologic N reservoirs are poorly constrained. The size of the N reservoirs contained in the solid Earth directly affects the evolution of Earth's atmosphere. It is possible that N now sequestered in the solid Earth was once in the atmosphere, which would have resulted in a higher atmospheric pressure, and

  11. Geological disposal system development

    International Nuclear Information System (INIS)

    Kang, Chul Hyung; Kuh, J. E.; Kim, S. K. and others

    2000-04-01

    Spent fuel inventories to be disposed of finally and design base spent fuel were determined. Technical and safety criteria for a geological repository system in Korea were established. Based on the properties of spent PWR and CANDU fuels, seven repository alternatives were developed and the most promising repository option was selected by the pair-wise comparison method from the technology point of view. With this option preliminary conceptual design studies were carried out. Several module, e.g., gap module, congruent release module were developed for the overall assessment code MASCOT-K. The prominent overseas databases such as OECD/NEA FEP list were are fully reviewed and then screened to identify the feasible ones to reflect the Korean geo-hydrological conditions. In addition to this the well known scenario development methods such as PID, RES were reviewed. To confirm the radiological safety of the proposed KAERI repository concept the preliminary PA was pursued. Thermo-hydro-mechanical analysis for the near field of repository were performed to verify thermal and mechanical stability for KAERI repository system. The requirements of buffer material were analyzed, and based on the results, the quantitative functional criteria for buffer material were established. The hydraulic and swelling property, mechanical properties, and thermal conductivity, the organic carbon content, and the evolution of pore water chemistry were investigated. Based on the results, the candidate buffer material was selected

  12. NAGRADATA. Code key. Geology

    International Nuclear Information System (INIS)

    Mueller, W.H.; Schneider, B.; Staeuble, J.

    1984-01-01

    This reference manual provides users of the NAGRADATA system with comprehensive keys to the coding/decoding of geological and technical information to be stored in or retreaved from the databank. Emphasis has been placed on input data coding. When data is retreaved the translation into plain language of stored coded information is done automatically by computer. Three keys each, list the complete set of currently defined codes for the NAGRADATA system, namely codes with appropriate definitions, arranged: 1. according to subject matter (thematically) 2. the codes listed alphabetically and 3. the definitions listed alphabetically. Additional explanation is provided for the proper application of the codes and the logic behind the creation of new codes to be used within the NAGRADATA system. NAGRADATA makes use of codes instead of plain language for data storage; this offers the following advantages: speed of data processing, mainly data retrieval, economies of storage memory requirements, the standardisation of terminology. The nature of this thesaurian type 'key to codes' makes it impossible to either establish a final form or to cover the entire spectrum of requirements. Therefore, this first issue of codes to NAGRADATA must be considered to represent the current state of progress of a living system and future editions will be issued in a loose leave ringbook system which can be updated by an organised (updating) service. (author)

  13. Geological disposal system development

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Chul Hyung; Kuh, J. E.; Kim, S. K. and others

    2000-04-01

    Spent fuel inventories to be disposed of finally and design base spent fuel were determined. Technical and safety criteria for a geological repository system in Korea were established. Based on the properties of spent PWR and CANDU fuels, seven repository alternatives were developed and the most promising repository option was selected by the pair-wise comparison method from the technology point of view. With this option preliminary conceptual design studies were carried out. Several module, e.g., gap module, congruent release module were developed for the overall assessment code MASCOT-K. The prominent overseas databases such as OECD/NEA FEP list were are fully reviewed and then screened to identify the feasible ones to reflect the Korean geo-hydrological conditions. In addition to this the well known scenario development methods such as PID, RES were reviewed. To confirm the radiological safety of the proposed KAERI repository concept the preliminary PA was pursued. Thermo-hydro-mechanical analysis for the near field of repository were performed to verify thermal and mechanical stability for KAERI repository system. The requirements of buffer material were analyzed, and based on the results, the quantitative functional criteria for buffer material were established. The hydraulic and swelling property, mechanical properties, and thermal conductivity, the organic carbon content, and the evolution of pore water chemistry were investigated. Based on the results, the candidate buffer material was selected.

  14. Radon in geological medium

    Energy Technology Data Exchange (ETDEWEB)

    Hricko, J [GEOCOMPLEX, a.s., Bratislava (Slovakia)

    1996-12-31

    The paper presented deals with behavior of the radon in geological medium and with some results of the radon survey in Bratislava and Kosice regions. 1) The a{sub v} has been detected in the holes 0.80 m deep. The density of observations - 3 reference areas (one represents 20 stations) per 1 km{sup 2}. The radon risk maps in 1:25000 and 1:50000 scales have been compiled. The 56.8% of the project area lies in low radon risk, 37.6% in medium radon risk and 5.6% in high radon risk. Follow-up monitoring of the equivalent volume radon activity (EVRA) at the flats, located in the areas with high radon risk of the surface layer, has showed values several times higher than Slovak limits (Marianka, Raca, Vajnory). The evidence that neotectonic is excellent medium for rising up emanation to the subsurface layer, is shown on the map. The tectonic zone of Liscie udolie in Bratislava-Karlova Ves area has been clearly detected by profile radon survey (a{sub v} > 50 kBq/m{sup 3}). 2) At present, northern half of the area of Kosice in question was covered by radon survey. The low and medium radon risks have been observed here, while localities with high radon risk are small in extent. The part of radon risk and soil permeability map from northern Kosice area is shown. (J.K.) 3 figs., 2 refs.

  15. Geology and seismology

    International Nuclear Information System (INIS)

    Schneider, J.F.; Blanc, B.

    1980-01-01

    For the construction of nuclear power stations, comprehensive site investigations are required to assure the adequacy and suitability of the site under consideration, as well as to establish the basic design data for designing and building the plant. The site investigations cover mainly the following matters: geology, seismology, hydrology, meteorology. Site investigations for nuclear power stations are carried out in stages in increasing detail and to an appreciable depth in order to assure the soundness of the project, and, in particular, to determine all measures required to assure the safety of the nuclear power station and the protection of the population against radiation exposure. The aim of seismological investigations is to determine the strength of the vibratory ground motion caused by an expected strong earthquake in order to design the plant resistant enough to take up these vibrations. In addition, secondary effects of earthquakes, such as landslides, liquefaction, surface faulting, etc. must be studied. For seashore sites, the tsunami risk must be evaluated. (orig.)

  16. Geological disposal concept hearings

    International Nuclear Information System (INIS)

    1996-01-01

    The article outlines the progress to date on AECL spent-nuclear fuel geological disposal concept. Hearings for discussion, organised by the federal Environmental Assessment Review Panel, of issues related to this type of disposal method occur in three phases, phase I focuses on broad societal issues related to long term management of nuclear fuel waste; phase II will focus on the technical aspects of this method of disposal; and phase III will consist of community visits in New Brunswick, Quebec, Ontario, Manitoba and Saskatchewan. This article provides the events surrounding the first two weeks of phase I hearings (extracted from UNECAN NEWS). In the first week of hearings, where submissions on general societal issues was the focus, there were 50 presentations including those by Natural Resources Canada, Energy Probe, Ontario Hydro, AECL, Canadian Nuclear Society, Aboriginal groups, environmental activist organizations (Northwatch, Saskatchewan Environmental Society, the Inter-Church Uranium Committee, and the Canadian Coalition for Nuclear responsibility). In the second week of hearings there was 33 presentations in which issues related to siting and implementation of a disposal facility was the focus. Phase II hearings dates are June 10-14, 17-21 and 27-28 in Toronto

  17. Radon in geological medium

    International Nuclear Information System (INIS)

    Hricko, J.

    1995-01-01

    The paper presented deals with behavior of the radon in geological medium and with some results of the radon survey in Bratislava and Kosice regions. 1) The a v has been detected in the holes 0.80 m deep. The density of observations - 3 reference areas (one represents 20 stations) per 1 km 2 . The radon risk maps in 1:25000 and 1:50000 scales have been compiled. The 56.8% of the project area lies in low radon risk, 37.6% in medium radon risk and 5.6% in high radon risk. Follow-up monitoring of the equivalent volume radon activity (EVRA) at the flats, located in the areas with high radon risk of the surface layer, has showed values several times higher than Slovak limits (Marianka, Raca, Vajnory). The evidence that neotectonic is excellent medium for rising up emanation to the subsurface layer, is shown on the map. The tectonic zone of Liscie udolie in Bratislava-Karlova Ves area has been clearly detected by profile radon survey (a v > 50 kBq/m 3 ). 2) At present, northern half of the area of Kosice in question was covered by radon survey. The low and medium radon risks have been observed here, while localities with high radon risk are small in extent. The part of radon risk and soil permeability map from northern Kosice area is shown. (J.K.) 3 figs., 2 refs

  18. Geologic mapping procedure: Final draft

    International Nuclear Information System (INIS)

    1987-09-01

    Geologic mapping will provide a baseline record of the subsurface geology in the shafts and drifts of the Exploratory Shaft Facility (ESF). This information will be essential in confirming the specific repository horizon, selecting representative locations for the in situ tests, providing information for construction and decommissioning seal designs, documenting the excavation effects, and in providing information for performance assessment, which relates to the ultimate suitability of the site as a nuclear waste repository. Geologic mapping will be undertaken on the walls and roof, and locally on the floor within the completed At-Depth Facility (ADF) and on the walls of the two access shafts. Periodic mapping of the exposed face may be conducted during construction of the ADF. The mapping will be oriented toward the collection and presentation of geologic information in an engineering format and the portrayal of detailed stratigraphic information which may be useful in confirmation of drillhole data collected as part of the surface-based testing program. Geologic mapping can be considered as a predictive tool as well as a means of checking design assumptions. This document provides a description of the required procedures for geologic mapping for the ESF. Included in this procedure is information that qualified technical personnel can use to collect the required types of geologic descriptions, at the appropriate level of detail. 5 refs., 3 figs., 1 tab

  19. Age determination and geological studies

    International Nuclear Information System (INIS)

    Stevens, R.D.; Delabio, R.N.; Lachance, G.R.

    1982-01-01

    Two hundred and eight potassium-argon age determinations carried out on Canadian rocks and minerals are reported. Each age determination is accompanied by a description of the rock and mineral concentrate used; brief interpretative comments regarding the geological significance of each age are also provided where possible. The experimental procedures employed are described in brief outline and the constants used in the calculation of ages are listed. Two geological time-scales are reproduced in tabular form for ready reference and an index of all Geological Survey of Canada K-Ar age determinations published in this format has been prepared using NTS quadrangles as the primary reference

  20. The Europa Global Geologic Map

    Science.gov (United States)

    Leonard, E. J.; Patthoff, D. A.; Senske, D. A.; Collins, G. C.

    2018-06-01

    The Europa Global Geologic Map reveals three periods in Europa's surface history as well as an interesting distribution of microchaos. We will discuss the mapping and the interesting implications of our analysis of Europa's surface.

  1. Terrestrial and Lunar Geological Terminology

    Science.gov (United States)

    Schrader, Christian

    2009-01-01

    This section is largely a compilation of defining geological terms concepts. Broader topics, such as the ramifications for simulant design and in situ resource utilization, are included as necessary for context.

  2. The geological map of Uruguay

    International Nuclear Information System (INIS)

    Bossi, J.; Ferrando, L.; Fernandez, A.; Elizalde, G.; Morales, H.; Ledesma, J.; Carballo, E.; Medina, E.; Ford, I.; Montana, J.

    1975-01-01

    The geological map of Uruguay is about the morphological characteristics of the soil such as rocks, sediments and granites belong to different periods. These periods are the proterozoic, paleozoic, permian, mesozoic, jurassic, cretaceous, cenozoic and holocene.

  3. Planetary Geologic Mapping Handbook - 2009

    Science.gov (United States)

    Tanaka, K. L.; Skinner, J. A.; Hare, T. M.

    2009-01-01

    Geologic maps present, in an historical context, fundamental syntheses of interpretations of the materials, landforms, structures, and processes that characterize planetary surfaces and shallow subsurfaces (e.g., Varnes, 1974). Such maps also provide a contextual framework for summarizing and evaluating thematic research for a given region or body. In planetary exploration, for example, geologic maps are used for specialized investigations such as targeting regions of interest for data collection and for characterizing sites for landed missions. Whereas most modern terrestrial geologic maps are constructed from regional views provided by remote sensing data and supplemented in detail by field-based observations and measurements, planetary maps have been largely based on analyses of orbital photography. For planetary bodies in particular, geologic maps commonly represent a snapshot of a surface, because they are based on available information at a time when new data are still being acquired. Thus the field of planetary geologic mapping has been evolving rapidly to embrace the use of new data and modern technology and to accommodate the growing needs of planetary exploration. Planetary geologic maps have been published by the U.S. Geological Survey (USGS) since 1962 (Hackman, 1962). Over this time, numerous maps of several planetary bodies have been prepared at a variety of scales and projections using the best available image and topographic bases. Early geologic map bases commonly consisted of hand-mosaicked photographs or airbrushed shaded-relief views and geologic linework was manually drafted using mylar bases and ink drafting pens. Map publishing required a tedious process of scribing, color peel-coat preparation, typesetting, and photo-laboratory work. Beginning in the 1990s, inexpensive computing, display capability and user-friendly illustration software allowed maps to be drawn using digital tools rather than pen and ink, and mylar bases became obsolete

  4. NCEI Marine Geology Data Archive

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Marine Geologic data compilations and reports in the NCEI archive are from academic and government sources around the world. Over ten terabytes of analyses,...

  5. Geology behind nuclear fission technology

    International Nuclear Information System (INIS)

    Dhana Raju, R.

    2005-01-01

    Geology appears to have played an important role of a precursor to Nuclear Fission Technology (NFT), in the latter's both birth from the nucleus of an atom of and most important application as nuclear power extracted from Uranium (U), present in its minerals. NFT critically depends upon the availability of its basic raw material, viz., nuclear fuel as U and/ or Th, extracted from U-Th minerals of specific rock types in the earth's crust. Research and Development of the Nuclear Fuel Cycle (NFC) depends heavily on 'Geology'. In this paper, a brief review of the major branches of geology and their contributions during different stages of NFC, in the Indian scenario, is presented so as to demonstrate the important role played by 'Geology' behind the development of NFT, in general, and NFC, in particular. (author)

  6. Geological mapping of the moon

    Science.gov (United States)

    Markov, M. S.; Sukhanov, A. L.; Trifonov, V. G.; Florenskiy, P. V.; Shkerin, L. M.

    1974-01-01

    Compilation and labelling of geological and morphological charts on a scale of 1:1,000,000 are discussed with emphasis on the regions of Maria Tranquilitatis, Crisium, Fecunditatis, Humorum and Nukium as well as certain prominent craters.

  7. The laboratories of geological studies

    International Nuclear Information System (INIS)

    1994-01-01

    This educational document comprises 4 booklets in a folder devoted to the presentation of the ANDRA's activities in geological research laboratories. The first booklet gives a presentation of the missions of the ANDRA (the French agency for the management of radioactive wastes) in the management of long life radioactive wastes. The second booklet describes the approach of waste disposal facilities implantation. The third booklet gives a brief presentation of the scientific program concerning the underground geologic laboratories. The last booklet is a compilation of questions and answers about long-life radioactive wastes, the research and works carried out in geologic laboratories, the public information and the local socio-economic impact, and the storage of radioactive wastes in deep geological formations. (J.S.)

  8. Geological myths and reality

    Science.gov (United States)

    Ostrihansky, Lubor

    2014-05-01

    Myths are the result of man's attempts to explain noteworthy features of his environment stemming from unfounded imagination. It is unbelievable that in 21st century the explanation of evident lithospheric plates movements and origin of forces causing this movement is still bound to myths, They are the myth about mantle convection, myth about Earth's expansion, myth about mantle heterogeneities causing the movement of plates and myth about mantle plumes. From 1971 to 1978 I performed extensive study (Ostřihanský 1980) about the terrestrial heat flow and radioactive heat production of batholiths in the Bohemian Massive (Czech Republic). The result, gained by extrapolation of the heat flow and heat production relationship, revealed the very low heat flow from the mantle 17.7mW m-2 close to the site of the Quarterly volcano active only 115,000 - 15,000 years ago and its last outbreak happened during Holocene that is less than 10,000 years ago. This volcano Komorní Hůrka (Kammerbühls) was known by J. W. Goethe investigation and the digging of 300 m long gallery in the first half of XIX century to reach the basaltic plug and to confirm the Stromboli type volcano. In this way the 19th century myth of neptunists that basalt was a sedimentary deposit was disproved in spite that famous poet and scientist J.W.Goethe inclined to neptunists. For me the result of very low heat flow and the vicinity of almost recent volcanoes in the Bohemian Massive meant that I refused the hypothesis of mantle convection and I focused my investigation to external forces of tides and solar heat, which evoke volcanic effects, earthquakes and the plate movement. To disclose reality it is necessary to present calculation of acting forces using correct mechanism of their action taking into account tectonic characteristics of geologic unites as the wrench tectonics and the tectonic of planets and satellites of the solar system, realizing an exceptional behavior of the Earth as quickly rotating

  9. Health benefits of geologic materials and geologic processes

    Science.gov (United States)

    Finkelman, R.B.

    2006-01-01

    The reemerging field of Medical Geology is concerned with the impacts of geologic materials and geologic processes on animal and human health. Most medical geology research has been focused on health problems caused by excess or deficiency of trace elements, exposure to ambient dust, and on other geologically related health problems or health problems for which geoscience tools, techniques, or databases could be applied. Little, if any, attention has been focused on the beneficial health effects of rocks, minerals, and geologic processes. These beneficial effects may have been recognized as long as two million years ago and include emotional, mental, and physical health benefits. Some of the earliest known medicines were derived from rocks and minerals. For thousands of years various clays have been used as an antidote for poisons. "Terra sigillata," still in use today, may have been the first patented medicine. Many trace elements, rocks, and minerals are used today in a wide variety of pharmaceuticals and health care products. There is also a segment of society that believes in the curative and preventative properties of crystals (talismans and amulets). Metals and trace elements are being used in some of today's most sophisticated medical applications. Other recent examples of beneficial effects of geologic materials and processes include epidemiological studies in Japan that have identified a wide range of health problems (such as muscle and joint pain, hemorrhoids, burns, gout, etc.) that may be treated by one or more of nine chemically distinct types of hot springs, and a study in China indicating that residential coal combustion may be mobilizing sufficient iodine to prevent iodine deficiency disease. ?? 2006 MDPI. All rights reserved.

  10. Geology Field Trips as Performance Evaluations

    Science.gov (United States)

    Bentley, Callan

    2009-01-01

    One of the most important goals the author has for students in his introductory-level physical geology course is to give them the conceptual skills for solving geologic problems on their own. He wants students to leave his course as individuals who can use their knowledge of geologic processes and logic to figure out the extended geologic history…

  11. IAEA safeguards for geological repositories

    International Nuclear Information System (INIS)

    Moran, B.W.

    2005-01-01

    In September. 1988, the IAEA held its first formal meeting on the safeguards requirements for the final disposal of spent fuel and nuclear material-bearing waste. The consensus recommendation of the 43 participants from 18 countries at this Advisory Group Meeting was that safeguards should not terminate of spent fuel even after emplacement in, and closure of, a geologic repository.' As a result of this recommendation, the IAEA initiated a series of consultants' meetings and the SAGOR Programme (Programme for the Development of Safeguards for the Final Disposal of Spent Fuel in Geologic Repositories) to develop an approach that would permit IAEA safeguards to verify the non-diversion of spent fuel from a geologic repository. At the end of this process, in December 1997, a second Advisory Group Meeting, endorsed the generic safeguards approach developed by the SAGOR Programme. Using the SAGOR Programme results and consultants' meeting recommendations, the IAEA Department of Safeguards issued a safeguards policy paper stating the requirements for IAEA safeguards at geologic repositories. Following approval of the safeguards policy and the generic safeguards approach, the Geologic Repository Safeguards Experts Group was established to make recommendations on implementing the safeguards approach. This experts' group is currently making recommendations to the IAEA regarding the safeguards activities to be conducted with respect to Finland's repository programme. (author)

  12. Geological aspects of acid deposition

    International Nuclear Information System (INIS)

    Bricker, O.P.

    1984-01-01

    The general pattern of rain falling on the earth and reacting with the materials of the lithosphere (the weathering reactions so familiar to every beginning geology student) began soon after the earth was formed and has continued to the present. Anthropogenic additions to the natural acidic components of the atmosphere have increased since the time of the industrial revolution until they now rival or exceed those of the natural system. The severity of the environmental perturbations caused by these anthropogenic additions to the atmosphere has become a hotly debated topic in scientific forums and in the political arena. The six chapters in this book address various aspects of the acid deposition phenomenon from a geological perspective. It is hoped that the geological approach will be useful in bringing the problem more clearly into focus and may shed light on the geochemical processes that modify the chemical composition of acid deposition after it encounters and reacts with the materials of the lithosphere

  13. Radionuclide migration in geological formations

    International Nuclear Information System (INIS)

    Barbreau, A.; Heremans, R.; Skytte Jensen, B.

    1980-01-01

    Radioactive waste disposal into geological formation is based on the capacity of rocks to confine radioactivity for a long period of time. Radionuclide migration from the repository to the environment depends on different mechanisms and phenomena whose two main ones are groundwater flow and the retention and ion-exchange property of rocks. Many studies are underway presently in EEC countries concerning hydrodynamic characteristics of deep geological formations as well as in radionuclide retention capacity and modelling. Important results have already been achieved which show the complexity of some phenomena and further studies shall principally be developed taking into account real conditions of the repository and its environment

  14. Integrated path towards geological storage

    International Nuclear Information System (INIS)

    Bouchard, R.; Delaytermoz, A.

    2004-01-01

    Among solutions to contribute to CO 2 emissions mitigation, sequestration is a promising path that presents the main advantage of being able to cope with the large volume at stake when considering the growing energy demand. Of particular importance, geological storage has widely been seen as an effective solution for large CO 2 sources like power plants or refineries. Many R and D projects have been initiated, whereby research institutes, government agencies and end-users achieve an effective collaboration. So far, progress has been made towards reinjection of CO 2 , in understanding and then predicting the phenomenon and fluid dynamics inside the geological target, while monitoring the expansion of the CO 2 bubble in the case of demonstration projects. A question arises however when talking about sequestration, namely the time scale to be taken into account. Time is indeed of the essence, and points out the need to understand leakage as well as trapping mechanisms. It is therefore of prime importance to be able to predict the fate of the injected fluids, in an accurate manner and over a relevant period of time. On the grounds of geology, four items are involved in geological storage reliability: the matrix itself, which is the recipient of the injected fluids; the seal, that is the mechanistic trap preventing the injected fluids to flow upward and escape; the lower part of the concerned structure, usually an aquifer, that can be a migration way for dissolved fluids; and the man- made injecting hole, the well, whose characteristics should be as good as the geological formation itself. These issues call for specific competencies such as reservoir engineering, geology and hydrodynamics, mineral chemistry, geomechanics, and well engineering. These competencies, even if put to use to a large extent in the oil industry, have never been connected with the reliability of geological storage as ultimate goal. This paper aims at providing an introduction to these

  15. A SKOS-based multilingual thesaurus of geological time scale for interopability of online geological maps

    NARCIS (Netherlands)

    Ma, X.; Carranza, E.J.M.; Wu, C.; Meer, F.D. van der; Liu, G.

    2011-01-01

    The usefulness of online geological maps is hindered by linguistic barriers. Multilingual geoscience thesauri alleviate linguistic barriers of geological maps. However, the benefits of multilingual geoscience thesauri for online geological maps are less studied. In this regard, we developed a

  16. Geologic data on atmospheric history

    NARCIS (Netherlands)

    Rutten, M.G.

    1966-01-01

    Attention is focussed on the possible existence of an anoxygenic, primeval atmosphere and on the history of atmospheric O2 and CO2. For this purpose, geologic data can be divided into those on fossil remains, on biogenic deposits formed by early life, on “chemicofossils”, and on deposits formed

  17. A Computerized Petroleum Geology Package.

    Science.gov (United States)

    Moser, Louise E.

    1983-01-01

    Describes a package of computer programs developed to implement an oil exploration game that gives undergraduate students practical experience in applying theoretical principles of petroleum geology. The programs facilitate management of the game by the instructor and enhance the learning experience. (Author/MBR)

  18. Geological disposal of nuclear waste

    International Nuclear Information System (INIS)

    1979-01-01

    Fourteen papers dealing with disposal of high-level radioactive wastes are presented. These cover disposal in salt deposits, geologic deposits and marine disposal. Also included are papers on nuclear waste characterization, transport, waste processing technology, and safety analysis. All of these papers have been abstracted and indexed

  19. Geology in coal resource utilization

    International Nuclear Information System (INIS)

    Peters, D.C.

    1991-01-01

    The 37 papers in this book were compiled with an overriding theme in mind: to provide the coal industry with a comprehensive source of information on how geology and geologic concepts can be applied to the many facets of coal resource location, extraction, and utilization. The chapters have been arranged to address the major coal geology subfields of Exploration and Reserve Definition, Reserve Estimation, Coalbed Methane, Underground Coal Gasification, Mining, Coal Quality Concerns, and Environmental Impacts, with papers distributed on the basis of their primary emphasis. To help guide one through the collection, the author has included prefaces at the beginning of each chapter. They are intended as a brief lead-in to the subject of the chapter and an acknowledgement of the papers' connections to the subject and contributions to the chapter. In addition, a brief cross-reference section has been included in each preface to help one find papers of interest in other chapters. The subfields of coal geology are intimately intertwined, and investigations in one area may impact problems in another area. Some subfields tend to blur at their edges, such as with reserve definition and reserve estimation. Papers have been processed separately for inclusion on the data base

  20. Geology on a Sand Budget

    Science.gov (United States)

    Kane, Jacqueline

    2004-01-01

    Earth science teachers know how frustrating it can be to spend hundreds of dollars on three-dimensional (3-D) models of Earth's geologic features, to use the models for only a few class periods. To avoid emptying an already limited science budget, the author states that teachers can use a simple alternative to the expensive 3-D models--sand. She…

  1. Hydromechanical coupling in geologic processes

    Science.gov (United States)

    Neuzil, C.E.

    2003-01-01

    Earth's porous crust and the fluids within it are intimately linked through their mechanical effects on each other. This paper presents an overview of such "hydromechanical" coupling and examines current understanding of its role in geologic processes. An outline of the theory of hydromechanics and rheological models for geologic deformation is included to place various analytical approaches in proper context and to provide an introduction to this broad topic for nonspecialists. Effects of hydromechanical coupling are ubiquitous in geology, and can be local and short-lived or regional and very long-lived. Phenomena such as deposition and erosion, tectonism, seismicity, earth tides, and barometric loading produce strains that tend to alter fluid pressure. Resulting pressure perturbations can be dramatic, and many so-called "anomalous" pressures appear to have been created in this manner. The effects of fluid pressure on crustal mechanics are also profound. Geologic media deform and fail largely in response to effective stress, or total stress minus fluid pressure. As a result, fluid pressures control compaction, decompaction, and other types of deformation, as well as jointing, shear failure, and shear slippage, including events that generate earthquakes. By controlling deformation and failure, fluid pressures also regulate states of stress in the upper crust. Advances in the last 80 years, including theories of consolidation, transient groundwater flow, and poroelasticity, have been synthesized into a reasonably complete conceptual framework for understanding and describing hydromechanical coupling. Full coupling in two or three dimensions is described using force balance equations for deformation coupled with a mass conservation equation for fluid flow. Fully coupled analyses allow hypothesis testing and conceptual model development. However, rigorous application of full coupling is often difficult because (1) the rheological behavior of geologic media is complex

  2. Geology and engineering geology of roads in South Africa

    CSIR Research Space (South Africa)

    Paige-Green, P

    2004-07-01

    Full Text Available zone of the Limpopo Belt, South Africa, South African Journal of Geology, Vol 101 (3), pp 201-214. [3] Partridge, T. 1975. Some geomorphic factors influencing the formation and engineering properties of soil materials in South Africa. Proc 5th... land. 2003. Pretoria: Council for Geosciences and South African Institute of Engineering and Environmental Geologists. [23] Varnes, DJ. 1978. Slope movement types and processes. In: Landslides: analysis and control. Edited by RL Schuster and RJ...

  3. USGS National Geologic Map Database Collection

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The National Geologic Map Database (NGMDB) is a Congressionally mandated national archive of geoscience maps, reports, and stratigraphic information. According to...

  4. Use of space applications for geologic research

    Energy Technology Data Exchange (ETDEWEB)

    Presnukhin, V I

    1981-01-01

    Overview of literature published in USSR during 1969-1977 shows broad potential and effectiveness for using satellite imaging of earth in the geologic sciences: geomorphology, tectonics, engineering geology, and searh for useful ore and minerals.

  5. Stratigraphy and geologic history of Mercury

    International Nuclear Information System (INIS)

    Spudis, P.D.; Guest, J.E.

    1988-01-01

    The geologic evolution of Mercury based on the Mariner-10 mission data is discussed. As reconstructed through photogeological analysis of global geologic relations of rock-stratigraphic units, Mercury's geologic history is shown to involve intensive early impact bombardment and widespread resurfacing by volcanic lavas. Evidence is presented to indicate that this volcanic activity essentially ended as much as 3 Gyr ago, with most of the major geologic events being completed within the first 1 to 1.5 Gyr of Mercurian history

  6. The geology of the Falkland Islands

    OpenAIRE

    Aldiss, D.T.; Edwards, E.J.

    1999-01-01

    This report is complementary to the 1:250 000 scale geological map of the Falkland Islands compiled in 1998. The report and map are products of the Falkland Islands Geological Mapping Project (1996-1998). Geological observation and research in the Islands date from 1764. The Islands were visited during two pioneering scientific cruises in the 19th century. Subsequently, many scientists visited en route to the Antarctic or Patagonia. Geological affinities to other parts of the sout...

  7. Stratigraphy and geologic history of Mercury

    Science.gov (United States)

    Spudis, Paul D.; Guest, John E.

    1988-01-01

    The geologic evolution of Mercury based on the Mariner-10 mission data is discussed. As reconstructed through photogeological analysis of global geologic relations of rock-stratigraphic units, Mercury's geologic history is shown to involve intensive early impact bombardment and widespread resurfacing by volcanic lavas. Evidence is presented to indicate that this volcanic activity essentially ended as much as 3 Gyr ago, with most of the major geologic events being completed within the first 1 to 1.5 Gyr of Mercurian history.

  8. 49 CFR 801.59 - Geological records.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 7 2010-10-01 2010-10-01 false Geological records. 801.59 Section 801.59... PUBLIC AVAILABILITY OF INFORMATION Exemption From Public Disclosure § 801.59 Geological records. Pursuant to 5 U.S.C. 552(b)(9), records concerning geological wells are exempt from public disclosure. ...

  9. Quality assurance for geologic investigations

    International Nuclear Information System (INIS)

    Delvin, W.L.; Gustafson, L.D.

    1983-01-01

    A quality assurance handbook was written to provide guidance in the application of quality assurance to geologic work activities associated with the National Waste Terminal Storage (NWTS) Program. It is intended to help geoscientists and NWTS program managers in applying quality assurance to their work activities and projects by showing how technical and quality assurance practices are integrated to provide control within those activities and projects. The use of the guidance found in this handbook should help provide consistency in the interpretation of quality assurance requirements across the various geologic activities wihtin the NWTS Program. This handbook also can assist quality assurance personnel in understanding the relationships between technical and quality assurance practices. This paper describes the handbook

  10. Shock compression of geological materials

    International Nuclear Information System (INIS)

    Kirk, S; Braithwaite, C; Williamson, D; Jardine, A

    2014-01-01

    Understanding the shock compression of geological materials is important for many applications, and is particularly important to the mining industry. During blast mining the response to shock loading determines the wave propagation speed and resulting fragmentation of the rock. The present work has studied the Hugoniot of two geological materials; Lake Quarry Granite and Gosford Sandstone. For samples of these materials, the composition was characterised in detail. The Hugoniot of Lake Quarry Granite was predicted from this information as the material is fully dense and was found to be in good agreement with the measured Hugoniot. Gosford Sandstone is porous and undergoes compaction during shock loading. Such behaviour is similar to other granular material and we show how it can be described using a P-a compaction model.

  11. Personnel monitoring in geologic fields

    International Nuclear Information System (INIS)

    Romanova, I.N.; Seredin, Yu.V.

    1981-01-01

    State of radiation safety for the personnel of geologic crews carrying out neutron logging of wells using Po-Be sources has been evaluated. Given are results of development of methods for the evaluation of individual radiation loads for personnel when working with Po-Be neutron sources useful for the application in practice by a geologic logging crew as well as a quantitative evaluation of profissional radiation loads during this kind of work. The following methods are recommended for personnel monitoring: 1) calculation of whole-body irradiation doses and hands from averaged values of radiation dose rate; 2) calculational tabulated determination of irradiation doses during recharging of shanks of well instruments. Personnel monitoring by means of instrumental methods is not necessary in the considered case [ru

  12. Quality assurance for geologic investigations

    International Nuclear Information System (INIS)

    Delvin, W.L.; Gustafson, L.D.

    1983-01-01

    A quality assurance handbook was written to provide guidance in the application of quality assurance to geologic work activities associated with the National Waste Terminal Storage (NWTS) Program. It is intended to help geoscientists and NWTS program managers in applying quality assurance to their work activitie and projects by showing how technical and quality assurance practices are integrated to provide control within those activities and projects. The use of the guidance found in this handbook should help provide consistency in the interpretation of quality assurance requirements across the various geologic activities within the NWTS Program. This handbook also can assist quality assurance personnel in understanding the relationships between technical and quality assurance practices. This paper describes the handbook

  13. Quantifying uncertainty of geological 3D layer models, constructed with a-priori geological expertise

    NARCIS (Netherlands)

    Gunnink, J.J.; Maljers, D.; Hummelman, J.

    2010-01-01

    Uncertainty quantification of geological models that are constructed with additional geological expert-knowledge is not straightforward. To construct sound geological 3D layer models we use a lot of additional knowledge, with an uncertainty that is hard to quantify. Examples of geological expert

  14. Geology

    International Nuclear Information System (INIS)

    Eyde, T.H.

    1977-01-01

    Uranium, base metals, and precious metals exploration is surveyed, and Government role in activities is scrutinized. A review of recent mineral discoveries reveals that several new discoveries can be credited to independent geologists and exploration organizations. Most of these groups develop the exploration programs and then operate them on a fee plus incentive basis for major companies. The high cost of maintaining a large exploration staff often cannot be justified by many large natural resources companies. As a result the exploration companies fulfill the function of a company exploration department at a much reduced cost

  15. Muon Tomography for Geological Repositories.

    Science.gov (United States)

    Woodward, D.; Kudryavtsev, V.; Gluyas, J.; Clark, S. J.; Thompson, L. F.; Klinger, J.; Spooner, N. J.; Blackwell, T. B.; Pal, S.; Lincoln, D. L.; Paling, S. M.; Mitchell, C. N.; Benton, C.; Coleman, M. L.; Telfer, S.; Cole, A.; Nolan, S.; Chadwick, P.

    2015-12-01

    Cosmic-ray muons are subatomic particles produced in the upper atmosphere in collisions of primary cosmic rays with atoms in air. Due to their high penetrating power these muons can be used to image the content (primarily density) of matter they pass through. They have already been used to image the structure of pyramids, volcanoes and other objects. Their applications can be extended to investigating the structure of, and monitoring changes in geological formations and repositories, in particular deep subsurface sites with stored CO2. Current methods of monitoring subsurface CO2, such as repeat seismic surveys, are episodic and require highly skilled personnel to operate. Our simulations based on simplified models have previously shown that muon tomography could be used to continuously monitor CO2 injection and migration and complement existing technologies. Here we present a simulation of the monitoring of CO2 plume evolution in a geological reservoir using muon tomography. The stratigraphy in the vicinity of the reservoir is modelled using geological data, and a numerical fluid flow model is used to describe the time evolution of the CO2 plume. A planar detection region with a surface area of 1000 m2 is considered, at a vertical depth of 776 m below the seabed. We find that one year of constant CO2 injection leads to changes in the column density of about 1%, and that the CO2 plume is already resolvable with an exposure time of less than 50 days. The attached figure show a map of CO2 plume in angular coordinates as reconstructed from observed muons. In parallel with simulation efforts, a small prototype muon detector has been designed, built and tested in a deep subsurface laboratory. Initial calibrations of the detector have shown that it can reach the required angular resolution for muon detection. Stable operation in a small borehole within a few months has been demonstrated.

  16. Portable counter for geological research

    Energy Technology Data Exchange (ETDEWEB)

    Russell, O J

    1949-05-01

    A portable counter which has been developed for prospecting for radio-active uranium and thorium minerals, for general geological investigations, and as an ultra-sensitive detector of lost or mislaid radium, is described. The aforementioned general usage includes the identification of changes in strata by means of the investigation of the slight amount of residual activity pressent in most minerals. The apparatus, which consists essentially of a scaled-down version of a standard laboratory Geiger-Muller counter, is highly sensitive since a variation equivalent to 4% of the cosmic ray background can be detected by a three-minute count.

  17. Geological Factors and Health Problems

    Directory of Open Access Journals (Sweden)

    Francisco Prieto García

    2013-06-01

    Full Text Available Geological factors, such as damages, can cause health determinants in people, which were a little-studied and if they have been raised on occasion, usually referred to no communicable diseases. The aim of this work, which is a more or less updated bibliography, has been to develop a holistic idea for a better understanding of a problem and force latent or potential risk that they can carry and consider scientific basis infectious diseases especially complex.  In essence, the focus of ecosystem health that should be considered in terrestrial ecosystems. It also provides the basic elements for the development of new research in this field.

  18. Quantitative geological modeling based on probabilistic integration of geological and geophysical data

    DEFF Research Database (Denmark)

    Gulbrandsen, Mats Lundh

    In order to obtain an adequate geological model of any kind, proper integration of geophysical data, borehole logs and geological expert knowledge is important. Geophysical data provide indirect information about geology, borehole logs provide sparse point wise direct information about geology...... entitled Smart Interpretation is developed. This semi-automatic method learns the relation between a set of data attributes extracted from deterministically inverted airborne electromagnetic data and a set of interpretations of a geological layer that is manually picked by a geological expert...

  19. Geology of the North Sea and Skagerrak

    Energy Technology Data Exchange (ETDEWEB)

    Michelsen, O. [ed.

    1995-12-31

    The Marine Geology Unit of the Department of Earth Sciences organized the second Marine Geology symposium at Aarhus University, 7-8 October 1993. The intention was to bring together people working especially with the geology of the North Sea and Skagerrak. Approximately 60 people from different Danish and Norwegian institutions attended the symposium. 28 oral presentations were given and 2 posters presented. A large range of geological topics was covered, embracing biostratigraphy, sequence stratigraphy, sedimentology and structural geology. The majority of the presentations dealt with Quaternary geology and Cenozoic sequence stratigraphy, but also Jurassic and Lower Cretaceous stratigraphy was treated. Studies from the major part of the Danish sector were presented, spanning from Bornholm to the central North Sea, and further into the Norwegian North Sea sector. (au)

  20. NAGRA - Sites for geological repositories - Geological surveys for stage 3

    International Nuclear Information System (INIS)

    2014-01-01

    This brochure published by the Swiss National Cooperative for the Disposal of Radioactive Waste (NAGRA) examines the aims involved in the selection of sites for deep geological repositories for nuclear wastes in Switzerland. Various methods involved in their implementation are described. These include 3D-seismology, deep probe drillings, shallow drillings as well as field studies, gravimetric measurements and the study of the electrical properties of the ground and rock involved. These factors are discussed in detail. Maps are presented of the locations that are to be surveyed and details of the selected perimeters are shown. Also, the layout of a sample drilling site is presented. A timescale for the various surveys and work to be done is presented

  1. The geologic evolution of the planet Mars

    International Nuclear Information System (INIS)

    Masson, P.

    1982-01-01

    A brief summary of our knowledge on the Martian geology is presented here based on the results published by the members of Mariner 9 and Viking Orbiter Imaging Teams, the NASA Planetary Geology Principal Investigators and the scientists involved in the Mars Data Analysis Program. A special emphasis is given to the geologic evolution (volcanism and tectonism) related to our knowledge on the internal structure of the planet

  2. County digital geologic mapping. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hess, R.H.; Johnson, G.L.; dePolo, C.M.

    1995-12-31

    The purpose of this project is to create quality-county wide digital 1:250,000-scale geologic maps from existing published 1:250,000-scale Geologic and Mineral Resource Bulletins published by the Nevada Bureau of Mines and Geology (NBMG). An additional data set, based on current NBMG research, Major and Significant Quaternary and Suspected Quaternary Faults of Nevada, at 1:250,000 scale has also been included.

  3. County digital geologic mapping. Final report

    International Nuclear Information System (INIS)

    Hess, R.H.; Johnson, G.L.; dePolo, C.M.

    1995-01-01

    The purpose of this project is to create quality-county wide digital 1:250,000-scale geologic maps from existing published 1:250,000-scale Geologic and Mineral Resource Bulletins published by the Nevada Bureau of Mines and Geology (NBMG). An additional data set, based on current NBMG research, Major and Significant Quaternary and Suspected Quaternary Faults of Nevada, at 1:250,000 scale has also been included

  4. Geology of Cardiff and Faraday Townships

    Energy Technology Data Exchange (ETDEWEB)

    Hewitt, D F

    1960-12-31

    The area described in this report lies at the centre of the Haliburton-Bancroft uranium district in Ontario, where prospecting and mining have been carried out for over 50 years. The report describes the area`s physiography, natural resources, general geology (Precambrian metasedimentary, plutonic, and granitic and syenitic rocks), structural geology, and economic geology. The latter section includes descriptions of occurrences, claims, mines, and mineral properties, including the principal uranium properties in the area.

  5. Study on geologic structure of hydrogenic deposits

    International Nuclear Information System (INIS)

    1985-01-01

    The problem of studying geologic structure of hydrogenic uranium deposits developed by underground leaching (UL), is elucidated. Geologic maps of the surface are used to characterize engineering and geologic conditions. Main geologoic papers are maps drawn up according to boring data. For total geologic characteristic of the deposit 3 types of maps are usually drawn up: structural maps of isohypses or isodepths, lithologic-facies maps on the horizon and rhythm, and maps of epigenetic alterations (geochemmcal). Besides maps systems of sections are drawn up. Problems of studying lithologic-facies and geohemical peculiarities of deposits, epigenotic alterations, substance composition of ores and enclosing rocks, documentation and core sampting, are considered in details

  6. Provincial geology and the Industrial Revolution.

    Science.gov (United States)

    Veneer, Leucha

    2006-06-01

    In the early nineteenth century, geology was a new but rapidly growing science, in the provinces and among the gentlemen scientists of London, Oxford and Cambridge. Industry, particularly mining, often motivated local practical geologists, and the construction of canals and railways exposed the strata for all to see. The most notable of the early practical men of geology was the mineral surveyor William Smith; his geological map of England and Wales, published in 1815, was the first of its kind. He was not alone. The contributions of professional men, and the provincial societies with which they were connected, are sometimes underestimated in the history of geology.

  7. Complex geologic characterization of the repository environment

    Energy Technology Data Exchange (ETDEWEB)

    Harper, T R [British Petroleum Research Center, Sunberry, England; Szymanski, J S

    1982-01-01

    The present basis for characterizing geological environments is identified in this paper, and the additional requirements imposed by the need to isolate high-level waste safely are discussed. Solutions to these additional requirements are proposed. The time scale of concern and the apparent complexity of the required multidisciplinary approach are identified. It is proposed that an increased use of the geologic record, together with a recognition that all geologic processes operate within an interdependent system, be a key feature in geologic characterization of deep repositories.

  8. Geocongress 84: 20. Geological congress of the Geological Society of South Africa. Abstracts: Pt. 1. General

    International Nuclear Information System (INIS)

    1984-01-01

    Various aspects of the geology, geochemistry and geophysics of the geologic deposits in South Africa are dealt with. Uranium and thorium resources are included in this. There are also chapters on stratigraphy, petrology and petrochemistry

  9. Geologic mapping using LANDSAT data

    Science.gov (United States)

    Siegal, B. S.; Abrams, M. J.

    1976-01-01

    The feasibility of automated classification for lithologic mapping with LANDSAT digital data was evaluated using three classification algorithms. The two supervised algorithms analyzed, a linear discriminant analysis algorithm and a hybrid algorithm which incorporated the Parallelepiped algorithm and the Bayesian maximum likelihood function, were comparable in terms of accuracy; however, classification was only 50 per cent accurate. The linear discriminant analysis algorithm was three times as efficient as the hybrid approach. The unsupervised classification technique, which incorporated the CLUS algorithm, delineated the major lithologic boundaries and, in general, correctly classified the most prominent geologic units. The unsupervised algorithm was not as efficient nor as accurate as the supervised algorithms. Analysis of spectral data for the lithologic units in the 0.4 to 2.5 microns region indicated that a greater separability of the spectral signatures could be obtained using wavelength bands outside the region sensed by LANDSAT.

  10. Asteroids astronomical and geological bodies

    CERN Document Server

    Burbine, Thomas H

    2016-01-01

    Asteroid science is a fundamental topic in planetary science and is key to furthering our understanding of planetary formation and the evolution of the Solar System. Ground-based observations and missions have provided a wealth of new data in recent years, and forthcoming missions promise further exciting results. This accessible book presents a comprehensive introduction to asteroid science, summarising the astronomical and geological characteristics of asteroids. The interdisciplinary nature of asteroid science is reflected in the broad range of topics covered, including asteroid and meteorite classification, chemical and physical properties of asteroids, observational techniques, cratering, and the discovery of asteroids and how they are named. Other chapters discuss past, present and future space missions and the threat that these bodies pose for Earth. Based on an upper-level course on asteroids and meteorites taught by the author, this book is ideal for students, researchers and professional scientists ...

  11. Engineering geology of waste disposal

    International Nuclear Information System (INIS)

    Bentley, S.P.

    1996-01-01

    This volume covers a wide spectrum of activities in the field of waste disposal. These activities range from design of new landfills and containment properties of natural clays to investigation, hazard assessment and remediation of existing landfills. Consideration is given to design criteria for hard rock quarries when used for waste disposal. In addition, an entire section concerns the geotechnics of underground repositories. This covers such topics as deep drilling, in situ stress measurement, rock mass characterization, groundwater flows and barrier design. Engineering Geology of Waste Disposal examines, in detail, the active role of engineering geologists in the design of waste disposal facilities on UK and international projects. The book provides an authoritative mix of overviews and detailed case histories. The extensive spectrum of papers will be of practical value to those geologists, engineers and environmental scientists who are directly involved with waste disposal. (UK)

  12. Siting of geological disposal facilities

    International Nuclear Information System (INIS)

    1994-01-01

    Radioactive waste is generated from the production of nuclear energy and from the use of radioactive materials in industrial applications, research and medicine. The importance of safe management of radioactive waste for the protection of human health and the environment has long been recognized and considerable experience has been gained in this field. The Radioactive Waste Safety Standards (RADWASS) programme is the IAEA's contribution to establishing and promoting the basic safety philosophy for radioactive waste management and the steps necessary to ensure its implementation. This Safety Guide defines the process to be used and guidelines to be considered in selecting sites for deep geological disposal of radioactive wastes. It reflects the collective experience of eleven Member States having programmes to dispose of spent fuel, high level and long lived radioactive waste. In addition to the technical factors important to site performance, the Safety Guide also addresses the social, economic and environmental factors to be considered in site selection. 3 refs

  13. Geological storage of radioactive waste

    International Nuclear Information System (INIS)

    Barthoux, A.

    1983-01-01

    Certain radioactive waste contains substances which present, although they disappear naturally in a progressive manner, a potential risk which can last for very long periods, of over thousands of years. To ensure a safe long-term handling, provision has been made to bury it deep in stable geological structures which will secure its confinement. Radioactive waste is treated and conditioned to make it insoluble and is then encased in matrices which are to immobilize them. The most radioactive waste is thus incorporated in a matrix of glass which will ensure the insulation of the radioactive substances during the first thousands of years. Beyond that time, the safety will be ensured by the properties of the storage site which must be selected from now on. Various hydrogeological configurations have been identified. They must undergo detailed investigations, including even the creation of an underground laboratory. This document also presents examples of underground storage installations which are due to be built [fr

  14. Geological factors of deposit formation

    International Nuclear Information System (INIS)

    Grushevoj, G.V.

    1980-01-01

    Geologic factors of hydrogenic uranium deposit formation are considered. Structural, formation and lithological-facies factors of deposit formation, connected with zones of stratal oxidation, are characterized. Peculiarities of deposit localization, connected with orogenic structures of Mesozoic and lenozoic age, are described. It is noted that deposits of anagenous group are widely spread in Paleozoic formations, infiltration uranium deposits are localized mainly in Cenozoic sediments, while uranium mineralization both anagenous and infiltration groups are widely developed in Mesozoic sediments. Anagenous deposits were formed in non-oxygen situation, their age varies from 200 to 55 mln years. Infiltration deposit formation is determined by asymmetric oxidation zonation, their age varies from 10 - 40 mln years to dozens of thousand years [ru

  15. Homo Sapiens as Geological Agents

    Science.gov (United States)

    Holloway, T.; Bedsworth, L. W.; Caldeira, K.; Rosenzweig, C.; Kelley, G.; Rosenzweig, C.; Caldeira, K.; Bedsworth, L. W.; Holloway, T.; Purdy, J. S.; Vince, G.; Syvitski, J. A.; Bondre, N. R.; Kelly, J.; Vince, G.; Seto, K. C.; Steffen, W.; Oreskes, N.

    2015-12-01

    In the 18th and 19th centuries, earth scientists came to understand the magnitude and power of geological and geophysical processes. In comparison, the activities of humans seemed paltry if not insignificant. With the development of radiometric dating in the 20th century, scientists realized that human history was but a miniscule part of Earth history. Metaphors to this effect abounded, and filled textbooks: If Earth history were a 24-hour day, human history would not occupy even the final second. If Earth history were a yardstick, the human portion would not even be visible to the naked eye. Generations of scientists were taught that one of the principal contributions of geology, qua science, was the demonstration of our insignificance. The Anthropocene concept disrupts this. To affirms its existence is to insist that human activities compete in scale and significance with other Earth processes, and may threaten to overwhelm them. It also inverts our relation to normative claims. For more than a century earth scientists and evolutionary biologists insisted that their theories were descriptive and not normative—that there was no moral conclusion to be drawn from either planetary or human evolution. Now, we confront the suggestion that there is a moral component to our new paradigm: we can scarcely claim that humans are disrupting the climate, destroying biodiversity, and acidifying the oceans without implying that there is something troubling about these developments. Thus, the Anthropocene concept suggests both a radical redefinition of the scope of Earth science, and a radical reconsideration of the place of normative judgments in scientific work.

