WorldWideScience

Sample records for geological survey conducted

  1. Geologic mapping of Kentucky; a history and evaluation of the Kentucky Geological Survey--U.S. Geological Survey Mapping Program, 1960-1978

    Science.gov (United States)

    Cressman, Earle Rupert; Noger, Martin C.

    1981-01-01

    In 1960, the U.S. Geological Survey and the Kentucky Geological Survey began a program to map the State geologically at a scale of 1:24,000 and to publish the maps as 707 U.S. Geological Survey Geologic Quadrangle Maps. Fieldwork was completed by the spring of 1977, and all maps were published by December 1978. Geologic mapping of the State was proposed by the Kentucky Society of Professional Engineers in 1959. Wallace W. Hagan, Director and State Geologist of the Kentucky Geological Survey, and Preston McGrain, Assistant State Geologist, promoted support for the proposal among organizations such as Chambers of Commerce, industrial associations, professional societies, and among members of the State government. It was also arranged for the U.S. Geological Survey to supply mapping personnel and to publish the maps; the cost would be shared equally by the two organizations. Members of the U.S. Geological Survey assigned to the program were organized as the Branch of Kentucky Geology. Branch headquarters, including an editorial staff, was at Lexington, Ky., but actual mapping was conducted from 18 field offices distributed throughout the State. The Publications Division of the U.S. Geological Survey established a cartographic office at Lexington to prepare the maps for publication. About 260 people, including more than 200 professionals, were assigned to the Branch of Kentucky Geology by the U.S. Geological Survey at one time or another. The most geologists assigned any one year was 61. To complete the mapping and ancillary studies, 661 professional man-years were required, compared with an original estimate of 600 man-years. A wide variety of field methods were used, but most geologists relied on the surveying altimeter to obtain elevations. Surface data were supplemented by drill-hole records, and several dozen shallow diamond-drill holes were drilled to aid the mapping. Geologists generally scribed their own maps, with a consequent saving of publication costs

  2. The U.S. Geological Survey Geologic Collections Management System (GCMS)—A master catalog and collections management plan for U.S. Geological Survey geologic samples and sample collections

    Science.gov (United States)

    ,

    2015-01-01

    The U.S. Geological Survey (USGS) is widely recognized in the earth science community as possessing extensive collections of earth materials collected by research personnel over the course of its history. In 2006, a Geologic Collections Inventory was conducted within the USGS Geology Discipline to determine the extent and nature of its sample collections, and in 2008, a working group was convened by the USGS National Geologic and Geophysical Data Preservation Program to examine ways in which these collections could be coordinated, cataloged, and made available to researchers both inside and outside the USGS. The charge to this working group was to evaluate the proposition of creating a Geologic Collections Management System (GCMS), a centralized database that would (1) identify all existing USGS geologic collections, regardless of size, (2) create a virtual link among the collections, and (3) provide a way for scientists and other researchers to obtain access to the samples and data in which they are interested. Additionally, the group was instructed to develop criteria for evaluating current collections and to establish an operating plan and set of standard practices for handling, identifying, and managing future sample collections. Policies and procedures promoted by the GCMS would be based on extant best practices established by the National Science Foundation and the Smithsonian Institution. The resulting report—USGS Circular 1410, “The U.S. Geological Survey Geologic Collections Management System (GCMS): A Master Catalog and Collections Management Plan for U.S. Geological Survey Geologic Samples and Sample Collections”—has been developed for sample repositories to be a guide to establishing common practices in the collection, retention, and disposal of geologic research materials throughout the USGS.

  3. 77 FR 19032 - Geological Survey

    Science.gov (United States)

    2012-03-29

    ... DEPARTMENT OF THE INTERIOR Geological Survey Announcement of National Geospatial Advisory Committee Meeting AGENCY: U.S. Geological Survey, Interior. ACTION: Notice of meeting. SUMMARY: The National.... Geological Survey (703-648-6283, [email protected] ). Registrations are due by April 13, 2012. While the...

  4. A bibliography of research conducted by the Earth Resources Observation Systems (EROS) Office, U.S. Geological Survey : 1975-1982

    Science.gov (United States)

    Bowman, Helen L.

    1984-01-01

    , Alaska, in 1980. EROS functions were realined under the National Mapping Division of the Geological Survey in Fiscal Year 1983, when the EROS Headquarters Office v/as closed. EROS research and applications functions are now conducted by the EROS Data Center and the EROS Field Office in Anchorage. Approximately 50 civil servants and 250 contract personnel carry out the EROS mission of research, development, and technology transfer in remote sensing, geographic information systems, and digital data base applications. This bibliography is a compilation of publications between 1975 and 1982 by EROS Program personnel and by persons under contract to the EROS Program. Requests for information regarding EROS research and/or publications should be directed to: Chief, EROS Data Center, Sioux Falls, South Dakota 5719P.

  5. Activities of the United States Geological Survey in Pennsylvania

    Science.gov (United States)

    Wood, Charles R.

    1997-01-01

    Since the late 1800's, when the U.S. Geological Survey first established a presence in Pennsylvania, the focus of our work has changed from general hydrologic and geologic appraisals to issue-oriented investigations; from predominantly data collection to a balanced program of data collection, interpretation, and research; and from traditional, hand-drawn mapping to digitally produced coverages with specialized themes. Yet our basic mission has not changed. It is as relevant to the resource issues of today as it was when our geologists first arrived in western Pennsylvania in 1884. Continuing in this proud heritage and tradition, the U.S. Geological Survey is moving confidently toward the next century, evolving organizationally and technologically to better meet the needs of our many constituencies. One major organizational change is the recent accession of employees from the former National Biological Service, who now form the Survey's fourth program division, the Biological Resources Division. These employees join forces with colleagues in our other three divisions: Water Resources, Geologic, and National Mapping. More than any other change in decades, the addition of this biological expertise creates new and exciting opportunities for scientific research and public service. This report provides an overview of recent activities in Pennsylvania conducted by the four program divisions and is intended to inform those interested in U.S. Geological Survey products and services. Additional information is available on our home page (at http://wwwpah2o.er.usgs.gov/). Together with numerous Federal, State, and local agencies and organizations who are our customers and partners, we at the U.S. Geological Survey look forward to providing continued scientific contributions and public service to Pennsylvania and the Nation.

  6. A state geological survey commitment to environmental geology - the Texas Bureau of Economic Geology

    International Nuclear Information System (INIS)

    Wermund, E.G.

    1990-01-01

    In several Texas environmental laws, the Bureau of Economic Geology is designated as a planning participant and review agency in the process of fulfilling environmental laws. Two examples are legislation on reclamation of surface mines and regulation of processing low level radioactive wastes. Also, the Bureau is the principal geological reviewer of all Environmental Assessments and Environmental Impact Statements which the Office of the Governor circulates for state review on all major developmental activities in Texas. The BEG continues its strong interest in environmental geology. In February 1988, it recommitted its Land Resources Laboratory, initiated in 1974, toward fulfilling needs of state, county, and city governments for consultation and research on environmental geologic problems. An editorial from another state geological survey would resemble the about description of texas work in environmental geology. State geological surveys have led federal agencies into many developments of environmental geology, complemented federal efforts in their evolution, and continued a strong commitment to the maintenance of a quality environment through innovative geologic studies

  7. Geological survey by high resolution electrical survey on granite areas

    International Nuclear Information System (INIS)

    Sugimoto, Yoshihiro; Yamada, Naoyuki

    2002-03-01

    As an Integral part of the geological survey in 'The study of the regions ground water flow system' that we are carrying out with Tono Geoscience Center, we proved the relation between the uncontinuation structure such as lineament in the base rock and resistivity structure (resistivity distribution), for the purpose of that confirms the efficacy of the high resolution electrical survey as geological survey, we carried out high resolution electrical survey on granite area. We obtained the following result, by the comparison of resistivity distribution with established geological survey, lineament analysis and investigative drilling. 1. The resistivity structure of this survey area is almost able to classify it into the following four range. 1) the low resistivity range of 50-800 Ωm, 2) The resistivity range like the middle of 200-2000 Ωm, 3) The high resistivity range of 2000 Ωm over, 4) The low resistivity range of depth of the survey line 400-550 section. 2. The low resistivity range of 4) that correspond with the established geological data is not admitted. 3. It was confirmed that resistivity structure almost correspond to geological structure by the comparison with the established data. 4. The small-scale low resistivity area is admitted in the point equivalent to the lineament position of established. 5. We carried out it with the simulation method about the low resistivity range of 4). As a result, it understood that it has the possibility that the narrow ratio low resistivity area is shown as the wide ratio resistivity range in the analysis section. In the survey in this time, it is conceivable that the resistivity distribution with the possibility of the unhomogeneous and uncontinuation structure of the base rock is being shown conspicuously, the efficacy of the high resolution resistivity survey as geological survey on granite was shown. (author)

  8. Summary of U.S. Geological Survey studies conducted in cooperation with the Citizen Potawatomi Nation, central Oklahoma, 2011–14

    Science.gov (United States)

    Andrews, William J.; Becker, Carol J.; Ryter, Derek W.; Smith, S. Jerrod

    2016-01-19

    The U.S. Geological Survey conducted hydrologic studies and published three U.S. Geological Survey scientific investigations reports in cooperation with the Citizen Potawatomi Nation from 2011 to 2014 to characterize the quality and quantity of water resources. The study areas of those reports consisted of approximately 960 square miles in parts of three counties in central Oklahoma. This study area has multiple abundant sources of water, being underlain by three principal aquifers (alluvial/terrace, Central Oklahoma, and Vamoosa-Ada), being bordered by two major rivers (North Canadian and Canadian), and having several smaller drainages including the Little River in the central part of the study area and Salt Creek in the southeastern part of the study area. The Central Oklahoma aquifer (also referred to as the “Garber-Wellington aquifer”) underlies approximately 3,000 square miles in central Oklahoma in parts of Cleveland, Logan, Lincoln, Oklahoma, and Pottawatomie Counties and much of the study area. Water from these aquifers is used for municipal, industrial, commercial, agricultural, and domestic supplies.

  9. Conduct of Geologic Field Work During Planetary Exploration: Why Geology Matters

    Science.gov (United States)

    Eppler, Dean B.

    2010-01-01

    The science of field geology is the investigative process of determining the distribution of rock units and structures on a planet fs surface, and it is the first-order data set that informs all subsequent studies of a planet, such as geochemistry, geochronology, geophysics, or remote sensing. For future missions to the Moon and Mars, the surface systems deployed must support the conduct of field geology if these endeavors are to be scientifically useful. This lecture discussed what field geology is all about.why it is important, how it is done, how conducting field geology informs many other sciences, and how it affects the design of surface systems and the implementation of operations in the future.

  10. Presumption of the distribution of the geological structure based on the geological survey and the topographic data in and around the Horonobe area

    International Nuclear Information System (INIS)

    Sakai, Toshihiro; Matsuoka, Toshiyuki

    2015-06-01

    The Horonobe Underground Research Laboratory (URL) Project, a comprehensive research project investigating the deep underground environment in sedimentary rock, is being pursued by the Japan Atomic Energy Agency (JAEA) at Horonobe-cho in Northern Hokkaido, Japan. One of the main goals of the URL project is to establish techniques for investigation, analysis and assessment of the deep geological environment. JAEA constructed the geologic map and the database of geological mapping in Horonobe-cho in 2005 based on the existing literatures and 1/200,000 geologic maps published by Geological Survey of Japan, and then updated the geologic map in 2007 based on the results of various investigations which were conducted around the URL as the surface based investigation phase of the URL project. On the other hand, there are many geological survey data which are derived from natural resources (petroleum, natural gas and coal, etc.) exploration in and around Horonobe-cho. In this report, we update the geologic map and the database of the geological mapping based on these geological survey and topographical analysis data in and around the Horonobe area, and construct a digital geologic map and a digital database of geological mapping as GIS. These data can be expected to improve the precision of modeling and analyzing of geological environment including its long-term evaluation. The digital data is attached on CD-ROM. (J.P.N.)

  11. The U.S. Geological Survey's water resources program in New York

    Science.gov (United States)

    Wiltshire, Denise A.

    1983-01-01

    The U.S. Geological Survey performs hydrologic investigations throughout the United States to appraise the Nation's water resources. The Geological Survey began its water-resources investigations in New York in 1895. To meet the objectives of assessing New York's water resources, the Geological Survey (1) monitors the quantity and quality of surface and ground water, (2) conducts investigations of the occurrence, availability, and chemical quality of water in specific areas of the State, (3) develops methods and techniques of data-collection and interpretation, (4) provides scientific guidance to the research community, to Federal, State, and local governments, and to the public, and (5) disseminates data and results of research through reports, maps, news releases, conferences, and workshops. Many of the joint hydrologic investigations are performed by the Geological Survey in cooperation with State, county, and nonprofit organizations. The data collection network in New York includes nearly 200 gaging stations and 250 observation wells; chemical quality of water is measured at 260 sites. Data collected at these sites are published annually and are filed in the WATSTORE computer system. Some of the interpretive studies performed by the Geological Survey in New York include (1) determining the suitability of ground-water reservoirs for public-water supply in urban areas, (2) assessing geohydrologic impacts of leachate from hazardous waste sites on stream and ground-water quality, (3) evaluating the effects of precipitation quality and basin characteristics on streams and lakes, and (4) developing digital models of the hydrology of aquifers to simulate ground-water flow and the interaction between ground water and streams.

  12. U.S. Geological Survey World Wide Web Information

    Science.gov (United States)

    ,

    2003-01-01

    The U.S. Geological Survey (USGS) invites you to explore an earth science virtual library of digital information, publications, and data. The USGS World Wide Web sites offer an array of information that reflects scientific research and monitoring programs conducted in the areas of natural hazards, environmental resources, and cartography. This list provides gateways to access a cross section of the digital information on the USGS World Wide Web sites.

  13. Directions of the US Geological Survey Landslide Hazards Reduction Program

    Science.gov (United States)

    Wieczorek, G.F.

    1993-01-01

    The US Geological Survey (USGS) Landslide Hazards Reduction Program includes studies of landslide process and prediction, landslide susceptibility and risk mapping, landslide recurrence and slope evolution, and research application and technology transfer. Studies of landslide processes have been recently conducted in Virginia, Utah, California, Alaska, and Hawaii, Landslide susceptibility maps provide a very important tool for landslide hazard reduction. The effects of engineering-geologic characteristics of rocks, seismic activity, short and long-term climatic change on landslide recurrence are under study. Detailed measurement of movement and deformation has begun on some active landslides. -from Author

  14. The basic concept for the geological surveys

    International Nuclear Information System (INIS)

    Deguchi, Akira; Takahashi, Yoshiaki

    1998-01-01

    Before the construction of high level radioactive waste repository, the implementing entity will go through three siting stages for the repository. In each of those three stages, the implementing entity will carry out geological surveys. In this report, the concept for the geological surveys is described, on the basic of 'The policies for the high level radioactive waste disposal (a tentative draft)' issued by the Atomic Energy Commission in July, 1997. (author)

  15. A Geospatial Information Grid Framework for Geological Survey

    OpenAIRE

    Wu, Liang; Xue, Lei; Li, Chaoling; Lv, Xia; Chen, Zhanlong; Guo, Mingqiang; Xie, Zhong

    2015-01-01

    The use of digital information in geological fields is becoming very important. Thus, informatization in geological surveys should not stagnate as a result of the level of data accumulation. The integration and sharing of distributed, multi-source, heterogeneous geological information is an open problem in geological domains. Applications and services use geological spatial data with many features, including being cross-region and cross-domain and requiring real-time updating. As a result of ...

  16. Preliminary Geological Survey on the Proposed Sites for the New Research Reactor

    International Nuclear Information System (INIS)

    Lim, In Cheol; Ha, J. J.; Oh, K. B.

    2010-12-01

    · Performing the preliminary geological survey on the proposed sites for the new research reactor through the technical service · Ordering a technical service from The Geological Society of Korea · Contents of the geological survey - Confirmation of active fault - Confirmation of a large-scale fracture zone or weak zone - Confirmation of inappropriate items related to the underground water - Confirmation of historical seismicity and instrumental earthquakes data · Synthesized analysis and holding a report meeting · Results of the geological survey - Confirmation of the geological characteristics of the sites and drawing the requirements for the precise geological survey in the future

  17. A Geospatial Information Grid Framework for Geological Survey.

    Science.gov (United States)

    Wu, Liang; Xue, Lei; Li, Chaoling; Lv, Xia; Chen, Zhanlong; Guo, Mingqiang; Xie, Zhong

    2015-01-01

    The use of digital information in geological fields is becoming very important. Thus, informatization in geological surveys should not stagnate as a result of the level of data accumulation. The integration and sharing of distributed, multi-source, heterogeneous geological information is an open problem in geological domains. Applications and services use geological spatial data with many features, including being cross-region and cross-domain and requiring real-time updating. As a result of these features, desktop and web-based geographic information systems (GISs) experience difficulties in meeting the demand for geological spatial information. To facilitate the real-time sharing of data and services in distributed environments, a GIS platform that is open, integrative, reconfigurable, reusable and elastic would represent an indispensable tool. The purpose of this paper is to develop a geological cloud-computing platform for integrating and sharing geological information based on a cloud architecture. Thus, the geological cloud-computing platform defines geological ontology semantics; designs a standard geological information framework and a standard resource integration model; builds a peer-to-peer node management mechanism; achieves the description, organization, discovery, computing and integration of the distributed resources; and provides the distributed spatial meta service, the spatial information catalog service, the multi-mode geological data service and the spatial data interoperation service. The geological survey information cloud-computing platform has been implemented, and based on the platform, some geological data services and geological processing services were developed. Furthermore, an iron mine resource forecast and an evaluation service is introduced in this paper.

  18. Geological, geochemical, and geophysical survey of the geothermal resources at Hot Springs Bay Valley, Akutan Island, Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Motyka, R.J.; Wescott, E.M.; Turner, D.L.; Swanson, S.E.; Romick, J.D.; Moorman, M.A.; Poreda, R.J.; Witte, W.; Petzinger, B.; Allely, R.D.

    1985-01-01

    An extensive survey was conducted of the geothermal resource potential of Hot Springs Bay Valley on Akutan Island. A topographic base map was constructed, geologic mapping, geophysical and geochemical surveys were conducted, and the thermal waters and fumarolic gases were analyzed for major and minor element species and stable isotope composition. (ACR)

  19. Geological studies in Alaska by the U.S. Geological Survey, 1999

    Science.gov (United States)

    Gough, Larry P.; Wilson, Frederic H.

    2001-01-01

    The collection of nine papers that follow continue the series of U.S. Geological Survey (USGS) investigative reports in Alaska under the broad umbrella of the geologic sciences. The series presents new and sometimes preliminary findings that are of interest to earth scientists in academia, government, and industry; to land and resource managers; and to the general public. Reports presented in Geologic Studies in Alaska cover a broad spectrum of topics from various parts of the State (fig. 1), serving to emphasize the diversity of USGS efforts to meet the Nation's needs for earth-science information in Alaska.

  20. 50 CFR 37.45 - Exploration by the U.S. Geological Survey.

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 6 2010-10-01 2010-10-01 false Exploration by the U.S. Geological Survey... INTERIOR (CONTINUED) THE NATIONAL WILDLIFE REFUGE SYSTEM GEOLOGICAL AND GEOPHYSICAL EXPLORATION OF THE....S. Geological Survey. Notwithstanding the requirement found in § 37.21(b) on when exploration plans...

  1. Water resources activities of the U.S. Geological Survey in Afghanistan from 2004 through 2014

    Science.gov (United States)

    Mack, Thomas J.; Chornack, Michael P.; Vining, Kevin C.; Amer, Saud A.; Zaheer, Mohammad F.; Medlin, Jack H.

    2014-01-01

    Safe and reliable supply of water, for irrigation and domestic consumption, is one of Afghanistan’s critical needs for the country’s growing population. Water is also needed for mining and mineral processing and the associated business and community development, all of which contribute to the country’s economic growth and stability. Beginning in 2004, U.S. Geological Survey scientists have aided efforts to rebuild Afghanistan’s capacity to monitor water resources, working largely with scientists in the Afghanistan Geological Survey of the Ministry of Mines and Petroleum as well as with scientists in the Afghanistan Ministry of Energy and Water, the Afghanistan Ministry of Agriculture, Irrigation, and Livestock, and nongovernmental organizations in Afghanistan. Considerable efforts were undertaken by the U.S. Geological Survey to compile or recover hydrologic data on Afghanistan’s water resources. These collaborative efforts have assisted Afghan scientists in developing the data collection networks necessary for improved understanding, managing these resources, and monitoring critical changes that may affect future water supplies and conditions. The U.S. Geological Survey, together with Afghan scientists, developed a regional groundwater flow model to assist with water resource planning in the Kabul Basin. Afghan scientists are now independently developing the datasets and conducting studies needed to assess water resources in other population centers of Afghanistan.

  2. Water-resources activities of the U.S. Geological Survey in Texas; fiscal year 1987

    Science.gov (United States)

    Mitchell, Alicia A.

    1988-01-01

    The U.S. Geological Survey (USGS) was established by an act of Congress on March 3, 1879, to provide a permanent Federal agency to conduct the systematic and scientific classification of the public lands and to examine the geological structure, mineral resources, and products of national domain. An integral part of that original mission includes publishing and disseminating the earth science information needed to understand, to plan the use of, and to manage the Nation's energy, land, mineral, and water resources.

  3. Studies by the U.S. Geological Survey in Alaska, 2011

    Science.gov (United States)

    Dumoulin, Julie A.; Dusel-Bacon, Cynthia

    2012-01-01

    The collection of papers that follow continues the series of U.S. Geological Survey (USGS) investigative reports in Alaska under the broad umbrella of the geologic sciences. This series represents new and sometimes-preliminary findings that are of interest to Earth scientists in academia, government, and industry; to land and resource managers; and to the general public. The reports presented in Studies by the U.S. Geological Survey in Alaska cover a broad spectrum of topics from various parts of the State, serving to emphasize the diversity of USGS efforts to meet the Nation's needs for Earth-science information in Alaska. This professional paper is one of a series of "online only" versions of Studies by the U.S. Geological Survey in Alaska, reflecting the current trend toward disseminating research results on the World Wide Web with rapid posting of completed reports.

  4. Studies by the U.S. Geological Survey in Alaska, 2007

    Science.gov (United States)

    Haeussler, Peter J.; Galloway, John P.

    2009-01-01

    The collection of papers that follow continues the series of U.S. Geological Survey (USGS) investigative reports in Alaska under the broad umbrella of the geologic sciences. This series represents new and sometimes-preliminary findings that are of interest to Earth scientists in academia, government, and industry; to land and resource managers; and to the general public. The reports presented in Studies by the U.S. Geological Survey in Alaska cover a broad spectrum of topics from various parts of the State, serving to emphasize the diversity of USGS efforts to meet the Nation's needs for Earth-science information in Alaska. This professional paper is one of a series of 'online only' versions of Studies by the U.S. Geological Survey in Alaska, reflecting the current trend toward disseminating research results on the World Wide Web with rapid posting of completed reports.

  5. Proceedings of a U.S. Geological Survey pressure-sensor Workshop, Denver, Colorado, July 28-31, 1992

    Science.gov (United States)

    Wilbourn, Sammy L.

    1994-01-01

    The U.S. Geological Survey (USGS) conducted a Pressure Sensor Workshop, oriented toward the measurement of stage in surface waters, in Denver, Colorado, July 28-31, 1992. Twenty attendees from the U.S. Geological Survey and the National Oceanic and Atmospheric Administration gave presentations concerning their experiences with the use of pressure sensors in hydrologic investigations. This report is a compilation of the abstracts of the presentations made at the workshop. Workshop participants concluded that each of the sensors evaluated by the U.S. Geological Survey has strengths and weaknesses. Personnel contemplating the use of pressure sensors discussed at this workshop should contact workshop attendees and consult with them about their experiences with those sensors. The attendees preferred to use stilling wells with float-operated water-level sensors as the primary means for monitoring water levels. However, pressure sensor systems were favored as replacements for mercury manometers and as alternatives to stilling wells at sites where stilling wells are not practical or cost effective.

  6. The United States Geological Survey: 1879-1989

    Science.gov (United States)

    Rabbitt, Mary C.

    1989-01-01

    The United States Geological Survey was established on March 3, 1879, just a few hours before the mandatory close of the final session of the 45th Congress, when President Rutherford B. Hayes signed the bill appropriating money for sundry civil expenses of the Federal Government for the fiscal year beginning July 1, 1879. The sundry civil expenses bill included a brief section establishing a new agency, the United States Geological Survey, placing it in the Department of the Interior, and charging it with a unique combination of responsibilities: 'classification of the public lands, and examination of the geological structure, mineral resources, and products of the national domain.' The legislation stemmed from a report of the National Academy of Sciences, which in June 1878 had been asked by Congress to provide a plan for surveying the Territories of the United States that would secure the best possible results at the least possible cost. Its roots, however, went far back into the Nation's history. The first duty enjoined upon the Geological Survey by the Congress, the classification of the public lands, originated in the Land Ordinance of 1785. The original public lands were the lands west of the Allegheny Mountains claimed by some of the colonies, which became a source of contention in writing the Articles of Confederation until 1781 when the States agreed to cede their western lands to Congress. The extent of the public lands was enormously increased by the Louisiana Purchase in 1803 and later territorial acquisitions. At the beginning of Confederation, the decision was made not to hold the public lands as a capital asset, but to dispose of them for revenue and to encourage settlement. The Land Ordinance of 1785 provided the method of surveying and a plan for disposal of the lands, but also reserved 'one-third part of all gold, silver, lead, and copper mines to be sold or otherwise disposed of, as Congress shall thereafter direct,' thus implicitly requiring

  7. Geotherm: the U.S. geological survey geothermal information system

    Science.gov (United States)

    Bliss, J.D.; Rapport, A.

    1983-01-01

    GEOTHERM is a comprehensive system of public databases and software used to store, locate, and evaluate information on the geology, geochemistry, and hydrology of geothermal systems. Three main databases address the general characteristics of geothermal wells and fields, and the chemical properties of geothermal fluids; the last database is currently the most active. System tasks are divided into four areas: (1) data acquisition and entry, involving data entry via word processors and magnetic tape; (2) quality assurance, including the criteria and standards handbook and front-end data-screening programs; (3) operation, involving database backups and information extraction; and (4) user assistance, preparation of such items as application programs, and a quarterly newsletter. The principal task of GEOTHERM is to provide information and research support for the conduct of national geothermal-resource assessments. The principal users of GEOTHERM are those involved with the Geothermal Research Program of the U.S. Geological Survey. Information in the system is available to the public on request. ?? 1983.

  8. Water-resources activities of the U.S. Geological Survey in Texas; fiscal years 1982-84

    Science.gov (United States)

    Grozier, R.U.; Land, L.F.

    1985-01-01

    The U.S. Geological Survey (USGS) was established by an act of Congress on March 3, 1879, to provide a permanent Federal agency to conduct the systematic and scientific classification of the public lands, and examination of the geological structure, mineral resources, and products of national domain. An integral part of that original mission includes publishing and disseminating the earth-science information needed to understand, to plan the use of, and to manage the Nation's energy, land, mineral, and water resources.

  9. Verification study on technology for site investigation for geological disposal. Confirmation of the applicability of survey methods through establishing site descriptive models in accordance with stepwise investigation approach

    International Nuclear Information System (INIS)

    Kondo, Hirofumi; Suzuki, Koichi; Hasegawa, Takuma; Hamada, Takaomi; Yoshimura, Kimitaka

    2014-01-01

    The Yokosuka Demonstration and Validation Project, which uses the Yokosuka Central Research Institute of Electric Power Industry (CRIEPI) site, a Neogene sedimentary and coastal environment, has been conducted since the 2006 fiscal year as a cooperative research project between NUMO (Nuclear Waste Management Organization of Japan) and CRIEPI. The objectives of this project were to examine and refine the basic methodology of the investigation and assessment in accordance with the conditions of geological environment at each stage of investigations from the surface (Preliminary Investigation and the first half of Detailed Investigation conducted by NUMO) for high level radioactive waste geological disposal. Within investigation technologies at these early stages, a borehole survey is an important means of directly obtaining various properties of the deep geological environment. On the other hand, surface geophysical prospecting data provide information about the geological and resistivity structures at depth for planning borehole surveys. During the 2006-2009 fiscal years, a series of on-site surveys and tests, including borehole surveys of YDP-1 (depth: 350 m) and YDP-2 (depth: 500 m), were conducted in this test site. Furthermore, seismic surveys (including seismic reflection method) and electromagnetic surveys (including magnetotelluric method) were conducted within the expanded CRIEPI site in the 2010 fiscal year to obtain information about the geological structure, and the resistivity structure reflecting the distribution of the salt water/fresh water boundary, respectively, to a depth of over several hundred meters. The validity of existing survey and testing methods for stepwise investigations (from surface to borehole surveys) for obtaining properties of the geological environment (in various conditions relating to differences in the properties of the Miura and the Hayama Groups at this site) was confirmed through establishing site descriptive models based on

  10. Studies by the U.S. Geological Survey in Alaska, 2008-2009

    Science.gov (United States)

    Dumoulin, Julie A.; Galloway, John

    2010-01-01

    The collection of papers that follow continues the series of U.S. Geological Survey (USGS) investigative reports in Alaska under the broad umbrella of the geologic sciences. This series represents new and sometimes-preliminary findings that are of interest to Earth scientists in academia, government, and industry; to land and resource managers; and to the general public. The reports presented in Studies by the U.S. Geological Survey in Alaska cover a broad spectrum of topics from various parts of the State, serving to emphasize the diversity of USGS efforts to meet the Nation's needs for Earth-science information in Alaska. This professional paper is one of a series of 'online only' versions of Studies by the U.S. Geological Survey in Alaska, reflecting the current trend toward disseminating research results on the World Wide Web with rapid posting of completed reports.

  11. The U.S. Geological Survey's TRIGA® reactor

    Science.gov (United States)

    DeBey, Timothy M.; Roy, Brycen R.; Brady, Sally R.

    2012-01-01

    The U.S. Geological Survey (USGS) operates a low-enriched uranium-fueled, pool-type reactor located at the Federal Center in Denver, Colorado. The mission of the Geological Survey TRIGA® Reactor (GSTR) is to support USGS science by providing information on geologic, plant, and animal specimens to advance methods and techniques unique to nuclear reactors. The reactor facility is supported by programs across the USGS and is organizationally under the Associate Director for Energy and Minerals, and Environmental Health. The GSTR is the only facility in the United States capable of performing automated delayed neutron analyses for detecting fissile and fissionable isotopes. Samples from around the world are submitted to the USGS for analysis using the reactor facility. Qualitative and quantitative elemental analyses, spatial elemental analyses, and geochronology are performed. Few research reactor facilities in the United States are equipped to handle the large number of samples processed at the GSTR. Historically, more than 450,000 sample irradiations have been performed at the USGS facility. Providing impartial scientific information to resource managers, planners, and other interested parties throughout the world is an integral part of the research effort of the USGS.

  12. Spectrometric aerial survey as a new tool for geological survey and mining prospecting

    International Nuclear Information System (INIS)

    Cambon, R.

    1997-01-01

    Airborne survey for radioactive minerals started around 1945. The limited sensitivity of the tools used, the difficulties found for the topographic and training effect corrections, made difficult the evaluation of the results. The technical progresses realized in the recent past years in electronic and computer sciences allowed to overcome these difficulties and gave to the method all its potentialities. With the aerial spectrometric survey, a new step was made, because this method can be used for other topics than radioactive prospection such as geological survey and mining prospection for metallic and industrial minerals. The spectrometric method is based on the possibility to measure photopeak energies (gamma radiation) emitted by radioactive minerals and discriminate between them those emitted by U238, TI 208 and K40 respectively daughter products of uranium, thorium and potassium. For airborne survey, one consider that measuring instruments will allow to pick-up 80% of the radioactive emission concerning the first 15 to 30 centimetres of ground (1 metre maximum). The use of this method for geological and mineral exploration is based on the assumption that different rock types or ore bearing rock types are composed of certain amounts of rock forming minerals which comprise specific quantities of radioactive elements such as potassium, uranium and thorium (cf: Gabelman 77). To be able to evaluate the results of the spectrometric survey it will be necessary to know roughly the behaviour of the different radioactive elements through a complete geological cycle. (author)

  13. Standardization of mapping practices in the British Geological Survey

    Science.gov (United States)

    Allen, Peter M.

    1997-07-01

    Because the British Geological Survey (BGS) has had, since its foundation in 1835, a mandate to produce geological maps for the whole of Great Britain, there is a long history of introducing standard practices in the way rocks and rock units have been named, classified and illustrated on maps. The reasons for the failure of some of these practices are examined and assessed in relation to the needs of computerized systems for holding and disseminating geological information.

  14. Digital Field Mapping with the British Geological Survey

    Science.gov (United States)

    Leslie, Graham; Smith, Nichola; Jordan, Colm

    2014-05-01

    The BGS•SIGMA project was initiated in 2001 in response to a major stakeholder review of onshore mapping within the British Geological Survey (BGS). That review proposed a significant change for BGS with the recommendation that digital methods should be implemented for field mapping and data compilation. The BGS•SIGMA project (System for Integrated Geoscience MApping) is an integrated workflow for geoscientific surveying and visualisation using digital methods for geological data visualisation, recording and interpretation, in both 2D and 3D. The project has defined and documented an underpinning framework of best practice for survey and information management, best practice that has then informed the design brief and specification for a toolkit to support this new methodology. The project has now delivered BGS•SIGMA2012. BGS•SIGMA2012 is a integrated toolkit which enables assembly and interrogation/visualisation of existing geological information; capture of, and integration with, new data and geological interpretations; and delivery of 3D digital products and services. From its early days as a system which used PocketGIS run on Husky Fex21 hardware, to the present day system which runs on ruggedized tablet PCs with integrated GPS units, the system has evolved into a complete digital mapping and compilation system. BGS•SIGMA2012 uses a highly customised version of ESRI's ArcGIS 10 and 10.1 with a fully relational Access 2007/2010 geodatabase. BGS•SIGMA2012 is the third external release of our award-winning digital field mapping toolkit. The first free external release of the award-winning digital field mapping toolkit was in 2009, with the third version (BGS-SIGMAmobile2012 v1.01) released on our website (http://www.bgs.ac.uk/research/sigma/home.html) in 2013. The BGS•SIGMAmobile toolkit formed the major part of the first two releases but this new version integrates the BGS•SIGMAdesktop functionality that BGS routinely uses to transform our field

  15. NAGRA - Sites for geological repositories - Geological surveys for stage 3

    International Nuclear Information System (INIS)

    2014-01-01

    This brochure published by the Swiss National Cooperative for the Disposal of Radioactive Waste (NAGRA) examines the aims involved in the selection of sites for deep geological repositories for nuclear wastes in Switzerland. Various methods involved in their implementation are described. These include 3D-seismology, deep probe drillings, shallow drillings as well as field studies, gravimetric measurements and the study of the electrical properties of the ground and rock involved. These factors are discussed in detail. Maps are presented of the locations that are to be surveyed and details of the selected perimeters are shown. Also, the layout of a sample drilling site is presented. A timescale for the various surveys and work to be done is presented

  16. A Scintillometer Assembly for Geological Survey

    Energy Technology Data Exchange (ETDEWEB)

    Dissing, E; Landstroem, O

    1965-12-15

    An instrument for gamma radiation measurements in connection with geological survey is described. It consists of a scintillation detector with a 5x6 inch sodium iodide crystal and a pulse height analyzer with four independent channels. In field survey work these channels are usually set in fixed positions to record different components of the gamma radiation simultaneously in order to facilitate an identification of the radioactive mineral from which the radiation originates. However, the instrument can also be used for more detailed study of gamma spectra either in the field or in the laboratory. The methods for interpretation of gamma spectra from radioactive ores are briefly reviewed, and a few typical results are given from car-borne and air-borne surveys.

  17. A Scintillometer Assembly for Geological Survey

    International Nuclear Information System (INIS)

    Dissing, E.; Landstroem, O.

    1965-12-01

    An instrument for gamma radiation measurements in connection with geological survey is described. It consists of a scintillation detector with a 5x6 inch sodium iodide crystal and a pulse height analyzer with four independent channels. In field survey work these channels are usually set in fixed positions to record different components of the gamma radiation simultaneously in order to facilitate an identification of the radioactive mineral from which the radiation originates. However, the instrument can also be used for more detailed study of gamma spectra either in the field or in the laboratory. The methods for interpretation of gamma spectra from radioactive ores are briefly reviewed, and a few typical results are given from car-borne and air-borne surveys

  18. Regional groundwater characteristics and hydraulic conductivity based on geological units in Korean peninsula

    Science.gov (United States)

    Kim, Y.; Suk, H.

    2011-12-01

    In this study, about 2,000 deep observation wells, stream and/or river distribution, and river's density were analyzed to identify regional groundwater flow trend, based on the regional groundwater survey of four major river watersheds including Geum river, Han river, Youngsan-Seomjin river, and Nakdong river in Korea. Hydrogeologial data were collected to analyze regional groundwater flow characteristics according to geological units. Additionally, hydrological soil type data were collected to estimate direct runoff through SCS-CN method. Temperature and precipitation data were used to quantify infiltration rate. The temperature and precipitation data were also used to quantify evaporation by Thornthwaite method and to evaluate groundwater recharge, respectively. Understanding the regional groundwater characteristics requires the database of groundwater flow parameters, but most hydrogeological data include limited information such as groundwater level and well configuration. In this study, therefore, groundwater flow parameters such as hydraulic conductivities or transmissivities were estimated using observed groundwater level by inverse model, namely PEST (Non-linear Parameter ESTimation). Since groundwater modeling studies have some uncertainties in data collection, conceptualization, and model results, model calibration should be performed. The calibration may be manually performed by changing parameters step by step, or various parameters are simultaneously changed by automatic procedure using PEST program. In this study, both manual and automatic procedures were employed to calibrate and estimate hydraulic parameter distributions. In summary, regional groundwater survey data obtained from four major river watersheds and various data of hydrology, meteorology, geology, soil, and topography in Korea were used to estimate hydraulic conductivities using PEST program. Especially, in order to estimate hydraulic conductivity effectively, it is important to perform

  19. Summary of water-resources activities of the U.S. Geological Survey in Texas; fiscal years 1989-92

    Science.gov (United States)

    Uzcategui, Kristy E.

    1993-01-01

    The U.S. Geological Survey (USGS) was established by an act of Congress on March 3, 1879, to provide a permanent Federal agency to conduct the systematic and scientific classification of the public lands and to examine the geological structure, mineral resources, and products of national domain. An integral part of that original mission includes publishing and disseminating the earth science information needed to understand, to plan the use of, and to manage the Nation's energy, land, mineral, and water resources.

  20. The U.S. Geological Survey Astrogeology Science Center

    Science.gov (United States)

    Kestay, Laszlo P.; Vaughan, R. Greg; Gaddis, Lisa R.; Herkenhoff, Kenneth E.; Hagerty, Justin J.

    2017-07-17

    In 1960, Eugene Shoemaker and a small team of other scientists founded the field of astrogeology to develop tools and methods for astronauts studying the geology of the Moon and other planetary bodies. Subsequently, in 1962, the U.S. Geological Survey Branch of Astrogeology was established in Menlo Park, California. In 1963, the Branch moved to Flagstaff, Arizona, to be closer to the young lava flows of the San Francisco Volcanic Field and Meteor Crater, the best preserved impact crater in the world. These geologic features of northern Arizona were considered good analogs for the Moon and other planetary bodies and valuable for geologic studies and astronaut field training. From its Flagstaff campus, the USGS has supported the National Aeronautics and Space Administration (NASA) space program with scientific and cartographic expertise for more than 50 years.

  1. The use of U.S. Geological Survey CD-ROM-based petroleum assessments in undergraduate geology laboratories

    Science.gov (United States)

    Eves, R.L.; Davis, L.E.; Dyman, T.S.; Takahashi, K.I.

    2002-01-01

    Domestic oil production is declining and United States reliance on imported oil is increasing. America will be faced with difficult decisions that address the strategic, economic, and political consequences of its energy resources shortage. The geologically literate under-graduate student needs to be aware of current and future United States energy issues. The U.S. Geological Survey periodically provides energy assessment data via digitally-formatted CD-ROM publications. These publications are free to the public, and are well suited for use in undergraduate geology curricula. The U.S. Geological Survey (USGS) 1995 National Assessment of United States Oil and Gas Resources (Digital Data Series or DDS-30) (Gautier and others, 1996) is an excellent resource for introducing students to the strategies of hydrocarbon exploration and for developing skills in problem-solving and evaluating real data. This paper introduces the reader to DDS-30, summarizes the essential terminology and methodology of hydrocarbon assessment, and offers examples of exercises or questions that might be used in the introductory classroom. The USGS contact point for obtaining DDS-30 and other digital assessment volumes is also provided. Completing the sample exercises in this report requires a copy of DDS-30.

  2. Engineering Geology | Alaska Division of Geological & Geophysical Surveys

    Science.gov (United States)

    Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska content Engineering Geology Additional information Engineering Geology Posters and Presentations Alaska Alaska MAPTEACH Tsunami Inundation Mapping Engineering Geology Staff Projects The Engineering Geology

  3. California Geological Survey Geologic Map Index

    Data.gov (United States)

    California Natural Resource Agency — All the individual maps from the Geologic Atlas of California and the Regional Geologic map series have been georeferenced for display in a GIS (and viewable online...

  4. 2012 Alaska Division of Geological and Geophysical Surveys (DGGS) Lidar: Whittier, Alaska

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In support of geologic mapping and hazards evaluation in and near Whittier, Alaska, the Division of Geological and Geophysical Surveys (DGGS) acquired, and is making...

  5. Seismic reflection survey conducted in Benton County, Washinton

    International Nuclear Information System (INIS)

    Beggs, H.G.; Heineck, R.L.

    1980-01-01

    The massive Columbia River Basalt group that underlies the Hanford Site is being considered as a potential geologic repository for spent nuclear fuel. As part of the effort to ascertain and better understand the physical and geological properties of these basalt flows, a multiphased seismic reflection program has been undertaken. This phase was designed to more thoroughly define geologic features and structural attitudes in an areas in the central part of the Hanford Site. The specific feature of interest is known as the Cold Creek Syncline. This seismic survey, utilized the ''VIBROSEIS'' energy source and multifold common depth point recording. 2 figs

  6. Implementation of unmanned aircraft systems by the U.S. Geological Survey

    Science.gov (United States)

    Cress, J.J.; Sloan, J.L.; Hutt, M.E.

    2011-01-01

    The U.S. Geological Survey (USGS) Unmanned Aircraft Systems (UAS) Project Office is leading the implementation of UAS technology in anticipation of transforming the research methods and management techniques employed across the Department of the Interior. UAS technology is being made available to monitor environmental conditions, analyse the impacts of climate change, respond to natural hazards, understand landscape change rates and consequences, conduct wildlife inventories and support related land management missions. USGS is teaming with the Department of the Interior Aviation Management Directorate (AMD) to lead the safe and cost-effective adoption of UAS technology by the Department of the Interior Agencies and USGS scientists.

  7. GIS of selected geophysical and core data in the northern Gulf of Mexico continental slope collected by the U.S. Geological Survey

    Science.gov (United States)

    Twichell, David C.; Cross, VeeAnn A.; Paskevich, Valerie F.; Hutchinson, Deborah R.; Winters, William J.; Hart, Patrick E.

    2006-01-01

    Since 1982 the U. S. Geological Survey (USGS) has collected a large amount of surficial and shallow subsurface geologic information in the deep-water parts of the US EEZ in the northern Gulf of Mexico. These data include digital sidescan sonar imagery, digital seismic-reflection data, and descriptions and analyses of piston and gravity cores. The data were collected during several different projects that addressed surficial and shallow subsurface geologic processes. Some of these datasets have already been published, but the growing interest in the occurrence and distribution of gas hydrates in the Gulf of Mexico warrants integrating these existing USGS datasets and associated interpretations into a Geographic Information System (GIS) to provide regional background information for ongoing and future gas hydrate research. This GIS is organized into five different components that contain (1) information needed to develop an assessment of gas hydrates, (2) background information for the Gulf of Mexico, (3) cores collected by the USGS, (4) seismic surveys conducted by the USGS, and (5) sidescan sonar surveys conducted by the USGS. A brief summary of the goals and findings of the USGS field programs in the Gulf of Mexico is given in the Geologic Findings section, and then the contents of each of the five data categories are described in greater detail in the GIS Data Catalog section.

  8. Low-level radioactive waste program of the US Geological Survey - in transition

    International Nuclear Information System (INIS)

    Fischer, J.N.

    1983-01-01

    In 1983, the US Geological Survey will publish final reports of geohydrologic investigations at five commercial low-level, radioactive-waste burial sites in the United States. These reports mark the end of the first phase of the US Geological Survey program to improve the understanding of earth-science principles related to the effective disposal of low-level wastes. The second phase, which was initiated in 1981, is being developed to address geohydrologic issues identified as needing greater attention based upon results of the first-phase site studies. Specific program elements include unsaturated-zone hydrology, geochemistry, clay mineralogy, surface geophysical techniques, and model development and testing. The information and expertise developed from these and previous studies will allow the US Geological Survey to provide sound technical assistance to State low-level waste compacts, the Department of Energy, the Nuclear Regulatory Commission, and the Environmental Protection Agency. 11 references

  9. Topographic and Hydrographic GIS Datasets for the Afghanistan Geological Survey and U.S. Geological Survey 2014 Mineral Areas of Interest

    Science.gov (United States)

    DeWitt, Jessica D.; Chirico, Peter G.; Malpeli, Katherine C.

    2015-11-18

    Mineral extraction and associated industries play an important role in the Afghan economy, particularly in the “transitional era” of declining foreign aid and withdrawal of foreign troops post 2014. In addition to providing a substantial source of government revenue, other potential benefits of natural resource development include boosted exports, employment opportunities, and strengthened industrialization (Joya, 2012). Continued exploration and investment in these industries has resulted in large economic improvements since 2007, when this series of studies was initiated. At that time, the “Preliminary Non-Fuel Mineral Resource Assessment of Afghanistan” was completed by members of the U.S. Geological Survey and Afghanistan Geological Survey (Peters and others, 2007). The assessment published a series of country-wide datasets, including a digital elevation model (DEM), elevation contours, hydrography, transportation routes, geophysics, and cultural datasets (Peters and others, 2007). It also delineated 20 mineralized areas for further study using a geologic-based methodology. A second data product, “Summaries of Important Areas for Mineral Investment and Production Opportunities of Nonfuel Minerals in Afghanistan,” was released by Peters and others in 2011. This work highlighted geologic, geohydrologic, and hyperspectral studies that were carried out in specific Areas of Interest (AOIs) to assess the location and characteristics of mineral resources. Also included in the 2011 publication is a collection of appendixes and inventories of Geographic Information System (GIS) datasets for each of the 24 identified AOIs. A third data product was released in 2013 (Casey and Chirico, 2013), publishing datasets for five different AOIs, two subareas, and one AOI extension. Each dataset contains vector shapefiles of the AOI boundary, streams, roads, and contours at 25-, 50-, and 100-meter (m) intervals, as well as raster files of the AOI’s DEM and hillshade.

  10. Topographic and hydrographic GIS datasets for the Afghan Geological Survey and U.S. Geological Survey 2013 mineral areas of interest

    Science.gov (United States)

    Casey, Brittany N.; Chirico, Peter G.

    2013-01-01

    Afghanistan is endowed with a vast amount of mineral resources, and it is believed that the current economic state of the country could be greatly improved through investment in the extraction and production of these resources. In 2007, the “Preliminary Non-Fuel Resource Assessment of Afghanistan 2007” was completed by members of the U.S. Geological Survey and Afghan Geological Survey (Peters and others, 2007). The assessment delineated 20 mineralized areas for further study using a geologic-based methodology. In 2011, a follow-on data product, “Summaries and Data Packages of Important Areas for Mineral Investment and Production Opportunities of Nonfuel Minerals in Afghanistan,” was released (Peters and others, 2011). As part of this more recent work, geologic, geohydrologic, and hyperspectral studies were carried out in the areas of interest (AOIs) to assess the location and characteristics of the mineral resources. The 2011 publication included a dataset of 24 identified AOIs containing subareas, a corresponding digital elevation model (DEM), elevation contours, areal extent, and hydrography for each AOI. In 2012, project scientists identified five new AOIs and two subareas in Afghanistan. These new areas are Ahankashan, Kandahar, Parwan, North Bamyan, and South Bamyan. The two identified subareas include Obatu-Shela and Sekhab-ZamtoKalay, both located within the larger Kandahar AOI. In addition, an extended Kandahar AOI is included in the project for water resource modeling purposes. The dataset presented in this publication consists of the areal extent of the five new AOIs, two subareas, and the extended Kandahar AOI, elevation contours at 100-, 50-, and 25-meter intervals, an enhanced DEM, and a hydrographic dataset covering the extent of the new study area. The resulting raster and vector layers are intended for use by government agencies, developmental organizations, and private companies in Afghanistan to assist with mineral assessments, monitoring

  11. U.S. Geological Survey flies high for now

    Science.gov (United States)

    Clinton is asking Congress to keep the U.S. Geological Survey (USGS) alive and well in FY 1996. With a proposed 2.6% increase to $586 million, the Clinton request flies in the face of the Republican Contract with America that calls for abolishing the survey.Indeed, Clinton has made it clear that the onus will be on Congress if it wants to make major cuts at USGS. As Secretary of the Interior Bruce Babbitt puts it: “Good science is essential to good management.”

  12. Chronic wasting disease—Status, science, and management support by the U.S. Geological Survey

    Science.gov (United States)

    Carlson, Christina M.; Hopkins, M. Camille; Nguyen, Natalie T.; Richards, Bryan J.; Walsh, Daniel P.; Walter, W. David

    2018-03-01

    The U.S. Geological Survey (USGS) investigates chronic wasting disease (CWD) at multiple science centers and cooperative research units across the Nation and supports the management of CWD through science-based strategies. CWD research conducted by USGS scientists has three strategies: (1) to understand the biology, ecology, and causes and distribution of CWD; (2) to assess and predict the spread and persistence of CWD in wildlife and the environment; and (3) to develop tools for early detection, diagnosis, surveillance, and control of CWD.

  13. Survey of Jaemtland county (basement rock part). Geologic conditions

    International Nuclear Information System (INIS)

    Antal, I.; Bergman, S.; Freden, C.; Gierup, J.; Stoelen, L.K.; Thunholm, B.; Stephens, M.

    1999-06-01

    A broad survey of the geologic conditions in Jaemtland county is presented, with the aim to give background for the location of a repository for spent fuels. The study is restricted to the basement rock part of the county

  14. Survey of Dalarna county (basement rock part). Geologic conditions

    International Nuclear Information System (INIS)

    Gierup, J.; Kuebler, L.; Linden, A.; Ripa, M.; Stoelen, L.K.; Thunholm, B.; Stephens, M.

    1999-06-01

    A broad survey of the geologic conditions in Dalarna county is presented, with the aim to give background for the location of a repository for spent fuels. The study is restricted to the basement rock part of the county

  15. Survey of Scania county (basement rock part). Geologic conditions

    International Nuclear Information System (INIS)

    Gierup, J.; Kuebler, L.; Pamnert, M.; Persson, Magnus; Thunholm, B.; Wahlgren, C.H.; Wikman, H.; Stephens, M.

    1999-06-01

    A broad survey of the geologic conditions in Scania county is presented, with the aim to give background for the location of a repository for spent fuels. The study is restricted to the basement rock part of the county

  16. Geological Mapping of Sabah, Malaysia, Using Airborne Gravity Survey

    DEFF Research Database (Denmark)

    Fauzi Nordin, Ahmad; Jamil, Hassan; Noor Isa, Mohd

    2016-01-01

    Airborne gravimetry is an effective tool for mapping local gravity fields using a combination of airborne sensors, aircraft and positioning systems. It is suitable for gravity surveys over difficult terrains and areas mixed with land and ocean. This paper describes the geological mapping of Sabah...... using airborne gravity surveys. Airborne gravity data over land areas of Sabah has been combined with the marine airborne gravity data to provide a seamless land-to-sea gravity field coverage in order to produce the geological mapping. Free-air and Bouguer anomaly maps (density 2.67 g/cm3) have been...... derived from the airborne data both as simple ad-hoc plots (at aircraft altitude), and as final plots from the downward continued airborne data, processed as part of the geoids determination. Data are gridded at 0.025 degree spacing which is about 2.7 km and the data resolution of the filtered airborne...

  17. Geology for a changing world 2010-2020-Implementing the U.S. Geological Survey science strategy

    Science.gov (United States)

    Gundersen, Linda C.S.; Belnap, Jayne; Goldhaber, Martin; Goldstein, Arthur; Haeussler, Peter J.; Ingebritsen, S.E.; Jones, John W.; Plumlee, Geoffrey S.; Thieler, E. Robert; Thompson, Robert S.; Back, Judith M.

    2011-01-01

    This report describes a science strategy for the geologic activities of the U.S. Geological Survey (USGS) for the years 2010-2020. It presents six goals with accompanying strategic actions and products that implement the science directions of USGS Circular 1309, 'Facing Tomorrow's Challenges-U.S. Geological Survey Science in the Decade 2007-2017.' These six goals focus on providing the geologic underpinning needed to wisely use our natural resources, understand and mitigate hazards and environmental change, and understand the relationship between humans and the environment. The goals emphasize the critical role of the USGS in providing long-term research, monitoring, and assessments for the Nation and the world. Further, they describe measures that must be undertaken to ensure geologic expertise and knowledge for the future. The natural science issues facing today's world are complex and cut across many scientific disciplines. The Earth is a system in which atmosphere, oceans, land, and life are all connected. Rocks and soils contain the answers to important questions about the origin of energy and mineral resources, the evolution of life, climate change, natural hazards, ecosystem structures and functions, and the movements of nutrients and toxicants. The science of geology has the power to help us understand the processes that link the physical and biological world so that we can model and forecast changes in the system. Ensuring the success of this strategy will require integration of geological knowledge with the other natural sciences and extensive collaboration across USGS science centers and with partners in Federal, State, and local agencies, academia, industry, nongovernmental organizations and, most importantly, the American public. The first four goals of this report describe the scientific issues facing society in the next 10 years and the actions and products needed to respond to these issues. The final two goals focus on the expertise and

  18. The regulatory role of the Hungarian Geological Survey in the closure of Mecsek uranium mine

    International Nuclear Information System (INIS)

    Hamor, T.; Gombor, L.

    2001-01-01

    Under Mining Act XLIII established in 1993, the Hungarian Geological Survey was given a wide range of authority related to the environment, mining, nuclear and general constructions. In implementing these task the Survey will be supported by the well established Geological Institute of Hungary and the Eoetvoes Lorand Geophysical Institute. The Survey's role in the nuclear field includes the licensing of plans and reports on geologically related research to any nuclear facilities. The Hungarian Geological Survey is also co-authority on matters related to the establishment, construction, modification and closure, environmental protection of nuclear facilities in general and all matter related to uranium mining. The Survey's regulatory activity in radioactive waste management follows the Decree of the Minister of Industry and Tourism 62/1997 which is based on the Atomic Energy Act CXVI of 1966. These regulations were prepared in harmony with the OECD Nuclear Energy Agency and the International Atomic Energy Agency conventions, standards and guides and those of other countries. Case histories on the applications of these regulations to the closure of Mecsek uranium mine and the operation of the research laboratory tunnel for long-lived, high level radioactive waste are presented here. (author)

  19. A brief history of the U.S. Geological Survey

    Science.gov (United States)

    ,; Rabbitt, Mary C.

    1975-01-01

    Established by an Act of Congress in 1879 and charged with responsibility for "classification of the public lands, and examination of the geological structure, mineral resources, and products of the national domain," the U. S. Department of the Interior's Geological Survey has been the Nation's principal source of information about its physical resources the configuration and character of the land surface, the composition and structure of the underlying rocks, and the quality, extent, and distribution of water and mineral resources. Although primarily a research and fact-finding agency, it has responsibility also for the classification of Federal mineral lands and waterpower sites, and since 1926 it has been responsible for the supervision of oil and mining operations authorized under leases on Federal land. From the outset, the Survey has been concerned with critical land and resource problems. Often referred to as the Mother of Bureaus, many of its activities led to the formation of new organizations where a management or developmental function evolved. These included the Reclamation Service (1902), the Bureau of Mines (1910), the Federal Power Commission (1920), and the Grazing Service (1934, since combined with other functions as the Bureau of Land Management). Mrs. Rabbitt's summary of the Survey's history in the following pages brings out well the development of these diverse activities and the Survey's past contributions to national needs related to land and resources.

  20. A slingram survey on the Nevada Test Site: part of an integrated geologic geophysical study of site evaluation for nuclear waste disposal

    Science.gov (United States)

    Flanigan, Vincent J.

    1979-01-01

    A slingram geophysical survey was made in early 1978 as part of the integrated geologlcal-geophysical study aimed at evaluating the Eleana Formation as a possible repository for nuclear waste. The slingram data were taken over an alluvial fan and pediments along the eastern flank of Syncline Ridge about 45 km north of Mercury, Nevada, on the Nevada Test Site. The data show that the more conductive argillaceous Eleana Formation varies in depth from 40 to 85 m from west to east along traverse lines. Northeast-trending linear anomalies suggest rather abrupt changes in subsurface geology that may be associated with faults and fractures. The results of the slingram survey will, when interpreted in the light of other geologic and geophysical evidence, assist in understanding the shallow parts of the geologic setting of the Eleana Formation.

  1. A user interface for the Kansas Geological Survey slug test model.

    Science.gov (United States)

    Esling, Steven P; Keller, John E

    2009-01-01

    The Kansas Geological Survey (KGS) developed a semianalytical solution for slug tests that incorporates the effects of partial penetration, anisotropy, and the presence of variable conductivity well skins. The solution can simulate either confined or unconfined conditions. The original model, written in FORTRAN, has a text-based interface with rigid input requirements and limited output options. We re-created the main routine for the KGS model as a Visual Basic macro that runs in most versions of Microsoft Excel and built a simple-to-use Excel spreadsheet interface that automatically displays the graphical results of the test. A comparison of the output from the original FORTRAN code to that of the new Excel spreadsheet version for three cases produced identical results.

  2. Developing a geoscience knowledge framework for a national geological survey organisation

    Science.gov (United States)

    Howard, Andrew S.; Hatton, Bill; Reitsma, Femke; Lawrie, Ken I. G.

    2009-04-01

    Geological survey organisations (GSOs) are established by most nations to provide a geoscience knowledge base for effective decision-making on mitigating the impacts of natural hazards and global change, and on sustainable management of natural resources. The value of the knowledge base as a national asset is continually enhanced by the exchange of knowledge between GSOs as data and information providers and the stakeholder community as knowledge 'users and exploiters'. Geological maps and associated narrative texts typically form the core of national geoscience knowledge bases, but have some inherent limitations as methods of capturing and articulating knowledge. Much knowledge about the three-dimensional (3D) spatial interpretation and its derivation and uncertainty, and the wider contextual value of the knowledge, remains intangible in the minds of the mapping geologist in implicit and tacit form. To realise the value of these knowledge assets, the British Geological Survey (BGS) has established a workflow-based cyber-infrastructure to enhance its knowledge management and exchange capability. Future geoscience surveys in the BGS will contribute to a national, 3D digital knowledge base on UK geology, with the associated implicit and tacit information captured as metadata, qualitative assessments of uncertainty, and documented workflows and best practice. Knowledge-based decision-making at all levels of society requires both the accessibility and reliability of knowledge to be enhanced in the grid-based world. Establishment of collaborative cyber-infrastructures and ontologies for geoscience knowledge management and exchange will ensure that GSOs, as knowledge-based organisations, can make their contribution to this wider goal.

  3. U.S. Geological Survey activities related to American Indians and Alaska Natives: Fiscal years 2009 and 2010

    Science.gov (United States)

    Fordham, Monique; Montour, Maria R.

    2015-01-01

    The U.S. Geological Survey is the earth and natural science bureau within the U.S. Department of the Interior. The U.S. Geological Survey provides impartial information on the health of our ecosystems and environment, the natural hazards that threaten us, the natural resources we rely on, the negative effects of climate and land-use change, and the core science systems that help us provide timely, relevant, and usable information. The U.S. Geological Survey is not responsible for regulations or land management.

  4. Geology, Bedrock - BEDROCK_TOPOGRAPHY_MM36_IN: Bedrock Topography Contours, Indiana (Indiana Geological Survey, 1:500,000, Line Shapefile)

    Data.gov (United States)

    NSGIC State | GIS Inventory — Bedrock topography was converted from the original published map, Indiana Geological Survey Miscellaneous Map 36. The contours define the elevation/topography of the...

  5. McNutt to Be Nominated to Lead U.S. Geological Survey

    Science.gov (United States)

    Showstack, Randy

    2009-07-01

    U.S. President Barack Obama announced on 9 July his intention to nominate Marcia McNutt as director of the U.S. Geological Survey (USGS) and science advisor to the Secretary of the Interior. McNutt, who served as AGU president from 2000 to 2002, currently is president and chief executive officer of the Monterey Bay Aquarium Research Institute, in Moss Landing, Calif. “Scientific information from the U.S. Geological Survey is crucial to solving the most important problems facing society—finding sufficient supplies of fresh water and clean energy and providing accurate information that allows citizens to prepare intelligently for climate change. I look forward to leading such a respected institution at this critical time,” McNutt said.

  6. Topographic and hydrographic GIS dataset for the Afghanistan Geological Survey and U.S. Geological Survey 2010 Minerals Project

    Science.gov (United States)

    Chirico, P.G.; Moran, T.W.

    2011-01-01

    This dataset contains a collection of 24 folders, each representing a specific U.S. Geological Survey area of interest (AOI; fig. 1), as well as datasets for AOI subsets. Each folder includes the extent, contours, Digital Elevation Model (DEM), and hydrography of the corresponding AOI, which are organized into feature vector and raster datasets. The dataset comprises a geographic information system (GIS), which is available upon request from the USGS Afghanistan programs Web site (http://afghanistan.cr.usgs.gov/minerals.php), and the maps of the 24 areas of interest of the USGS AOIs.

  7. Geological, geochemical, and geophysical studies by the U.S. Geological Survey in Big Bend National Park, Texas

    Science.gov (United States)

    Page, W.R.; Turner, K.J.; Bohannon, R.G.; Berry, M.E.; Williams, V.S.; Miggins, D.P.; Ren, M.; Anthony, E.Y.; Morgan, L.A.; Shanks, P.W.C.; Gray, J. E.; Theodorakos, P.M.; Krabbenhoft, D. P.; Manning, A.H.; Gemery-Hill, P. A.; Hellgren, E.C.; Stricker, C.A.; Onorato, D.P.; Finn, C.A.; Anderson, E.; Gray, J. E.; Page, W.R.

    2008-01-01

    Big Bend National Park (BBNP), Tex., covers 801,163 acres (3,242 km2) and was established in 1944 through a transfer of land from the State of Texas to the United States. The park is located along a 118-mile (190-km) stretch of the Rio Grande at the United States-Mexico border. The park is in the Chihuahuan Desert, an ecosystem with high mountain ranges and basin environments containing a wide variety of native plants and animals, including more than 1,200 species of plants, more than 450 species of birds, 56 species of reptiles, and 75 species of mammals. In addition, the geology of BBNP, which varies widely from high mountains to broad open lowland basins, also enhances the beauty of the park. For example, the park contains the Chisos Mountains, which are dominantly composed of thick outcrops of Tertiary extrusive and intrusive igneous rocks that reach an altitude of 7,832 ft (2,387 m) and are considered the southernmost mountain range in the United States. Geologic features in BBNP provide opportunities to study the formation of mineral deposits and their environmental effects; the origin and formation of sedimentary and igneous rocks; Paleozoic, Mesozoic, and Cenozoic fossils; and surface and ground water resources. Mineral deposits in and around BBNP contain commodities such as mercury (Hg), uranium (U), and fluorine (F), but of these, the only significant mining has been for Hg. Because of the biological and geological diversity of BBNP, more than 350,000 tourists visit the park each year. The U.S. Geological Survey (USGS) has been investigating a number of broad and diverse geologic, geochemical, and geophysical topics in BBNP to provide fundamental information needed by the National Park Service (NPS) to address resource management goals in this park. Scientists from the USGS Mineral Resources and National Cooperative Geologic Mapping Programs have been working cooperatively with the NPS and several universities on several research studies within BBNP

  8. Geologic studies in Alaska by the U.S. Geological Survey, 1992

    Science.gov (United States)

    Dusel-Bacon, Cynthia; Till, Alison B.

    1993-01-01

    This collection of 19 papers continues the annual series of U.S. Geological Survey reports on the geology of Alaska. The contributions, which include full-length Articles and shorter Geologic Notes, cover a broad range of topics including dune formation, stratigraphy, paleontology, isotopic dating, mineral resources, and tectonics. Articles, grouped under four regional headings, span nearly the entire State from the North Slope to southwestern, south-central, and southeastern Alaska (fig. 1).In the section on northern Alaska, Galloway and Carter use new data on dune morphology and radiocarbon ages from the western Arctic Coastal Plain to develop a late Holocene chronology of multiple episodes of dune stabilization and reactivation for the region. Their study has important implications for climatic changes in northern Alaska during the past 4,000 years. In two papers, Dumoulin and her coauthors describe lithofacies and conodont faunas of Carboniferous strata in the western Brooks Range, discuss depositional environments, and propose possible correlations and source areas for some of the strata. Schenk and Bird propose a preliminary division of the Lower Cretaceous stratigraphic section in the central part of the North Slope into depositional sequences. Aleinikoff and others present new U-Pb data for zircons from metaigneous rocks from the central Brooks Range. Karl and Mull, reacting to a proposal regarding terrane nomenclature for northern Alaska that was published in last year's Alaskan Studies Bulletin, provide a historical perspective of the evolution of terminology for tectonic units in the Brooks Range and present their own recommendations.

  9. Conducting Web-based Surveys.

    OpenAIRE

    David J. Solomon

    2001-01-01

    Web-based surveying is becoming widely used in social science and educational research. The Web offers significant advantages over more traditional survey techniques however there are still serious methodological challenges with using this approach. Currently coverage bias or the fact significant numbers of people do not have access, or choose not to use the Internet is of most concern to researchers. Survey researchers also have much to learn concerning the most effective ways to conduct s...

  10. FY 1992 report on the survey of geothermal development promotion. Geological structure (geology/alteration zone) survey (No. A-1 - Haneyama area); 1992 nendo chinetsu kaihatsu sokushin chosa chijo chosa hokokusho futai shiryo. Chishitsu kozo (chishitsu henshitsutai) chosa hokokusho (No. A-1 Haneyama chiiki)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-05-01

    For the purpose of elucidating a possibility of existence of geothermal reservoirs in the Haneyama area, Oita Prefecture, survey of the geological structure (geology/alteration zone) was conducted. The survey was made for the area of 280km{sup 2} lying from Kusu Town to Kokonoe Town, Oita Prefecture in terms of the route survey of 174km, fabrication/judgement of 52 rock slices, whole rock chemical analysis of 21 rocks, age determination, analysis of rock mineral, X-ray diffraction, literature collection, etc. As a result of the survey, the following conclusion was obtained. When considering a possibility of existence of heat source near this area, the area near the present volcanic front was regarded as promising. The fracture structure in the depths seen in the gravity structure (part of sharp dip of gravity) is more closely related to activity of geothermal water than the active structure of E-W system near the earth surface newly formed and is important when considering the existence of geothermal resource. The periphery of the Shishimuta sedimentation zone where Takigami, Oodake, Hacchobaru and Oguni are located was especially regarded as an area propmising of geothermal energy. In the survey area, the geothermal potential was the highest near Noya - Mizuwake Pass. (NEDO)

  11. Attenuation-difference radar tomography: results of a multiple-plane experiment at the U.S. Geological Survey Fractured-Rock Research Site, Mirror Lake, New Hampshire

    Science.gov (United States)

    Lane, J.W.; Day-Lewis, F. D.; Harris, J.M.; Haeni, F.P.; Gorelick, S.M.

    2000-01-01

    Attenuation-difference, borehole-radar tomography was used to monitor a series of sodium chloride tracer injection tests conducted within the FSE, wellfield at the U.S. Geological Survey Fractured-Rock Hydrology Research Site in Grafton County, New Hampshire, USA. Borehole-radar tomography surveys were conducted using the sequential-scanning and injection method in three boreholes that form a triangular prism of adjoining tomographic image planes. Results indicate that time-lapse tomography methods provide high-resolution images of tracer distribution in permeable zones.

  12. Mineral resources, geologic structure, and landform surveys

    Science.gov (United States)

    Lattman, L. H.

    1973-01-01

    The use of ERTS-1 imagery for mineral resources, geologic structure, and landform surveys is discussed. Four categories of ERTS imagery application are defined and explained. The types of information obtained by the various multispectral band scanners are analyzed. Samples of land use maps and tectoning and metallogenic models are developed. It is stated that the most striking features visible on ERTS imagery are regional lineaments, or linear patterns in the topography, which reflect major fracture zones extending upward from the basement of the earth.

  13. 2D resistivity survey in complex geological structure area. Application to the volcanic area; Fukuzatsuna chishitsu kozo chiiki ni okeru hiteiko nijigen tansa. Kazangan chiiki deno tekiorei

    Energy Technology Data Exchange (ETDEWEB)

    Asakawa, S; Ikuma, T; Tanifuji, R [DIA Consultants Co. Ltd., Tokyo (Japan)

    1996-05-01

    Introduced herein is an application of 2D resistivity survey to a volcanic rock area where the survey result is difficult to interpret because of its complex geological structure. In a dam site survey, main problems involve the permeability of water through faults and weathered, altered zones. At this site, a 2D resistivity survey was conducted, a 2D geological structure was deduced from the resistivity section, and the result was examined. It was found that resistivity distribution was closely related to hydrographic factors, but no obvious correlation was detected between rock classes and R, Q, and D. In conducting investigations into a section planned for a highway tunnel, it was learned that the problem was a volcanic ash layer to collapse instantly upon absorbing water, and the distribution of the ash layer, not to be disclosed by boring, was subjected to a 2D resistivity survey. The survey was conducted into the structure above where the tunnel would run, and further into the face, and studies were made about what layer was reflected by the resistivity distribution obtained by analysis. The result of the analysis agreed with the details of the layer that was disclosed afterward. 4 figs., 1 tab.

  14. The Geological Survey of Canada Radiocarbon Dating Laboratory

    International Nuclear Information System (INIS)

    Lowdon, J.A.

    1985-01-01

    The Radiocarbon Dating Laboratory of the Geological Survey of Canada began routine 14 C age determinations in 1961 using a 2 litre copper, proportional counter and CO 2 as the counting gas. This counter is operated routinely at a pressure of 2 atmospheres where the maximum dating limit is approximately 40 000 years using the 4σ criterion. In 1964 a 5 litre counter was put into operation. Routinely this counter is operated at a pressure of 1 atmosphere where its dating limit is approximately 40 000 years. When operated at 4 atmospheres its age limit increases to about 54 000 years. Organic samples are burned in a stream of oxygen and the CO 2 released is purified on passage through a series of chemicals and traps. Inorganic samples are dissolved in phosphoric acid. Up to the end of 1983 more than 3700 age determinations have been carried out on various types of sample material. Since 1963 twenty-three Geological Survey of Canada Date Lists have been published. The Laboratory also carries out a program of 14 C determinations of samples of known age for the purpose of assessing the accuracy of the method and learning more about the natural and man-made 14 C distribution and circulation in nature

  15. Water resources science of the U.S. Geological Survey in New York

    Science.gov (United States)

    Glover, Anna N.