  16. Report on geologic exploration activities

    International Nuclear Information System (INIS)

    Breslin, J.; Laughon, R.B.; Hall, R.J.; Voss, J.W.

    1980-01-01

    This report provides an overview of the geological exploration activities being carried out as part of the National Waste Terminal Storage (NWTS) Program, which has been established by the US Department of Energy (DOE) to develop the technology and provide the facilities for the safe, environmentally acceptable isolation of civilian high-level and transuranic nuclear wastes, including spent fuel elements, for which the Federal government is responsible. The principal programmatic emphasis is on disposal in mined geologic repositories. Explorations are being conducted or planned in various parts of the country to identify potential sites for such repositories. The work is being undertaken by three separate but coordinated NWTS project elements. Under the Basalt Waste Isolation Project (BWIP), basalt formations underlying DOE's Hanford Reservation are being investigated. Granite, tuff, and shale formations at the DOE Nevada Test Site (NTS) are being similarly studied in the Nevada Nuclear Waste Storage Investigations (NNWSI). The Office of Nuclear Waste Isolation (ONWI) is investigating domed salt formations in several Gulf Coast states and bedded salt formations in Utah and Texas. The ONWI siting studies are being expanded to include areas overlying crystalline rocks, shales, and other geohydrologic systems. The current status of these NWTS efforts, including the projected budgets for FY 1981, is summarized, and the criteria and methodology being employed in the explorations are described. The consistency of the overall effort with the recommendations presented in the Report to the President by the Interagency Review Group on Nuclear Waste Management (IRG), as well as with documents representing the national technical consensus, is discussed

  17. Geology and religion in Portugal

    Science.gov (United States)

    Carneiro, Ana; Simoes, Ana; Diogo, Maria Paula; Mota, Teresa Salomé

    2013-01-01

    This paper addresses the relationship between geology and religion in Portugal by focusing on three case studies of naturalists who produced original research and lived in different historical periods, from the eighteenth to the twentieth century. Whereas in non-peripheral European countries religious themes and even controversies between science and religion were dealt with by scientists and discussed in scientific communities, in Portugal the absence of a debate between science and religion within scientific and intellectual circles is particularly striking. From the historiographic point of view, in a country such as Portugal, where Roman Catholicism is part of the religious and cultural tradition, the influence of religion in all aspects of life has been either taken for granted by those less familiar with the national context or dismissed by local intellectuals, who do not see it as relevant to science. The situation is more complex than these dichotomies, rendering the study of this question particularly appealing from the historiographic point of view, geology being by its very nature a well-suited point from which to approach the theme. We argue that there is a long tradition of independence between science and religion, agnosticism and even atheism among local elites. Especially from the eighteenth century onwards, they are usually portrayed as enlightened minds who struggled against religious and political obscurantism. Religion—or, to be more precise, the Roman Catholic Church and its institutions—was usually identified with backwardness, whereas science was seen as the path to progress; consequently men of science usually dissociated their scientific production from religious belief.

  18. Report on geologic exploration activities

    International Nuclear Information System (INIS)

    1980-01-01

    This report provides an overview of the geological exploration activities being carried out as part of the National Waste Terminal Storage (NWTS) Program, which has been established by the US Department of Energy (DOE) to develop the technology and provide the facilities for the safe, environmentally acceptable isolation of civilian high-level and transuranic nuclear wastes, including spent fuel elements, for which the Federal government is reponsible. The principal programmatic emphasis is on disposal in mined geologic repositories. Explorations are being conducted or planned in various parts of the country to identify potential sites for such repositories. The work is being undertaken by three separate but coordinated NWTS project elements. Under the Basalt Waste Isolation Project (BWIP), basalt formations underlying DOE's Hanford Reservation are being investigated. Granite, tuff, and shale formations at the DOE Nevada Test Site (NTS) are being similarly studied in the Nevada Nuclear Waste Storage Investigations (NNWSI). The Office of Nuclear Waste Isolation (ONWI) is investigating domed salt formations in several Gulf Coast states and bedded salt formations in Utah and Texas. Th ONWI siting studies are being expanded to include areas overlying crystalline rocks, shales, and other geohydrologic systems. The current status of these NWTS efforts, including the projected budgets for FY 1981, is summarized, and the criteria and methodology being employed in the explorations are described. The consistency of the overall effort with the recommendations presented in the Report to the President by the Interagency Review Group on Nuclear Waste Management (IRG), as well as with documents representing the national technical consensus, is discussed

  19. Operation environment construction of geological information database for high level radioactive waste geological disposal

    International Nuclear Information System (INIS)

    Wang Peng; Gao Min; Huang Shutao; Wang Shuhong; Zhao Yongan

    2014-01-01

    To fulfill the requirements of data storage and management in HLW geological disposal, a targeted construction method for data operation environment was proposed in this paper. The geological information database operation environment constructed by this method has its unique features. And it also will be the important support for HLW geological disposal project and management. (authors)

  20. Israel Geological Society, annual meeting 1994

    International Nuclear Information System (INIS)

    Amit, R.; Arkin, Y.; Hirsch, F.

    1994-02-01

    The document is a compilation of papers presented during the annual meeting of Israel Geological Society. The document is related with geological and environmental survey of Israel. It discusses the technology and instruments used to carry out such studies. Main emphasis is given to seismology, geochemical analysis of water, water pollution and geophysical survey of rocks

  1. SRS Geology/Hydrogeology Environmental Information Document

    Energy Technology Data Exchange (ETDEWEB)

    Denham, M.E.

    1999-08-31

    The purpose of the Savannah River Site Geology and Hydrogeology Environmental Information Document (EID) is to provide geologic and hydrogeologic information to serve as a baseline to evaluate potential environmental impacts. This EID is based on a summary of knowledge accumulated from research conducted at the Savannah River Site (SRS) and surrounding areas.

  2. Publications - Geospatial Data | Alaska Division of Geological &

    Science.gov (United States)

    from rocks collected in the Richardson mining district, Big Delta Quadrangle, Alaska: Alaska Division Island 2009 topography: Alaska Division of Geological & Geophysical Surveys Miscellaneous Publication , Geologic map of portions of the Livengood B-3, B-4, C-3, and C-4 quadrangles, Tolovana mining district

  3. Geologic structure of Semipalatinsk test site territory

    International Nuclear Information System (INIS)

    Ergaliev, G.Kh.; Myasnikov, A.K.; Nikitina, O.I.; Sergeeva, L.V.

    2000-01-01

    This article gives a short description of the territory of Semipalatinsk test site. Poor knowledge of the region is noted, and it tells us about new data on stratigraphy and geology of Paleozoic layers, obtained after termination of underground nuclear explosions. The paper contains a list a questions on stratigraphy, structural, tectonic and geologic formation of the territory, that require additional study. (author)

  4. Historical foundations of chemical geology and geochemistry

    NARCIS (Netherlands)

    Manten, A.A.

    1966-01-01

    Roughly, the name chemical geology has been used for as long as chemistry has been applied in geology; the name geochemistry was introduced by Schönbein, in 1838. Whereas initially the names were often regarded as synonymous, in our century there is a tendency to make a distinction between the two

  5. SRS Geology/Hydrogeology Environmental Information Document

    International Nuclear Information System (INIS)

    Denham, M.E.

    1999-01-01

    The purpose of the Savannah River Site Geology and Hydrogeology Environmental Information Document (EID) is to provide geologic and hydrogeologic information to serve as a baseline to evaluate potential environmental impacts. This EID is based on a summary of knowledge accumulated from research conducted at the Savannah River Site (SRS) and surrounding areas

  6. Archives: Journal of Mining and Geology

    African Journals Online (AJOL)

    Items 1 - 13 of 13 ... Archives: Journal of Mining and Geology. Journal Home > Archives: Journal of Mining and Geology. Log in or Register to get access to full text downloads. Username, Password, Remember me, or Register · Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives. 1 - 13 of 13 ...

  7. Popularizing Geological Education among Civil Engineering Students

    Science.gov (United States)

    Chen, Xiang-jun; Zhou, Ying

    2012-01-01

    The sustainable development of an economy and a society cannot be realized without the help of modern geoscience. Engineering geology knowledge is necessary on a civil engineering construction site to ensure the construction work goes smoothly. This paper first discusses the importance of geoscience, especially the study of engineering geology.…

  8. Bedrock Geologic Map of Woodstock, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG06-4 Thompson, P. J., 2006, Bedrock Geologic Map of Woodstock, Vermont: VGS Open-File Report VG06-4, scale 1:24,000. The bedrock geologic map...

  9. Advances in planetary geology, volume 2

    International Nuclear Information System (INIS)

    1986-07-01

    This publication is a continuation of volume 1; it is a compilation of reports focusing on research into the origin and evolution of the solar system with emphasis on planetary geology. Specific reports include a multispectral and geomorphic investigation of the surface of Europa and a geologic interpretation of remote sensing data for the Martian volcano Ascreaus Mons

  10. Digital Geologic Map of New Mexico - Formations

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — The geologic map was created in GSMAP at Socorro, New Mexico by Orin Anderson and Glen Jones and published as the Geologic Map of New Mexico 1:500,000 in GSMAP...

  11. Site investigation SFR. Bedrock geology

    International Nuclear Information System (INIS)

    Curtis, Philip; Markstroem, Ingemar; Petersson, Jesper; Triumf, Carl-Axel; Isaksson, Hans; Mattsson, Haakan

    2011-12-01

    SKB is currently carrying out an assessment of the future extension of the final repository for low and middle level radioactive operational waste, SFR. The planned SFR extension lies at a relatively shallow depth (-50 to -200 masl) compared with the planned Forsmark facility for spent nuclear fuel (-400 to -500 masl). The main aim of the multidisciplinary modelling project involving geology, hydrogeology, hydrogeochemistry and rock mechanical modelling is to describe the rock volume for the planned extension of SFR that was presented in /SKB 2008a/. The results of the modelling project in the form of a forthcoming site descriptive model will supply the basis for site-adapted design including engineering characteristics, in addition to a general assessment of the site suitability. The current report presents the results of the geological work with the deterministic rock domain and deformation zone models (version 1.0) and forms a basis for the three other disciplines in the modelling work. The shallow depth of SFR and its proposed extension means that the facility lies partly within the rock volume affected by the effects of stress release processes during loading and unloading cycles, with an associated increased frequency of open sub-horizontal fractures in the near-surface realm (above -150 masl) compared with that observed at greater depths. The main report describes the data input to the modelling work, the applied modelling methodology and the overall results. More detailed descriptions of the individual modelled deformation zones and rock domains are included in the appendices. The geological modelling work during version 1.0 follows SKB's established methodology using the Rock Visualisation System (RVS). The deformation zone model version 1.0 is a further development of the previous version 0.1 /Curtis et al. 2009/. While the main input to deformation zone model version 0.1 was older geological data from the construction of SFR, including drawings of the

  12. Site investigation SFR. Bedrock geology

    Energy Technology Data Exchange (ETDEWEB)

    Curtis, Philip; Markstroem, Ingemar (Golder Associates AB (Sweden)); Petersson, Jesper (Vattenfall Power Consultant AB (Sweden)); Triumf, Carl-Axel; Isaksson, Hans; Mattsson, Haakan (GeoVista AB (Sweden))

    2011-12-15

    SKB is currently carrying out an assessment of the future extension of the final repository for low and middle level radioactive operational waste, SFR. The planned SFR extension lies at a relatively shallow depth (-50 to -200 masl) compared with the planned Forsmark facility for spent nuclear fuel (-400 to -500 masl). The main aim of the multidisciplinary modelling project involving geology, hydrogeology, hydrogeochemistry and rock mechanical modelling is to describe the rock volume for the planned extension of SFR that was presented in /SKB 2008a/. The results of the modelling project in the form of a forthcoming site descriptive model will supply the basis for site-adapted design including engineering characteristics, in addition to a general assessment of the site suitability. The current report presents the results of the geological work with the deterministic rock domain and deformation zone models (version 1.0) and forms a basis for the three other disciplines in the modelling work. The shallow depth of SFR and its proposed extension means that the facility lies partly within the rock volume affected by the effects of stress release processes during loading and unloading cycles, with an associated increased frequency of open sub-horizontal fractures in the near-surface realm (above -150 masl) compared with that observed at greater depths. The main report describes the data input to the modelling work, the applied modelling methodology and the overall results. More detailed descriptions of the individual modelled deformation zones and rock domains are included in the appendices. The geological modelling work during version 1.0 follows SKB's established methodology using the Rock Visualisation System (RVS). The deformation zone model version 1.0 is a further development of the previous version 0.1 /Curtis et al. 2009/. While the main input to deformation zone model version 0.1 was older geological data from the construction of SFR, including drawings of

  13. Global Warming in Geologic Time

    International Nuclear Information System (INIS)

    Archer, David

    2008-01-01

    The notion is pervasive in the climate science community and in the public at large that the climate impacts of fossil fuel CO2 release will only persist for a few centuries. This conclusion has no basis in theory or models of the atmosphere/ ocean carbon cycle, which we review here. The largest fraction of the CO2 recovery will take place on time scales of centuries, as CO2 invades the ocean, but a significant fraction of the fossil fuel CO2, ranging in published models in the literature from 20-60%, remains airborne for a thousand years or longer. Ultimate recovery takes place on time scales of hundreds of thousands of years, a geologic longevity typically associated in public perceptions with nuclear waste. The glacial/interglacial climate cycles demonstrate that ice sheets and sea level respond dramatically to millennial-timescale changes in climate forcing. There are also potential positive feedbacks in the carbon cycle, including methane hydrates in the ocean, and peat frozen in permafrost, that are most sensitive to the long tail of the fossil fuel CO2 in the atmosphere.

  14. Geology of Lofn Crater, Callisto

    Science.gov (United States)

    Greeley, Ronald; Heiner, Sarah; Klemaszewski, James E.

    2001-01-01

    Lofn crater is a 180-km-diameter impact structure in the southern cratered plains of Callisto and is among the youngest features seen on the surface. The Lofn area was imaged by the Galileo spacecraft at regional-scale resolutions (875 m/pixel), which enable the general geology to be investigated. The morphology of Lofn crater suggests that (1) it is a class of impact structure intermediate between complex craters and palimpsests or (2) it formed by the impact of a projectile which fragmented before reaching the surface, resulting in a shallow crater (even for Callisto). The asymmetric pattern of the rim and ejecta deposits suggests that the impactor entered at a low angle from the northwest. The albedo and other characteristics of the ejecta deposits from Lofn also provide insight into the properties of the icy lithosphere and subsurface configuration at the time of impact. The "target" for the Lofn impact is inferred to have included layered materials associated with the Adlinda multiring structure northwest of Loh and ejecta deposits from the Heimdall crater area to the southeast. The Lofn impact might have penetrated through these materials into a viscous substrate of ductile ice or possibly liquid water. This interpretation is consistent with models of the current interior of Callisto based on geophysical information obtained from the Galileo spacecraft.

  15. Geological storage of CO2

    International Nuclear Information System (INIS)

    Czernichowski-Lauriol, I.

    2005-01-01

    The industrial storage of CO 2 is comprised of three steps: - capture of CO 2 where it is produced (power plants, cement plants, etc.); - transport (pipe lines or boats); - storage, mainly underground, called geological sequestration... Three types of reservoirs are considered: - salted deep aquifers - they offer the biggest storage capacity; - exhausted oil and gas fields; - non-exploited deep coal mine streams. The two latter storage types may allow the recovery of sellable products, which partially or totally offsets the storage costs. This process is largely used in the petroleum industry to improve the productivity of an oil field, and is called FOR (Enhanced Oil Recovery). A similar process is applied in the coal mining industry to recover the imprisoned gas, and is called ECBM (Enhanced Coal Bed methane). Two storage operations have been initiated in Norway and in Canada, as well as research programmes in Europe, North America, Australia and Japan. International organisations to stimulate this technology have been created such as the 'Carbon Sequestration Leadership Forum' and 'the Intergovernmental Group for Climate Change'. This technology will be taken into account in the instruments provided by the Tokyo Protocol. (author)

  16. Global Geological Map of Venus

    Science.gov (United States)

    Ivanov, M. A.

    2008-09-01

    Introduction: The Magellan SAR images provide sufficient data to compile a geological map of nearly the entire surface of Venus. Such a global and selfconsistent map serves as the base to address the key questions of the geologic history of Venus. 1) What is the spectrum of units and structures that makes up the surface of Venus [1-3]? 2) What volcanic/tectonic processes do they characterize [4-7]? 3) Did these processes operated locally, regionally, or globally [8- 11]? 4) What are the relationships of relative time among the units [8]? 5) At which length-scale these relationships appear to be consistent [8-10]? 6) What is the absolute timing of formation of the units [12-14]? 7) What are the histories of volcanism, tectonics and the long-wavelength topography on Venus? 7) What model(s) of heat loss and lithospheric evolution [15-21] do these histories correspond to? The ongoing USGS program of Venus mapping has already resulted in a series of published maps at the scale 1:5M [e.g. 22-30]. These maps have a patch-like distribution, however, and are compiled by authors with different mapping philosophy. This situation not always results in perfect agreement between the neighboring areas and, thus, does not permit testing geological hypotheses that could be addressed with a self-consistent map. Here the results of global geological mapping of Venus at the scale 1:10M is presented. The map represents a contiguous area extending from 82.5oN to 82.5oS and comprises ~99% of the planet. Mapping procedure: The map was compiled on C2- MIDR sheets, the resolution of which permits identifying the basic characteristics of previously defined units. The higher resolution images were used during the mapping to clarify geologic relationships. When the map was completed, its quality was checked using published USGS maps [e.g., 22-30] and the catalogue of impact craters [31]. The results suggest that the mapping on the C2-base provided a highquality map product. Units and

  17. Geology and Design: Formal and Rational Connections

    Science.gov (United States)

    Eriksson, S. C.; Brewer, J.

    2016-12-01

    Geological forms and the manmade environment have always been inextricably linked. From the time that Upper Paleolithic man created drawings in the Lascaux Caves in the southwest of France, geology has provided a critical and dramatic spoil for human creativity. This inspiration has manifested itself in many different ways, and the history of architecture is rife with examples of geologically derived buildings. During the early 20th Century, German Expressionist art and architecture was heavily influenced by the natural and often translucent quality of minerals. Architects like Bruno Taut drew and built crystalline forms that would go on to inspire the more restrained Bauhaus movement. Even within the context of Contemporary architecture, geology has been a fertile source for inspiration. Architectural practices across the globe leverage the rationality and grounding found in geology to inform a process that is otherwise dominated by computer-driven parametric design. The connection between advanced design technology and the beautifully realized geo natural forms insures that geology will be a relevant source of architectural inspiration well into the 21st century. The sometimes hidden relationship of geology to the various sub-disciplines of Design such as Architecture, Interiors, Landscape Architecture, and Historic Preservation is explored in relation to curriculum and the practice of design. Topics such as materials, form, history, the cultural and physical landscape, natural hazards, and global design enrich and inform curriculum across the college. Commonly, these help define place-based education.

  18. Geology Before Pluto: Pre-encounter Considerations

    Science.gov (United States)

    Moore, J. M.

    2014-12-01

    Pluto, its large satellite Charon, and its four small known satellites represent the first trans-Neptunian Kuiper Belt objects populating the outer-most solar system beyond the gas giant planets to be studied in detail from a spacecraft (New Horizons). A complete picture of the solar nebula and solar system formation cannot be confidently formulated until representatives of this group of bodies at the edge of solar space have been examined. The Pluto system is composed of unique, lunar- and intermediate-sized objects that can tell us much about how objects with volatile icy compositions evolve. Modeling of the interior suggests that geologic activity may have been significant to some degree, and observations of frost on the surface could imply the need for a geologic reservoir for the replenishment of these phases. However, these putative indicators of Pluto's geologic history are inconclusive and unspecific. Detailed examination of Pluto's geologic record is the only plausible means of bridging the gap between theory and observation. In this talk I will examine the potential importance of these tentative indications of geologic activity and how specific spacecraft observations have been designed and used to constrain the Pluto system's geologic history. The cameras of New Horizons will provide robust data sets that should be immanently amenable to geological analysis of the Pluto system's landscapes. In this talk, we begin with a brief discussion of the planned observations by the New Horizons cameras that will bear most directly on geological interpretability. Then I will broadly review major geological processes that could potentially operate on the surfaces of Pluto and its moons. I will first survey exogenic processes (i.e., those for which energy for surface modification is supplied externally to the planetary surface): impact cratering, sedimentary processes (including volatile migration), and the work of wind. I will conclude with an assessment of the

  19. Geology Before Pluto: Pre-Encounter Considerations

    Science.gov (United States)

    Moore, Jeffrey M.

    2014-01-01

    Pluto, its large satellite Charon, and its four known satellites represent the first trans-Neptunian Kuiper Belt objects populating the outer-most solar system beyond the gas giant planets to be studied in detail from a spacecraft (New Horizons). A complete picture of the solar nebula, and solar system formation cannot be confidently formulated until representatives of this group of bodies at the edge of solar space have been examined. The Pluto system is composed of unique lunar- and intermediate-sized objects that can tell us much about how objects with volatile icy compositions evolve. Modeling of the interior suggests that geologic activity may have been to some degree, and observations of frost on the surface could imply the need for a geologic reservoir for the replenishment of these phases. However, the putative indicators of Pluto's geologic history are inconclusive and unspecific. Detailed examination of Pluto's geologic record is the only plausible means of bridging the gap between theory and observations. In this talk I will examine the potential importance of these tentative indications of geologic activity and how specific spacecraft observations have been designed and used to constrain the Pluto system's geologic history. The cameras of New Horizons will provide robust data sets that should be immanently amenable to geological analysis of the Pluto System's landscapes. In this talk, we begin with a brief discussion of the planned observations by New Horizons' cameras that will bear most directly on geological interpretability. Then I will broadly review major geological processes that could potentially operate of the surfaces of Pluto and its moons. I will first survey exogenic processes (i.e., those for which energy for surface modification is supplied externally to the planetary surface): impact cratering, sedimentary processes (including volatile migration) and the work of wind. I will conclude with an assessment of prospects for endogenic activity

  20. Developing medical geology in Uruguay: a review.

    Science.gov (United States)

    Mañay, Nelly

    2010-05-01

    Several disciplines like Environmental Toxicology, Epidemiology, Public Health and Geology have been the basis of the development of Medical Geology in Uruguay during the last decade. The knowledge and performance in environmental and health issues have been improved by joining similar aims research teams and experts from different institutions to face environmental problems dealing with the population's exposure to metals and metalloids and their health impacts. Some of the Uruguayan Medical Geology examples are reviewed focusing on their multidisciplinary approach: Lead pollution and exposed children, selenium in critically ill patients, copper deficiency in cattle and arsenic risk assessment in ground water. Future actions are also presented.

  1. Developing Medical Geology in Uruguay: A Review

    Directory of Open Access Journals (Sweden)

    Nelly Mañay

    2010-04-01

    Full Text Available Several disciplines like Environmental Toxicology, Epidemiology, Public Health and Geology have been the basis of the development of Medical Geology in Uruguay during the last decade. The knowledge and performance in environmental and health issues have been improved by joining similar aims research teams and experts from different institutions to face environmental problems dealing with the population’s exposure to metals and metalloids and their health impacts. Some of the Uruguayan Medical Geology examples are reviewed focusing on their multidisciplinary approach: Lead pollution and exposed children, selenium in critically ill patients, copper deficiency in cattle and arsenic risk assessment in ground water. Future actions are also presented.

  2. Evaluations for draft reports on geological disposal

    International Nuclear Information System (INIS)

    Maekawa, Keisuke; Igarashi, Hiroshi

    2002-10-01

    This report summarizes the results of the technical evaluations on two reports which are named as 'Overview of the Geological Disposal Facility' and Considerable Factors on Selection of Potential Sites for Geological Disposal' drafted by NUMO (Nuclear Waste Management Organization of Japan). The review of each draft report has been referred to committee (held on 9th September, 2002) and working group (held on 1st October, 2002) which were organized in order to confirm a progress of implementation of geological disposal by government. (author)

  3. Geological evidence of smectite longevity

    International Nuclear Information System (INIS)

    Pusch, R.; Karnland, O.

    1988-12-01

    Search is going on for geological evidence of natural smectite clay materials that have been exposed to conditions that are similar to those radioactive in repositories. Cases in which heating to 90 degree C or more for long periods has taken place, are of particular interest. The report describes two bentonite layers, one of Miocenic age located at central Sardinia (Busachi), and the other of Ordovician age, forming a basal stratum of southern Gotland, (Hamra), Sweden. They both serve as excellent examples of the survival potential of montmorillonite-rich clays. The more than 10 m thick Sardinian bentonite bed was very significantly heated when the magma moved in and covered it. The upper meter was heated to more than 200 degree C for several days, while at more than 4 m depth, the temperature did note exceed 80 degree C. The test show that the smectite content was not reduced to less than 60 percent in any part of the layer sequence, while slight cementation was caused by precipitation of heat-released silica in the uppermost layer. The 0.3 m thick bed on Gotland is presently located at 515 m depth. Various investigations indicate that it has been exposed to an effective pressure of 300 MPa and a temperature of 110 degree C for several million years due to burial under almost 3 km of Devonian sediments. The content of smectite is around 25 percent of the bulk material, and 30-40 percent of the clay fraction. Illite appears to have been neoformed in small voids of the smectite matrix and the identified apparent I/S material is suggested to consist of mixed-layer minerals with hydrous mica and Ca or Na locked in instead of K, which would be the conventional interpretation. The earlier developed alteration model appears to be valid and it is extended in the present report on the basis of the findings. (28 illustrations, 9 tables)

  4. Marine Geology Reports in the NGDC Archive

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Historic Marine Geologic data reports available are from academia, government, and non-U.S. sources. These reports were originally in paper or film form and were...

  5. Geological Effects on Lightning Strike Distributions

    KAUST Repository

    Berdahl, J. Scott

    2016-01-01

    Recent advances in lightning detection networks allow for detailed mapping of lightning flash locations. Longstanding rumors of geological influence on cloud-to-ground (CG) lightning distribution and recent commercial claims based on such influence

  6. Geologic Mapping Investigations of Alba Mons, Mars

    Science.gov (United States)

    Crown, D. A.; Berman, D. C.; Scheidt, S. P.; Hauber, E.

    2018-06-01

    Geologic mapping of the summit region and western flank of Alba Mons at 1:1M-scale is revealing sequences of volcanic, tectonic, impact, and degradation processes that have formed and modified the northernmost of the Tharsis volcanoes.

  7. Global Journal of Geological Sciences: Contact

    African Journals Online (AJOL)

    Principal Contact. Prof . Barth N. Ekwueme MANAGING EDITOR Global Journal Series Department of Geology, University of Calabar, P. O. Box 3561 Unical P.O. Calabar Cross River State Nigeria Email: bachudo@yahoo.com ...

  8. A new algorithm for coding geological terminology

    Science.gov (United States)

    Apon, W.

    The Geological Survey of The Netherlands has developed an algorithm to convert the plain geological language of lithologic well logs into codes suitable for computer processing and link these to existing plotting programs. The algorithm is based on the "direct method" and operates in three steps: (1) searching for defined word combinations and assigning codes; (2) deleting duplicated codes; (3) correcting incorrect code combinations. Two simple auxiliary files are used. A simple PC demonstration program is included to enable readers to experiment with this algorithm. The Department of Quarternary Geology of the Geological Survey of The Netherlands possesses a large database of shallow lithologic well logs in plain language and has been using a program based on this algorithm for about 3 yr. Erroneous codes resulting from using this algorithm are less than 2%.

  9. Geomorphology in North American Geology Departments, 1971

    Science.gov (United States)

    White, Sidney E.; Malcolm, Marshall D.

    1972-01-01

    Presents results of a 1970-71 survey of 350 geomorphologists and geology departments to determine what sort of geomorphology is being taught in the colleges and universities of the United States and Canada. (PR)

  10. Planetary Geologic Mapping Handbook - 2010. Appendix

    Science.gov (United States)

    Tanaka, K. L.; Skinner, J. A., Jr.; Hare, T. M.

    2010-01-01

    Geologic maps present, in an historical context, fundamental syntheses of interpretations of the materials, landforms, structures, and processes that characterize planetary surfaces and shallow subsurfaces. Such maps also provide a contextual framework for summarizing and evaluating thematic research for a given region or body. In planetary exploration, for example, geologic maps are used for specialized investigations such as targeting regions of interest for data collection and for characterizing sites for landed missions. Whereas most modern terrestrial geologic maps are constructed from regional views provided by remote sensing data and supplemented in detail by field-based observations and measurements, planetary maps have been largely based on analyses of orbital photography. For planetary bodies in particular, geologic maps commonly represent a snapshot of a surface, because they are based on available information at a time when new data are still being acquired. Thus the field of planetary geologic mapping has been evolving rapidly to embrace the use of new data and modern technology and to accommodate the growing needs of planetary exploration. Planetary geologic maps have been published by the U.S. Geological Survey (USGS) since 1962. Over this time, numerous maps of several planetary bodies have been prepared at a variety of scales and projections using the best available image and topographic bases. Early geologic map bases commonly consisted of hand-mosaicked photographs or airbrushed shaded-relief views and geologic linework was manually drafted using mylar bases and ink drafting pens. Map publishing required a tedious process of scribing, color peel-coat preparation, typesetting, and photo-laboratory work. Beginning in the 1990s, inexpensive computing, display capability and user-friendly illustration software allowed maps to be drawn using digital tools rather than pen and ink, and mylar bases became obsolete. Terrestrial geologic maps published by

  11. The geological record of ocean acidification

    NARCIS (Netherlands)

    Hönisch, B.; Ridgwell, A.; Schmidt, D.N.; Thomas, E.; Gibbs, S.J.; Sluijs, A.; Zeebe, R.; Kump, L.; Martindale, R.C.; Greene, S.E.; Kiessling, W.; Ries, J.; Zachos, J.C.; Royer, D.L.; Barker, S.; Marchitto Jr., T.M.; Moyer, R.; Pelejero, C.; Ziveri, P.; Foster, G.L.; Williams, B.

    2012-01-01

    Ocean acidification may have severe consequences for marine ecosystems; however, assessing its future impact is difficult because laboratory experiments and field observations are limited by their reduced ecologic complexity and sample period, respectively. In contrast, the geological record

  12. A geological and geophysical data collection system

    Digital Repository Service at National Institute of Oceanography (India)

    Sudhakar, T.; Afzulpurkar, S.

    A geological and geophysical data collection system using a Personal Computer is described below. The system stores data obtained from various survey systems typically installed in a charter vessel and can be used for similar applications on any...

  13. Safety assessment of HLW geological disposal system

    International Nuclear Information System (INIS)

    Naito, Morimasa

    2006-01-01

    In accordance with the Japanese nuclear program, the liquid waste with a high level of radioactivity arising from reprocessing is solidified in a stable glass matrix (vitrification) in stainless steel fabrication containers. The vitrified waste is referred to as high-level radioactive waste (HLW), and is characterized by very high initial radioactivity which, even though it decreases with time, presents a potential long-term risk. It is therefore necessary to thoroughly manage HLW from human and his environment. After vitrification, HLW is stored for a period of 30 to 50 years to allow cooling, and finally disposed of in a stable geological environment at depths greater than 300 m below surface. The deep underground environment, in general, is considered to be stable over geological timescales compared with surface environment. By selecting an appropriate disposal site, therefore, it is considered to be feasible to isolate the waste in the repository from man and his environment until such time as radioactivity levels have decayed to insignificance. The concept of geological disposal in Japan is similar to that in other countries, being based on a multibarrier system which combines the natural geological environment with engineered barriers. It should be noted that geological disposal concept is based on a passive safety system that does not require any institutional control for assuring long term environmental safety. To demonstrate feasibility of safe HLW repository concept in Japan, following technical steps are essential. Selection of a geological environment which is sufficiently stable for disposal (site selection). Design and installation of the engineered barrier system in a stable geological environment (engineering measures). Confirmation of the safety of the constructed geological disposal system (safety assessment). For site selection, particular consideration is given to the long-term stability of the geological environment taking into account the fact

  14. The basic concept for the geological surveys

    International Nuclear Information System (INIS)

    Deguchi, Akira; Takahashi, Yoshiaki

    1998-01-01

    Before the construction of high level radioactive waste repository, the implementing entity will go through three siting stages for the repository. In each of those three stages, the implementing entity will carry out geological surveys. In this report, the concept for the geological surveys is described, on the basic of 'The policies for the high level radioactive waste disposal (a tentative draft)' issued by the Atomic Energy Commission in July, 1997. (author)

  15. Modelling geological uncertainty for mine planning

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, M

    1980-07-01

    Geosimplan is an operational gaming approach used in testing a proposed mining strategy against uncertainty in geological disturbance. Geoplan is a technique which facilitates the preparation of summary analyses to give an impression of size, distribution and quality of reserves, and to assist in calculation of year by year output estimates. Geoplan concentrates on variations in seam properties and the interaction between geological information and marketing and output requirements.

  16. WIPP site and vicinity geological field trip

    International Nuclear Information System (INIS)

    Chaturvedi, L.

    1980-10-01

    The Environmental Evaluation Group (EEG) is conducting an assessment of the radiological health risks to people from the Waste Isolation Pilot Plant (WIPP). As a part of this work, EEG is making an effort to improve the understanding of those geological issues concerning the WIPP site which may affect the radiological consequences of the proposed repository. One of the important geological issues to be resolved is the timing and the nature of the dissolution processes which may have affected the WIPP site. EEG organized a two-day conference of geological scientists, titled Geotechnical Considerations for Radiological Hazard Assessment of WIPP on January 17-18, 1980. During this conference, it was realized that a field trip to the site would further clarify the different views on the geological processes active at the site. The field trip of June 16-18, 1980 was organized for this purpose. This report provides a summary of the field trip activities along with the participants post field trip comments. Important field stops are briefly described, followed by a more detailed discussion of critical geological issues. The report concludes with EEG's summary and recommendations to the US Department of Energy for further information needed to more adequately resolve concerns for the geologic and hydrologic integrity of the site

  17. Geological aspects of radioactive waste disposal

    International Nuclear Information System (INIS)

    Kobera, P.

    1985-01-01

    Geological formations suitable for burying various types of radioactive wastes are characterized applying criteria for the evaluation and selection of geological formations for building disposal sites for radioactive wastes issued in IAEA technical recommendations. They are surface disposal sites, disposal sites in medium depths and deep disposal sites. Attention is focused on geological formations usable for injecting self-hardening mixtures into cracks prepared by hydraulic decomposition and for injecting liquid radioactive wastes into permeable rocks. Briefly outlined are current trends of the disposal of radioactive wastes in Czechoslovakia and the possibilities are assessed from the geological point of view of building disposal sites for radioactive wastes on the sites of Czechoslovak nuclear power plants at Jaslovske Bohunice, Mochovce, Dukovany, Temelin, Holice (eastern Bohemia), Blahoutovice (northern Moravia) and Zehna (eastern Slovakia). It is stated that in order to design an optimal method of the burial of radioactive waste it will be necessary to improve knowledge of geological conditions in the potential disposal sites at the said nuclear plants. There is usually no detailed knowledge of geological and hydrological conditions at greater depths than 100 m. (Z.M.)

  18. The development of safeguards for geological repositories

    International Nuclear Information System (INIS)

    Van der Meer, K.

    2009-01-01

    Traditionally, research and development on geological repositories for High Level Waste (HLW) focuses on the short- and long-term safety aspects of the repository. If the repository will also be used for the disposal of spent fuel, safeguards aspects have to be taken into account. Safety and safeguards requirements may be contradictory; the safety of a geological repository is based on the non-intrusion of the geological containment, while safeguards require regular inspections of position and amount of the spent fuel. Examples to reconcile these contradictory requirements are the use of information required for the safety assessment of the geological repository for safeguards purposes and the adaptation of the safeguards approach to use non-intrusive inspection techniques. The principles of an inspection approach for a geological repository are now generally accepted within the IAEA. The practical applicability of the envisaged inspection techniques is still subject to investigation. It is specifically important for the Belgian situation that an inspection technique can be used in clay, the geological medium in which Belgium intends to dispose its HLW and spent fuel. The work reported in this chapter is the result of an international cooperation in the framework of the IAEA, in which SCK-CEN participates

  19. Geology of the Huntsville quadrangle, Alabama

    Science.gov (United States)

    Sanford, T.H.; Malmberg, G.T.; West, L.R.

    1961-01-01

    The 7 1/2-minute Huntsville quadrangle is in south-central Madison County, Ala., and includes part of the city of Hunstville. The south, north, east, and west boundaries of the quadrangle are about 3 miles north of the Tennessee River, 15 1/2 miles south of the Tennessee line, 8 miles west of the Jackson County line, and 9 miles east of the Limestone County line. The bedrock geology of the Huntsville quadrangle was mapped by the U.S. Geological Survey in cooperation with the city of Hunstville and the Geological Survey of Alabama as part of a detailed study of the geology and ground-water resources of Madison County, with special reference to the Huntsville area. G. T. Malmberg began the geologic mapping of the county in July 1953, and completed it in April 1954. T. H. Sanford, Jr., assisted Malmberg in the final phases of the county mapping, which included measuring geologic sections with hand level and steel tape. In November 1958 Sanford, assisted by L. R. West, checked contacts and elevations in the Hunstville quadrangle; made revisions in the contact lines; and wrote the text for this report. The fieldwork for this report was completed in April 1959.

  20. Geological hazard monitoring system in Georgia

    Science.gov (United States)

    Gaprindashvili, George

    2017-04-01

    Georgia belongs to one of world's most complex mountainous regions according to the scale and frequency of Geological processes and damage caused to population, farmlands, and Infrastructure facilities. Geological hazards (landslide, debrisflow/mudflow, rockfall, erosion and etc.) are affecting many populated areas, agricultural fields, roads, oil and gas pipes, high-voltage electric power transmission towers, hydraulic structures, and tourist complexes. Landslides occur almost in all geomorphological zones, resulting in wide differentiation in the failure types and mechanisms and in the size-frequency distribution. In Georgia, geological hazards triggered by: 1. Activation of highly intense earthquakes; 2. Meteorological events provoking the disaster processes on the background of global climatic change; 3. Large-scale Human impact on the environment. The prediction and monitoring of Geological Hazards is a very wide theme, which involves different researchers from different spheres. Geological hazard monitoring is essential to prevent and mitigate these hazards. In past years in Georgia several monitoring system, such as Ground-based geodetic techniques, Debrisflow Early Warning System (EWS) were installed on high sensitive landslide and debrisflow areas. This work presents description of Geological hazard monitoring system in Georgia.

  1. Introductory Geology From the Liberal Arts Approach: A Geology-Sociology Linked Course

    Science.gov (United States)

    Walsh, E. O.; Davis, E.

    2008-12-01

    Geology can be a hard sell to college students, especially to college students attending small, liberal arts institutions in localities that lack exaggerated topography. At these schools, Geology departments that wish to grow must work diligently to attract students to the major; professors must be able to convince a wider audience of students that geology is relevant to their everyday lives. Toward this end, a Physical Geology course was linked with an introductory Sociology course through the common theme of Consumption. The same students took the two courses in sequence, beginning with the Sociology course and ending with Physical Geology; thus, students began by discussing the role of consumption in society and ended by learning about the geological processes and implications of consumption. Students were able to ascertain the importance of geology in their daily lives by connecting Earth processes to specific products they consume, such as cell phones and bottled water. Students were also able to see the connection between seemingly disparate fields of study, which is a major goal of the liberal arts. As a theme, Consumption worked well to grab the attention of students interested in diverse issues, such as environmental science or social justice. A one-hour lecture illustrating the link between sociology and geology was developed for presentation to incoming freshmen and their parents to advertise the course. Initial response has been positive, showing an increase in awareness of geological processes among students with a wide range of interests.

  2. OneGeology-Europe: architecture, portal and web services to provide a European geological map

    Science.gov (United States)

    Tellez-Arenas, Agnès.; Serrano, Jean-Jacques; Tertre, François; Laxton, John

    2010-05-01

    OneGeology-Europe is a large ambitious project to make geological spatial data further known and accessible. The OneGeology-Europe project develops an integrated system of data to create and make accessible for the first time through the internet the geological map of the whole of Europe. The architecture implemented by the project is web services oriented, based on the OGC standards: the geological map is not a centralized database but is composed by several web services, each of them hosted by a European country involved in the project. Since geological data are elaborated differently from country to country, they are difficult to share. OneGeology-Europe, while providing more detailed and complete information, will foster even beyond the geological community an easier exchange of data within Europe and globally. This implies an important work regarding the harmonization of the data, both model and the content. OneGeology-Europe is characterised by the high technological capacity of the EU Member States, and has the final goal to achieve the harmonisation of European geological survey data according to common standards. As a direct consequence Europe will make a further step in terms of innovation and information dissemination, continuing to play a world leading role in the development of geosciences information. The scope of the common harmonized data model was defined primarily by the requirements of the geological map of Europe, but in addition users were consulted and the requirements of both INSPIRE and ‘high-resolution' geological maps were considered. The data model is based on GeoSciML, developed since 2006 by a group of Geological Surveys. The data providers involved in the project implemented a new component that allows the web services to deliver the geological map expressed into GeoSciML. In order to capture the information describing the geological units of the map of Europe the scope of the data model needs to include lithology; age; genesis and

  3. Andra's geologic repository monitoring strategy

    International Nuclear Information System (INIS)

    Buschaert, S.; Lesoille, S.; Bertrand, J.; Landais, P.

    2012-01-01

    Document available in extended abstract form only. After having concluded a feasibility study of deep geological disposal for high-level and long-lived radioactive waste in 2005, Andra was charged by the Planning Act no. 2006-739 to design and create an industrial site for geological disposal called Cigeo which must be reversible for at least a century-long period. The French Safety Guide recommends that Andra develop a monitoring program to be implemented at repository construction and conducted until closure, and possibly after closure, with the aim to confirming prior expectations and enhancing knowledge of relevant processes. This abstract focuses on underground structure monitoring. The monitoring system is based on a combination of in-situ instrumentation and nondestructive methods to obtain the required level of reliable performance. To optimize the device distribution, we take into account both the repetitive design of disposal cells and the homogeneity of the rock properties. This resulted in distinguishing pilot disposal cells that are highly instrumented and standard disposal cells where the instrumentation density could be reduced; monitoring will rely mostly on robotic nondestructive evaluations. If monitoring technologies do not comply with all monitoring objectives, real withdrawal tests of high level wastes in some pilot disposal cells are also planned to provide the possibility of carrying out visual inspection, destructive analyses and samplings on construction materials. Such cells are planned to be dismantled because of the potential disturbance of their component performances from the testing process. Based on this overall strategy, Andra has analyzed the technical requirements that must be met by its monitoring equipment. First, these must be able to provide information on key THMCR (Thermal- Hydraulic-Mechanical-Chemical and Radiological) processes, to provide a three-dimensional image of a disposal component's behavior and thus to understand

  4. Radioactive waste disposal in geological formations

    International Nuclear Information System (INIS)

    Gera, F.

    1977-01-01

    The nuclear energy controversy, now raging in several countries, is based on two main issues: the safety of nuclear plants and the possibility to dispose safely of the long-lived radioactive wastes. Consideration of the evolution of the hazard potential of waste in function of decay time leads to a somewhat conservative reference containment time in the order of one hundred thousand years. Several concepts have been proposed for the disposal of long-lived wastes. At the present time, emplacement into suitable geological formations under land areas can be considered the most promising disposal option. It is practically impossible to define detailed criteria to be followed in selecting suitable sites for disposal of long-lived wastes. Basically there is a single criterion, namely; that the geological environment must be able to contain the wastes for at least a hundred thousand years. However, due to the extreme variability of geological settings, it is conceivable that this basic capability could be provided by a great variety of different conditions. The predominant natural mechanism by which waste radionuclides could be moved from a sealed repository in a deep geological formation into the biosphere is leaching and transfer by ground water. Hence the greatest challenge is to give a satisfactory demonstration that isolation from ground water will persist over the required containment time. Since geological predictions are necessarily affected by fairly high levels of uncertainty, the only practical approach is not a straight-forward forecast of future geological events, but a careful assessment of the upper limits of geologic changes that could take place in the repository area over the next hundred thousand years. If waste containment were to survive these extreme geological changes the disposal site could be considered acceptable. If some release of activity were to take place in consequence of the hypothetical events the disposal solution might still be

  5. Assessing correlations between geological hazards and health outcomes: Addressing complexity in medical geology.

    Science.gov (United States)

    Wardrop, Nicola Ann; Le Blond, Jennifer Susan

    2015-11-01

    The field of medical geology addresses the relationships between exposure to specific geological characteristics and the development of a range of health problems: for example, long-term exposure to arsenic in drinking water can result in the development of skin conditions and cancers. While these relationships are well characterised for some examples, in others there is a lack of understanding of the specific geological component(s) triggering disease onset, necessitating further research. This paper aims to highlight several important complexities in geological exposures and the development of related diseases that can create difficulties in the linkage of exposure and health outcome data. Several suggested approaches to deal with these complexities are also suggested. Long-term exposure and lengthy latent periods are common characteristics of many diseases related to geological hazards. In combination with long- or short-distance migrations over an individual's life, daily or weekly movement patterns and small-scale spatial heterogeneity in geological characteristics, it becomes problematic to appropriately assign exposure measurements to individuals. The inclusion of supplementary methods, such as questionnaires, movement diaries or Global Positioning System (GPS) trackers can support medical geology studies by providing evidence for the most appropriate exposure measurement locations. The complex and lengthy exposure-response pathways involved, small-distance spatial heterogeneity in environmental components and a range of other issues mean that interdisciplinary approaches to medical geology studies are necessary to provide robust evidence. Copyright © 2015. Published by Elsevier Ltd.

  6. GDA (Geologic Data Assistant), an ArcPad extension for geologic mapping: code, prerequisites, and instructions

    Science.gov (United States)

    ,

    2006-01-01

    GDA (Geologic Data Assistant) is an extension to ArcPad, a mobile mapping software program by Environmental Systems Research Institute (ESRI) designed to run on personal digital assistant (PDA) computers. GDA and ArcPad allow a PDA to replace the paper notebook and field map traditionally used for geologic mapping. GDA allows easy collection of field data.

  7. Geology of the Harper Quadrangle, Liberia

    Science.gov (United States)

    Brock, M.R.; Chidester, A.H.; Baker, M.G.W.

    1974-01-01

    As part of a program undertaken cooperatively by the Liberian Geological Survey (LGS) and the U. S. Geological Survey (USGS), under the sponsorship of the Government of Liberia and the Agency for International Development, U. S. Department of State, Liberia was mapped by geologic and geophysical methods during the period 1965 to 1972. The resulting geologic and geophysical maps are published in ten folios, each covering one quadrangle (see index map). The first systematic mapping in the Harper quadrangle was by Baker, S. P. Srivastava, and W. E. Stewart (LGS) at a scale of 1:500,000 in the vicinity of Harper in the southeastern, and of Karloke in the northeastern part of the quadrangle in 1960-61. Brock and Chidester carried out systematic mapping of the quadrangle at a scale of 1:250,000 in the period September 1971-May 1972; the geologic map was compiled from field data gathered by project geologists and private companies as indicated in the source diagram, photogeologic maps, interpretation of airborne magnetic and radiometric surveys, field mapping, and ground-based radiometric surveys in which hand-held scintillators were used. R. W. Bromery, C. S. Wotorson, and J. C. Behrendt contributed to the interpretation of geophysical data. Total-intensity aeromagnetic and total-count gamma radiation maps (Behrendt and Wotorson, in press a, b), and unpublished data derived from those maps, including the near-surface and the regional magnetic components and aeromagnetic/radiometric correlations, were used in the interpretation.

  8. Bureau of Economic Geology. 1978 annual report

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-01

    Bureau research programs and projects are designed to address many of the State's major concerns in the areas of geologic, energy, mineral, land, and environmental resouces. Research programs incorporate geologic concepts that will build toward an understanding of a specific resource and its impact on human activities. In addition to resource assessments in uranium, lignite, and geopressured geothermal energy, the Bureau continued research into analysis of governmental policy related to energy. Systemic geologic mapping, coastal studies, basin analysis projects, and investigations in other areas of economic geology further indicate the range of research programs carried forward in 1978. Specifically, research on mineral resources and land resources, coastal studies, hydrogeology, basin studies, geologic mapping, and other research (tektites and meteorites, carboniferous of Texas, depositional environments of the Marble Falls Formation, Central Texas) are reported. The establishment of the Mining and Mineral Resources Research Institute is followed. Contracts and grant support and contract reports are listed. The publications eminating from the Bureau are listed. Services rendered by the Bureau and personnel information are included. (MCW)

  9. Wave Propagation in Jointed Geologic Media

    Energy Technology Data Exchange (ETDEWEB)

    Antoun, T

    2009-12-17

    Predictive modeling capabilities for wave propagation in a jointed geologic media remain a modern day scientific frontier. In part this is due to a lack of comprehensive understanding of the complex physical processes associated with the transient response of geologic material, and in part it is due to numerical challenges that prohibit accurate representation of the heterogeneities that influence the material response. Constitutive models whose properties are determined from laboratory experiments on intact samples have been shown to over-predict the free field environment in large scale field experiments. Current methodologies for deriving in situ properties from laboratory measured properties are based on empirical equations derived for static geomechanical applications involving loads of lower intensity and much longer durations than those encountered in applications of interest involving wave propagation. These methodologies are not validated for dynamic applications, and they do not account for anisotropic behavior stemming from direcitonal effects associated with the orientation of joint sets in realistic geologies. Recent advances in modeling capabilities coupled with modern high performance computing platforms enable physics-based simulations of jointed geologic media with unprecedented details, offering a prospect for significant advances in the state of the art. This report provides a brief overview of these modern computational approaches, discusses their advantages and limitations, and attempts to formulate an integrated framework leading to the development of predictive modeling capabilities for wave propagation in jointed and fractured geologic materials.