    2018-04-10

    The U.S. Geological Survey studies the effects of weather, climate, and man-made influences on groundwater levels, streamflow, and reservoir and lake levels, as well as on the ecological health of rivers, lakes, reservoirs, watersheds, estuaries, aquifers, soils, beaches, and wildlife. From these studies, the USGS produces high-quality, timely, and unbiased scientific research and data that are widely accessible and relevant to all levels of government, Tribal Nations, academic institutions, nongovernmental organizations, the private sector, and the general public. In New York, the U.S. Geological Survey works with other Federal agencies, State and municipal government, Tribal Nations, and the private sector to develop products that inform decision makers, legislators, and the general public.

  16. Brazil Geologic Basic Survey Program - Barbacena - Sheet SF.23-X-C-III -Minas Gerais State

    International Nuclear Information System (INIS)

    Brandalise, L.A.

    1991-01-01

    The present report refers to the Barbacena sheet (SF.23-X-C-III) systematic geological mapping, on the 1:10,000 scale, related to the Levantamentos Geologicos Basicos do Brasil Program - PLGB, carried out by CPRM for the DNPM. Integrated to geochemical and geophysical surveys, the geological mapping not only yielded geophysical and geochemical maps but a consistent to the 1:100.000 scale Metallogenetic/Provisional one as well. The geological mapping carried out during the Project has really evidenced that samples of distinct stratigraphic units had been employed to define the one and only isochrone. However geochronologic Rb/Sr dating performed during the geological mapping phase evidenced Archean ages for rocks of the Sao Bento dos Torres Metamorphic Suite (2684 ± 110 m.y.) and ages of about 2000 m.y. for the Ressaquinha Complex rocks. An analysis of crustal evolution patterns based on geological mapping, gravimetric survey data, aeromagnetometry and available geochronologic data is given in the Chapter 6, Part II, in the test. Major element oxides, trace-elements and rare-earths elements were analysed to establish parameters for the rocks environment elucidation. Geochemical survey was carried out with base on pan concentrated and stream sediments distributed throughout the sheet. (author)

  17. 2014 U.S. Geological Survey CMGP LiDAR: Post Sandy (Pennsylvania)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Fugro EarthData, Inc. (Fugro) was tasked by the U.S. Geological Survey (USGS) to plan, acquire, process, and produce derivative products of LiDAR data at a nominal...

  18. FY 2000 report on the survey of the overseas geological structure. Japan-China joint coal exploration - Yu Xian project; 2000 nendo kaigai chishitsu kozo nado chosa hokokusho. Nippon Chugoku sekitan kyodo tansa Yu Xian project

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    The geological survey was carried out which is needed for coal mine design in the Yu Xian coal mine area, Yu Xian coal field, Hebei province, China. The term of survey was 5 years from 1996 to 2000. Activities are mainly for seismic survey and boring survey. Japan was in charge of the seismic survey, and China in charge of the boring survey. Both attained the goal. The results of the activities were summed up in the following 7 items: 1) outline of the survey; 2) general investigation; 3) state of the exploration related materials/machinery; 4) field survey; 5) items of survey; 6) results of the survey; 7) conclusion. In 6), the geological analysis, coal quality survey and coal amount survey were conducted. In the geological analysis, analyzed were the succession of strata, geological structure, and the situation of existence of coal seams. In 7), the following were made clear: geological structure of the survey area, coal seam, coal quality, hydrological geology, other conditions of drilling technology, and coal amount. The coal amount was 328.34 million tons in a total of A/B/C class coals. The total coal amount of Nos. 1 and 5 coal seams was 259.79 million tons, which was 79.1% of the total coal amount in all area. The average thickness of Nos. 1 and 5 coal seams, which are the main minable coal seams, was 3.10m and 2.66m, respectively. (NEDO)

  19. Agile Data Curation at a State Geological Survey

    Science.gov (United States)

    Hills, D. J.

    2015-12-01

    State agencies, including geological surveys, are often the gatekeepers for myriad data products essential for scientific research and economic development. For example, the Geological Survey of Alabama (GSA) is mandated to explore for, characterize, and report Alabama's mineral, energy, water, and biological resources in support of economic development, conservation, management, and public policy for the betterment of Alabama's citizens, communities, and businesses. As part of that mandate, the GSA has increasingly been called upon to make our data more accessible to stakeholders. Even as demand for greater data accessibility grows, budgets for such efforts are often small, meaning that agencies must do more for less. Agile software development has yielded efficient, effective products, most often at lower cost and in shorter time. Taking guidance from the agile software development model, the GSA is working towards more agile data management and curation. To date, the GSA's work has been focused primarily on data rescue. By using workflows that maximize clear communication while encouraging simplicity (e.g., maximizing the amount of work not done or that can be automated), the GSA is bringing decades of dark data into the light. Regular checks by the data rescuer with the data provider (or their proxy) provides quality control without adding an overt burden on either party. Moving forward, these workflows will also allow for more efficient and effective data management.

  20. Global Positioning System data collection, processing, and analysis conducted by the U.S. Geological Survey Earthquake Hazards Program

    Science.gov (United States)

    Murray, Jessica R.; Svarc, Jerry L.

    2017-01-01

    The U.S. Geological Survey Earthquake Science Center collects and processes Global Positioning System (GPS) data throughout the western United States to measure crustal deformation related to earthquakes and tectonic processes as part of a long‐term program of research and monitoring. Here, we outline data collection procedures and present the GPS dataset built through repeated temporary deployments since 1992. This dataset consists of observations at ∼1950 locations. In addition, this article details our data processing and analysis procedures, which consist of the following. We process the raw data collected through temporary deployments, in addition to data from continuously operating western U.S. GPS stations operated by multiple agencies, using the GIPSY software package to obtain position time series. Subsequently, we align the positions to a common reference frame, determine the optimal parameters for a temporally correlated noise model, and apply this noise model when carrying out time‐series analysis to derive deformation measures, including constant interseismic velocities, coseismic offsets, and transient postseismic motion.

  1. Fiscal 2000 report on financially supported geological structure survey overseas. Basic survey for coal resource exploitation (Research on underground probing technology); 2000 nendo kaigai chishitsu kozo chosahi nado hojokin (sekitan shigen kaihatsu kiso chosa) konai tansa gijutsu chosa hokokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    For the work of searching for coal beds, comparison is made between the geological structure of the object area, which is predicted, before actual investigation, by a close scrutiny of the result of oceanic pilot boring conducted in the past, result of geophysical exploration, and the geological features of galleries already in presence in the vicinity, and the result obtained from galleries drilled actually for the investigation. The investigation was conducted at the Ikeshima coal mine, Nagasaki Prefecture. In this fiscal year, 5 investigation galleries were drilled, totalling 1640m in length, and, in the mine, geological surveys, survey and measurement, coal quality evaluation, water emergence investigation, boring for coal, etc., were carried out. Comparison was made, and, though in the 2nd Minami No. 06 air duct there was no important difference detected between the prediction and the actual result, some faults were found to exist which had not been predicted by seismic exploration on the ocean. In the 2nd Minami No. 5 air duct, the actual geology was not different from the predicted geology, this endorsing the usefulness of boring for coal. In the 2nd Minami No. 01 gallery, direction and inclination were not greatly different from what had been predicted, but some faults which had not been predicted were discovered. These faults had escaped the scrutiny of neighboring coal beds and pilot boring. (NEDO)

  2. Hydrogeologic data from the US Geological Survey test wells near Waycross, Ware County, Georgia

    Science.gov (United States)

    Matthews, S.E.; Krause, R.E.

    1983-01-01

    Two wells were constructed near Waycross, Ware County, Georgia, from July 1980 to May 1981 to collect stratigraphic, structural, geophysical, hydrologic, hydraulic, and geochemical information for the U.S. Geological Survey Tertiary Limestone Regional Aquifer-System Analysis. Data collection included geologic sampling and coring, borehole geophysical logging, packer testing, water-level measuring, water-quality sampling, and aquifer testing. In the study area, the Tertiary limestone aquifer system is about 1,300 feet thick and is confined and overlain by about 610 feet of clastic sediments. The aquifer system consists of limestone, dolomite, and minor evaporites and has high porosity and permeability. A 4-day continuous discharge aquifer test was conducted, from which a transmissivity of about 1 million feet squared per day and a storage coefficient of 0.0001 were calculated. Water from the upper part of the aquifer is of a calcium bicarbonate type. The deeper highly mineralized zone produces a sodium bicarbonate type water in which concentrations of magnesium, sulfate, chloride, sodium, and some trace metals increase with depth. (USGS)

  3. A geological survey of the Lac du Bonnet batholith, Manitoba

    International Nuclear Information System (INIS)

    McCrank, G.F.D.

    1985-02-01

    This report presents the results of a geological survey of the Lac du Bonnet batholith in Manitoba. The survey consisted of field mapping of the lithologies and the joint systems throughout the batholith, and the examination of lineaments identified on aerial photographs and Landsat imagery. Petrographic descriptions and a map of the lithologies, an analysis of the fracture systems and a lineament map are presented. The results of various regional geophysical surveys were used as an aid to the interpretation of the batholith's contacts and in the interpretation of lineaments as possible faults. A comparison of the Lac du Bonnet Batholith with the Eye-Dashwa Lakes Pluton near Atikokan, Ontario is also presented

  4. DATA ACQUISITION AND APPLICATIONS OF SIDE-LOOKING AIRBORNE RADAR IN THE U. S. GEOLOGICAL SURVEY.

    Science.gov (United States)

    Jones, John Edwin; Kover, Allan N.

    1985-01-01

    The Side-Looking Airborne Radar (SLAR) program encompasses a multi-discipline effort involving geologists, hydrologists, engineers, geographers, and cartographers of the U. S. Geological Survey (USGS). Since the program began in 1980, more than 520,000 square miles of aerial coverage of SLAR data in the conterminous United States and Alaska have been acquired or contracted for acquisition. The Geological Survey has supported more than 60 research and applications projects addressing the use of this technology in the earth sciences since 1980. These projects have included preparation of lithographic reproductions of SLAR mosaics, research to improve the cartographic uses of SLAR, research for use of SLAR in assessing earth hazards, and studies using SLAR for energy and mineral exploration through improved geologic mapping.

  5. A geological-radiometric uranium survey in the Tlaxiaco area of the State of Oaxaca

    International Nuclear Information System (INIS)

    Guillen R, O.E.

    1981-01-01

    Explorations were effected in the northwestern part of the State of Oaxaca neighbouring the city of Tlaxiaco and lying within the Oaxaca-Mixteca province. The survey comprised a regional area of 642.2.K, in which abnormalities auspicious to the presence of mineral uranium had previously been found. The area of interest, initially limited to a strip 10 kilometers long by 1/2 kilometers wide, showed evidence, however, of an even greater extension. Among the lithological units found of predominate interest were clastic, sedimentary rocks, mezozoic carbonate rocks, and extrusive and intrusive igneous rocks. From the high radiometric values obtained, the extrusive pyroclastic rocks showed more favourable signs of the presence of uranium ore and were considered of chief uranium significance in the area. Minerological, structural and lithological detectors (guides) have been set up in the area for an extensive location of abnormalities. The work based on regionally conducted geological and radiological surveys followed by detailed area of interest studies. (author)

  6. State Geological Survey Contributions to the National Geothermal Data System- Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Allison, M. Lee [Executive Office of the State of Arizona, Tuczon (AZGS), AZ (United States).; Richard, Stephen M. [Executive Office of the State of Arizona, Tuczon (AZGS), AZ (United States).

    2015-03-13

    The State Geological Survey Contributions to the National Geothermal Data System project is built on the work of the project managed by Boise State University to design and build the National Geothermal Data System, by deploying it nationwide and populating it with data principally from State Geological Surveys through collaboration with the Association of American State Geologists (AASG). This project subsequently incorporated the results of the design-build and other DOE-funded projects in support of the NGDS. The NGDS (www.geothermaldata.org) provides free open access to millions of data records, images, maps, and reports, sharing relevant geoscience, production, and land use data in 30+ categories to propel geothermal development and production in the U.S. NGDS currently serves information gathered from hundreds of the U.S. Department of Energy sponsored development and research projects and geologic data feeds from 60+ data providers throughout all 50 states. These data are relevant to geothermal energy exploration and development, but also have broad applicability in other areas including natural resources (e.g., energy, minerals, water), natural hazards, and land use and management.

  7. Microearthquake studies in Egypt carried out by the geological survey of Egypt

    Science.gov (United States)

    Boulos, Fouad K.; Morgan, Paul; Toppozada, Tousson R.

    1987-07-01

    Extensive microearthquake studies have been conducted in Egypt as a joint project between scientists from the Egyptian Geological Survey and Mining Authority (EGSMA) and U.S. scientists. At this stage, a great part of the data has been analyzed and two intensively active areas have been located: one in the Abu Dabbab area of the Eastern Desert, the second at the mouth of the Gulf of Suez near Gubal Island (Daggett et al., 1980). Both sites have been reported to be the epicenters of large earthquakes in 1955 and 1969, respectively. A few scattered earthquakes have also been located in the northern part of the Red Sea, some of which lie along its median axis (Daggett et al., 1986) adding to evidence for the medial opening of the northern Red Sea. After the occurrence of an earthquake (M = 5.5) in the Aswan region on 14 November 1981, continuous recording of the many aftershocks was carried out by EGSMA for about seven months from December 1981 to July 1982, when the temporary network was replaced by a network of telemetered seismographs installed and operated by Helwan Institute of Astronomy and Geophysics in cooperation with scientists from Lamont and Doherty Geological Observatory (LDGO). The majority of epicenters are concentrated in the vicinity of G. Marawa about 65 km upstream of Aswan Dam, along the E-W Kalabsha fault. The observed focal mechanism is consistent with a right-lateral strike-slip motion on the Kalabsha fault. Analysis of Aswan microearthquakes has been done by EGSMA in cooperation with scientists from California Division of Mines and Geology (CDMG).

  8. Overview of the regional geology of the Paradox Basin Study Region

    International Nuclear Information System (INIS)

    1983-03-01

    The Geologic Project Manager for the Paradox Basin Salt Region (PBSR), Woodward-Clyde Consultants, has conducted geologic studies to characterize the region and evaluate selected geologic formations as potential repositories for the storage and disposal of nuclear waste. Evaluations have been made from the standpoint of engineering feasibility, safety, public health, and resource conflicts. The Regulatory Project Manager for the PBSR, Bechtel National, Inc., has performed environmental characterizations to ensure that data on ecological, socioeconomic, and other environmental factors required by the National Environmental Policy Act of 1969 are considered. This report characterizes, at a regional overview level of detail, the Paradox Basin Study Region Geology. Information sources include the published literature, field trip guidebooks, open file data of the US Geological Survey (USGC) and Utah Geologic and Mineral Survey, university theses, Geo-Ref Computer Search, and various unpublished sources of subsurface data such as well logs. Existing information has been synthesized and characterized. No field work was conducted as part of this study. Where possible, attempts were made to evaluate the data. All results of this study are subject to change as more data become available

  9. Archive of Geosample Data and Information from the U.S. Geological Survey (USGS) Coastal and Marine Geology Program (CMGP) Pacific Coastal and Marine Science Center (PCMSC) Samples Repository

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The U.S. Geological Survey Coastal and Marine Geology Program (CMGP) Pacific Coastal and Marine Science Center (PCMSC) Samples Repository is a partner in the Index...

  10. United States Geological Survey, programs in Nevada

    Science.gov (United States)

    ,

    1995-01-01

    The U.S. Geological Survey (USGS) has been collecting and interpreting natural-resources data in Nevada for more than 100 years. This long-term commitment enables planners to manage better the resources of a State noted for paradoxes. Although Nevada is one of the most sparsely populated States in the Nation, it has the fastest growing population (fig. 1). Although 90 percent of the land is rural, it is the fourth most urban State. Nevada is the most arid State and relies heavily on water resources. Historically, mining and agriculture have formed the basis of the economy; now tourism and urban development also have become important. The USGS works with more than 40 local, State, and other Federal agencies in Nevada to provide natural-resources information for immediate and long-term decisions.Subjects included in this fact sheet:Low-Level Radioactive-Waste DisposalMining and Water in the Humboldt BasinAquifer Systems in the Great BasinWater Allocation in Truckee and Carson BasinsNational Water-Quality Assessment ProgramMinerals Assessment for Land ManagementIrrigation DrainageGround-Water Movement at Nevada Test SiteOil and Gas ResourcesNational Mapping ProgramDigital Mapping and Aerial PhotographyCollection of Hydrologlc DataGeologic MappingEarthquake HazardsAssessing Mineral Resources of the SubsurfaceEarth Observation DataCooperative Programs

  11. Quality-assurance plan for water-resources activities of the U.S. Geological Survey in Idaho

    Science.gov (United States)

    Packard, F.A.

    1996-01-01

    To ensure continued confidence in its products, the Water Resources Division of the U.S. Geological Survey implemented a policy that all its scientific work be performed in accordance with a centrally managed quality-assurance program. This report establishes and documents a formal policy for current (1995) quality assurance within the Idaho District of the U.S. Geological Survey. Quality assurance is formalized by describing district organization and operational responsibilities, documenting the district quality-assurance policies, and describing district functions. The districts conducts its work through offices in Boise, Idaho Falls, Twin Falls, Sandpoint, and at the Idaho National Engineering Laboratory. Data-collection programs and interpretive studies are conducted by two operating units, and operational and technical assistance is provided by three support units: (1) Administrative Services advisors provide guidance on various personnel issues and budget functions, (2) computer and reports advisors provide guidance in their fields, and (3) discipline specialists provide technical advice and assistance to the district and to chiefs of various projects. The district's quality-assurance plan is based on an overall policy that provides a framework for defining the precision and accuracy of collected data. The plan is supported by a series of quality-assurance policy statements that describe responsibilities for specific operations in the district's program. The operations are program planning; project planning; project implementation; review and remediation; data collection; equipment calibration and maintenance; data processing and storage; data analysis, synthesis, and interpretation; report preparation and processing; and training. Activities of the district are systematically conducted under a hierarchy of supervision an management that is designed to ensure conformance with Water Resources Division goals quality assurance. The district quality

  12. The bedrock electrical conductivity structure of Northern Ireland

    OpenAIRE

    Beamish, David

    2013-01-01

    An airborne geophysical survey of the whole of Northern Ireland has provided over 4.8 M estimates of the bedrock conductivity over the wide range of geological formations present. This study investigates how such data can be used to provide additional knowledge in relation to existing digital geological map information. A by-product of the analysis is a simplification of the spatially aggregated information obtained in such surveys. The methodology used is a GIS-based attribution of the condu...

  13. United States Geological Survey discharge data from five example gages on intermittent streams

    Data.gov (United States)

    U.S. Environmental Protection Agency — The data are mean daily discharge data at United States Geological Survey gages. Once column provides the date (mm/dd/yyyy) and the other column provides the mean...

  14. Experiments on thermal conductivity in buffer materials for geologic repository

    International Nuclear Information System (INIS)

    Kanno, T.; Yano, T.; Wakamatsu, H.; Matsushima, E.

    1989-01-01

    Engineered barriers for geologic disposal for HLW are planned to consist of canister, overpack and buffer elements. One of important physical characteristics of buffer materials is determining temperature profiles within the near field in a repository. Buffer materials require high thermal conductivity to disperse radiogenic heat away to the host rock. As the buffer materials, compacted blocks of the mixture of sodium bentonite and sand have been the most promising candidate in some countries, e.g. Sweden, Switzerland and Japan. The authors have been carrying out a series of thermal dispersion experiments to evaluate thermal conductivity of bentonite/quartz sand blocks. In this study, the following two factors considered to affect thermal properties of the near field were examined: effective thermal conductivities of buffer materials, and heat transfer characteristics of the gap between overpack and buffer materials

  15. The British Geological Survey's Lexicon of Named Rock Units as Online and Linked Data

    Science.gov (United States)

    McCormick, T.

    2012-12-01

    The British Geological Survey's Lexicon of Named Rock Units provides freely accessible definitions and supplementary information about geological units of Great Britain, Northern Ireland, and their associated continental shelf. It is an online database that can be searched at www.bgs.ac.uk/Lexicon/. It has existed since 1990 (under different names) but the database and user interface have recently been completely redesigned to improve their semantic capabilities and suitability for describing different styles of geology. The data are also now freely available as linked data from data.bgs.ac.uk/. The Lexicon of Named Rock Units serves two purposes. First, it is a dictionary, defining and constraining the geological units that are referenced in the Survey's data sets, workflows, products and services. These can include printed and digital geological maps at a variety of scales, reports, books and memoirs, and 3- and 4-dimensional geological models. All geological units referenced in any of these must first be present and defined, at least to a basic level of completeness, in the Lexicon database. Only then do they become available for use. The second purpose of the Lexicon is as a repository of knowledge about the geology of the UK and its continental shelf, providing authoritative descriptions written and checked by BGS geoscientists. Geological units are assigned to one of four themes: bedrock, superficial, mass movement and artificial. They are further assigned to one of nine classes: lithostratigraphical, lithodemic intrusive, lithodemic tectono-metamorphic, lithodemic mixed, litho-morpho-genetic, man-made, age-based, composite, and miscellaneous. The combination of theme and class controls the fields that are available to describe each geological unit, so that appropriate fields are offered for each, whether it is a Precambrian tectono-metamorphic complex, a Devonian sandstone formation, or a Devensian river terrace deposit. Information that may be recorded

  16. U.S. Geological Survey Science for the Wyoming Landscape Conservation Initiative-2009 Annual Report

    Science.gov (United States)

    Bowen, Zachary H.; Aldridge, Cameron L.; Anderson, Patrick J.; Assal, Timothy J.; Biewick, Laura R. H.; Blecker, Steven W.; Bristol, R. Sky; Carr, Natasha B.; Chalfoun, Anna D.; Chong, Geneva W.; Diffendorfer, James E.; Fedy, Bradley C.; Garman, Steven L.; Germaine, Stephen; Grauch, Richard I.; Holloway, JoAnn M.; Homer, Collin G.; Kauffman, Matthew J.; Keinath, Douglas; Latysh, Natalie; Manier, Daniel J.; McDougal, Robert R.; Melcher, Cynthia P.; Miller, Kirk A.; Montag, Jessica; Nutt, Constance J.; Potter, Christopher J.; Sawyer, Hall; Schell, Spencer; Shafer, Sarah L.; Smith, David B.; Stillings, Lisa L.; Tuttle, Michele L.W.; Wilson, Anna B.

    2010-01-01

    This is the second report produced by the U.S. Geological Survey (USGS) for the Wyoming Landscape Conservation Initiative (WLCI) to detail annual work activities. The first report described work activities for 2007 and 2008; this report covers work activities conducted in 2009. Important differences between the two reports are that (1) this report does not lump all the Effectiveness Monitoring activities together as last year's report did, which will allow WLCI partners and other readers to fully appreciate the scope and accomplishments of those activities, and (2) this report does not include a comprehensive appendix of the background details for each work activity. In 2009, there were 29 ongoing or completed activities, and there were 5 new work activities conducted under the 5 original major multi-disciplinary science and technical assistance activities: (1) Baseline Synthesis; (2) Targeted Monitoring and Research; (3) Data and Information Management; (4) Integration and Coordination; and (5) Decisionmaking and Evaluation. New work included (1) developing a soil-quality index, (2) developing methods for assessing levels of and relationships between mercury and soil organic matter, and (3) ascertaining element source, mobility, and fate. Additionally, (4) remotely sensed imagery was used to assess vegetation as an indicator of soil condition and geology, and (5) an Integrated Assessment (IA) was initiated to synthesize what has been learned about WLCI systems to date, and to develop associated decision tools, maps, and a comprehensive report.

  17. Quality-assurance plan for water-quality activities in the U.S. Geological Survey Washington Water Science Center

    Science.gov (United States)

    Conn, Kathleen E.; Huffman, Raegan L.; Barton, Cynthia

    2017-05-08

    In accordance with guidelines set forth by the Office of Water Quality in the Water Mission Area of the U.S. Geological Survey, a quality-assurance plan has been created for use by the Washington Water Science Center (WAWSC) in conducting water-quality activities. This qualityassurance plan documents the standards, policies, and procedures used by the WAWSC for activities related to the collection, processing, storage, analysis, and publication of water-quality data. The policies and procedures documented in this quality-assurance plan for water-quality activities complement the quality-assurance plans for surface-water and groundwater activities at the WAWSC.

  18. Selected water-resources activities of the U.S. Geological Survey in New England in 2017

    Science.gov (United States)

    Weiskel, Peter K.

    2017-06-22

    The New England Water Science Center of the U.S. Geological Survey (USGS) is headquartered in Pembroke, New Hampshire, with offices in East Hartford, Connecticut; Augusta, Maine; Northborough, Massachusetts; and Montpelier, Vermont. The areas of expertise covered by the water science center’s staff of 130 include aquatic biology, chemistry, geographic information systems, geology, hydrologic sciences and engineering, and water use.

  19. Archive of Geosample Data and Information from the U.S. Geological Survey (USGS) Coastal and Marine Geology Program (CMGP) Woods Hole Coastal and Marine Science Center (WHCMSC) Samples Repository

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The U.S. Geological Survey Coastal and Marine Geology Program (CMGP) Woods Hole Coastal and Marine Science Center (WHCMSC) Samples Repository is a partner in the...

  20. Archive of Geosample Data and Information from the U.S. Geological Survey (USGS) Coastal and Marine Geology Program (CMGP) St. Petersburg Coastal and Marine Science Center (SPCMSC) Samples Repository

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The U.S. Geological Survey Coastal and Marine Geology Program (CMGP) St. Petersburg Coastal and Marine Science Center (SPCMSC) Samples Repository is a partner in the...

  1. Integration of 3D geological modeling and gravity surveys for geothermal prospection in an Alpine region

    Science.gov (United States)

    Guglielmetti, L.; Comina, C.; Abdelfettah, Y.; Schill, E.; Mandrone, G.

    2013-11-01

    Thermal sources are common manifestations of geothermal energy resources in Alpine regions. The up-flow of the fluid is well-known to be often linked to cross-cutting fault zones providing a significant volume of fractures. Since conventional exploration methods are challenging in such areas of high topography and complicated logistics, 3D geological modeling based on structural investigation becomes a useful tool for assessing the overall geology of the investigated sites. Geological modeling alone is, however, less effective if not integrated with deep subsurface investigations that could provide a first order information on geological boundaries and an imaging of geological structures. With this aim, in the present paper the combined use of 3D geological modeling and gravity surveys for geothermal prospection of a hydrothermal area in the western Alps was carried out on two sites located in the Argentera Massif (NW Italy). The geothermal activity of the area is revealed by thermal anomalies with surface evidences, such as hot springs, at temperatures up to 70 °C. Integration of gravity measurements and 3D modeling investigates the potential of this approach in the context of geothermal exploration in Alpine regions where a very complex geological and structural setting is expected. The approach used in the present work is based on the comparison between the observed gravity and the gravity effect of the 3D geological models, in order to enhance local effects related to the geothermal system. It is shown that a correct integration of 3D modeling and detailed geophysical survey could allow a better characterization of geological structures involved in geothermal fluids circulation. Particularly, gravity inversions have successfully delineated the continuity in depth of low density structures, such as faults and fractured bands observed at the surface, and have been of great help in improving the overall geological model.

  2. Contribution of public Geological Survey to prevention and mitigation of geohazards

    Directory of Open Access Journals (Sweden)

    Marko Komac

    2009-06-01

    Full Text Available From the early history of civilisation societies have been exposed to external factors. Probably no other factorshave influenced the development of societies and cultures more than geologically driven hazards or geohazards.With the evolvement of societies also the approaches to solving problems, related to geohazard, have developed.The complexity of mitigation and response measurements that tackle the contemporary geohazard problems demandsa long-term strategic approach that has to incorporate all segments of the society, from stake-holders andend-user groups to the experts. The management of geohazards is a public good and as such needs to be governedby a non-profit public body. The common mission of almost all geological surveys is to gather, manage and interpretgeologically related data for a wider public welfare. Geological surveys as public institutions represent a key rolein almost all components of the geohazard management process, from education and research, to data acquisition,processing, interpretation and decision support issues. With its knowledge regarding natural processes gatheredthrough decades GSO offers reliable and independent support in assessing and describing the phenomena (seismicactivities, mass wasting, water and soil pollution, excess or lack of trace elements in the soil, ground subsidence orheave, gaseous emanations and more, understanding the processes of activation, dynamics, transport, interactionwith media and living organisms, and predicting the possible scenarios in the future with emphasis on human exposureto given phenomena. Despite the fact that the value of the knowledge of the dynamic environment we live in isbeing tested literally on daily basis in Slovenia, its inclusion in everyday practice is still relatively negligible.

  3. Suggestions to authors of the reports of the United States Geological Survey

    Science.gov (United States)

    ,

    1958-01-01

    Knowledge acquired by the Geological Survey through programs of research and investigations has no value to the public if it remains in office files or in the minds of the scientists and engineers who did the work. The full discharge of the Survey's responsibilities is attained only by making its acquired knowledge available promptly and effectively to all people who will find it of interest and use. And, to insure effectiveness, reports must be not only accurate but so clearly and simply written that they are easy to read and understand.

  4. The STRATAFORM Project: U.S. Geological Survey geotechnical studies

    Science.gov (United States)

    Minasian, Diane L.; Lee, Homa J.; Locat, Jaques; Orzech, Kevin M.; Martz, Gregory R.; Israel, Kenneth

    2001-01-01

    This report presents physical property logs of core samples from an offshore area near Eureka, CA. The cores were obtained as part of the STRATAFORM Program (Nittrouer and Kravitz, 1995, 1996), a study investigating how present sedimentation and sediment transport processes influence long-term stratigraphic sequences preserved in the geologic record. The core samples were collected during four separate research cruises to the northern California study area, and data shown in the logs of the cores were collected using a multi-sensor whole core logger. The physical properties collected are useful in identifying stratigraphic units, ground-truthing acoustic imagery and sub-bottom profiles, and in understanding mass movement processes. STRATA FORmation on Margins was initiated in 1994 by the Office of Naval Research, Marine Geology and Geophysics Department as a coordinated multi-investigator study of continental-margin sediment transport processes and stratigraphy (Nittrouer and Kravitz, 1996). The program is investigating the stratigraphic signature of the shelf and slope parts of the continental margins, and is designed to provide a better understanding of the sedimentary record and a better prediction of strata. Specifically, the goals of the STRATAFORM Program are to (Nittrouer and Kravitz, 1995): - determine the geological relevance of short-term physical processes that erode, transport, and deposit particles and those processes that subsequently rework the seabed over time scales - improve capabilities for identifying the processes that form the strata observed within the upper ~100 m of the seabed commonly representing 104-106 years of sedimentation. - synthesize this knowledge and bridge the gap between time scales of sedimentary processes and those of sequence stratigraphy. The STRATAFORM Program is divided into studies of the continental shelf and the continental slope; the geotechnical group within the U.S. Geological Survey provides support to both parts

  5. Uncertainty in mapped geological boundaries held by a national geological survey:eliciting the geologists' tacit error model

    Science.gov (United States)

    Lark, R. M.; Lawley, R. S.; Barron, A. J. M.; Aldiss, D. T.; Ambrose, K.; Cooper, A. H.; Lee, J. R.; Waters, C. N.

    2015-06-01

    It is generally accepted that geological line work, such as mapped boundaries, are uncertain for various reasons. It is difficult to quantify this uncertainty directly, because the investigation of error in a boundary at a single location may be costly and time consuming, and many such observations are needed to estimate an uncertainty model with confidence. However, it is recognized across many disciplines that experts generally have a tacit model of the uncertainty of information that they produce (interpretations, diagnoses, etc.) and formal methods exist to extract this model in usable form by elicitation. In this paper we report a trial in which uncertainty models for geological boundaries mapped by geologists of the British Geological Survey (BGS) in six geological scenarios were elicited from a group of five experienced BGS geologists. In five cases a consensus distribution was obtained, which reflected both the initial individually elicited distribution and a structured process of group discussion in which individuals revised their opinions. In a sixth case a consensus was not reached. This concerned a boundary between superficial deposits where the geometry of the contact is hard to visualize. The trial showed that the geologists' tacit model of uncertainty in mapped boundaries reflects factors in addition to the cartographic error usually treated by buffering line work or in written guidance on its application. It suggests that further application of elicitation, to scenarios at an appropriate level of generalization, could be useful to provide working error models for the application and interpretation of line work.

  6. U.S. Geological Survey science for the Wyoming Landscape Conservation Initiative—2014 annual report

    Science.gov (United States)

    Bowen, Zachary H.; Aldridge, Cameron L.; Anderson, Patrick J.; Assal, Timothy J.; Bartos, Timothy T.; Biewick, Laura R; Boughton, Gregory K.; Chalfoun, Anna D.; Chong, Geneva W.; Dematatis, Marie K.; Eddy-Miller, Cheryl A.; Garman, Steven L.; Germaine, Stephen S.; Homer, Collin G.; Huber, Christopher; Kauffman, Matthew J.; Latysh, Natalie; Manier, Daniel; Melcher, Cynthia P.; Miller, Alexander; Miller, Kirk A.; Olexa, Edward M.; Schell, Spencer; Walters, Annika W.; Wilson, Anna B.; Wyckoff, Teal B.

    2015-01-01

    This is the seventh report produced by the U.S. Geological Survey (USGS) for the Wyoming Landscape Conservation Initiative (WLCI) to detail annual activities conducted by the USGS for addressing specific management needs identified by WLCI partners. In FY2014, there were 26 projects, including a new one that was completed, two others that were also completed, and several that entered new phases or directions. The 26 projects fall into several categories: (1) synthesizing and analyzing existing data to identify current conditions on the landscape and using the data to develop models for projecting past and future landscape conditions; (2) monitoring indicators of ecosystem conditions and the effectiveness of on-the-ground habitat projects; (3) conducting research to elucidate the mechanisms underlying wildlife and habitat responses to changing land uses; (4) managing and making accessible the large number of databases, maps, and other products being developed; and (5) coordinating efforts among WLCI partners, helping them use USGS-developed decision-support tools, and integrating WLCI outcomes with future habitat enhancement and research projects.

  7. Seismic reflection survey conducted in Benton and Grant Counties, Washington

    International Nuclear Information System (INIS)

    Durham, T.E.; Beggs, H.G.; Heineck, R.L.

    1979-01-01

    The following report is devoted to a discussion of data acquisition procedures, data processing parameters and interpretation of results for a reflection seismic survey located on the Hanford Site in Benton and Grant Countries, Washington. The Pasco basin was the geologic setting for the survey. The main objectives of the program were to determine the subsurface structural attitudes of the numerous basalt flows known to exist within the basin. The location of areas associated with possible faulting and/or fracturing was also considered of prime concern as these conditions could significantly affect the integrity of the basalt

  8. Transportation and Hydrology Studies of the U.S. Geological Survey in New England

    Science.gov (United States)

    Lombard, Pamela J.

    2016-03-23

    The U.S. Geological Survey (USGS) has a long history of working with the Federal Highway Administration (FHWA) and State transportation agencies to provide data and information to address various issues related to water resources and the Nation’s transportation infrastructure. These issues include the following:

  9. U.S. Geological Survey: A synopsis of Three-dimensional Modeling

    Science.gov (United States)

    Jacobsen, Linda J.; Glynn, Pierre D.; Phelps, Geoff A.; Orndorff, Randall C.; Bawden, Gerald W.; Grauch, V.J.S.

    2011-01-01

    The U.S. Geological Survey (USGS) is a multidisciplinary agency that provides assessments of natural resources (geological, hydrological, biological), the disturbances that affect those resources, and the disturbances that affect the built environment, natural landscapes, and human society. Until now, USGS map products have been generated and distributed primarily as 2-D maps, occasionally providing cross sections or overlays, but rarely allowing the ability to characterize and understand 3-D systems, how they change over time (4-D), and how they interact. And yet, technological advances in monitoring natural resources and the environment, the ever-increasing diversity of information needed for holistic assessments, and the intrinsic 3-D/4-D nature of the information obtained increases our need to generate, verify, analyze, interpret, confirm, store, and distribute its scientific information and products using 3-D/4-D visualization, analysis, modeling tools, and information frameworks. Today, USGS scientists use 3-D/4-D tools to (1) visualize and interpret geological information, (2) verify the data, and (3) verify their interpretations and models. 3-D/4-D visualization can be a powerful quality control tool in the analysis of large, multidimensional data sets. USGS scientists use 3-D/4-D technology for 3-D surface (i.e., 2.5-D) visualization as well as for 3-D volumetric analyses. Examples of geological mapping in 3-D include characterization of the subsurface for resource assessments, such as aquifer characterization in the central United States, and for input into process models, such as seismic hazards in the western United States.

  10. US Geological Survey National Computer Technology Meeting; Proceedings, Phoenix, Arizona, November 14-18, 1988

    Science.gov (United States)

    Balthrop, Barbara H.; Terry, J.E.

    1991-01-01

    The U.S. Geological Survey National Computer Technology Meetings (NCTM) are sponsored by the Water Resources Division and provide a forum for the presentation of technical papers and the sharing of ideas or experiences related to computer technology. This report serves as a proceedings of the meeting held in November, 1988 at the Crescent Hotel in Phoenix, Arizona. The meeting was attended by more than 200 technical and managerial people representing all Divisions of the U.S. Geological Survey.Scientists in every Division of the U.S. Geological Survey rely heavily upon state-of-the-art computer technology (both hardware and sofnuare). Today the goals of each Division are pursued in an environment where high speed computers, distributed communications, distributed data bases, high technology input/output devices, and very sophisticated simulation tools are used regularly. Therefore, information transfer and the sharing of advances in technology are very important issues that must be addressed regularly.This report contains complete papers and abstracts of papers that were presented at the 1988 NCTM. The report is divided into topical sections that reflect common areas of interest and application. In each section, papers are presented first followed by abstracts. For these proceedings, the publication of a complete paper or only an abstract was at the discretion of the author, although complete papers were encouraged.Some papers presented at the 1988 NCTM are not published in these proceedings.

  11. Problems of geologic survey of high level radioactive waste repositories illustrated on the testing site in the Melechov Massif

    International Nuclear Information System (INIS)

    Mlcoch, B.

    1997-01-01

    Major attention is paid to problems associated with the geologic maps of the prospective repository site, which lies within the Bohemian Massif. Structural geology, survey through boreholes, and primary database are also discussed briefly. (P.A.)

  12. Results from the geological surveys carried out in the Bure laboratory's shafts

    International Nuclear Information System (INIS)

    Rebours, Herve; Righini, Celine

    2010-01-01

    Document available in extended abstract form only. After the government's authorization to build and operate an underground laboratory, Andra started the investigation works in November 99 on the Meuse/Haute-Marne URL site. The Meuse/Haute-Marne URL is located at the border of the Champagne-Ardenne and Lorraine regions, on the township of Bure in the Callovo-Oxfordian clay-rich rock. On the URL site, the layer is about 135 m-thick and lies at a depth of 417 m to 552 m. The laboratory consists of two levels of experimental drifts at depths of 445 m and 490 m, respectively, with two vertical shafts crossing the 505 m-thick sedimentary cover of Kimeridgian (about 100 meters of marls and limestones), Oxfordian (about 300 meters of limestones) and Callovo-Oxfordian formations. The construction of the underground installations started in August 2000 with the sinking of the main shaft and was completed on the 27 April 2006 when it linked up with the southern drift of the laboratory. The two access shafts are sunk with a drill and blast method with steps of 2.4 to 3.1 m. A temporary support with grouted bolts and wire mesh is set immediately after the blasting and removal of the muck. The definitive concrete lining is installed about 12 to 20 m behind the face. The excavated diameter of the main shaft where the geological surveys and experiments have been undertaken is of 6 m (5 m after lining). The second shaft (auxiliary shaft for the ventilation of the URL) is sunk in a smaller diameter (5 m). The aims of the geological surveys carried out during the shaft sinking are to describe the vertical and lateral (between the two shafts) variations of the lithology, to confirm the absence of fault and the geometry of the argillaceous rocks formation. These surveys allow to characterize the natural or inducted fracturing by a sedimentary and structural follow-up of the excavation face. This follow-up was carried out every 2.4 to 3.0 meters in the shafts. During the shaft

  13. Hydrogeological Properties of Geological Elements in Geological Model around KURT

    Energy Technology Data Exchange (ETDEWEB)

    Park, Kyung Woo; Kim, Kyung Soo; Koh, Yong Kwon; Choi, Jong Won [Korea Atomic Energy Institue, Daejeon (Korea, Republic of)

    2012-09-15

    To develop site characterization technologies for a radioactive waste disposal research in KAERI, the geological and hydrogeological investigations have been carried out since 1997. In 2006, the KURT (KAERI Underground Research Tunnel) was constructed to study a solute migration, a microbiology and an engineered barrier system as well as deeply to understand geological environments in in-situ condition. This study is performed as one of the site characterization works around KURT. Several investigations such as a lineament analysis, a borehole/tunnel survey, a geophyscial survey and logging in borehole, were used to construct the geological model. As a result, the geological model is constructed, which includes the lithological model and geo-structural model in this study. Moreover, from the results of the in-situ hydraulic tests, the hydrogeological properties of elements in geological model were evaluated.

  14. Hydrogeological Properties of Geological Elements in Geological Model around KURT

    International Nuclear Information System (INIS)

    Park, Kyung Woo; Kim, Kyung Soo; Koh, Yong Kwon; Choi, Jong Won

    2012-01-01

    To develop site characterization technologies for a radioactive waste disposal research in KAERI, the geological and hydrogeological investigations have been carried out since 1997. In 2006, the KURT (KAERI Underground Research Tunnel) was constructed to study a solute migration, a microbiology and an engineered barrier system as well as deeply to understand geological environments in in-situ condition. This study is performed as one of the site characterization works around KURT. Several investigations such as a lineament analysis, a borehole/tunnel survey, a geophyscial survey and logging in borehole, were used to construct the geological model. As a result, the geological model is constructed, which includes the lithological model and geo-structural model in this study. Moreover, from the results of the in-situ hydraulic tests, the hydrogeological properties of elements in geological model were evaluated.

  15. The availability of hydrogeologic data associated with areas identified by the US Geological Survey as experiencing potentially induced seismicity resulting from subsurface injection

    Science.gov (United States)

    Barnes, Caitlin; Halihan, Todd

    2018-05-01

    A critical need exists for site-specific hydrogeologic data in order to determine potential hazards of induced seismicity and to manage risk. By 2015, the United States Geological Survey (USGS) had identified 17 locations in the USA that are experiencing an increase in seismicity, which may be potentially induced through industrial subsurface injection. These locations span across seven states, which vary in geological setting, industrial exposure and seismic history. Comparing the research across the 17 locations revealed patterns for addressing induced seismicity concerns, despite the differences between geographical locations. Most induced seismicity studies evaluate geologic structure and seismic data from areas experiencing changes in seismic activity levels, but the inherent triggering mechanism is the transmission of hydraulic pressure pulses. This research conducted a systematic review of whether data are available in these locations to generate accurate hydrogeologic predictions, which could aid in managing seismicity. After analyzing peer-reviewed research within the 17 locations, this research confirms a lack of site-specific hydrogeologic data availability for at-risk areas. Commonly, formation geology data are available for these sites, but hydraulic parameters for the seismically active injection and basement zones are not available to researchers conducting peer-reviewed research. Obtaining hydrogeologic data would lead to better risk management for injection areas and provide additional scientific evidential support for determining a potentially induced seismic area.

  16. Surface water-quality activities of the U.S. Geological Survey in New England

    Science.gov (United States)

    Huntington, Thomas G.

    2016-03-23

    The U.S. Geological Survey (USGS) collaborates with a variety of Federal, State, local, and tribal partners on scientific projects to provide reliable and impartial water-quality data and interpretation to resource managers, planners, stakeholders, and the general public. The themes related to surface water quality include the following:

  17. U.S. Geological Survey 2011 assessment of undiscovered oil and gas resources of the Cook Inlet region, south-central Alaska

    Science.gov (United States)

    Stanley, Richard G.; Pierce, Brenda S.; Houseknecht, David W.

    2011-01-01

    The U.S. Geological Survey (USGS) has completed an assessment of the volumes of undiscovered, technically recoverable oil and gas resources in conventional and continuous accumulations in Cook Inlet. The assessment used a geology-based methodology and results from new scientific research by the USGS and the State of Alaska, Department of Natural Resources, Division of Geological and Geophysical Surveys and Division of Oil and Gas (DOG). In the Cook Inlet region, the USGS estimates mean undiscovered volumes of nearly 600 million barrels of oil, about 19 trillion cubic feet of gas, and about 46 million barrels of natural gas liquids.

  18. NSTA Conducts Nuclear Energy Survey for AIF

    Science.gov (United States)

    Science Teacher, 1972

    1972-01-01

    A survey conducted to determine teacher's instructional resources, methods, materials, and attitudes toward various uses of nuclear energy resulted in nearly one thousand science teachers throughout the nation responding. Results of survey are presented and five recommendations for action are made. (DF)

  19. Using Electronic Mail to Conduct Survey Research.

    Science.gov (United States)

    Thach, Liz

    1995-01-01

    Describes public and private online networks and the characteristics of electronic mail. Reviews the literature on survey research conducted via electronic mail, and examines the issues of design, implementation, and response. A table displays advantages and disadvantages of electronic mail surveys. (AEF)

  20. Contaminant transport and accumulation in Massachusetts Bay and Boston Harbor; a summary of U.S. Geological Survey studies

    Science.gov (United States)

    Butman, Bradford; Bothner, Michael H.; Hathaway, J.C.; Jenter, H.L.; Knebel, H.J.; Manheim, F.T.; Signell, R.P.

    1992-01-01

    The U.S. Geological Survey (USGS) is conducting studies in Boston Harbor, Massachusetts Bay, and Cape Cod Bay designed to define the geologic framework of the region and to understand the transport and accumulation of contaminated sediments. The region is being studied because of environmental problems caused by the introduction of wastes for a long time, because a new ocean outfall (to begin operation in 1995) will change the location for disposal of treated Boston sewage from Boston Harbor into Massachusetts Bay, and because of the need to understand the transport of sediments and associated contaminants in order to address a wide range of management questions. The USGS effort complements and is closely coordinated with the research and monitoring studies supported by the Massachusetts Environmental Trust, the Massachusetts Bays Program, and by the Massachusetts Water Resources Authority. The USGS study includes (1) geologic mapping, (2) circulation studies, (3) long-term current and sediment transport observations, (4) measurements of contaminant inventories and rates of sediment mixing and accumulation, (5) circulation modeling, (6) development of a contaminated sediments data base, and (7) information exchange. A long-term objective of the program is to develop a predictive capability for sediment transport and accumulation.

  1. The Complex Conductivity Signature of Geobacter Species in Geological Media

    Science.gov (United States)

    Brown, I.; Atekwana, E. A.; Sarkisova, S.; Achang, M.

    2013-12-01

    The Complex Conductivity (CC) technique is a promising biogeophysical approach for sensing microbially-induced changes in geological media because of its low-invasive character and sufficient sensitivity to enhanced microbial activity in the near subsurface. Geobacter species have been shown to play important roles in the bioremediation of groundwater contaminated with petroleum and landfill leachate. This capability is based on the ability of Geobacter species to reduce Fe(III) by transferring of electrons from the reduced equivalents to Fe(III) rich minerals through respiration chain and special metallic-like conductors - pili. Only the cultivation of Geobacter species on Fe(III) oxides specifically express pili biosynthesis. Moreover, mutants that cannot produce pili are unable to reduce Fe(III) oxides. However, little is known about the contribution of these molecular conductors (nanowires) to the generation of complex conductivity signatures in geological media. Here, we present the results about the modulation of CC signatures in geological media by Geobacter sulfurreducens (G.s.). Cultures of wild strain G.s. and its pilA(-) mutant were anaerobically cultivated in the presence of the pair of such donors and acceptors of electrons: acetate - fumarate, and acetate - magnetite under anaerobic conditions. Each culture was injected in CC sample holders filled either with N2-CO2 mix (planktonic variant) or with this gases mix and glass beads, d=1 mm, (porous medium variant). Both strains of G.s. proliferated well in a medium supplemented with acetate-fumarate. However, pilA(-) mutant did not multiply in a medium supplemented with ox-red pair yeast extract - magnetite. This observation confirmed that only wild pilA(+) strain is capable of the dissimilatory reduction of Fe(III) within magnetite molecule. The measurement of CC responses from planktonic culture of G.s. wild strain grown with acetate-fumarate did not show linear correlation with their magnitudes but

  2. The U.S.Geological Survey Energy Resources Program

    Science.gov (United States)

    ,

    2010-01-01

    Energy resources are an essential component of modern society. Adequate, reliable, and affordable energy supplies obtained using environmentally sustainable practices underpin economic prosperity, environmental quality and human health, and political stability. National and global demands for all forms of energy are forecast to increase significantly over the next several decades. Throughout its history, our Nation has faced important, often controversial, decisions regarding the competing uses of public lands, the supply of energy to sustain development and enable growth, and environmental stewardship. The U.S. Geological Survey (USGS) Energy Resources Program (ERP) provides information to address these challenges by supporting scientific investigations of energy resources, such as research on the geology, geochemistry, and geophysics of oil, gas, coal, heavy oil and natural bitumen, oil shale, uranium, and geothermal resources, emerging resources such as gas hydrates, and research on the effects associated with energy resource occurrence, production, and (or) utilization. The results from these investigations provide impartial, robust scientific information about energy resources and support the U.S. Department of the Interior's (DOI's) mission of protecting and responsibly managing the Nation's natural resources. Primary consumers of ERP information and products include the DOI land- and resource-management Bureaus; other Federal, State, and local agencies; the U.S. Congress and the Administration; nongovernmental organizations; the energy industry; academia; international organizations; and the general public.

  3. SEDIMENT ANALYSIS NETWORK FOR DECISION SUPPORT (SANDS) LANDSAT GEOLOGICAL SURVEY OF AL (GSA) ANALYSIS V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The Sediment Analysis Network for Decision Support (SANDS) Landsat Geological Survey of AL (GSA) Analysis dataset analyzed changes in the coastal shoreline and...

  4. U.S. Geological Survey Virginia and West Virginia Water Science Center

    Science.gov (United States)

    Jastram, John D.

    2017-08-22

    The U.S. Geological Survey (USGS) serves the Nation by providing reliable scientific information to describe and understand the Earth; minimize loss of life and property from natural disasters; manage water, biological, energy, and mineral resources; and enhance and protect our quality of life. In support of this mission, the USGS Virginia and West Virginia Water Science Center works in cooperation with many entities to provide reliable, impartial scientific information to resource managers, planners, and the public.

  5. U.S. Geological Survey Rewarding Environment Culture Study, 2002

    Science.gov (United States)

    Nash, Janis C.; Paradise-Tornow, Carol A.; Gray, Vicki K.; Griffin-Bemis, Sarah P.; Agnew, Pamela R.; Bouchet, Nicole M.

    2010-01-01

    In its 2001 review of the U.S. Geological Survey (USGS), the National Research Council (NRC, p. 126) cautioned that ?high-quality personnel are essential for developing high-quality science information? and urged the USGS to ?devote substantial efforts to recruiting and retaining excellent staff.? Recognizing the importance of the NRC recommendation, the USGS has committed time and resources to create a rewarding work environment with the goal of achieving the following valued outcomes: ? USGS science vitality ? Customer satisfaction with USGS products and services ? Employee perceptions of the USGS as a rewarding place to work ? Heightened employee morale and commitment ? The ability to recruit and retain employees with critical skills To determine whether this investment of time and resources was proving to be successful, the USGS Human Resources Office conducted a Rewarding Environment Culture Study to answer the following four questions. ? Question 1: Does a rewarding work environment lead to the valued outcomes (identified above) that the USGS is seeking? ? Question 2: Which management, supervisory, and leadership behaviors contribute most to creating a rewarding work environment and to achieving the valued outcomes that the USGS is seeking? ? Question 3: Do USGS employees perceive that the USGS is a rewarding place to work? ? Question 4: What actions can and should be taken to enhance the USGS work environment? To begin the study, a conceptual model of a rewarding USGS environment was developed to test assumptions about a rewarding work environment. The Rewarding Environment model identifies the key components that are thought to contribute to a rewarding work environment and the valued outcomes that are thought to result from having a rewarding work environment. The 2002 Organizational Assessment Survey (OAS) was used as the primary data source for the study because it provided the most readily available data. Additional survey data were included as they

  6. Pressure effects on thermal conductivity and expansion of geologic materials

    International Nuclear Information System (INIS)

    Sweet, J.N.

    1979-02-01

    Through analysis of existing data, an estimate is made of the effect of pressure or depth on the thermal conductivity and expansion of geologic materials which could be present in radioactive waste repositories. In the case of homogeneous dense materials, only small shifts are predicted to occur at depths less than or equal to 3 km, and these shifts will be insignificant as compared with those caused by temperature variations. As the porosity of the medium increases, the variation of conductivity and expansion with pressure becomes greater, with conductivity increasing and expansion decreasing as pressure increases. The pressure dependence of expansion can be found from data on the temperature variation of the isobaric compressibility. In a worst case estimate, a decrease in expansion of approx. 25% is predicted for 5% porous sandstone at a depth of 3 km. The thermal conductivity of a medium with gaseous inclusions increases as the porosity decreases, with the magnitude of the increase being dependent on the details of the porosity collapse. Based on analysis of existing data on tuff and sandstone, a weighted geometric mean formula is recommended for use in calculating the conductivity of porous rock. As a result of this study, it is recommended that measurement of rock porosity versus depth receive increased attention in exploration studies and that the effect of porosity on thermal conductivity and expansion should be examined in more detail

  7. Geology, Geochemistry and Ground Magnetic Survey on Kalateh Naser Iron Ore Deposit, Khorasan Jonoubi Province

    Directory of Open Access Journals (Sweden)

    Saeed Saadat

    2017-02-01

    Full Text Available Introduction Ground magnetometer surveys is one of the oldest geophysical exploration methods used in identifying iron reserves. The correct interpretation of ground magnetic surveys, along with geological and geochemical data will not only reduce costs but also to indicate the location, depth and dimensions of the hidden reserves of iron (Robinson and Coruh, 2005; Calagari, 1992. Kalateh Naser prospecting area is located at 33° 19َ to 33° 19ََ 42" latitude and 60° 0' to 60° 9َ 35" longitude in the western side of the central Ahangaran mountain range, eastern Iran (Fig.1. Based on primary field evidences, limited outcrops of magnetite mineralization were observed and upon conducting ground magnetic survey, evidence for large Iron ore deposits were detected (Saadat, 2014. This paper presents the geological and geochemical studies and the results of magnetic measurements in the area of interest and its applicability in exploration of other potential Iron deposits in the neighboring areas. Materials and methods To better understand the geological units of the area, samples were taken and thin sections were studied. Geochemical studies were conducted through XRF and ICP-Ms and wet chemistry analysis. The ground magnetic survey was designed to take measurements from grids of 20 meter apart lines and 10 meter apart points along the north-south trend. 2000 points were measured during a 6-day field work by expert geophysicists. Records were made by Canadian manufactured product Magnetometer Proton GSM19T (Fig. 2. Properties of Proton Magnetometer using in magnetic survey in Kalateh Naser prospecting area is shown in Table 1. Total magnetic intensity map, reduced to pole magnetic map, analytic single map, first vertical derivative map and upward continuation map have been prepared for this area. Results The most significant rock units in the area are cretaceous carbonate rocks (Fig. 3. The unit turns to shale and thin bedded limestone in the

  8. U.S. Geological Survey Science Strategy for the Wyoming Landscape Conservation Initiative

    Science.gov (United States)

    Bowen, Zachary H.; Aldridge, Cameron L.; Anderson, Patrick J.; Chong, Geneva W.; Drummond, Mark A.; Homer, Collin G.; Johnson, Ronald C.; Kauffman, Matthew J.; Knick, Steven T.; Kosovich, John J.; Miller, Kirk A.; Owens, Tom; Shafer, Sarah L.; Sweat, Michael J.

    2009-01-01

    Southwest Wyoming's wildlife and habitat resources are increasingly affected by energy and urban/exurban development, climate change, and other key drivers of ecosystem change. To ensure that southwest Wyoming's wildlife populations and habitats persist in the face of development and other changes, a consortium of public resource-management agencies proposed the Wyoming Landscape Conservation Initiative (WLCI), the overall goal of which is to implement conservation actions. As the principal agency charged with conducting WLCI science, the U.S. Geological Survey (USGS) has developed a Science Strategy for the WLCI. Workshops were held for all interested parties to identify and refine the most pressing management needs for achieving WLCI goals. Research approaches for addressing those needs include developing conceptual models for understanding ecosystem function, identifying key drivers of change affecting WLCI ecosystems, and conducting scientific monitoring and experimental studies to better understand ecosystems processes, cumulative effects of change, and effectiveness of habitat treatments. The management needs drive an iterative, three-phase framework developed for structuring and growing WLCI science efforts: Phase I entails synthesizing existing information to assess current conditions, determining what is already known about WLCI ecosystems, and providing a foundation for future work; Phase II entails conducting targeted research and monitoring to address gaps in data and knowledge during Phase I; and Phase III entails integrating new knowledge into WLCI activities and coordinating WLCI partners and collaborators. Throughout all three phases, information is managed and made accessible to interested parties and used to guide and improve management and conservation actions, future habitat treatments, best management practices, and other conservation activities.

  9. Contributions to a Brazilian Code of Conduct for Fieldwork in Geology: an approach based on Geoconservation and Geoethics.

    Science.gov (United States)

    Mansur, Kátia L; Ponciano, Luiza C M O; Castro, Aline R S F DE

    2017-05-01

    When considering the numerous events that have prohibited the development of scientific projects or caused destruction of outcrops, it is clear that there is rapidly increasing necessity to define a Brazilian Code of Conduct for geological fieldwork. In general, this destruction is attributed to lack of knowledge as to the relevance of geological sites. The aim of this Code of Conduct is to guide geologists to adopt good practices during geoscience activities. Proposed guidelines are based on Codes of Conduct from other countries, mainly Scotland and England, on situations described in papers and on the personal experience of the authors. In this paper 29 points are suggested, in order to guarantee that fieldwork is conducted in accordance with geoethics, geoconservation and sustainability values. The proposal is structured in three parts: (1) Behavior and practices in respect to local traditions and providing information to the population; (2) Measures to minimize degradation on outcrops; and (3) Safety. The proposal seeks to broaden the debate on the need for responsible behavior during fieldwork, in order to promote respect for geodiversity. Through this code, Brazilian geoscientists will be able to contribute to the conservation of geological heritage and of outcrops with special educational relevance.

  10. BGS·SIGMA - Digital mapping at the British Geological Survey

    Science.gov (United States)

    Smith, Nichola; Lawrie, Ken

    2017-04-01

    Geological mapping methods have evolved significantly over recent decades and this has included the transition to digital field data capture. BGS has been developing methodologies and technologies for this since 2001, and has now reached a stage where our custom built data capture and map compilation system (BGS·SIGMAv2015) is the default toolkit, within BGS, for bedrock and superficial mapping across the UK and overseas. In addition, BGS scientists also use the system for other data acquisition projects, such as landslide assessment, geodiversity audits and building stone studies. BGS·SIGMAv2015 is an integrated toolkit which enables assembly, interrogation and visualisation of existing geological information; capture of, and integration with, new data and geological interpretations; and delivery of digital products and services. From its early days as a system which used PocketGIS run on Husky Fex21 hardware, to the present day system, developed using ESRI's ArcGIS built on top of a bespoke relational data model, running on ruggedized tablet PCs with integrated GPS units, the system has evolved into a comprehensive system for digital geological data capture, mapping and compilation. The benefits, for BGS, of digital data capture are huge. Not only are the data being gathered in a standardised format, with the use of dictionaries to ensure consistency, but project teams can start building their digital geological map in the field by merging data collected by colleagues, building line-work and polygons, and subsequently identifying areas for further investigation. This digital data can then be easily incorporated into corporate databases and used in 3D modelling and visualisation software once back in the office. BGS is now at a stage where the free external release of our digital mapping system is in demand across the world, with 3000 licences being issued to date, and is successfully being used by other geological surveys, universities and exploration companies

  11. Application of the geological surveying methods employed at Gorleben to cavern projects in the central European zechstein basin

    International Nuclear Information System (INIS)

    Wilke, F.; Bornemann, O.; Behlau, J.; Mingerzahn, G.

    2002-01-01

    The investigations at Gorleben date back more than 20 years. New methods were developed and applied, especially for detailed stratigraphic and geochemical characterization of the zechstein formation and also geophysical survey methods and geological mapping of complex folds in saline structures. The greatest feat was the 3D imaging of all geological information accompanied by visualization of complex stratigraphic entities [de

  12. The U.S. Geological Survey cartographic and geographic information science research activities 2006-2010

    Science.gov (United States)

    Usery, E. Lynn

    2011-01-01

    The U.S. Geological Survey (USGS) produces geospatial databases and topographic maps for the United States of America. A part of that mission includes conducting research in geographic information science (GIScience) and cartography to support mapping and improve the design, quality, delivery, and use of geospatial data and topographic maps. The Center of Excellence for Geospatial Information Science (CEGIS) was established by the USGS in January 2006 as a part of the National Geospatial Program Office. CEGIS (http://cegis.usgs.gov) evolved from a team of cartographic researchers at the Mid-Continent Mapping Center. The team became known as the Cartographic Research group and was supported by the Cooperative Topographic Mapping, Geographic Analysis and Monitoring, and Land Remote Sensing programs of the Geography Discipline of the USGS from 1999-2005. In 2006, the Cartographic Research group and its projects (http://carto-research.er.usgs.gov/) became the core of CEGIS staff and research. In 2006, CEGIS research became focused on The National Map (http://nationalmap.gov).

  13. The interoperability skill of the Geographic Portal of the ISPRA - Geological Survey of Italy

    Science.gov (United States)

    Pia Congi, Maria; Campo, Valentina; Cipolloni, Carlo; Delogu, Daniela; Ventura, Renato; Battaglini, Loredana

    2010-05-01

    The Geographic Portal of Geological Survey of Italy (ISPRA) available at http://serviziogeologico.apat.it/Portal was planning according to standard criteria of the INSPIRE directive. ArcIMS services and at the same time WMS and WFS services had been realized to satisfy the different clients. For each database and web-services the metadata had been wrote in agreement with the ISO 19115. The management architecture of the portal allow it to encode the clients input and output requests both in ArcXML and in GML language. The web-applications and web-services had been realized for each database owner of Land Protection and Georesources Department concerning the geological map at the scale 1:50.000 (CARG Project) and 1:100.000, the IFFI landslide inventory, the boreholes due Law 464/84, the large-scale geological map and all the raster format maps. The portal thus far published is at the experimental stage but through the development of a new graphical interface achieves the final version. The WMS and WFS services including metadata will be re-designed. The validity of the methodology and the applied standards allow to look ahead to the growing developments. In addition to this it must be borne in mind that the capacity of the new geological standard language (GeoSciML), which is already incorporated in the web-services deployed, will be allow a better display and query of the geological data according to the interoperability. The characteristics of the geological data demand for the cartographic mapping specific libraries of symbols not yet available in a WMS service. This is an other aspect regards the standards of the geological informations. Therefore at the moment were carried out: - a library of geological symbols to be used for printing, with a sketch of system colors and a library for displaying data on video, which almost completely solves the problems of the coverage point and area data (also directed) but that still introduces problems for the linear data

  14. Resources for Teaching About Evolution from the U.S. Geological Survey

    Science.gov (United States)

    Gordon, L. C.

    2001-12-01

    As a scientific research agency, the U.S. Geological Survey (USGS) is in an ideal position to provide scientific information and resources to educators. The USGS is not a curriculum developer, nor an expert in pedagogy, yet the USGS does have a wealth of scientific information on subjects such as fossils, geologic time, biological resources and plate tectonics that naturally come in to play in the teaching of evolution. Among USGS resources are the general interest pamphlets Geologic Time, Dinosaurs: Facts And Fiction, Our Changing Continent, and Fossils Rocks, and Time, and its accompanying poster, Fossils Through Time. In addition to printed versions, the pamphlets are available at no cost on the Internet at http://pubs.usgs.gov/gip/. The popular booklet, This Dynamic Earth: The Story of Plate Tectonics, available at http://pubs.usgs.gov/publications/text/dynamic.html, touches on evolution-related subjects such as Alfred Wegener's use of fossils to develop his theory of continental drift, "polar" dinosaur fossils found in Australia, marine fossils in the rocks of the Himalayas, and the use of fossil ages to determine rates of plate motions. Paleontological research at the USGS is highlighted on the Internet at http://geology.er.usgs.gov/paleo/. The web site includes links to technical publications, profiles of scientists, a geologic time scale, a glossary, information on important fossil groups, and a list of non-USGS references on fossils: all very useful to educators. A wealth of biological information and data can be found in the National Biological Information Infrastructure (NBII), a multi-agency collaborative program led by the USGS. In addition to data on the Nation's biological resources, the NBII web site http://www.nbii.gov/ includes a section on systematics and scientific names (helpful for illustrating the evolutionary relationships among living organisms), and links to non-USGS curriculum materials. A fact sheet, Unveiling the NBII as a Teaching

  15. Chapter A6. Section 6.3. Specific Electrical Conductance

    Science.gov (United States)

    Radtke, Dean B.; Davis, Jerri V.; Wilde, Franceska D.

    2005-01-01

    Electrical conductance is a measure of the capacity of a substance to conduct an electrical current. The specific electrical conductance (conductivity) of water is a function of the types and quantities of dissolved substances it contains, normalized to a unit length and unit cross section at a specified temperature. This section of the National Field Manual (NFM) describes U.S. Geological Survey (USGS) guidance and protocols for measurement of conductivity in ground and surface waters.

  16. Remotely sensed data available from the US Geological Survey EROS Data Center

    Science.gov (United States)

    Dwyer, John L.; Qu, J.J.; Gao, W.; Kafatos, M.; Murphy , R.E.; Salomonson, V.V.

    2006-01-01

    The Center for Earth Resources Observation Systems (EROS) is a field center of the geography discipline within the US geological survey (USGS) of the Department of the Interior. The EROS Data Center (EDC) was established in the early 1970s as the nation’s principal archive of remotely sensed data. Initially the EDC was responsible for the archive, reproduction, and distribution of black-and-white and color-infrared aerial photography acquired under numerous mapping programs conducted by various Federal agencies including the USGS, Department of Agriculture, Environmental Protection Agency, and NASA. The EDC was also designated the central archive for data acquired by the first satellite sensor designed for broad-scale earth observations in support of civilian agency needs for earth resource information. A four-band multispectral scanner (MSS) and a return-beam vidicon (RBV) camera were initially flown on the Earth Resources Technology Satellite-1, subsequently designated Landsat-1. The synoptic coverage, moderate spatial resolution, and multi-spectral view provided by these data stimulated scientists with an unprecedented perspective from which to study the Earth’s surface and to understand the relationships between human activity and natural systems.

  17. Report on geomorphologic and geologic field surveys in central Dronning Maud Land, 2015-2016 (JARE-57

    Directory of Open Access Journals (Sweden)

    Yusuke Suganuma

    2016-09-01

    Full Text Available Geomorphologic and geologic field surveys were conducted in central Dronning Maud Land during the summer of 2015-2016 as part of the 57th Japanese Antarctic Research Expedition (JARE-57. The members of the field expedition included three geomorphologists, a geologist, and a field assistant. This field expedition was fully supported by the Norwegian Polar Institute (NPI and the South African National Antarctic Program (SANAP, and it was the first JARE expedition to use the Troll and SANAE stations. The NPI provided airborne access from Germany (Norway, on the way back to the Troll station in central Dronning Maud Land via Cape Town, South Africa. The SANAP provided a helicopter to access nunataks and mountains in this area from the Troll and SANAE stations. This report summarizes the activities of this field expedition including fieldwork, logistics, and weather observations.

  18. Design of a statewide radiation survey

    International Nuclear Information System (INIS)

    Nagda, N.L.; Koontz, M.D.; Rector, H.E.; Nifong, G.D.

    1989-01-01

    The Florida Institute of Phosphate Research (FIPR) recently sponsored a statewide survey to identify all significant land areas in Florida where the state's environmental radiation rule should be applied. Under this rule, newly constructed buildings must be tested for radiation levels unless approved construction techniques are used. Two parallel surveys - a land-based survey and a population-based survey - were designed and conducted to address the objective. Each survey included measurements in more than 3000 residences throughout the state. Other information sources that existed at the outset of the study, such as geologic profiles mapped by previous investigators and terrestrial uranium levels characterized through aerial gamma radiation surveys, were also examined. Initial data analysis efforts focused on determining the extent of evidence of radon potential for each of 67 counties in the state. Within 18 countries that were determined to have definite evidence of elevated radon potential, more detailed spatial analyses were conducted to identify areas of which the rule should apply. A total of 74 quadrangles delineated by the U.S. Geological Survey, representing about 7% of those constituting the state, were identified as having elevated radon potential and being subject to the rule

  19. Geologic map of Big Bend National Park, Texas

    Science.gov (United States)

    Turner, Kenzie J.; Berry, Margaret E.; Page, William R.; Lehman, Thomas M.; Bohannon, Robert G.; Scott, Robert B.; Miggins, Daniel P.; Budahn, James R.; Cooper, Roger W.; Drenth, Benjamin J.; Anderson, Eric D.; Williams, Van S.

    2011-01-01

    The purpose of this map is to provide the National Park Service and the public with an updated digital geologic map of Big Bend National Park (BBNP). The geologic map report of Maxwell and others (1967) provides a fully comprehensive account of the important volcanic, structural, geomorphological, and paleontological features that define BBNP. However, the map is on a geographically distorted planimetric base and lacks topography, which has caused difficulty in conducting GIS-based data analyses and georeferencing the many geologic features investigated and depicted on the map. In addition, the map is outdated, excluding significant data from numerous studies that have been carried out since its publication more than 40 years ago. This report includes a modern digital geologic map that can be utilized with standard GIS applications to aid BBNP researchers in geologic data analysis, natural resource and ecosystem management, monitoring, assessment, inventory activities, and educational and recreational uses. The digital map incorporates new data, many revisions, and greater detail than the original map. Although some geologic issues remain unresolved for BBNP, the updated map serves as a foundation for addressing those issues. Funding for the Big Bend National Park geologic map was provided by the United States Geological Survey (USGS) National Cooperative Geologic Mapping Program and the National Park Service. The Big Bend mapping project was administered by staff in the USGS Geology and Environmental Change Science Center, Denver, Colo. Members of the USGS Mineral and Environmental Resources Science Center completed investigations in parallel with the geologic mapping project. Results of these investigations addressed some significant current issues in BBNP and the U.S.-Mexico border region, including contaminants and human health, ecosystems, and water resources. Funding for the high-resolution aeromagnetic survey in BBNP, and associated data analyses and

  20. Archive of Geosample Information from the Geological Survey of Canada Atlantic (GSC A) Marine Geoscience Curation Facility

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Geological Survey of Canada Atlantic (GSC A) Marine Geoscience Curation Facility contributed information on 40,428 cores, grabs, and dredges in their holdings to...

  1. Twenty-Sixth Annual Report of the Director of the United States Geological Survey, 1904-1905

    Science.gov (United States)

    Walcott, Charles D.