  10. Geological Effects on Lightning Strike Distributions

    KAUST Repository

    Berdahl, J. Scott

    2016-05-16

    Recent advances in lightning detection networks allow for detailed mapping of lightning flash locations. Longstanding rumors of geological influence on cloud-to-ground (CG) lightning distribution and recent commercial claims based on such influence can now be tested empirically. If present, such influence could represent a new, cheap and efficient geophysical tool with applications in mineral, hydrothermal and oil exploration, regional geological mapping, and infrastructure planning. This project applies statistical analysis to lightning data collected by the United States National Lightning Detection Network from 2006 through 2015 in order to assess whether the huge range in electrical conductivities of geological materials plays a role in the spatial distribution of CG lightning. CG flash densities are mapped for twelve areas in the contiguous United States and compared to elevation and geology, as well as to the locations of faults, railroads and tall towers including wind turbines. Overall spatial randomness is assessed, along with spatial correlation of attributes. Negative and positive polarity lightning are considered separately and together. Topography and tower locations show a strong influence on CG distribution patterns. Geology, faults and railroads do not. This suggests that ground conductivity is not an important factor in determining lightning strike location on scales larger than current flash location accuracies, which are generally several hundred meters. Once a lightning channel is established, however, ground properties at the contact point may play a role in determining properties of the subsequent stroke.

  11. Impact, and its implications for geology

    International Nuclear Information System (INIS)

    Marvin, U.B.

    1988-01-01

    The publication of seminal texts on geology and on meteoritics in the 1790s, laid the groundwork for the emergence of each discipline as a modern branch of science. Within the past three decades, impact cratering has become universally accepted as a process that sculptures the surfaces of planets and satellites throughout the solar system. Nevertheless, one finds in-depth discussions of impact processes mainly in books on the Moon or in surveys of the Solar System. The historical source of the separation between meteoritics and geology is easy to identify. It began with Hutton. Meteorite impact is an extraordinary event acting instantaneously from outside the Earth. It violates Hutton's principles, which were enlarged upon and firmly established as fundamental to the geological sciences by Lyell. The split between meteoritics and geology surely would have healed as early as 1892 if the investigations conducted by Gilbert (1843-1918) at the crater in northern Arizona had yielded convincing evidence of meteorite impact. The 1950s and 1960s saw a burgeoning of interest in impact processes. The same period witnessed the so-called revolution in the Earth Sciences, when geologists yielded up the idea of fixed continents and began to view the Earth's lithosphere as a dynamic array of horizontally moving plates. Plate tectonics, however, is fully consistent with the geological concepts inherited from Hutton: the plates slowly split, slide, and suture, driven by forces intrinsic to the globe

  12. Medical Geology: a globally emerging discipline

    Energy Technology Data Exchange (ETDEWEB)

    Bunnell, J.E.; Finkelman, R.B.; Centeno, J.A.; Selinus, O. [Armed Forces Institute of Pathology, Washington, DC (United States)

    2007-07-01

    Medical Geology, the study of the impacts of geologic materials and processes on animal and human health, is a dynamic emerging discipline bringing together the geoscience, biomedical, and public health communities to solve a wide range of environmental health problems. Among the Medical Geology described in this review are examples of both deficiency and toxicity of trace element exposure. Goiter is a widespread and potentially serious health problem caused by deficiency of iodine. In many locations the deficiency is attributable to low concentrations of iodine in the bedrock. Similarly, deficiency of selenium in the soil has been cited as the principal cause of juvenile cardiomyopathy and muscular abnormalities. Overexposure to arsenic is one of the most widespread Medical Geology problems affecting more than one hundred million people in Bangladesh, India, China, Europe, Africa and North and South America. The arsenic exposure is primarily due to naturally high levels in groundwater but combustion of mineralized coal has also caused arsenic poisoning. Dental and skeletal fluorosis also impacts the health of millions of people around the world and, like arsenic, is due to naturally high concentrations in drinking water and, to a lesser extent, coal combustion. Other Medical Geology issues described include geophagia, the deliberate ingestion of soil, exposure to radon, and ingestion of high concentrations of organic compounds in drinking water. Geoscience and biomedical/public health researchers are teaming to help mitigate these health problems as well as various non-traditional issues for geoscientists such as vector-borne diseases.

  13. Geological disposal of radioactive waste. Safety requirements

    International Nuclear Information System (INIS)

    2006-01-01

    This Safety Requirements publication is concerned with providing protection to people and the environment from the hazards associated with waste management activities related to disposal, i.e. hazards that could arise during the operating period and following closure. It sets out the protection objectives and criteria for geological disposal and establishes the requirements that must be met to ensure the safety of this disposal option, consistent with the established principles of safety for radioactive waste management. It is intended for use by those involved in radioactive waste management and in making decisions in relation to the development, operation and closure of geological disposal facilities, especially those concerned with the related regulatory aspects. This publication contains 1. Introduction; 2. Protection of human health and the environment; 3. The safety requirements for geological disposal; 4. Requirements for the development, operation and closure of geological disposal facilities; Appendix: Assurance of compliance with the safety objective and criteria; Annex I: Geological disposal and the principles of radioactive waste management; Annex II: Principles of radioactive waste management

  14. A Geospatial Information Grid Framework for Geological Survey

    OpenAIRE

    Wu, Liang; Xue, Lei; Li, Chaoling; Lv, Xia; Chen, Zhanlong; Guo, Mingqiang; Xie, Zhong

    2015-01-01

    The use of digital information in geological fields is becoming very important. Thus, informatization in geological surveys should not stagnate as a result of the level of data accumulation. The integration and sharing of distributed, multi-source, heterogeneous geological information is an open problem in geological domains. Applications and services use geological spatial data with many features, including being cross-region and cross-domain and requiring real-time updating. As a result of ...

  15. Digital geologic map in the scale 1:50 000

    International Nuclear Information System (INIS)

    Kacer, S.; Antalik, M.

    2005-01-01

    In this presentation authors present preparation of new digital geologic map of the Slovak Republic. This map is prepared by the State Geological Institute of Dionyz Stur as a part of the project Geological information system GeoIS. One of the basic information geologic layers, which will be accessible on the web-site will be digital geologic map of the Slovak Republic in the scale 1: 50 000

  16. Research on geological disposal: R and D concept on geological disposal

    International Nuclear Information System (INIS)

    1993-01-01

    The objective on geological disposal of high-level radioactive wastes are to ensure the long term radiological protection of the human and his environment in accordance with current internationally agreed radiation protection principles. The principle of geological disposal is to settle the high-level wastes in deep underground so as to isolate them from the human and his environment considering the existence of groundwater. Japan is currently in the stage of assessing technical feasibility of geological disposal to the extent practicable. In accordance with the AEC (Atomic Energy Commission) policy in 1989, PNC (Power Reactor and Nuclear Fuel Development Corporation) has conducted the research and development on geological disposal in three areas: 1) studies of geological environment, 2) research and development of disposal technology, and 3) performance assessment study. (author)

  17. The Geologic History of Seawater

    Science.gov (United States)

    Holland, H. D.

    2003-12-01

    following account of his unsuccessful attempt to do so (Birch, 1756 and Black, 1966):Mr. Winthrop's letter written from Boston to Mr. Oldenburg was read, giving an account of the trials made by him at sea with the instrument for sounding of depths without a line, and with the vessel for drawing water from the bottom of the sea; both which proved successless, the former by reason of too much wind at the time of making soundings; the latter, on account of the leaking of the vessel. Capt. Taylor being to go soon to Virginia, and offering himself to make the same experiments, the society recommended to him the trying of the one in calm weather, and of the other with a stanch vessel.Mr. Hooke mentioning, that a better way might be suggested to make the experiment above-mentioned, was desired to think farther upon it, and to bring in an account thereof at the next meeting.A little more than one hundred years later, in the 1780s, John Walker (1966) lectured at Edinburgh on the saltness of the oceans. He marshaled all of the available data and concluded that "these reasons seem all to point to this, that the water of the ocean in respect to saltness is pretty much what it ever has been."In this opinion he disagreed with Halley (1715), who suggested that the salinity of the oceans has increased with time, and that the ratio of the total salt content of the oceans to the rate at which rivers deliver salt to the sea could be used to ascertain the age of the Earth. The first really serious attempt to measure geologic time by this method was made by Joly (1899). His calculations were refined by Clarke (1911), who inferred that the age of the ocean, since the Earth assumed its present form, is somewhat less than 100 Ma. He concluded, however, that "the problem cannot be regarded as definitely solved until all available methods of estimation shall have converged on one common conclusion." There was little appreciation in his approach for the magnitude of: (i) the outputs of salt from the

  18. Geologic coal assessment: The interface with economics

    Science.gov (United States)

    Attanasi, E.D.

    2001-01-01

    Geologic resource assessments describe the location, general characteristics, and estimated volumes of resources, whether in situ or technically recoverable. Such compilations are only an initial step in economic resource evaluation. This paper identifies, by examples from the Illinois and Appalachian basins, the salient features of a geologic assessment that assure its usefulness to downstream economic analysis. Assessments should be in sufficient detail to allocate resources to production units (mines or wells). Coal assessments should include the spatial distribution of coal bed characteristics and the ability to allocate parts of the resource to specific mining technologies. For coal bed gas assessment, the production well recoveries and well deliverability characteristics must be preserved and the risk structure should be specified so dryholes and noncommercial well costs are recovered by commercially successful wells. ?? 2001 International Association for Mathematical Geology.

  19. A Geology Sampling System for Small Bodies

    Science.gov (United States)

    Naids, Adam J.; Hood, Anthony D.; Abell, Paul; Graff, Trevor; Buffington, Jesse

    2016-01-01

    Human exploration of microgravity bodies is being investigated as a precursor to a Mars surface mission. Asteroids, comets, dwarf planets, and the moons of Mars all fall into this microgravity category and some are being discussed as potential mission targets. Obtaining geological samples for return to Earth will be a major objective for any mission to a small body. Currently, the knowledge base for geology sampling in microgravity is in its infancy. Humans interacting with non-engineered surfaces in microgravity environment pose unique challenges. In preparation for such missions a team at the NASA Johnson Space Center has been working to gain experience on how to safely obtain numerous sample types in such an environment. This paper describes the type of samples the science community is interested in, highlights notable prototype work, and discusses an integrated geology sampling solution.

  20. A Geology Sampling System for Microgravity Bodies

    Science.gov (United States)

    Hood, Anthony; Naids, Adam

    2016-01-01

    Human exploration of microgravity bodies is being investigated as a precursor to a Mars surface mission. Asteroids, comets, dwarf planets, and the moons of Mars all fall into this microgravity category and some are been discussed as potential mission targets. Obtaining geological samples for return to Earth will be a major objective for any mission to a microgravity body. Currently the knowledge base for geology sampling in microgravity is in its infancy. Humans interacting with non-engineered surfaces in microgravity environment pose unique challenges. In preparation for such missions a team at the NASA Johnson Space Center has been working to gain experience on how to safely obtain numerous sample types in such an environment. This paper describes the type of samples the science community is interested in, highlights notable prototype work, and discusses an integrated geology sampling solution.

  1. Geological study of radioactive waste repositories

    International Nuclear Information System (INIS)

    Oyama, Takahiro; Kitano, Koichi

    1987-01-01

    The investigation of the stability and the barrier efficiency of the deep underground radioactive waste repositories become a subject of great concern. The purpose of this paper is to gather informations on the geology, engineering geology and hydrogeology in deep galleries in Japan. Conclusion can be summarised as follows: (1) The geological structure of deep underground is complicated. (2) Stress in deep underground is greatly affected by crustal movement. (3) Rock-burst phenomena occur in the deep underground excavations. (4) In spite of deep underground, water occasionally gush out from the fractured zone of rock mass. These conclusion will be useful for feasibility study of underground waste disposal and repositories in Japan. (author)

  2. Geological and Petrographic Characteristics of Kimberlite Pipes

    Directory of Open Access Journals (Sweden)

    N. N. Zinchuk

    2016-12-01

    Full Text Available Studies of the geological structure and petrochemical composition of the Siberian Platform kimberlites indicated complexity, diversity of geological, tectonic, and paleogeographic situations, which must be considered for proper prospecting-exploration for diamonds in each area of investigation. Information about petrochemical composition of potential diatremes, hosting, and overlying sedimentary and magmatic formations is an important prerequisite for prospecting of kimberlite deposits in different geologic-tectonic conditions. The most attention should be paid to typomorphic specific features of primary and secondary minerals of diatremes. Each diamondiferous region is characterized by a certain set of typomorphic associations of kimberlites primary and secondary minerals. The diamonds with ultrabasic association of solid phase inclusions (olivine, chrome-spinel, pyrope, etc. dominate in majority of kimberlite pipes.

  3. The geology of Piz Pian Grand

    International Nuclear Information System (INIS)

    Huber, M.; Staeuble, J.

    1987-01-01

    Nagra has identified four potential sites for a repository for low- and intermediate-level waste. Exploration work is already underway at Oberbauenstock (UR) and Piz Pian Grand (GR). As part of the investigations in the Piz Pian Grand area, geological surface mapping was carried out between 1984 and 1987. Since the data obtained is still being evaluated, it would be premature to draw any interpretative conclusions at this stage. On the other hand, some of the most significant observations of this work can be summarised here. As a first step, the geological framework in which these investigations are to be seen should be defined. Observations will then be made on the rock content (lithology) and geometric structure (structural geology) of the area. (author) 6 figs

  4. Determining probabilities of geologic events and processes

    International Nuclear Information System (INIS)

    Hunter, R.L.; Mann, C.J.; Cranwell, R.M.

    1985-01-01

    The Environmental Protection Agency has recently published a probabilistic standard for releases of high-level radioactive waste from a mined geologic repository. The standard sets limits for contaminant releases with more than one chance in 100 of occurring within 10,000 years, and less strict limits for releases of lower probability. The standard offers no methods for determining probabilities of geologic events and processes, and no consensus exists in the waste-management community on how to do this. Sandia National Laboratories is developing a general method for determining probabilities of a given set of geologic events and processes. In addition, we will develop a repeatable method for dealing with events and processes whose probability cannot be determined. 22 refs., 4 figs

  5. The geologic history of Margaritifer basin, Mars

    Science.gov (United States)

    Salvatore, M. R.; Kraft, M. D.; Edwards, Christopher; Christensen, P.R.

    2016-01-01

    In this study, we investigate the fluvial, sedimentary, and volcanic history of Margaritifer basin and the Uzboi-Ladon-Morava (ULM) outflow channel system. This network of valleys and basins spans more than 8000 km in length, linking the fluvially dissected southern highlands and Argyre Basin with the northern lowlands via Ares Vallis. Compositionally, thermophysically, and morphologically distinct geologic units are identified and are used to place critical relative stratigraphic constraints on the timing of geologic processes in Margaritifer basin. Our analyses show that fluvial activity was separated in time by significant episodes of geologic activity, including the widespread volcanic resurfacing of Margaritifer basin and the formation of chaos terrain. The most recent fluvial activity within Margaritifer basin appears to terminate at a region of chaos terrain, suggesting possible communication between surface and subsurface water reservoirs. We conclude with a discussion of the implications of these observations on our current knowledge of Martian hydrologic evolution in this important region.

  6. Brine flow in heated geologic salt.

    Energy Technology Data Exchange (ETDEWEB)

    Kuhlman, Kristopher L.; Malama, Bwalya

    2013-03-01

    This report is a summary of the physical processes, primary governing equations, solution approaches, and historic testing related to brine migration in geologic salt. Although most information presented in this report is not new, we synthesize a large amount of material scattered across dozens of laboratory reports, journal papers, conference proceedings, and textbooks. We present a mathematical description of the governing brine flow mechanisms in geologic salt. We outline the general coupled thermal, multi-phase hydrologic, and mechanical processes. We derive these processes governing equations, which can be used to predict brine flow. These equations are valid under a wide variety of conditions applicable to radioactive waste disposal in rooms and boreholes excavated into geologic salt.

  7. Deterministic geologic processes and stochastic modeling

    International Nuclear Information System (INIS)

    Rautman, C.A.; Flint, A.L.

    1992-01-01

    This paper reports that recent outcrop sampling at Yucca Mountain, Nevada, has produced significant new information regarding the distribution of physical properties at the site of a potential high-level nuclear waste repository. consideration of the spatial variability indicates that her are a number of widespread deterministic geologic features at the site that have important implications for numerical modeling of such performance aspects as ground water flow and radionuclide transport. Because the geologic processes responsible for formation of Yucca Mountain are relatively well understood and operate on a more-or-less regional scale, understanding of these processes can be used in modeling the physical properties and performance of the site. Information reflecting these deterministic geologic processes may be incorporated into the modeling program explicitly using geostatistical concepts such as soft information, or implicitly, through the adoption of a particular approach to modeling

  8. Application of underwater radon measurements in geology

    Energy Technology Data Exchange (ETDEWEB)

    Varhegyi, A.; Baranyi, I.; Gerzson, I. (Mecsek Ore Mining Enterprise, Pecs (Hungary)); Somogyi, G.; Hakl, J.; Hunyadi, I. (Magyar Tudomanyos Akademia, Debrecen (Hungary). Atommag Kutato Intezete)

    1988-01-01

    Based on the observed phenomenon of geogas migration in microbubble form from deeper regions, the authors have developed a new model for the vertical transport of radon released from deeper sources. The physical properties of the rock relating to the upflow of microbubbles below the groundwater level are considered and the radon transport parameter of rocks is introduced. The vertical distribution of radon concentration in the case of a multi-layered geological model is given and the penetration depth of underwater radon measurements is examined. Aspects of underwater radon detection by the nuclear track detector technique are analyzed. The radon transport model gives a new theoretical basis for several applications of radon measurements in geology. The advantages of underwater radon detection have already been proved in uranium exploration. Further geological applications are proposed in earthquake prediction, in volcanology, in the survey of active faults and thermal waters. (author).

  9. The First Global Geological Map of Mercury

    Science.gov (United States)

    Prockter, L. M.; Head, J. W., III; Byrne, P. K.; Denevi, B. W.; Kinczyk, M. J.; Fassett, C.; Whitten, J. L.; Thomas, R.; Ernst, C. M.

    2015-12-01

    Geological maps are tools with which to understand the distribution and age relationships of surface geological units and structural features on planetary surfaces. Regional and limited global mapping of Mercury has already yielded valuable science results, elucidating the history and distribution of several types of units and features, such as regional plains, tectonic structures, and pyroclastic deposits. To date, however, no global geological map of Mercury exists, and there is currently no commonly accepted set of standardized unit descriptions and nomenclature. With MESSENGER monochrome image data, we are undertaking the global geological mapping of Mercury at the 1:15M scale applying standard U.S. Geological Survey mapping guidelines. This map will enable the development of the first global stratigraphic column of Mercury, will facilitate comparisons among surface units distributed discontinuously across the planet, and will provide guidelines for mappers so that future mapping efforts will be consistent and broadly interpretable by the scientific community. To date we have incorporated three major datasets into the global geological map: smooth plains units, tectonic structures, and impact craters and basins >20 km in diameter. We have classified most of these craters by relative age on the basis of the state of preservation of morphological features and standard classification schemes first applied to Mercury by the Mariner 10 imaging team. Additional datasets to be incorporated include intercrater plains units and crater ejecta deposits. In some regions MESSENGER color data is used to supplement the monochrome data, to help elucidate different plains units. The final map will be published online, together with a peer-reviewed publication. Further, a digital version of the map, containing individual map layers, will be made publicly available for use within geographic information systems (GISs).

  10. OneGeology Web Services and Portal as a global geological SDI - latest standards and technology

    Science.gov (United States)

    Duffy, Tim; Tellez-Arenas, Agnes

    2014-05-01

    The global coverage of OneGeology Web Services (www.onegeology.org and portal.onegeology.org) achieved since 2007 from the 120 participating geological surveys will be reviewed and issues arising discussed. Recent enhancements to the OneGeology Web Services capabilities will be covered including new up to 5 star service accreditation scheme utilising the ISO/OGC Web Mapping Service standard version 1.3, core ISO 19115 metadata additions and Version 2.0 Web Feature Services (WFS) serving the new IUGS-CGI GeoSciML V3.2 geological web data exchange language standard (http://www.geosciml.org/) with its associated 30+ IUGS-CGI available vocabularies (http://resource.geosciml.org/ and http://srvgeosciml.brgm.fr/eXist2010/brgm/client.html). Use of the CGI simpelithology and timescale dictionaries now allow those who wish to do so to offer data harmonisation to query their GeoSciML 3.2 based Web Feature Services and their GeoSciML_Portrayal V2.0.1 (http://www.geosciml.org/) Web Map Services in the OneGeology portal (http://portal.onegeology.org). Contributing to OneGeology involves offering to serve ideally 1:1000,000 scale geological data (in practice any scale now is warmly welcomed) as an OGC (Open Geospatial Consortium) standard based WMS (Web Mapping Service) service from an available WWW server. This may either be hosted within the Geological Survey or a neighbouring, regional or elsewhere institution that offers to serve that data for them i.e. offers to help technically by providing the web serving IT infrastructure as a 'buddy'. OneGeology is a standards focussed Spatial Data Infrastructure (SDI) and works to ensure that these standards work together and it is now possible for European Geological Surveys to register their INSPIRE web services within the OneGeology SDI (e.g. see http://www.geosciml.org/geosciml/3.2/documentation/cookbook/INSPIRE_GeoSciML_Cookbook%20_1.0.pdf). The Onegeology portal (http://portal.onegeology.org) is the first port of call for anyone

  11. History Matching: Towards Geologically Reasonable Models

    DEFF Research Database (Denmark)

    Melnikova, Yulia; Cordua, Knud Skou; Mosegaard, Klaus

    This work focuses on the development of a new method for history matching problem that through a deterministic search finds a geologically feasible solution. Complex geology is taken into account evaluating multiple point statistics from earth model prototypes - training images. Further a function...... that measures similarity between statistics of a training image and statistics of any smooth model is introduced and its analytical gradient is computed. This allows us to apply any gradientbased method to history matching problem and guide a solution until it satisfies both production data and complexity...

  12. X-ray fluorescence in geology

    International Nuclear Information System (INIS)

    Dutra, C.V.; Gomes, C.B.

    1990-01-01

    This work is about the X-ray fluorescence aplication in geology. It's showing the X-ray origin and excitation. About the instrumentation this work shows the following: X-ray tubes, colimators, analysers crystals, detectors, amplifiers, pulse height selector, and others electronic components. By X-ray fluorescente are done quantitative and qualitative geological analysis and this work shows this analysis and its detection limits. The problems determination is the example. In this work was done yet the comparative analysis of the various instrumental methods in geochemistry. (C.G.) [pt

  13. Optimal sampling schemes applied in geology

    CSIR Research Space (South Africa)

    Debba, Pravesh

    2010-05-01

    Full Text Available Methodology 6 Results 7 Background and Research Question for Study 2 8 Study Area and Data 9 Methodology 10 Results 11 Conclusions Debba (CSIR) Optimal Sampling Schemes applied in Geology UP 2010 2 / 47 Outline 1 Introduction to hyperspectral remote... sensing 2 Objective of Study 1 3 Study Area 4 Data used 5 Methodology 6 Results 7 Background and Research Question for Study 2 8 Study Area and Data 9 Methodology 10 Results 11 Conclusions Debba (CSIR) Optimal Sampling Schemes applied in Geology...

  14. The carbon dioxide capture and geological storage

    International Nuclear Information System (INIS)

    2006-06-01

    This road-map proposes by the Group Total aims to inform the public on the carbon dioxide capture and geological storage. One possible means of climate change mitigation consists of storing the CO 2 generated by the greenhouse gases emission in order to stabilize atmospheric concentrations. This sheet presents the CO 2 capture from lage fossil-fueled combustion installations, the three capture techniques and the CO 2 transport options, the geological storage of the CO 2 and Total commitments in the domain. (A.L.B.)

  15. Geologic disposal of radioactive waste, 1983

    International Nuclear Information System (INIS)

    Pigford, T.H.

    1983-10-01

    Geologic repositories for radioactive waste are evolving from conceptualization to the development of specific designs. Estimates of long-term hazards must be based upon quantitative predictions of environmental releases over time periods of hundreds of thousands of years and longer. This paper summarizes new techniques for predicting the long-term performance of repositories, it presents estimates of future environmental releases and radiation doses that may result for conceptual repositories in various geologic media, and it compares these predictions with an individual dose criterion of 10 -4 Sv/y. 50 references, 11 figures, 6 tables

  16. Geologic Map of the Thaumasia Region, Mars

    Science.gov (United States)

    Dohm, Janes M.; Tanaka, Kenneth L.; Hare, Trent M.

    2001-01-01

    The geology of the Thaumasia region (fig. 1, sheet 3) includes a wide array of rock materials, depositional and erosional landforms, and tectonic structures. The region is dominated by the Thaumasia plateau, which includes central high lava plains ringed by highly deformed highlands; the plateau may comprise the ancestral center of Tharsis tectonism (Frey, 1979; Plescia and Saunders, 1982). The extensive structural deformation of the map region, which is without parallel on Mars in both complexity and diversity, occurred largely throughout the Noachian and Hesperian periods (Tanaka and Davis, 1988; Scott and Dohm, 1990a). The deformation produced small and large extensional and contractional structures (fig. 2, sheet 3) that resulted from stresses related to the formation of Tharsis (Frey, 1979; Wise and others, 1979; Plescia and Saunders, 1982; Banerdt and others, 1982, 1992; Watters and Maxwell, 1986; Tanaka and Davis, 1988; Francis, 1988; Watters, 1993; Schultz and Tanaka, 1994), from magmatic-driven uplifts, such as at Syria Planum (Tanaka and Davis, 1988; Dohm and others, 1998; Dohm and Tanaka, 1999) and central Valles Marineris (Dohm and others, 1998, Dohm and Tanaka, 1999), and from the Argyre impact (Wilhelms, 1973; Scott and Tanaka, 1986). In addition, volcanic, eolian, and fluvial processes have highly modified older surfaces in the map region. Local volcanic and tectonic activity often accompanied episodes of valley formation. Our mapping depicts and describes the diverse terrains and complex geologic history of this unique ancient tectonic region of Mars. The geologic (sheet 1), paleotectonic (sheet 2), and paleoerosional (sheet 3) maps of the Thaumasia region were compiled on a Viking 1:5,000,000-scale digital photomosaic base. The base is a combination of four quadrangles: the southeast part of Phoenicis Lacus (MC–17), most of the southern half of Coprates (MC–18), a large part of Thaumasia (MC–25), and the northwest margin of Argyre (MC–26

  17. Development of JNC geological disposal technical information integration system for geological environment field

    International Nuclear Information System (INIS)

    Tsuchiya, Makoto; Ueta, Shinzo; Ohashi, Toyo

    2004-02-01

    Enormous data on geology, geological structure, hydrology, geochemistry and rock properties should be obtained by various investigation/study in the geological disposal study. Therefore, 'JNC Geological Disposal Technical Information Integration System for Geological Environment Field' was developed in order to manage these data systematically and to support/promote the use of these data for the investigators concerned. The system is equipped with data base to store the information of the works and the background information of the assumptions built up in the works on each stage of data flow ('instigative', → 'data sampling' → interpretation' → conceptualization/modeling/simulation' → 'output') in the geological disposal study. In this system the data flow is shown as 'plan' composed of task' and 'work' to be done in the geological disposal study. It is possible to input the data to the database and to refer data from the database by using GUI that shows the data flow as 'plan'. The system was installed to the server computer possessed by JNC and the system utilities were checked on both the server computer and client computer also possessed by JNC. (author)

  18. History of geological disposal concept (3). Implementation phase of geological disposal (2000 upward)

    International Nuclear Information System (INIS)

    Masuda, Sumio; Sakuma, Hideki; Umeki, Hiroyuki

    2015-01-01

    Important standards and concept about geological disposal have been arranged as an international common base and are being generalized. The authors overview the concept of geological disposal, and would like this paper to help arouse broad discussions for promoting the implementation plan of geological disposal projects in the future. In recent years, the scientific and technological rationality of geological disposal has been recognized internationally. With the addition of discussions from social viewpoints such as ethics, economy, etc., geological disposal projects are in the stage of starting after establishment of social consensus. As an international common base, the following consolidated and systematized items have been presented as indispensable elements in promoting business projects: (1) step-by-step approach, (2) safety case, (3) reversibility and recovery potential, and (4) trust building and communications. This paper outlines the contents of the following cases, where international common base was reflected on the geological disposal projects in Japan: (1) final disposal method and safety regulations, and (2) impact of the Great East Japan Earthquake and Fukushima Daiichi Nuclear Power Station accident on geological disposal plan. (A.O.)

  19. Geological studies in Alaska by the U.S. Geological Survey, 1999

    Science.gov (United States)

    Gough, Larry P.; Wilson, Frederic H.

    2001-01-01

    The collection of nine papers that follow continue the series of U.S. Geological Survey (USGS) investigative reports in Alaska under the broad umbrella of the geologic sciences. The series presents new and sometimes preliminary findings that are of interest to earth scientists in academia, government, and industry; to land and resource managers; and to the general public. Reports presented in Geologic Studies in Alaska cover a broad spectrum of topics from various parts of the State (fig. 1), serving to emphasize the diversity of USGS efforts to meet the Nation's needs for earth-science information in Alaska.

  20. Digital Geologic Mapping and Integration with the Geoweb: The Death Knell for Exclusively Paper Geologic Maps

    Science.gov (United States)

    House, P. K.

    2008-12-01

    The combination of traditional methods of geologic mapping with rapidly developing web-based geospatial applications ('the geoweb') and the various collaborative opportunities of web 2.0 have the potential to change the nature, value, and relevance of geologic maps and related field studies. Parallel advances in basic GPS technology, digital photography, and related integrative applications provide practicing geologic mappers with greatly enhanced methods for collecting, visualizing, interpreting, and disseminating geologic information. Even a cursory application of available tools can make field and office work more enriching and efficient; whereas more advanced and systematic applications provide new avenues for collaboration, outreach, and public education. Moreover, they ensure a much broader audience among an immense number of internet savvy end-users with very specific expectations for geospatial data availability. Perplexingly, the geologic community as a whole is not fully exploring this opportunity despite the inevitable revolution in portends. The slow acceptance follows a broad generational trend wherein seasoned professionals are lagging behind geology students and recent graduates in their grasp of and interest in the capabilities of the geoweb and web 2.0 types of applications. Possible explanations for this include: fear of the unknown, fear of learning curve, lack of interest, lack of academic/professional incentive, and (hopefully not) reluctance toward open collaboration. Although some aspects of the expanding geoweb are cloaked in arcane computer code, others are extremely simple to understand and use. A particularly obvious and simple application to enhance any field study is photo geotagging, the digital documentation of the locations of key outcrops, illustrative vistas, and particularly complicated geologic field relations. Viewing geotagged photos in their appropriate context on a virtual globe with high-resolution imagery can be an

  1. The French geological disposal project CIGEO

    Energy Technology Data Exchange (ETDEWEB)

    Ouzounian, G. [ANDRA, Chatenay-Malabry cedex (France)

    2015-07-01

    This paper discusses the major management options for high level waste in France. Safety of the population and protection of the environment is the first priority. Reprocessing of used fuel and reuse of valuable material is considered. Reversible geological disposal (Cigéo Project) is the reference solution for the high-level waste.

  2. Assessment of effectiveness of geologic isolation systems

    International Nuclear Information System (INIS)

    Soldat, J.K.; Napier, B.A.; Strenge, D.L.; Schreckhise, R.G.; Zimmerman, M.G.

    1981-01-01

    The program for Assessment of Effectiveness of Geologic Isolation Systems (AEGIS) is managed through PNL's Water and Land Resources Department and is funded through the Battelle Office of Nuclear Waste Isolation (ONWI). The Ecological Sciences Department was involved in two subtasks under AEGIS: Dose Methodology Development and Reference Site Initial Analysis (RSIA) for a Salt Dome

  3. The geology of the Olkiluoto area

    International Nuclear Information System (INIS)

    Anttila, P.; Paulamaeki, S.; Lindberg, A.; Paananen, M.; Koistinen, T.; Front, K.; Pitkaenen, P.

    1992-12-01

    Teollisuuden Voima Oy (TVO) is preparing for the final disposal of spent nuclear fuel from the Olkiluoto nuclear power plant deep in the Finnish bedrock. An area close to the power plant at Olkiluoto, Eurajoki, was one of the five areas selected in 1987 for the preliminary site investigations. A summary of the geological conditions at the Olkiluoto site is presented in the report

  4. 939 Department of Geology and Mineral Science

    African Journals Online (AJOL)

    USER

    2015-11-12

    Nov 12, 2015 ... Department of Geology and Mineral Sciences, University of Ilorin, Ilorin, Nigeria P.M.B. 1515, Ilorin, Nigeria. 2. Department of Petroleum Engineering and Geosciences, Petroleum Training Institute, P.M.B.. 20, Effurun, Delta State, Nigeria. Abstract. Hydrochemical investigation of thirty groundwater samples ...

  5. Deep geological disposal research in Argentina

    International Nuclear Information System (INIS)

    Ninci Martinez, Carlos A.; Ferreyra, Raul E.; Vullien, Alicia R.; Elena, Oscar; Lopez, Luis E.; Maloberti, Alejandro; Nievas, Humberto O.; Reyes, Nancy C.; Zarco, Juan J.; Bevilacqua, Arturo M.; Maset, Elvira R.; Jolivet, Luis A.

    2001-01-01

    Argentina shall require a deep geological repository for the final disposal of radioactive wastes, mainly high-level waste (HLW) and spent nuclear fuel produced at two nuclear power plants and two research reactors. In the period 1980-1990 the first part of feasibility studies and a basic engineering project for a radioactive high level waste repository were performed. From the geological point of view it was based on the study of granitic rocks. The area of Sierra del Medio, Province of Chubut, was selected to carry out detailed geological, geophysical and hydrogeological studies. Nevertheless, by the end of the eighties the project was socially rejected and CNEA decided to stop it at the beginning of the nineties. That decision was strongly linked with the little attention paid to social communication issues. Government authorities were under a strong pressure from social groups which demanded the interruption of the project, due to lack of information and the fear it generated. The lesson learned was: social communication activities shall be carried out very carefully in order to advance in the final disposal of HLW at deep geological repositories (author)

  6. RANCH, Radionuclide Migration in Geological Media

    International Nuclear Information System (INIS)

    Patry, J.; Hadermann, J.

    1991-01-01

    1 - Description of problem or function: One-dimensional transport of radionuclide chains through layered geological media, taking into account longitudinal dispersion, convection and retention. 2 - Method of solution: Semi-analytical solution by Laplace transform. Convolution integrals. 3 - Restrictions on the complexity of the problem: Maximum 4 nuclides and 10 layers. Peclet number large compared to 1

  7. Iapetus: Tectonic structure and geologic history

    Science.gov (United States)

    Croft, Steven K.

    1991-01-01

    Many papers have been written about the surface of Iapetus, but most of these have discussed either the nature of the strongly contrasting light and dark materials or the cratering record. Little has been said about other geologic features on Iapetus, such as tectonic structures, which would provide constraints on Iapetus' thermal history. Most references have suggested that there is no conclusive evidence for any tectonic activity, even when thermal history studies indicate that there should be. However, a new study of Iapetus' surface involving the use of stereo pairs, an extensive tectonic network has been recognized. A few new observations concerning the craters and dark material were also made. Thus the geology and geologic history of Iapetus can be more fully outlined than before. The tectonic network is shown along with prominent craters and part of the dark material in the geologic/tectonic sketch map. The topology of crater rims and scarps are quite apparent and recognizable in the different image pairs. The heights and slopes of various features given are based on comparison with the depths of craters 50 to 100 km in diameter, which are assumed to have the same depths as craters of similar diameter on Rhea and Titania.

  8. Journal of Mining and Geology: Editorial Policies

    African Journals Online (AJOL)

    Focus and Scope. Journal of Mining and Geology is the scientific publication of the Nigerian Mining and Geosciences Society. Its scope covers the fields of the geosciences, mining, metallurgy, materials science and geoenvironmental studies. Section Policies. Articles. Checked Open Submissions, Checked Indexed ...

  9. Geology of the 241-C Tank Farm

    International Nuclear Information System (INIS)

    Price, W.H.; Fecht, K.R.

    1976-04-01

    A series of maps have been compiled to document the structure and stratigraphy of the sediments underlying the high-level radioactive waste storage tank farms located within the Energy Research and Development Administration Hanford Reservation. The primary purpose of these maps is to provide basic geologic information to be utilized to evaluate the impact of suspected and confirmed tank leaks

  10. Geology of the 241-TY Tank Farm

    International Nuclear Information System (INIS)

    Price, W.H.; Fecht, K.R.

    1976-04-01

    A series of maps have been compiled to document the structure and stratigraphy of the sediments underlying the high-level radioactive waste storage tank farms located within the ERDA Hanford Reservation. The primary purpose of these maps is to provide basic geologic information to be utilized to evaluate the impact of suspected and confirmed tank leaks

  11. Geology of the 241-SX Tank Farm

    International Nuclear Information System (INIS)

    Price, W.H.; Fecht, K.R.

    1976-04-01

    A series of maps have been compiled to document the structure and stratigraphy of the sediments underlying the high-level radioactive waste storage tank farms located within the Energy Research and Development Administration Hanford Reservation. The primary purpose of these maps is to provide basic geologic information to be utilized to evaluate the impact of suspected and confirmed tank leaks

  12. Geology of the 241-S Tank Farm

    International Nuclear Information System (INIS)

    Price, W.H.; Fecht, K.R.

    1976-04-01

    A series of maps have been compiled to document the structure and stratigraphy of the sediments underlying the high-level radioactive waste storage tank farms located within the Energy Research and Development Administration Hanford Reservation. The primary purpose of these maps is to provide basic geologic information to be utilized to evaluate the impact of suspected and confirmed tank leaks

  13. Geology of the 241-T Tank Farm

    International Nuclear Information System (INIS)

    Price, W.H.; Fecht, K.R.

    1976-04-01

    A series of maps have been compiled to document the structure and stratigraphy of the sediments underlying the high-level radioactive waste storage tank farms located within the Energy Research and Development Administration Hanford Reservation. The primary purpose of these maps is to provide basic geologic information to be utilized to evaluate the impact of suspected and confirmed tank leaks

  14. Geology of the 241-TX Tank Farm

    International Nuclear Information System (INIS)

    Price, W.H.; Fecht, K.R.

    1976-04-01

    A series of maps have been compiled to document the structure and stratigraphy of the sediments underlying the high-level radioactive waste storage tank farms located within the Energy Research and Development Administration Hanford Reservation. The primary purpose of these maps is to provide basic geologic information to be utilized to evaluate the impact of suspected and confirmed tank leaks

  15. Geology of the 241-U Tank Farm

    International Nuclear Information System (INIS)

    Price, W.H.; Fecht, K.R.

    1976-04-01

    A series of maps has been compiled to document the structure and stratigraphy of the sediments underlying the high-level radioactive waste storage tank farms located within the Energy Research and Development Administration Hanford Reservation. The primary purpose of these maps is to provide basic geologic information to be utilized to evaluate the impact of suspected and confirmed tank leaks

  16. Geologic processes and sedimentary system on Mars

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, A S

    1988-01-01

    The subject is covered under following headings: (1) morphology and processes at the martian surface (impact craters, water and ice, landslide, aeolian processes, volcanism, chemical weathering); (2) the sedimentary system (martian geologic documentation, sedimentary balance, regolith, pyroclastics, erosion phenomena, deposit and loss of sediments) as well as (3) summary and final remarks. 72 refs.

  17. Bedrock Geologic Map of Vermont - Dikes

    Data.gov (United States)

    Vermont Center for Geographic Information — The bedrock geology was last mapped at a statewide scale 50 years ago at a scale of 1:250,000 (Doll and others, 1961). The 1961 map was compiled from 1:62,500-scale...

  18. Bedrock Geologic Map of Vermont - Units

    Data.gov (United States)

    Vermont Center for Geographic Information — The bedrock geology was last mapped at a statewide scale 50 years ago at a scale of 1:250,000 (Doll and others, 1961). The 1961 map was compiled from 1:62,500-scale...

  19. Geological mapping using fractal technique | Lawal | Nigerian ...

    African Journals Online (AJOL)

    In this work the use of fractal scaling exponents for geological mapping was first investigated using theoretical models, and results from the analysis showed that the scaling exponents mapped isolated bodies but did not properly resolve bodies close to each other. However application on real data (the Mamfe basin, the ...

  20. Hydrogeological evaluation of geological formations in Ashanti ...

    African Journals Online (AJOL)

    This study, therefore, employed Geographical Information System to assess some of these hydrogeological parameters in the Ashanti Region using the ordinary kriging interpolation method. Data on 2,788 drilled boreholes in the region were used and the assessment focused on the various geological formations in the ...

  1. Geological mapping using fractal technique | Lawal | Nigerian ...

    African Journals Online (AJOL)

    ... in Nigeria) showed good correlation with the geological maps of the areas. The results also indicated that basement rocks can generally be represented by scaling exponents with values ranging between -3.0 and -2.0. Keywords: Fractal, dimension, susceptibility, spectra, scaling exponent. Nigerian Journal of Physics Vol.

  2. Geologically ancient DNA: fact or artefact?

    DEFF Research Database (Denmark)

    Hebsgaard, Martin Bay; Phillips, Matthew J.; Willerslev, Eske

    2005-01-01

    Studies continue to report ancient DNA sequences and viable microbial cells that are many millions of years old. In this paper we evaluate some of the most extravagant claims of geologically ancient DNA. We conclude that although exciting, the reports suffer from inadequate experimental setup and...

  3. How many geologic repositories will be needed

    International Nuclear Information System (INIS)

    Evans, T.J.; Halstead, R.J.

    1987-01-01

    DOE's postponement of site-specific work on the second repository program had rekindled debate over the number of geologic repositories needed for disposal of high level radioactive waste. The multiple repository approach grew out of the March, 1979 IRG report, which recommended co-disposal of civilian and defense HLW in a system of regional repositories. The multiple repository approach was adopted by DOE, and incorporated in the Nuclear Waste Policy Act passed by Congress in December, 1982. Since the late 1970's, the slower than anticipated growth of the nuclear power industry has substantially reduced earlier estimates of the amount of civilian spent fuel which will require geologic disposal. Reactors currently in operation (78.5 GWe) and reactors in the construction pipeline (28 GWe) are expected to discharge about 103,200 MTU of spent fuel by the year 2036, assuming no increase in fuel burnup rate. By the year 2020, defense high level radioactive wastes equivalent to as much as 27,000 MTU could require geologic disposal. Small amounts of high level waste from other sources will also require geologic disposal. Total disposal requirements appear to be less than 140,000 MTU. The five sites nominated for the first repository, as well as hypothetical sites in granite, the host rock under primary consideration for the second repository, all appear capable of accommodating up to 140,000 MTU

  4. Goethe's Italian Journey and the geological landscape

    Science.gov (United States)

    Coratza, Paola; Panizza, Mario

    2015-04-01

    Over 220 years ago Johann Wolfgang von Goethe undertook a nearly two-years long and fascinating journey to Italy, a destination dreamed for a long time by the great German writer. During his journey from Alps to Sicily Goethe reflects on landscape, geology, morphology of "Il Bel Paese", sometimes providing detailed descriptions and acute observations concerning the great and enduring laws by which the earth and all within it are governed. He was an observer, with the eye of the geologist and landscape painter, as he himself stated, and therefore he had a 360 degree focus on all parts of the territory. From the Brenner Pass to Sicily, Goethe reflects on landscape, contrasting morphologies, the genesis of territories, providing detailed descriptions useful for reconstructing the conditions of the territory and crops of the late 18th century. His diary is a description of the impressions he received from the country and its people, mingled with reflections upon art, science and literature. Goethe studied mineralogical and geological phenomena and drew up notes on the life of the people, the climate and the plants. On various scientific occasions and, in particular, within the framework of the Italian Association "Geologia & Turismo", of the Working Group "Geomorphosites" of the International Association of Geomorphologists and the International Year of Planet Earth, the opportunity to re-examine Goethe's travels in Italy from a geological viewpoint was recognised. In the present paper an attempt was made to reproduce the geotourism itinerary ante litteram of the writer to Italy, one of the most important tourist destination worldwide, thanks to its rich cultural and natural heritage and the outstanding aesthetic qualities of the complex natural landscape. This project was essentially conceived with a twofold purpose. First of all, an attempt was made to reproduce the journey of a great writer, as an example of description of landscape perceived and described as

  5. VOSGES, a long and rich geologic history

    Science.gov (United States)

    Dominique, Carteaux; Cyrille, Delangle; Sophie, Demangel

    2015-04-01

    The study of geology in scientific classes is often too theoretical and abstract for the pupils. How can teachers make the link between some samples of rocks observed in a practical class and the geologic story of the region? There's nothing better than outdoor education to establish a relationship between the rock observed in macroscopic and microscopic scale in the classroom,with the outcrop scale and the landscape scale in the field: all of them are the result of a fascinating geologic history.Our pupils are lucky enough to live at the heart of a modest mountain massif that has a very rich geologic story: the massif from Vosges situated in the east of France. During two expeditions we show the students all the following tectonic processes: Accretion at the scale of the landscape with the Rhenish Ditch (tectonic and volcanic markers) Obductionis observed due to ophiolites found in the massive of Thalhorn (peridotite, gabbro and sedimentary marine rocks of great depth). Collisionis illuminated with numerous sites like the schists of Steige, the phyllite of Villé, the gneisses of Climont. Subductionis captured bystudying the outcrops of magmatic rocks within the continental crust (andesite, diorite, granodiorite). At each of the stops we have the students, from a hand sample, to findits story in a more global context. So the theory becomes reality. A study of thin slides of rocks observed on the ground finishes these exits and so various scales of understanding are approached. The long and rich geologic history of Vosges maybe reconstituted on hundreds of million years, allowing certainly giving another aspect to the living environment of our pupils.

  6. Charles Lyell and scientific thinking in geology

    Science.gov (United States)

    Virgili, Carmina

    2007-07-01

    Charles Lyell (1797-1875) was born at Kinnordy, Scotland. His father, an amateur botanist, and his grandfather, a navigator, gave him very soon a taste for the observation of the Nature. He went to the Oxford University to study classical literature, but he also followed the geological course of William Buckland. After having been employed as jurist for some years, in 1827 he decided on a career of geologist and held the chair of geology of the King's College of London, from 1831 on. He was a contemporary of Cuvier, Darwin, von Humboldt, Hutton, Lavoisier, and was elected 'membre correspondant' of the 'Académie des sciences, France', in January 1862. Charles Lyell is one of the eminent geologists who initiated the scientific thinking in geology, in which his famous volumes of the Principles of Geology were taken as the authority. These reference volumes are based on multiple observations and field works collected during numerous fieldtrips in western Europe (principally Spain, France, and Italy) and North America. To his name are attached, among others: ( i) the concept of uniformitarism (or actualism), which was opposed to the famous catastrophism, in vogue at that time, and which may be summarized by the expression "The present is the key to the past"; ( ii) the division of the Tertiary in three series denominated Eocene, Miocene, and Pliocene, due to the study of the age of strata by fossil faunas; ( iii) the theory according to which the orogenesis of a mountain chain, as the Pyrenees, results from different pulsations on very long time scales and was not induced by a unique pulsation during a short and intense period. The uniformity of the laws of Nature is undeniably a principle Charles Lyell was the first to state clearly and to apply to the study of the whole Earth's crust, which opened a new era in geology.

  7. Geological exploration of Angola from Sumbe to Namibe: A review at the frontier between geology, natural resources and the history of geology

    Science.gov (United States)

    Masse, Pierre; Laurent, Olivier

    2016-01-01

    This paper provides a review of the Geological exploration of the Angola Coast (from Sumbe to Namibe) from pioneer's first geological descriptions and mining inventory to the most recent publications supported by the oil industry. We focus our attention on the following periods: 1875-1890 (Paul Choffat's work, mainly), 1910-1949 (first maps at country scale), 1949-1974 (detailed mapping of the Kwanza-Namibe coastal series), 1975-2000, with the editing of the last version of the Angola geological map at 1:1 million scale and the progressive completion of previous works. Since 2000, there is a renewal in geological fieldwork publications on the area mainly due to the work of university teams. This review paper thus stands at the frontier between geology, natural resources and the history of geology. It shows how geological knowledge has progressed in time, fueled by economic and scientific reasons.

  8. Economic geology of the Bingham mining district, Utah, with a section on areal geology, and an introduction on general geology

    Science.gov (United States)

    Boutwell, J.M.; Keith, Arthur; Emmons, S.F.

    1905-01-01

    The field work of which this report represents the final results was first undertaken in the summer of the year 1900. This district had long been selected by the writer as worthy of special economic investigation, as well on account of the importance of its products as because of its geological structure and the peculiar relations of its ore deposits. It was not, however, until the summer mentioned above that the means at the disposal of the Survey, both pecuniary and scientific, justified its undertaking. As originally planned, the areal or surface geology was to have been worked out by Mr. Keith, who had already spent many years in unraveling the complicated geological structure of the Appalachian province, while Mr. Boutwell, who had more recently become attached to the Survey, was to have charge of the underground geology, or a study of the ore deposits, under the immediate supervision of the writer. When the time came for actually taking the field, it was found that the pressure of other work would not permit Mr. Keith to carry out fully the part allotted to him, and in consequence a part of his field work has fallen to Mr. Boutwell. Field work was commenced by the writer and Mr. Boutwell early in July, 1900. Mr. Keith joined the party on August 10, but was obliged to leave for other duties early in September. Mr. Boutwell carried on his field work continuously from July until December, taking up underground work after the snowfall had rendered work on the surface geology impracticable. The geological structure had proved to be unexpectedly intricate and complicated, so that, on the opening of the field season of 1901, it was found necessary to make further study in the light of results already worked out, and Mr. Boutwell spent some weeks in the district in the early summer of 1901. His field work that year, partly in California and partly in Arizona, as assistant to Mr. Waldemar Lindgren, lasted through the summer and winter and well into the spring of 1902

  9. Conduct of Geologic Field Work During Planetary Exploration: Why Geology Matters

    Science.gov (United States)

    Eppler, Dean B.

    2010-01-01

    The science of field geology is the investigative process of determining the distribution of rock units and structures on a planet fs surface, and it is the first-order data set that informs all subsequent studies of a planet, such as geochemistry, geochronology, geophysics, or remote sensing. For future missions to the Moon and Mars, the surface systems deployed must support the conduct of field geology if these endeavors are to be scientifically useful. This lecture discussed what field geology is all about.why it is important, how it is done, how conducting field geology informs many other sciences, and how it affects the design of surface systems and the implementation of operations in the future.

  10. Database system of geological information for geological evaluation base of NPP sites(I)

    International Nuclear Information System (INIS)

    Lim, C. B.; Choi, K. R.; Sim, T. M.; No, M. H.; Lee, H. W.; Kim, T. K.; Lim, Y. S.; Hwang, S. K.

    2002-01-01

    This study aims to provide database system for site suitability analyses of geological information and a processing program for domestic NPP site evaluation. This database system program includes MapObject provided by ESRI and Spread 3.5 OCX, and is coded with Visual Basic language. Major functions of the systematic database program includes vector and raster farmat topographic maps, database design and application, geological symbol plot, the database search for the plotted geological symbol, and so on. The program can also be applied in analyzing not only for lineament trends but also for statistic treatment from geologically site and laboratory information and sources in digital form and algorithm, which is usually used internationally

  11. Regional and site geological frameworks : proposed Deep Geologic Repository, Bruce County, Ontario

    Energy Technology Data Exchange (ETDEWEB)

    Raven, K.; Sterling, S.; Gaines, S.; Wigston, A. [Intera Engineering Ltd., Ottawa, ON (Canada); Frizzell, R. [Nuclear Waste Management Organization, Toronto, ON (Canada)

    2009-07-01

    The Nuclear Waste Management Organization is conducting geoscientific studies on behalf of Ontario Power Generation into the proposed development of a Deep Geologic Repository (DGR) for low and intermediate level radioactive waste (L and ILW) at the Bruce site, near Tiverton, Ontario. This paper presented a regional geological framework for the site that was based on a review of regional drilling; structural geology; paleozoic stratigraphy and sedimentology; a 3D geological framework model; a DGR geological site characterization model; bedrock stratigraphy and marker beds; natural fracture frequency data; and formation predictability. The studies have shown that the depth, thickness, orientation and rock quality of the 34 rock formations, members or units that comprise the 840 m thick Paleozoic bedrock sequence at the Bruce site are very uniform and predictable over distances of several kilometres. The proposed DGR will be constructed as an engineered facility comprising a series of underground emplacement rooms at a depth of 680 metres below ground within argillaceous limestones. The geoscientific studies are meant to provide a basis for the development of descriptive geological, hydrogeological and geomechanical models of the DGR site that will facilitate environmental and safety assessments. 11 refs., 3 tabs., 9 figs.

  12. Assessment of effectiveness of geologic isolation systems: the AEGIS geologic simulation model

    International Nuclear Information System (INIS)

    Foley, M.G.; Petrie, G.M.

    1981-02-01

    Assessment of the post-closure performance of a nuclear waste repository has two basic components: the identification and analysis of potentially disruptive sequences and the pattern of geologic events and processes causing each sequence, and the identification and analysis of the environmental consequences of radionuclide transport and interactions subsequent to disruption of a repository. The AEGIS Scenario Analysis Task is charged with identifying and analyzing potenially disruptive sequences of geologic events and processes. The Geologic Simulation Model (GSM) was developed to evaluate the geologic/hydrologic system surrounding an underground repository, and describe the phenomena that alone, or in concert, could perturb the system and possibly cause a loss of repository integrity. The AEGIS approach is described in this report. It uses an integrated series of models for repository performance analysis; the GSM for a low-resolution, long-term, comprehensive evaluation of the geologic/hydrologic system, followed by more detailed hydrogeologic, radionuclide transport, and dose models to more accurately assess the consequences of disruptive sequences selected from the GSM analyses. This approach is felt to be more cost-effective than an integrated one because the GSM can be used to estimate the likelihoods of different potentially disruptive future evolutionary developments within the geologic/hydrologic system. The more costly consequence models can then be focused on a few disruptive sequences chosen for their representativeness and effective probabilities

  13. Geological investigations for geological model of deep underground geoenvironment at the Mizunami Underground Research Laboratory (MIU)

    International Nuclear Information System (INIS)

    Tsuruta, Tadahiko; Tagami, Masahiko; Amano, Kenji; Matsuoka, Toshiyuki; Kurihara, Arata; Yamada, Yasuhiro; Koike, Katsuaki

    2013-01-01

    Japan Atomic Energy Agency (JAEA) is performing a geoscientific research project, the Mizunami Underground Research Laboratory (MIU) project, in order to establish scientific and technological basis for geological disposal of high-level radioactive wastes. The MIU is located in crystalline rock environment, in Mizunami City, central Japan. Field investigations include geological mapping, reflection seismic surveys, several borehole investigations and geological investigations in the research galleries to identify the distribution and heterogeneity of fractures and faults that are potential major flowpaths for groundwater. The results of these field investigations are synthesized and compiled for the purpose of geological modeling. The field investigations indicate that the Main Shaft at the MIU intersected low permeability NNW oriented faults. A high permeability fracture zone in the granite, a significant water inflow point, was observed in the Ventilation Shaft. Development of the geological model focusing 3D spatial relationships at different scales and evolution of the geoenvironment are underway. This paper describes geological investigations applied in the MIU project, focusing on the evaluation of their effectiveness to understand for deep underground geoenvironment. (author)

  14. Surficial Geologic Map of the Town of Randolph, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital data from VG10-2 Wright, S., Larsen, F., and Springston, G., 2010,�Surficial Geologic Map of the Town of Randolph, Vermont: Vermont Geological Survey...

  15. Surficial geology and hydrogeology of the Town Londonderry, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital data from VG08-2 De Simone, D., and Gale, M., 2008,�Surficial geology and hydrogeology of the Town Londonderry, Vermont: Vermont Geological Survey Open-File...

  16. Geologic-SURFICIAL62K-Sand and gravel pits

    Data.gov (United States)

    Vermont Center for Geographic Information — The GeologicSurficial_SURFICIAL data consists of surficial geologic features as digitized from the 1:62,500 15 minute series USGS quadrangle map sheets, compiled by...

  17. Proceedings of the 14. Symposium on Geology from Northeast

    International Nuclear Information System (INIS)

    1991-01-01

    Works on geology, including topics about sedimentology, stratigraphy, paleontology, geomorphology, environmental, hydrogeology, petrology, geochemistry, geochronology, geophysics, geotectonics and structural geology are described in this symposium. (C.G.C.)

  18. Summary on several key techniques in 3D geological modeling.

    Science.gov (United States)

    Mei, Gang

    2014-01-01

    Several key techniques in 3D geological modeling including planar mesh generation, spatial interpolation, and surface intersection are summarized in this paper. Note that these techniques are generic and widely used in various applications but play a key role in 3D geological modeling. There are two essential procedures in 3D geological modeling: the first is the simulation of geological interfaces using geometric surfaces and the second is the building of geological objects by means of various geometric computations such as the intersection of surfaces. Discrete geometric surfaces that represent geological interfaces can be generated by creating planar meshes first and then spatially interpolating; those surfaces intersect and then form volumes that represent three-dimensional geological objects such as rock bodies. In this paper, the most commonly used algorithms of the key techniques in 3D geological modeling are summarized.

  19. Aniakchak National Monument and Preserve: Geologic resources inventory report

    Science.gov (United States)

    Hults, Chad P.; Neal, Christina

    2015-01-01

    This GRI report is a companion document to previously completed GRI digital geologic map data. It was written for resource managers to support science-informed decision making. It may also be useful for interpretation. The report was prepared using available geologic information, and the NPS Geologic Resources Division conducted no new fieldwork in association with its preparation. Sections of the report discuss distinctive geologic features and processes within the park, highlight geologic issues facing resource managers, describe the geologic history leading to the present-day landscape, and provide information about the GRI geologic map data. A poster illustrates these data. The Map Unit Properties Table summarizes report content for each geologic map unit.

  20. 3. South American symposium on isotope geology. Extended abstracts

    International Nuclear Information System (INIS)

    2001-10-01

    This publication include papers in the fields on Methodology, thermochronology, and geochronology; Evolution of cratonic South America; Magmatic processes; Environmental geology, hydrogeology, isotopic stratigraphy and paleoclimatology; Economic Geology and Evolution of the Andean margin of South America

  1. Bedrock Geologic Map of the Essex Junction Quadrangle, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital data from VG12-3, Gale, M., Kim. J., and Ruksznis, A., 2012, Bedrock Geologic Map of the essex Junction Quadrangle: Vermont Geological Survey Open File...

  2. Bedrock Geologic Map of the Hinesburg Quadrangle, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from Thompson, P., Thompson, T.B., and Doolan, B., 2004, Bedrock Geology of the Hinesburg quadrangle, Vermont. The bedrock geologic map data at a scale...

  3. Bedrock geologic map of the town of Williston, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG07-4, Kim, J., Gale, M., Thompson, P.J. and Derman, K., 2007, Bedrock geologic map of the town of Williston, Vermont: Vermont Geological Survey...

  4. Bedrock Geologic Map of the Bristol, VT Quadrangle

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital data from VG13-1 Kim, J, Weber, E, and Klepeis, K, 2013, Bedrock Geologic Map of the Bristol, VT Quadrangle: Vermont Geological Survey Open File Report...

  5. Does geology help in the final disposal of radioactive wastes?

    International Nuclear Information System (INIS)

    Schaer, U.

    1987-01-01

    High-level radioactive wastes have to be stored safely for thousands of years in deep geological formations. The question discussed is whether or not a geological prognosis over this span of time is possible. The main problem is groundwater

  6. Geology and hydrogeology of the Town of Calais, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital data from VG2016-1 Springston, G., Kim, J., Gale. M. and Thomas, E., 2016, Geology and hydrogeology of the Town of Calais, Vermont: Vermont Geological Survey...

  7. Natural Analogues of CO2 Geological Storage

    International Nuclear Information System (INIS)

    Perez del Villar, L.; Pelayo, M.; Recreo, F.

    2007-01-01

    Geological storage of carbon dioxide is nowadays, internationally considered as the most effective method for greenhouse gas emission mitigation, in order to minimize the global climate change universally accepted. Nevertheless, the possible risks derived of this long-term storage have a direct influence on its public acceptance. Among the favourable geological formations to store CO2, depleted oil and gas fields, deep saline reservoirs, and unamiable coal seams are highlighted. One of the most important objectives of the R and D projects related to the CO2 geological storage is the evaluation of the CO2 leakage rate through the above mentioned geological formations. Therefore, it is absolutely necessary to increase our knowledge on the interaction among CO2, storage and sealing formations, as well as on the flow paths and the physical resistance of the sealing formation. The quantification of the CO2 leakage rate is essential to evaluate the effects on the human and animal health, as well as for the ecosystem and water quality. To achieve these objectives, the study of the natural analogues is very useful in order to know the natural leakage rate to the atmosphere, its flow paths, the physical, chemical and mineralogical modifications due to the long term interaction processes among the CO2 and the storage and sealing formations, as well as the effects on the groundwaters and ecosystems. In this report, we have tried to summarise the main characteristics of the natural reservoirs and surficial sources of CO2, which are both natural analogues of the geological storage and CO2 leakage, studied in EEUU, Europe and Australia. The main objective of this summary is to find the possible applications for long-term risk prediction and for the performance assessment by means of conceptual and numerical modelling, which will allow to validate the predictive models of the CO2 storage behaviour, to design and develop suitable monitoring techniques to control the CO2 behaviour

  8. CHUVARDINSKY’S ANTIGLACIAL (GENERALIZED GEOLOGICAL CONCEPTION

    Directory of Open Access Journals (Sweden)

    P. K. Skufyin

    2016-12-01

    Full Text Available Based on the analytical study of V. G. Chuvardinsky’s monographs on the revision of the generally accepted glacial theory, the authors of the review concluded that there was convincing evidence of a fault-tectonic origin of ‘ice-exaration’ relief of the Baltic Shield. Developed by Chuvardinsky, a radically new methodology of boulder prospecting of ore deposits not only refuted the old glacial theory, but also led to the discovery of copper-nickel deposits, a new apatite alkaline massif, promising manifestation of copper-nickel ore, platinum group metals, native gold, chromite and other mineral resources. A thorough drilling of ice sheets in Greenland and Antarctica for the international project determined the absence of boulder material over the entire thickness of the ice, only pulverulent and fine particles (mainly volcanic ash were found in the ice. Bottom ice layers are immobilised, their function is preservation of the geological surface. V. G. Chuvardinsky far outstripped western and Russian scientists in the field of Earth Sciences. His field studies on the Baltic Shield not only refuted the mighty glacial theory, but also created and substantiated a new geological concept instead. Professor V. Z. Negrutsa was quite right when he wrote in his review on Chuvardinsky’s work (journal Geomorfologiya, 2003, no. 1, ‘Evidence of Chuvardinsky about tectonic origin of geological and geomorphological features traditionally associated with the Quaternary glaciation is so obvious and reproducible both by field observations and by geological modeling that is presented irrefutable and undeniable in its essence’. In general, assessing the scientific significance of V. G. Chuvardinsky’s works, it can be stated that his work would have done honour to research institutes of geological and geographical orientation according to the level of study of the geological material and the value of his field studies. His books present the material for

  9. Working towards a European Geological Data Infrastructure

    Science.gov (United States)

    van der Krogt, Rob; Hughes, Richard; Pedersen, Mikael; Serrano, Jean-Jacques; Lee, Kathryn A.; Tulstrup, Jørgen; Robida, François

    2013-04-01

    The increasing importance of geological information for policy, regulation and business needs at European and international level has been recognized by the European Parliament and the European Commission, who have called for the development of a common European geological knowledge base. The societal relevance of geoscience data/information is clear from many current issues such as shale gas exploration (including environmental impacts), the availability of critical mineral resources in a global economy, management and security with regard to geohazards (seismic, droughts, floods, ground stability), quality of (ground-)water and soil and societal responses to the impacts of climate change. The EGDI-Scope project responds to this, aiming to prepare an implementation plan for a pan-European Geological Data Infrastructure (EGDI), under the umbrella of the FP7 e- Infrastructures program. It is envisaged that the EGDI will build on geological datasets and models currently held by the European Geological Surveys at national and regional levels, and will also provide a platform for datasets generated by the large number of relevant past, ongoing and future European projects which have geological components. With European policy makers and decision makers from (international) industry as the main target groups (followed by research communities and the general public) stakeholder involvement is imperative to the successful realization and continuity of the EGDI. With these ambitions in mind, the presentation will focus on the following issues, also based on the first results and experiences of the EGDI-Scope project that started mid-2012: • The organization of stakeholder input and commitment connected to relevant 'use cases' within different thematic domains; a number of stakeholder representatives is currently involved, but the project is open to more extensive participation; • A large number of European projects relevant for data delivery to EGDI has been reviewed

  10. A Study of the Education of Geology

    Science.gov (United States)

    Berglin, R. S.; Baldridge, A. M.; Buxner, S.; Crown, D. A.

    2013-12-01

    An Evaluation and Assessment Method for Workshops in Science Education and Resources While many professional development workshops train teachers with classroom activities for students, Workshops in Science Education and Resources (WISER): Planetary Perspectives is designed to give elementary and middle school teachers the deeper knowledge necessary to be confident teaching the earth and space science content in their classrooms. Two WISER workshops, Deserts of the Solar System and Volcanoes of the Solar System, place an emphasis on participants being able to use learned knowledge to describe or 'tell the story of' a given rock. In order to understand how participants' knowledge and ability to tell the story changes with instruction, we are investigating new ways of probing the understanding of geologic processes. The study will include results from both college level geology students and teachers, focusing on their understanding of geologic processes and the rock cycle. By studying how new students process geologic information, teachers may benefit by learning how to better teach similar information. This project will help to transfer geologic knowledge to new settings and assess education theories for how people learn. Participants in this study include teachers participating in the WISER program in AZ and introductory level college students at St. Mary's College of California. Participants will be videotaped drawing out their thought process on butcher paper as they describe a given rock. When they are done, they will be asked to describe what they have put on the paper and this interview will be recorded. These techniques will be initially performed with students at St. Mary's College of California to understand how to best gather information. An evaluation of their prior knowledge and previous experience will be determined, and a code of their thought process will be recorded. The same students will complete a semester of an introductory college level Physical

  11. Some problems on remote sensing geology for uranium prospecting

    International Nuclear Information System (INIS)

    Yang Tinghuai.

    1988-01-01

    Remote sensing is a kind of very effective method which can be used in all stages of geological prospecting. Geological prospecting with remote sensing method must be based on different genetic models of ore deposits, characteristics of geology-landscape and comprehensive analysis for geophysical and geochemical data, that is, by way of conceptual model prospecting. The prospecting results based on remote sensing geology should be assessed from three aspects such as direct, indirect and potential ones

  12. Proceedings of the 7. Symposium on geology from southeastern Brazil

    International Nuclear Information System (INIS)

    2001-01-01

    This document presents papers on the following subjects: regional geology of the proterozoic and fanerozoic, metallic and non metallic resources, tectoni-sedimentary evolution of the eastern margin Brazil basins and petroleum geology applied to the Santos, Campos and Espirito Santo basins, engineering and environmental geologies, ornamental rocks/building materials/mineral waters/industrial ores

  13. 36 CFR 902.59 - Geological and geophysical information.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Geological and geophysical information. 902.59 Section 902.59 Parks, Forests, and Public Property PENNSYLVANIA AVENUE DEVELOPMENT... Geological and geophysical information. Any geological or geophysical information and data (including maps...

  14. 25 CFR 211.56 - Geological and geophysical permits.

    Science.gov (United States)

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Geological and geophysical permits. 211.56 Section 211.56... FOR MINERAL DEVELOPMENT Rents, Royalties, Cancellations and Appeals § 211.56 Geological and geophysical permits. Permits to conduct geological and geophysical operations on Indian lands which do not...

  15. 25 CFR 212.56 - Geological and geophysical permits.

    Science.gov (United States)

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Geological and geophysical permits. 212.56 Section 212.56... FOR MINERAL DEVELOPMENT Rents, Royalties, Cancellations, and Appeals § 212.56 Geological and geophysical permits. (a) Permits to conduct geological and geophysical operations on Indian lands which do not...

  16. 10 CFR 51.67 - Environmental information concerning geologic repositories.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Environmental information concerning geologic repositories... information concerning geologic repositories. (a) In lieu of an environmental report, the Department of Energy... connection with any geologic repository developed under Subtitle A of Title I, or under Title IV, of the...

  17. Predictive geology in nuclear-waste management

    International Nuclear Information System (INIS)

    Brotzen, O.

    1982-01-01

    The present situation at a specific site on the Baltic Shield is viewed in the light of its geologic history. Prediction, at a given level of confidence and from a limited number of drillholes of the minimum average spacing of conductive zones in subsurface rocks of low-hydraulic conductivity, is based on a combination of the binomial and Poisson distributions, regarding the holes as a profile sampling and assuming a cubic pattern of fractures. The data provide an empirical basis for linking the nature and frequency of past geologic events to their local effects. Special attention is given to the preservation of tectonic blocks of large rock volumes with low-hydraulic conductivity throughout the present cratonic stage, whereas intermittent movement can be traced in marked fault zones bordering the Shield and three different orogenies affected the surrounding regions. Rock mechanical, stochastic, and deterministic approaches are utilized to predict future effects from this basis. (author)

  18. Geology of Joshua Tree National Park geodatabase

    Science.gov (United States)

    Powell, Robert E.; Matti, Jonathan C.; Cossette, Pamela M.

    2015-09-16

    The database in this Open-File Report describes the geology of Joshua Tree National Park and was completed in support of the National Cooperative Geologic Mapping Program of the U.S. Geological Survey (USGS) and in cooperation with the National Park Service (NPS). The geologic observations and interpretations represented in the database are relevant to both the ongoing scientific interests of the USGS in southern California and the management requirements of NPS, specifically of Joshua Tree National Park (JOTR).Joshua Tree National Park is situated within the eastern part of California’s Transverse Ranges province and straddles the transition between the Mojave and Sonoran deserts. The geologically diverse terrain that underlies JOTR reveals a rich and varied geologic evolution, one that spans nearly two billion years of Earth history. The Park’s landscape is the current expression of this evolution, its varied landforms reflecting the differing origins of underlying rock types and their differing responses to subsequent geologic events. Crystalline basement in the Park consists of Proterozoic plutonic and metamorphic rocks intruded by a composite Mesozoic batholith of Triassic through Late Cretaceous plutons arrayed in northwest-trending lithodemic belts. The basement was exhumed during the Cenozoic and underwent differential deep weathering beneath a low-relief erosion surface, with the deepest weathering profiles forming on quartz-rich, biotite-bearing granitoid rocks. Disruption of the basement terrain by faults of the San Andreas system began ca. 20 Ma and the JOTR sinistral domain, preceded by basalt eruptions, began perhaps as early as ca. 7 Ma, but no later than 5 Ma. Uplift of the mountain blocks during this interval led to erosional stripping of the thick zones of weathered quartz-rich granitoid rocks to form etchplains dotted by bouldery tors—the iconic landscape of the Park. The stripped debris filled basins along the fault zones.Mountain ranges

  19. Geology and coal potential of Somaliland

    Energy Technology Data Exchange (ETDEWEB)

    M.Y. Ali [Petroleum Institute, Abu Dhabi (United Arab Emirates)

    2009-07-01

    Geological field mapping along with available geological and drilling data suggest that Somaliland (Northwestern Somalia) has favourable stratigraphy and structure for coal deposits. Lignitic to sub-bituminous coal deposits with ages from Jurassic to Oligocene-Miocene occur in various locations across the country including Hed-Hed valley south of Onkhor, Guveneh hills north of Las Dureh and Daban Basin southeast of Berbera. However, the coal occurrence at Hed-Hed has both the greatest thickness and highest quality. These deposits have the potential to provide an important alternative fuel resource which could alleviate the growing shortage of traditional fuels and assist in reducing the country's dependence on imported energy. However, further investigation, including drilling and laboratory analyses, still needs to be carried out, particularly on the Upper Cretaceous coal seams to evaluate the quality and resource potential of the deposits.

  20. Uranium ore deposits: geology and processing implications

    International Nuclear Information System (INIS)

    Belyk, C.L.

    2010-01-01

    There are fifteen accepted types of uranium ore deposits and at least forty subtypes readily identified around the world. Each deposit type has a unique set of geological characteristics which may also result in unique processing implications. Primary uranium production in the past decade has predominantly come from only a few of these deposit types including: unconformity, sandstone, calcrete, intrusive, breccia complex and volcanic ones. Processing implications can vary widely between and within the different geological models. Some key characteristics of uranium deposits that may have processing implications include: ore grade, uranium and gangue mineralogy, ore hardness, porosity, uranium mineral morphology and carbon content. Processing difficulties may occur as a result of one or more of these characteristics. In order to meet future uranium demand, it is imperative that innovative processing approaches and new technological advances be developed in order that many of the marginally economic traditional and uneconomic non-traditional uranium ore deposits can be exploited. (author)

  1. Geological-genetic classification for uranium deposits

    International Nuclear Information System (INIS)

    Terentiev, V.M.; Naumov, S.S.

    1997-01-01

    The paper describes a system for classification uranium deposits based on geological and genetic characteristics. The system is based on the interrelation and interdependence of uranium ore formation processes and other geological phenomena including sedimentation, magmatism and tectonics, as well as the evolution of geotectonic structures. Using these aspects, deposits are classified in three categories: endogenic - predominately hydrothermal and hydrothermal-metasomatic; exogenic - sedimentary diagenetic, biogenic sorption, and infiltrational; and polygenetic or composite types. The latter complex types includes: sedimentary/metamorphic and metamorphic and sedimentary/hydrothermal, where different ore generating processes have prevailed over a rock unit at different times. The 3 page classification is given in both the English and Russian languages. (author). 3 tabs

  2. The Geologic Story of the Uinta Mountains

    Science.gov (United States)

    Hansen, Wallace R.

    1969-01-01

    The opening of the West after the Civil War greatly stimulated early geologic exploration west of the 100th Meridian. One of the areas first studied, the Uinta Mountains region, gained wide attention as a result of the explorations of three Territorial Surveys, one headed by John Wesley Powell, one by Clarence King, and one by Ferdinand V. Hayden. Completion of the Union Pacific Railroad across southern Wyoming 100 years ago, in 1869, materially assisted geologic exploration, and the railheads at Green River and Rock Springs greatly simplified the outfitting of expeditions into the mountains. The overlap of the Powell, King, and Hayden surveys in the Uinta Mountains led to efforts that were less concerted than competitive and not without acrimony. Many parts of the area were seen by all three parties at almost the same time. Duplication was inevitable, of course, but all three surveys contributed vast quantities of new knowledge to the storehouse of geology, and many now-basic concepts arose from their observations. Powell's area of interest extended mainly southward from the Uinta Mountains to the Grand Canyon, including the boundless plateaus and canyons of southern Utah and northern Arizona. King's survey extended eastward from the High Sierra in California to Cheyenne, Wyoming, and encompassed a swath of country more than 100 miles wide. Hayden's explorations covered an immense region of mountains and basins from Yellowstone Park in Wyoming southeast throughout most of Colorado. Powell first entered the Uinta Mountains in the fall of 1868, having traveled north around the east end of the range from the White River country to Green River, Wyoming, then south over a circuitous route to Flaming Gorge and Browns Park, and finally back to the White River, where he spent the winter. In 1869, after reexamining much of the area visited the previous season, Powell embarked on his famous 'first boat trip' down the Green and Colorado Rivers. This trip was more exploratory

  3. Mined Geologic Disposal System Requirements Document

    International Nuclear Information System (INIS)

    1993-01-01

    This Mined Geologic Disposal System Requirements document (MGDS-RD) describes the functions to be performed by, and the requirements for, a Mined Geologic Disposal System (MGDS) for the permanent disposal of spent nuclear fuel (SNF) and commercial and defense high level radioactive waste (HLW) in support of the Civilian Radioactive Waste Management System (CRWMS). The development and control of the MGDS-RD is quality-affecting work and is subject to the Department of Energy (DOE) Office of Civilian Radioactive Waste Management (OCRWM) Quality Assurance Requirements Document (QARD). As part of the technical requirements baseline, it is also subject to Baseline Management Plan controls. The MGDS-RD and the other program-level requirements documents have been prepared and managed in accordance with the Technical Document Preparation Plan (TDPP) for the Preparation of System Requirements Documents

  4. The need for the geologic hazard analysis

    International Nuclear Information System (INIS)

    Mingarro, E.

    1984-01-01

    The parameters which are considered in the hazard analysis associated with the movements of the Earth Crust are considered. These movements are classified as: fast movements or seismic movements, which are produced in a certain geologic moment at a speed measured in cm/sg, and slow movements or secular movements, which take place within a long span of time at a speed measured by cm/year. The relations space/time are established after Poisson and Gumbel's probabilistic models. Their application is analyzed according to the structural gradient fields, which fall within Matteron's geostatistics studies. These statistic criteria should be analyzed or checked up in each geo-tectonic environment. This allows the definition of neotectonic and seismogenetic zones, because it is only in these zones where the probabilistic or deterministic criteria can be applied to evaluate the hazard and vulnerability, that is, to know the geologic hazard of every ''Uniform'' piece of the Earth Crust. (author)

  5. Predictive geology in nuclear waste management

    International Nuclear Information System (INIS)

    Brotzen, O.

    1980-07-01

    The present situation at a specific site in the Baltic Shield is viewed in the light of its geologic history. Prediction, at a given level of confidence and from a limited number of drillholes, of the minimum average spacing of conductive zones in subsurface rocks of low hydraulic conductivity is based on a combination of the binomial and Poisson distribution, regarding the holes as a profile sampling and assuming a cubic pattern of fractures. The data provide an empirical basis for linking the nature and frequency of past geologic events to their local effects. Special attenetion is given to the preservation of tectonic blocks of large rock-volumes with very low hydraulic conductivity throughout the present cratonic stage, during which intermittent movement took place in marked fault-zones bordering the Shield, and three different orogenies affected the surrounding regions. Rock-mechanical, stochastic and deterministic approaches are utilized to predict future effects from this basis. (Author)

  6. Capture and geological storage of CO2

    International Nuclear Information System (INIS)

    2013-03-01

    Capture and geological storage of CO 2 could be a contribution to reduce CO 2 emissions, and also a way to meet the factor 4 objective of reduction of greenhouse gas emissions. This publication briefly presents the capture and storage definitions and principles, and comments some key data related to CO 2 emissions, and their natural trapping by oceans, soils and forests. It discusses strengths (a massive and perennial reduction of CO 2 emissions, a well defined regulatory framework) and weaknesses (high costs and uncertain cost reduction perspectives, a technology which still consumes a lot of energy, geological storage capacities still to be determined, health environmental impacts and risks to be controlled, a necessary consultation of population for planned projects) of this option. Actions undertaken by the ADEME are briefly reviewed

  7. Signed distance function implicit geologic modeling

    Directory of Open Access Journals (Sweden)

    Roberto Mentzingen Rolo

    Full Text Available Abstract Prior to every geostatistical estimation or simulation study there is a need for delimiting the geologic domains of the deposit, which is traditionally done manually by a geomodeler in a laborious, time consuming and subjective process. For this reason, novel techniques referred to as implicit modelling have appeared. These techniques provide algorithms that replace the manual digitization process of the traditional methods by some form of automatic procedure. This paper covers a few well established implicit methods currently available with special attention to the signed distance function methodology. A case study based on a real dataset was performed and its applicability discussed. Although it did not replace an experienced geomodeler, the method proved to be capable in creating semi-automatic geological models from the sampling data, especially in the early stages of exploration.

  8. Natural climate variations in a geological perspective

    International Nuclear Information System (INIS)

    Mikkelsen, N.; Kuijpers, A.

    2001-01-01

    The climate is constantly changing, and it has been changing throughout the geological history of the Earth. These natural changes have shown a variability with frequencies from millions of years to just a few hundreds or tens of years. Some of the variations have been rather dramatic - shifting from globally uniform and hot climates to regular ice ages - whereas other changes have been less spectacular. All natural climate variations have an impact on the physical and biological systems of the Earth - and on mankind and culture during the last hundred thousand years. In this chapter we shall discuss the natural climate changes that has taken place during the geological history of the Earth and comment on the impact of these changes on the cultural evolution of mankind with special emphasis on Greenland. (LN)

  9. A new classification of geological resources

    International Nuclear Information System (INIS)

    Mata Perello, Josep M; Mata Lleonart, Roger; Vintro Sanchez, Carla

    2011-01-01

    The traditional definition of the geological resource term excludes all those elements or processes of the physical environment that show a scientific, didactic, or cultural interest, but do not offer, in principle, an economic potential. The so called cultural geo-resources have traditionally not been included within a classification that puts them in the same hierarchical and semantic ranking than the rest of the resources, and there has been no attempt to define a classification of these resources under a more didactic and modern perspective. Hence, in order to catalogue all those geological elements that show a cultural, patrimonial, scientific, or didactic interest as a resource, this paper proposes a new classification in which geo-resources stand in the same hierarchical and semantic ranking than the rest of the resources traditionally catalogued as such.

  10. Uncertainty in geological and hydrogeological data

    Directory of Open Access Journals (Sweden)

    B. Nilsson

    2007-09-01

    Full Text Available Uncertainty in conceptual model structure and in environmental data is of essential interest when dealing with uncertainty in water resources management. To make quantification of uncertainty possible is it necessary to identify and characterise the uncertainty in geological and hydrogeological data. This paper discusses a range of available techniques to describe the uncertainty related to geological model structure and scale of support. Literature examples on uncertainty in hydrogeological variables such as saturated hydraulic conductivity, specific yield, specific storage, effective porosity and dispersivity are given. Field data usually have a spatial and temporal scale of support that is different from the one on which numerical models for water resources management operate. Uncertainty in hydrogeological data variables is characterised and assessed within the methodological framework of the HarmoniRiB classification.

  11. Worldwide databases in marine geology: A review

    Digital Repository Service at National Institute of Oceanography (India)

    Kunte, P.D.

    such as image capturing, multimedia and geographic information system (GIS) should be utilized. Information managers need to collaborate with subject experts in order to maintain the high quality of the databases. 1. Introduction With the advent of computer...-DOS and Macintosh $ 56 MS-DOS P. D. KunteJMarine Geology 122 (1995) 263-275 coordination between the information providers and management centres. Within the databases there is no uniformity in the structure, storage and operating systems. Every producer...

  12. Thermal loading effects on geological disposal

    International Nuclear Information System (INIS)

    Come, B.; Venet, P.

    1984-01-01

    A joint study on the thermal loading effects on geological disposal was carried out within the European Community Programme on Management and Storage of Radioactive Waste by several laboratories in Belgium, France and the Federal Republic of Germany. The purpose of the work was to review the thermal effects induced by the geological disposal of high-level wastes and to assess their consequences on the 'admissible thermal loading' and on waste management in general. Three parallel studies dealt separately with the three geological media being considered for HLW disposal within the CEC programme: granite (leadership: Commissariat a l'energie atomique (CEA), France), salt (leadership: Gesellschaft fuer Strahlen- und Umweltforschung (GSF), Federal Republic of Germany), and clay (leadership: Centre d'etude de l'energie nucleaire (CEN/SCK), Belgium). The studies were based on the following items: only vitrified high-level radioactive waste was considered; the multi-barrier confinement concept was assumed (waste glass, container (with or without overpack), buffer material, rock formation); the disposal was foreseen in a deep mined repository, in an 'in-land' geological formation; only normal situations and processes were covered, no 'accident' scenario being taken into account. Although reasonably representative of a wide variety of situations, the data collected and the results obtained are generic for granite, formation-specific for salt (i.e. related to the north German Zechstein salt formation), and site-specific for clay (i.e. concentrated on the Boom clay layer at the Mol site, Belgium). For each rock type, realistic temperature limits were set, taking into account heat propagation, thermo-mechanical effects inside the rock formations, induced or modified groundwater or brine movement, effects on the buffer material as well as effects on the waste glass and canister, and finally, nuclide transport

  13. Sicily in its Mediterranean geological frame

    Energy Technology Data Exchange (ETDEWEB)

    Broquet, P.

    2016-10-01

    The Island of Sicily is generally considered to be the geological link between the North African Fold Belt and the Appennines, in Italy. This comes from a cylindristic meaning and is only partly exact. As a matter of fact, Sicily is essentially Greek; Ionian. Up to Middle Cretaceous time, the Sicilian area was a submerged shoal in the sea or the Panormide area, bordering the Ionian Ocean. This shoal lay between the future North African Fold Belt and the Appennines, forming an intermediate link between the Appenninic, Apulian, Panormian and Tunisian platforms. It was only during the Middle to Upper Cretaceous that the Atlantic and Ligure Oceans merged, making a continuous relationship between the Appenninic, Sicilian and North African sedimentary series. The key time periods are the Permian, Cretaceous and Oligo-Miocene periods leading to the formation of the actual Calabro-Sicilian arc. From the Permian to the present, the Sicilian geological history pertains to three oceanic domains: Ionian, Ligurian and Atlantic, of which the Ionian and Ligurian were under the influence of Tethys (Neo and Paleo-Tethys). The Tethysian identity of Sicily constitutes the major aspect of its geological history. However, the European and African plate tectonic movements complicated its structure. During the Middle Miocene subduction, southern Sicily became African, meanwhile its north-eastern part became, in Pliocene time, Maghrebian by accretion. Sicily is thus a truly geological patchwork, but its main section remains Ionian and now constitutes a link between North Africa and the Appennines. With older data, but also by means of recent results, we will replace Sicily in its Mediterranean frame, giving the mean stages of its paleogeographical and then its tectonic evolution. We will review the calabro-sicilian arc evolution from the Oligocene, developing the actual context and recalling the main fundamental play of the Numidian flysch. (Author)

  14. Mathematical geology studies of deposit prospect types

    International Nuclear Information System (INIS)

    Liu Guangping

    1998-08-01

    Exact certainty prospect type of uranium deposit, not only can assure the quality of deposit prospects, but also increase economic benefits. Based on the standard of geological prospect of uranium deposit, the author introduces a method of Fuzzy Synthetical Comment for dividing prospect type of uranium deposit. The practical applications demonstrate that the regression accuracy, discriminated by Zadeh operator, of 15 known deposits is 100%

  15. WIPP site and vicinity geological field trip

    International Nuclear Information System (INIS)

    Chaturvedi, L.

    1980-10-01

    The Environmental Evaluation Group is conducting an assessment of the radiological health risks to people from the Waste Isolation Pilot Plant. As a part of this work, EEG is making an effort to improve the understanding of those geological issues concerning the WIPP site which may affect the radiological consequences of the proposed repository. One of the important geological issues to be resolved is the timing and the nature of the dissolution processes which may have affected the WIPP site. EEG organized a two-day conference of geological scientists, on January 17-18, 1980. On the basis of the January conference and the June field trip, EEG has formed the following conclusions: (1) it has not been clearly established that the site or the surrounding area has been attacked by deep dissolution to render it unsuitable for the nuclear waste pilot repository; (2) the existence of an isolated breccia pipe at the site unaccompanied by a deep dissolution wedge, is a very remote possibility; (3) more specific information about the origin and the nature of the brine reservoirs is needed. An important question that should be resolved is whether each encounter with artesian brine represents a separate pocket or whether these occurrences are interconnected; (4) Anderson has postulated a major tectonic fault or a fracture system at the Basin margin along the San Simon Swale; (5) the area in the northern part of the WIPP site, identified from geophysical and bore hole data as the disturbed zone, should be further investigated to cleary understand the nature and significance of this structural anomaly; and (6) a major drawback encountered during the discussions of geological issues related to the WIPP site is the absence of published material that brings together all the known information related to a particular issue

  16. Processing of space images and geologic interpretation

    Energy Technology Data Exchange (ETDEWEB)

    Yudin, V S

    1981-01-01

    Using data for standard sections, a correlation was established between natural formations in geologic/geophysical dimensions and the form they take in the imaging. With computer processing, important data can be derived from the image. Use of the above correlations has allowed to make a number of preliminary classifications of tectonic structures, and to determine certain ongoing processes in the given section. The derived data may be used for search of useful minerals.

  17. Mine layout, geological features and seismic hazard.

    CSIR Research Space (South Africa)

    Van Aswegen, G

    1993-01-01

    Full Text Available – Applied Structure Stability Analysis .................................................27 4.2. Modelled System Stiffness ...........................................................................................28 4.2.1. Instability and System Stiffness... with the potential for large(r) dynamic rockmass instability in response to deep level mining, e.g.: • tectonic stresses, depth, mechanical strength of intact rock, • the existence and the frequency of intermediate and larger geological features, specifically...

  18. Russian geological education in the world market (the case of Russian State Geological Prospecting University

    Directory of Open Access Journals (Sweden)

    Vasily Ivanovich Lisov

    2016-12-01

    Full Text Available Higher geological education in Russia and in MSGPI-RSGPU specific. It - engineering. The mineral deposits determine the development of the global industry and foreign trade. Growing global demand for the profession of geologists and mining engineers. Training of foreign students in Russia has its own geopolitical and economic importance. In Russia a strong resource-based economy. It attracts students from developing countries. MGRI-RSGPU is the leading universities training specialists for mining. The article presents data about the University and types of education. Shown scientific and educational problems in higher education. This article discusses the prospects for the promotion of Russian higher geological education at the world market of educational services. The increasing role of new scientific and technological achievements in mining, enhanced environmental as well as staff requirements is revealed. Given that the leading schools in the mining industry, in addition to Russia, are formed in Canada, Germany, USA, Australia, Great Britain, many developing countries rich in natural resources, have begun to form their own national centers for training in this area. Under such competitive conditions Russian geological education maintains its own niche. Recognition of this is the active participation of Russian universities in the creation and development of the World Forum of sustainable development of mineral universities (WFURS, described in the article. The main factors of competitiveness that led to leading positions of Russian State Geological Prospecting University in system of the Russian geological education are described. Particular attention is paid to the international activities of Russian higher educational institutions including Geological Prospecting University. The basic statistics (both in the context of the country, and in the field of foreign undergraduate and graduate students enrolled at this university is provided. The

  19. Geological events in submerged areas: attributes and standards in the EMODnet Geology Project

    Science.gov (United States)

    Fiorentino, A.; Battaglini, L.; D'Angelo, S.

    2017-12-01

    EMODnet Geology is a European Project which promotes the collection and harmonization of marine geological data mapped by various national and regional mapping projects and recovered in the literature, in order to make them freely available through a web portal. Among the several features considered within the Project, "Geological events and probabilities" include submarine landslides, earthquakes, volcanic centers, tsunamis, fluid emissions and Quaternary faults in European Seas. Due to the different geological settings of European sea areas it was necessary to elaborate a comprehensive and detailed pattern of Attributes for the different features in order to represent the diverse characteristics of each occurrence. Datasets consist of shapefiles representing each event at 1:250,000 scale. The elaboration of guidelines to compile the shapefiles and attribute tables was aimed at identifying parameters that should be used to characterize events and any additional relevant information. Particular attention has been devoted to the definition of the Attribute table in order to achieve the best degree of harmonization and standardization according to the European INSPIRE Directive. One of the main objectives is the interoperability of data, in order to offer more complete, error-free and reliable information and to facilitate exchange and re-use of data even between non-homogeneous systems. Metadata and available information collected during the Project is displayed on the Portal (http://www.emodnet-geology.eu/) as polygons, lines and points layers according to their geometry. By combining all these data it might be possible to elaborate additional thematic maps which could support further research as well as land planning and management. A possible application is being experimented by the Geological Survey of Italy - ISPRA which, in cooperation with other Italian institutions contributing to EMODnet Geology, is working at the production of an update for submerged areas

  20. Geologic environments for nuclear waste repositories

    Directory of Open Access Journals (Sweden)

    Paleologos Evan K.

    2017-01-01

    Full Text Available High-level radioactive waste (HLW results from spent reactor fuel and reprocessed nuclear material. Since 1957 the scientific consensus is that deep geologic disposal constitutes the safest means for isolating HLW for long timescales. Nuclear power is becoming significant for the Arab Gulf countries as a way to diversify energy sources and drive economic developments. Hence, it is of interest to the UAE to examine the geologic environments currently considered internationally to guide site selection. Sweden and Finland are proceeding with deep underground repositories mined in bedrock at depths of 500m, and 400m, respectively. Equally, Canada’s proposals are deep burial in the plutonic rock masses of the Canadian Shield. Denmark and Switzerland are considering disposal of their relative small quantities of HLW into crystalline basement rocks through boreholes at depths of 5,000m. In USA, the potential repository at Yucca Mountain, Nevada lies at a depth of 300m in unsaturated layers of welded volcanic tuffs. Disposal of low and intermediate-level radioactive wastes, as well as the German HLW repository favour structurally-sound layered salt stata and domes. Our article provides a comprehensive review of the current concepts regarding HLW disposal together with some preliminary analysis of potentially appropriate geologic environments in the UAE.

  1. Muon radiography for exploration of Mars geology

    Directory of Open Access Journals (Sweden)

    S. Kedar

    2013-06-01

    Full Text Available Muon radiography is a technique that uses naturally occurring showers of muons (penetrating particles generated by cosmic rays to image the interior of large-scale geological structures in much the same way as standard X-ray radiography is used to image the interior of smaller objects. Recent developments and application of the technique to terrestrial volcanoes have demonstrated that a low-power, passive muon detector can peer deep into geological structures up to several kilometers in size, and provide crisp density profile images of their interior at ten meter scale resolution. Preliminary estimates of muon production on Mars indicate that the near horizontal Martian muon flux, which could be used for muon radiography, is as strong or stronger than that on Earth, making the technique suitable for exploration of numerous high priority geological targets on Mars. The high spatial resolution of muon radiography also makes the technique particularly suited for the discovery and delineation of Martian caverns, the most likely planetary environment for biological activity. As a passive imaging technique, muon radiography uses the perpetually present background cosmic ray radiation as the energy source for probing the interior of structures from the surface of the planet. The passive nature of the measurements provides an opportunity for a low power and low data rate instrument for planetary exploration that could operate as a scientifically valuable primary or secondary instrument in a variety of settings, with minimal impact on the mission's other instruments and operation.

  2. ENGINEERING GEOLOGY PROPERTIES OF 'KONJSKO' TUNNEL

    Directory of Open Access Journals (Sweden)

    Ivan Grabovac

    2004-12-01

    Full Text Available Investigation works for the design of the Konjsko Tunnel with two pipes, part of the Split-Zagreb Motorway, provided relevant data on rock mass and soil properties for construction of the prognose engineering-geological longitudinal sections. West tunnel portals are situated in tectonically deformed and partly dynamically metamorphosed Eocene flysch marls, while east ones are located in Senonian limestones. There is an overthrust contact between flysch marls and limestones. With the beginning of the excavations, rock mass characteristics were regularly registered after each blasting and actual longitudinal engineering-geological cross-sections were constructed as well as cross-sections of the excavation face. There were some differences between prognosticated and registered sections since it was infeasible to accurately determine the dip of the overthrust plane that was at shallow depth below the tunnel grade line and also due to the occurrence of transversal faults that intersected the overthrust. Data collected before and during the tunnel construction complemented the knowledge on geological structure of the surroundings and physical-mechanical characteristics of strata (the paper is published in Croatian.

  3. Geological problems in radioactive waste isolation

    International Nuclear Information System (INIS)

    Witherspoon, P.A.

    1991-01-01

    The problem of isolating radioactive wastes from the biosphere presents specialists in the fields of earth sciences with some of the most complicated problems they have ever encountered. This is especially true for high level waste (HLW) which must be isolated in the underground and away from the biosphere for thousands of years. Essentially every country that is generating electricity in nuclear power plants is faced with the problem of isolating the radioactive wastes that are produced. The general consensus is that this can be accomplished by selecting an appropriate geologic setting and carefully designing the rock repository. Much new technology is being developed to solve the problems that have been raised and there is a continuing need to publish the results of new developments for the benefit of all concerned. The 28th International Geologic Congress that was held July 9--19, 1989 in Washington, DC provided an opportunity for earth scientists to gather for detailed discussions on these problems. Workshop W3B on the subject, ''Geological Problems in Radioactive Waste Isolation -- A World Wide Review'' was organized by Paul A Witherspoon and Ghislain de Marsily and convened July 15--16, 1989 Reports from 19 countries have been gathered for this publication. Individual papers have been cataloged separately

  4. Environmental geology of Nampo, Puyo, Sochon, Hamyol

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Won Young; Han, Dae Suk; Kim, Yoon Jong; Yu, Il Hyun; Lee, Bong Joo; Jeong, Gyo Cheol; Kim, Kyeong Su [Korea Inst. of Geology Mining and Materials, Taejon (Korea, Republic of)

    1995-12-01

    An environmental geology map at a scale of 1:100,000 was produced to provide information on land use potential within the area of over 1,300 km{sup 2} consisting of Nampo, Puyo , Sochon and Hamyol. Land use potentiality was quantitatively assigned in accordance with the environmental geologic index(EI) derived from such factors as landslide frequency, engineering geological unit, topography and density of lineament length, being classified into 4 units. Also produced was a landslide susceptibility map at the same scale as the above map, showing five different grades of susceptibility based on hazard index(HI). Besides the above mentioned mapping, an investigation on the soils, rocks and natural aggregates throughout the study area was undertaken to assess their utilization potential as construction materials. Also carried out were the analysis of erosion and sedimentation in/around the Keum river, a geotechnical engineering investigation on the reclaimed tidal zone south of the Taechon beach, and the stability analysis of the cut slopes along the national roads. All the results of the investigations and analyses are presented in the paper. It is expected that the maps and accompanying information could be utilized in formulating regional land-use planning for variable projects. (author). 51 refs., 60 figs., 62 tabs., 3 maps.

  5. Submarine geologic disposal of nuclear waste

    International Nuclear Information System (INIS)

    Hollister, C.D.; Corliss, B.H.; Anderson, D.R.

    1980-01-01

    Site suitability characteristics of submarine geological formations for the disposal of radioactive wastes include the distribution coefficient of the host medium, permeability, viscoelastic nature of the sediments, influence of organic material on remobilization, and effects of thermal stress. The submarine geological formation that appears to best satisfy these criteria is abyssal ''red'' clay. Regions in the ocean that have coarse-grained deposits, high or variable thermal conductivity, high organic carbon content, and sediment thickness of less than 50 m are not being considered at this time. The optimum geological environment should be tranquil and have environmental predictability over a minimum of 10 5 years. Site selection activities for the North Atlantic and North Pacific are reviewed and future activities which include international cooperation are discussed. A paleoenvironmental model for Cenozoic sedimentation in the central North Pacific is presented based on studies of a long core from the Mid-Plate Gyre MPG-1 area, and is an example of the type of study that will be carried out in other seabed study areas. The data show that the MPG-1 region has been an area of slow, continuous accumulation during the past 65 million years. (author)

  6. Geologic distributions of US oil and gas

    International Nuclear Information System (INIS)

    1992-01-01

    This publication presents nonproprietary field size distributions that encompass most domestic oil and gas fields at year-end 1989. These data are organized by geologic provinces as defined by the American Association of Petroleum Geologists' Committee on Statistics of Drilling (AAPG/CSD), by regional geographic aggregates of the AAPG/CSD provinces, and Nationally. The report also provides partial volumetric distributions of petroleum liquid and natural gas ultimate recoveries for three macro-geologic variables: principal lithology of the reservoir rock, principal trapping condition and geologic age of the reservoir rock, The former two variables are presented Nationally and by geographic region, in more detail than has heretofore been available. The latter variable is provided Nationally at the same level of detail previously available. Eighteen tables and 66 figures present original data on domestic oil and gas occurrence. Unfortunately, volumetric data inadequacy dictated exclusion of Appalachian region oil and gas fields from the study. All other areas of the United States known to be productive of crude oil or natural gas through year-end 1989, onshore and offshore, were included. It should be noted that none of the results and conclusions would be expected to substantively differ had data for the Appalachian region been available for inclusion in the study

  7. Geological problems in radioactive waste isolation

    Energy Technology Data Exchange (ETDEWEB)

    Witherspoon, P.A. (ed.)