    1905-01-01

    IntroductionRemarks on the work of the yearBranches of workThe United States Geological Survey was created in 1879 for the purpose—as its name implies—of examining and reporting on the geologic structure and mineral resources and products of the national domain. To the adequate description of geologic formations and structure cartography is essential, and Congress early recognized this fact by making appropriations for the preparation of a geologic map of the United States. The topographic base map, in order to show with sufficient precision the relations of the geologic formations and the intricacies of the structure, must have a rather large scale and present considerable detail. No such map of this country existed in 1879, and its preparation was immediately begun. The waters of the country are of vast importance, and in a broad sense may be regarded as one of its greatest mineral resources. Hence, in the evolution of the work of the Survey, and especially in view of the great importance of the subject to the irrigation interests, Congress early began making appropriations for ascertaining the amount and quality of the surface and underground waters and when, in 1902, the service for the reclamation of arid lands was organized, that work naturally was placed in the hands of the Secretary of the Interior and by him intrusted to the Director of the Survey.The three great branches of work carried on by the Geological Survey are, therefore, the geologic, the topographic, and the hydrographic, and with these, more especially the latter, is conjoined the Reclamation Service ; publication and administration constitute necessary auxiliary branches. Along these great lines the work of the Survey has progressed without essential variation for many years. The changes made have been due to normal expansion rather than to radical departure in object or plan.State cooperationDuring the last fiscal year, State cooperation, as explained in previous reports, continued

  2. Bibliography of publications prepared by US Geological Survey personnel under cooperative programs with the US Department of Energy and predecessor agencies, 1957--1991, with emphasis on nuclear testing programs

    International Nuclear Information System (INIS)

    Glanzman, V.M.

    1992-01-01

    The US Geological Survey has participated in continuing studies related to nuclear energy in cooperation with the US Department of Energy and predecessor agencies since the 1940's. Geologic, geophysical and hydrologic studies have been conducted to aid in mineral exploration; in support of the nuclear weapons testing programs at the Nevada Test Site and several other locations; in support of the Plowshare Program for peaceful uses of nuclear explosions; and in the search for potential radioactive waste disposal sites. This bibliography contains alphabetical listings of 850 publications and 95 additional abstracts related to these investigations from 1957 through 1991, and contains an extensive index based on title-subject keywords

  3. Geologic survey of a geothermal heating plant at the Hovdejordet, Bodoe tenant association, Bodoe

    International Nuclear Information System (INIS)

    Elvebakk, Harald; Midttoemme, Kirsti; Skarphagen, Helge

    2002-01-01

    The Norwegian Geological Survey (NGU) has investigated the possibilities of finding a suitable heating source for heat pump based heating for the Bodoe tenant association's new housing at the Hovdejordet in central Bodoe. Energy extraction from solid rock was found to be possible. A 170 m deep well was drilled and studied by use of optic televiewer. In addition, the temperature, electrical conductivity and natural gamma radiation were logged. Heat conductivity in mineral test samples from the area was measured as well. The heat conductivity in the ground rock was good i.e. it would be possible to get relatively much heat from each drilled meter of well. The clay covering above the rock is less than 10 m which implies that large drill costs for drilling in large uncompacted material covers may be avoided. The drill hole logging with the televiewer showed a significant main fracture direction which coincided with the rock stri ata and fall in the area. There are many mineralised fractures but fractures with measurable openings were not observed. This may imply small ground water flows and a sizeable contribution from this source may therefore not be counted on. The temperature gradient is small. The drilling of deep wells would then not lead to significant energy gains. A temporary conclusion is that it would be profitable to combine energy extraction from outdoor air and energy wells. Preliminary suggestions are prepared for drill hole based energy storage

  4. U.S. Geological Survey ArcMap Sediment Classification tool

    Science.gov (United States)

    O'Malley, John

    2007-01-01

    The U.S. Geological Survey (USGS) ArcMap Sediment Classification tool is a custom toolbar that extends the Environmental Systems Research Institute, Inc. (ESRI) ArcGIS 9.2 Desktop application to aid in the analysis of seabed sediment classification. The tool uses as input either a point data layer with field attributes containing percentage of gravel, sand, silt, and clay or four raster data layers representing a percentage of sediment (0-100%) for the various sediment grain size analysis: sand, gravel, silt and clay. This tool is designed to analyze the percent of sediment at a given location and classify the sediments according to either the Folk (1954, 1974) or Shepard (1954) as modified by Schlee(1973) classification schemes. The sediment analysis tool is based upon the USGS SEDCLASS program (Poppe, et al. 2004).

  5. Groundwater technical procedures of the U.S. Geological Survey

    Science.gov (United States)

    Cunningham, William L.; Schalk, Charles W.

    2011-01-01

    A series of groundwater technical procedures documents (GWPDs) has been released by the U.S. Geological Survey, Water-Resources Discipline, for general use by the public. These technical procedures were written in response to the need for standardized technical procedures of many aspects of groundwater science, including site and measuring-point establishment, measurement of water levels, and measurement of well discharge. The techniques are described in the GWPDs in concise language and are accompanied by necessary figures and tables derived from cited manuals, reports, and other documents. Because a goal of this series of procedures is to remain current with the state of the science, and because procedures change over time, this report is released in an online format only. As new procedures are developed and released, they will be linked to this document.

  6. Modeling in low-level radioactive waste management from the US Geological Survey perspective

    International Nuclear Information System (INIS)

    Robertson, J.B.

    1980-01-01

    The United States Geological Survey (USGS) is a long-standing proponent of using models as tools in geohydrologic investigations. These models vary from maps and core samples to elaborate digital computer algorithms, depending on the needed application and resources available. Being a non-regulatory scientific agency, the USGS uses models primarily for: improving modeling technology, testing hypotheses, management of water resources, providing technical advice to other agencies, parameter sensitivity analysis, and determination of parameter values (inverse problems). At low-level radioactive waste disposal sites, we are most interested in developing better capabilities for understanding the groundwater flor regime within and away from burial trenches, geochemical factors affecting nuclide concentration and mobility in groundwater, and the effects that various changes in the geohydrologic conditions have on groundwater flow and nuclide migration. Although the Geological Survey has modeling capabilities in a variety of complex problems, significant deficiencies and limitations remain in certain areas, such as fracture flow conditions and solute transport in the unsaturated zone. However, even more serious are the deficiencies in measuring or estimating adequate input data for models and verification of model utility on real problems. Flow and transport models are being used by the USGS in several low-level disposal site studies, with varying degrees of sucess

  7. Comprenhensive Program of Engineering and Geologic Surveys for Designing and Constructing Radioactive Waste Storage Facilities in Hard Rock Massifs

    International Nuclear Information System (INIS)

    Gupalo, T.; Milovidov, V.; Prokopoca, O.; Jardine, L.

    2002-01-01

    Geological, geophysical, and engineering-geological research conducted at the 'Yeniseisky' site obtained data on climatic, geomorphologic, geological conditions, structure and properties of composing rock, and conditions of underground water recharge and discharge. These results provide suficient information to make an estimate of the suitability of locating a radioactive waste (RW) underground isolation facility at the Nizhnekansky granitoid massif.

  8. Report for fiscal 1998 on basic commercialization survey related to geological structure surveys in overseas countries (Manguerra, the Philippines); 1998 nendo kaigai chishitsu kozo nado chosa ni kakawaru kigyoka kiso chosa (Philippines Manguerra) hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Commercialization survey was performed on the mines in the Manguerra district in the Philippines by means of geological structure surveys. The site surveys included geological and test drilling surveys, and those on conditions for developing underground mining mines, and infrastructures. The geological survey area spread out about 5 km{sup 2}, two test wells were drilled (to depths of 330 m and 290 m), trench survey was performed on 58 locations, and coal sample collection and analysis were carried out on eight locations. Furthermore, surveys were extended to the Manguerra mine operating status, on-the-ground facilities, roads for transportation, marketing, and related laws and regulations. As a result of the surveys, the Manguerra district was suggested of frequent sea water inundation into the coal field, leading to a view that the district is unstable from the viewpoint of development of coal beds. However, samples collected from the existing mining area indicated to have less water content and ash and high calorific power. The coal has high product value. The result of coal quantity calculation indicated 320122 tons as the total of defined and estimated quantity. The great depth mining plan was prepared from the viewpoints of actual yield, productivity, safety aspects, technological enhancement, and suppression of additional investments to minimum. (NEDO)

  9. Integrated geophysical survey for the geological structural and hydrogeothermal study of the North-western Gargano promontory (Southern Italy

    Directory of Open Access Journals (Sweden)

    D. Schiavone

    1996-06-01

    Full Text Available A multimethodological geophysical survey was performed in the north-western part of the Gargano promontory to study the geological structural setting and the underground fluid flow characteristics. The area has a complex tectonics with some magmatic outcrops and shallow low-enthalpy waters. Electrical, seismic reflection, gravimetric and magnetic surveys were carried out to reconstruct the geological structures; and in order to delineate the hydrogeothermal characteristics of the area, the self-potential survey was mainly used. Moreover magnetic and self-potential measurements were also performed in the Lesina lake. The joint three-dimensional interpretation of the geophysical data disclosed a large horst and graben structure covering a large part of the area. In the central part of the horst a large ramified volcanic body was modelled. The models show some intrusions rising from it to or near to the surface. The main structures are well deep-seated in the Crust and along them deep warm fluids rise as the SP data interpretation indicates.

  10. Survey of the geological characteristics on the Japanese Islands for disposal of RI and research institute waste

    Energy Technology Data Exchange (ETDEWEB)

    Hagiwara, Shigeru [Chuo Kaihatsu Co., Ltd., Tokyo (Japan); Sakamoto, Yoshiaki; Takebe, Shinichi; Ogawa, Hiromichi; Nakayama, Shinichi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2002-12-01

    In the disposal of radioactive wastes arising from radioisotope utilization facilities and nuclear research facilities, it is necessary to establish the disposal system in proportion to half-lives of radionuclides and radioactivity concentrations in the wastes. According to this disposal system, the radioactive waste should be buried in the underground near the surface, shallow position and deep position. Therefore, it is important to grasp the features of the earth scientific phenomena and geological structure for the disposal system of radioactive waste. Then, for the purpose of the survey of the geological characteristics around the Japanese Islands whole neighborhood, the earth scientific phenomena at present, the geological structure and geotectonic history were summarized on the basis of the existing literatures. (author)

  11. Investigations and research in Nevada by the Water Resources Division, U.S. Geological Survey, 1982

    Science.gov (United States)

    Katzer, Terry; Moosburner, Otto; Nichols, W.D.

    1984-01-01

    The Water Resources Division, U.S. Geological Survey, is charged with (1) maintaining a hydrologic network in Nevada that provides information on the status of the State 's water resources and (2) engaging in technical water-resources investigations that have a high degree of transferability. To meet these broad objectives, 26 projects were active during fiscal year 1982, in cooperation with 36 Federal, State, and local agencies. Total funds were $3,319,455, of which State and local cooperative funding amounted to $741,500 and Federal funding (comprised of Geological Survey Federal and cooperative program plus funds from six other Federal agencies) amounted to $2,577,955 for the fiscal year. Projects other than continuing programs for collection of hydrologic data included the following topics of study: geothermal resources, areal ground-water resources and ground-water modeling, waste disposal , paleohydrology, acid mine drainage, the unsaturated zone, stream and reservoir sedimentation, river-quality modeling, flood hazards, and remote sensing in hydrology. In total, 26 reports and symposium abstracts were published or in press during fiscal year 1982. (USGS)

  12. Nevada Test Site flood inundation study: Part of US Geological Survey flood potential and debris hazard study, Yucca Mountain Site for USDOE, Office of Civilian Radioactive Waste Management

    International Nuclear Information System (INIS)

    Blanton, J.O. III.

    1992-01-01

    The Geological Survey (GS), as part of the Yucca Mountain Project (YMP), is conducting studies at Yucca Mountain, Nevada. The purposes of these studies are to provide hydrologic and geologic information to evaluate the suitability of Yucca Mountain for development as a high-level nuclear waste repository, and to evaluate the ability of the mined geologic disposal system (MGDS) to isolate the waste in compliance with regulatory requirements. The Bureau of Reclamation was selected by the GS as a contractor to provide probable maximum flood (PMF) magnitudes and associated inundation maps for preliminary engineering design of the surface facilities at Yucca Mountain. These PMF peak flow estimates and associated inundation maps are necessary for successful waste repository design and construction. The standard step method for backwater computations, incorporating the Bernouli energy equation and the results of the PMF study were chosen as the basis for defining the areal extent of flooding

  13. Reliable and adequateengineering surveys for construction: the rule of two D

    Directory of Open Access Journals (Sweden)

    Rakitina Natal'ya Nikolaevna

    2014-01-01

    Full Text Available In the article the current state of quality supply of engineering surveys for construction is discussed. The main criteria for improving the design quality of buildings and structures for industrial, civil and other purposes is the reliability and adequacy of the results of engineering-geological surveys. The authors show the examples of inadequate study of engineering-geological conditions in the design of structures that led to emergency situations. Consideration of the reasons of accidents in structures showed that they are caused by lack of research conducted, the underestimation of the complexity of geological conditions. In the process of conducting geotechnical investigations the works were focused directly in the enclosure of a designed building, and the features of geological and hydrogeological conditions of the off-site were much more complex. In the process of construction during the sinking of the pit activation suffusion processes occurred, which led to an accident. Underestimation of the use of these geological funds in this example shows that even in the presence of fund materials, which are currently almost not increased, errors may occur due to the notorious savings for research. The requirements to ensuring the reliability and adequacy of engineering-geological surveys, which the authors call "The Rule of two D" (in Russian — Reliability and Adequacy, lie in the existing legal acts. The practice of fulfilling requirements to a large extend shows that the desire to save money at the stage of design and exploration works results in additional costs for additional design, recovery from accidents and works on a new project. The authors critically evaluated the development of engineering and geotechnical engineering instead of geological survey, which is not methodologically and theoretically substantiated and leads to the excluding from engineering surveys the consideration of the off-site geotechnical conditions directly below

  14. Designing and conducting survey research a comprehensive guide

    CERN Document Server

    Rea, Louis M

    2014-01-01

    The industry standard guide, updated with new ideas and SPSS analysis techniques Designing and Conducting Survey Research: A Comprehensive Guide Fourth Edition is the industry standard resource that covers all major components of the survey process, updated to include new data analysis techniques and SPSS procedures with sample data sets online. The book offers practical, actionable guidance on constructing the instrument, administrating the process, and analyzing and reporting the results, providing extensive examples and worksheets that demonstrate the appropriate use of survey and data tech

  15. U.S. Geological Survey Science at the Intersection of Health and Environment

    Science.gov (United States)

    Kimball, S. M.; Plumlee, G. S.

    2016-12-01

    People worldwide worry about how their environment affects their health, and expect scientists to help address these concerns. The OneHealth concept recognizes the crucial linkages between environment, human health, and health of other organisms. Many US Geological Survey science activities directly examine or help inform how the Earth and the environment influence toxicological and infectious diseases. Key is our ability to bring to bear a collective expertise in environmental processes, geology, hydrology, hazards, microbiology, analytical chemistry, ecosystems, energy/mineral resources, geospatial technologies, and other disciplines. Our science examines sources, environmental transport and fate, biological effects, and human exposure pathways of many microbial (e.g. bacteria, protozoans, viruses, fungi), inorganic (e.g. asbestos, arsenic, lead, mercury) and organic (e.g. algal toxins, pesticides, pharmaceuticals) contaminants from geologic, anthropogenic, and disaster sources. We develop new laboratory, experimental, and field methods to analyze, model, and map contaminants, to determine their baseline and natural background levels, and to measure their biological effects. We examine the origins, environmental persistence, wildlife effects, and potential for transmission to humans of pathogens that cause zoonotic or vector-borne diseases (e.g., avian influenza or West Nile virus). Collaborations with human health scientists from many organizations are essential. For example, our work with epidemiologists and toxicologists helps understand the exposure pathways and roles of geologically sourced toxicants such as arsenic (via drinking water) and asbestos (via dusts) in cancer. Work with pulmonologists and pathologists helps clarify the sources and fate of inhaled mineral particles in lungs. Wildlife health scientists help human health scientists assess animals as sentinels of human disease. Such transdisciplinary science is essential at the intersection of health

  16. Manual for conducting radiological surveys in support of license termination

    International Nuclear Information System (INIS)

    Berger, J.D.

    1992-06-01

    This document describes a process for conducting radiological surveys during decommissioning, to demonstrate that residual radioactive material satisfies criteria established by the U.S. Nuclear Regulatory Commission (NRC) for termination of a license. The Manual describes procedures for design and conduct of surveys in a manner which will provide a high degree of assurance that NRC guidelines and conditions have been satisfied. The Manual also describes methods for documenting the survey findings in a final report to the NRC. This Manual updates information contained in NUREG/CR-2082, Monitoring for Compliance with Decommissioning Termination Survey Criteria, (ORNL 1981). It incorporates statistical approaches to survey design and data interpretation used by the Environmental Protection Agency for evaluation of hazardous materials sites under Superfund (CERCLA). Quality assurance is emphasized throughout. (author)

  17. Geologic and geochemical studies of the New Albany Shale Group (Devonian-Mississippian) in Illinois. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bergstrom, R.E.; Shimp, N.F.

    1980-06-30

    The Illinois State Geological Survey is conducting geological and geochemical investigations to evaluate the potential of New Albany Group shales as a source of hydrocarbons, particularly natural gas. Geological studies include stratigraphy and structure, mineralogic and petrographic characterization; analyses of physical properties; and development of a computer-based resources evaluation system. Geochemical studies include organic carbon content and trace elements; hydrocarbon content and composition; and adsorption/desorption studies of gas through shales. Separate abstracts have been prepared for each task reported.

  18. Factors Influencing the Success of Women in the Geosciences: An Example from the U.S. Geological Survey

    Science.gov (United States)

    Gundersen, Linda C. S.

    2010-05-01

    A review of my education and 30 year career at the U.S. Geological Survey (USGS), starting as a field assistant in 1979 to becoming Chief Scientist for Geology in 2001, reveals some of the critical success factors for women in the geosciences as well as factors that inhibit success. Women comprised 5% of the geosciences workforce when I started as an undergraduate in 1975, so why did I pursue the geosciences? A high school course covering earth and biological field science was taught by an excellent teacher who encouraged me to pursue geology. In college, several factors influenced my continuation in geology: two supportive mentors, an earth science department providing a broad diversity of courses; opportunities to take graduate courses, interaction with graduate students, and doing an undergraduate thesis. Most important was the individual attention given to undergraduates by both faculty and graduates regardless of gender. The summer intern program sponsored by the National Association of Geology Teachers and the USGS was a deciding factor to my becoming a geoscientist in the public service. Family and job concerns made it difficult to complete a doctorate however, and there existed gender bias against women conducting field work. Critical factors for success at USGS included: dealing ethically, openly, and immediately with gender-biased behavior, taking on responsibilities and science projects out of my "comfort zone", having the support of mentors and colleagues, and always performing at the highest level. In the past 15 years, there have been many "first" women in various leadership roles within the USGS, and now, after 131 years, we have the first woman Director. It is important to note that as gender barriers are broken at the upper levels in an organization, it paves the way for others. Statistics regarding women are improving in terms of percentage of enrollment in degrees and jobs in the private, public, and academic sectors. Women, however, still bear

  19. U.S. Geological Survey experience with the residual absolutes method

    Directory of Open Access Journals (Sweden)

    E. W. Worthington

    2017-10-01

    Full Text Available The U.S. Geological Survey (USGS Geomagnetism Program has developed and tested the residual method of absolutes, with the assistance of the Danish Technical University's (DTU Geomagnetism Program. Three years of testing were performed at College Magnetic Observatory (CMO, Fairbanks, Alaska, to compare the residual method with the null method. Results show that the two methods compare very well with each other and both sets of baseline data were used to process the 2015 definitive data. The residual method will be implemented at the other USGS high-latitude geomagnetic observatories in the summer of 2017 and 2018.

  20. Geology and resource assessment of Costa Rica at 1:500,000 scale; a digital representation of maps of the U.S. Geological Survey's 1987 folio I-1865

    Science.gov (United States)

    Schruben, Paul G.

    1997-01-01

    This CD-ROM contains digital versions of the geology and resource assessment maps of Costa Rica originally published in USGS Folio I-1865 (U.S. Geological Survey, the Direccion General de Geologia, Minas e Hidrocarburos, and the Universidad de Costa Rica, 1987) at a scale of 1:500,000. The following layers are available on the CD-ROM: geology and faults; favorable domains for selected deposit types; Bouguer gravity data; isostatic gravity contours; mineral deposits, prospects, and occurrences; and rock geochemistry sample points. For DOS users, the CD-ROM contains MAPPER, a user-friendly map display program. Some of the maps are also provided in the following additional formats on the CD-ROM: (1) ArcView 1 and 3, (2) ARC/INFO 6.1.2 Export, (3) Digital Line Graph (DLG) Optional, and (4) Drawing Exchange File (DXF.)

  1. An integrated system for conducting radiological surveys of contaminated sites - 16312

    International Nuclear Information System (INIS)

    McCown, Jay P.; Rogers, Donna M.; Waggoner, Charles A.

    2009-01-01

    This paper describes an integrated detection system that has been developed to conduct radiological surveys of sites suspected of contamination of materials such as depleted uranium. This system utilizes cerium activated lanthanum bromide and thallium activated sodium iodide gamma detectors and can be easily adapted to include units for detecting neutrons. The detection system includes software controlling the collection of radiological spectra and GPS data. Two different platforms are described for conducting surveys, a modified zero turn radius (ZTR) mower and a three-wheeled cart that is manually pushed. The detection system software controlling data collection has components that facilitate completing a grid-less survey on user specified spacings. Another package confirms that all data quality activities (calibrations, etc.) are conducted prior to beginning the survey and also reviews data to identify areas that have been missed for which data quality falls below user designated parameters. Advanced digital signal processing algorithms are used to enhance the interpretation of spectra for conducting background subtractions and for mapping. Data from radiation detection instruments and GPS antennae are merged and made compatible with mapping using Geosoft Oasis montaj software. A summary of system performance during field-testing is included in the paper. This includes survey rate, detection limits, duty cycle, supporting ancillary equipment/material, and manpower requirements. The rate of false positives and false negatives is discussed with the benefits of surveys conducted using synergetic detection systems such as electromagnetic induction imaging. (authors)

  2. Verification study on technology for preliminary investigation for HLW geological disposal. Part 2. Verification of surface geophysical prospecting through establishing site descriptive models

    International Nuclear Information System (INIS)

    Kondo, Hirofumi; Suzuki, Koichi; Hasegawa, Takuma; Goto, Keiichiro; Yoshimura, Kimitaka; Muramoto, Shigenori

    2012-01-01

    The Yokosuka demonstration and validation project using Yokosuka CRIEPI site has been conducted since FY 2006 as a cooperative research between NUMO (Nuclear Waste Management Organization of Japan) and CRIEPI. The objectives of this project are to examine and to refine the basic methodology of the investigation and assessment of properties of geological environment in the stage of Preliminary Investigation for HLW geological disposal. Within Preliminary Investigation technologies, surface geophysical prospecting is an important means of obtaining information from deep geological environment for planning borehole surveys. In FY 2010, both seismic prospecting (seismic reflection and vertical seismic profiling methods) for obtaining information about geological structure and electromagnetic prospecting (magneto-telluric and time domain electromagnetic methods) for obtaining information about resistivity structure reflecting the distribution of salt water/fresh water boundary to a depth of over several hundred meters were conducted in the Yokosuka CRIEPI site. Through these surveys, the contribution of geophysical prospecting methods in the surface survey stage to improving the reliability of site descriptive models was confirmed. (author)

  3. Analytical methods manual for the Mineral Resource Surveys Program, U.S. Geological Survey

    Science.gov (United States)

    Arbogast, Belinda F.

    1996-01-01

    The analytical methods validated by the Mineral Resource Surveys Program, Geologic Division, is the subject of this manual. This edition replaces the methods portion of Open-File Report 90-668 published in 1990. Newer methods may be used which have been approved by the quality assurance (QA) project and are on file with the QA coordinator.This manual is intended primarily for use by laboratory scientists; this manual can also assist laboratory users to evaluate the data they receive. The analytical methods are written in a step by step approach so that they may be used as a training tool and provide detailed documentation of the procedures for quality assurance. A "Catalog of Services" is available for customer (submitter) use with brief listings of:the element(s)/species determined,method of determination,reference to cite,contact person,summary of the technique,and analyte concentration range.For a copy please contact the Branch office at (303) 236-1800 or fax (303) 236-3200.

  4. Israel Geological Society, annual meeting 1994

    International Nuclear Information System (INIS)

    Amit, R.; Arkin, Y.; Hirsch, F.

    1994-02-01

    The document is a compilation of papers presented during the annual meeting of Israel Geological Society. The document is related with geological and environmental survey of Israel. It discusses the technology and instruments used to carry out such studies. Main emphasis is given to seismology, geochemical analysis of water, water pollution and geophysical survey of rocks

  5. Results from the geological surveys carried out in the Bure laboratory's drifts

    International Nuclear Information System (INIS)

    Rebours, Herve; Righini, Celine

    2010-01-01

    Document available in extended abstract form only. After the government's authorization to build and operate an underground laboratory, Andra started the investigation works in November 99 on the Meuse/Haute-Marne URL site. The Meuse/Haute-Marne URL is located at the border of the Champagne-Ardenne and Lorraine regions, on the township of Bure in the Callovo-Oxfordian clay-rich rock. At this place, the layer is about 135 m-thick and lies at a depth of 417 m to 552 m. The construction of the underground installations started in August 2000 with the sinking of the main shaft and the first phase of diggings was completed on the 27 April 2006 when it linked up with the south drift of the laboratory. The laboratory consists in two vertical shafts crossing the 505-m thick sedimentary cover and two levels of experimental drifts dug in Callovo-Oxfordian formation. The first experimental drift dug at -445 m with a drill-and-blast method with steps of 2.4 m. The technical and experimental drifts at the main level (-490 m of depth) were dug with a hydraulic stone crusher. The aims of the geological surveys carried out during the drifts digging are to observe the lateral variation of the lithology, if there is one, to confirm the absence of fault and the geometry of the argillites formation. These works should also allow to characterize the natural or inducted fracturing (EDZ - Excavation Damaged Zone) induced by the digging by a sedimentary and structural follow-up. The EDZ characterization has been established from the geological survey of the drift face and sidewalls carried out from 1 to 5 meters in the drifts, and completed by the structural analysis of the cores of the boreholes drilled for the experimentations' equipments. After the safe keeping of the front, the geological team goes down to carry out the survey which consists in a lithologic and sedimentary mapping, a structural survey for the understanding of joints distribution and EDZ characterization, and

  6. A survey of archaeological and geological samples dated in 1990

    International Nuclear Information System (INIS)

    Mejdahl, V.

    1991-01-01

    A survey of dated archaeological and geological samples is given, using thermoluminescence dating. Some of the sediment samples were also dated by means of optically stimulated luminescence (OSL) using a newly developed infrared diode system. In most cases the luminescence dates are in accordance with archaeological and geological estimates. Some discrepancies were found because some feldspar samples exhibited severe anomalous fading. It may be possible to avoid this problem by basing the dating on OSL of quartz. For sediment samples of Eemian or Early Weichselian age severe underestimates were encountered with both methods. The reason might be related to the large difference between the natural dose rate and that used in laboratory irradiations. Traps corresponding to low-temperature peaks such as the 150 deg. C peak in feldspars will remain almost empty under natural conditions, but will fill up to saturation under laboratory irradiation and thereby more charges will be captured in high-temperature traps. As a result, natural growth curves and laboratory produced luminescence growth curves will have different slopes and this will lead to underestimation. This problem might avoided by holding samples at an elevated temperature during laboratory irradiation, thus keeping the low-temperature traps empty. Preliminary experiments where feldspar samples were held at 130 deg. C during irradiation have given promising results. (AB) (31 refs.)

  7. Information and informatics in a geological survey - the good, the bad and the ugly

    Science.gov (United States)

    Jackson, I.

    2008-12-01

    It is apparent that the most successful geological surveys (as measured by the only true Key Performance Indicator - their effectiveness in serving their societies) have recognised that, while their core business is making maps and models and doing scientific research to underpin that, the commodity they actually deal in is data and information and knowledge. They know that in a digital world the better they organise the data and information and knowledge, the more successful they will be. In our future world, where e-science will surely dominate, some are already sub-titling themselves as information or knowledge exchange organisations. There seems an unarguable correlation between surveys which organise their information well and those that run their projects well, their agility in responding to government agendas or national emergencies, and flexibility in delivering products their diverse users want. Look deeper and you can see the pivotal role of best practice information management and the tangible benefits a responsible approach to acquiring, storing and delivering information brings. But even in these (most successful) surveys the people leading information management will tell you that it was a gargantuan battle to get the resources to achieve this success and that, even with the downstream fruits of the investment in professional information management and informatics now obvious, it is a continuing struggle to maintain a decent level of funding for these tasks. It is not hard to see why; the struggle is innately one-sided; geoscientists are born and/or trained to be curious, to be independent and to innovate. If the choice is between more research and survey, or a professional approach to information/informatics and the adjudicators are geoscientists, it is not difficult to pick the winner. So what does lie behind a successful approach to information in a geological survey organisation? First, recognise that poor information management cannot just be

  8. Geological characterisation of potential disposal areas for radioactive waste from Risoe, Denmark

    International Nuclear Information System (INIS)

    Gravesen, P.; Binderup, M.; Nilsson, B.; Schack Pedersen, S.A.

    2011-01-01

    Low- and intermediate-level radioactive waste from the Danish nuclear research facility, Risoe, includes construction materials from the reactors, different types of contaminated material from the research projects and radioactive waste from hospitals, industry and research institutes. This material must be stored in a permanent disposal site in Denmark for at least 300 years. The latter study was conducted by the Geological Survey of Denmark and Greenland (GEUS) and the aim was to locate a sediment or rock body with low permeability down to 100-300 m below the ground surface. GEUS was given the task to locate approximately 20 potential disposal areas. The survey resulted in the selection of 22 areas throughout Denmark. Six of these areas are preferred on geological and hydrogeological criteria. (LN)

  9. Application, advantages and limitations of high-density gravimetric surveys compared with three-dimensional geological modelling in dolomite stability investigations

    OpenAIRE

    Breytenbach, I J; Bosch, P J A

    2011-01-01

    The article discusses the nature of the gravimetric survey as applied and used in dolomite stability investigations on areas underlain by the Chuniespoort Group in South Africa. A short discussion is given on the gravimetric survey procedure along with its uses and alternative methods. Finally, two case studies illustrate the application of the method on a high-density survey grid spacing in comparison with three-dimensional geological modelling based on the lithology and karst weathering hor...

  10. Seven years of operation of the U. S. geological survey TRIGA reactor

    International Nuclear Information System (INIS)

    Kraker, Pat

    1976-01-01

    February 1976 marks 7 years of operation of the U. S. Geological Survey TRIGA Reactor (GSTR) facility. In these 7 years we have generated more than 5800 MWH's of thermal energy and irradiated more than 47,000 samples for experimenters from the Survey, universities, and other Governmental agencies. Several mechanical and electrical components have required attention. Changes to the technical specifications have included one minor wording change involving the evacuation alarm, a reevaluation of the measurement of argon-41 concentrations, a revision concerning transient-rod maintenance, and a reduction in the frequency of fuel-element measurements. To improve physical security we have increased building security, installed an intrusion alarm, and, most recently, expanded the boundaries of the facility within the building to provide better control access. There also have been major changes to our operating procedures and the initiation of a reactor-operator requalification program. (author)

  11. National Geochemical Survey Locations and Results for Iowa

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — The United States Geological Survey (USGS), in collaboration with other state and federal agencies, industry, and academia, is conducting a National Geochemical...

  12. Conducting online surveys

    NARCIS (Netherlands)

    Selm, M. van; Jankowski, N.W.

    2006-01-01

    The World Wide Web (WWW) is increasingly being used as a tool and platform for survey research. Two types of electronic or online surveys available for data collection are the email and Web based survey, and they constitute the focus of this paper. We address a multitude of issues researchers should

  13. White-nose syndrome in North American bats - U.S. Geological Survey updates

    Science.gov (United States)

    Lankau, Emily W.; Moede Rogall, Gail

    2016-12-27

    White-nose syndrome is a devastating wildlife disease that has killed millions of hibernating bats. This disease first appeared in New York during 2007 and has continued to spread at an alarming rate from the northeastern to the central United States and throughout eastern Canada. The disease is named for the fungus Pseudogymnoascus destructans, which often appears white when it infects the skin of the nose, ears, and wings of hibernating bats. This fact sheet provides updates on white-nose syndrome research and management efforts and highlights US Geological Survey scientists’ contributions to understanding and combating this disease.

  14. Documentation of the U.S. Geological Survey Oceanographic Time-Series Measurement Database

    Science.gov (United States)

    Montgomery, Ellyn T.; Martini, Marinna A.; Lightsom, Frances L.; Butman, Bradford

    2008-01-02

    The U.S. Geological Survey (USGS) Oceanographic Time-Series Data Collection (previously named the USGS Oceanographic Time-Series Measurement Database) contains oceanographic observations made as part of studies designed to increase understanding of sediment transport processes and associated dynamics. Analysis of these data has contributed to more accurate prediction of the movement and fate of sediments and other suspended materials in the coastal ocean. The measurements were collected primarily by investigators at the USGS Woods Hole Coastal and Marine Science Center (WHCMSC) and colleagues, beginning in 1975. Most of the field experiments were carried out on the U.S. continental shelf and slope.

  15. The bedrock electrical conductivity structure of Northern Ireland

    Science.gov (United States)

    Beamish, David

    2013-08-01

    An airborne geophysical survey of the whole of Northern Ireland has provided over 4.8 M estimates of the bedrock conductivity over the wide range of geological formations present. This study investigates how such data can be used to provide additional knowledge in relation to existing digital geological map information. A by-product of the analysis is a simplification of the spatially aggregated information obtained in such surveys. The methodology used is a GIS-based attribution of the conductivity estimates using a lithological classification of the bedrock formations. A 1:250k geological classification of the data is performed leading to a 56 unit lithological and geostatistical analysis of the conductivity information. The central moments (medians) of the classified data are used to provide a new digital bedrock conductivity map of Northern Ireland with values ranging from 0.32 to 41.36 mS m-1. This baseline map of conductivities displays a strong correspondence with an existing 4 quadrant, chrono-geological description of Northern Ireland. Once defined, the baseline conductivity map allows departures from the norm to be assessed across each specific lithological unit. Bulk electrical conductivity is controlled by a number of petrophysical parameters and it is their variation that is assessed by the procedures employed. The igneous rocks are found to display the largest variability in conductivity values and many of the statistical distributions are multi-modal. A sequence of low-value modes in these data are associated with intrusives within volcanic complexes. These and much older Neoproterzoic rocks appear to represent very low porosity formations that may be the product of rapid cooling during emplacement. By way of contrast, extensive flood basalts (the Antrim lavas) record a well-defined and much higher median value (12.24 mS m-1) although they display complex spatial behaviour in detail. Sedimentary rocks appear to follow the broad behaviours anticipated

  16. Geological interpretation of an airborne gamma-ray spectrometer survey of the Hearne Lake area, Northwest Territories

    International Nuclear Information System (INIS)

    Newton, A.R.; Slaney, V.R.

    1978-01-01

    This study shows how large volumes of airborne data can be displayed in a simple format which provides both mapping and exploration geologists with information not easily obtained from the original data. Eleven lines or part-lines from a gamma-ray survey of the Hearne Lake area were chosen as test lines, and airphotos were used to identify outcrops of each rock type and the distribution of overburden, swamp and water along each line. Geological maps were used to locate the test lines and to provide a listing of the rock types in the area. With this information, it was possible to calculate the average radioelement characteristics of each rock type and to group the rock signatures into a number of rock classes. The techniques described are most usefully applied to those areas where the outcrop is extensive, where some form of geological map already exists, where there are airphotos at scales of 1:30,000 or larger, and where the gamma-ray survey lines are less than 2.5 km apart

  17. Chemical Composition of Ferromanganese Crusts in the World Ocean: A Review and Comprehensive Database. U.S. Geological Survey.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The USGS Ferromanganese Crust data set was compiled by F.T. Manheim and C.M. Lane-Bostwick of the U.S. Geological Survey, Woods Hole, MA. The data set consists of...