    1991-01-01

    The problem of isolating radioactive wastes from the biosphere presents specialists in the fields of earth sciences with some of the most complicated problems they have ever encountered. This is especially true for high level waste (HLW) which must be isolated in the underground and away from the biosphere for thousands of years. Essentially every country that is generating electricity in nuclear power plants is faced with the problem of isolating the radioactive wastes that are produced. The general consensus is that this can be accomplished by selecting an appropriate geologic setting and carefully designing the rock repository. Much new technology is being developed to solve the problems that have been raised and there is a continuing need to publish the results of new developments for the benefit of all concerned. The 28th International Geologic Congress that was held July 9--19, 1989 in Washington, DC provided an opportunity for earth scientists to gather for detailed discussions on these problems. Workshop W3B on the subject, Geological Problems in Radioactive Waste Isolation -- A World Wide Review'' was organized by Paul A Witherspoon and Ghislain de Marsily and convened July 15--16, 1989 Reports from 19 countries have been gathered for this publication. Individual papers have been cataloged separately.

  8. A Geospatial Information Grid Framework for Geological Survey.

    Science.gov (United States)

    Wu, Liang; Xue, Lei; Li, Chaoling; Lv, Xia; Chen, Zhanlong; Guo, Mingqiang; Xie, Zhong

    2015-01-01

    The use of digital information in geological fields is becoming very important. Thus, informatization in geological surveys should not stagnate as a result of the level of data accumulation. The integration and sharing of distributed, multi-source, heterogeneous geological information is an open problem in geological domains. Applications and services use geological spatial data with many features, including being cross-region and cross-domain and requiring real-time updating. As a result of these features, desktop and web-based geographic information systems (GISs) experience difficulties in meeting the demand for geological spatial information. To facilitate the real-time sharing of data and services in distributed environments, a GIS platform that is open, integrative, reconfigurable, reusable and elastic would represent an indispensable tool. The purpose of this paper is to develop a geological cloud-computing platform for integrating and sharing geological information based on a cloud architecture. Thus, the geological cloud-computing platform defines geological ontology semantics; designs a standard geological information framework and a standard resource integration model; builds a peer-to-peer node management mechanism; achieves the description, organization, discovery, computing and integration of the distributed resources; and provides the distributed spatial meta service, the spatial information catalog service, the multi-mode geological data service and the spatial data interoperation service. The geological survey information cloud-computing platform has been implemented, and based on the platform, some geological data services and geological processing services were developed. Furthermore, an iron mine resource forecast and an evaluation service is introduced in this paper.

  9. Preliminary geological suitability assessment for LILW disposal

    International Nuclear Information System (INIS)

    Tomse, P.; Mele, I.

    2001-01-01

    Due to the growing need for a final disposal of LILW, the final solution for the short-lived LILW is the key issue of radioactive waste management in Slovenia at the moment. ARAO - the Slovenian Agency for Radwaste Management - is intensely involved in the re-initiated site selection process for a LILW repository. In this new process we are trying to combine as best as possible the technical, geologically-led and the advocacy-site selection processes. By a combination of technical and volunteer approach to the site selection we wish to guarantee high public involvement and sufficient flexibility of the process to adapt to specific conditions or new circumstances while the project is ongoing. In the technical phase, our tendency is to retain a larger number of potential areas/sites. We also keep open the possibility of choosing the type of repository. The decision between the surface and underground option will be made only once the site has been defined. In accordance with the IAEA recommendations the site selection process is divided into four stages: the conceptual and planning stage, area survey stage, site characterisation stage and site confirmation stage. Last year the area survey stage was started. In the preliminary geological suitability assessment the required natural predisposition of Slovene territory was assessed in order to locate geologically suitable formations. The assessment of natural conditions of the system was based on consideration of the main geological, hydro-geological and seismotectonic conditions. It was performed with ARC/INFO technology. The results are compiled in a map, showing potential areas for underground and surface disposal of LILW in Slovenia. It has been established that there is a potential suitability for both surface and underground disposal on about 10 000 km 2 of the Slovenian territory, which represents almost half of the entire Slovenian territory. These preliminary results are now being carefully re-examined. As an

  10. Digital Geological Mapping for Earth Science Students

    Science.gov (United States)

    England, Richard; Smith, Sally; Tate, Nick; Jordan, Colm

    2010-05-01

    This SPLINT (SPatial Literacy IN Teaching) supported project is developing pedagogies for the introduction of teaching of digital geological mapping to Earth Science students. Traditionally students are taught to make geological maps on a paper basemap with a notebook to record their observations. Learning to use a tablet pc with GIS based software for mapping and data recording requires emphasis on training staff and students in specific GIS and IT skills and beneficial adjustments to the way in which geological data is recorded in the field. A set of learning and teaching materials are under development to support this learning process. Following the release of the British Geological Survey's Sigma software we have been developing generic methodologies for the introduction of digital geological mapping to students that already have experience of mapping by traditional means. The teaching materials introduce the software to the students through a series of structured exercises. The students learn the operation of the software in the laboratory by entering existing observations, preferably data that they have collected. Through this the students benefit from being able to reflect on their previous work, consider how it might be improved and plan new work. Following this they begin fieldwork in small groups using both methods simultaneously. They are able to practise what they have learnt in the classroom and review the differences, advantages and disadvantages of the two methods, while adding to the work that has already been completed. Once the field exercises are completed students use the data that they have collected in the production of high quality map products and are introduced to the use of integrated digital databases which they learn to search and extract information from. The relatively recent development of the technologies which underpin digital mapping also means that many academic staff also require training before they are able to deliver the

  11. Hanford Site Guidelines for Preparation and Presentation of Geologic Information

    Energy Technology Data Exchange (ETDEWEB)

    Lanigan, David C.; Last, George V.; Bjornstad, Bruce N.; Thorne, Paul D.; Webber, William D.

    2010-04-30

    A complex geology lies beneath the Hanford Site of southeastern Washington State. Within this geology is a challenging large-scale environmental cleanup project. Geologic and contaminant transport information generated by several U.S. Department of Energy contractors must be documented in geologic graphics clearly, consistently, and accurately. These graphics must then be disseminated in formats readily acceptable by general graphics and document producing software applications. The guidelines presented in this document are intended to facilitate consistent, defensible, geologic graphics and digital data/graphics sharing among the various Hanford Site agencies and contractors.

  12. Study on radon geological potential of Beijing city

    International Nuclear Information System (INIS)

    Liu Qingcheng; Wu Xinmin; Liu Yujuan; Yang Yaxin; Zhang Ye

    2009-01-01

    According to elemental geochemistry in Beijing, the uranium content in the area was measured, and distribution of radon concentration was predicted. Based on the uranium-radium equilibrium coefficient, porosity and diffusion coefficient, which were either measured or calculated, the radon geological potential of Beijing city was studied using γ-ray spectroscopy or mass spectroscopy and certain models were used to calculate the relation between radon geological potential and lithology and geological structure. The results showed that radon geological potential of Beijing city could be divided into four zones, tend of every zone coincides with the main structure, and the potential values nearly relate with geological factors. (authors)

  13. Mapping urban geology of the city of Girona, Catalonia

    Science.gov (United States)

    Vilà, Miquel; Torrades, Pau; Pi, Roser; Monleon, Ona

    2016-04-01

    A detailed and systematic geological characterization of the urban area of Girona has been conducted under the project '1:5000 scale Urban geological map of Catalonia' of the Catalan Geological Survey (Institut Cartogràfic i Geològic de Catalunya). The results of this characterization are organized into: i) a geological information system that includes all the information acquired; ii) a stratigraphic model focused on identification, characterization and correlation of the geological materials and structures present in the area and; iii) a detailed geological map that represents a synthesis of all the collected information. The mapping project integrates in a GIS environment pre-existing cartographic documentation (geological and topographical), core data from compiled boreholes, descriptions of geological outcrops within the urban network and neighbouring areas, physico-chemical characterisation of representative samples of geological materials, detailed geological mapping of Quaternary sediments, subsurface bedrock and artificial deposits and, 3D modelling of the main geological surfaces. The stratigraphic model is structured in a system of geological units that from a chronostratigrafic point of view are structured in Palaeozoic, Paleogene, Neogene, Quaternary and Anthropocene. The description of the geological units is guided by a systematic procedure. It includes the main lithological and structural features of the units that constitute the geological substratum and represents the conceptual base of the 1:5000 urban geological map of the Girona metropolitan area, which is organized into 6 map sheets. These map sheets are composed by a principal map, geological cross sections and, several complementary maps, charts and tables. Regardless of the geological map units, the principal map also represents the main artificial deposits, features related to geohistorical processes, contours of outcrop areas, information obtained in stations, borehole data, and contour

  14. Geological and geotechnical limitations of radioactive waste retrievability in geologic disposals

    Energy Technology Data Exchange (ETDEWEB)

    Stahlmann, Joachim; Leon-Vargas, Rocio; Mintzlaff, Volker; Treidler, Ann-Kathrin [TU Braunschweig (Germany). Inst. for Soil Mechanics and Foundation Engineering

    2015-07-01

    The capability of retrieving radioactive waste emplaced in deep geological formations is nowadays in discussion in many countries. Based on the storage of high-level radioactive waste (HAW) in deep geological repositories there is a number of possible scenarios for their retrieval. Measurements for an improved retrieving capability may impact on the geotechnical and geological barriers, e.g. keeping open the access drifts for a long period of time can result in a bigger evacuation damage zone (EDZ) in the host rock which implies potential flow paths for ground water. Nevertheless, to limit the possible scenarios associated to the retrieval implementation, it is necessary to take in consideration which criteria will be used for an efficient monitoring program, while clearly determining the performance reliability of the geotechnical barriers. In addition, the integrity of the host rock as geological barrier has to be verified. Therefore, it is important to evaluate different design solutions and the most appropriate measurement methods to improve the retrievability process of wastes from a geological repository. A short presentation of the host rocks is given is this paper.

  15. Engineering Geological Conditions of the Ignalina NPP Region

    International Nuclear Information System (INIS)

    Buceviciute, S.

    1996-01-01

    During engineering geological mapping, the upper part (to 15-20 m depths) of the lithosphere was investigated at the Ignalina Nuclear Power Plant (INPP) for physical rock characteristics and recent exogenic geological processes and phenomena. The final result of engineering geological mapping was the division of the area into engineering geological regions. In this case five engineering geological regions have been distinguished. The Fig. shows a scheme of engineering geological regionalization of the area and the typical sections of the engineering geological regions. The sections show genesis, age, soil type, thickness of stratigraphic genetical complex for the rocks occurring in the zone of active effect of engineering buildings, as well as the conical strength and density of the distinguished soils. 1 fig., 1 tab

  16. Geology and development: proceedings of the 40. Brazilian congress on geology; EXPOGEO 98 - Brazilian exposition of Geology. Abstracts

    International Nuclear Information System (INIS)

    1998-01-01

    The proceedings of the 40. Brazilian Congress on Geology register relevant papers on the nuclear and energy areas. The papers devoted to the nuclear area covers the following subjects: geochronology; stratigraphy; geochemistry; age estimation; isotope dating; litogeochemistry; mineralization; uranium deposits; crystallization; environmental impacts related to the uranium mines and the non nuclear mining industries; petrogenesis; paleoclimatology; natural radioactivity; spectrometry; and the uranium extraction. The articles on the energy area are referent to the petroleum, coal and natural gas exploration; environmental impacts related to the oil spilling; and the history and the perspectives of the petroleum exploration in Brazil

  17. OneGeology - Access to geoscience for all

    Science.gov (United States)

    Komac, Marko; Lee, Kathryn; Robida, Francois

    2014-05-01

    OneGeology is an initiative of Geological Survey Organisations (GSO) around the globe that dates back to Brighton, UK in 2007. Since then OneGeology has been a leader in developing geological online map data using a new international standard - a geological exchange language known as 'GeoSciML'. Increased use of this new language allows geological data to be shared and integrated across the planet with other organisations. One of very important goals of OneGeology was a transfer of valuable know-how to the developing world, hence shortening the digital learning curve. In autumn 2013 OneGeology was transformed into a Consortium with a clearly defined governance structure, making its structure more official, its operability more flexible and its membership more open where in addition to GSO also to other type of organisations that manage geoscientific data can join and contribute. The next stage of the OneGeology initiative will hence be focused into increasing the openness and richness of that data from individual countries to create a multi-thematic global geological data resource on the rocks beneath our feet. Authoritative information on hazards and minerals will help to prevent natural disasters, explore for resources (water, minerals and energy) and identify risks to human health on a planetary scale. With this new stage also renewed OneGeology objectives were defined and these are 1) to be the provider of geoscience data globally, 2) to ensure exchange of know-how and skills so all can participate, and 3) to use the global profile of 1G to increase awareness of the geosciences and their relevance among professional and general public. We live in a digital world that enables prompt access to vast amounts of open access data. Understanding our world, the geology beneath our feet and environmental challenges related to geology calls for accessibility of geoscientific data and OneGeology Portal (portal.onegeology.org) is the place to find them.

  18. Maps showing geology, oil and gas fields, and geological provinces of South America

    Science.gov (United States)

    Schenk, C. J.; Viger, R.J.; Anderson, C.P.

    1999-01-01

    This digitally compiled map includes geology, geologic provinces, and oil and gas fields of South America. The map is part of a worldwide series on CD-ROM by World Energy Project released of the U.S. Geological Survey . The goal of the project is to assess the undiscovered, technically recoverable oil and gas resources of the world and report these results by the year 2000. For data management purposes the world is divided into eight energy regions corresponding approximately to the economic regions of the world as defined by the U.S. Department of State. South America (Region 6) includes Argentina, Bolivia, Brazil, Chile, Columbia, Ecuador, Falkland Islands, French Guiana, Guyuna, Netherlands, Netherlands Antilles, Paraguay, Peru, Suriname, Trinidad and Tobago, Uruguay, and Venezuela.

  19. Geological disposal of high-level radioactive waste and geological environment in Japan

    International Nuclear Information System (INIS)

    Shimizu, Kazuhiko; Seo, Toshihiro; Yshida, Hidekazu

    2001-01-01

    The geological environment has two main functions in terms of ensuring the safety of geological disposal of high-level radioactive waste. One relates to the fundamental long-term stability of the site and the other to the properties of the host rock formations and groundwaters which facilitate the emplacement of the engineered barrier system and act as a natural barrier. In this connection, the feasibility of selecting a geological environment in Japan which is appropriate for geological disposal was discussed, based on findings obtained from case studies and field measurements. Considering long-term stability of the site, it is important to understand the effects and spatial distributions of the natural phenomena such as fault movement, volcanic activity, uplift/denudation and climatic/sea-level changes. Fault movement and volcanic activity are relatively localized phenomena, and can be avoided by considering only areas that are sufficiently remote from existing volcanoes and major active faults for these phenomena to have a negligible probability of causing significant effects. Uplift/denudation and climatic/sea-level changes are gradual phenomena and are more ubiquitous. It is, nevertheless, possible to estimate future trends by extrapolating the past changes into the future, and then to identify areas that may not be affected significantly by such phenomena. Considering the properties of the host rocks and groundwaters, it can be understood, from the presently available data, that deep groundwater in Japan generally flows slowly and its chemistry is in a reduced state. The data also suggest that deep rock masses, where the ground temperature is acceptably low and the rock pressure is almost homogeneous, are widely located throughout Japan. Based on the examination of the geological environment in Japan, it is possible to discuss the requirements for the geological environment to be considered and the investigations to be performed during the site selection

  20. Nagra technical report 14-02, geological basics - Dossier III - Long-term geological developments

    International Nuclear Information System (INIS)

    Schnellmann, M.; Madritsch, H.

    2014-01-01

    This dossier is the third of a series of eight reports concerning the safety and technical aspects of locations for the disposal of radioactive wastes in Switzerland. Dossier III takes a look at long-term geological developments. Developments in the topography and river networks of northern Switzerland over the past five million years are looked at. Data and information derived from high-resolution models and compilations of gravel deposition, glacier developments and moraines are reviewed. Tectonic developments, seismological aspects and erosion are discussed. Their consequences for the long-term geological developments in the proposed depository areas are looked at

  1. Quaternary Magmatism in the Cascades - Geologic Perspectives

    Science.gov (United States)

    Hildreth, Wes

    2007-01-01

    Foreward The Cascade magmatic arc is a belt of Quaternary volcanoes that extends 1,250 km from Lassen Peak in northern California to Meager Mountain in Canada, above the subduction zone where the Juan de Fuca Plate plunges beneath the North American Plate. This Professional Paper presents a synthesis of the entire volcanic arc, addressing all 2,300 known Quaternary volcanoes, not just the 30 or so visually prominent peaks that comprise the volcanic skyline. Study of Cascade volcanoes goes back to the geological explorers of the late 19th century and the seminal investigations of Howel Williams in the 1920s and 1930s. However, major progress and application of modern scientific methods and instrumentation began only in the 1970s with the advent of systematic geological, geophysical, and geochemical studies of the entire arc. Initial stimulus from the USGS Geothermal Research Program was enhanced by the USGS Volcano Hazards Program following the 1980 eruption of Mount St. Helens. Together, these two USGS Programs have provided more than three decades of stable funding, staffing, and analytical support. This Professional Paper summarizes the resultant USGS data sets and integrates them with the parallel contributions of other investigators. The product is based upon an all-encompassing and definitive geological database, including chemical and isotopic analyses to characterize the rocks and geochronology to provide the critical time constraints. Until now, this massive amount of data has not been summarized, and a systematic and uniform interpretation firmly grounded in geological fact has been lacking. Herein lies the primary utility of this Cascade volume. It not only will be the mandatory starting point for new workers, but also will provide essential geological context to broaden the perspectives of current investigators of specific Cascade volcanoes. Wes Hildreth's insightful understanding of volcanic processes and his uncompromising scientific integrity make him

  2. Desert wetlands in the geologic record

    Science.gov (United States)

    Pigati, Jeff S.; Rech, Jason A.; Quade, Jay; Bright, Jordon; Edwards, L.; Springer, A.

    2014-01-01

    Desert wetlands support flora and fauna in a variety of hydrologic settings, including seeps, springs, marshes, wet meadows, ponds, and spring pools. Over time, eolian, alluvial, and fluvial sediments become trapped in these settings by a combination of wet ground conditions and dense plant cover. The result is a unique combination of clastic sediments, chemical precipitates, and organic matter that is preserved in the geologic record as ground-water discharge (GWD) deposits. GWD deposits contain information on the timing and magnitude of past changes in water-table levels and, therefore, are a potential source of paleohydrologic and paleoclimatic information. In addition, they can be important archeological and paleontological archives because desert wetlands provide reliable sources of fresh water, and thus act as focal points for human and faunal activities, in some of the world's harshest and driest lands. Here, we review some of the physical, sedimentological, and geochemical characteristics common to GWD deposits, and provide a contextual framework that researchers can use to identify and interpret geologic deposits associated with desert wetlands. We discuss several lines of evidence used to differentiate GWD deposits from lake deposits (they are commonly confused), and examine how various types of microbiota and depositional facies aid in reconstructing past environmental and hydrologic conditions. We also review how late Quaternary GWD deposits are dated, as well as methods used to investigate desert wetlands deeper in geologic time. We end by evaluating the strengths and limitations of hydrologic and climatic records derived from GWD deposits, and suggest several avenues of potential future research to further develop and utilize these unique and complex systems.

  3. Subsurface geology of the Cold Creek syncline

    International Nuclear Information System (INIS)

    Meyers, C.W.; Price, S.M.

    1981-07-01

    Bedrock beneath the Hanford Site is being evaluated by the Basalt Waste Isolation Project (BWIP) for possible use by the US Department of Energy as a geologic repository for nuclear waste storage. Initial BWIP geologic and hydrologic studies served to determine that the central Hanford Site contains basalt flows with thick, dense interiors that have low porosities and permeabilities. Furthermore, within the Cold Creek syncline, these flows appear to be nearly flat lying across areas in excess of tens of square kilometers. Such flows have been identified as potential repository host rock candidates. The Umtanum flow, which lies from 900 to 1150 m beneath the surface, is currently considered the leading host rock candidate. Within the west-central Cold Creek syncline, a 47-km 2 area designated as the reference repository location (RRL) is currently considered the leading candidate site. The specific purpose of this report is to present current knowledge of stratigraphic, lithologic, and structural factors that directly relate to the suitability of the Umtanum flow within the Cold Creek syncline for use as a nuclear waste repository host rock. The BWIP geologic studies have concentrated on factors that might influence groundwater transport of radionuclides from this flow. These factors include: (1) intraflow structures within the interiors of individual lava flows, (2) interflow zones and flow fronts between adjacent lava flows, and (3) bedrock structures. Data have been obtained primarily through coring and geophysical logging of deep boreholes, petrographic, paleomagnetic, and chemical analysis, seismic-reflection, gravity, and magnetic (ground and multilevel airborne) surveys, and surface mapping. Results included in this document comprise baseline data which will be utilized to prepare a Site Characterization Report as specified by the US Nuclear Regulatory Commission

  4. Great Basin geologic framework and uranium favorability

    International Nuclear Information System (INIS)

    Larson, L.T.; Beal, L.H.

    1978-01-01

    Work on this report has been done by a team of seven investigators assisted over the project span by twenty-three undergraduate and graduate students from May 18, 1976 to August 19, 1977. The report is presented in one volume of text, one volume or Folio of Maps, and two volumes of bibliography. The bibliography contains approximately 5300 references on geologic subjects pertinent to the search for uranium in the Great Basin. Volume I of the bibliography lists articles by author alphabetically and Volume II cross-indexes these articles by location and key word. Chapters I through IV of the Text volume and accompanying Folio Map Sets 1, 2, 3, 4, and 5, discuss the relationship of uranium to rock and structural environments which dominate the Great Basin. Chapter 5 and Map Sets 6 and 7 provide a geochemical association/metallogenic grouping of mineral occurrences in the Great Basin along with information on rock types hosting uranium. Chapter VI summarizes the results of a court house claim record search for 'new' claiming areas for uranium, and Chapter VII along with Folio Map Set 8 gives all published geochronological data available through April 1, 1977 on rocks of the Great Basin. Chapter VIII provides an introduction to a computer analysis of characteristics of certain major uranium deposits in crystalline rocks (worldwide) and is offered as a suggestion of what might be done with uranium in all geologic environments. We believe such analysis will assist materially in constructing exploration models. Chapter IX summarizes criteria used and conclusions reached as to the favorability of uranium environments which we believe to exist in the Great Basin and concludes with recommendations for both exploration and future research. A general summary conclusion is that there are several geologic environments within the Great Basin which have considerable potential and that few, if any, have been sufficiently tested

  5. INTURGEO: The international uranium geology information system

    International Nuclear Information System (INIS)

    1988-09-01

    The International Uranium Geology Information System (INTURGEO) is an international compilation of data on uranium deposits and occurrences. The purpose of INTURGEO is to provide a clearinghouse for uranium geological information that can serve for the better understanding of the worldwide distribution of uranium occurrences and deposits. The INTURGEO system is by no means complete for all regions of the world. Data have been available principally from the WOCA countries. INTURGEO currently covers 6,089 occurrences and deposits in 96 countries of which 4,596 occurrences in 92 countries are presented here. The information presented in this publication is a very brief, one line synopsis of deposits and occurrences, and has been collected from literature and through questionnaires sent directly to IAEA Member States. None of the information contained in the INTURGEO database was derived from confidential sources although there are many entries which come from the internal files of Member States and are not directly available in the general literature. The uniformity of the INTURGEO data presented in this report has depended heavily on the data provided by Member States. Basic information includes the deposit or occurrence name, the mining district, the tectonic setting, the geological type, status, size, host-rock type, age of mineralization and bibliographic references. The data contained in the maps of the atlas include all reported occurrences of uranium above the anomaly level. The categories of occurrence and deposit status includes: Anomaly; occurrences of unknown status; occurrences; prospects; developed prospects; subeconomic deposits; economic deposits; mines; inactive mines; depleted mines. A microcomputer version of INTURGEO on 21 Megabyte Bernoulli disks is available. 5 tabs, 102 maps

  6. Geology and radiometry of West Macedonia (Greece)

    International Nuclear Information System (INIS)

    Minatidis, Demetrios G.

    1984-10-01

    Car borne scintillometry survey in W. Macedonia (Greece) showed that the granitic rocks of the area, the zone centered on the Tertiary volcanic rocks of Almopia zone and a large part of adjacent sediments constitute the most promising geological formations for further uranium exploration. Some Tertiary volcanic rocks in the general area centered on the Aegean plate are associated with uranium mineralization and high radioactivity. An attempt has been made to evaluate young Alpine volcanic rocks from uranium exploration point of view on a regional scale by using arithmetic mean radioactivity data from the car borne survey coverage of W. Macedonia, as well as other geological and geochemical data from numerous similar volcanic rocks of the area and other neighbouring areas. In connection with this further exploration of the Tertiary volcanic rocks of W. Macedonia is expected to reveal new uranium deposits in the area. Horizontal or gently dipping sedimentary rocks adjacent to the above mentioned volcanics have a statistical radioactivity higher than that in normal sediments, a fact that may give evidence of the existence or uranium mineralization in deeper horizons in these sediments. To make a comparison with this the existence of 134 ppm of leachable U in sediments of W. Crete Island, 20 to 30 meters below the surface, is reported where the overlying sediments exhibit also a radioactivity higher than in normal sediments. Some structural contacts, in particular the contact between the granite of Florina and the limestones of Krystallopigi (west of Florina), have locally a very high radioactivity. Also an open fault in the Achlada-Papadia area (Florina) exhibits locally a high radioactivity and a high U content. All the above mentioned geological formations are, therefore, proposed for further U exploration. (author)

  7. Environmental marine geology of the Arctic Ocean

    International Nuclear Information System (INIS)

    Mudie, P.J.

    1991-01-01

    The Arctic Ocean and its ice cover are major regulators of Northern Hemisphere climate, ocean circulation and marine productivity. The Arctic is also very sensitive to changes in the global environment because sea ice magnifies small changes in temperature, and because polar regions are sinks for air pollutants. Marine geology studies are being carried out to determine the nature and rate of these environmental changes by study of modem ice and sea-bed environments, and by interpretation of geological records imprinted in the sea-floor sediments. Sea ice camps, an ice island, and polar icebreakers have been used to study both western and eastern Arctic Ocean basins. Possible early warning signals of environmental changes in the Canadian Arctic are die-back in Arctic sponge reefs, outbreaks of toxic dinoflagellates, and pesticides in the marine food chain. Eastern Arctic ice and surface waters are contaminated by freon and radioactive fallout from Chernobyl. At present, different sedimentary processes operate in the pack ice-covered Canadian polar margin than in summer open waters off Alaska and Eurasia. The geological records, however, suggest that a temperature increase of 1-4 degree C would result in summer open water throughout the Arctic, with major changes in ocean circulation and productivity of waters off Eastern North America, and more widespread transport of pollutants from eastern to western Arctic basins. More studies of longer sediment cores are needed to confirm these interpretations, but is is now clear that the Arctic Ocean has been the pacemaker of climate change during the past 1 million years

  8. Robust record preservation system on geological repository

    International Nuclear Information System (INIS)

    Ohuchi, J.; Torata, S.; Tsuboya, T.

    2004-01-01

    Long-term record preservation system on geological disposal of High Level Radioactive Wastes (HLW) has been investigated as the institutional control by RWMC, Japan. Geological disposal of HLW, being based on the passive safe concept, has been considered not to necessitate the human controls to maintain its long-term safety. However how to complement the safety case on geological disposal is an important issue in each countries to progress the repository program with the step-wise decisions process during the long-term period up to several hundreds years. Although we cannot predict the future society, we need to realize the robust and redundant system for preserving records, which should be accessible, retrievable and understandable for the unpredicted future generations. First of all, we held a Rome workshop in January 2003 to exchange views on the matter, resulted in the suggestion directing the discussion on the record management and long-term preservation and retrieval of information regarding radioactive waste. Second, we considered the balance of active and passive system to strengthen the robustness. Another significance of long-term record preservation is to send current generation an implicit message, 'doing our best for future generations', in addition to aiming at both warning and their own decision-making. We call it 'meta-signal' to current generation. Thirdly, we demonstrated the laser-engraving technology to have converted five hundreds pages of an A4 sized report with human readable font sizes to 42 square silicon carbide plates, 10cm x10cm and 1mm in thickness. Silicon carbide would be an alternative to paper and might be possible to be an alternative to microfilm utilized as digital recording media. Another case study is the future generations' accessibility to the preserved records. (author)

  9. A quantitative geologic study of heterogeneity

    International Nuclear Information System (INIS)

    Davis, J.M.; Phillips, F.M.

    1990-01-01

    Spatial variation of hydraulic conductivity has been generally recognized as the dominant medium-dependent control on the transport and dispersion of contaminants in ground water. An empirical study focusing on the relationship between patters of sedimentology and patterns of permeability is being conducted at an outcrop of the Pliocene/Pleistocene Sierra Ladrones formation, central New Mexico. Methods of geostatistics and sedimentary basin analysis are employed to study the problem of aquifer heterogeneity. An air permeameter provides a means of obtaining extensive field measurements of air-flow rates through the sediments. These flow rates are subsequently used to characterize the permeability distribution of the outcrop. Both the geologic information and the air-flow rate data provide the basis for analysis of aquifer heterogeneity. Preliminary geologic mapping indicates that the sediments in the study area are the products of an arid fluvial/interfluvial depositional environment. Probability distribution analysis of the air-flow rate data suggests that the permeability of these sediments is log-normally distributed. The air permeability data are used to estimate variograms and correlation lengths in both the horizontal and vertical directions. At the scale of 10's of centimeters, the horizontal variograms exhibit exponential variogram behaviour . When two distinct lithologies are present, the correlation structure appears to be a nested exponential. Variogram analysis of estimated mean permeability at the scale of meters also shows evidence of a nested correlation structure in the horizontal direction and a periodic correlation structure in the vertical direction. Results of this study suggest that there is a direct connection between observable geologic structure and permeability statistics. (Author) (35 refs., 10 figs., 5 tabs.)

  10. Monitored Geologic Repository Project Description Document

    International Nuclear Information System (INIS)

    Curry, P. M.

    2001-01-01

    The primary objective of the Monitored Geologic Repository Project Description Document (PDD) is to allocate the functions, requirements, and assumptions to the systems at Level 5 of the Civilian Radioactive Waste Management System (CRWMS) architecture identified in Section 4. It provides traceability of the requirements to those contained in Section 3 of the ''Monitored Geologic Repository Requirements Document'' (MGR RD) (YMP 2000a) and other higher-level requirements documents. In addition, the PDD allocates design related assumptions to work products of non-design organizations. The document provides Monitored Geologic Repository (MGR) technical requirements in support of design and performance assessment in preparing for the Site Recommendation (SR) and License Application (LA) milestones. The technical requirements documented in the PDD are to be captured in the System Description Documents (SDDs) which address each of the systems at Level 5 of the CRWMS architecture. The design engineers obtain the technical requirements from the SDDs and by reference from the SDDs to the PDD. The design organizations and other organizations will obtain design related assumptions directly from the PDD. These organizations may establish additional assumptions for their individual activities, but such assumptions are not to conflict with the assumptions in the PDD. The PDD will serve as the primary link between the technical requirements captured in the SDDs and the design requirements captured in US Department of Energy (DOE) documents. The approved PDD is placed under Level 3 baseline control by the CRWMS Management and Operating Contractor (M and O) and the following portions of the PDD constitute the Technical Design Baseline for the MGR: the design characteristics listed in Table 1-1, the MGR Architecture (Section 4.1), the Technical Requirements (Section 5), and the Controlled Project Assumptions (Section 6)

  11. Monitored Geologic Repository Project Description Document

    International Nuclear Information System (INIS)

    Curry, P.

    2000-01-01

    The primary objective of the Monitored Geologic Repository Project Description Document (PDD) is to allocate the functions, requirements, and assumptions to the systems at Level 5 of the Civilian Radioactive Waste Management System (CRWMS) architecture identified in Section 4. It provides traceability of the requirements to those contained in Section 3 of the ''Monitored Geologic Repository Requirements Document'' (MGR RD) (CRWMS M and O 2000b) and other higher-level requirements documents. In addition, the PDD allocates design related assumptions to work products of non-design organizations. The document provides Monitored Geologic Repository (MGR) engineering design basis in support of design and performance assessment in preparing for the Site Recommendation (SR) and License Application (LA) milestones. The engineering design basis documented in the PDD is to be captured in the System Description Documents (SDDs) which address each of the systems at Level 5 of the CRWMS architecture. The design engineers obtain the engineering design basis from the SDDs and by reference from the SDDs to the PDD. The design organizations and other organizations will obtain design related assumptions directly from the PDD. These organizations may establish additional assumptions for their individual activities, but such assumptions are not to conflict with the assumptions in the PDD. The PDD will serve as the primary link between the engineering design basis captured in the SDDs and the design requirements captured in U.S. Department of Energy (DOE) documents. The approved PDD is placed under Level 3 baseline control by the CRWMS Management and Operating Contractor (M and O) and the following portions of the PDD constitute the Technical Design Baseline for the MGR: the design characteristics listed in Table 2-1, the MGR Architecture (Section 4.1),the Engineering Design Bases (Section 5), and the Controlled Project Assumptions (Section 6)

  12. Uranium geochemistry, mineralogy, geology, exploration and resources

    International Nuclear Information System (INIS)

    De Vivo, B.

    1984-01-01

    This book comprises papers on the following topics: history of radioactivity; uranium in mantle processes; transport and deposition of uranium in hydrothermal systems at temperatures up to 300 0 C: Geological implications; geochemical behaviour of uranium in the supergene environment; uranium exploration techniques; uranium mineralogy; time, crustal evolution and generation of uranium deposits; uranium exploration; geochemistry of uranium in the hydrographic network; uranium deposits of the world, excluding Europe; uranium deposits in Europe; uranium in the economics of energy; role of high heat production granites in uranium province formation; and uranium deposits

  13. Review of heat dissipation in geologic media

    International Nuclear Information System (INIS)

    Pohl, R.O.; Vandersande, J.W.

    1981-01-01

    Existing data on the thermal conductivity of various rocks, e.g., rocksalt, granite, basalt, etc., will be critically reviewed, with the objective of determining the likely range of conductivity to be expected in a geologic repository. Research carried out at Cornell on the thermal conductivity of rocksalt from different sources, and from different horizons at the WIPP site in New Mexico will be described, as well as the search for the influence of ionizing radiation and of heat treatment. A few examples chosen from previously published calculations of expected temperature profiles will be presented; the considerable discrepancies demonstrate the need for more reliable calculations and for sensitivity analyses

  14. Environmental geology of Harrison Bay, northern Alaska

    Science.gov (United States)

    Craig, J.D.; Thrasher, G.P.

    1982-01-01

    The surficial and shallow subsurface geology of Harrison Bay on the Beaufort Sea coast was mapped as part of the U.S. Geological Survey's prelease evaluation for Outer Continental Shelf (OCS) Oil and Gas Lease Sale 71. During the 1980 summer season, approximately 1600 km of multisensored, high-resolution geophysical profile data were collected along a rectangular grid with 4.8 km line spacing. Interpretation of these data is presented on five maps showing bathymetry, sea-floor microrelief, ice-gouge characteristics, Holocene sediment thickness, and geologic structure to depths of approximately 1000 m. On a broad scale, the seafloor is shallow and almost flat, although microrelief features produced by sediment transport and ice-gouge processes typically vary up to several meters in amplitude. Microrelief bedforms related to hydraulic processes are predominant in water depths less than 12 m. Microrelief caused by ice gouging generally increases with water depth, reaching a maximum of 2 m or more in water depths beyond the 20 m isobath. This intensely gouged area lies beneath the shear zone between the seasonal landfast ice and the mobile polar ice pack. The thickness of recent (Holocene) sediment increases offshore, from 2 m near the Colville River delta to 30 m or more on the outer shelf. The thin Holocene layer is underlain by a complex horizon interpreted to be the upper surface of a Pleistocene deposit similar in composition to the present Arctic Coastal Plain. The base of the inferred Pleistocene section is interpreted to be a low-angle unconformity 100 m below sea level. Beneath this Tertiary-Quaternary unconformity, strata are interpreted to be alluvial fan-delta plain deposits corresponding to the Colville Group and younger formations of Late Cretaceous to Tertiary age. Numerous high-angle faults downthrown to the north trend across the survey area. With few exceptions, these faults terminate at or below the 100 m unconformity, suggesting that most tectonism

  15. Lies, Damned Lies, and Statistics (in Geology)

    Science.gov (United States)

    Vermeesch, Pieter

    2009-11-01

    According to Karl Popper's epistemology of critical rationalism, scientists should formulate falsifiable hypotheses rather than produce ad hoc answers to empirical observations. In other words, we should predict and test rather than merely explain [Popper, 1959]. Sometimes, statistical tests such as chi-square, t, or Kolmogorov-Smirnov are used to make deductions more “objective.” Such tests are used in a wide range of geological subdisciplines [see Reimann and Filzmoser, 2000; Anderson and Johnson, 1999; Lørup et al., 1998; Sircombe and Hazelton, 2004].

  16. Demonstration of safety for geologic disposal

    International Nuclear Information System (INIS)

    Taylor, E.C.; Ramspott, L.D.; Sprecher, W.M.

    1994-01-01

    The US Department of Energy (DOE) is developing a nuclear waste management system that will accept high-level radioactive waste, transport it, store it, and ultimately emplace it in a deep geologic repository. The key activity now is determining whether Yucca Mountain, Nevada is suitable as a site for the repository. If so, the crucial technological advance will be the demonstration that disposal of nuclear waste will be safe for thousands of years after closure. This paper assesses the impact of regulatory developments, legal developments, and scientific developments on such a demonstration

  17. The role of geostatistics in medical geology

    Science.gov (United States)

    Goovaerts, Pierre

    2014-05-01

    Since its development in the mining industry, geostatistics has emerged as the primary tool for spatial data analysis in various fields, ranging from earth and atmospheric sciences, to agriculture, soil science, remote sensing, and more recently environmental exposure assessment. In the last few years, these tools have been tailored to the field of medical geography or spatial epidemiology, which is concerned with the study of spatial patterns of disease incidence and mortality and the identification of potential 'causes' of disease, such as environmental exposure, diet and unhealthy behaviors, economic or socio-demographic factors. On the other hand, medical geology is an emerging interdisciplinary scientific field studying the relationship between natural geological factors and their effects on human and animal health. This paper provides an introduction to the field of medical geology with an overview of geostatistical methods available for the analysis of geological and health data. Key concepts are illustrated using the mapping of groundwater arsenic concentrations across eleven Michigan counties and the exploration of its relationship to the incidence of prostate cancer at the township level. Arsenic in drinking-water is a major problem and has received much attention because of the large human population exposed and the extremely high concentrations (e.g. 600 to 700 μg/L) recorded in many instances. Few studies have however assessed the risks associated with exposure to low levels of arsenic (say water in the United States. In the Michigan thumb region, arsenopyrite (up to 7% As by weight) has been identified in the bedrock of the Marshall Sandstone aquifer, one of the region's most productive aquifers. Epidemiologic studies have suggested a possible associationbetween exposure to inorganic arsenic and prostate cancer mortality, including a study of populations residing in Utah. The information available for the present ecological study (i.e. analysis of

  18. Structural geologic study of southeastern Missouri

    International Nuclear Information System (INIS)

    Satterfield, I.R.; Ward, R.A.

    1978-01-01

    A geologic map at 1:62,500 scale was prepared of the Cretaceous (Mesozoic) and Tertiary (cenozoic) sediments and seven major units were recognized with emphasis on faulting. Faulted sediments of Pliocene age (possibly Pleistocene) were observed and younger units are suspected to be involved. Data from hand-augered holes plus water well data were logged and plotted. The feasibility of using physical data (size analysis and pH) as a correlation tool for determining structural disturbance in loess deposits was established

  19. Mineral resources, geologic structure, and landform surveys

    Science.gov (United States)

    Lattman, L. H.

    1973-01-01

    The use of ERTS-1 imagery for mineral resources, geologic structure, and landform surveys is discussed. Four categories of ERTS imagery application are defined and explained. The types of information obtained by the various multispectral band scanners are analyzed. Samples of land use maps and tectoning and metallogenic models are developed. It is stated that the most striking features visible on ERTS imagery are regional lineaments, or linear patterns in the topography, which reflect major fracture zones extending upward from the basement of the earth.

  20. Mined Geologic Disposal System Concept of Operations

    International Nuclear Information System (INIS)

    Heidt, R.M.

    1995-01-01

    A Concept of Operations has been developed for the disposal of high-level radioactive waste in the potential geologic repository at Yucca Mountain. The Concept of Operations has been developed to document a cormion understanding of how the repository is to be operated. It is based on the repository architecture identified in the Initial Summary Report for Repository/Waste Package Advanced Conceptual Design and describes the operation of the repository from the initial receipt of waste through repository closure. Also described are operations for waste retrieval

  1. Geologic Framework Model Analysis Model Report

    Energy Technology Data Exchange (ETDEWEB)

    R. Clayton

    2000-12-19

    The purpose of this report is to document the Geologic Framework Model (GFM), Version 3.1 (GFM3.1) with regard to data input, modeling methods, assumptions, uncertainties, limitations, and validation of the model results, qualification status of the model, and the differences between Version 3.1 and previous versions. The GFM represents a three-dimensional interpretation of the stratigraphy and structural features of the location of the potential Yucca Mountain radioactive waste repository. The GFM encompasses an area of 65 square miles (170 square kilometers) and a volume of 185 cubic miles (771 cubic kilometers). The boundaries of the GFM were chosen to encompass the most widely distributed set of exploratory boreholes (the Water Table or WT series) and to provide a geologic framework over the area of interest for hydrologic flow and radionuclide transport modeling through the unsaturated zone (UZ). The depth of the model is constrained by the inferred depth of the Tertiary-Paleozoic unconformity. The GFM was constructed from geologic map and borehole data. Additional information from measured stratigraphy sections, gravity profiles, and seismic profiles was also considered. This interim change notice (ICN) was prepared in accordance with the Technical Work Plan for the Integrated Site Model Process Model Report Revision 01 (CRWMS M&O 2000). The constraints, caveats, and limitations associated with this model are discussed in the appropriate text sections that follow. The GFM is one component of the Integrated Site Model (ISM) (Figure l), which has been developed to provide a consistent volumetric portrayal of the rock layers, rock properties, and mineralogy of the Yucca Mountain site. The ISM consists of three components: (1) Geologic Framework Model (GFM); (2) Rock Properties Model (RPM); and (3) Mineralogic Model (MM). The ISM merges the detailed project stratigraphy into model stratigraphic units that are most useful for the primary downstream models and the

  2. Geologic flow characterization using tracer techniques

    International Nuclear Information System (INIS)

    Klett, R.D.; Tyner, C.E.; Hertel, E.S. Jr.

    1981-04-01

    A new tracer flow-test system has been developed for in situ characterization of geologic formations. This report describes two sets of test equipment: one portable and one for testing in deep formations. Equations are derived for in situ detector calibration, raw data reduction, and flow logging. Data analysis techniques are presented for computing porosity and permeability in unconfined isotropic media, and porosity, permeability and fracture characteristics in media with confined or unconfined two-dimensional flow. The effects of tracer pulse spreading due to divergence, dispersion, and porous formations are also included

  3. Confidence building in implementation of geological disposal

    International Nuclear Information System (INIS)

    Umeki, Hiroyuki

    2004-01-01

    Long-term safety of the disposal system should be demonstrated to the satisfaction of the stakeholders. Convincing arguments are therefore required that instil in the stakeholders confidence in the safety of a particular concept for the siting and design of a geological disposal, given the uncertainties that inevitably exist in its a priori description and in its evolution. The step-wise approach associated with making safety case at each stage is a key to building confidence in the repository development programme. This paper discusses aspects and issues on confidence building in the implementation of HLW disposal in Japan. (author)

  4. Solubility limited radionuclide transport through geologic media

    International Nuclear Information System (INIS)

    Muraoka, Susumu; Iwamoto, Fumio; Pigford, T.H.

    1980-11-01

    Prior analyses for the migration of radionuclides neglect solubility limits of resolved radionuclide in geologic media. But actually some of the actinides may appear in chemical forms of very low solubility. In the present report we have proposed the migration model with no decay parents in which concentration of radionuclide is limited in concentration of solubility in ground water. In addition, the analytical solutions of the space-time-dependent concentration are presented in the case of step release, band release and exponential release. (author)

  5. Geologic mapping in Greenland with polarimetric SAR

    DEFF Research Database (Denmark)

    Dall, Jørgen; Madsen, Søren Nørvang; Brooks, C. K.

    1995-01-01

    The application of synthetic aperture radar (SAR) for geologic mapping in Greenland is investigated by the Danish Center for Remote Sensing (DCRS) in co-operation with the Danish Lithosphere Centre (DLC). In 1994 a pilot project was conducted in East Greenland. The Danish airborne SAR, EMISAR...... mapping is complicated by an extreme topography leading to massive shadowing, foreshortening and layover. An artifact characterised by high cross-polarisation is observed behind many sharp mountain ridges. A multi-reflection hypothesis has been investigated without finding the ultimate proof...

  6. Geologic Framework Model Analysis Model Report

    International Nuclear Information System (INIS)

    Clayton, R.

    2000-01-01

    The purpose of this report is to document the Geologic Framework Model (GFM), Version 3.1 (GFM3.1) with regard to data input, modeling methods, assumptions, uncertainties, limitations, and validation of the model results, qualification status of the model, and the differences between Version 3.1 and previous versions. The GFM represents a three-dimensional interpretation of the stratigraphy and structural features of the location of the potential Yucca Mountain radioactive waste repository. The GFM encompasses an area of 65 square miles (170 square kilometers) and a volume of 185 cubic miles (771 cubic kilometers). The boundaries of the GFM were chosen to encompass the most widely distributed set of exploratory boreholes (the Water Table or WT series) and to provide a geologic framework over the area of interest for hydrologic flow and radionuclide transport modeling through the unsaturated zone (UZ). The depth of the model is constrained by the inferred depth of the Tertiary-Paleozoic unconformity. The GFM was constructed from geologic map and borehole data. Additional information from measured stratigraphy sections, gravity profiles, and seismic profiles was also considered. This interim change notice (ICN) was prepared in accordance with the Technical Work Plan for the Integrated Site Model Process Model Report Revision 01 (CRWMS M and O 2000). The constraints, caveats, and limitations associated with this model are discussed in the appropriate text sections that follow. The GFM is one component of the Integrated Site Model (ISM) (Figure l), which has been developed to provide a consistent volumetric portrayal of the rock layers, rock properties, and mineralogy of the Yucca Mountain site. The ISM consists of three components: (1) Geologic Framework Model (GFM); (2) Rock Properties Model (RPM); and (3) Mineralogic Model (MM). The ISM merges the detailed project stratigraphy into model stratigraphic units that are most useful for the primary downstream models and

  7. Proposals of geological sites for L/ILW and HLW repositories. Geological background. Text volume

    International Nuclear Information System (INIS)

    2008-01-01

    On April 2008, the Swiss Federal Council approved the conceptual part of the Sectoral Plan for Deep Geological Repositories. The Plan sets out the details of the site selection procedure for geological repositories for low- and intermediate-level waste (L/ILW) and high-level waste (HLW). It specifies that selection of geological siting regions and sites for repositories in Switzerland will be conducted in three stages, the first one (the subject of this report) being the definition of geological siting regions within which the repository projects will be elaborated in more detail in the later stages of the Sectoral Plan. The geoscientific background is based on the one hand on an evaluation of the geological investigations previously carried out by Nagra on deep geological disposal of HLW and L/ILW in Switzerland (investigation programmes in the crystalline basement and Opalinus Clay in Northern Switzerland, investigations of L/ILW sites in the Alps, research in rock laboratories in crystalline rock and clay); on the other hand, new geoscientific studies have also been carried out in connection with the site selection process. Formulation of the siting proposals is conducted in five steps: A) In a first step, the waste inventory is allocated to the L/ILW and HLW repositories; B) The second step involves defining the barrier and safety concepts for the two repositories. With a view to evaluating the geological siting possibilities, quantitative and qualitative guidelines and requirements on the geology are derived on the basis of these concepts. These relate to the time period to be considered, the space requirements for the repository, the properties of the host rock (depth, thickness, lateral extent, hydraulic conductivity), long-term stability, reliability of geological findings and engineering suitability; C) In the third step, the large-scale geological-tectonic situation is assessed and large-scale areas that remain under consideration are defined. For the L

  8. Intelligent Learning for Knowledge Graph towards Geological Data

    Directory of Open Access Journals (Sweden)

    Yueqin Zhu

    2017-01-01

    Full Text Available Knowledge graph (KG as a popular semantic network has been widely used. It provides an effective way to describe semantic entities and their relationships by extending ontology in the entity level. This article focuses on the application of KG in the traditional geological field and proposes a novel method to construct KG. On the basis of natural language processing (NLP and data mining (DM algorithms, we analyze those key technologies for designing a KG towards geological data, including geological knowledge extraction and semantic association. Through this typical geological ontology extracting on a large number of geological documents and open linked data, the semantic interconnection is achieved, KG framework for geological data is designed, application system of KG towards geological data is constructed, and dynamic updating of the geological information is completed accordingly. Specifically, unsupervised intelligent learning method using linked open data is incorporated into the geological document preprocessing, which generates a geological domain vocabulary ultimately. Furthermore, some application cases in the KG system are provided to show the effectiveness and efficiency of our proposed intelligent learning approach for KG.

  9. Environmental resources of selected areas of Hawaii: Geological hazards

    Energy Technology Data Exchange (ETDEWEB)

    Staub, W.P.; Reed, R.M.

    1995-03-01

    This report has been prepared to make available and archive the background scientific data and related information collected on geologic hazards during the preparation of the environmental impact statement (EIS) for Phases 3 and 4 of the Hawaii Geothermal Project (HGP) as defined by the state of Hawaii in its April 1989 proposal to Congress. The US Department of Energy (DOE) published a notice withdrawing its Notice of Intent to prepare the HGP-EIS. Since the state of Hawaii is no longer pursuing or planning to pursue the HGP, DOE considers the project to be terminated. This report presents a review of current information on geologic hazards in the Hawaiian Islands. Interrelationships among these hazards are discussed. Probabilities of occurrence of given geologic hazards are provided in various regions where sufficient geologic or historical data are available. Most of the information contained herein is compiled from recent US Geological Survey (USGS) publications and USGS open-file reports related to this project. This report describes the natural geologic hazards present in the area and does not represent an assessment of environmental impacts. Geologic hazards originate both onshore and offshore. Onshore geologic hazards such as volcanic eruptions, earthquakes, surface rupture, landslides, uplift and subsidence occur mainly on the southern third of the island of Hawaii (hereinafter referred to as Hawaii). Offshore geologic hazards are more widely distributed throughout the Hawaiian Islands. Examples of offshore geologic hazards are submarine landslides, turbidity currents, and seismic sea waves (tsunamis).

  10. Study on the development of geological environmental model

    International Nuclear Information System (INIS)

    Tsujimoto, Keiichi; Shinohara, Yoshinori; Ueta, Shinzo; Saito, Shigeyuki; Kawamura, Yuji; Tomiyama, Shingo; Ohashi, Toyo

    2002-03-01

    The safety performance assessment was carried out in potential geological environment in the conventional research and development of geological disposal, but the importance of safety assessment based on the repository design and scenario considering the concrete geological environment will increase in the future. The research considering the link of the major three fields of geological disposal, investigation of geological environment, repository design, and safety performance assessment, is the contemporary worldwide research theme. Hence it is important to organize information flow that contains the series of information process form the data production to analysis in the three fields, and to systemize the knowledge base that unifies the information flow hierarchically. The purpose of the research is to support the development of the unified analysis system for geological disposal. The development technology for geological environmental model studied for the second progress report by JNC are organized and examined for the purpose of developing database system with considering the suitability for the deep underground research facility. The geological environmental investigation technology and building methodology for geological structure and hydro geological structure models are organized and systemized. Furthermore, the quality assurance methods in building geological environment models are examined. Information which is used and stored in the unified analysis system are examined to design database structure of the system based on the organized methodology for building geological environmental model. The graphic processing function for data stored in the unified database are examined. furthermore, future research subjects for the development of detail models for geological disposal are surveyed to organize safety performance system. (author)

  11. OneGeology- A Global Geoscience Data Platform

    Science.gov (United States)

    Harrison, M.; Komac, M.; Duffy, T.; Robida, F.; Allison, M. L.

    2014-12-01

    OneGeology (1G) is an initiative of Geological Survey Organisations (GSOs) around the globe that dates back to 2007. Since then, OneGeology has been a leader in developing geological online map data using GeoSciML- an international interoperability standard for the exchange of geological data. Increased use of this new standard allows geological data to be shared and integrated across the planet among organisations. One of the goals of OneGeology is an exchange of know-how with the developing world, shortening the digital learning curve. In autumn 2013 OneGeology was transformed into a Consortium with a clearly defined governance structure, making it more transparent, its operation more sustainable and its membership more open where in addition to GSOs, other types of organisations that create and use geoscience data can join and contribute. The next stage of the OneGeology initiative is focused on increasing the openness and richness of that data from individual countries to create a multi-thematic global geological data resource about the rocks beneath our feet. Authoritative geoscience information will help to mitigate natural disasters, explore for resources (water, minerals and energy) and identify risks to human health on a planetary scale with the aim of 1G to increase awareness of the geosciences and their relevance among professionals and general public- to be part of the solution. We live in a digital world that enables prompt access to vast amounts of open access data. Understanding our world, the geology beneath our feet and environmental challenges related to geology calls for accessibility of geoscience data and the OneGeology Portal (portal.onegeology.org) is the place to find them.

  12. Environmental geophysics: Locating and evaluating subsurface geology, geologic hazards, groundwater contamination, etc

    International Nuclear Information System (INIS)

    Benson, A.K.

    1994-01-01

    Geophysical surveys can be used to help delineate and map subsurface geology, including potential geologic hazards, the water table, boundaries of contaminated plumes, etc. The depth to the water table can be determined using seismic and ground penetrating radar (GPR) methods, and hydrogeologic and geologic cross sections of shallow alluvial aquifers can be constructed from these data. Electrical resistivity and GPR data are especially sensitive to the quality of the water and other fluids in a porous medium, and these surveys help to identify the stratigraphy, the approximate boundaries of contaminant plumes, and the source and amount of contamination in the plumes. Seismic, GPR, electromagnetic (VLF), gravity, and magnetic data help identify and delineate shallow, concealed faulting, cavities, and other subsurface hazards. Integration of these geophysical data sets can help pinpoint sources of subsurface contamination, identify potential geological hazards, and optimize the location of borings, monitoring wells, foundations for building, dams, etc. Case studies from a variety of locations will illustrate these points. 20 refs., 17 figs., 6 tabs

  13. Geostatistics: a common link between medical geography, mathematical geology, and medical geology.

    Science.gov (United States)

    Goovaerts, P

    2014-08-01

    Since its development in the mining industry, geostatistics has emerged as the primary tool for spatial data analysis in various fields, ranging from earth and atmospheric sciences to agriculture, soil science, remote sensing, and more recently environmental exposure assessment. In the last few years, these tools have been tailored to the field of medical geography or spatial epidemiology, which is concerned with the study of spatial patterns of disease incidence and mortality and the identification of potential 'causes' of disease, such as environmental exposure, diet and unhealthy behaviours, economic or socio-demographic factors. On the other hand, medical geology is an emerging interdisciplinary scientific field studying the relationship between natural geological factors and their effects on human and animal health. This paper provides an introduction to the field of medical geology with an overview of geostatistical methods available for the analysis of geological and health data. Key concepts are illustrated using the mapping of groundwater arsenic concentration across eleven Michigan counties and the exploration of its relationship to the incidence of prostate cancer at the township level.

  14. Geologic quadrangle maps of the United States: geology of the Casa Diablo Mountain quadrangle, California

    Science.gov (United States)

    Rinehart, C. Dean; Ross, Donald Clarence

    1957-01-01

    The Casa Diablo Mountain quadrangle was mapped in the summers of 1952 and 1953 by the U.S. Geological Survey in cooperation with the California State Division of Mines as part of a study of potential tungsten-bearing areas.

  15. Assessment of effectiveness of Geologic Isolation Systems. The development and application of a geologic simulation model

    International Nuclear Information System (INIS)

    Foley, M.G.; Petrie, G.M.

    1982-03-01

    The Geologic Simulation Model (GSM) developed under the Assessment of Effectiveness of Geologic Isolation Systems (AEGIS) project at the Pacific Northwest Laboratory for the Department of Energy is a quasi-deterministic process-response model which simulates the development of the geologic and hydrologic systems of a ground-water basin for a million years into the future. Effects of natural processes on the ground-water hydrologic system are modeled principally by rate equations. The combined effects and synergistic interactions of different processes are approximated by linear superposition of their effects during discrete time intervals in a stepwise-integration approach. The completed AEGIS GSM was used to generate 500 Monte Carlo simulations of the behavior of the geologic/hydrologic system affecting a hypothetical repository in the Pasco Basin over the next million years. These simulations used data which were not subjected to a review adequate to the needs of a real site performance assessment. However, the general care used in generating the data, and the overall behavior of the GSM suggest that the results are plausible at this time

  16. Geologic repositories for radioactive waste: the nuclear regulatory commission geologic comments on the environmental assessment

    International Nuclear Information System (INIS)

    Justus, P.S.; Trapp, J.S.; Westbrook, K.B.; Lee, R.; Blackford, M.B.; Rice, B.

    1985-01-01

    The NRC staff completed its review of the Environmental Assessments (EAs) issued by the Department of Energy (DOE) in December, 1984, in support of the site selection processes established by the Nuclear Waste Policy Act of 1982 (NWPA). The EAs contain geologic information on nine sites that DOE has identified as potentially acceptable for the first geologic repository in accordance with the requirements of NWPA. The media for the sites vary from basalt at Hanford, Washington, tuff at Yucca Mountain, Nevada, bedded salt in the Palo Duro Basin, Texas and Paradox Basin, Utah, to salt domes in Mississippi and Louisiana. Despite the diversity in media there are common areas of concern for all sites. These include; structural framework and pattern, rates of tectonic and seismic activity, characterization of subsurface features, and stratigraphic thickness, continuity and homogeneity. Site-specific geologic concerns include: potential volcanic and hydrothermal activity at Yucca Mountain, potential hydrocarbon targets and deep basalt and sub-basalt structure at Hanford, and potential dissolution at all salt sites. The NRC comments were influenced by the performance objectives and siting criteria of 10 CFR Part 60 and the environmental protection criteria in 40 CFR Part 191, the applicable standards proposed by EPA. In its review the NRC identified several areas of geologic concern that it recommended DOE re-examine to determine if alternative or modified conclusions are appropriate

  17. Salvo: Seismic imaging software for complex geologies

    Energy Technology Data Exchange (ETDEWEB)

    OBER,CURTIS C.; GJERTSEN,ROB; WOMBLE,DAVID E.

    2000-03-01

    This report describes Salvo, a three-dimensional seismic-imaging software for complex geologies. Regions of complex geology, such as overthrusts and salt structures, can cause difficulties for many seismic-imaging algorithms used in production today. The paraxial wave equation and finite-difference methods used within Salvo can produce high-quality seismic images in these difficult regions. However this approach comes with higher computational costs which have been too expensive for standard production. Salvo uses improved numerical algorithms and methods, along with parallel computing, to produce high-quality images and to reduce the computational and the data input/output (I/O) costs. This report documents the numerical algorithms implemented for the paraxial wave equation, including absorbing boundary conditions, phase corrections, imaging conditions, phase encoding, and reduced-source migration. This report also describes I/O algorithms for large seismic data sets and images and parallelization methods used to obtain high efficiencies for both the computations and the I/O of seismic data sets. Finally, this report describes the required steps to compile, port and optimize the Salvo software, and describes the validation data sets used to help verify a working copy of Salvo.

  18. United States Geological Survey, programs in Nevada

    Science.gov (United States)

    ,

    1995-01-01

    The U.S. Geological Survey (USGS) has been collecting and interpreting natural-resources data in Nevada for more than 100 years. This long-term commitment enables planners to manage better the resources of a State noted for paradoxes. Although Nevada is one of the most sparsely populated States in the Nation, it has the fastest growing population (fig. 1). Although 90 percent of the land is rural, it is the fourth most urban State. Nevada is the most arid State and relies heavily on water resources. Historically, mining and agriculture have formed the basis of the economy; now tourism and urban development also have become important. The USGS works with more than 40 local, State, and other Federal agencies in Nevada to provide natural-resources information for immediate and long-term decisions.Subjects included in this fact sheet:Low-Level Radioactive-Waste DisposalMining and Water in the Humboldt BasinAquifer Systems in the Great BasinWater Allocation in Truckee and Carson BasinsNational Water-Quality Assessment ProgramMinerals Assessment for Land ManagementIrrigation DrainageGround-Water Movement at Nevada Test SiteOil and Gas ResourcesNational Mapping ProgramDigital Mapping and Aerial PhotographyCollection of Hydrologlc DataGeologic MappingEarthquake HazardsAssessing Mineral Resources of the SubsurfaceEarth Observation DataCooperative Programs

  19. Assessment of deep geological environment condition

    International Nuclear Information System (INIS)

    Bae, Dae Seok; Han, Kyung Won; Joen, Kwan Sik

    2003-05-01

    The main tasks of geoscientific study in the 2nd stage was characterized focusing mainly on a near-field condition of deep geologic environment, and aimed to generate the geologic input data for a Korean reference disposal system for high level radioactive wastes and to establish site characterization methodology, including neotectonic features, fracture systems and mechanical properties of plutonic rocks, and hydrogeochemical characteristics. The preliminary assessment of neotectonics in the Korean peninsula was performed on the basis of seismicity recorded, Quarternary faults investigated, uplift characteristics studied on limited areas, distribution of the major regional faults and their characteristics. The local fracture system was studied in detail from the data obtained from deep boreholes in granitic terrain. Through this deep drilling project, the geometrical and hydraulic properties of different fracture sets are statistically analysed on a block scale. The mechanical properties of intact rocks were evaluated from the core samples by laboratory testing and the in-situ stress conditions were estimated by a hydro fracturing test in the boreholes. The hydrogeochemical conditions in the deep boreholes were characterized based on hydrochemical composition and isotopic signatures and were attempted to assess the interrelation with a major fracture system. The residence time of deep groundwater was estimated by C-14 dating. For the travel time of groundwater between the boreholes, the methodology and equipment for tracer test were established

  20. Spent fuel performance in geologic repository environments

    International Nuclear Information System (INIS)

    Bradley, D.J.

    1985-10-01

    The performance assessment of the waste package is a current area of study in the United States program to develop a geologic repository for nuclear waste isolation. The waste package is presently envisioned as the waste form and its surrounding containers and possibly a packing material composed of crushed host rock or mixtures of that rock with clays. This waste package is tied to performance criteria set forth in recent legislation. It is the goal of the Civilian Radioactive Waste Management Program to obtain the necessary information on the waste package, in several geologic environments, to show that the waste package provides reasonable assurance of meeting established performance criteria. This paper discusses the United States program directed toward managing high-level radioactive waste, with emphasis on the current effort to define the behavior of irradiated spent fuel in repository groundwaters. Current studies are directed toward understanding the rate and nature (such as valence state, colloid form if any, solid phase controlling solubility) of radionuclide release from the spent fuel. Due to the strong interactive effect of radiation, thermal fields, and waste package components on this release, current spent fuel studies are being conducted primarily in the presence of waste package components over a wide range of potential environments

  1. Is Quaternary geology ready for the future?

    Science.gov (United States)

    Ritter, Dale F.

    1996-07-01

    Armed with a better understanding of process and an array of developing dating techniques, Quaternary geology is poised to achieve greater recognition in the general scientific community. This recognition however, will require some thought adjustment. Quaternary geologists will have to convince government, industry and a variety of scientific groups that they possess unique training and expertise that is needed as part of the thrust to fully understand and/or resolve major scientific problems. Therefore, future research and education efforts should not focus on developing a rigidly defined identity within geoscience, but instead should seek ways to be integrated with interdisciplinary teams that will investigate complex environmental and climate change problems. Such a scenaria creates and enermous dilemma for Quaternary geologists because they will derive greater intellectual stimulation from scientists working in discplines other than geology, and their scientific collaboratiors will most likely not be their academic colleagues. This outward expansion of our scientific network will require the development of interdsciplinary research collaboration and/or degree-granting programs at the graduate level. To accomplish such goals, universities must resist "turf protection", and funding agencies muts become more efficient at facilitating interdisciplinary research.

  2. Mined Geologic Disposal System Requirements Document

    International Nuclear Information System (INIS)

    1994-03-01

    This Mined Geologic Disposal System Requirements Document (MGDS-RD) describes the functions to be performed by, and the requirements for, a Mined Geologic Disposal System (MGDS) for the permanent disposal of spent nuclear fuel (SNF) (including SNF loaded in multi-purpose canisters (MPCs)) and commercial and defense high-level radioactive waste (HLW) in support of the Civilian Radioactive Waste Management System (CRWMS). The purpose of the MGDS-RD is to define the program-level requirements for the design of the Repository, the Exploratory Studies Facility (ESF), and Surface Based Testing Facilities (SBTF). These requirements include design, operation, and decommissioning requirements to the extent they impact on the physical development of the MGDS. The document also presents an overall description of the MGDS, its functions (derived using the functional analysis documented by the Physical System Requirements (PSR) documents as a starting point), its segments as described in Section 3.1.3, and the requirements allocated to the segments. In addition, the program-level interfaces of the MGDS are identified. As such, the MGDS-RD provides the technical baseline for the design of the MGDS

  3. Monitored Geologic Repository Concept of Operations

    International Nuclear Information System (INIS)

    Curry, P.M.

    1999-01-01

    This updated document provides the top level guidance for development of the individual systems for the MGR which will be further developed in the System Description Documents. This document will serve as guidance for the development of functional interface and operational requirements. However, the data and engineering values presented in Monitored Geologic Repository Concept of Operations are provided as estimates or summaries of the current design. The original analyses or supporting documents must be utilized if the data or engineering values are used for design inputs. The concepts presented will be utilized as inputs for the development of operational concepts for the individual systems. It is recognized that the references listed may contain existing data or data which are to be verified. However, the data and engineering values presented will not impact the concepts presented in this technical document. As such, the data and engineering values are not being tracked as To Be Verified data. This revision was created to incorporate changes resulting from Enhanced Design Alternative II and Revision 3, DCN 01, of the Monitored Geologic Repository Requirements (YMP 1999)

  4. Geologic isolation programs in other countries

    International Nuclear Information System (INIS)

    Gera, F.

    1976-01-01

    Several nations other than West Germany and The Netherlands have declared their intention to investigate geological formations as potential radioactive waste repositories. In Belgium, the formations underlying the Mol Center have been cored down to about 570 m. The target formation is a bed of tertiary clay 165 to 265 m below the surface. The plan is to produce a 10,000-m 3 cavity in the middle of this clay and to use it for the disposal of intermediate-level and alpha-bearing wastes. France has a program underway to assess salt and crystalline formations as possible waste-disposal sites. In Italy, the feasibility of high-level-waste disposal in clay formations is being explored. In situ experiments will be performed in the massive clays underlying the Trisaia Center in southern Italy. Spain has begun studies on waste disposal in salt, clay, anhydrite, and crystalline formations. In Sweden, attention is focused on the possibility of disposal in Precambrian crystalline bedrock. In Switzerland, where crystalline rocks are always fractured, large formations of salt are not known, and suitable clay or marl formations have not been identified, anhydrite formations are being studied. The United Kingdom has declared its intention to investigate clays and crystalline rocks. Other countries that have revealed plans to assess geologic disposal within their territories include Austria, Denmark, India, the German Democratic Republic, and the Soviet Union

  5. Geology of the Integrated Disposal Facility Trench

    International Nuclear Information System (INIS)

    Reidel, Steve P.; Fecht, Karl R.

    2005-01-01

    This report describes the geology of the integrated Disposal Facility (IDF) Trench. The stratigraphy consists of some of the youngest sediments of the Missoula floods (younger than 770 ka). The lithology is dominated sands with minor silts and gravels that are largely unconsolidated. The stratigraphy can be subdivided into five geologic units that can be mapped throughout the trench. Four of the units were deposited by the Missoula floods and the youngest consists of windblown sand and silt. The sediment has little moisture and is consistent with that observed in the characterization boreholes. The sedimentary layers are flat lying and there are no faults or folds present. Two clastic dikes were encountered, one along the west wall and one that can be traced from the north to the southwall. The north-south clastic dike nearly bifurcates the trench but the west wall clastic dike can not be traced very far east into the trench. The classic dikes consist mainly of sand with clay-lined walls. The sediment in the dikes is compacted to partly cemented and are more resistant than the layered sediments

  6. Uranium geology and prospecting in Greenland

    International Nuclear Information System (INIS)

    Steenfelt, A.; Neilson, B.L.; Secher, K.

    1977-01-01

    The Geological Survey of Greenland is responsible for most of the uranium and thorium prospecting activity in Greenland, which involves airborne gamma spectrometry and scintillometry, geochemical sampling, geological investigations and ground scintillometry. Since 1971 large areas of east and west Greenland have been investigated by aerial surveys, geochemical sampling and most of the detailed scintillometric work having been restricted to small areas in east Greenland. Anomalous radioactivity in west Greenland is recorded from carbonatite intrusions, and from units in Proterozoic and Archaean gneisses. No mineralization has been found to date. In south Greenland investigations have been centred on the uranium and thorium deposit at Kvanefjeld, which is situated in a corner of the Ilimaussaq alkaline intrusion. The coincidence of favourable conditions during the differentiation and crystallization of the magma led to an extreme enrichment of uranium and thorium in the rocks that were last formed - the lujavrites. The deposit comprises parts of the lujavrites and a secondary enrichment zone in the contact between lujavrite and basaltic cover rocks. Reasonably assured reserves are 5800 t U with a grade of 310 ppm U. In the Caledonides of east Greenland some gneisses in basement cores, a dark siltstone in late Precambrian sediments and the Devonian acid magmatic rocks are characterized by a higher radiation level. A number of small mineral occurrences have been found, the majority of which are associated with the Devonian acid magmatic rocks. (author)

  7. The geological and material investigation programme

    International Nuclear Information System (INIS)

    Joshi, A.V.

    1982-01-01

    The radioactive waste disposal problem is an interdisciplinary problem. The geological formation cannot be considered on its own, but must also be considered in connection with the engineering design of the disposal facility. Engineering design including the encapsulation of the glass in a 15 cm thick steel cylinder and a minimum 40 year cooling time ensures low temperatures in the salt-steel interface. Even if large quantities of carnallite were found 3.5 m away from the sides of the borehole, the temperature at 2500 m depth after taking into account temperature increase from radioactive waste will not release crystal water from the carnallite. Anhydrite layers, which may be found in the neighbourhood of Erslev 2 and at the depths contemplated for radioactive waste disposal, will not be continous, but only in the form of blocks of limited lengths. They cannot therefore form a passage to a water bearing aquifer. The volume of salt necessary for waste disposal - including a 200 m safety barrier - is less than 2 km 3 . The Mors dome with a salt volume of about 264 km 3 provides a very substantial safety margin. The geological investigations have fulfilled the purpose of the present phase of investigations and show the Mors salt dome to be a suitable dome for disposal of high-level radioactive waste. (EG)

  8. Neutron activation analysis of geological material

    International Nuclear Information System (INIS)

    Greef, G.J.

    1977-05-01

    In neutron activation analysis the precision and accuracy of results are often misleading, since only the statistical errors which accompany the measuring of radioactivity are taken into consideration. Several other factors can, however, also influence precision and accuracy. It was found that a geological sample was contaminated with the construction material of the mill in which it had been pulverised. Several geometrical differences which could possibly play a role were also investigated. Impurities in the irradiation containers affect the determination of some elements in the samples; the contamination materials in quarts irradiation tubes were determined. The flux gradients which may effect the relative activities of the samples and standards were measured. Suitable standards are necessary to ensure accurate analyses of geological material. Available natural standards were critically evaluated and several methods were investigated by which synthetic standards may be prepared. In order to accurately determine gallium, lanthanum and samarium by means of neutron activation analysis, sodium first had to be removed. After irradiation the sample was dissolved in a mixture of acids and the soidium absorbed from the solution on a hydrated antimony pentoxide column. Gallium, lanthanum and samarium activities were measured by means of precision gamma-spectrometry

  9. Geologic investigation :an update of subsurface geology on Kirtland Air Force Base, New Mexico.

    Energy Technology Data Exchange (ETDEWEB)

    Van Hart, Dirk (GRAM, Inc.)

    2003-06-01

    The objective of this investigation was to generate a revised geologic model of Kirtland Air Force Base (KAFB) incorporating the geological and geophysical data produced since the Site-Wide Hydrogeologic Characterization Project (SWHC) of 1994 and 1995. Although this report has certain stand-alone characteristics, it is intended to complement the previous work and to serve as a status report as of late 2002. In the eastern portion of KAFB (Lurance Canyon and the Hubbell bench), of primary interest is the elevation to which bedrock is buried under a thin cap of alluvium. Elevation maps of the bedrock top reveal the paleodrainage that allows for the interpretation of the area's erosional history. The western portion of KAFB consists of the eastern part of the Albuquerque basin where bedrock is deeply buried under Santa Fe Group alluvium. In this area, the configuration of the down-to-the-west, basin-bounding Sandia and West Sandia faults is of primary interest. New geological and geophysical data and the reinterpretation of old data help to redefine the location and magnitude of these elements. Additional interests in this area are the internal stratigraphy and structure of the Santa Fe Group. Recent data collected from new monitoring wells in the area have led to a geologic characterization of the perched Tijeras Arroyo Groundwater system and have refined the known limits of the Ancestral Rio Grande fluvial sediments within the Santa Fe Group. Both the reinterpretation of the existing data and a review of the regional geology have shown that a segment of the boundary between the eastern and western portions of KAFB is a complicated early Tertiary (Laramide) wrench-fault system, the Tijeras/Explosive Ordnance Disposal Area/Hubbell Spring system. A portion of this fault zone is occupied by a coeval ''pull-apart'' basin filled with early Tertiary conglomerates, whose exposures form the ''Travertine Hills''.

  10. Map showing geology, oil and gas fields, and geologic provinces of the Gulf of Mexico region

    Science.gov (United States)

    French, Christopher D.; Schenk, Christopher J.

    2006-01-01

    This map was created as part of a worldwide series of geologic maps for the U.S. Geological Survey's World Energy Project. These products are available on CD-ROM and the Internet. The goal of the project is to assess the undiscovered, technically recoverable oil and gas resources of the world. Two previously published digital geologic data sets (U.S. and Caribbean) were clipped to the map extent, while the dataset for Mexico was digitized for this project. Original attributes for all data layers were maintained, and in some cases, graphically merged with common symbology for presentation purposes. The world has been divided into geologic provinces that are used for allocation and prioritization of oil and gas assessments. For the World Energy Project, a subset of those provinces is shown on this map. Each province has a set of geologic characteristics that distinguish it from surrounding provinces. These characteristics may include dominant lithologies, the age of the strata, and/or structural type. The World Geographic Coordinate System of 1984 is used for data storage, and the data are presented in a Lambert Conformal Conic Projection on the OFR 97-470-L map product. Other details about the map compilation and data sources are provided in metadata documents in the data section on this CD-ROM. Several software packages were used to create this map including: Environmental Systems Research Institute, Inc. (ESRI) ArcGIS 8.3, ArcInfo software, Adobe Photoshop CS, Illustrator CS, and Acrobat 6.0.

  11. Status and development of deep geological repository in Slovak republic from geological point of view

    Directory of Open Access Journals (Sweden)

    Jozef Franzen

    2007-01-01

    Full Text Available During the operation of Slovak NPPs, production of approximately 2,300 metric tons of spent fuel expressed as heavy metal (18,654 spent fuel assemblies is expected. In addition, about 5000 metric tons of radioactive waste unfit for near surface repository at Mochovce and destined for a deep geological disposal. The safe and long-term solution of back-end fuel cycle is so highly required.One of the most favorable solutions is Deep Geological Repository (DGR. The site for a DGR, along with repository design and the engineered barrier system must ensure long-term safety of the disposal system.A preliminary set of site-selection criteria for a DGR was proposed in Slovakia, based on worldwide experience and consistent with IAEA recommendations. Main groups of criteria are: 1 geological and tectonic stability of prospective sites; 2 appropriate characteristics of host rock (lithological homogeneity, suitable hydrogeological and geochemical conditions, favourable geotechnical setting, absence of mineral resources, etc.; 3 conflict of interests (natural resources, natural and cultural heritage, protected resources of thermal waters, etc..Based on the previous geological investigations, three distinct areas (five localities were determined as the most prospective sites for construction of a DGR so far. Three of them are built by granitoids rock (Tribeč Mts., Veporske vrchy Mts. and Stolicke vrchy Mts., other consist of sedimentary rock formations (Cerova vrchovina Upland and Rimavska kotlina Basin. Objective for the next investigation stage is to perform more detailed geological characterization of the prospective sites.

  12. "Carta geologica totius Poloniae, Moldaviae, Transilvaniae et partis Hungariae et Valachiae" by S. Staszic and its importance for European geology and geological cartography

    Czech Academy of Sciences Publication Activity Database

    Czarniecki, S.; Grigelis, A.; Kozák, Jan; Narebski, W.; Wójcik, Z.

    -, č. 6 (2008), s. 81-101 ISSN 1507-0557 Institutional research plan: CEZ:AV0Z30120515 Keywords : history of geology * geological cartography * Stanislaw Wawrzyniec Staszic Subject RIV: DB - Geology ; Mineralogy

  13. Standardization of mapping practices in the British Geological Survey

    Science.gov (United States)

    Allen, Peter M.

    1997-07-01

    Because the British Geological Survey (BGS) has had, since its foundation in 1835, a mandate to produce geological maps for the whole of Great Britain, there is a long history of introducing standard practices in the way rocks and rock units have been named, classified and illustrated on maps. The reasons for the failure of some of these practices are examined and assessed in relation to the needs of computerized systems for holding and disseminating geological information.

  14. Ecological geology environmental assessment of open-pit mines

    International Nuclear Information System (INIS)

    Dong Shuangfa; Jiang Xue

    2010-01-01

    In this paper, there is a detail description of ecological geology environmental assessment of open-pit mines, including method, process and results. We took ecological geology environmental assessment work on the base of the results of some open-pit mines such as extremely low content magnetite in Hebei Province, inducted and summarized the ecological geology environment quality. The results are reasonable. It provides basic data for the second mines programming in Hebei Province. (authors)

  15. Effects of mass transfer between Martian satellites on surface geology

    Science.gov (United States)

    2015-12-21

    suspected. Published by Elsevier Inc.1. Introduction Several features about the surface geology on the moons of Mars remain poorly understood. The grooves on...Deimos may have an effect on Phobos’ geology ; we shall attempt to estimate the magnitude of that effect in Section 4. For impacts with Mars, Phobos or...global surface geology , particularly in the 100+ Ma since the last Voltaire-sized impact. Therefore we believe it unlikely that the red veneer of

  16. A geological reconnaissance study of the Lac du Bonnet batholith

    International Nuclear Information System (INIS)

    Tammemagi, H.Y.; Kerford, P.S.; Requeima, J.C.; Temple, C.A.

    1980-02-01

    A geological reconnaissance survey was carried out of the Lac du Bonnet batholith, southeastern Manitoba, as part of the concept verification phase of the nuclear fuel waste disposal program for Canada. This report summarizes available geological information, presents the results of field mapping and discusses the geochemical analyses of rock samples. The geological and structural aspects of the batholith are described as well as its regional setting and possible genesis. (auth)

  17. Mining and geologic site investigation of Minas de Corrales region

    International Nuclear Information System (INIS)

    Arrighetti, R.; Pena, S.; Rossi, P.; Vaz Chavez, N.

    1981-01-01

    The present geologic article integrates the Mining inventory Program that was carried out in our country, with the participation of the 8.R.G.M. (France) and the Institute Geologic of the Uruguay. The main area which the work was developed it was object of gold exploration and exploitation from ends of the passed century. It was located in the region of Cunapiru-Vichadero (Rivera province), which it was still called from a geologic point of view, The Crystalline Island .

  18. Geologic Reconnaissance and Lithologic Identification by Remote Sensing

    Science.gov (United States)

    remote sensing in geologic reconnaissance for purposes of tunnel site selection was studied further and a test case was undertaken to evaluate this geological application. Airborne multispectral scanning (MSS) data were obtained in May, 1972, over a region between Spearfish and Rapid City, South Dakota. With major effort directed toward the analysis of these data, the following geologic features were discriminated: (1) exposed rock areas, (2) five separate rock groups, (3) large-scale structures. This discrimination was accomplished by ratioing multispectral channels.

  19. Environmental Resources of Selected Areas of Hawaii: Geological Hazards (DRAFT)

    Energy Technology Data Exchange (ETDEWEB)

    Staub, W.P.

    1994-06-01

    This report has been prepared to make available and archive the background scientific data and related information collected on geologic hazards during the preparation of the environmental impact statement (EIS) for Phases 3 and 4 of the Hawaii Geothermal Project (HGP) as defined by the state of Hawaii in its April 1989 proposal to Congress. The U.S. Department of Energy (DOE) published a notice in the Federal Register on May 17, 1994 (Fed Regis. 5925638) withdrawing its Notice of Intent (Fed Regis. 575433) of February 14, 1992, to prepare the HGP-EIS. Since the state of Hawaii is no longer pursuing or planning to pursue the HGP, DOE considers the project to be terminated This report presents a review of current information on geologic hazards in the Hawaiian Islands. Interrelationships among these hazards are discussed. Probabilities of occurrence of given geologic hazards are provided in various regions where sufficient geologic or historical data are available. Most of the information contained herein is compiled from recent U.S. Geological Survey (USGS) publications and open-file reports. This report describes the natural geologic hazards present in the area and does not represent an assessment of environmental impacts. Geologic hazards originate both onshore and offshore. Onshore geologic hazards such as volcanic eruptions, earthquakes, surface rupture, landslides, uplift, and subsidence occur mainly on the southern third of the island of Hawaii (hereinafter referred to as Hawaii). Offshore geologic hazards are more widely distributed throughout the Hawaiian Islands. Examples of offshore geologic hazards are submarine landslides, turbidity currents, and seismic sea waves (tsunamis). First, overviews of volcanic and earthquake activity, and details of offshore geologic hazards is provided for the Hawaiian Islands. Then, a more detailed discussion of onshore geologic hazards is presented with special emphasis on the southern third of Hawaii and the east rift

  20. Fission-track ages and their geological interpretation

    International Nuclear Information System (INIS)

    Wagner, G.A.

    1981-01-01

    In fission-track dating, experimental procedures such as etching and thermal pre-treatment may strongly affect the age values determined and their geological interpretation. This peculiarity is due to the common phenomenon of partial fading of fossil (spontaneous-) fission tracks during a sample's geological history. The proper geological interpretation of the age data must take into account the specific experimental conditions, the stability characteristics and size distribution of fission tracks in the sample, the ages of co-existing minerals, and the independent information about the thermal history of the geological region. (author)

  1. North Central Regional Geologic Characterization Report. Executive summary. Final report

    International Nuclear Information System (INIS)

    1985-08-01

    This Executive Summary of the final North Central Regional Geologic Characterization Report (RGCR) is issued primarily for public information purposes and provides a general overview of the report. The complete RGCR presents available regional geologic information pertinent to siting a repository for high-level nuclear waste in crystalline rock in Minnesota, Wisconsin, and the Upper Peninsula of Michigan. For each of the states within the North Central Region, information is provided on the geologic disqualifying factor and the geologic regional screening variables to be used in region-to-area screening

  2. Evaluation of electrical resistivity anisotropy in geological mapping ...

    African Journals Online (AJOL)

    user

    Key words: Electrical resistivity anisotropy, radial vertical electrical sounding, anisotropy polygons. INTRODUCTION ... electrical resistivity survey in the geological interpretation ... resistivity and other electrical or electromagnetic based.

  3. Northeastern Regional Geologic Characterization Report: executive summary. Final report

    International Nuclear Information System (INIS)

    1985-08-01

    This Executive Summary of the final Northeastern Regional Geologic Characterization Report (RGCR) is issued primarily for public information purposes and provides a general overview of the report. The complete RGCR presents available regional geologic information pertinent to siting a repository for high-level nuclear waste in crystalline rock in Connecticut, Maine, Massachusetts, New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, and Vermont. For each of the states within the Northeastern Region, information is provided on the geologic disqualifying factor and the geologic regional screening variables to be used in region-to-area screening. 5 refs., 3 figs

  4. The geological thought process: A help in developing business instincts

    Energy Technology Data Exchange (ETDEWEB)

    Epstein, S.A. [Dean Witter Reynolds, New York, NY (United States)

    1995-09-01

    Since the beginning of modern-day geology it has been understood that the present is the key to the past. However, when attempting to apply current geological models one discovers that there are no exact look-alikes. Thus, the geological discipline inherently accepts modifications, omissions, and relatively large margins of error compared with engineering. Geologists are comfortable in a world of non-unique solutions. Thus the experience in working with numerous geological settings is extremely critical in selecting the most reasonable geological interpretations, often by using a composite of specific models. One can not simply replace a dynamic geologist`s life-time of experiences and geologic instinct with simply a book-smart young upstart. Petroleum corporations accept geologic risk and manage it by drilling numerous wells in various geological provenances. Oil corporations have attempted to quantify and manage risk by using Monte Carlo simulations, thus invoking a formal discipline of risk. The acceptance of risk, results in an asset allocation approach to investing. Asset allocators attempt to reduce volatility and risk, inherently understanding that in any specific time interval anything can happen. Dollar cost averaging significantly reduces market risk over time, however it requires discipline and commitment. The single most important ingredient to a successful investing plan is to assign a reasonable holding period. Historically, a majority of the investment community demands instant gratification causing unneeded anxiety and failure. As in geology nothing can replace experience.

  5. Geological research for public outreach and education in Lithuania

    Science.gov (United States)

    Skridlaite, Grazina; Guobyte, Rimante

    2013-04-01

    Successful IYPE activities and implementation of Geoheritage day in Lithuania increased public awareness in geology. A series of projects introducing geology to the general public and youth, supported by EU funds and local communities, were initiated. Researchers from the scientific and applied geology institutions of Lithuania participated in these projects and provided with the geological data. In one case, the Lithuanian Survey of Protected Areas supported the installation of a series of geological exhibitions in several regional and national parks. An animation demonstrating glacial processes was chosen for most of these because the Lithuanian surface is largely covered with sedimentary deposits of the Nemunas (Weichselian) glaciation. Researchers from the Lithuanian Geological Survey used the mapping results to demonstrate real glacial processes for every chosen area. In another case, 3D models showing underground structures of different localities were based on detailed geological maps and profiles obtained for that area. In case of the Sartai regional park, the results of previous geological research projects provided the possibility to create a movie depicting the ca. 2 Ga geological evolution of the region. The movie starts with the accretion of volcanic island arcs on the earlier continental margin at ca. 2 Ga and deciphers later Precambrian tectonic and magmatic events. The reconstruction is based on numerous scientific articles and interpretation of geophysical data. Later Paleozoic activities and following erosion sculptured the surface which was covered with several ice sheets in Quaternary. For educational purpose, a collection of minerals and rocks at the Forestry Institute was used to create an exhibition called "Cycle of geological processes". Forestry scientists and their students are able to study the interactions of geodiversity and biodiversity and to understand ancient and modern geological processes leading to a soil formation. An aging

  6. Geologic Mapping Results for Ceres from NASA's Dawn Mission

    Science.gov (United States)

    Williams, D. A.; Mest, S. C.; Buczkowski, D.; Scully, J. E. C.; Raymond, C. A.; Russell, C. T.

    2017-12-01

    NASA's Dawn Mission included a geologic mapping campaign during its nominal mission at dwarf planet Ceres, including production of a global geologic map and a series of 15 quadrangle maps to determine the variety of process-related geologic materials and the geologic history of Ceres. Our mapping demonstrates that all major planetary geologic processes (impact cratering, volcanism, tectonism, and gradation (weathering-erosion-deposition)) have occurred on Ceres. Ceres crust, composed of altered and NH3-bearing silicates, carbonates, salts and 30-40% water ice, preserves impact craters and all sizes and degradation states, and may represent the remains of the bottom of an ancient ocean. Volcanism is manifested by cryovolcanic domes, such as Ahuna Mons and Cerealia Facula, and by explosive cryovolcanic plume deposits such as the Vinalia Faculae. Tectonism is represented by several catenae extending from Ceres impact basins Urvara and Yalode, terracing in many larger craters, and many localized fractures around smaller craters. Gradation is manifested in a variety of flow-like features caused by mass wasting (landslides), ground ice flows, as well as impact ejecta lobes and melts. We have constructed a chronostratigraphy and geologic timescale for Ceres that is centered around major impact events. Ceres geologic periods include Pre-Kerwanan, Kerwanan, Yalodean/Urvaran, and Azaccan (the time of rayed craters, similar to the lunar Copernican). The presence of geologically young cryovolcanic deposits on Ceres surface suggests that there could be warm melt pockets within Ceres shallow crust and the dwarf planet remain geologically active.

  7. Southeastern Regional Geologic Characterization Report. Executive summary. Final report

    International Nuclear Information System (INIS)

    1985-08-01

    This Executive Summary of the final Southeastern Regional Geologic Characterization Report (RGCR) is issued primarily for public information purposes, and provides a general overview of the report. The complete RGCR presents available regional geologic information pertinent to siting a repository for high-level nuclear waste in crystalline rock in central Maryland; noncoastal Virginia, North Carolina, and South Carolina; and northern Georgia. For each of the states within the Southeastern Region, information is provided on the geologic disqualifying factor and the geologic regional screening variables to be used in region-to-area screening

  8. Description of geological data in SKBs database GEOTAB

    International Nuclear Information System (INIS)

    Stark, T.

    1988-01-01

    Measurements for the characterization of geological, geophysical, hydrogeological and hydrochemical condition have been performed since 1977 in specific site investigation as well as for geoscientific projects. The database comprises four main groups of data volumes. These are: geological data, geophysical data, hydrogeological data, and hydrochemical data. In the database, background information from the investigations and results are stored on-line on the VAX 750, while raw data are either stored on-line or on magnetic tapes. This report deals with geological data and describes the dataflow from the measurements at the sites to the result tables in the database. All of the geological investigations were carried out by the Swedish Geological Survey, and since July 1982 by Swedish Geological Co, SGAB. The geological investigations have been divided into three categories, and each category is stored separately in the database. The are: surface factures, core mapping, and chemical analyses. At SGU/SGAB the geological data were stored on-line on-line on a PRIME 750 mini computer, on microcomputer floppy disks or in filed paper protocols. During 1987 the data files were transferred from SGAB to datafiles on the VAX computer. In the report the data flow of each of the three geological information categories are described separately. (L.E.)

  9. Redesigning Curricula in Geology and Geophysics

    Science.gov (United States)

    Sparks, D. W.; Ewing, R. C.; Fowler, D.; Macik, M.; Marcantonio, F.; Miller, B.; Newman, J.; Olszewski, T.; Reece, R.; Rosser, S.

    2015-12-01

    In the summer of 2014, the Texas A&M Department of Geology and Geophysics partnered with the Texas A&M Center for Teaching Excellence to implement TAMU's curriculum revision process: a data-informed, faculty-driven, educational-developer-supported rebuilding of our degree programs and course offerings. The current curricula (B.S. and B.A. in Geology, B.S. in Geophysics) were put into place in 1997, following the merger of two separate departments. The needs and capabilities of the Department and the student body have changed significantly since that time: more than 50% turnover of the faculty, a rapidly-changing job climate for geologists and geophysicists, and a nearly five-fold increase in the undergraduate population to over 500 majors in Fall 2015. Surveys of former students, employers and faculty at other universities revealed more reasons to address the curriculum. Some of the most desired skills are also those at which our graduates feel and are perceived to be least prepared: oral communication and the ability to learn software packages (skills that are most challenging to teach with growing class sizes). The challenge facing the Department is to accommodate growing student numbers while maintaining strength in traditional instructor-intensive activities such as microscopy and field mapping, and also improving our graduates' non-geological skills (e.g., communication, software use, teamwork, problem-solving) to insulate them from volatility in the current job market. We formed the Curriculum Study Group, consisting of faculty, graduate students, advisors and curriculum experts, to gather and analyze data and define the knowledge and skill base a graduate of our department must have. In addition to conducting external surveys, this group interviewed current students and faculty to determine the strengths and weaknesses of our program. We developed program learning goals that were further specified into over fifty criteria. For each criteria we defined

  10. Trace element distribution in geological crystals

    Energy Technology Data Exchange (ETDEWEB)

    Den Besten, J L; Jamieson, D N; Weiser, P S [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1997-12-31

    Channelling is a useful microprobe technique for determining the structure of crystals, but until now has not been performed on geological crystals. The composition has been investigated rather than the structure, which can further explain the origin of the crystal and provide useful information on the substitutionality of trace elements. This may then lead to applications of extraction of valuable metals and semiconductor electronics. Natural crystals of pyrite, FeS{sub 2}, which contains a substantial concentration of gold were channeled and examined to identify the channel axis orientation. Rutherford Backscattering (RBS) and Particle Induced X-Ray Emission (PIXE) spectra using MeV ions were obtained in the experiment to provide a comparison of lattice and non-lattice trace elements. 3 figs.

  11. Trace element distribution in geological crystals

    Energy Technology Data Exchange (ETDEWEB)

    Den Besten, J.L.; Jamieson, D.N.; Weiser, P.S. [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1996-12-31

    Channelling is a useful microprobe technique for determining the structure of crystals, but until now has not been performed on geological crystals. The composition has been investigated rather than the structure, which can further explain the origin of the crystal and provide useful information on the substitutionality of trace elements. This may then lead to applications of extraction of valuable metals and semiconductor electronics. Natural crystals of pyrite, FeS{sub 2}, which contains a substantial concentration of gold were channeled and examined to identify the channel axis orientation. Rutherford Backscattering (RBS) and Particle Induced X-Ray Emission (PIXE) spectra using MeV ions were obtained in the experiment to provide a comparison of lattice and non-lattice trace elements. 3 figs.

  12. Putting the geology back into Earth models

    Science.gov (United States)

    McCaffrey, Kenneth; Holdsworth, Robert; Imber, Jonathan; Clegg, Phillip; De Paola, Nicola; Jones, Richard; Hobbs, Richard; Holliman, Nick; Trinks, Immo

    New digital methods for data capture can now provide photorealistic, spatially precise, and geometrically accurate three-dimensional (3-D) models of rocks exposed at the Earth's surface [Xu et al., 2000; Pringle et al., 2001; Clegg et al., 2005]. These “virtual outcrops” have the potential to create a new form of laboratory-based teaching aids for geoscience students, to help address accessibility issues in fieldwork, and generally to improve public awareness of the spectacular nature of geologic exposures from remote locations worldwide.This article addresses how virtual outcrops can provide calibration, or a quantitative “reality check,” for a new generation of high-resolution predictive models for the Earth's subsurface.

  13. Granites petrology, structure, geological setting, and metallogeny

    CERN Document Server

    Nédélec, Anne; Bowden, Peter

    2015-01-01

    Granites are emblematic rocks developed from a magma that crystallized in the Earth’s crust. They ultimately outcrop at the surface worldwide. This book, translated and updated from the original French edition Pétrologie des Granites (2011) is a modern presentation of granitic rocks from magma genesis to their crystallization at a higher level into the crust. Segregation from the source, magma ascent and shapes of granitic intrusions are also discussed, as well as the eventual formation of hybrid rocks by mingling/mixing processes and the thermomechanical aspects in country rocks around granite plutons. Modern techniques for structural studies of granites are detailed extensively. Granites are considered in their geological spatial and temporal frame, in relation with plate tectonics and Earth history from the Archaean eon. A chapter on granite metallogeny explains how elements of economic interest are concentrated during magma crystallization, and examples of Sn, Cu, F and U ore deposits are presented. Mi...

  14. Quaternary coastal geology of Pernambuco State

    International Nuclear Information System (INIS)

    Dominguez, J.M.L.; Silva Pinto Bittencourt, A.C. da; Andrade Nery Leao, Z.M. de; Azevedo, A.E.G. de

    1990-01-01

    This paper presents a geological map of Quaternary deposits occuring along the coast of the State of Pernambuco. These deposits comprise: 1. two sets of beach-ridge terraces of Pleistocene (120,000 years B.P.) and Holocene (5,000 years B.P.) age; 2. paleolagoonal deposits (5,140-6,030 years B.P.); 3. sandstone and coralgal reefs with ages spanning from 1,830 to 5,170 years B.P.; and 4, alluvial, freshwater swamp, and coralgal reefs with ages spanning from 1,830 to 5,170 years B.P.; and 4. alluvial, freshwater swamp, and mangrove swamp deposits of Holocene age. Eighteen new radiocarbon dates of paleolagoonal deposits, sandstone reefs, coral, coralline algae, and vermetid gastropod incrustations are also reported herein. (author)

  15. Results from Marine geological investigations outside Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Nyberg, Johan; Elhammer, Anders; Sohlenius, Gustav; Kjellin, Bernt; Nordgren, Paer (Geological Survey of Sweden (Sweden))

    2011-08-15

    A detailed marine geological survey was conducted in a 10 km2 large area outside Forsmark comprising hydro acoustic, 100 m spacing between survey lines, and groundtruthing. These data, together with reanalyzed survey data retrieved in 2002 from the same area, were used to produce maps of seabed and underlying bedrock surface morphology as well as horizontal and vertical extension of sediments. An esker is discovered running approximately in a north northwesterly-south southeasterly direction in the area, which may be causing submarine groundwater discharge. Pockmarks, which are caused by sediment gas of thermogenic and/or microbial origin, are detected in the area. In addition to the original commissioned survey, bedrock surface and seabed morphology as well as horizontal and vertical extension of sediments in a larger adjacent area were reanalyzed and produced from survey lines retrieved during a commission by SKB in 2002 and during SGUs regular mapping program in 2002, 2008 and 2009

  16. Geologic bench marks by terrestrial photography

    Science.gov (United States)

    Malde, Harold E.

    1973-01-01

    A photograph made with a level camera, if taken at a known height above a permanent mark on the ground, can be later repeated with exactness for measurement of changes in terrain. Such a photograph is one of several means for establishing a geologic bench mark and is especially useful for monitoring the subtle qualities of a landscape that are otherwise hard to map and describe, including the effects of man's use. Moreover, the geometry of such a photograph provides the same angular measurements between objects as can be made with a transit. A measurement of distance on a single photograph, however, requires control points. These can be surveyed at any convenient time, not necessarily when the initial photograph is made. Distances can also be determined by simple stereophotography from a base line of suitable length.

  17. A Scintillometer Assembly for Geological Survey

    International Nuclear Information System (INIS)

    Dissing, E.; Landstroem, O.

    1965-12-01

    An instrument for gamma radiation measurements in connection with geological survey is described. It consists of a scintillation detector with a 5x6 inch sodium iodide crystal and a pulse height analyzer with four independent channels. In field survey work these channels are usually set in fixed positions to record different components of the gamma radiation simultaneously in order to facilitate an identification of the radioactive mineral from which the radiation originates. However, the instrument can also be used for more detailed study of gamma spectra either in the field or in the laboratory. The methods for interpretation of gamma spectra from radioactive ores are briefly reviewed, and a few typical results are given from car-borne and air-borne surveys

  18. Kansas Energy Sources: A Geological Review

    Science.gov (United States)

    Merriam, D.F.; Brady, L.L.; Newell, K.D.

    2012-01-01

    Kansas produces both conventional energy (oil, gas, and coal) and nonconventional (coalbed gas, wind, hydropower, nuclear, geothermal, solar, and biofuels) and ranks the 22nd in state energy production in the U. S. Nonrenewable conventional petroleum is the most important energy source with nonrenewable, nonconventional coalbed methane gas becoming increasingly important. Many stratigraphic units produce oil and/or gas somewhere in the state with the exception of the Salina Basin in north-central Kansas. Coalbed methane is produced from shallow wells drilled into the thin coal units in southeastern Kansas. At present, only two surface coal mines are active in southeastern Kansas. Although Kansas has been a major exporter of energy in the past (it ranked first in oil production in 1916), now, it is an energy importer. ?? 2011 International Association for Mathematical Geology.

  19. A Scintillometer Assembly for Geological Survey

    Energy Technology Data Exchange (ETDEWEB)

    Dissing, E; Landstroem, O

    1965-12-15

    An instrument for gamma radiation measurements in connection with geological survey is described. It consists of a scintillation detector with a 5x6 inch sodium iodide crystal and a pulse height analyzer with four independent channels. In field survey work these channels are usually set in fixed positions to record different components of the gamma radiation simultaneously in order to facilitate an identification of the radioactive mineral from which the radiation originates. However, the instrument can also be used for more detailed study of gamma spectra either in the field or in the laboratory. The methods for interpretation of gamma spectra from radioactive ores are briefly reviewed, and a few typical results are given from car-borne and air-borne surveys.