  18. Environmental geophysics: Locating and evaluating subsurface geology, geologic hazards, groundwater contamination, etc

    International Nuclear Information System (INIS)

    Benson, A.K.

    1994-01-01

    Geophysical surveys can be used to help delineate and map subsurface geology, including potential geologic hazards, the water table, boundaries of contaminated plumes, etc. The depth to the water table can be determined using seismic and ground penetrating radar (GPR) methods, and hydrogeologic and geologic cross sections of shallow alluvial aquifers can be constructed from these data. Electrical resistivity and GPR data are especially sensitive to the quality of the water and other fluids in a porous medium, and these surveys help to identify the stratigraphy, the approximate boundaries of contaminant plumes, and the source and amount of contamination in the plumes. Seismic, GPR, electromagnetic (VLF), gravity, and magnetic data help identify and delineate shallow, concealed faulting, cavities, and other subsurface hazards. Integration of these geophysical data sets can help pinpoint sources of subsurface contamination, identify potential geological hazards, and optimize the location of borings, monitoring wells, foundations for building, dams, etc. Case studies from a variety of locations will illustrate these points. 20 refs., 17 figs., 6 tabs

  19. OneGeology-Europe: architecture, portal and web services to provide a European geological map

    Science.gov (United States)

    Tellez-Arenas, Agnès.; Serrano, Jean-Jacques; Tertre, François; Laxton, John

    2010-05-01

    OneGeology-Europe is a large ambitious project to make geological spatial data further known and accessible. The OneGeology-Europe project develops an integrated system of data to create and make accessible for the first time through the internet the geological map of the whole of Europe. The architecture implemented by the project is web services oriented, based on the OGC standards: the geological map is not a centralized database but is composed by several web services, each of them hosted by a European country involved in the project. Since geological data are elaborated differently from country to country, they are difficult to share. OneGeology-Europe, while providing more detailed and complete information, will foster even beyond the geological community an easier exchange of data within Europe and globally. This implies an important work regarding the harmonization of the data, both model and the content. OneGeology-Europe is characterised by the high technological capacity of the EU Member States, and has the final goal to achieve the harmonisation of European geological survey data according to common standards. As a direct consequence Europe will make a further step in terms of innovation and information dissemination, continuing to play a world leading role in the development of geosciences information. The scope of the common harmonized data model was defined primarily by the requirements of the geological map of Europe, but in addition users were consulted and the requirements of both INSPIRE and ‘high-resolution' geological maps were considered. The data model is based on GeoSciML, developed since 2006 by a group of Geological Surveys. The data providers involved in the project implemented a new component that allows the web services to deliver the geological map expressed into GeoSciML. In order to capture the information describing the geological units of the map of Europe the scope of the data model needs to include lithology; age; genesis and

  20. Landsat Image Map Production Methods at the U. S. Geological Survey

    Science.gov (United States)

    Kidwell, R.D.; Binnie, D.R.; Martin, S.

    1987-01-01

    To maintain consistently high quality in satellite image map production, the U. S. Geological Survey (USGS) has developed standard procedures for the photographic and digital production of Landsat image mosaics, and for lithographic printing of multispectral imagery. This paper gives a brief review of the photographic, digital, and lithographic procedures currently in use for producing image maps from Landsat data. It is shown that consistency in the printing of image maps is achieved by standardizing the materials and procedures that affect the image detail and color balance of the final product. Densitometric standards are established by printing control targets using the pressplates, inks, pre-press proofs, and paper to be used for printing.

  1. Airborne geophysical surveys conducted in western Nebraska, 2010: contractor reports and data

    Science.gov (United States)

    ,

    2014-01-01

    This report contains three contractor reports and data files for an airborne electromagnetic survey flown from June 28 to July 7, 2010. The first report; “SkyTEM Survey: Nebraska, USA, Data” describes data aquisition and processing from a time-domain electromagnetic and magnetic survey performed by SkyTEM Canada, Inc. (the North American SkyTEM subsidiary), in western Nebraska, USA. Digital data for this report are given in Appendix 1. The airborne geophysical data from the SkyTEM survey subsequently were processed and inverted by Aarhus Geophysics ApS, Aarhus, Denmark, to produce resistivity depth sections along each flight line. The result of that processing is described in two reports presented in Appendix 2, “Processing and inversion of SkyTEM data from USGS Area UTM–13” and “Processing and inversion of SkyTEM data from USGS Area UTM–14.” Funding for these surveys was provided by the North Platte Natural Resources District, the South Platte Natural Resources District, and the Twin Platte Natural Resources District, in Scottsbluff, Sidney, and North Platte, Nebraska, respectively. Any additional information concerning the geophysical data may be obtained from the U.S. Geological Survey Crustal Geophysics and Geochemistry Science Center, Denver Colorado.

  2. USGS National Geologic Map Database Collection

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The National Geologic Map Database (NGMDB) is a Congressionally mandated national archive of geoscience maps, reports, and stratigraphic information. According to...

  3. Synthetic geology - Exploring the "what if?" in geology

    Science.gov (United States)

    Klump, J. F.; Robertson, J.

    2015-12-01

    The spatial and temporal extent of geological phenomena makes experiments in geology difficult to conduct, if not entirely impossible and collection of data is laborious and expensive - so expensive that most of the time we cannot test a hypothesis. The aim, in many cases, is to gather enough data to build a predictive geological model. Even in a mine, where data are abundant, a model remains incomplete because the information at the level of a blasting block is two orders of magnitude larger than the sample from a drill core, and we have to take measurement errors into account. So, what confidence can we have in a model based on sparse data, uncertainties and measurement error? Synthetic geology does not attempt to model the real world in terms of geological processes with all their uncertainties, rather it offers an artificial geological data source with fully known properties. On the basis of this artificial geology, we can simulate geological sampling by established or future technologies to study the resulting dataset. Conducting these experiments in silico removes the constraints of testing in the field or in production, and provides us with a known ground-truth against which the steps in a data analysis and integration workflow can be validated.Real-time simulation of data sources can be used to investigate crucial questions such as the potential information gain from future sensing capabilities, or from new sampling strategies, or the combination of both, and it enables us to test many "what if?" questions, both in geology and in data engineering. What would we be able to see if we could obtain data at higher resolution? How would real-time data analysis change sampling strategies? Does our data infrastructure handle many new real-time data streams? What feature engineering can be deducted for machine learning approaches? By providing a 'data sandbox' able to scale to realistic geological scenarios we hope to start answering some of these questions.

  4. U.S. Geological Survey; North Carolina's water resources; a partnership with State, Federal and local agencies

    Science.gov (United States)

    Winner, M.D.

    1993-01-01

    For more than 80 years, the Federal-State Cooperative Program in North Carolina has been an effective partnership that provides timely water information for all levels of government. The cooperative program has raised awareness of State and local water problems and issues and has enhanced transfer and exchange of scientific information. The U.S. Geological Survey (USGS) conducts statewide water-resources investigations in North Carolina that include hydrologic data collection, applied research studies, and other interpretive studies. These programs are funded through cooperative agreements with the North Carolina Departments of Environment, Health, and Natural Resources; Human Resources; and Transportation, as well as more than a dozen city and county governmental agencies. The USGS also conducts special studies and data-collection programs for Federal agencies, including the Department of Defense, the U.S. Soil Conservation Service, the Tennessee Valley Authority, and the U.S. Environmental Protection Agency that contribute to North Carolina's water information data base. Highlights of selected programs are presented to show the scope of USGS activities in North Carolina and their usefulness in addressing water-resource problems. The reviewed programs include the statewide data-collection program, estuarine studies, the National Water-Quality Assessment program, military installation restoration program, and groundwater flow model-development program in the Coastal Plain and Piedmont provinces.

  5. Results from Marine geological investigations outside Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Nyberg, Johan; Elhammer, Anders; Sohlenius, Gustav; Kjellin, Bernt; Nordgren, Paer (Geological Survey of Sweden (Sweden))

    2011-08-15

    A detailed marine geological survey was conducted in a 10 km2 large area outside Forsmark comprising hydro acoustic, 100 m spacing between survey lines, and groundtruthing. These data, together with reanalyzed survey data retrieved in 2002 from the same area, were used to produce maps of seabed and underlying bedrock surface morphology as well as horizontal and vertical extension of sediments. An esker is discovered running approximately in a north northwesterly-south southeasterly direction in the area, which may be causing submarine groundwater discharge. Pockmarks, which are caused by sediment gas of thermogenic and/or microbial origin, are detected in the area. In addition to the original commissioned survey, bedrock surface and seabed morphology as well as horizontal and vertical extension of sediments in a larger adjacent area were reanalyzed and produced from survey lines retrieved during a commission by SKB in 2002 and during SGUs regular mapping program in 2002, 2008 and 2009

  6. Results from Marine geological investigations outside Forsmark

    International Nuclear Information System (INIS)

    Nyberg, Johan; Elhammer, Anders; Sohlenius, Gustav; Kjellin, Bernt; Nordgren, Paer

    2011-08-01

    A detailed marine geological survey was conducted in a 10 km 2 large area outside Forsmark comprising hydro acoustic, 100 m spacing between survey lines, and groundtruthing. These data, together with reanalyzed survey data retrieved in 2002 from the same area, were used to produce maps of seabed and underlying bedrock surface morphology as well as horizontal and vertical extension of sediments. An esker is discovered running approximately in a north northwesterly-south southeasterly direction in the area, which may be causing submarine groundwater discharge. Pockmarks, which are caused by sediment gas of thermogenic and/or microbial origin, are detected in the area. In addition to the original commissioned survey, bedrock surface and seabed morphology as well as horizontal and vertical extension of sediments in a larger adjacent area were reanalyzed and produced from survey lines retrieved during a commission by SKB in 2002 and during SGUs regular mapping program in 2002, 2008 and 2009

  7. Methods for computing water-quality loads at sites in the U.S. Geological Survey National Water Quality Network

    Science.gov (United States)

    Lee, Casey J.; Murphy, Jennifer C.; Crawford, Charles G.; Deacon, Jeffrey R.

    2017-10-24

    The U.S. Geological Survey publishes information on concentrations and loads of water-quality constituents at 111 sites across the United States as part of the U.S. Geological Survey National Water Quality Network (NWQN). This report details historical and updated methods for computing water-quality loads at NWQN sites. The primary updates to historical load estimation methods include (1) an adaptation to methods for computing loads to the Gulf of Mexico; (2) the inclusion of loads computed using the Weighted Regressions on Time, Discharge, and Season (WRTDS) method; and (3) the inclusion of loads computed using continuous water-quality data. Loads computed using WRTDS and continuous water-quality data are provided along with those computed using historical methods. Various aspects of method updates are evaluated in this report to help users of water-quality loading data determine which estimation methods best suit their particular application.

  8. Hydrologic characterization of faults and other potentially conductive geologic features in the unsaturated zone

    International Nuclear Information System (INIS)

    Javandel, I.; Shan, C.

    1990-01-01

    The capability of characterizing near-vertical faults and other potentially highly conductive geologic features in the vicinity of a high-level-waste repository is of great importance in site characterization of underground waste-isolation projects. The possibility of using transient air pressure data at depth for characterizing these features in the unsaturated zone are investigated. Analytical solutions for calculating the pressure response of such systems are presented. Solutions are given for two types of barometric pressure fluctuations, step function and sinusoidal. 3 refs., 9 figs

  9. Potensi sumber daya geologi di daerah Cekungan Bandung dan sekitarnya

    Directory of Open Access Journals (Sweden)

    Sutikno Bronto

    2014-06-01

    Full Text Available DOI: 10.17014/ijog.vol1no1.20062aGeologically, Bandung Basin and the surrounding area comprise volcanic rocks; therefore, originally the geological resources, such as energy, environmental geology and mineral were generated from past volcanic activities. Energy resources having been utilized or in the exploration stage are water energy (Saguling Electrical Hydro Power and geothermal energy (Darajat, Kamojang, Wayang-Windu and Patuha Geothermal Fields. Potency of hydrocarbon energy is considered due to the presence of Tertiary sedimentary rocks under Bandung volcanic rocks. Environmental resources include water, soil, land, and natural panorama that mostly are already used for living, tourism, industry etc. Mineral resources cover metals and non metals. Mineral explorations, particularly for gold, have been conducted in the southern Bandung area. Recently, Center for Geological Survey itself has found a new mineral resource in the northern Bandung, i.e. Cupunagara Village, Cisalak Sub-Regency, Subang Regency - West Jawa.    

  10. Field Methods and Quality-Assurance Plan for Quality-of-Water Activities, U.S. Geological Survey, Idaho National Laboratory, Idaho

    Science.gov (United States)

    Knobel, LeRoy L.; Tucker, Betty J.; Rousseau, Joseph P.

    2008-01-01

    Water-quality activities conducted by the staff of the U.S. Geological Survey (USGS) Idaho National Laboratory (INL) Project Office coincide with the USGS mission of appraising the quantity and quality of the Nation's water resources. The activities are conducted in cooperation with the U.S. Department of Energy's (DOE) Idaho Operations Office. Results of the water-quality investigations are presented in various USGS publications or in refereed scientific journals. The results of the studies are highly regarded, and they are used with confidence by researchers, regulatory and managerial agencies, and interested civic groups. In its broadest sense, quality assurance refers to doing the job right the first time. It includes the functions of planning for products, review and acceptance of the products, and an audit designed to evaluate the system that produces the products. Quality control and quality assurance differ in that quality control ensures that things are done correctly given the 'state-of-the-art' technology, and quality assurance ensures that quality control is maintained within specified limits.

  11. OneGeology Web Services and Portal as a global geological SDI - latest standards and technology

    Science.gov (United States)

    Duffy, Tim; Tellez-Arenas, Agnes

    2014-05-01

    The global coverage of OneGeology Web Services (www.onegeology.org and portal.onegeology.org) achieved since 2007 from the 120 participating geological surveys will be reviewed and issues arising discussed. Recent enhancements to the OneGeology Web Services capabilities will be covered including new up to 5 star service accreditation scheme utilising the ISO/OGC Web Mapping Service standard version 1.3, core ISO 19115 metadata additions and Version 2.0 Web Feature Services (WFS) serving the new IUGS-CGI GeoSciML V3.2 geological web data exchange language standard (http://www.geosciml.org/) with its associated 30+ IUGS-CGI available vocabularies (http://resource.geosciml.org/ and http://srvgeosciml.brgm.fr/eXist2010/brgm/client.html). Use of the CGI simpelithology and timescale dictionaries now allow those who wish to do so to offer data harmonisation to query their GeoSciML 3.2 based Web Feature Services and their GeoSciML_Portrayal V2.0.1 (http://www.geosciml.org/) Web Map Services in the OneGeology portal (http://portal.onegeology.org). Contributing to OneGeology involves offering to serve ideally 1:1000,000 scale geological data (in practice any scale now is warmly welcomed) as an OGC (Open Geospatial Consortium) standard based WMS (Web Mapping Service) service from an available WWW server. This may either be hosted within the Geological Survey or a neighbouring, regional or elsewhere institution that offers to serve that data for them i.e. offers to help technically by providing the web serving IT infrastructure as a 'buddy'. OneGeology is a standards focussed Spatial Data Infrastructure (SDI) and works to ensure that these standards work together and it is now possible for European Geological Surveys to register their INSPIRE web services within the OneGeology SDI (e.g. see http://www.geosciml.org/geosciml/3.2/documentation/cookbook/INSPIRE_GeoSciML_Cookbook%20_1.0.pdf). The Onegeology portal (http://portal.onegeology.org) is the first port of call for anyone

  12. FY 2000 survey of the geological structure overseas, etc. Japan-China joint coal exploration - Yu Xian project; 2000 nendo kaigai chishitsu kozo nado chosa - futai shiryoshu. Nippon Chugoku sekitan kyodo tansa Yu Xian project

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    This data book summarized the proceedings and the technical report of the management committee on the Japan-China geological structure survey based on the consultation concluded between NEDO and China's bureau of coal field geology and a report meeting on the Yu Xian project. In the exploration, conducted were the boring survey of 10 boreholes, seismic survey of 2D (71 traverse lines, 180.105km) and 3D (1.5km{sup 2}), VSP (6 holes (345 shots)) and the low velocity band survey (2,072 shots). The geological structure of the area presented the syncline structure with a gentle line associated with foldings and a number of faults and was classified into the medium class or the class of a little complication in the Chinese standard. The number of the faults confirmed in this exploration totaled 57. Coal reserves by coal seam were 157.22 million tons at No. 5 seam and 102.57 million tons at No. 1 seam. The total amount of the two seams was 79.1% of the total coal amount in all area. The coal quality of Nos. 1 and 5 was brown coal - flame coal in the Chinese classification, and subbituminous coal B - subbituminous coal C in the ASTM classification. The coal, however, cannot be used for process raw coal. There is a technical potentiality of the fixed bed pressurized gasification. (NEDO)

  13. U.S. Geological Survey Global Seismographic Network - Five-Year Plan 2006-2010

    Science.gov (United States)

    Leith, William S.; Gee, Lind S.; Hutt, Charles R.

    2009-01-01

    The Global Seismographic Network provides data for earthquake alerting, tsunami warning, nuclear treaty verification, and Earth science research. The system consists of nearly 150 permanent digital stations, distributed across the globe, connected by a modern telecommunications network. It serves as a multi-use scientific facility and societal resource for monitoring, research, and education, by providing nearly uniform, worldwide monitoring of the Earth. The network was developed and is operated through a partnership among the National Science Foundation (http://www.nsf.gov), the Incorporated Research Institutions for Seismology (http://www.iris.edu/hq/programs/gsn), and the U.S. Geological Survey (http://earthquake.usgs.gov/gsn).

  14. Report on the FY 1993 basic survey for industrialization related to the survey of overseas geological structure (Tebulan East area, Malaysia); 1993 nendo kaigai chishitsu kozo nado chosa ni kakawaru kigyoka kiso chosa (Malaysia Tebulan higashi chiku) hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-03-01

    The survey was conducted based on 'Scope of work for detailed coal exploration in the Tebulan East block of the Merit Pila coal field, Sarawak, Malaysia' concluded on June 19, 1993 between NEDO and Global Mineral which owns the mining right. The field survey was for the geological survey, survey of conditions of open pit mining, and infrastructure survey. The confirmed/estimated coal amount totaled 22,65 million tons in 4 coal seams. The all sulfur content is low, approximately 0.12%. The heating value is 5,820 kcal/kg. As to the infrastructure, various conditions are good for transportation, shipping facilities, etc. from mine site to truck transport/barge transport/external route shipping. The drilling was planned to be made by open pit mining by the truck and shovel system, and the scale of the planned production was 0.3 million tons. The ash is low in amount, and there was no coal preparation. Clean coal is produced by crushing, sieving and washing. Attached were the borehole log (JN9940782), route map, and trench sketch (JN9940783). (NEDO)

  15. Evaluating integration of inland bathymetry in the U.S. Geological Survey 3D Elevation Program, 2014

    Science.gov (United States)

    Miller-Corbett, Cynthia

    2016-09-01

    Inland bathymetry survey collections, survey data types, features, sources, availability, and the effort required to integrate inland bathymetric data into the U.S. Geological Survey 3D Elevation Program are assessed to help determine the feasibility of integrating three-dimensional water feature elevation data into The National Map. Available data from wading, acoustic, light detection and ranging, and combined technique surveys are provided by the U.S. Geological Survey, National Oceanic and Atmospheric Administration, U.S. Army Corps of Engineers, and other sources. Inland bathymetric data accessed through Web-hosted resources or contacts provide useful baseline parameters for evaluating survey types and techniques used for collection and processing, and serve as a basis for comparing survey methods and the quality of results. Historically, boat-mounted acoustic surveys have provided most inland bathymetry data. Light detection and ranging techniques that are beneficial in areas hard to reach by boat, that can collect dense data in shallow water to provide comprehensive coverage, and that can be cost effective for surveying large areas with good water clarity are becoming more common; however, optimal conditions and techniques for collecting and processing light detection and ranging inland bathymetry surveys are not yet well defined.Assessment of site condition parameters important for understanding inland bathymetry survey issues and results, and an evaluation of existing inland bathymetry survey coverage are proposed as steps to develop criteria for implementing a useful and successful inland bathymetry survey plan in the 3D Elevation Program. These survey parameters would also serve as input for an inland bathymetry survey data baseline. Integration and interpolation techniques are important factors to consider in developing a robust plan; however, available survey data are usually in a triangulated irregular network format or other format compatible with

  16. A Knowledge-Driven Geospatially Enabled Framework for Geological Big Data

    OpenAIRE

    Liang Wu; Lei Xue; Chaoling Li; Xia Lv; Zhanlong Chen; Baode Jiang; Mingqiang Guo; Zhong Xie

    2017-01-01

    Geologic survey procedures accumulate large volumes of structured and unstructured data. Fully exploiting the knowledge and information that are included in geological big data and improving the accessibility of large volumes of data are important endeavors. In this paper, which is based on the architecture of the geological survey information cloud-computing platform (GSICCP) and big-data-related technologies, we split geologic unstructured data into fragments and extract multi-dimensional f...

  17. Geology of the Harper Quadrangle, Liberia

    Science.gov (United States)

    Brock, M.R.; Chidester, A.H.; Baker, M.G.W.

    1974-01-01

    As part of a program undertaken cooperatively by the Liberian Geological Survey (LGS) and the U. S. Geological Survey (USGS), under the sponsorship of the Government of Liberia and the Agency for International Development, U. S. Department of State, Liberia was mapped by geologic and geophysical methods during the period 1965 to 1972. The resulting geologic and geophysical maps are published in ten folios, each covering one quadrangle (see index map). The first systematic mapping in the Harper quadrangle was by Baker, S. P. Srivastava, and W. E. Stewart (LGS) at a scale of 1:500,000 in the vicinity of Harper in the southeastern, and of Karloke in the northeastern part of the quadrangle in 1960-61. Brock and Chidester carried out systematic mapping of the quadrangle at a scale of 1:250,000 in the period September 1971-May 1972; the geologic map was compiled from field data gathered by project geologists and private companies as indicated in the source diagram, photogeologic maps, interpretation of airborne magnetic and radiometric surveys, field mapping, and ground-based radiometric surveys in which hand-held scintillators were used. R. W. Bromery, C. S. Wotorson, and J. C. Behrendt contributed to the interpretation of geophysical data. Total-intensity aeromagnetic and total-count gamma radiation maps (Behrendt and Wotorson, in press a, b), and unpublished data derived from those maps, including the near-surface and the regional magnetic components and aeromagnetic/radiometric correlations, were used in the interpretation.

  18. Impact, and its implications for geology

    International Nuclear Information System (INIS)

    Marvin, U.B.

    1988-01-01

    The publication of seminal texts on geology and on meteoritics in the 1790s, laid the groundwork for the emergence of each discipline as a modern branch of science. Within the past three decades, impact cratering has become universally accepted as a process that sculptures the surfaces of planets and satellites throughout the solar system. Nevertheless, one finds in-depth discussions of impact processes mainly in books on the Moon or in surveys of the Solar System. The historical source of the separation between meteoritics and geology is easy to identify. It began with Hutton. Meteorite impact is an extraordinary event acting instantaneously from outside the Earth. It violates Hutton's principles, which were enlarged upon and firmly established as fundamental to the geological sciences by Lyell. The split between meteoritics and geology surely would have healed as early as 1892 if the investigations conducted by Gilbert (1843-1918) at the crater in northern Arizona had yielded convincing evidence of meteorite impact. The 1950s and 1960s saw a burgeoning of interest in impact processes. The same period witnessed the so-called revolution in the Earth Sciences, when geologists yielded up the idea of fixed continents and began to view the Earth's lithosphere as a dynamic array of horizontally moving plates. Plate tectonics, however, is fully consistent with the geological concepts inherited from Hutton: the plates slowly split, slide, and suture, driven by forces intrinsic to the globe

  19. Brazil Geological Basic Survey Program - Lima Duarte - Sheet SF.23-X-C-VI - Minas Gerais State

    International Nuclear Information System (INIS)

    Pinto, C.P.

    1991-01-01

    The present report refers to the Lima Duarte sheet (SF.23-X-C-VI) systematic geological mapping, on the 1:100.000 scale. The surveyed area, localized in the Zona da Mata, Juiz de Fora micro-region, in South Minas Gerais, is dominantly composed by metamorphic rocks of the granulite and amphibolite facies and presents important diphtheritic process. An analysis of the Crustal Evolution Patterns based mostly on geological mapping, and gravimetric, air magneto metric and geochronologic data is given in the Chapter 6, Part II, of the text. Geophysical information is in the Chapter 5, Part II. Seventy two samples were analysed for oxides, trace-elements and REE, to provide litho environment and metallogenesis definition subsidies. Were studied 174 petrographic thin section, and 48 samples of quartzite and schist residual materials were analysed for heavy metals. Seven hundred and fifty outcrops were described. A geochemical survey, based on 81 pan concentrated samples and 277 stream sediments was carried out throughout the Sheet. The anomalies found in the stream sediments reflect the geochemical signature of the analysed elements for the litho types of the investigated terrains. (author)

  20. The geologic investigation of the bedrock and the tectonic and geophysical surveys at Kynnefjaell

    International Nuclear Information System (INIS)

    Ahlbom, K.; Ahlin, S.; Eriksson, L.; Samuelsson, L.

    1980-05-01

    The geologic survey took place at a selected area of Kynnefjaell. The result is given on geologic and tectonic maps. Two kinds of rock dominate, namely (a) sedimentary veined gneiss and (b) gneissic granite. The strike is in the N-S direction. A symmetric folds dip to the last. The fissure zones are oriented in the N-S and NE-SW directions. The latter zones are considered to be Precambrian shear zones with a dip to the NW. The dip of the fissure zones with the direction N-S is difficult to ascertain. The frequency of fissures is the same for granite and gneiss. The length of fissures is longer in the gneissic granite than in the sedimentary veined gneiss. The measurement of stress shows its main direction to be WNW-NW to ESE-SE. The fissure zones are at right or blunt-ended angles to the main stress direction. (G.B.)

  1. Science strategy for Core Science Systems in the U.S. Geological Survey, 2013-2023

    Science.gov (United States)

    Bristol, R. Sky; Euliss, Ned H.; Booth, Nathaniel L.; Burkardt, Nina; Diffendorfer, Jay E.; Gesch, Dean B.; McCallum, Brian E.; Miller, David M.; Morman, Suzette A.; Poore, Barbara S.; Signell, Richard P.; Viger, Roland J.

    2012-01-01

    Core Science Systems is a new mission of the U.S. Geological Survey (USGS) that grew out of the 2007 Science Strategy, “Facing Tomorrow’s Challenges: U.S. Geological Survey Science in the Decade 2007–2017.” This report describes the vision for this USGS mission and outlines a strategy for Core Science Systems to facilitate integrated characterization and understanding of the complex earth system. The vision and suggested actions are bold and far-reaching, describing a conceptual model and framework to enhance the ability of USGS to bring its core strengths to bear on pressing societal problems through data integration and scientific synthesis across the breadth of science.The context of this report is inspired by a direction set forth in the 2007 Science Strategy. Specifically, ecosystem-based approaches provide the underpinnings for essentially all science themes that define the USGS. Every point on earth falls within a specific ecosystem where data, other information assets, and the expertise of USGS and its many partners can be employed to quantitatively understand how that ecosystem functions and how it responds to natural and anthropogenic disturbances. Every benefit society obtains from the planet—food, water, raw materials to build infrastructure, homes and automobiles, fuel to heat homes and cities, and many others, are derived from or effect ecosystems.The vision for Core Science Systems builds on core strengths of the USGS in characterizing and understanding complex earth and biological systems through research, modeling, mapping, and the production of high quality data on the nation’s natural resource infrastructure. Together, these research activities provide a foundation for ecosystem-based approaches through geologic mapping, topographic mapping, and biodiversity mapping. The vision describes a framework founded on these core mapping strengths that makes it easier for USGS scientists to discover critical information, share and publish

  2. Geochemical reanalysis of historical U.S. Geological Survey sediment samples from the Tonsina area, Valdez Quadrangle, Alaska

    Science.gov (United States)

    Werdon, Melanie B.; Granitto, Matthew; Azain, Jaime S.

    2015-01-01

    The State of Alaska’s Strategic and Critical Minerals (SCM) Assessment project, a State-funded Capital Improvement Project (CIP), is designed to evaluate Alaska’s statewide potential for SCM resources. The SCM Assessment is being implemented by the Alaska Division of Geological & Geophysical Surveys (DGGS), and involves obtaining new airborne-geophysical, geological, and geochemical data. As part of the SCM Assessment, thousands of historical geochemical samples from DGGS, U.S. Geological Survey (USGS), and U.S. Bureau of Mines archives are being reanalyzed by DGGS using modern, quantitative, geochemical-analytical methods. The objective is to update the statewide geochemical database to more clearly identify areas in Alaska with SCM potential. The USGS is also undertaking SCM-related geologic studies in Alaska through the federally funded Alaska Critical Minerals cooperative project. DGGS and USGS share the goal of evaluating Alaska’s strategic and critical minerals potential and together created a Letter of Agreement (signed December 2012) and a supplementary Technical Assistance Agreement (#14CMTAA143458) to facilitate the two agencies’ cooperative work. Under these agreements, DGGS contracted the USGS in Denver to reanalyze historical USGS sediment samples from Alaska. For this report, DGGS funded reanalysis of 128 historical USGS sediment samples from the statewide Alaska Geochemical Database Version 2.0 (AGDB2; Granitto and others, 2013). Samples were chosen from the Tonsina area in the Chugach Mountains, Valdez quadrangle, Alaska (fig. 1). The USGS was responsible for sample retrieval from the National Geochemical Sample Archive (NGSA) in Denver, Colorado through the final quality assurance/quality control (QA/QC) of the geochemical analyses obtained through the USGS contract lab. The new geochemical data are published in this report as a coauthored DGGS report, and will be incorporated into the statewide geochemical databases of both agencies

  3. 77 FR 19321 - Geological and Geophysical Exploration on the Atlantic Outer Continental Shelf (OCS)

    Science.gov (United States)

    2012-03-30

    ... DEPARTMENT OF THE INTERIOR Bureau of Ocean Energy Management Geological and Geophysical... Statement (PEIS) to evaluate potential environmental effects of multiple Geological and Geophysical (G&G... limited to, seismic surveys, sidescan-sonar surveys, electromagnetic surveys, geological and geochemical...

  4. U.S. Geological Survey Subsidence Interest Group conference, Edwards Air Force Base, Antelope Valley, California, November 18-19, 1992; abstracts and summary

    Science.gov (United States)

    Prince, Keith R.; Galloway, Devin L.; Leake, Stanley A.

    1995-01-01

    with this unprecedented increase in pumpage, substantial amounts of land subsidence were observed in several areas of the United States, most notably in Arizona, California, and Texas. Beginning in 1955, under the direction of Joseph Poland, the Geological Survey began the "Mechanics of Aquifers Project," which focused largely on the processes that resulted in land subsidence due to the withdrawal of ground water. This research team gained international renown as they advanced the scientific understanding of aquifer mechanics and land-subsidence theory. The results of field studies by members of this research group not only verified the validity of the application of Terzaghi's consolidation theory to compressible aquifers, but they also provided definitions, methods of quantification, and confirmation of the interrelation among hydraulic head declines, aquifer-system compaction, and land subsidence. In addition to conducting pioneering research, this group also formed a "center of expertise," providing a focal point within the Geological Survey for the dissemination of technology and scientific understanding in aquifer mechanics. However, when the "Mechanics of Aquifers Project" was phased out in 1984, the focal point for technology transfer no longer existed. Interest among various state and local agencies in land subsidence has persisted, and the Geological Survey has continued to participate in a broad spectrum of cooperative and Federally funded projects in aquifer mechanics and land subsidence. These projects are designed to identify and monitor areas with the potential for land subsidence, to conduct basic research in the processes that control land subsidence and the development of earth fissures, as well as to develop new quantitative tools to predict aquifer-system deformation. In 1989 an ad hoc "Aquifer Mechanics and Subsidence Interest Group" (referred to herein as the "Subsidence Interest Group") was formed

  5. Report on the geological and geomorphological field operation in the Amundsen Bay region, western Enderby Land, 1998-99 (JARE-40

    Directory of Open Access Journals (Sweden)

    Yoichi Motoyoshi

    1999-11-01

    Full Text Available The 40th Japanese Antarctic Research Expedition (JARE-40 conducted field operations on geology and geomorphology in the Amundsen Bay region, Enderby Land, for 34 days from December 21,1998 to January 23,1999. This was a part of the 5-year SEAL (Structure and Evolution of East Antarctic Lithosphere project, and two helicopters were installed for field support. Geological and geomorphological teams established base camps at Tonagh Island and Mt. Riiser-Larsen, respectively, and tried to conduct surveys in western Enderby Land. At the early stage of the operation, an unexpected gusty wind destroyed one of the helicopters at Tonagh Island, and planned surveys have not been completed. This report gives details of the logistics including planning, preparation and results.

  6. An algorithm to assess methodological quality of nutrition and mortality cross-sectional surveys: development and application to surveys conducted in Darfur, Sudan.

    Science.gov (United States)

    Prudhon, Claudine; de Radiguès, Xavier; Dale, Nancy; Checchi, Francesco

    2011-11-09

    Nutrition and mortality surveys are the main tools whereby evidence on the health status of populations affected by disasters and armed conflict is quantified and monitored over time. Several reviews have consistently revealed a lack of rigor in many surveys. We describe an algorithm for analyzing nutritional and mortality survey reports to identify a comprehensive range of errors that may result in sampling, response, or measurement biases and score quality. We apply the algorithm to surveys conducted in Darfur, Sudan. We developed an algorithm based on internationally agreed upon methods and best practices. Penalties are attributed for a list of errors, and an overall score is built from the summation of penalties accrued by the survey as a whole. To test the algorithm reproducibility, it was independently applied by three raters on 30 randomly selected survey reports. The algorithm was further applied to more than 100 surveys conducted in Darfur, Sudan. The Intra Class Correlation coefficient was 0.79 for mortality surveys and 0.78 for nutrition surveys. The overall median quality score and range of about 100 surveys conducted in Darfur were 0.60 (0.12-0.93) and 0.675 (0.23-0.86) for mortality and nutrition surveys, respectively. They varied between the organizations conducting the surveys, with no major trend over time. Our study suggests that it is possible to systematically assess quality of surveys and reveals considerable problems with the quality of nutritional and particularly mortality surveys conducted in the Darfur crisis.

  7. National 2010 survey on the awareness and opinion of the French about geological carbon storage

    International Nuclear Information System (INIS)

    Ha-Duong, Minh; Arnoux, Stephanie; Chaabane, Naceur; Mardon, Gilles; Nadai, Alain; Neri O'Neill, Rebeca

    2011-01-01

    This report presents the results of the 2010 CIRED / TNS Sofres public opinion survey about geological storage of CO 2 in France. The first survey, in April 2007, demonstrated a broad consensus for action against climate change. Three years later in March 2010, even a wide support for action remains, the public opinion was marked from the Copenhagen fiasco and the 'climate-gate'. More generally, in a context of global economic crisis, compared to 2007 the economy/environment balance moves back in 2010 towards the former term. Thus, 62% of the French answered that there is a need to act against climate change, that is 17 points less than three years ago. And 67% estimated that 'the priority must go to the protection of the environment' instead of the economy, that is 11 points less. The 2007 survey suggested that 6% of the respondents were able to define correctly geological storage of CO 2 . The approval rate was 59% at first, but fell to 38% after reading about the risks of the technology. Three years later, the context included emerging CCS projects in France, a (failed) carbon tax proposal and sustained debates on climate change. While CCS has never been a hot topic in the media, it moved from being inexistent to a few specific papers each semesters in important newspapers and some TV / radio air-time. Between 2007 and 2010 the notoriety of CCS increased in France, but the rates of approval mostly stagnated: 57% at first, falling to 37% after the reading on risks. The expression 'stockage geologique du CO 2 ' is now recognized by one third of the French, and about 17% can provide an exact definition. There remain an ambiguity with sequestration in forests, and the mental image of storing CO 2 in underground caves or vessels remains widespread. Our study shows a statistically significant positive correlation between more information and a favorable opinion towards geological sequestration. The opinion of respondents is more stable

  8. U.S. Geological Survey Emerging Applications of Unmanned Aircraft Systems

    Science.gov (United States)

    Hutt, M. E.