  20. Results from Marine geological investigations outside Forsmark

    International Nuclear Information System (INIS)

    Nyberg, Johan; Elhammer, Anders; Sohlenius, Gustav; Kjellin, Bernt; Nordgren, Paer

    2011-08-01

    A detailed marine geological survey was conducted in a 10 km 2 large area outside Forsmark comprising hydro acoustic, 100 m spacing between survey lines, and groundtruthing. These data, together with reanalyzed survey data retrieved in 2002 from the same area, were used to produce maps of seabed and underlying bedrock surface morphology as well as horizontal and vertical extension of sediments. An esker is discovered running approximately in a north northwesterly-south southeasterly direction in the area, which may be causing submarine groundwater discharge. Pockmarks, which are caused by sediment gas of thermogenic and/or microbial origin, are detected in the area. In addition to the original commissioned survey, bedrock surface and seabed morphology as well as horizontal and vertical extension of sediments in a larger adjacent area were reanalyzed and produced from survey lines retrieved during a commission by SKB in 2002 and during SGUs regular mapping program in 2002, 2008 and 2009

  1. The geology of the Romuvaara area

    International Nuclear Information System (INIS)

    Anttila, P.; Paulamaeki, S.; Lindberg, A.; Paananen, M.; Pitkaenen, P.; Front, K.

    1990-12-01

    Teollisuuden Voima Oy (TVO) is preparing for the final disposal of spent uranium fuel from the Olkiluoto nuclear power plant deep in the Finnish bedrock. The report presents a summary of the geological conditions at Romuvaara in Kuhmo, which was one of the five areas selected in 1987 for the preliminary site investigations. The Romuvaara site and its surroundings belong to the Archaean basement complex, the age of the oldest parts of which is over 2800 Ma. The bedrock consists mainly of migmatic banded gneisses (tonalite, leucotonalite and mica gneiss). These rock types are intersected by granodiorite and metadiabase dykes. Proterozoic metadiabases represent the youngest rock unit in the area. Except for the metadiabase, the rocks have undergone a multiphase Archaean deformation. The bedrock structures are interpreted as representing six deformation phases, after which sharp faults developed during at least four further movement phases

  2. Technetium behaviour under deep geological conditions

    International Nuclear Information System (INIS)

    Kumata, M.; Vandergraaf, T.T.

    1993-01-01

    The migration behaviour of technetium under deep geological conditions was investigated by performing column tests using groundwater and altered granitic rock sampled from a fracture zone in a granitic pluton at a depth of about 250 m. The experiment was performed under a pressure of about 0.7 MPa in a controlled atmosphere glove box at the 240 m level of the Underground Research Laboratory (URL) near Pinawa, Manitoba, Canada. The technetium was strongly sorbed on the dark mafic minerals in the column. With the exception of a very small unretarded fraction that was eluted with the tritiated water, no further breakthrough of technetium was observed. This strong sorption of technetium on the mineral surface was caused by reduction of Tc(VII), probably to Tc(IV) even though the groundwater was only mildly reducing. (author) 5 figs., 4 tabs., 15 refs

  3. Nuclides migration tests under deep geological conditions

    International Nuclear Information System (INIS)

    Kumata, M.; Vandergraaf, T.T.

    1991-01-01

    Migration behaviour of technetium and iodine under deep geological conditions was investigated by performing column tests under in-situ conditions at the 240 m level of the Underground Research Laboratory (URL) constructed in a granitic batholith near Pinawa, Manitoba, Canada. 131 I was injected with tritiated water into the column. Tritium and 131 I were eluted simultaneously. Almost 100 % of injected 131 I was recovered in the tritium breakthrough region, indicating that iodine moved through the column almost without retardation under experimental conditions. On the other hand, the injected technetium with tritium was strongly retarded in the column even though the groundwater was mildly reducing. Only about 7 % of injected 95m Tc was recovered in the tritium breakthrough region and the remaining fraction was strongly sorbed on the dark mafic minerals of column materials. This strong sorption of technetium on the column materials had not been expected from the results obtained from batch experiments carried out under anaerobic conditions. (author)

  4. Studies of natural analogues and geological systems

    International Nuclear Information System (INIS)

    Brandberg, F.; Grundfelt, B.; Hoeglund, L.; Skagius K.; Karlsson, F.; Smellie, J.

    1993-04-01

    This review has involved studies of natural analogues and natural geological systems leading to the identification and quantification of processes and features of importance to the performance and safety of repositories for radioactive waste. The features and processes selected for the study comprise general geochemical issues related to the performance of the near- and far-field, the performance and durability of construction materials and the effects of glaciation. For each of these areas a number of potentially important processes for repository performance have been described, and evidence for their existence, as well as quantification of parameters of models describing the processes have been sought from major natural analogue studies and site investigations. The review has aimed at covering a relatively broad range of issues at the expense of in-depth analysis. The quantitative data presented are in most cases compilations of data from the literature; in a few cases results of evaluations made within the current project are included

  5. Plane shock wave studies of geologic media

    International Nuclear Information System (INIS)

    Anderson, G.D.; Larson, D.B.

    1977-01-01

    Plane shock wave experiments have been conducted on eight geologic materials in an effort to determine the importance of time-dependent mechanical behavior. Of the eight rocks studied, only Westerly granite and nugget sandstone appear to show time independence. In the slightly porous materials (1-5 percent), Blair dolomite and sodium chloride, and in the highly porous (15 to 40 percent) rock, Mt. Helen tuff and Indiana limestone, time-dependent behavior is associated with the time required to close the available porosity. In water-saturated rocks the time dependence arises because the water that is present shows no indication of transformation to the higher pressure ice phases, thus suggesting the possibility that a metastable form of water exists under dynamic conditions

  6. Groundwater drought in different geological conditions

    International Nuclear Information System (INIS)

    Machlica, A; Stojkovova, M

    2008-01-01

    The identification of hydrological extremes (drought) is very actual at present. The knowledge of the mechanism of hydrological extremes evolution could be useful at many levels of human society, such as scientific, agricultural, local governmental, political and others. The research was performed in the Upper part of the Nitra River catchment (central part of Slovakia) and in the Topla and Ondava River catchments (eastern part of Slovakia). Lumped hydrological model BILAN was used to identify relationships among compounds of the water balance. Presented results are focused on drought in groundwater storage, soil moisture, base flow and discharges. BFI model for baseflow estimation was used and results were compared with those gained by BILAN model. Another item of the research was to compare results of hydrological balance model application on catchments with different geological conditions.

  7. Geology and Habitability of Terrestrial Planets

    CERN Document Server

    Fishbaugh, Kathryn E; Raulin, François; Marais, David J; Korablev, Oleg

    2007-01-01

    Given the fundamental importance of and universal interest in whether extraterrestrial life has developed or could eventually develop in our solar system and beyond, it is vital that an examination of planetary habitability goes beyond simple assumptions such as, "Where there is water, there is life." This book has resulted from a workshop at the International Space Science Institute (ISSI) in Bern, Switzerland (5-9 September 2005) that brought together planetary geologists, geophysicists, atmospheric scientists, and biologists to discuss the multi-faceted problem of how the habitability of a planet co-evolves with the geology of the surface and interior, the atmosphere, and the magnetosphere. Each of the six chapters has been written by authors with a range of expertise so that each chapter is itself multi-disciplinary, comprehensive, and accessible to scientists in all disciplines. These chapters delve into what life needs to exist and ultimately to thrive, the early environments of the young terrestrial pl...

  8. Geology and geochemistry of the Atacama Desert.

    Science.gov (United States)

    Tapia, J; González, R; Townley, B; Oliveros, V; Álvarez, F; Aguilar, G; Menzies, A; Calderón, M

    2018-02-14

    The Atacama Desert, the driest of its kind on Earth, hosts a number of unique geological and geochemical features that make it unlike any other environment on the planet. Considering its location on the western border of South America, between 17 and 28 °S, its climate has been characterized as arid to hyperarid for at least the past 10 million years. Notably dry climatic conditions of the Atacama Desert have been related to uplift of the Andes and are believed to have played an important role in the development of the most distinctive features of this desert, including: (i) nitrates and iodine deposits in the Central Depression, (ii) secondary enrichment in porphyry copper deposits in the Precordillera, (iii) Li enrichment in salt flats of the Altiplano, and (iv) life in extreme habitats. The geology and physiography of the Atacama Desert have been largely shaped by the convergent margin present since the Mesozoic era. The geochemistry of surface materials is related to rock geochemistry (Co, Cr, Fe, Mn, V, and Zn), salt flats, and evaporite compositions in endorheic basins (As, B, and Li), in addition to anthropogenic activities (Cu, Mo, and Pb). The composition of surface water is highly variable, nonetheless in general it presents a circumneutral pH with higher conductivity and total dissolved solids in brines. Major water constituents, with the exception of HCO 3 - , are generally related to the increase of salinity, and despite the fact that trace elements are not well-documented, surface waters of the Atacama Desert are enriched in As, B, and Li when compared to the average respective concentrations in rivers worldwide.

  9. Characteristics of Chinese petroleum geology. Geological features and exploration cases of stratigraphic, foreland and deep formation traps

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Chengzao [PetroChina Company Limited, Beijing (China)

    2012-07-01

    The first book of this subject in the recent 10 years. ''Characteristics of Chinese Petroleum Geology: Geological Features and Exploration Cases of Stratigraphic, Foreland and Deep Formation Traps'' systematically presents the progress made in petroleum geology in China and highlights the latest advances and achievements in oil/gas exploration and research, especially in stratigraphic, foreland and deep formation traps. The book is intended for researchers, practitioners and students working in petroleum geology, and is also an authoritative reference work for foreign petroleum exploration experts who want to learn more about this field in China.

  10. Constructing a Geology Ontology Using a Relational Database

    Science.gov (United States)

    Hou, W.; Yang, L.; Yin, S.; Ye, J.; Clarke, K.

    2013-12-01

    In geology community, the creation of a common geology ontology has become a useful means to solve problems of data integration, knowledge transformation and the interoperation of multi-source, heterogeneous and multiple scale geological data. Currently, human-computer interaction methods and relational database-based methods are the primary ontology construction methods. Some human-computer interaction methods such as the Geo-rule based method, the ontology life cycle method and the module design method have been proposed for applied geological ontologies. Essentially, the relational database-based method is a reverse engineering of abstracted semantic information from an existing database. The key is to construct rules for the transformation of database entities into the ontology. Relative to the human-computer interaction method, relational database-based methods can use existing resources and the stated semantic relationships among geological entities. However, two problems challenge the development and application. One is the transformation of multiple inheritances and nested relationships and their representation in an ontology. The other is that most of these methods do not measure the semantic retention of the transformation process. In this study, we focused on constructing a rule set to convert the semantics in a geological database into a geological ontology. According to the relational schema of a geological database, a conversion approach is presented to convert a geological spatial database to an OWL-based geological ontology, which is based on identifying semantics such as entities, relationships, inheritance relationships, nested relationships and cluster relationships. The semantic integrity of the transformation was verified using an inverse mapping process. In a geological ontology, an inheritance and union operations between superclass and subclass were used to present the nested relationship in a geochronology and the multiple inheritances

  11. Evaluating Boy Scout Geology Education, A Pilot Study

    Science.gov (United States)

    Hintz, R. S.; Thomson, B.

    2008-12-01

    This study investigated geology knowledge acquisition by Boy Scouts through use of the Boy Scout Geology Merit Handbook. In this study, boys engaged in hands-on interactive learning following the requirements set forth in the Geology Merit Badge Handbook. The purposes of this study were to determine the amount of geology content knowledge engendered in adolescent males through the use of the Geology Merit Badge Handbook published by the Boy Scouts of America; to determine if single sex, activity oriented, free-choice learning programs can be effective in promoting knowledge development in young males; and to determine if boys participating in the Scouting program believed their participation helped them succeed in school. Members of a local Boy Scout Troop between the ages of 11 and 18 were invited to participate in a Geology Merit Badge program. Boys who did not already possess the badge were allowed to self-select participation. The boys' content knowledge of geology, rocks, and minerals was pre- and post-tested. Boys were interviewed about their school and Scouting experiences; whether they believed their Scouting experiences and work in Merit Badges contributed to their success in school. Contributing educational theories included single-sex education, informal education with free-choice learning, learning styles, hands-on activities, and the social cognitive theory concept of self-efficacy. Boys who completed this study seemed to possess a greater knowledge of geology than they obtained in school. If boys who complete the Boy Scout Geology Merit Badge receive additional geological training, their field experiences and knowledge acquired through this learning experience will be beneficial, and a basis for continued scaffolding of geologic knowledge.

  12. Geologic map of Big Bend National Park, Texas

    Science.gov (United States)

    Turner, Kenzie J.; Berry, Margaret E.; Page, William R.; Lehman, Thomas M.; Bohannon, Robert G.; Scott, Robert B.; Miggins, Daniel P.; Budahn, James R.; Cooper, Roger W.; Drenth, Benjamin J.; Anderson, Eric D.; Williams, Van S.

    2011-01-01

    The purpose of this map is to provide the National Park Service and the public with an updated digital geologic map of Big Bend National Park (BBNP). The geologic map report of Maxwell and others (1967) provides a fully comprehensive account of the important volcanic, structural, geomorphological, and paleontological features that define BBNP. However, the map is on a geographically distorted planimetric base and lacks topography, which has caused difficulty in conducting GIS-based data analyses and georeferencing the many geologic features investigated and depicted on the map. In addition, the map is outdated, excluding significant data from numerous studies that have been carried out since its publication more than 40 years ago. This report includes a modern digital geologic map that can be utilized with standard GIS applications to aid BBNP researchers in geologic data analysis, natural resource and ecosystem management, monitoring, assessment, inventory activities, and educational and recreational uses. The digital map incorporates new data, many revisions, and greater detail than the original map. Although some geologic issues remain unresolved for BBNP, the updated map serves as a foundation for addressing those issues. Funding for the Big Bend National Park geologic map was provided by the United States Geological Survey (USGS) National Cooperative Geologic Mapping Program and the National Park Service. The Big Bend mapping project was administered by staff in the USGS Geology and Environmental Change Science Center, Denver, Colo. Members of the USGS Mineral and Environmental Resources Science Center completed investigations in parallel with the geologic mapping project. Results of these investigations addressed some significant current issues in BBNP and the U.S.-Mexico border region, including contaminants and human health, ecosystems, and water resources. Funding for the high-resolution aeromagnetic survey in BBNP, and associated data analyses and

  13. The U.S. Geological Survey Geologic Collections Management System (GCMS)—A master catalog and collections management plan for U.S. Geological Survey geologic samples and sample collections

    Science.gov (United States)

    ,

    2015-01-01

    The U.S. Geological Survey (USGS) is widely recognized in the earth science community as possessing extensive collections of earth materials collected by research personnel over the course of its history. In 2006, a Geologic Collections Inventory was conducted within the USGS Geology Discipline to determine the extent and nature of its sample collections, and in 2008, a working group was convened by the USGS National Geologic and Geophysical Data Preservation Program to examine ways in which these collections could be coordinated, cataloged, and made available to researchers both inside and outside the USGS. The charge to this working group was to evaluate the proposition of creating a Geologic Collections Management System (GCMS), a centralized database that would (1) identify all existing USGS geologic collections, regardless of size, (2) create a virtual link among the collections, and (3) provide a way for scientists and other researchers to obtain access to the samples and data in which they are interested. Additionally, the group was instructed to develop criteria for evaluating current collections and to establish an operating plan and set of standard practices for handling, identifying, and managing future sample collections. Policies and procedures promoted by the GCMS would be based on extant best practices established by the National Science Foundation and the Smithsonian Institution. The resulting report—USGS Circular 1410, “The U.S. Geological Survey Geologic Collections Management System (GCMS): A Master Catalog and Collections Management Plan for U.S. Geological Survey Geologic Samples and Sample Collections”—has been developed for sample repositories to be a guide to establishing common practices in the collection, retention, and disposal of geologic research materials throughout the USGS.

  14. Office of Geologic Repositories issues hierarchy for a mined geologic disposal system

    International Nuclear Information System (INIS)

    1987-08-01

    The Nuclear Regulatory Commission (NRC) has indicated that the identification of the issues that must be resolved to complete licensing assessments of site and design suitability is an important step in the licensing process. The issues hierarchy developed by the Office of Geologic Repositories (OGR) for the mined geologic disposal system (MGDS) are based on the issues-hierarchy concept presented in the Mission Plan. Specific questions are encompassed by the general issue statements in the OGR issues hierarchy. The OGR issues hierarchy is limited to the issues related to the siting and licensing requirements of applicable federal regulations and does not address the requirements of other regulations, functional or operating requirements for the MGDS, or requirements for the integration and the design/operational efficiency of the MGDS. 4 figs

  15. Geology and mineral potential of Ethiopia: a note on geology and mineral map of Ethiopia

    Energy Technology Data Exchange (ETDEWEB)

    Tadesse, S.; Milesi, J.P.; Deschamps, Y. [University of Addis Ababa, Addis Ababa (Ethiopia). Dept. for Geology & Geophysics

    2003-05-01

    This work presents a geoscientific map and database for geology, mineral and energy resources of Ethiopia in a digital form at a scale of 1 : 2,000,000, compiled from several sources. The final result of the work has been recorded on CD-ROM in GIS format. Metallic resources (precious, rare, base and ferrous-ferroalloy metals) are widely related to the metamorphic meta-volcano-sedimentary belts and associated intrusives belonging to various terranes of the Arabian-Nubian Shield, accreted during the East and West Gondwana collision (Neoproterozoic, 900-500 Ma). Industrial minerals and rock resources occur in more diversified geological environments, including the Proterozoic basement rocks, the Late Paleozoic to Mesozoic sediments and recent (Cenozoic) volcanics and associated sediments. Energy resources (oil, coal, geothermal resources) are restricted to Phanerozoic basin sediments and Cenozoic volcanism and rifting areas.

  16. Natural analogues: studies of geological processes relevant to radioactive waste disposal in deep geological repositories

    Energy Technology Data Exchange (ETDEWEB)

    Russel, A.W. [Bedrock Geosciences, Auenstein (Switzerland); Reijonen, H.M. [Saanio and Rickkola Oy, Helsinki (Finland); McKinley, I.G. [MCM Consulting, Baden-Daettwil (Switzerland)

    2015-06-15

    The geological disposal of radioactive wastes is generally accepted to be the most practicable approach to handling the waste inventory built up from over 70 years accumulation of power production, research-medical-industrial and military wastes. Here, a brief overview of the approach to geological disposal is presented along with some information on repository design and the assessment of repository post-closure safety. One of the significant challenges for repository safety assessment is how to extrapolate the likely long-term (i.e. ten thousand to a million years) behaviour of the repository from the necessarily short term data from analytical laboratories and underground rock laboratories currently available. One approach, common to all fields of the geosciences, but also in such diverse fields as philosophy, biology, linguistics, law, etc., is to utilise the analogue argumentation methodology. For the specific case of radioactive waste management, the term 'natural analogue' has taken on a particular meaning associated with providing supporting arguments for a repository safety assessment. This approach is discussed here with a brief overview of how the study of natural (and, in particular, geological) systems can provide supporting information on the likely long-term evolution of a deep geological waste repository. The overall approach is discussed and some relevant examples are presented, including the use of uranium ore bodies to assess waste form stability, the investigation of native metals to define the longevity of waste containers and how natural clays can provide information on the stability of waste tunnel backfill material. (authors)

  17. Natural analogues: studies of geological processes relevant to radioactive waste disposal in deep geological repositories

    International Nuclear Information System (INIS)

    Russel, A.W.; Reijonen, H.M.; McKinley, I.G.

    2015-01-01

    The geological disposal of radioactive wastes is generally accepted to be the most practicable approach to handling the waste inventory built up from over 70 years accumulation of power production, research-medical-industrial and military wastes. Here, a brief overview of the approach to geological disposal is presented along with some information on repository design and the assessment of repository post-closure safety. One of the significant challenges for repository safety assessment is how to extrapolate the likely long-term (i.e. ten thousand to a million years) behaviour of the repository from the necessarily short term data from analytical laboratories and underground rock laboratories currently available. One approach, common to all fields of the geosciences, but also in such diverse fields as philosophy, biology, linguistics, law, etc., is to utilise the analogue argumentation methodology. For the specific case of radioactive waste management, the term 'natural analogue' has taken on a particular meaning associated with providing supporting arguments for a repository safety assessment. This approach is discussed here with a brief overview of how the study of natural (and, in particular, geological) systems can provide supporting information on the likely long-term evolution of a deep geological waste repository. The overall approach is discussed and some relevant examples are presented, including the use of uranium ore bodies to assess waste form stability, the investigation of native metals to define the longevity of waste containers and how natural clays can provide information on the stability of waste tunnel backfill material. (authors)

  18. Geologic studies in Alaska by the U.S. Geological Survey, 1992

    Science.gov (United States)

    Dusel-Bacon, Cynthia; Till, Alison B.

    1993-01-01

    This collection of 19 papers continues the annual series of U.S. Geological Survey reports on the geology of Alaska. The contributions, which include full-length Articles and shorter Geologic Notes, cover a broad range of topics including dune formation, stratigraphy, paleontology, isotopic dating, mineral resources, and tectonics. Articles, grouped under four regional headings, span nearly the entire State from the North Slope to southwestern, south-central, and southeastern Alaska (fig. 1).In the section on northern Alaska, Galloway and Carter use new data on dune morphology and radiocarbon ages from the western Arctic Coastal Plain to develop a late Holocene chronology of multiple episodes of dune stabilization and reactivation for the region. Their study has important implications for climatic changes in northern Alaska during the past 4,000 years. In two papers, Dumoulin and her coauthors describe lithofacies and conodont faunas of Carboniferous strata in the western Brooks Range, discuss depositional environments, and propose possible correlations and source areas for some of the strata. Schenk and Bird propose a preliminary division of the Lower Cretaceous stratigraphic section in the central part of the North Slope into depositional sequences. Aleinikoff and others present new U-Pb data for zircons from metaigneous rocks from the central Brooks Range. Karl and Mull, reacting to a proposal regarding terrane nomenclature for northern Alaska that was published in last year's Alaskan Studies Bulletin, provide a historical perspective of the evolution of terminology for tectonic units in the Brooks Range and present their own recommendations.

  19. Information collection and analysis of geological characterization and evaluation technology and application to geological characterization study

    International Nuclear Information System (INIS)

    Kawamura, Hideki; Noda, Masaru; Nishikawa, Naohito; Sato, Shoko; Tanaka, Tatsuya

    2003-03-01

    Tono Geoscience Center (TGC) of Japan Nuclear Cycle Development Institute has been conducting the Regional Groundwater Investigation and Mizunami Underground Laboratory (MIU) Project in order to develop investigation technologies and evaluation methods of geological environment. At present, towards the next progress reporting on research and development for geological disposal of HLW in Japan, based on the existing research and development results, the projects which are conducted by TGC are required for promoting smoothly and efficiently with regard to the current Japanese HLW program. According to such situation, for planning of the geological environment investigation and research at TGC and the next progress reporting, this study has investigated and summarizes overseas environmental impact assessments for final disposal, overseas site characterization and site selection, and overseas research plan of underground research laboratories. Based on the results of investigation, some technologies which have possibility to be applied to the MIU Project have been studied. Also overseas quality assurance programs have been investigated, and examples of the application of their concepts to MIU project have been considered. (author)

  20. Geologic mapping of Kentucky; a history and evaluation of the Kentucky Geological Survey--U.S. Geological Survey Mapping Program, 1960-1978

    Science.gov (United States)

    Cressman, Earle Rupert; Noger, Martin C.

    1981-01-01

    In 1960, the U.S. Geological Survey and the Kentucky Geological Survey began a program to map the State geologically at a scale of 1:24,000 and to publish the maps as 707 U.S. Geological Survey Geologic Quadrangle Maps. Fieldwork was completed by the spring of 1977, and all maps were published by December 1978. Geologic mapping of the State was proposed by the Kentucky Society of Professional Engineers in 1959. Wallace W. Hagan, Director and State Geologist of the Kentucky Geological Survey, and Preston McGrain, Assistant State Geologist, promoted support for the proposal among organizations such as Chambers of Commerce, industrial associations, professional societies, and among members of the State government. It was also arranged for the U.S. Geological Survey to supply mapping personnel and to publish the maps; the cost would be shared equally by the two organizations. Members of the U.S. Geological Survey assigned to the program were organized as the Branch of Kentucky Geology. Branch headquarters, including an editorial staff, was at Lexington, Ky., but actual mapping was conducted from 18 field offices distributed throughout the State. The Publications Division of the U.S. Geological Survey established a cartographic office at Lexington to prepare the maps for publication. About 260 people, including more than 200 professionals, were assigned to the Branch of Kentucky Geology by the U.S. Geological Survey at one time or another. The most geologists assigned any one year was 61. To complete the mapping and ancillary studies, 661 professional man-years were required, compared with an original estimate of 600 man-years. A wide variety of field methods were used, but most geologists relied on the surveying altimeter to obtain elevations. Surface data were supplemented by drill-hole records, and several dozen shallow diamond-drill holes were drilled to aid the mapping. Geologists generally scribed their own maps, with a consequent saving of publication costs

  1. Disposal of high level radioactive wastes in geological formations

    International Nuclear Information System (INIS)

    Martins, L.A.M.; Carvalho Bastos, J.P. de

    1978-01-01

    The disposal of high-activity radioactive wastes is the most serious problem for the nuclear industry. Among the solutions, the disposal of wastes in approriated geological formations is the most realistic and feasible. In this work the methods used for geological disposal, as well as, the criteria, programs and analysis for selecting a bite for waste disposal are presented [pt

  2. A reappraaisal of the geology, geochemistry, structures and ...

    African Journals Online (AJOL)

    The largest segment of the Neoproterozoic Mozambique belt in Kenya occurs east of the north-south oriented Rift system. Geological works carried out in the country during the last few decades have progressively revealed the complexity of the geology, structures and tectonics of the Mozambique belt in the region.

  3. Geology--hydrology of Avery Island Salt Dome

    International Nuclear Information System (INIS)

    Jacoby, C.H.

    1977-07-01

    After a review of the geology of the Gulf Coast salt domes, the geology (geomorphology and tectonics) and hydrology of Avery Island Dome, 10 miles south-southwest of New Iberia, Louisiana, were studied in detail. Rock mechanics were studied using grouts and piezometers. 17 figs

  4. Geology Museum-Based Learning in Soil Science Education

    Science.gov (United States)

    Mikhailova, E. A.; Tennant, C. H.; Post, C. J.; Cicimurri, C.; Cicimurri, D.

    2013-01-01

    Museums provide unique learning opportunities in soil science. The Bob Campbell Geology Museum in Clemson, SC, features an exhibit of minerals and rocks common in the state and in its geologic history. We developed a hands-on laboratory exercise utilizing an exhibit that gives college students an opportunity to visualize regional minerals and…

  5. Use of the ion microprobe in geological dating

    International Nuclear Information System (INIS)

    Compston, W.; Williams, I.S.; Black, L.P.

    1983-01-01

    SHRIMP, the Sensitive High Resolution Ion Microprobe with computerised control and data acquisition system, has recently been commissioned. It is used within the Research School of Earth Sciences, Australian National University, for the isotopic analysis of geological samples. Principles of operation and geological applications are outlined. One example described is the application to Pb-U dating of zircon

  6. Engineering geological mapping of Dar es Salaam city, Tanzania ...

    African Journals Online (AJOL)

    Two basic maps were prepared, namely, geomorphological and geological map depicts the spatial extent of the Neogene geological formations. Three distinct sandstone terraces could be distinguished in Dar es Salaam region at 0-15 m and 30 – 40 m above sea level. The terraces comprised sandstones fringed by coral ...

  7. Introductory Geological Mapwork--An Active Learning Classroom

    Science.gov (United States)

    Drennan, Gillian R.; Evans, Mary Y.

    2011-01-01

    First year Geology students at the University of the Witwatersrand experience problems with both three-dimensional and "four-dimensional" (or time) visualization when attempting to interpret geological maps. These difficulties have been addressed by the introduction of hands-on modeling exercises, which allow students to construct…

  8. Geological Time, Biological Events and the Learning Transfer Problem

    Science.gov (United States)

    Johnson, Claudia C.; Middendorf, Joan; Rehrey, George; Dalkilic, Mehmet M.; Cassidy, Keely

    2014-01-01

    Comprehension of geologic time does not come easily, especially for students who are studying the earth sciences for the first time. This project investigated the potential success of two teaching interventions that were designed to help non-science majors enrolled in an introductory geology class gain a richer conceptual understanding of the…

  9. Reconnaissance Geology and Structure of the Coso Range, California.

    Science.gov (United States)

    1982-05-01

    annual rainfall is slightly more than 2 inches in the valleys and 5 to 6 inches in the uplands; precipitation falls mostly from October through March...and Western Nevada. 1970. P. 42. (U.S. Geological Survey Professional Paper 623, UNCLASSIFIED.) 6 H. E. von Heiene. "Structural Geology and Gravimetry

  10. Improving the effectiveness of geological prospecting with neutron activation analysis

    International Nuclear Information System (INIS)

    Fardy, J.J.

    1984-01-01

    Two examples of the use of neutron activation analysis to improve the effectiveness of geological prospecting are examined. The first is application to the direct hydrogeochemical prospecting for gold in surface waters. The second shows how multielement data banks produced by NAA for a geological formation provide a powerful method for the classification of ore bodies and sedimentary materials

  11. Use of Geological Lineaments Results in Groundwater Exploration ...

    African Journals Online (AJOL)

    Locating aquifiers in Precambrian crystalline rocks offers major problems unless areas of intense weathering or fracturing are targeted. These normally occur along geological lineaments which can be identified during groundwater exploration. Major geological lineaments were identified in the Zomba area, southern Malawi ...

  12. Geology and environmental impact of artisanal gold mining around ...

    African Journals Online (AJOL)

    Geology and effect of artisanal gold mining was investigated in Kataeregi and environ, North-central Nigeria with the aim of determining its host rock and assessing the impact of such activity on the surrounding. Geological field mapping show the area comprise of the Migmatite-Gneiss complex, Schist, Granite and ...

  13. Impact of Geological Changes on Regional and Global Economies

    Science.gov (United States)

    Tatiana, Skufina; Peter, Skuf'in; Vera, Samarina; Taisiya, Shatalova; Baranov, Sergey

    2017-04-01

    Periods of geological changes such as super continent cycle (300-500 million years), Wilson's cycles (300-900 million years), magmatic-tectonic cycle (150-200 million years), and cycles with smaller periods (22, 100, 1000 years) lead to a basic contradiction preventing forming methodology of the study of impact of geological changes on the global and regional economies. The reason of this contradiction is the differences of theoretical and methodological aspects of the Earth science and economics such as different time scales and accuracy of geological changes. At the present the geological models cannot provide accurate estimation of time and place where geological changes (strong earthquakes, volcanos) are expected. Places of feature (not next) catastrophic events are the only thing we have known. Thus, it is impossible to use the periodicity to estimate both geological changes and their consequences. Taking into accounts these factors we suggested a collection of concepts for estimating impact of possible geological changes on regional and global economies. We illustrated our approach by example of estimating impact of Tohoku earthquake and tsunami of March 2011 on regional and global economies. Based on this example we concluded that globalization processes increase an impact of geological changes on regional and global levels. The research is supported by Russian Foundation for Basic Research (Projects No. 16-06-00056, 16-32-00019, 16-05-00263A).

  14. Geology and development of oil fields in Western Siberia

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    The anthology is dedicated to the geology, geophysics, hydrodynamics, and development of oil fields in Western Siberia. The articles on geological, industrial-geophysical and theoretical mathematical studies make recommendations and suggest measures to improve procedures for calculating oil reserves, to increase development efficiency and raise oil output.

  15. Synthetic Study on the Geological and Hydrogeological Model around KURT

    International Nuclear Information System (INIS)

    Park, Kyung Woo; Kim, Kyung Su; Koh, Yong Kwon; Choi, Jong Won

    2011-01-01

    To characterize the site specific properties of a study area for high-level radioactive waste disposal research in KAERI, the several geological investigations such as surface geological surveys and borehole drillings were carried out since 1997. Especially, KURT (KAERI Underground Research Tunnel) was constructed to understand the further study of geological environments in 2006. As a result, the first geological model of a study area was constructed by using the results of geological investigation. The objective of this research is to construct a hydrogeological model around KURT area on the basis of the geological model. Hydrogeological data which were obtained from in-situ hydraulic tests in the 9 boreholes were estimated to accomplish the objective. And, the hydrogeological properties of the 4 geological elements in the geological model, which were the subsurface weathering zone, the log angle fracture zone, the fracture zones and the bedrock were suggested. The hydrogeological model suggested in this study will be used as input parameters to carry out the groundwater flow modeling as a next step of the site characterization around KURT area

  16. Study on the development of geological environmental model. 2

    International Nuclear Information System (INIS)

    Tsujimoto, Keiichi; Shinohara, Yoshinori; Saito, Shigeyuki; Ueta, Shinzo; Ohashi, Toyo; Sasaki, Ryouichi; Tomiyama, Shingo

    2003-02-01

    The safety performance assessment was carried out in imaginary geological environment in the conventional research and development of geological disposal, but the importance of safety assessment based on the repository design and scenario considering the concrete geological environment will increase in the future. The research considering the link of the major three fields of geological disposal, investigation of geological environment, repository design, and safety performance assessment, is the contemporary worldwide research theme. Hence it is important to organize information flow that contains the series of information process from the data production to analysis in the three fields, and to systematize the knowledge base that unifies the information flow hierarchically. The information flow for geological environment model generation process is examined and modified base on the product of the research of 'Study on the development of geological environment model' that was examined in 2002. The work flow diagrams for geological structure and hydrology are modified, and those for geochemical and rock property are examined from the scratch. Furthermore, database design was examined to build geoclinal environment database (knowledgebase) based on the results of the systemisation of the environment model generation technology. The geoclinal environment database was designed and the prototype system is build to contribute databased design. (author)

  17. A Leadership Model for University Geology Department Teacher Inservice Programs.

    Science.gov (United States)

    Sheldon, Daniel S.; And Others

    1983-01-01

    Provides geology departments and science educators with a leadership model for developing earth science inservice programs. Model emphasizes cooperation/coordination among departments, science educators, and curriculum specialists at local/intermediate/state levels. Includes rationale for inservice programs and geology department involvement in…

  18. Digital Geologic Map of New Mexico - Volcanic Vents

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — The geologic map was created in GSMAP at Socorro, New Mexico by Orin Anderson and Glen Jones and published as the Geologic Map of New Mexico 1:500,000 in GSMAP...

  19. Proceedings of the 39. Brazilian congress on geology. v. 1

    International Nuclear Information System (INIS)

    1996-01-01

    The book presents the 39. Brazilian Congress on Geology works, occurred in Salvador, Bahia, during the period of September 1 to 6, 1996. The meeting main subject - geology and society - reflects the current change epoch. The symposiums revealed the more important actions about geosciences applications to the society in the country. The round tables, structured for the polemical subjects debates that involves the geosciences and the mineral sector crisis aspects, were achieved by several invited participants completely embraced with the subject. During the congress activities development there were some courses, technical excursions and external actions in Salvador, aiming to to show the geosciences role to the social welfare. The works were presented the following symposiums: the social value of the environment study; urban geology and geology risks; degraded areas recovery; coastal erosion; global paleoregisters; and carstic terranes geology

  20. Environmental aspects of engineering geological mapping in the United States

    Science.gov (United States)

    Radbruch-Hall, Dorothy H.

    1979-01-01

    Many engineering geological maps at different scales have been prepared for various engineering and environmental purposes in regions of diverse geological conditions in the United States. They include maps of individual geological hazards and maps showing the effect of land development on the environment. An approach to assessing the environmental impact of land development that is used increasingly in the United States is the study of a single area by scientists from several disciplines, including geology. A study of this type has been made for the National Petroleum Reserve in northern Alaska. In the San Francisco Bay area, a technique has been worked out for evaluating the cost of different types of construction and land development in terms of the cost of a number of kinds of earth science factors. ?? 1979 International Association of Engineering Geology.

  1. Proceedings of the eighth thematic conference on geologic remote sensing

    International Nuclear Information System (INIS)

    Balmer, M.L.; Lange, F.F.; Levi, C.G.

    1991-01-01

    These proceedings contain papers presented at the Eighth Thematic Conference on Geologic Remote Sensing. This meeting was held April 29-May 2, 1991, in Denver, Colorado, USA. The conference was organized by the Environmental Research Institute of Michigan, in Cooperation with an international program committee composed primarily of geologic remote sensing specialists. The meeting was convened to discuss state-of-the-art exploration, engineering, and environmental applications of geologic remote sensing as well as research and development activities aimed at increasing the future capabilities of this technology. The presentations in these volumes address the following topics: Spectral Geology; U.S. and International Hydrocarbon Exploration; Radar and Thermal Infrared Remote Sensing; Engineering Geology and Hydrogeology; Minerals Exploration; Remote Sensing for Marine and Environmental Applications; Image Processing and Analysis; Geobotanical Remote Sensing; Data Integration and Geographic Information Systems

  2. Geology Data Package for the Single-Shell Tank Waste Management Areas at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Reidel, Steve P.; Chamness, Mickie A.

    2007-01-01

    This data package discusses the geology of the single-shell tank (SST) farms and the geologic history of the area. The focus of this report is to provide the most recent geologic information available for the SST farms. This report builds upon previous reports on the tank farm geology and Integrated Disposal Facility geology with information available after those reports were published.

  3. geological mapping of the Onkalo open cut

    Energy Technology Data Exchange (ETDEWEB)

    Talikka, M. [Geological Survey of Finland, Espoo (Finland)

    2005-11-15

    Posiva Oy and Geological Survey of Finland carried out geological mapping of the ONKALO open cut in the latter half of the year 2004. The study area is located on the Olkiluoto Island in Eurajoki, SW Finland. The study included geological mapping, stereo-photography, and interpretation of 3D images. Fieldwork was carried out during the construction work. The main rock types are vein migmatite and grey gneiss with variation to granitic grey gneiss. The contacts of the rock types are gradual. The vein migmatite consists of fine- to medium-grained mica gneiss paleosome and granite or granite pegmatite neosome. The proportion of the neosome material varies between 15 and 35 percent and the neosome occurs as veins and bands up to ten centimetres in thickness. The granite I granite pegmatite is medium- to coarse-grained and not orientated. Main minerals in the mica gneiss are plagioclase, biotite, quartz, and in the granite / granite pegmatite potassium feldspar, plagioclase, and quartz. The grey gneiss is medium grained and fairly homogenous comprising mainly plagioclase, biotite, and quartz. The granitic grey gneiss contains also potassium feldspar crystals up to five cm in length. The rocks within the study area are generally well preserved. There is, however, a zone of strongly weathered rocks east of the ONKALO open cut. The main structural feature in the study area is S{sub 2} foliation, which is seen in the orientation of biotite grains. The degree of the foliation is weak to medium in the vein migmatite and weak to non-existence in the grey gneiss. The foliation (S{sub 2}) dips 20-70 deg to southeast with an average direction of 150/45 deg. The migmatisation took place during the second deformation phase and possibly proceeded along the lithologic layers. The neosome veins bend irregularly and folding is present in places. The fold axis of the small scale, isoclinal folds dip 50-70 deg to northeast. In fracture mapping a total of 231 fractures were measured

  4. geological mapping of the Onkalo open cut

    International Nuclear Information System (INIS)

    Talikka, M.

    2005-11-01

    Posiva Oy and Geological Survey of Finland carried out geological mapping of the ONKALO open cut in the latter half of the year 2004. The study area is located on the Olkiluoto Island in Eurajoki, SW Finland. The study included geological mapping, stereo-photography, and interpretation of 3D images. Fieldwork was carried out during the construction work. The main rock types are vein migmatite and grey gneiss with variation to granitic grey gneiss. The contacts of the rock types are gradual. The vein migmatite consists of fine- to medium-grained mica gneiss paleosome and granite or granite pegmatite neosome. The proportion of the neosome material varies between 15 and 35 percent and the neosome occurs as veins and bands up to ten centimetres in thickness. The granite I granite pegmatite is medium- to coarse-grained and not orientated. Main minerals in the mica gneiss are plagioclase, biotite, quartz, and in the granite / granite pegmatite potassium feldspar, plagioclase, and quartz. The grey gneiss is medium grained and fairly homogenous comprising mainly plagioclase, biotite, and quartz. The granitic grey gneiss contains also potassium feldspar crystals up to five cm in length. The rocks within the study area are generally well preserved. There is, however, a zone of strongly weathered rocks east of the ONKALO open cut. The main structural feature in the study area is S 2 foliation, which is seen in the orientation of biotite grains. The degree of the foliation is weak to medium in the vein migmatite and weak to non-existence in the grey gneiss. The foliation (S 2 ) dips 20-70 deg to southeast with an average direction of 150/45 deg. The migmatisation took place during the second deformation phase and possibly proceeded along the lithologic layers. The neosome veins bend irregularly and folding is present in places. The fold axis of the small scale, isoclinal folds dip 50-70 deg to northeast. In fracture mapping a total of 231 fractures were measured. Field

  5. Microbiological characterization of deep geological compartments

    International Nuclear Information System (INIS)

    Barsotti, V.; Sergeant, C.; Vesvres, M.H.; Coulon, S.; Joulian, C.; Garrido, F.; Ollivier, B.

    2012-01-01

    Document available in extended abstract form only. Microbial life in deep sediments and Earth's crust is now acknowledged by the scientific world. The deep subsurface biosphere contributes significantly to fundamental biogeochemical processes. However, despite great advances in geo-microbiological studies, deep terrestrial ecosystems are microbiologically poorly understood, mainly due to their inaccessibility. The drilling down to the base of the Triassic (1980 meters deep) in the geological formations of the eastern Paris Basin performed by ANDRA (EST433) in 2008 provides us a good opportunity to explore the deep biosphere. We conditioned the samples on the coring site, in as aseptic conditions as possible. In addition to storage at atmospheric pressure, a portion of the four Triassic samples was placed in a 190 bars pressurized chamber to investigate the influence of the conservation pressure factor on the found microflora. In parallel, in order to evaluate a potential bacterial contamination of the cores by the drilling fluids, samples of mud just before each sample drilling were taken and analyzed. The microbial exploration can be divided in two parts: - A cultural approach in different culture media for metabolic groups as methanogens, fermenters and sulphate reducing bacteria to stimulate their growth and to isolate microbial cells still viable. - A molecular approach by direct extraction of genomic DNA from the geological samples to explore a larger biodiversity. The limits are here the difficulties to extract DNA from these low biomass containing rocks. After comparison and optimization of several DNA extraction methods, the bacterial diversity present in rock cores was analyzed using DGGE (Denaturating Gel Gradient Electrophoresis) and cloning. The detailed results of all these investigations will be presented: - Despite all 400 cultural conditions experimented (with various media, salinities, temperatures, conservation pressure, agitation), no viable and

  6. Geological hazards investigation - relative slope stability map

    Energy Technology Data Exchange (ETDEWEB)

    Han, Dae Suk; Kim, Won Young; Yu, Il Hyon; Kim, Kyeong Su; Lee, Sa Ro; Choi, Young Sup [Korea Institute of Geology Mining and Materials, Taejon (Korea, Republic of)

    1997-12-01

    The Republic of Korea is a mountainous country; the mountains occupy about three quarters of her land area, an increasing urban development being taken place along the mountainside. For the reason, planners as well as developers and others must realize that some of the urban areas may be threaten by geologic hazards such as landslides and accelerated soil and rock creeps. For the purpose of environmental land-use planning, a mapping project on relative slope-stability was established in 1996. The selected area encompasses about 5,900 km{sup 2} including the topographic maps of Ulsan, Yongchon, Kyongju, Pulguksa, and Kampo, all at a scale of 1:50,000. Many disturbed and undisturbed soil samples, which were collected from the ares of the landslides and unstable slopes, were tested for their physical properties and shear strength. They were classified as GC, SP, SC, SM, SP-SM, SC-SM, CL, ML, and MH according to the Unified Soil Classification System, their liquid limit and plasticity index ranging from 25.3% to as high as 81.3% and from 4.1% to 41.5%, respectively. X-ray analysis revealed that many of the soils contained a certain amount of montmorillonite. Based on the available information as well as both field and laboratory investigation, it was found out that the most common types of slope failures in the study area were both debris and mud flows induced by the heavy rainfalls during the period of rainy season; the flows mostly occurred in the colluvial deposits at the middle and foot of mountains. Thus the deposits generally appear to be the most unstable slope forming materials in the study area. Produced for the study area were six different maps consisting of slope classification map, soil classification map, lineament density map, landslide distribution map, zonal map of rainfall, and geology map, most of them being stored as data base. Using the first four maps and GIS, two sheets of relative slope-stability maps were constructed, each at a scale of 1

  7. 3D Geological modelling of the Monfrague synform: a value added to the geologic heritage of the National Park

    International Nuclear Information System (INIS)

    Gumiel, P.; Arias, M.; Monteserin, V.; Segura, M.

    2010-01-01

    3D geological modelling of a tectonic structure called the Monfrague synform has been carried out to obtain a better insight into the geometry of this folding structure. It is a kilometric variscan WNW-ESE trending fold verging towards north and made up by a Palaeozoic sequence (Ordovician-Silurian).This structure with its lithology make up the morphology and the relief of the Park. The Monfrague synform is an asymmetrical folding structure showing southern limb dipping steeply to the south (reverse limb) what is well observed in the Armorican Quartzite at the Salto del Gitano. However, northern limb dips gently (less than 40 degree centigrade) to the south (normal limb). 3D geological modelling has been built on the basis of the geological knowledge and the structural interpretation, using 3D GeoModeller. (www.geomodeller.com). In this software, lithological units are described by a stratigraphic pile. A major original feature of this software is that the 3D description of the geological space is achieved through a potential field formulation in which geological boundaries are isopotential surfaces, and their dips are represented by gradients of the potential. Finally, it is emphasized the idea that a 3D geologic model of these characteristics, with its three-dimensional representation, together with suitable geological sections that clarify the structure in depth, represents a value added to the Geologic Heritage of the National Park and besides it supposes an interesting academic exercise which have a great didactic value. (Author)

  8. Ontology-aided annotation, visualization and generalization of geological time-scale information from online geological map services

    NARCIS (Netherlands)

    Ma, X.; Carranza, E.J.M.; Wu, C.; Meer, F.D. van der

    2012-01-01

    Geological maps are increasingly published and shared online, whereas tools and services supporting information retrieval and knowledge discovery are underdeveloped. In this study, we developed an ontology of geological time scale by using a RDF (Resource Description Framework) model to represent

  9. Ontology-aided annotation, visualization and generalization of geological time scale information from online geological map services

    NARCIS (Netherlands)

    Ma, Marshal; Ma, X.; Carranza, E.J.M; Wu, C.; van der Meer, F.D.

    2012-01-01

    Geological maps are increasingly published and shared online, whereas tools and services supporting information retrieval and knowledge discovery are underdeveloped. In this study, we developed an ontology of geological time scale by using a Resource Description Framework model to represent the

  10. Pilot monitoring program: geologic input for the hillslope component (includes a discussion of Caspar Creek geology and geomorphology)

    Science.gov (United States)

    T. E. Spittler

    1995-01-01

    The California Department of Conservation, Division of Mines and Geology (DMG) is submitting this report and accompanying maps to the California Department of Forestry and Fire Protection (CDF) to fulfill Interagency Agreement number 8CA38400, Pilot Monitoring Program -- Geologic Input for the Hillslope Component. Under this agreement, DMG has assisted CDF in the...

  11. Native American Students' Understanding of Geologic Time Scale: 4th-8th Grade Ojibwe Students' Understanding of Earth's Geologic History

    Science.gov (United States)

    Nam, Younkyeong; Karahan, Engin; Roehrig, Gillian

    2016-01-01

    Geologic time scale is a very important concept for understanding long-term earth system events such as climate change. This study examines forty-three 4th-8th grade Native American--particularly Ojibwe tribe--students' understanding of relative ordering and absolute time of Earth's significant geological and biological events. This study also…

  12. GIS-technologies as a mechanism to study geological structures

    Science.gov (United States)

    Sharapatov, Abish

    2014-05-01

    Specialized GIS-technologies allow creating multi-parameter models, completing multi-criteria optimisation tasks, and issues of geological profile forecasts using miscellaneous data. Pictorial and attributive geological and geophysical information collected to create GIS database is supplemented by the ERS (Earth's Remote Sensing) data, air spectrometry, space images, and topographic data. Among the important tasks are as follows: a unification of initial geological, geophysical and other types of information on a tectonic position, rock classification and stratigraphic scale; topographic bases (various projectures, scales); the levels of detail and exhaustibility; colors and symbols of legends; data structures and their correlation; units of measurement of physical quantities, and attribute systems of descriptions. Methods of the geological environment investigation using GIS-technology are based on a principle of the research target analogy with a standard. A similarity ratio is quantitative estimate. A geological forecast model is formed by structuring of geological information based on detailed analysis and aggregation of geological and formal knowledge bases on standard targets. Development of a bank of models of the analyzed geological structures of various range, ore-bearing features described by numerous prospecting indicators is the way to aggregate geological knowledge. The south terrain of the Valerianovskaya structure-facies zone (SFZ) of the Torgai paleo-rift structure covered with thick Mesozoic and Cenozoic rocks up to 2,000m is considered a so-called training ground for the development of GIS-technology. Parameters of known magnetite deposits located in the north of the SFZ (Sarybaiskoye, Sokolovskoye, etc.) are used to create the standard model. A meaning of the job implemented involves the following: - A goal-seeking nature of the research being performed and integration of the geological, geo-physical and other data (in many cases, efforts of the

  13. Multielemental analysis of geological materials using EDXRF

    Energy Technology Data Exchange (ETDEWEB)

    Fernández, Zahily Herrero; Santos Júnior, José A. dos; Amaral, Romilton dos Santos; Santos, Josineide Marques do Nascimento; Rojas, Lino A. Valcárcel, E-mail: zahily1985@gmail.com, E-mail: jaraujo@ufpe.br, E-mail: romilton@ufpe.br, E-mail: josineide.santos@ufpe.br, E-mail: linomarvic@gmail.com [Universidade Federal de Pernambuco (UFPE), Recife (Brazil). Departamento de Energia Nuclear; Alvarez, Juan R. Estevez, E-mail: jestevez@ceaden.edu.cu [Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear, Havana (Cuba); França, Elvis Joacir de, E-mail: ejfranca@gmail.com [Centro Regional de Ciências Nucleares do Nordeste (CRCN-EN/CNEN-PE), Recife, PE (Brazil)

    2017-07-01

    In northeastern Brazil, there are few studies about the metal pollution of surface soils and for the first time it will be studied heavy metals contamination in soils with different cover land. The State of Pernambuco is representative of the Brazilian Northeast region in relation to the variability of climatic conditions, soil types, cover and land use. Based on this, this paper provides information on the determination of metals in soil samples collected in Pernambuco, Brazil. The analysis of Al, Ca, Fe, K, Mg, Mn, Ni, Pb, Si, Sr, Ti and Zn were performed using Energy Dispersive X Ray Fluorescence (EDXRF). The 316 locations studied were specifically selected taking into account the different land use of soil. Analytical curves were obtained by means of the analysis of certified reference materials, for quantify the metals. The regression coefficients of the analytical curves were higher than 0.99. The quality of the analytical procedure was demonstrated at a 95% confidence level. The analysis of diverse geological samples from Pernambuco indicated higher concentrations of Ni and Zn in sugarcane, with maximum values of 41 mg kg{sup -1} and 118 mg kg{sup -1}, respectively and agricultural areas (41 mg kg{sup -1} and 127 mg kg{sup -1}, respectively). The trace element Sr was mainly enriched in urban soils with values of 400 mg kg{sup -1}. According to the results, the EDXRF method was successfully implemented, providing some chemical tracers for the quality assessment of tropical soils and sediments. (author)

  14. Geologic evolution of Tucurui region - Para

    International Nuclear Information System (INIS)

    Silva Matta, M.A. da.

    1982-01-01

    The northern part of the Araguaia Belt is exposed in the Tucurui region and their stratigraphic, structural, metamorphic and magmatic features had been studied aiming at contributing for the understanding of the geological evolution of the area. Dating with R-Sr and K-At are also presented, allowing some association for the lythotype of Xingu complex and Araguaia Belt. The oldest stratigraphic unit of the area is represented by the Xingu Complex, composed by gneisses and granites and subordinated schists and anphibolites. Over this unit, during the niddle Proterozoic, the Tucurui group was developed. The bottom of this unit is composed by a sequence of tholeiitic basaltic flows which were here enclosed in the Caripe Formation. The Morrote Formation, is made up of graywackes, and constitutes the upper part of the Tucurui Group. The geossinolinal evolution of the Araguaia Belt took place during the Uruacuano Cycle. This geoteotonic unit is represented in the studied area by the Couto Magalhaes Formation (Tocantins Group) which comprises pelitic and psamitic metasediments. After the metamorphism of the Araguaia Belt, the Couto Magalhaes Formation acted as the place of mafic and ultramafic intrusion and, lately, the Tucurui Fault thrusted the metamorphic rocks of the Tocantins Group over the Tucurui Group lithetypes. (author)

  15. Geology and occurrence of radon precursors

    International Nuclear Information System (INIS)

    Schmalz, R.F.

    1990-01-01

    The discovery that radioactive radon gas may occur as a significant indoor contaminant in houses and in the workplace has had far-reaching consequences in public health, real estate marketing, the construction industry, health and liability insurance underwriting, and in legislation at the federal and state levels. Many factors are known to affect radon level inside a building - its location, construction, ventilation, and substructure; the climate of the region in which it is located and the life styles of it occupants, for example. Despite the importance of assessing the hazard radon contamination may represent, the economic cost and the time required to screen hundreds of millions of individual buildings make such an effort impracticable. The effectiveness of large-scale regional screening to evaluate radon potential depends on an understanding of the chemical and physical properties of the gas, and of the geological and geochemical factors which control the distribution of its radioactive progenitors, radium, uranium and thorium. It is the purpose of this paper to review and summarize our present knowledge of these large-scale controls on radon occurrence

  16. UCBNE25, Radionuclide Migration in Geologic Media

    International Nuclear Information System (INIS)

    Kilshtok, G.

    1988-01-01

    1 - Description of program or function: UCBNE25 estimates the maximum concentration of nuclides occurring during the migration of three-member radionuclide chains in geologic media without axial dispersion. Unlike other migration codes, the release rate in UCBNE25 is the independent variable, and time is the dependent variable. The extrema in concentrations are determined without having to calculate the entire concentration history. The program assumes one-dimensional water transport and sorption equilibrium for the nuclides in the soil and in the water. The water velocity is held constant, and the leach times are smaller than the half-lives of the nuclides involved. UCBNE25 calculates for each nuclide the time of the maxima at a specified position, the maximum dimensionless concentration, the corresponding water dilution rate, and the contamination time for that position. The closed form solutions can be easily checked by hand, making it a useful calibration tool for other codes. 2 - Method of solution: The method concentrates on the estimation of the extrema positions in space at a fixed time and their occurrence at a fixed position

  17. Geologic factors in nuclear waste disposal

    International Nuclear Information System (INIS)

    Towse, D.

    1978-07-01

    The study of geosciences and their relation to nuclear waste disposal and management entails analyzing the hydrology, chemistry, and geometry of the nuclear waste migration process. Hydrologic effects are determined by analyzing the porosity and permeability (natural and induced) of rock as well as pressures and gradients, dispersion, and aquifer length of the system. Chemistry parameters include radionuclide retardation factors and waste dissolution rate. Geometric parameters (i.e., parameters with dimension) evaluated include repository layer thickness, fracture zone area, tunnel length, and aquifer length. The above parameters act as natural barriers or controls to nuclear waste migration, and are evaluated in three potential geologic media: salt, shale, and crystalline rock deposits. Parametric values are assigned that correspond to many existing situations. These values, in addition to other important inputs, are lumped as a hydrology input into a computer simulation program used to model and calculate nuclear waste migration from the repository to the biosphere, and potential individual and population dose and radiation effects. These results are preliminary and show trends only; they do not represent an actual risk analysis

  18. Multielemental analysis of geological materials using EDXRF

    International Nuclear Information System (INIS)

    Fernández, Zahily Herrero; Santos Júnior, José A. dos; Amaral, Romilton dos Santos; Santos, Josineide Marques do Nascimento; Rojas, Lino A. Valcárcel; França, Elvis Joacir de

    2017-01-01

    In northeastern Brazil, there are few studies about the metal pollution of surface soils and for the first time it will be studied heavy metals contamination in soils with different cover land. The State of Pernambuco is representative of the Brazilian Northeast region in relation to the variability of climatic conditions, soil types, cover and land use. Based on this, this paper provides information on the determination of metals in soil samples collected in Pernambuco, Brazil. The analysis of Al, Ca, Fe, K, Mg, Mn, Ni, Pb, Si, Sr, Ti and Zn were performed using Energy Dispersive X Ray Fluorescence (EDXRF). The 316 locations studied were specifically selected taking into account the different land use of soil. Analytical curves were obtained by means of the analysis of certified reference materials, for quantify the metals. The regression coefficients of the analytical curves were higher than 0.99. The quality of the analytical procedure was demonstrated at a 95% confidence level. The analysis of diverse geological samples from Pernambuco indicated higher concentrations of Ni and Zn in sugarcane, with maximum values of 41 mg kg -1 and 118 mg kg -1 , respectively and agricultural areas (41 mg kg -1 and 127 mg kg -1 , respectively). The trace element Sr was mainly enriched in urban soils with values of 400 mg kg -1 . According to the results, the EDXRF method was successfully implemented, providing some chemical tracers for the quality assessment of tropical soils and sediments. (author)

  19. Geology of Pluto and Charon Overview

    Science.gov (United States)

    Moore, Jeffrey Morgan

    2015-01-01

    Pluto's surface was found to be remarkably diverse in terms of its range of landforms, terrain ages, and inferred geological processes. There is a latitudinal zonation of albedo. The conspicuous bright albedo heart-shaped feature informally named Tombaugh Regio is comprised of several terrain types. Most striking is Texas-sized Sputnik Planum, which is apparently level, has no observable craters, and is divided by polygons and ovoids bounded by shallow troughs. Small smooth hills are seen in some of the polygon-bounding troughs. These hills could either be extruded or exposed by erosion. Sputnik Planum polygon/ovoid formation hypotheses range from convection to contraction, but convection is currently favored. There is evidence of flow of plains material around obstacles. Mountains, especially those seen south of Sputnik Planum, exhibit too much relief to be made of CH4, CO, or N2, and thus are probably composed of H2O-ice basement material. The north contact of Sputnik Planum abuts a scarp, above which is heavily modified cratered terrain. Pluto's large moon Charon is generally heavily to moderately cratered. There is a mysterious structure in the arctic. Charon's surface is crossed by an extensive system of rift faults and graben. Some regions are smoother and less cratered, reminiscent of lunar maria. On such a plain are large isolated block mountains surrounded by moats. At this conference we will present highlights of the latest observations and analysis. This work was supported by NASA's New Horizons project

  20. The Dutch geologic radioactive waste disposal project

    International Nuclear Information System (INIS)

    Hamstra, J.; Verkerk, B.

    1981-01-01

    The Final Report reviews the work on geologic disposal of radioactive waste performed in the Netherlands over the period 1 January 1978 to 31 December 1979. The attached four topical reports cover detailed subjects of this work. The radionuclide release consequences of an accidental flooding of the underground excavations during the operational period was studied by the institute for Atomic Sciences in Agriculture (Italy). The results of the quantitative examples made for different effective cross-sections of the permeable layer connecting the mine excavations with the boundary of the salt dome, are that under all circumstances the concentration of the waste nuclides in drinking water will remain well within the ICRP maximum permissible concentrations. Further analysis work was done on what minima can be achieved for both the maximum local rock salt temperatures at the disposal borehole walls and the maximum global rock salt temperatures halfway between a square of disposal boreholes. Different multi-layer disposal configurations were analysed and compared. A more detailed description is given of specific design and construction details of a waste repository such as the shaft sinking and construction, the disposal mine development, the mine ventilation and the different plugging and sealing procedures for both the disposal boreholes and the shafts. Thanks to the hospitality of the Gesellschaft fuer Strahlenforschung, an underground working area in the Asse mine became available for performing a dry drilling experiment, which resulted successfully in the drilling of a 300 m deep disposal borehole from a mine room at the -750 m level

  1. Regional geology of the Pine Creek Geosyncline

    International Nuclear Information System (INIS)

    Needham, R.S.; Crick, I.H.; Stuart-Smith, P.G.

    1980-01-01

    The Pine Creek Geosyncline comprises about 14km of chronostratigraphic mainly pelitic and psammitic Lower Proterozoic sediments with interlayered tuff units, resting on granitic late Archaean complexes exposed as three small domes. Sedimentation took place in one basin, and most stratigraphic units are represented throughout the basin. The sediments were regionally deformed and metamorphosed at 1800Ma. Tightly folded greenschist facies strata in the centre grade into isoclinally deformed amphibolite facies metamorphics in the west and northeast. Pre and post-orogenic continental tholeiites, and post-orogenic granite diapirs intrude the Lower Proterozoic metasediments, and the granites are surrounded by hornfels zones up to 10km wide in the greenschist facies terrane. Cover rocks of Carpentarian (Middle Proterozoic) and younger ages rest on all these rocks unconformably and conceal the original basin margins. The Lower Proterozoic metasediments are mainly pelites (about 75 percent) which are commonly carbonaceous, lesser psammites and carbonates (about 10 percent each), and minor rudites (about 5 percent). Volcanic rocks make up about 10 percent of the total sequence. The environment of deposition ranges from shallow-marine to supratidal and fluviatile for most of the sequence, and to flysch in the topmost part. Poor exposure and deep weathering over much of the area hampers correlation of rock units; the correlation preferred by the authors is presented, and possible alternatives are discussed. Regional geological observations pertinent to uranium ore genesis are described. (author)

  2. Federal Control of Geological Carbon Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Reitze, Arnold W. [Univ. of Utah, Salt Lake City, UT (United States)

    2011-04-01

    The United States has economically recoverable coal reserves of about 261 billion tons, which is in excess of a 250-­year supply based on 2009 consumption rates. However, in the near future the use of coal may be legally restricted because of concerns over the effects of its combustion on atmospheric carbon dioxide concentrations. In response, the U.S. Department of Energy is making significant efforts to help develop and implement a commercial scale program of geologic carbon sequestration that involves capturing and storing carbon dioxide emitted from coal-burning electric power plants in deep underground formations. This article explores the technical and legal problems that must be resolved in order to have a viable carbon sequestration program. It covers the responsibilities of the United States Environmental Protection Agency and the Departments of Energy, Transportation and Interior. It discusses the use of the Safe Drinking Water Act, the Clean Air Act, the National Environmental Policy Act, the Endangered Species Act, and other applicable federal laws. Finally, it discusses the provisions related to carbon sequestration that have been included in the major bills dealing with climate change that Congress has been considering in 2009 and 2010. The article concludes that the many legal issues that exist can be resolved, but whether carbon sequestration becomes a commercial reality will depend on reducing its costs or by imposing legal requirements on fossil-fired power plants that result in the costs of carbon emissions increasing to the point that carbon sequestration becomes a feasible option.

  3. Earth System Stability Through Geologic Time

    Science.gov (United States)

    Rothman, D.; Bowring, S. A.

    2015-12-01

    Five times in the past 500 million years, mass extinctions haveresulted in the loss of greater than three-fourths of living species.Each of these events is associated with significant environmentalchange recorded in the carbon-isotopic composition of sedimentaryrocks. There are also many such environmental events in the geologicrecord that are not associated with mass extinctions. What makes themdifferent? Two factors appear important: the size of theenvironmental perturbation, and the time scale over which it occurs.We show that the natural perturbations of Earth's carbon cycle during thepast 500 million years exhibit a characteristic rate of change overtwo orders of magnitude in time scale. This characteristic rate isconsistent with the maximum rate that limits quasistatic (i.e., nearsteady-state) evolution of the carbon cycle. We identify this rate withmarginal stability, and show that mass extinctions occur on the fast,unstable side of the stability boundary. These results suggest thatthe great extinction events of the geologic past, and potentially a"sixth extinction" associated with modern environmental change, arecharacterized by common mechanisms of instability.

  4. A geological history of reflecting optics.

    Science.gov (United States)

    Parker, Andrew Richard

    2005-03-22

    Optical reflectors in animals are diverse and ancient. The first image-forming eye appeared around 543 million years ago. This introduced vision as a selection pressure in the evolution of animals, and consequently the evolution of adapted optical devices. The earliest known optical reflectors--diffraction gratings--are 515 Myr old. The subsequent fossil record preserves multilayer reflectors, including liquid crystals and mirrors, 'white' and 'blue' scattering structures, antireflective surfaces and the very latest addition to optical physics--photonic crystals. The aim of this article is to reveal the diversity of reflecting optics in nature, introducing the first appearance of some reflector types as they appear in the fossil record as it stands (which includes many new records) and backdating others in geological time through evolutionary analyses. This article also reveals the commercial potential for these optical devices, in terms of lessons from their nano-level designs and the possible emulation of their engineering processes--molecular self-assembly.

  5. Geological disposal in the Belgian context

    International Nuclear Information System (INIS)

    Heremans, R.H.; Baetsle, L.H.

    1985-01-01

    The way of studying the high-level and α-bearing waste burial problem can vary from one country to another. In Belgium, if the electronuclear power represents about 60% of the total electricity production, the installed capacity is however limited to 5500 MWe. Furthermore, Belgium is a small country, densely populated, and its geology does not allow a large choice of underground formations acceptable for safe waste disposal. In 1974, site specific investigations were started on a 700 hectares area in the NE part of the country where Belgium's main nuclear research center and some nuclear fuel cycle facilities are located. The formation considered is a tertiary age clay layer underlying the Mol-Dessel area. Study and research works were organized in the frame of successive five year programs. The main objectives of the research are presented. After 10 years of intensive field, laboratory and desk work the obtained results allowed to start of the drafting of Preliminary Safety and Feasibility report in view of the construction of a demonstration facility. The project was performed by the CEN/SCK in the frame of shared financing contracts with the CEC and ONDRAF/NIRAS

  6. Oil geology of carbonate rock (Part 9)

    Energy Technology Data Exchange (ETDEWEB)

    Oshima, Kazuaki [Canpex Co., Ltd., Tokyo (Japan)

    1989-04-01

    As related with the oil exploration and development, the geological and environmental situation, where coral and other biological reef forms, was explained in Mubarras shoal and Bu Tinah shoal off Abu Dhabi, and the Okinawa islands. Generally, reef-natured sediment is distributed in marine areas, high in wave energy and facing open sea, and composed of coarse sediment. While, for the formation of biological reef, life must have so strong skeleton as to stand such severe wave, current and other oceanographic conditions. In Mubarras shoal, underground upheaval is found mainly in the northern part of shoal, while, in Bu Tinah shoal, it is found at the central part of shoal. Both the shoals are mutually different in condition of coral reef and coarse particulate sediment however common in the point that coral reef is always formed from the central part of upheaval toward offshore, inside which formation coarse calcareous sediment is formed. While the existence of calcareous mud prevents coral from growing and simultaneously lower reservoir rock in form condition. 26 figs.

  7. Internet-based information system of digital geological data providing

    Science.gov (United States)

    Yuon, Egor; Soukhanov, Mikhail; Markov, Kirill

    2015-04-01

    One of the Russian Federal аgency of mineral resources problems is to provide the geological information which was delivered during the field operation for the means of federal budget. This information should be present in the current, conditional form. Before, the leading way of presenting geological information were paper geological maps, slices, borehole diagrams reports etc. Technologies of database construction, including distributed databases, technologies of construction of distributed information-analytical systems and Internet-technologies are intensively developing nowadays. Most of geological organizations create their own information systems without any possibility of integration into other systems of the same orientation. In 2012, specialists of VNIIgeosystem together with specialists of VSEGEI started the large project - creating the system of providing digital geological materials with using modern and perspective internet-technologies. The system is based on the web-server and the set of special programs, which allows users to efficiently get rasterized and vectorised geological materials. These materials are: geological maps of scale 1:1M, geological maps of scale 1:200 000 and 1:2 500 000, the fragments of seamless geological 1:1M maps, structural zoning maps inside the seamless fragments, the legends for State geological maps 1:200 000 and 1:1 000 000, full author's set of maps and also current materials for international projects «Atlas of geological maps for Circumpolar Arctic scale 1:5 000 000» and «Atlas of Geologic maps of central Asia and adjacent areas scale 1:2 500 000». The most interesting and functional block of the system - is the block of providing structured and well-formalized geological vector materials, based on Gosgeolkart database (NGKIS), managed by Oracle and the Internet-access is supported by web-subsystem NGKIS, which is currently based on MGS-Framework platform, developed by VNIIgeosystem. One of the leading elements

  8. Semantics-informed cartography: the case of Piemonte Geological Map

    Science.gov (United States)

    Piana, Fabrizio; Lombardo, Vincenzo; Mimmo, Dario; Giardino, Marco; Fubelli, Giandomenico

    2016-04-01

    In modern digital geological maps, namely those supported by a large geo-database and devoted to dynamical, interactive representation on WMS-WebGIS services, there is the need to provide, in an explicit form, the geological assumptions used for the design and compilation of the database of the Map, and to get a definition and/or adoption of semantic representation and taxonomies, in order to achieve a formal and interoperable representation of the geologic knowledge. These approaches are fundamental for the integration and harmonisation of geological information and services across cultural (e.g. different scientific disciplines) and/or physical barriers (e.g. administrative boundaries). Initiatives such as GeoScience Markup Language (last version is GeoSciML 4.0, 2015, http://www.geosciml.org) and the INSPIRE "Data Specification on Geology" http://inspire.jrc.ec.europa.eu/documents/Data_Specifications/INSPIRE_DataSpecification_GE_v3.0rc3.pdf (an operative simplification of GeoSciML, last version is 3.0 rc3, 2013), as well as the recent terminological shepherding of the Geoscience Terminology Working Group (GTWG) have been promoting information exchange of the geologic knowledge. Grounded on these standard vocabularies, schemas and data models, we provide a shared semantic classification of geological data referring to the study case of the synthetic digital geological map of the Piemonte region (NW Italy), named "GEOPiemonteMap", developed by the CNR Institute of Geosciences and Earth Resources, Torino (CNR IGG TO) and hosted as a dynamical interactive map on the geoportal of ARPA Piemonte Environmental Agency. The Piemonte Geological Map is grounded on a regional-scale geo-database consisting of some hundreds of GeologicUnits whose thousands instances (Mapped Features, polygons geometry) widely occur in Piemonte region, and each one is bounded by GeologicStructures (Mapped Features, line geometry). GeologicUnits and GeologicStructures have been spatially

  9. Application of Laser Scanning for Creating Geological Documentation

    Directory of Open Access Journals (Sweden)

    Buczek Michał

    2018-01-01

    Full Text Available A geological documentation is based on the analyses obtained from boreholes, geological exposures, and geophysical methods. It consists of text and graphic documents, containing drilling sections, vertical crosssections through the deposit and various types of maps. The surveying methods (such as LIDAR can be applied in measurements of exposed rock layers, presented in appendices to the geological documentation. The laser scanning allows obtaining a complete profile of exposed surfaces in a short time and with a millimeter accuracy. The possibility of verifying the existing geological cross-section with laser scanning was tested on the example of the AGH experimental mine. The test field is built of different lithological rocks. Scans were taken from a single station, under favorable measuring conditions. The analysis of the signal intensity allowed to divide point cloud into separate geological layers. The results were compared with the geological profiles of the measured object. The same approach was applied to the data from the Vietnamese hard coal open pit mine Coc Sau. The thickness of exposed coal bed deposits and gangue layers were determined from the obtained data (point cloud in combination with the photographs. The results were compared with the geological cross-section.

  10. Status report on the geology of the Oak Ridge Reservation

    Energy Technology Data Exchange (ETDEWEB)

    Hatcher, R.D. Jr.; Lemiszki, P.J.; Foreman, J.L. (Tennessee Univ., Knoxville, TN (United States). Dept. of Geological Sciences); Dreier, R.B.; Ketelle, R.H.; Lee, R.R.; Lee, Suk Young (Oak Ridge National Lab., TN (United States)); Lietzke, D.A. (Lietzke (David A.), Rutledge, TN (United States)); McMaster, W.M. (McMaster (William M.), Heiskell, TN (United States))

    1992-10-01

    This report provides an introduction to the present state of knowledge of the geology of the Oak Ridge Reservation (ORR) and a cursory introduction to the hydrogeology. An important element of this work is the construction of a modern detailed geologic map of the ORR (Plate 1), which remains in progress. An understanding of the geologic framework of the ORR is essential to many current and proposed activities related to land-use planning, waste management, environmental restoration, and waste remediation. Therefore, this report is also intended to convey the present state of knowledge of the geologic and geohydrologic framework of the ORR and vicinity and to present some of the available data that provide the basic framework for additional geologic mapping, subsurface geologic, and geohydrologic studies. In addition, some recently completed, detailed work on soils and other surficial materials is included because of the close relationships to bedrock geology and the need to recognize the weathered products of bedrock units. Weathering processes also have some influence on hydrologic systems and processes at depth.

  11. Identification of different geologic units using fuzzy constrained resistivity tomography

    Science.gov (United States)

    Singh, Anand; Sharma, S. P.

    2018-01-01

    Different geophysical inversion strategies are utilized as a component of an interpretation process that tries to separate geologic units based on the resistivity distribution. In the present study, we present the results of separating different geologic units using fuzzy constrained resistivity tomography. This was accomplished using fuzzy c means, a clustering procedure to improve the 2D resistivity image and geologic separation within the iterative minimization through inversion. First, we developed a Matlab-based inversion technique to obtain a reliable resistivity image using different geophysical data sets (electrical resistivity and electromagnetic data). Following this, the recovered resistivity model was converted into a fuzzy constrained resistivity model by assigning the highest probability value of each model cell to the cluster utilizing fuzzy c means clustering procedure during the iterative process. The efficacy of the algorithm is demonstrated using three synthetic plane wave electromagnetic data sets and one electrical resistivity field dataset. The presented approach shows improvement on the conventional inversion approach to differentiate between different geologic units if the correct number of geologic units will be identified. Further, fuzzy constrained resistivity tomography was performed to examine the augmentation of uranium mineralization in the Beldih open cast mine as a case study. We also compared geologic units identified by fuzzy constrained resistivity tomography with geologic units interpreted from the borehole information.

  12. Status report on the geology of the Oak Ridge Reservation

    International Nuclear Information System (INIS)

    Hatcher, R.D. Jr.; Lemiszki, P.J.; Foreman, J.L.; Lietzke, D.A.; McMaster, W.M.

    1992-10-01

    This report provides an introduction to the present state of knowledge of the geology of the Oak Ridge Reservation (ORR) and a cursory introduction to the hydrogeology. An important element of this work is the construction of a modern detailed geologic map of the ORR (Plate 1), which remains in progress. An understanding of the geologic framework of the ORR is essential to many current and proposed activities related to land-use planning, waste management, environmental restoration, and waste remediation. Therefore, this report is also intended to convey the present state of knowledge of the geologic and geohydrologic framework of the ORR and vicinity and to present some of the available data that provide the basic framework for additional geologic mapping, subsurface geologic, and geohydrologic studies. In addition, some recently completed, detailed work on soils and other surficial materials is included because of the close relationships to bedrock geology and the need to recognize the weathered products of bedrock units. Weathering processes also have some influence on hydrologic systems and processes at depth

  13. Spatial Digital Database for the Geologic Map of Oregon

    Science.gov (United States)

    Walker, George W.; MacLeod, Norman S.; Miller, Robert J.; Raines, Gary L.; Connors, Katherine A.

    2003-01-01

    Introduction This report describes and makes available a geologic digital spatial database (orgeo) representing the geologic map of Oregon (Walker and MacLeod, 1991). The original paper publication was printed as a single map sheet at a scale of 1:500,000, accompanied by a second sheet containing map unit descriptions and ancillary data. A digital version of the Walker and MacLeod (1991) map was included in Raines and others (1996). The dataset provided by this open-file report supersedes the earlier published digital version (Raines and others, 1996). This digital spatial database is one of many being created by the U.S. Geological Survey as an ongoing effort to provide geologic information for use in spatial analysis in a geographic information system (GIS). This database can be queried in many ways to produce a variety of geologic maps. This database is not meant to be used or displayed at any scale larger than 1:500,000 (for example, 1:100,000). This report describes the methods used to convert the geologic map data into a digital format, describes the ArcInfo GIS file structures and relationships, and explains how to download the digital files from the U.S. Geological Survey public access World Wide Web site on the Internet. Scanned images of the printed map (Walker and MacLeod, 1991), their correlation of map units, and their explanation of map symbols are also available for download.

  14. Japanese issues on the future behavior of the geological environment

    International Nuclear Information System (INIS)

    Aoki, Kaz; Nakatsuka, Noboru; Ishimaru, Tsuneari

    1994-01-01

    Comprehending and predicting the future states of the geological environment is very important in ensuring a safe geological disposal of high level radioactive wastes (HLW). This paper is one in a series of studies required to ascertain the existence of a geologically stable area in Japan over the long term. In particular, interest is focussed on the aspect of accumulating data on behavior patterns of selected natural phenomena which will enable predictions of future behavior of geological processes and finding of areas of long term stability. While this paper limits itself to the second and part of the third step, the overall flow-chart of study on natural processes and events which may perturb the geological environment entails three major steps. They include: (i) identification of natural processes and events relevant to long term stability of geological environment to be evaluated; (ii) characterization of the identified natural processes and events; and (iii) prediction of the probability of occurrence, magnitude and influence of the natural processes and events which may perturb the geological environment. (J.P.N)

  15. Geological disposal of high-level radioactive wastes. Historical perspective and contemporary issues

    International Nuclear Information System (INIS)

    Ahn, Joonhong

    2013-01-01

    The contemporary concept on the geological disposal of radioactive wastes, the position of Japan in the world stream of geological disposal, and the ideal aspect of the Japanese geological disposal after the Fukushima accident are described. (M.H.)

  16. 77 FR 19321 - Geological and Geophysical Exploration on the Atlantic Outer Continental Shelf (OCS)

    Science.gov (United States)

    2012-03-30

    ... DEPARTMENT OF THE INTERIOR Bureau of Ocean Energy Management Geological and Geophysical... Statement (PEIS) to evaluate potential environmental effects of multiple Geological and Geophysical (G&G... limited to, seismic surveys, sidescan-sonar surveys, electromagnetic surveys, geological and geochemical...

  17. Nagra technical report 14-02, geological basics - Dossier V - Hydro-geological conditions

    International Nuclear Information System (INIS)

    Traber, D.; Gautschi, A.; Marschall, P.; Becker, J.; Waber, N.

    2014-01-01

    This dossier is the fifth of a series of eight reports concerning the safety and technical aspects of locations for the disposal of radioactive wastes in Switzerland. Dossier V looks at hydro-geological considerations in North-Western Switzerland. Rock layers in the region and their hydrological properties are examined. Ground-water and deeper lying aquifers in the various rock formations are discussed. The specific hydrology in the proposed areas for nuclear waste depositories is looked at, including infiltration and exfiltration zones and gradients

  18. The Role of Geologic Mapping in NASA PDSI Planning

    Science.gov (United States)

    Williams, D. A.; Skinner, J. A.; Radebaugh, J.

    2017-12-01

    Geologic mapping is an investigative process designed to derive the geologic history of planetary objects at local, regional, hemispheric or global scales. Geologic maps are critical products that aid future exploration by robotic spacecraft or human missions, support resource exploration, and provide context for and help guide scientific discovery. Creation of these tools, however, can be challenging in that, relative to their terrestrial counterparts, non-terrestrial planetary geologic maps lack expansive field-based observations. They rely, instead, on integrating diverse data types wth a range of spatial scales and areal coverage. These facilitate establishment of geomorphic and geologic context but are generally limited with respect to identifying outcrop-scale textural details and resolving temporal and spatial changes in depositional environments. As a result, planetary maps should be prepared with clearly defined contact and unit descriptions as well as a range of potential interpretations. Today geologic maps can be made from images obtained during the traverses of the Mars rovers, and for every new planetary object visited by NASA orbital or flyby spacecraft (e.g., Vesta, Ceres, Titan, Enceladus, Pluto). As Solar System Exploration develops and as NASA prepares to send astronauts back to the Moon and on to Mars, the importance of geologic mapping will increase. In this presentation, we will discuss the past role of geologic mapping in NASA's planetary science activities and our thoughts on the role geologic mapping will have in exploration in the coming decades. Challenges that planetary mapping must address include, among others: 1) determine the geologic framework of all Solar System bodies through the systematic development of geologic maps at appropriate scales, 2) develop digital Geographic Information Systems (GIS)-based mapping techniques and standards to assist with communicating map information to the scientific community and public, 3) develop

  19. Status Report on the Geology of the Oak Ridge Reservation

    Energy Technology Data Exchange (ETDEWEB)

    Hatcher, R.D., Jr.

    1992-01-01

    This report provides an introduction to the present state of knowledge of the geology of the Oak Ridge Reservation (ORR) and a cursory introduction to the hydrogeology. A detailed reported on hydrogeology is being produced in parallel to this one. An important element of this work is the construction of a modern detailed geologic map of the ORR containing subdivisions of all mappable rock units and displaying mesoscopic structural data. Understanding the geologic framework of the ORR is essential to many current and proposed activities related to land-use planning, waste management, environmental restoration, and waste remediation. This interim report is the result of cooperation between geologists in two Oak Ridge National Laboratory (ORNL) divisions, Environmental Sciences and Energy, and is a major part of one doctoral dissertation in the Department of Geological Sciences at The University of Tennessee--Knoxville. Major long-term goals of geologic investigations in the ORR are to determine what interrelationships exist between fractures systems in individual rock or tectonic units and the fluid flow regimes, to understand how regional and local geology can be used to help predict groundwater movement, and to formulate a structural-hydrologic model that for the first time would enable prediction of the movement of groundwater and other subsurface fluids in the ORR. Understanding the stratigraphic and structural framework and how it controls fluid flow at depth should be the first step in developing a model for groundwater movement. Development of a state-of-the-art geologic and geophysical framework for the ORR is therefore essential for formulating an integrated structural-hydrologic model. This report is also intended to convey the present state of knowledge of the geologic and geohydrologic framework of the ORR and vicinity and to present some of the data that establish the need for additional geologic mapping and geohydrologic studies. An additional intended

  20. Several issues of uranium geology exploration facilities decommissioning

    International Nuclear Information System (INIS)

    Zhang Lu; Lu Caixia; Sheng Qing; Zhuang Jingqi; Xie Shujun; Liao Yunxuan

    2013-01-01

    The environmental protection completion acceptance review work of uranium geology exploration facilities 'llth five-year plan' decommissioned and remediation projects is introduced. Some questions related to norms and standards for uranium geology exploration facilities decommissioning and remediation, scheme of decommissioning and remediation, process inspection and acceptance of project and so on are discussed, and corresponding countermeasures and suggestions are put forward, Some references can be provided for the later development of uranium geological exploration facility '12th five-year plan' decommissioning and remediation projects. (authors)

  1. Significant achievements in the planetary geology program. Final report

    International Nuclear Information System (INIS)

    Head, J.W.

    1978-12-01

    Developments reported at a meeting of principal investigators for NASA's planetology geology program are summarized. Topics covered include the following: constraints on solar system formation; asteriods, comets, and satellites; constraints on planetary interiors; volatiles and regoliths; instrument development techniques; planetary cartography; geological and geochemical constraints on planetary evolution; fluvial processes and channel formation; volcanic processes; Eolian processes; radar studies of planetary surfaces; cratering as a process, landform, and dating method; and the Tharsis region of Mars. Activities at a planetary geology field conference on Eolian processes are reported and techniques recommended for the presentation and analysis of crater size-frequency data are included

  2. Safety aspects of geological studies around nuclear installations sites

    International Nuclear Information System (INIS)

    Faure, J.

    1988-01-01

    The experience of geological studies of about forty french nuclear sites allows to set out the objectives, the phases and the geographic extensions of workings to be realized for confirming a site. The data to be collected for the safety analysis are specified; they concern the local and regional geology, the geotechnical characteristics and the essential elements for evaluating the hazards related to the soil liquefaction, the surface fracturing and in some cases the volcanic risks. It is necessary to follow up the geology during the installation construction and life. 8 refs. (F.M.)

  3. Microbial investigations of deep geological compartments

    International Nuclear Information System (INIS)

    Barsotti, V.; Sergeant, C.; Vesvres, M.H.; Joulian, C.; Coulon, S.; Le Marrec, C.; Garrido, F.

    2010-01-01

    Document available in extended abstract form only. Deep sedimentary rocks are now considered to contain a significant part of the total bacterial population, but are microbiologically unexplored. The drilling down to the base of the Triassic (1980 meters deep) in the geological formations of the eastern Paris Basin performed by ANDRA (EST433) in 2008 provides us a good opportunity to explore the deep biosphere. We conditioned and sub-sampled on the coring site, in as aseptic conditions as possible, the nine cores: two in the Callovo-Oxfordian clay, two in the Dogger, five in the Triassic compartments. In addition to storage at atmospheric pressure, a portion of the five Triassic samples was placed in a 190 bars pressurized bars chamber to investigate the influence of the conservation pressure factor on the found microflora. In parallel, in order to evaluate a potential bacterial contamination of the core by the drilling fluids, samples of mud just before each sample drilling were taken and analysed. The microbial exploration we started can be divided in two parts: - A cultural approach in different culture media for six metabolic groups to try to find microbial cells still viable. This type of experiment is difficult because of the small proportion of cultivable species, especially in these extreme environmental samples. - A molecular approach by direct extraction of genomic DNA from the geological samples to explore a larger biodiversity. Here, the limits are the difficulties to extract DNA from these low biomass containing rocks. The five Triassic samples were partly crushed in powder and inoculated in the six culture media with four NaCl concentrations, because this type of rock is known as saline or hyper-saline, and incubated at three temperatures: 30 deg. C, 55 deg. C under agitation and 70 deg. C. First results will be presented. The direct extraction of DNA needs a complete method optimisation to adapt existent procedures (using commercial kit and classical

  4. Geological-uraniferous favourability of South America

    International Nuclear Information System (INIS)

    Stipanicic, P.N.

    1984-01-01

    The South American continent includes several metallogenic provinces some of which have excellent uranium possibilities. Basically, two types of lithological complex have contributed to this favourability: the large Precambrian shields covering about 5,500,000 km 2 and the crystalline Hercynian nesocratons with about 300,000 km 2 as source rocks. Only in Argentina and Brazil has continuous uranium exploration in South America been carried out, with moderate budgets, during the last twenty-five years. In the rest of South America the search for uranium has been performed intermittently and with limited resources. However, during recent years interest has increased and more continuous operation has been recorded in some countries (Bolivia, Colombia, Chile, Peru). It can be estimated that only 20% of the favourable areas have been explored fairly intensively in Argentina and Brazil, the two most advanced uraniferous countries. Nevertheless, the uranium possibilities of South America are proved by the resources of 250,000 t U already defined (in Argentina and Brazil) for the category of production cost below US $130/kg U. The speculative uranium potential of the continent was estimated by the International Uranium Resources Evaluation Project as between 770,000 and 1,500,000 t U. Within the South American geostructural framework, five main uraniferous geological areas have been defined on the basis of the geotectonic evolution of the continent, the succession of sedimentary and magmatic processes, and the participation in them of the endogenous and exogenous phases of the uranium geochemical cycle. In this paper the principal uranium metallogenic models occurring in the above five main areas are studied together with the uranium potential of each area. The possibility of uranium recovery from these sources in relation to the respective costs of production is briefly discussed

  5. Fracture analysis for engineering geological utilization

    Energy Technology Data Exchange (ETDEWEB)

    Choi, H I; Choi, P Y; Hong, S H; Chi, K H; Kim, J Y; Lee, S R; Lee, S G; Park, D W; Han, J G [Korea Institute of Geology Mining and Materials, Taejon (Korea, Republic of)

    1997-12-01

    The problem of geological hazards (earthquakes) and water or thermal resources urges us to understand the regional tectonic setting or recent tectonics. The Uisong Subbasin is located in one of the seismicity zones in Korea. Because the reactivity of the Gaeum Fault System is an important problem focussing on these faults, we studied their whole extension and timing of faulting in terms of tectonics. Fault tectonic analysis is so effective as to easily reconstruct the tectonic sequence and each stress state at each site, eventually in a region. One can get insights for faulting timing in terms of the restored tectonic sequence, and discriminating the active faults or the faults active in the last (present) tectonics. Examining the filling materials in tension gashes, one can get raw knowledge regarding the thermal states at each site. For this study, we first analyzed the topographic textures (lineament, drainage and circular structures) on the relief map produced based on the topographic maps of 1:100,000 scale. Through investigations of susceptible area along the faults, their existence and movement modes were studied, and we can get information about movement history and whole extension of the faults belonging to the WNW-ESE trending Gaeum Fault System. In order to reconstruct the tectonic sequence, we measured fault slip data, tension gashes and dikes, from which fault populations were classified and stress (and thermal) states were determined. Seven compressional tectonic events and six extensional events were reconstructed. Because coaxial events partially coexisted, we bundled these events in one, finally we get seven tectonic events. Determining the types of minerals filling the tension gashes, we suggested the possibility of investigation of geothermal resources with less efforts. (author). 162 refs., 14 tabs., 51 figs.

  6. Geological structure and mineral resources of Algeria

    Directory of Open Access Journals (Sweden)

    Eduard Dobra

    2007-12-01

    Full Text Available The hydrocarbon System Ourd Mya is located in the Sahara Basin. It is one of the producing basins in Algeria. The stratigraphic section consists of Paleozoic and Mesosoic, it is about 5000 m thick. In the eastern part, the basin is limited by the Hassi-Messaoud high zone which is a giant oil field produced from the Cambrian sands. The western part is limited by Hassi R`mel which is one of the biggest gas field in the world, it is produced from the triassic sands. The Mesozoic section lays on the lower Devonian and in the eastern part, on the Cambrian. The main source rock is Silurian shale with an average thickness of 50 m and a total organic matter of 6 % (14 % in some cases. Results of maturation modeling indicate that the lower Silurian source is in the oil window. The Ordovician shales are also a source rock but in a second order. Clastic reservoirs are in the Triassic sequence which is mainly fluvial deposit with complex alluvial channels, it is the main target in the basin. Clastic reservoirs within the lower Devonian section have a good hydrocarbon potential in the east of the basin through a southwest-northeast orientation. The late Triassic-Early Jurassic evaporites overlie the Triassic clastic interval and extend over the entire Oued Mya Basin. This is considered as a super-seal evaporate package, which consists predominantly of anhydrite and halite. For Paleozoic targets, a large number of potential seals exist within the stratigraphic column.This paper describe the main geological structure and mineral resources of Algeria.

  7. Current Status of Deep Geological Repository Development

    International Nuclear Information System (INIS)

    Budnitz, R J

    2005-01-01

    This talk provided an overview of the current status of deep-geological-repository development worldwide. Its principal observation is that a broad consensus exists internationally that deep-geological disposal is the only long-term solution for disposition of highly radioactive nuclear waste. Also, it is now clear that the institutional and political aspects are as important as the technical aspects in achieving overall progress. Different nations have taken different approaches to overall management of their highly radioactive wastes. Some have begun active programs to develop a deep repository for permanent disposal: the most active such programs are in the United States, Sweden, and Finland. Other countries (including France and Russia) are still deciding on whether to proceed quickly to develop such a repository, while still others (including the UK, China, Japan) have affirmatively decided to delay repository development for a long time, typically for a generation of two. In recent years, a major conclusion has been reached around the world that there is very high confidence that deep repositories can be built, operated, and closed safely and can meet whatever safety requirements are imposed by the regulatory agencies. This confidence, which has emerged in the last few years, is based on extensive work around the world in understanding how repositories behave, including both the engineering aspects and the natural-setting aspects, and how they interact together. The construction of repositories is now understood to be technically feasible, and no major barriers have been identified that would stand in the way of a successful project. Another major conclusion around the world is that the overall cost of a deep repository is not as high as some had predicted or feared. While the actual cost will not be known in detail until the costs are incurred, the general consensus is that the total life-cycle cost will not exceed a few percent of the value of the

  8. Public Acceptance for Geological CO2-Storage

    Science.gov (United States)

    Schilling, F.; Ossing, F.; Würdemann, H.; Co2SINK Team

    2009-04-01

    Public acceptance is one of the fundamental prerequisites for geological CO2 storage. In highly populated areas like central Europe, especially in the vicinity of metropolitan areas like Berlin, underground operations are in the focus of the people living next to the site, the media, and politics. To gain acceptance, all these groups - the people in the neighbourhood, journalists, and authorities - need to be confident of the security of the planned storage operation as well as the long term security of storage. A very important point is to show that the technical risks of CO2 storage can be managed with the help of a proper short and long term monitoring concept, as well as appropriate mitigation technologies e.g adequate abandonment procedures for leaking wells. To better explain the possible risks examples for leakage scenarios help the public to assess and to accept the technical risks of CO2 storage. At Ketzin we tried the following approach that can be summed up on the basis: Always tell the truth! This might be self-evident but it has to be stressed that credibility is of vital importance. Suspiciousness and distrust are best friends of fear. Undefined fear seems to be the major risk in public acceptance of geological CO2-storage. Misinformation and missing communication further enhance the denial of geological CO2 storage. When we started to plan and establish the Ketzin storage site, we ensured a forward directed communication. Offensive information activities, an information centre on site, active media politics and open information about the activities taking place are basics. Some of the measures were: - information of the competent authorities through meetings (mayor, governmental authorities) - information of the local public, e.g. hearings (while also inviting local, regional and nation wide media) - we always treated the local people and press first! - organizing of bigger events to inform the public on site, e.g. start of drilling activities (open

  9. Uruguayan geological Congress II meeting about environmental geology and territorial ordinance

    International Nuclear Information System (INIS)

    Oleaga, A.; Corbo, F.; Larenze, G.; Arzate, J.

    2004-01-01

    The use of the SAG in Argentina and Uruguay is centered in two big areas: the northeast of Uruguay (and south of Brazil), and the near one to the Uruguay River. In this it finishes, Area in which the present project is developed, an important thermal tourist cord exists in the one which with ten perforations they are extracted 25.000 m3/dia approximately. In both countries the lack of knowledge is remarkable, since they exist less than two dozens of deep perforations (of 1000 at 2200m), aspect very preocupante to carry out a plan of administration of the aquifer, since for it is indispensable to know the geologic structure that houses him. The present project intends to develop an exact model of the geologic structure of an area of 10,000Km2 centered in the thermal tourist cord. This it was based on 25 polls magnetoteluricos that will be supplemented with the information of the existent perforations and the one contributed by Oleaga, A. (2002) for the area in Uruguay. This will allow to evaluate the transborder continuity and the displacement of the main flaws in the study area, aspects of supreme importance for the knowledge of the system of existent flow [es

  10. PROCESS FOR LICENSE APPLICATION DEVELOPMENT FOR THE GEOLOGIC REPOSITORY

    International Nuclear Information System (INIS)

    DOUGLAS M. FRANKS AND NORMAN C. HENDERSON

    1997-01-01

    The Department of Energy (DOE), specifically the Office of Civilian Radioactive Waste Management (OCRWM) has been charged by the U.S. Congress, through the Nuclear Waste Policy Act (NWPA), with the responsibility for obtaining a license to develop a geologic repository. The NRC is the licensing authority for geologic disposal, and its regulations pertinent to construction authorization and license application are specified in 10 CFR Part 60, Disposal of High-Level Radioactive Wastes in Geologic Repositories, (section)60.21ff and (section)60.31ff. This paper discusses the process the Yucca Mountain Site Site Characterization Project (YMP) will use to identify and apply regulatory and industry guidance to development of the license application (LA) for a geologic repository at Yucca Mountain, Nevada. This guidance will be implemented by the ''Technical Guidance Document for Preparation of the License Application'' (TGD), currently in development

  11. Definition imaging of anomalous geologic structure with radio waves

    International Nuclear Information System (INIS)

    Stolarczyk, L.G.

    1990-01-01

    Diamond core drilling from the surface and access drifts are routinely used in acquiring subsurface geologic data. Examination of core from a constellation of drillholes enables the characterization of the prevailing geology in the deposit. Similar geologic members in adjacent drillholes suggest that layered rock continuity exists between drillholes. Mineralogical and physical examination of core along with computer generated stratigraphic cross sections graphically represents the correlation and classification of the rock in the deposit. CW radio waves propagating on ray paths between drillholes have been used to validate the stratigraphic cross section and image anomalous geologic structure between drillholes. This paper compares the crosshole radio wave tomography images of faults in a nuclear waste repository site and a coal seam with the in-mine mapping results

  12. A Computer-Assisted Laboratory Sequence for Petroleum Geology.

    Science.gov (United States)

    Lumsden, David N.

    1979-01-01

    Describes a competitive oil-play game for petroleum geology students. It is accompanied by a computer program written in interactive Fortran. The program, however, is not essential, but useful for adding more interest. (SA)

  13. Digital compilation bedrock geologic map of the Warren quadrangle, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG95-4A Walsh, GJ, Haydock, S, Prewitt, J, Kraus, J, Lapp, E, O'Loughlin, S, and Stanley, RS, 1995, Digital compilation bedrock geologic map of the...

  14. The geography, geology and mining history of Rum Jungle

    International Nuclear Information System (INIS)

    Lowson, R.T.

    1975-01-01

    The geology and geography of the Rum Jungle region are described. A description is given of the effect on the environment of mining operations such as ore processing, effluent disposal and the leaching of stockpiles and overburden heaps. (author)

  15. The Indian Ocean nodule field: Geology and resource potential

    Digital Repository Service at National Institute of Oceanography (India)

    Mukhopadhyay, R.; Ghosh, A; Iyer, S.D.

    This book briefly accounts for the physiography, geology, biology, physics and chemistry of the nodule field, and discusses in detail the aspects of structure, tectonic and volcanism in the field. The role of the ocean floor sediment that hosts...

  16. Airborne Geophysical/Geological Mineral Inventory CIP Program

    National Research Council Canada - National Science Library

    1999-01-01

    The Airborne-Geophysical/Geological Mineral Inventory project is a special multi-year investment to expand the knowledge base of Alaska's mineral resources and catalyze private-sector mineral development...

  17. Geologic Map of the Shakespeare Quadrangle (H03), Mercury

    Science.gov (United States)

    Guzzetta, L.; Galluzzi, V.; Ferranti, L.; Palumbo, P.

    2018-05-01

    A 1:3M geological map of the H03 Shakespeare quadrangle of Mercury has been compiled through photointerpretation of the MESSENGER images. The most prominent geomorphological feature is the Caloris basin, the largest impact crater on Mercury.

  18. Geological and Electrical Resistivity Sounding of Olokonla Area in ...

    African Journals Online (AJOL)

    Akorede

    form prefential pathways for ground water. Three vertical electrical ... investigation techniques which use the electrical properties of ... Figure 1: Geological Map of Nigeria Showing the Study Area ... expected to assume a circular shape.

  19. High resolution reservoir geological modelling using outcrop information

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Changmin; Lin Kexiang; Liu Huaibo [Jianghan Petroleum Institute, Hubei (China)] [and others

    1997-08-01

    This is China`s first case study of high resolution reservoir geological modelling using outcrop information. The key of the modelling process is to build a prototype model and using the model as a geological knowledge bank. Outcrop information used in geological modelling including seven aspects: (1) Determining the reservoir framework pattern by sedimentary depositional system and facies analysis; (2) Horizontal correlation based on the lower and higher stand duration of the paleo-lake level; (3) Determining the model`s direction based on the paleocurrent statistics; (4) Estimating the sandbody communication by photomosaic and profiles; (6) Estimating reservoir properties distribution within sandbody by lithofacies analysis; and (7) Building the reservoir model in sandbody scale by architectural element analysis and 3-D sampling. A high resolution reservoir geological model of Youshashan oil field has been built by using this method.

  20. Application of the geological streamflow and Muskingum Cunge ...

    African Journals Online (AJOL)

    ... of the geological streamflow and Muskingum Cunge models in the Yala River Basin, Kenya. ... can be represented by the application of hydrologic and hydraulic models. ... verification and streamflow routing based on a split record analysis.