    2012-12-01

    In anticipation of transforming the research methods and resource management techniques employed across the Department of the Interior, the U.S. Geological Survey (USGS) Unmanned Aircraft Systems (UAS) Project Office is conducting missions using small UAS- sUAS platforms (technology in support of scientific, resource and land management missions. UAS technology is currently being used by USGS and our partners to monitor environmental conditions, analyze the impacts of climate change, respond to natural hazards, understand landscape change rates and consequences, conduct wildlife inventories and support related land management and law enforcement missions. Our ultimate goal is to support informed decision making by creating the opportunity, via UAS technology, to gain access to an increased level of persistent monitoring of earth surface processes (forest health conditions, wildfires, earthquake zones, invasive species, etc.) in areas that have been logistically difficult, cost prohibitive or technically impossible to obtain consistent, reliable, timely information. USGS is teaming with the Department of the Interior Aviation Management Directorate to ensure the safe and cost effective adoption of UAS technology. While the USGS is concentrating on operating sUAS, the immense value of increased flight time and more robust sensor capabilities available on larger platforms cannot be ignored. We are partnering with several groups including the Department of Homeland Security, National Aeronautics and Space Administration, Department of Defense, and National Oceanic and Atmospheric Administration for access to data collected from their fleet of high altitude, long endurance (HALE) UAS. The HALE systems include state of the art sensors including Electro-Optical, Thermal Infrared and Synthetic Aperture Radar (SAR). The data being collected by High Altitude, Long Endurance (HALE) systems is can be routinely shared in near real time at several DOI- USGS locations. Analysis

  9. Geologic report for the Weldon Spring Raffinate Pits Site

    International Nuclear Information System (INIS)

    1984-10-01

    A preliminary geologic site characterization study was conducted at the Weldon Spring Raffinate Pits Site, which is part of the Weldon Spring Site, in St. Charles County, Missouri. The Raffinate Pits Site is under the custody of the Department of Energy (DOE). Surrounding properties, including the Weldon Spring chemical plant, are under the control of the Department of the Army. The study determined the following parameters: site stratigraphy, lithology and general conditions of each stratigraphic unit, and groundwater characteristics and their relation to the geology. These parameters were used to evaluate the potential of the site to adequately store low-level radioactive wastes. The site investigation included trenching, geophysical surveying, borehole drilling and sampling, and installing observation wells and piezometers to monitor groundwater and pore pressures

  10. A Review of Methods Applied by the U.S. Geological Survey in the Assessment of Identified Geothermal Resources

    Science.gov (United States)

    Williams, Colin F.; Reed, Marshall J.; Mariner, Robert H.

    2008-01-01

    The U. S. Geological Survey (USGS) is conducting an updated assessment of geothermal resources in the United States. The primary method applied in assessments of identified geothermal systems by the USGS and other organizations is the volume method, in which the recoverable heat is estimated from the thermal energy available in a reservoir. An important focus in the assessment project is on the development of geothermal resource models consistent with the production histories and observed characteristics of exploited geothermal fields. The new assessment will incorporate some changes in the models for temperature and depth ranges for electric power production, preferred chemical geothermometers for estimates of reservoir temperatures, estimates of reservoir volumes, and geothermal energy recovery factors. Monte Carlo simulations are used to characterize uncertainties in the estimates of electric power generation. These new models for the recovery of heat from heterogeneous, fractured reservoirs provide a physically realistic basis for evaluating the production potential of natural geothermal reservoirs.

  11. Coast Salish and U.S. Geological Survey 2009 Tribal Journey water quality project

    Science.gov (United States)

    Akin, Sarah K.; Grossman, Eric E.

    2010-01-01

    The Salish Sea, contained within the United States and British Columbia, Canada, is the homeland of the Coast Salish Peoples and contains a diverse array of marine resources unique to this area that have sustained Coast Salish cultures and traditions for millennia. In July 2009, the Coast Salish People and U.S. Geological Survey conducted a second water quality study of the Salish Sea to examine spatial and temporal variability of environmental conditions of these surface waters as part of the annual Tribal Journey. Six canoes of approximately 100 towed multi parameter water-quality sondes as the Salish People traveled their ancestral waters during the middle of summer. Sea surface temperature, salinity, pH, dissolved oxygen, and turbidity were measured simultaneously at ten-second intervals, and more than 54,000 data points spanning 1,300 kilometers of the Salish Sea were collected. The project also synthesized Coast Salish ecological knowledge and culture with scientific monitoring to better understand and predict the response of coastal habitats and marine resources. Comparisons with data collected in 2008 reveal significantly higher mean surface-water temperatures in most subbasins in 2009 linked to record air temperatures that affected the Pacific Northwest in July 2009. Through large-scale spatial measurements collected each summer, the project helps to identify patterns in summer water quality, areas of water-quality impairment, and trends occurring through time.

  12. A Primer for Conducting Survey Research Using MTurk: Tips for the Field

    Science.gov (United States)

    Chambers, Silvana; Nimon, Kim; Anthony-McMann, Paula

    2016-01-01

    This paper presents best practices for conducting survey research using Amazon Mechanical Turk (MTurk). Readers will learn the benefits, limitations, and trade-offs of using MTurk as compared to other recruitment services, including SurveyMonkey and Qualtrics. A synthesis of survey design guidelines along with a sample survey are presented to help…

  13. An algorithm to assess methodological quality of nutrition and mortality cross-sectional surveys: development and application to surveys conducted in Darfur, Sudan

    Directory of Open Access Journals (Sweden)

    Prudhon Claudine

    2011-11-01

    Full Text Available Abstract Background Nutrition and mortality surveys are the main tools whereby evidence on the health status of populations affected by disasters and armed conflict is quantified and monitored over time. Several reviews have consistently revealed a lack of rigor in many surveys. We describe an algorithm for analyzing nutritional and mortality survey reports to identify a comprehensive range of errors that may result in sampling, response, or measurement biases and score quality. We apply the algorithm to surveys conducted in Darfur, Sudan. Methods We developed an algorithm based on internationally agreed upon methods and best practices. Penalties are attributed for a list of errors, and an overall score is built from the summation of penalties accrued by the survey as a whole. To test the algorithm reproducibility, it was independently applied by three raters on 30 randomly selected survey reports. The algorithm was further applied to more than 100 surveys conducted in Darfur, Sudan. Results The Intra Class Correlation coefficient was 0.79 for mortality surveys and 0.78 for nutrition surveys. The overall median quality score and range of about 100 surveys conducted in Darfur were 0.60 (0.12-0.93 and 0.675 (0.23-0.86 for mortality and nutrition surveys, respectively. They varied between the organizations conducting the surveys, with no major trend over time. Conclusion Our study suggests that it is possible to systematically assess quality of surveys and reveals considerable problems with the quality of nutritional and particularly mortality surveys conducted in the Darfur crisis.

  14. Mise-a-la masse survey 2012-2013 in Olkiluoto and modelling of the data

    International Nuclear Information System (INIS)

    Ahokas, T.; Paananen, M.; Paulamaeki, S.; Korhonen, K.; Tiensuu, K.

    2014-07-01

    This report describes the Mise-a-la-masse (MAM) survey carried out in the Olkiluoto area in 2012 - 2013 and the modelling of the data. The aim of the survey was to find out the continuation of some electrically conductive zones intersected by drillholes drilled in the eastern part of the Olkiluoto island. In the modelling of the data both theoretical calculations and manual modelling were used to get more reliability to the modelling results. Also all the geological information of the known brittle fault zones was taken into account in the modelling. The modelling results will be used in the updates of the geological and hydrogeological models of the Olkiluoto area. Many of the electrically conductive zones modelled from the surveyed data coincide with the brittle deformation zones presented in the present geological model. The results showed also possibilities to join some modelled brittle zones together. According to the modelling results many brittle zones, especially the brittle and hydraulically conductive zone BFZ019C/HZ19C, has a quite complex structure. Many brittle zones also seem to have galvanic connections between each other. (orig.)

  15. Beowulf Distributed Processing and the United States Geological Survey

    Science.gov (United States)

    Maddox, Brian G.

    2002-01-01

    Introduction In recent years, the United States Geological Survey's (USGS) National Mapping Discipline (NMD) has expanded its scientific and research activities. Work is being conducted in areas such as emergency response research, scientific visualization, urban prediction, and other simulation activities. Custom-produced digital data have become essential for these types of activities. High-resolution, remotely sensed datasets are also seeing increased use. Unfortunately, the NMD is also finding that it lacks the resources required to perform some of these activities. Many of these projects require large amounts of computer processing resources. Complex urban-prediction simulations, for example, involve large amounts of processor-intensive calculations on large amounts of input data. This project was undertaken to learn and understand the concepts of distributed processing. Experience was needed in developing these types of applications. The idea was that this type of technology could significantly aid the needs of the NMD scientific and research programs. Porting a numerically intensive application currently being used by an NMD science program to run in a distributed fashion would demonstrate the usefulness of this technology. There are several benefits that this type of technology can bring to the USGS's research programs. Projects can be performed that were previously impossible due to a lack of computing resources. Other projects can be performed on a larger scale than previously possible. For example, distributed processing can enable urban dynamics research to perform simulations on larger areas without making huge sacrifices in resolution. The processing can also be done in a more reasonable amount of time than with traditional single-threaded methods (a scaled version of Chester County, Pennsylvania, took about fifty days to finish its first calibration phase with a single-threaded program). This paper has several goals regarding distributed processing

  16. A Knowledge-Driven Geospatially Enabled Framework for Geological Big Data

    Directory of Open Access Journals (Sweden)

    Liang Wu

    2017-06-01

    Full Text Available Geologic survey procedures accumulate large volumes of structured and unstructured data. Fully exploiting the knowledge and information that are included in geological big data and improving the accessibility of large volumes of data are important endeavors. In this paper, which is based on the architecture of the geological survey information cloud-computing platform (GSICCP and big-data-related technologies, we split geologic unstructured data into fragments and extract multi-dimensional features via geological domain ontology. These fragments are reorganized into a NoSQL (Not Only SQL database, and then associations between the fragments are added. A specific class of geological questions was analyzed and transformed into workflow tasks according to the predefined rules and associations between fragments to identify spatial information and unstructured content. We establish a knowledge-driven geologic survey information smart-service platform (GSISSP based on previous work, and we detail a study case for our research. The study case shows that all the content that has known relationships or semantic associations can be mined with the assistance of multiple ontologies, thereby improving the accuracy and comprehensiveness of geological information discovery.

  17. Quality-Assurance Plan for the Analysis of Fluvial Sediment by the U. S. Geological Survey Kentucky Water Science Center Sediment Laboratory

    National Research Council Canada - National Science Library

    Shreve, Elizabeth A; Downs, Aimee C

    2005-01-01

    This report describes laboratory procedures used by the U. S. Geological Survey Kentucky Water Science Center Sediment Laboratory for the processing and analysis of fluvial sediment samples for concentration of sand and finer material...

  18. A new algorithm for coding geological terminology

    Science.gov (United States)

    Apon, W.

    The Geological Survey of The Netherlands has developed an algorithm to convert the plain geological language of lithologic well logs into codes suitable for computer processing and link these to existing plotting programs. The algorithm is based on the "direct method" and operates in three steps: (1) searching for defined word combinations and assigning codes; (2) deleting duplicated codes; (3) correcting incorrect code combinations. Two simple auxiliary files are used. A simple PC demonstration program is included to enable readers to experiment with this algorithm. The Department of Quarternary Geology of the Geological Survey of The Netherlands possesses a large database of shallow lithologic well logs in plain language and has been using a program based on this algorithm for about 3 yr. Erroneous codes resulting from using this algorithm are less than 2%.

  19. Offshore geology and geomorphology from Point Piedras Blancas to Pismo Beach, San Luis Obispo County, California

    Science.gov (United States)

    Watt, Janet Tilden; Johnson, Samuel Y.; Hartwell, Stephen R.; Roberts, Michelle

    2015-01-01

    Marine geology and geomorphology were mapped along the continental shelf and upper slope between Point Piedras Blancas and Pismo Beach, California. The map area is divided into the following three (smaller) map areas, listed from north to south: San Simeon, Morro Bay, and Point San Luis. Each smaller map area consists of a geologic map and the corresponding geophysical data that support the geologic mapping. Each geophysical data sheet includes shaded-relief multibeam bathymetry, seismic-reflection-survey tracklines, and residual magnetic anomalies, as well as a smaller version of the geologic map for reference. Offshore geologic units were delineated on the basis of integrated analysis of adjacent onshore geology, seafloor-sediment and rock samples, multibeam bathymetry and backscatter imagery, magnetic data, and high-resolution seismic-reflection profiles. Although the geologic maps are presented here at 1:35,000 scale, map interpretation was conducted at scales of between 1:6,000 and 1:12,000.

  20. U.S. Geological Survey yearbook, fiscal year 1993: At work across the Nation

    Science.gov (United States)

    ,

    1994-01-01

    The need for earth science has never been more paramount. The devastating flooding of the Mississippi River this past year, strikingly portrayed on the cover and discussed in detail in this report (p. 37-42), was a sobering reminder of nature's elemental power. As a Nation, we face many environmental and economic challenges, such as natural hazards, that can be addressed effectively only through science. Water quality, resource assessments, climate change, and toxic wastes are all critical issues that can best be dealt with when approached from a sound scientific base. The goal of the U.S. Geological Survey is to provide hydrologic, geologic, and topographic information and understanding that contribute to the wise management of the Nation's natural resources and that promote the health, safety, and well-being of all Americans. FY1993 has proven to be a particularly challenging one for the USGS. We entered into a time of transition from the long-term leadership of Director Dallas Peck and Associate Director Doyle Frederick to the appointment of a new director. We thank Dallas and Doyle for their many years of service and for their support during the transition.

  1. The effects of conducting authentic field-geology research on high school students' understanding of the nature of science, and their views of themselves as research scientists

    Science.gov (United States)

    Millette, Patricia M.

    Authentic field geology research is a inquiry method that encourages students to interact more with their local environment, and by solving genuine puzzles, begin to increase their intuitive understanding of the nature and processes of science. The goal of the current study was to determine if conducting authentic field research and giving high school students the opportunity to present findings to adult audiences outside of the school setting 1) enhances students' understanding of the nature of science, and 2) affects students views of themselves as researchers. To accomplish this, ninth-grade students from a public school in northern New England engaged in a community-initiated glacial geology problem, completed a field research investigation, and presented their findings at several professional conferences. Following the completion of this student-centered field research, I investigated its effects by using a mixed methods approach consisting of qualitative and quantitative data from two sources. These included selected questions from an open-response survey (VNOS-c), and interviews that were conducted with fifteen of the students of different ages and genders. Findings show that conducting original field research seems to have a positive influence on these students' understanding of the NOS as well as the processes of science. Many of the students reported feelings of accomplishment, acceptance of responsibility for the investigation, a sense of their authentic contribution to the body of scientific knowledge in the world, and becoming scientists. This type of authentic field investigation is significant because recent reforms in earth-science education stress the importance of students learning about the nature and processes of scientific knowledge along with science content.

  2. Integrating Geological and Geodetic Surveying Techniques for Landslide Deformation Monitoring: Istanbul Case

    Science.gov (United States)

    Menteşe, E. Y.; Kilic, O.; BAS, M.; Tarih, A.; Duran, K.; Gumus, S.; Yapar, E. R.; Karasu, M. E.; Mehmetoğlu, H.; Karaman, A.; Edi˙ger, V.; Kosma, R. C.; Ozalaybey, S.; Zor, E.; Arpat, E.; Polat, F.; Dogan, U.; Cakir, Z.; Erkan, B.

    2017-12-01

    There are several methods that can be utilized for describing the landslide mechanisms. While some of them are commonly used, there are relatively new methods that have been proven to be useful. Obviously, each method has its own limitations and thus integrated use of these methods contributes to obtaining a realistic landslide model. The slopes of Küçükçekmece and Büyükçekmece Lagoons located at the Marmara Sea coast of İstanbul, Turkey, are among most specific examples of complex type landslides. The landslides in the area started developing at low sea level, and appears to ceased or at least slowed down to be at minimum after the sea level rise, as oppose to the still-active landslides that continue to cause damage especially in the valley slopes above the recent sea level between the two lagoons. To clarify the characteristics of these slope movements and classify them in most accurate way, Directorate of Earthquake and Ground Research of Istanbul Metropolitan Municipality launched a project in cooperation with Marmara Research Center of The Scientific and Technological Research Council of Turkey (TÜBİTAK). The project benefits the utility of the techniques of different disciplines such as geology, geophysics, geomorphology, hydrogeology, geotechnics, geodesy, remote sensing and meteorology. Specifically, this study focuses on two main axes of these techniques, namely: geological and geodetic. The reason for selecting these disciplines is because of their efficiency and power to understand the landslide mechanism in the area. Main approaches used in these studies are comprised of geological drills, inclinometer measurements, GPS surveys and SAR (both satellite and ground based) techniques. Integration of the results gathered from these techniques led the project team to comprehend critical aspects of landslide phenomenon in the area and produce precise landslide hazard maps that are basic instruments for a resilient urban development.

  3. North Carolina Geological Survey's role in siting a low-level radioactive (LLRW) waste disposal facility in North Carolina

    International Nuclear Information System (INIS)

    Reid, J.C.; Wooten, R.M.; Farrell, K.M.

    1993-01-01

    The Southeast Compact Commission in 1986 selected North Carolina to host the Southeast's LLRW disposal facility for the next twenty years. The North Carolina Geological Survey (NCGS) for six years has played a major role in the State's efforts by contributing to legislation and administrative code, policy, technical oversight and surveillance and regulation as a member of the State's regulatory team. Future activities include recommendation of the adequacy of characterization and site performance pursuant to federal code, state general statutes and administrative code, and review of a license application. Staff must be prepared to present testimony and professional conclusions in court. The NCGS provides technical advice to the Division of Radiation Protection (DRP), the regulatory agency which will grant or deny a LLRW license. The NCGS has not participated in screening the state for potential sites to minimize bias. The LLRW Management Authority, a separate state agency siting the LLRW facility, hired a contractor to characterize potential sites and to write a license application. Organizational relationships enable the NCGS to assist the DRP in its regulatory role without conflict of interest. Disposal facilities must be sited to ensure safe disposal of LLRW. By law, the siting of a LLRW disposal facility is primarily a geological, rather than an engineering, effort. Federal and State statutes indicate a site must be licensable on its own merits. Engineered barriers cannot make a site licensable. The project is 3 years behind schedule and millions of dollars over budget. This indicates the uncertainty and complexity inherent in siting such as facility, the outcome of which cannot be predicted until site characterization is complete, the license application reviewed and the performance assessment evaluated. State geological surveys are uniquely qualified to overview siting of LLRW facilities because of technical expertise and experience in the state's geology

  4. Summary of 2012 reconnaissance field studies related to the petroleum geology of the Nenana Basin, interior Alaska

    Science.gov (United States)

    Wartes, Marwan A.; Gillis, Robert J.; Herriott, Trystan M.; Stanley, Richard G.; Helmold, Kenneth P.; Peterson, C. Shaun; Benowitz, Jeffrey A.

    2013-01-01

    The Alaska Division of Geological & Geophysical Surveys (DGGS) recently initiated a multi-year review of the hydrocarbon potential of frontier sedimentary basins in Alaska (Swenson and others, 2012). In collaboration with the Alaska Division of Oil & Gas and the U.S. Geological Survey we conducted reconnaissance field studies in two basins with recognized natural gas potential—the Susitna basin and the Nenana basin (LePain and others, 2012). This paper summarizes our initial work on the Nenana basin; a brief summary of our work in the Susitna basin can be found in Gillis and others (in press). During early May 2012, we conducted ten days of helicopter-supported fieldwork and reconnaissance sampling along the northern Alaska Range foothills and Yukon–Tanana upland near Fairbanks (fig. 1). The goal of this work was to improve our understanding of the geologic development of the Nenana basin and to collect a suite of samples to better evaluate hydrocarbon potential. Most laboratory analyses have not yet been completed, so this preliminary report serves as a summary of field data and sets the framework for future, more comprehensive analysis to be presented in later publications.

  5. U.S. Geological Survey Assessment of Undiscovered Petroleum Resources of the Hamra Basin, Libya, 2006

    Science.gov (United States)

    ,

    2007-01-01

    The Hamra Basin Province encompasses approximately 244,100 square kilometers (94,250 square miles) and is entirely within Libya. One composite total petroleum system (TPS) was defined for this assessment; it extends from Libya westward into adjacent parts of Algeria and southern Tunisia. The Hamra Basin part of the TPS was subdivided into four assessment units for the purpose of resource assessment. The assessment units cover only 172,390 square kilometers of the Hamra Basin Province; the remaining area has little potential for undiscovered petroleum resources because of the absence of petroleum source rocks. Using a geology-based assessment methodology, the U.S. Geological Survey estimated mean volumes of 784 million barrels of crude oil, 4,748 billion cubic feet of natural gas, and 381 million barrels of natural gas liquids in the Hamra Basin of northwestern Libya. Most of the undiscovered crude oil and natural gas are interpreted to be in deeper parts of the Hamra Basin.

  6. U.S. Geological Survey Methodology Development for Ecological Carbon Assessment and Monitoring

    Science.gov (United States)

    Zhu, Zhi-Liang; Stackpoole, S.M.

    2009-01-01

    Ecological carbon sequestration refers to transfer and storage of atmospheric carbon in vegetation, soils, and aquatic environments to help offset the net increase from carbon emissions. Understanding capacities, associated opportunities, and risks of vegetated ecosystems to sequester carbon provides science information to support formulation of policies governing climate change mitigation, adaptation, and land-management strategies. Section 712 of the Energy Independence and Security Act (EISA) of 2007 mandates the Department of the Interior to develop a methodology and assess the capacity of our nation's ecosystems for ecological carbon sequestration and greenhouse gas (GHG) flux mitigation. The U.S. Geological Survey (USGS) LandCarbon Project is responding to the Department of Interior's request to develop a methodology that meets specific EISA requirements.

  7. Geology of the Huntsville quadrangle, Alabama

    Science.gov (United States)

    Sanford, T.H.; Malmberg, G.T.; West, L.R.

    1961-01-01

    The 7 1/2-minute Huntsville quadrangle is in south-central Madison County, Ala., and includes part of the city of Hunstville. The south, north, east, and west boundaries of the quadrangle are about 3 miles north of the Tennessee River, 15 1/2 miles south of the Tennessee line, 8 miles west of the Jackson County line, and 9 miles east of the Limestone County line. The bedrock geology of the Huntsville quadrangle was mapped by the U.S. Geological Survey in cooperation with the city of Hunstville and the Geological Survey of Alabama as part of a detailed study of the geology and ground-water resources of Madison County, with special reference to the Huntsville area. G. T. Malmberg began the geologic mapping of the county in July 1953, and completed it in April 1954. T. H. Sanford, Jr., assisted Malmberg in the final phases of the county mapping, which included measuring geologic sections with hand level and steel tape. In November 1958 Sanford, assisted by L. R. West, checked contacts and elevations in the Hunstville quadrangle; made revisions in the contact lines; and wrote the text for this report. The fieldwork for this report was completed in April 1959.

  8. Geologic and hydrologic investigations of a potential nuclear waste disposal site at Yucca Mountain, southern Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Carr, M.D.; Yount, J.C. (eds.)

    1988-12-31

    Yucca Mountain in southern Nye County, Nevada, has been selected by the United States Department of Energy as one of three potential sites for the nation`s first high-level nuclear waste repository. Its deep water table, closed-basin ground-water flow, potentially favorable host rock, and sparse population have made the Yucca Mountain area a viable candidate during the search for a nuclear waste disposal site. Yucca Mountain, however, lies within the southern Great Basin, a region of known contemporary tectonism and young volcanic activity, and the characterization of tectonism and volcanism remains as a fundamental problem for the Yucca Mountain site. The United States Geological Survey has been conducting extensive studies to evaluate the geologic setting of Yucca Mountain, as well as the timing and rates of tectonic and volcanic activity in the region. A workshop was convened by the Geologic Survey in Denver, Colorado, on August 19, 20, and 21, 1985, to review the scientific progress and direction of these studies. Considerable debate resulted. This collection of papers represents the results of some of the studies presented at the workshop, but by no means covers all of the scientific results and viewpoints presented. Rather, the volume is meant to serve as a progress report on some of the studies within the Geological Survey`s continuing research program toward characterizing the tectonic framework of Yucca Mountain. Individual papers were processed separately for the data base.

  9. Study on geology and geological structure based on literature studies

    International Nuclear Information System (INIS)

    Funaki, Hironori; Ishii, Eiichi; Yasue, Ken-ichi; Takahashi, Kazuharu

    2005-03-01

    Japan Nuclear Cycle Development Institute (JNC) is proceeding with underground research laboratory (URL) project for the sedimentary rock in Horonobe, Hokkaido. This project is an investigation project which is planned over 20 years. Surface-based investigations (Phase 1) have been conducted for the present. The purposes of the Phase 1 are to construct the geological environment model (geological-structural, hydrogeological, and hydrochemical models) and to confirm the applicability of investigation technologies for the geological environment. The geological-structural model comprises the base for the hydrogeological and hydrochemical models. We constructed the geological-structural model by mainly using data obtained from literature studies. Particulars regarding which data the model is based on and who has performed the interpretation are also saved for traceability. As a result, we explain the understanding of degree and the need of information on stratigraphy and discontinuous structure. (author)

  10. U.S. Geological Survey Fundamental Science Practices

    Science.gov (United States)

    ,

    2011-01-01

    The USGS has a long and proud tradition of objective, unbiased science in service to the Nation. A reputation for impartiality and excellence is one of our most important assets. To help preserve this vital asset, in 2004 the Executive Leadership Team (ELT) of the USGS was charged by the Director to develop a set of fundamental science practices, philosophical premises, and operational principles as the foundation for all USGS research and monitoring activities. In a concept document, 'Fundamental Science Practices of the U.S. Geological Survey', the ELT proposed 'a set of fundamental principles to underlie USGS science practices.' The document noted that protecting the reputation of USGS science for quality and objectivity requires the following key elements: - Clearly articulated, Bureau-wide fundamental science practices. - A shared understanding at all levels of the organization that the health and future of the USGS depend on following these practices. - The investment of budget, time, and people to ensure that the USGS reputation and high-quality standards are maintained. The USGS Fundamental Science Practices (FSP) encompass all elements of research investigations, including data collection, experimentation, analysis, writing results, peer review, management review, and Bureau approval and publication of information products. The focus of FSP is on how science is carried out and how products are produced and disseminated. FSP is not designed to address the question of what work the USGS should do; that is addressed in USGS science planning handbooks and other documents. Building from longstanding existing USGS policies and the ELT concept document, in May 2006, FSP policies were developed with input from all parts of the organization and were subsequently incorporated into the Bureau's Survey Manual. In developing an implementation plan for FSP policy, the intent was to recognize and incorporate the best of USGS current practices to obtain the optimum

  11. Minerals, lands, and geology for the common defence and general welfare, Volume 4, 1939-1961: A history of geology in relation to the development of public-land, federal science, and mapping policies and the development of mineral resources in the United States from the 60th to the 82d year of the U.S. Geological Survey

    Science.gov (United States)

    Rabbitt, Mary C.; Nelson, Clifford M.

    2015-01-01

    The fourth volume of the comprehensive history of the U.S. Geological Survey (USGS) is titled “Minerals, Lands, and Geology for the Common Defence and General Welfare—Volume 4, 1939‒1961.” The title is based on a passage in the preamble of the U.S. Constitution.

  12. Hydrogeochemical and stream sediment detailed geochemical survey for Trans-Pecos, Texas. Tascotal survey area

    International Nuclear Information System (INIS)

    Butz, T.R.; Payne, A.G.; Grimes, J.G.; Helgerson, R.N.; Bard, C.S.

    1979-01-01

    Results of the Tascotal survey area portion of the detailed geochemical survey for Trans-Pecos, Texas are reported. Field and laboratory data are presented for 337 groundwater and 611 stream sediment samples. Statistical and areal distributions of uranium and possible uranium-related variables are given. A generalized geologic map of the survey area is provided, and pertinent geologic factors which may be of significance in evaluating the potential for uranium mineralization are briefly discussed. Groundwaters containing greater than or equal to 80.0 ppB uranium were detected in three areas largely producing from acidic volcanoclastics in the south central portion of the survey area. High specific conductance and an association of lithium, selenium, and sodium were observed in these areas of anomalously high uranium. High uranium/specific conductance, uranium/boron, and uranium/sulfate ratios are also associated with areas of the highest uranium concentrations. Alkalinities in these areas were noted to be highly variable over short distances within the same hydrologic unit. Stream sediments containing greater than or equal to 2.57 ppM soluble uranium are located in the southwestern and the north and south central portions of the survey area. High U-FL/U-NT and low thorium/U-NT values are observed with sediments derived from acidic volcanics in the southern portions of the survey area. In areas of anomalously high uranium, an association of above background concentrations of thorium, lithium, potassium, beryllium, and zirconium were noted. In view of these data, areas containing the Buck Hill Volcanic Series, the Mitchell Mesa, and Tascotal Formations provide the best possibilities of an economical uranium deposit

  13. History of food consumption surveys conducted by the U.S. Department of Agriculture

    Science.gov (United States)

    Chapter 6 entitled "History of Food Consumption Surveys Conducted by The U.S. Department of Agriculture” provides an overview of the surveys conducted by USDA to monitor food use and food consumption patterns in the U.S. population since the latter part of the 19th century to 2014. This chapter in ...

  14. The value of DCIP geophysical surveys for contaminated site investigations

    DEFF Research Database (Denmark)

    Balbarini, Nicola; Rønde, Vinni Kampman; Maurya, Pradip Kumar

    an old factory site by combining traditional geological, hydrological, and contaminant concentration data with DCIP surveys. The plume consisted of xenobiotic organic compounds and inorganics. The study assesses benefits and limitations of DCIP geophysics for contaminated site investigations. A 3D......Geophysical methods are increasingly being used in contaminant hydrogeology to map lithology, hydraulic properties, and contaminant plumes with a high ionic strength. Advances in the Direct Current resistivity and Induced Polarization (DCIP) method allow the collection of high resolution three...... water and below the streambed. Surface DCIP surveys supported the characterization of the spatial variability in geology, hydraulic conductivity and contaminant concentration. Though DCIP data interpretation required additional borehole data, the DCIP survey reduced the number of boreholes required...

  15. Research on geological disposal: R and D concept on geological disposal

    International Nuclear Information System (INIS)

    1993-01-01

    The objective on geological disposal of high-level radioactive wastes are to ensure the long term radiological protection of the human and his environment in accordance with current internationally agreed radiation protection principles. The principle of geological disposal is to settle the high-level wastes in deep underground so as to isolate them from the human and his environment considering the existence of groundwater. Japan is currently in the stage of assessing technical feasibility of geological disposal to the extent practicable. In accordance with the AEC (Atomic Energy Commission) policy in 1989, PNC (Power Reactor and Nuclear Fuel Development Corporation) has conducted the research and development on geological disposal in three areas: 1) studies of geological environment, 2) research and development of disposal technology, and 3) performance assessment study. (author)

  16. Heliborne time-domain electromagnetic (TEM) surveys for uranium exploration

    International Nuclear Information System (INIS)

    Chaturvedi, A.K.

    2015-01-01

    Airborne geophysical surveys have been used extensively in petroleum, mineral exploration, and environmental mapping. Of all the geophysical methods, Electromagnetic (EM) methods, both ground and airborne are used to map the conductive ore bodies buried in the resistive bed rock. Mapping resistivity variations can help unravel complex geological problems and identify areas of hidden potential. Besides the traditional applications to ground water investigations and other natural resource exploration and geological mapping, a number of new applications have been reported. These include hazardous-waste characterization studies, precision agriculture applications, archaeological surveys etc. Airborne Electromagnetic (AEM) methods have undergone rapid improvements over the past few decades. Several new airborne Time Do-main EM (TDEM) systems appeared; existing systems were updated and/or enhanced. The use of natural field (passive) EM surveys continued to increase, with new or improved systems becoming available for both airborne and ground surveys. The number of large airborne survey systems with combined EM, magnetic, gravimetric and gamma-ray spectrometric capabilities also increased. Exploration of a mineral deposit is a multi-stage and multi-disciplinary approach that commences from regional investigations and concludes with establishing of a deposit. As economics play a major role in exploration, a proper integrated study is always beneficial in narrowing down the potential mineral target zones. Heliborne geophysical surveys are being conducted world-wide for exploration of base metals, gold, phosphorite, oil, uranium etc. that are very effective tool in identifying zones of interest accurately, economically and with less span of time. These surveys give a very good insight of surface and sub-surface geophysical signatures that can be attributed to geology with proper modeling. Heliborne Time - domain Electromagnetic (TEM) methods are well known for search of

  17. A study on site characterization of the deep geological environment around KURT

    International Nuclear Information System (INIS)

    Park, Kw; Kim, Gy; Koh, Yk; Kim, Ks; Choi, Jw

    2009-01-01

    KURT (KAERI Underground Research Tunnel) is a small scale research tunnel which was constructed from 2005 to 2006 at Korea Atomic Energy Research Institute (KAERI). To understand the deep geological environment around KURT area, the surface geological surveys such as lineaments analysis and geophysical survey and borehole investigation were performed. For this study, a 3 dimensional geological model has been constructed using the surface and borehole geological data. The regional lineaments were determined using a topographical map and the surface geophysical survey data were collected for the geological model. In addition, statistical methods were applied to fracture data from borehole televiewer loggings to identify fracture zones in boreholes. For a hydro geological modeling, fixed interval hydraulic tests were carried out for all boreholes. The results of the hydraulic tests were analyzed and classified by the fracture zone data of geological model. At result, the hydrogeological elements were decided and the properties of each element were assessed around the KURT area

  18. Aeromagnetic survey in Eurajoensalmi, Olkiluoto 2008

    International Nuclear Information System (INIS)

    Levaeniemi, H.

    2008-08-01

    This report describes the survey operation, survey and processing methods and the deliverables of an aerogeophysical survey in Olkiluoto area in April 2008. The survey was conducted by Geological Survey of Finland (GTK). The survey aircraft was a twin-engine Twin Otter operated by Finnish Aviation Academy (SIO) and owned by Natural Environment Research Council / British Geological Survey (NERC / BGS), with whom GTK has established a joint venture called Joint Airborne-geoscience Capability (JAC). The survey was conducted in April 2008 during six days. The survey consists of six separate survey flights, one of which was a magnetic calibration flight. The survey was based in Pori airport. Survey line spacing was 50 meters and nominal survey altitude was 30 meters. Measurements were completed in April 2008, and data processing and reporting was done in June 2008. Two cesium magnetometers installed onboard the aircraft (at the left wingtip and in a nose cone) were measuring the magnetic total field intensity during the survey flights. An automatic compensation unit corrected the aircraft attitude errors in the magnetic data in real time. In addition to magnetic measurement, auxiliary parameters such as flight altitude and aircraft attitude were also recorded simultaneously. Reference ground base station was used for recording the temporal variations in the magnetic field and also reference data for post-positioning of coordinate information. In the post-processing phase, heading correction, base station correction and microlevelling procedures were applied to the magnetic data. The data was exported to numeric XYZ files and interpolated into grid data file. A noteworthy local detail present in the survey and in the processing was the massive power line. For safety reasons, flight altitude had to be increased and survey lines had to be cut short in the vicinity of the powerline. However, due to reasonable planning of the survey area boundaries, this caused no great

  19. Bedrock Geologic Map of the Bristol, VT Quadrangle

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital data from VG13-1 Kim, J, Weber, E, and Klepeis, K, 2013, Bedrock Geologic Map of the Bristol, VT Quadrangle: Vermont Geological Survey Open File Report...

  20. Geochemical reanalysis of historical U.S. Geological Survey sediment samples from the Zane Hills, Hughes and Shungnak quadrangles, Alaska

    Science.gov (United States)

    Werdon, Melanie B.; Granitto, Matthew; Azain, Jaime S.

    2015-01-01

    The State of Alaska’s Strategic and Critical Minerals (SCM) Assessment project, a State-funded Capital Improvement Project (CIP), is designed to evaluate Alaska’s statewide potential for SCM resources. The SCM Assessment is being implemented by the Alaska Division of Geological & Geophysical Surveys (DGGS), and involves obtaining new airborne-geophysical, geological, and geochemical data. As part of the SCM Assessment, thousands of historical geochemical samples from DGGS, U.S. Geological Survey (USGS), and U.S. Bureau of Mines archives are being reanalyzed by DGGS using modern, quantitative, geochemical-analytical methods. The objective is to update the statewide geochemical database to more clearly identify areas in Alaska with SCM potential.The USGS is also undertaking SCM-related geologic studies in Alaska through the federally funded Alaska Critical Minerals cooperative project. DGGS and USGS share the goal of evaluating Alaska’s strategic and critical minerals potential and together created a Letter of Agreement (signed December 2012) and a supplementary Technical Assistance Agreement (#14CMTAA143458) to facilitate the two agencies’ cooperative work. Under these agreements, DGGS contracted the USGS in Denver to reanalyze historical USGS sediment samples from Alaska.For this report, DGGS funded reanalysis of 105 historical USGS sediment samples from the statewide Alaska Geochemical Database Version 2.0 (AGDB2; Granitto and others, 2013). Samples were chosen from the Zane Hills area in the Hughes and Shungnak quadrangles, Alaska (fig. 1). The USGS was responsible for sample retrieval from the National Geochemical Sample Archive (NGSA) in Denver, Colorado through the final quality assurance/quality control (QA/QC) of the geochemical analyses obtained through the USGS contract lab. The new geochemical data are published in this report as a coauthored DGGS report, and will be incorporated into the statewide geochemical databases of both agencies.

  1. Publications - Geospatial Data | Alaska Division of Geological &

    Science.gov (United States)

    from rocks collected in the Richardson mining district, Big Delta Quadrangle, Alaska: Alaska Division Island 2009 topography: Alaska Division of Geological & Geophysical Surveys Miscellaneous Publication , Geologic map of portions of the Livengood B-3, B-4, C-3, and C-4 quadrangles, Tolovana mining district

  2. Programs and analytical methods for the U.S. Geological Survey acid-rain quality-assurance project. Water Resources Investigation

    International Nuclear Information System (INIS)

    See, R.B.; Willoughby, T.C.; Brooks, M.H.; Gordon, J.D.

    1990-01-01

    The U.S. Geological Survey operates four programs to provide external quality-assurance of wet deposition monitoring by the National Atmospheric Deposition Program and the National Trends Network. An intersite-comparison program assesses the precision and bias of onsite determinations of pH and specific conductance made by site operators. A blind-audit program is used to assess the effect of routine sample-handling procedures and transportation on the precision and bias of wet-deposition data. An interlaboratory-comparison program is used to assess analytical results from three or more laboratories, which routinely analyze wet-deposition samples from the major North American networks, to determine if comparability exists between laboratory analytical results and to provide estimates of the analytical precision of each laboratory. A collocated-sampler program is used to estimate the precision of wet/dry precipitation sampling throughout the National Atmospheric Deposition Program and the National Trends Network, to assess the variability of diverse spatial arrays, and to evaluate the impact of violations of specific site criteria. The report documents the procedures and analytical methods used in these four quality-assurance programs

  3. Environmental geology in the United States: Present practice and future training needs

    Science.gov (United States)

    Lundgren, Lawrence

    Environmental geology as practiced in the United States confronts issues in three large areas: Threats to human society from geologic phenomena (geologic hazards); impacts of human activities on natural systems (environmental impact), and natural-resource management. This paper illustrates present U.S. practice in environmental geology by sampling the work of 7 of the 50 state geological surveys and of the United States Geological Survey as well. Study of the work of these agencies provides a basis for identifying avenues for the training of those who will deal with environmental issues in the future. This training must deal not only with the subdisciplines of geology but with education to cope with the ethical, interdisciplinary, and public-communication aspects of the work of the environmental geologist.

  4. Preliminary modelling of the 2010 MAM survey data

    International Nuclear Information System (INIS)

    Ahokas, T.

    2010-10-01

    Posiva Oy prepares for disposal of spent nuclear fuel into bedrock focusing in Olkiluoto, Eurajoki. This is in accordance of the Decision-in-Principle of the State Council in 2000, and ratification by the Parliament in 2001. The ONKALO underground characterization premises have been constructed since 2004. Posiva Oy is aiming for submitting the construction licence application in 2012. To support the compilation of the safety case and repository and ONKALO underground characterisation facility design and construction, a series of Olkiluoto Site Descriptive Model including six parts: the surface system geology, rock mechanics, hydrogeology and hydrogeochemistry and migration, have been compiled. To support the next update of the Olkiluoto Site Description and especially, the geological and hydrogeological sub-models, the preliminary modelling of the recent mise-a-la-masse (MAM) surveys has been carried out. This report discusses the mise-a-la-masse (MAM) surveys carried out in the Olkiluoto area in 2010 and aims to find out the continuation of some electrically conductive zones intersected by drillholes OL-KR49 ...OL-KR53 in the eastern part of the Olkiluoto island. Several electrically conductive zones were modelled from the examined data, many of them coincide with the brittle deformation zones presented in the geological model, but also indications of some so far unknown zones were detected. The complexity and the extent of the group of zones including the hydraulically conductive zones HZ19A, HZ19B and HZ19C (Vaittinen et al. 2009) emerged from the data during this work. Modelling of this group in detail needs more information from both geological and hydrogeological investigations. (orig.)

  5. Specification for the U.S. Geological Survey Historical Topographic Map Collection

    Science.gov (United States)

    Allord, Gregory J.; Walter, Jennifer L.; Fishburn, Kristin A.; Shea, Gale A.

    2014-01-01

    This document provides the detailed requirements for producing, archiving, and disseminating a comprehensive digital collection of topographic maps for the U.S. Geological Survey (USGS) Historical Topographic Map Collection (HTMC). The HTMC is a digital archive of about 190,000 printed topographic maps published by the USGS from the inception of the topographic mapping program in 1884 until the last paper topographic map using lithographic printing technology was published in 2006. The HTMC provides a comprehensive digital repository of all scales and all editions of USGS printed topographic maps that is easily discovered, browsed, and downloaded by the public at no cost. The HTMC provides ready access to maps that are no longer available for distribution in print. A digital file representing the original paper historical topographic map is produced for each historical map in the HTMC in georeferenced PDF (GeoPDF) format (a portable document format [PDF] with a geospatial extension).

  6. U.S. Geological Survey programs and investigations related to soil and water conservation

    Science.gov (United States)

    Osterkamp, W.R.; Gray, J.R.

    2001-01-01

    The U.S. Geological Survey has a rich tradition of collecting hydrologic data, especially for fluxes of water and suspended sediment, that provide a foundation for studies of soil and water conservation. Applied and basic research has included investigations of the effects of land use on rangelands, croplands, and forests; hazards mapping; derivation of flood and drought frequency, and other statistics related to streamflow and reservoir storage; development and application of models of rainfall-runoff relations, chemical quality, and sediment movement; and studies of the interactive processes of overland and channel flow with vegetation. Networks of streamgaging stations and (or) sampling sites within numerous drainage basins are yielding information that extends databases and enhances the ability to use those data for interpretive studies.

  7. Three decades of BGR airborne geophysical surveys over the polar regions - a review

    Science.gov (United States)

    Damaske, Detlef

    2013-04-01

    The Federal Institute for Geosciences and Natural Resources (BGR) has been conducting geological polar research since 1979. A few years later BGR engaged in airborne geophysical projects. Investigation of the lithosphere of the continent and the continental margins was one of the key issues for BGR. Right from the beginning geophysical research was closely associated with the geological activities. The GANOVEX (German Antarctic North Victoria Land Expedition) program combined geological research with geophysical (mainly airborne) investigations. This proved to be a fruitful approach to many of the open questions regarding the tectonic development of the Ross Sea region. Aeromagnetic surveys evolved into a powerful tool for identifying geological structures and following them underneath the ice covered areas - not accessible to direct geological investigations. To achieve this aim it was essential to lay out these surveys with a relatively closely spaced line separation on the expense of covering large areas at the same time. Nevertheless, over many years of continues research areas of more than a just regional extent could be covered. This was, however, only possible through international collaboration. During the first years, working in the Ross Sea area, the cooperation with the US and Italian programs played a significant role, especially the GITARA (German-Italian Aeromagnetic Research in Antarctica) program has to be mentioned. GEOMAUD (Geoscientific Expedition to Dronning Maud Land) and the German-Australian joint venture PCMEGA (Prince Charles Mountains Expedition of Germany & Australia) expanded research activities to the East Antarctic shield area. In the International Polar Year (IPY), BGR played a leading role in the international project AGAP (Antarctica's GAmburtsev Province) as part of the main topic "Venture into Unknown Regions". AGAP was jointly conducted by the USA, Great Britain, Australia, China and Germany. While in the Ross Sea area even

  8. Geologic studies of the Columbia Plateau: a status report

    International Nuclear Information System (INIS)

    Myers, C.W.; Price, S.M.

    1979-10-01

    The results of recent geologic studies of the Columbia Plateau, with emphasis on work completed under the Basalt Waste Isolation Project, Rockwell Hanford Operations, are summarized in this report. Geologic studies were performed mostly during the period from 1977 to 1979. The major objective of these studies was to examine the feasibility of using deep underground tunnels mined into Columbia River basalt beneath the Hanford Site for final storage of nuclear waste. The results are presented in four chapters: Introduction; Regional Geology; Pasco Basin Geology; and Seismicity and Tectonics. Results from surface mapping and remote sensing studies in the Washington State portion of the Columbia Plateau are presented in the Regional Geology chapter. Results from surface mapping, borehole studies, and geophysical surveys in the Pasco Basin are presented in the Pasco Basin Geology chapter. Results that relate to the tectonic stability of the Pasco Basin and Columbia Plateau and discussion of findings from earthquake monitoring in the region for the past ten years are summarized in the Seismicity and Tectonics chapter. A volume of Appendices is included. This volume contains a description of study tasks, a description of the methodology used in geophysical surveys the geophysical survey results, a summary of earthquake records in eastern Washington, a description of tectonic provinces, and a preliminary description of the regional tectonic setting of the Columbia Plateau

  9. Surficial Geologic Map of the Town of Randolph, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital data from VG10-2 Wright, S., Larsen, F., and Springston, G., 2010,�Surficial Geologic Map of the Town of Randolph, Vermont: Vermont Geological Survey...

  10. Bedrock Geologic Map of the Essex Junction Quadrangle, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital data from VG12-3, Gale, M., Kim. J., and Ruksznis, A., 2012, Bedrock Geologic Map of the essex Junction Quadrangle: Vermont Geological Survey Open File...

  11. Surficial geology and hydrogeology of the Town Londonderry, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital data from VG08-2 De Simone, D., and Gale, M., 2008,�Surficial geology and hydrogeology of the Town Londonderry, Vermont: Vermont Geological Survey Open-File...

  12. Geology and hydrogeology of the Town of Calais, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital data from VG2016-1 Springston, G., Kim, J., Gale. M. and Thomas, E., 2016, Geology and hydrogeology of the Town of Calais, Vermont: Vermont Geological Survey...

  13. Geologic and hydrologic investigations of a potential nuclear waste disposal site at Yucca Mountain, southern Nevada

    International Nuclear Information System (INIS)

    Carr, M.D.; Yount, J.C.

    1988-01-01

    Yucca Mountain in southern Nye County, Nevada, has been selected by the United States Department of Energy as one of three potential sites for the nation's first high-level nuclear waste repository. Its deep water table, closed-basin ground-water flow, potentially favorable host rock, and sparse population have made the Yucca Mountain area a viable candidate during the search for a nuclear waste disposal site. Yucca Mountain, however, lies within the southern Great Basin, a region of known contemporary tectonism and young volcanic activity, and the characterization of tectonism and volcanism remains as a fundamental problem for the Yucca Mountain site. The United States Geological Survey has been conducting extensive studies to evaluate the geologic setting of Yucca Mountain, as well as the timing and rates of tectonic and volcanic activity in the region. A workshop was convened by the Geologic Survey in Denver, Colorado, on August 19, 20, and 21, 1985, to review the scientific progress and direction of these studies. Considerable debate resulted. This collection of papers represents the results of some of the studies presented at the workshop, but by no means covers all of the scientific results and viewpoints presented. Rather, the volume is meant to serve as a progress report on some of the studies within the Geological Survey's continuing research program toward characterizing the tectonic framework of Yucca Mountain. Individual papers were processed separately for the data base

  14. Learning lessons from field surveys in humanitarian contexts: a case study of field surveys conducted in North Kivu, DRC 2006-2008

    Directory of Open Access Journals (Sweden)

    Grellety Emmanuel

    2009-09-01

    Full Text Available Abstract Survey estimates of mortality and malnutrition are commonly used to guide humanitarian decision-making. Currently, different methods of conducting field surveys are the subject of debate among epidemiologists. Beyond the technical arguments, decision makers may find it difficult to conceptualize what the estimates actually mean. For instance, what makes this particular situation an emergency? And how should the operational response be adapted accordingly. This brings into question not only the quality of the survey methodology, but also the difficulties epidemiologists face in interpreting results and selecting the most important information to guide operations. As a case study, we reviewed mortality and nutritional surveys conducted in North Kivu, Democratic Republic of Congo (DRC published from January 2006 to January 2009. We performed a PubMed/Medline search for published articles and scanned publicly available humanitarian databases and clearinghouses for grey literature. To evaluate the surveys, we developed minimum reporting criteria based on available guidelines and selected peer-review articles. We identified 38 reports through our search strategy; three surveys met our inclusion criteria. The surveys varied in methodological quality. Reporting against minimum criteria was generally good, but presentation of ethical procedures, raw data and survey limitations were missed in all surveys. All surveys also failed to consider contextual factors important for data interpretation. From this review, we conclude that mechanisms to ensure sound survey design and conduct must be implemented by operational organisations to improve data quality and reporting. Training in data interpretation would also be useful. Novel survey methods should be trialled and prospective data gathering (surveillance employed wherever feasible.

  15. Age determination and geological studies

    International Nuclear Information System (INIS)

    Stevens, R.D.; Delabio, R.N.; Lachance, G.R.

    1982-01-01

    Two hundred and eight potassium-argon age determinations carried out on Canadian rocks and minerals are reported. Each age determination is accompanied by a description of the rock and mineral concentrate used; brief interpretative comments regarding the geological significance of each age are also provided where possible. The experimental procedures employed are described in brief outline and the constants used in the calculation of ages are listed. Two geological time-scales are reproduced in tabular form for ready reference and an index of all Geological Survey of Canada K-Ar age determinations published in this format has been prepared using NTS quadrangles as the primary reference

  16. Hydrogeochemical and stream sediment detailed geochemical survey for Trans-Peco, Texas. Sierra Vieja survey area

    International Nuclear Information System (INIS)

    Butz, T.R.; Payne, A.G.; Grimes, J.G.; Helgerson, R.N.; Bard, C.S.

    1979-01-01

    Results of the Sierra Vieja survey area of the detailed geochemical survey for Trans-Pecos, Texas are reported. Field and laboratory data are presented for 29 groundwater and 240 stream sediment samples. Statistical and areal distributions of uranium and possible uranium-related variables are given. A generalized geologic map of the survey area is provided, and pertinent geologic factors which may be of significance in evaluating the potential for uranium mineralization are briefly discussed. Highest concentrations of uranium in groundwater predominantly occur in areas marginal to the Rio Grande. These wells and spring produce from Quaternary alluvium or the Vieja Group. High specific conductance is also associated with most of the wells located marginal to the Rio Grande. The specific conductance of wells in other areas with greater than or equal to 11.5 ppB uranium are notably lower. Higher than background concentrations of molybdenum, arsenic, and vanadium are observed with wells containing greater than or equal to 11.5 ppB uranium. Total alkalinity and pH display a variable distribution throughout the survey area. Stream sediment from several areas contain greater than or equal to 2.57 soluble uranium. In areas where these concentrations account for greater than or equal to 83% of the uranium present in the sediment, above background concentrations of sodium, aluminum, barium, potassium, zirconium, cerium, and strontium are detected. The degree to which these elements are associated with favorably high uranium concentrations is related to the relative amounts of volcaniclastic and calcareous sedimentary material incorporated in the sample

  17. Bedrock geologic map of the town of Williston, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG07-4, Kim, J., Gale, M., Thompson, P.J. and Derman, K., 2007, Bedrock geologic map of the town of Williston, Vermont: Vermont Geological Survey...

  18. Maps showing geology, oil and gas fields, and geological provinces of South America

    Science.gov (United States)

    Schenk, C. J.; Viger, R.J.; Anderson, C.P.

    1999-01-01

    This digitally compiled map includes geology, geologic provinces, and oil and gas fields of South America. The map is part of a worldwide series on CD-ROM by World Energy Project released of the U.S. Geological Survey . The goal of the project is to assess the undiscovered, technically recoverable oil and gas resources of the world and report these results by the year 2000. For data management purposes the world is divided into eight energy regions corresponding approximately to the economic regions of the world as defined by the U.S. Department of State. South America (Region 6) includes Argentina, Bolivia, Brazil, Chile, Columbia, Ecuador, Falkland Islands, French Guiana, Guyuna, Netherlands, Netherlands Antilles, Paraguay, Peru, Suriname, Trinidad and Tobago, Uruguay, and Venezuela.

  19. Three dimensional investigation on the oceanic active fault. A demonstration survey

    Energy Technology Data Exchange (ETDEWEB)

    Nakao, Seizo; Kishimoto, Kiyoyuki; Okamoto, Yukinobu; Ikehara, Ken; Kuramoto, Shinichi; Sato, Mikio; Arai, Kosaku [Geological Survey of Japan, Tsukuba, Ibaraki (Japan)

    2000-02-01

    In order to upgrade activity and likelihood ratio on active potential evaluation of the water active fault with possibility of severe effect on nuclear facilities, by generally applying the conventional procedures to some areas and carrying out a demonstration survey, a qualitative upgrading on survey to be conducted by the executives was planned. In 1998 fiscal year, among the water active faults classified to the trench and the inland types, three dimensional survey on the inland type water active fault. The survey was carried out at the most southern part of aftershock area in the 1983 Nihonkai-Chubu earthquake, which is understood to be a place changing shallow geological structure (propagation of fault) from an old report using the sonic survey. As a result, a geological structure thought to be an active fault at a foot of two ridge topographies was found. Each fault was thought to be a reverse fault tilt to its opposite direction and an active fault cutting to its sea bottom. (G.K.)

  20. Three dimensional investigation on the oceanic active fault. A demonstration survey

    International Nuclear Information System (INIS)

    Nakao, Seizo; Kishimoto, Kiyoyuki; Okamoto, Yukinobu; Ikehara, Ken; Kuramoto, Shinichi; Sato, Mikio; Arai, Kosaku

    2000-01-01

    In order to upgrade activity and likelihood ratio on active potential evaluation of the water active fault with possibility of severe effect on nuclear facilities, by generally applying the conventional procedures to some areas and carrying out a demonstration survey, a qualitative upgrading on survey to be conducted by the executives was planned. In 1998 fiscal year, among the water active faults classified to the trench and the inland types, three dimensional survey on the inland type water active fault. The survey was carried out at the most southern part of aftershock area in the 1983 Nihonkai-Chubu earthquake, which is understood to be a place changing shallow geological structure (propagation of fault) from an old report using the sonic survey. As a result, a geological structure thought to be an active fault at a foot of two ridge topographies was found. Each fault was thought to be a reverse fault tilt to its opposite direction and an active fault cutting to its sea bottom. (G.K.)

  1. Conduction Mechanism of Valence Change Resistive Switching Memory: A Survey

    Directory of Open Access Journals (Sweden)

    Ee Wah Lim

    2015-09-01

    Full Text Available Resistive switching effect in transition metal oxide (TMO based material is often associated with the valence change mechanism (VCM. Typical modeling of valence change resistive switching memory consists of three closely related phenomena, i.e., conductive filament (CF geometry evolution, conduction mechanism and temperature dynamic evolution. It is widely agreed that the electrochemical reduction-oxidation (redox process and oxygen vacancies migration plays an essential role in the CF forming and rupture process. However, the conduction mechanism of resistive switching memory varies considerably depending on the material used in the dielectric layer and selection of electrodes. Among the popular observations are the Poole-Frenkel emission, Schottky emission, space-charge-limited conduction (SCLC, trap-assisted tunneling (TAT and hopping conduction. In this article, we will conduct a survey on several published valence change resistive switching memories with a particular interest in the I-V characteristic and the corresponding conduction mechanism.

  2. Geological Aspect of Slope Failure and Mitigation Approach in Bireun - Takengon Main Road, Aceh Province, Indonesia

    Directory of Open Access Journals (Sweden)

    Ibnu Rusydy

    2016-04-01

    Full Text Available A soil and rock slope assessment survey was conducted along Bireun – Takengon main road in Aceh Province, Indonesia. The slope assessment survey was carried out to determine the geological condition, verify and identify the potential areas of slope failure and to study what type of slope stability and protection method could be applied to the road. Several research methodologies were conducted in the field such as rock and soil identification, and slope assessment. The survey was conducted in four selected areas along Bireun – Takengon main road. In study area I, soil creep occurred because of a presence of montmorillonite clay. The mitigation methods to reduce soil creeping in this area are building a retaining wall and pile. The shotcrete, wire mesh, net rock bolting, and rock removal method is suitable to apply in study area II. The shotcrete and soil nails were used because the type of rocks in those areas is sedimentary rock such as shale, sandstone, siltstone, and a boulder of a volcanic rock. The same approach shall be applied in study area IV. study area III was the best spot to learn about the mitigation approach for slope stability and provides many lessons learned. Aceh Province experience active tectonic movement, high intensity of rain, geological structures, a high degree of weathering, and high intensity of earthquake,as primary factors which trigger landslides. The techonology of slope stabilizing and protection methods can be applied to mitigate landslides.

  3. Description of the U.S. Geological Survey Geo Data Portal data integration framework

    Science.gov (United States)

    Blodgett, David L.; Booth, Nathaniel L.; Kunicki, Thomas C.; Walker, Jordan I.; Lucido, Jessica M.

    2012-01-01

    The U.S. Geological Survey has developed an open-standard data integration framework for working efficiently and effectively with large collections of climate and other geoscience data. A web interface accesses catalog datasets to find data services. Data resources can then be rendered for mapping and dataset metadata are derived directly from these web services. Algorithm configuration and information needed to retrieve data for processing are passed to a server where all large-volume data access and manipulation takes place. The data integration strategy described here was implemented by leveraging existing free and open source software. Details of the software used are omitted; rather, emphasis is placed on how open-standard web services and data encodings can be used in an architecture that integrates common geographic and atmospheric data.

  4. Automation of the National Water Quality Laboratories, U. S. Geological Survey. I. Description of laboratory functions and definition of the automation project

    Energy Technology Data Exchange (ETDEWEB)

    Morris, W.F.; Ames, H.S.

    1977-07-01

    In January 1976, the Water Resources Division of the U.S. Geological Survey asked Lawrence Livermore Laboratory to conduct a feasibility study for automation of the National Water Quality (NWQ) Laboratory in Denver, Colorado (formerly Denver Central Laboratory). Results of the study were published in the Feasibility Study for Automation of the Central Laboratories, Lawrence Livermore Laboratory, Rept. UCRL-52001 (1976). Because the present system for processing water samples was found inadequate to meet the demands of a steadily increasing workload, new automation was recommended. In this document we present details necessary for future implementation of the new system, as well as descriptions of current laboratory automatic data processing and analytical facilities to better define the scope of the project and illustrate what the new system will accomplish. All pertinent inputs, outputs, and other operations that define the project are shown in functional designs.

  5. Automation of the National Water Quality Laboratories, U.S. Geological Survey. I. Description of laboratory functions and definition of the automation project

    International Nuclear Information System (INIS)

    Morris, W.F.; Ames, H.S.

    1977-01-01

    In January 1976, the Water Resources Division of the U.S. Geological Survey asked Lawrence Livermore Laboratory to conduct a feasibility study for automation of the National Water Quality (NWQ) Laboratory in Denver, Colorado (formerly Denver Central Laboratory). Results of the study were published in the Feasibility Study for Automation of the Central Laboratories, Lawrence Livermore Laboratory, Rept. UCRL-52001 (1976). Because the present system for processing water samples was found inadequate to meet the demands of a steadily increasing workload, new automation was recommended. In this document we present details necessary for future implementation of the new system, as well as descriptions of current laboratory automatic data processing and analytical facilities to better define the scope of the project and illustrate what the new system will accomplish. All pertinent inputs, outputs, and other operations that define the project are shown in functional designs

  6. Geologic map of the Stephens City quadrangle, Clark, Frederick, and Warren Counties, Virginia

    Science.gov (United States)

    Weary, D.J.; Orndorff, R.C.; Aleman-Gonzalez, W.

    2006-01-01

    The Stephens City 1:24,000-scale quadrangle is one of several quadrangles in Frederick County, Virginia being mapped by geologists from the U.S. Geological Survey in Reston, VA with funding from the National Cooperative Geologic Mapping Program. This work is part of a project being lead by the U.S. Geological Survey Water Resources Discipline, Virginia District, to investigate the geologic framework and groundwater resources of Frederick County as well as other areas in the northern Shenandoah Valley of Virginia and West Virginia.

  7. Mapping urban geology of the city of Girona, Catalonia

    Science.gov (United States)

    Vilà, Miquel; Torrades, Pau; Pi, Roser; Monleon, Ona

    2016-04-01

    A detailed and systematic geological characterization of the urban area of Girona has been conducted under the project '1:5000 scale Urban geological map of Catalonia' of the Catalan Geological Survey (Institut Cartogràfic i Geològic de Catalunya). The results of this characterization are organized into: i) a geological information system that includes all the information acquired; ii) a stratigraphic model focused on identification, characterization and correlation of the geological materials and structures present in the area and; iii) a detailed geological map that represents a synthesis of all the collected information. The mapping project integrates in a GIS environment pre-existing cartographic documentation (geological and topographical), core data from compiled boreholes, descriptions of geological outcrops within the urban network and neighbouring areas, physico-chemical characterisation of representative samples of geological materials, detailed geological mapping of Quaternary sediments, subsurface bedrock and artificial deposits and, 3D modelling of the main geological surfaces. The stratigraphic model is structured in a system of geological units that from a chronostratigrafic point of view are structured in Palaeozoic, Paleogene, Neogene, Quaternary and Anthropocene. The description of the geological units is guided by a systematic procedure. It includes the main lithological and structural features of the units that constitute the geological substratum and represents the conceptual base of the 1:5000 urban geological map of the Girona metropolitan area, which is organized into 6 map sheets. These map sheets are composed by a principal map, geological cross sections and, several complementary maps, charts and tables. Regardless of the geological map units, the principal map also represents the main artificial deposits, features related to geohistorical processes, contours of outcrop areas, information obtained in stations, borehole data, and contour

  8. Unpublished letter from US Geological Survey Scientists to the editor of the New York Times Magazine regarding William J. Broads' November 18, 1990 article on Yucca Mountain

    International Nuclear Information System (INIS)

    Dudley, W.W. Jr.; Buono, A.; Carr, M.D.; Downey, J.S.; Ervin, E.M.; Fox, K.F. Jr.; Gutentag, E.D.; Hayes, L.R.; Jones, B.F.; Luckey, R.R.; Muhs, D.R.; Peterman, Z.E.; Reheis, M.; Spengler, R.W.; Stuckless, J.S.; Taylor, E.M.; Whitney, J.W.; Wilson, W.E.; Winogard, I.J.

    1990-01-01

    This letter documents objections of a group of US Geological Survey Scientists to an article appearing November 18, 1990 in New York Times Magazine. The article was written by William J. Broad and dealt with a hypothesis of Jerry S. Szymanski. The letter addressed areas of concern; including hydrology, geology, tectonics, and the integrity of the scientists and their conclusions. (SM)

  9. Development of Microanaytical Reference Materials for In-situ Anaysis at the U.S. Geological Survey

    Science.gov (United States)

    Wilson, S.

    2006-05-01

    With the increased use of microanalysis in geochemical investigations comes the need for a reliable and diversified supply of reference materials homogenous at the micrometer scale to assist analysts in element quantification. To meet these requirements, the U.S. Geological Survey (USGS) has undertaken a program to develop a series of reference materials which cover a range of sample types currently being investigated in our microanalytical laboratories. Initial efforts have focused on the development of natural basalt glasses (BCR- 2G, BHVO-2G, BIR-1G, TB-1G, NKT-1G) from a variety of geologic settings. In addition to these natural basalt materials a series of synthetic basalt glasses GSA-1G, GSC-1G, GSD-1G, GSE-1G have also been developed with 65 trace elements at 0, 3, 30, and 300, ppm respectively. The homogeneity of these materials and their use in international microanalytical proficiency studies will be presented. Application of this technology to the development of glass reference materials as part of a USGS/NASA collaborative studies on the development of Lunar Soil Simulant material will also be discussed.

  10. Tools and technologies needed for conducting planetary field geology while on EVA: Insights from the 2010 Desert RATS geologist crewmembers

    Science.gov (United States)

    Young, Kelsey; Hurtado, José M.; Bleacher, Jacob E.; Brent Garry, W.; Bleisath, Scott; Buffington, Jesse; Rice, James W.

    2013-10-01

    The tools used by crews while on extravehicular activity during future missions to other bodies in the Solar System will be a combination of traditional geologic field tools (e.g. hammers, rakes, sample bags) and state-of-the-art technologies (e.g. high definition cameras, digital situational awareness devices, and new geologic tools). In the 2010 Desert Research and Technology Studies (RATS) field test, four crews, each consisting of an astronaut/engineer and field geologist, tested and evaluated various technologies during two weeks of simulated spacewalks in the San Francisco volcanic field, Arizona. These tools consisted of both Apollo-style field geology tools and modern technological equipment not used during the six Apollo lunar landings. The underlying exploration driver for this field test was to establish the protocols and technology needed for an eventual manned mission to an asteroid, the Moon, or Mars. The authors of this paper represent Desert RATS geologist crewmembers as well as two engineers who worked on technology development. Here we present an evaluation and assessment of these tools and technologies based on our first-hand experience of using them during the analog field test. We intend this to serve as a basis for continued development of technologies and protocols used for conducting planetary field geology as the Solar System exploration community moves forward into the next generation of planetary surface exploration.

  11. U.S. Geological Survey program of offshore resource and geoenvironmental studies, Atlantic-Gulf of Mexico region, from September 1, 1976, to December 31, 1978

    Science.gov (United States)

    Folger, David W.; Needell, Sally W.

    1983-01-01

    Mineral and energy resources of the continental margins of the United States arc important to the Nation's commodity independence and to its balance of payments. These resources are being studied along the continental margins of the Atlantic Ocean and the Gulf of Mexico in keeping with the mission of the U.S. Geological Survey to survey the geologic structures, mineral resources, and products of the national domain.'(Organic Act of 1879). An essential corollary to these resource studies is the study of potential geologic hazards that may be associated with offshore resource exploration and exploitation. In cooperation with the U.S. Bureau of Land Management, the Geological Survey, through its Atlantic-Gulf of Mexico Marine Geology Program, carries out extensive research to evaluate hazards from sediment mobility, shallow gas, and slumping and to acquire information on the distribution and concentration of trace metals and biogenic and petroleum-derived hydrocarbons in sea-floor sediments. All these studies arc providing needed background information, including information on pollutant dispersal, on the nearshore, estuarine, and lacustrine areas that may be near pipeline and nuclear powerplant sites. Users of these data include the Congress, many Federal agencies, the coastal States, private industry, academia, and the concerned public. The results of the regional structural, stratigraphic, and resource studies carried out under the Atlantic-Gulf of Mexico Marine Geology Program have been used by the Geological Survey and the Bureau of Land Management to select areas for future leasing and to aid in the evaluation of tracts nominated for leasing. Resource studies have concentrated mostly on the Atlantic Outer Continental Shelf frontier areas. Geologic detailing of five major basins along the U.S. Atlantic margin, where sediments are as much as 14 km thick, have been revealed by 25,000 km of 24-and 48-channel common-depth-point seismic data, 187,000 km of

  12. Extracting Archaeological Feautres from GPR Surveys Conducted with Variable Soil Moisture Conditions

    Science.gov (United States)

    Morris, I. M.; Glisic, B.; Gonciar, A.

    2017-12-01

    As a common tool for subsurface archaeological prospection, ground penetrating radar (GPR) is a useful method for increasing the efficiency of archaeological excavations. Archaeological sites are often temporally and financially constrained, therefore having limited ability to reschedule surveys compromised by weather. Furthermore, electromagnetic GPR surveys are especially sensitive to variations in water content, soil type, and site-specific interference. In this work, GPR scans of a partially excavated Roman villa consisting of different construction materials and phases (limestone, andesite, brick) in central Romania are compared. Surveys were conducted with a 500 MHz GPR antenna in both dry (pre-rain event) and wet (post-rain event) conditions. Especially in time or depth slices, wet surveys present additional archaeological features that are not present or clear in the standard dry conditions, while simultaneously masking the clutter present in those scans. When dry, the limestone has a similar dielectric constant to the soil and does not provide enough contrast in electromagnetic properties for strong reflections despite the significant difference in their physical properties. Following precipitation, however, the electromagnetic properties of these two materials is dominated by their respective water content and the contrast is enhanced. For this reason, the wet surveys are particularly necessary for revealing reflections from the limestone features often invisible in dry surveys. GPR surveys conducted in variable environmental conditions provide unique archaeological information, with potential near-surface geophysical applications in nondestructive material characterization and identification.

  13. Current status of geoscientific studies being conducted by Japan Nuclear Cycle Development Institute in regard to geological disposal of high-level radioactive waste. Pt. 2. Horonobe Underground Research Center

    International Nuclear Information System (INIS)

    Eki, Nobuhiro; Yamazaki, Shinichi

    2004-01-01

    Japan Nuclear Cycle Development Institute (JNC) has been conducting two Underground Research Laboratory (URL) Projects. 'The Long-term Program for Research, Development and Utilization of Atomic Energy (Atomic Energy Commission, 2000)' states their technical and social importance for the Japan's program for the Geological Disposal (GD) of HLW and shows an expectation of earlier execution of the projects. One of the URL projects is Neogene argillaceous sedimentary formation hosted Horonobe URL Project. The aims of the Horonobe URL project are; Presenting concrete geological environment as an example of sedimentary formation, Confirming reliability of technologies for geological disposal of High-Level Radioactive Waste (HLW) by applying them to actual geological condition of sedimentary formation, Providing opportunities to experience the actual deep underground circumstance for the general public. The project is composed of six subjects; 1) development of site characterization methodology, 2) development of monitoring techniques, 3) development of engineering techniques for underground development, 4) neotectonic characterization of the area, 5) development of engineering techniques for designing, construction and operation of a repository, 6) development of safety assessment methodology. The project consists of three phases: investigations form the surface (Phase 1), investigations during construction of the underground facility (Phase 2) and researches using the facility (Phase 3). The total duration is about 20 years. From 2000, surface-based site investigations are going on. In course of the investigations, a series of geophysical surveys has been employed. Along with the town-wide investigation, an area for site-scale investigation was selected, a land for facilities construction was acquired in the area and the land preparation has started in 2003. Geological information gave more detailed and concrete figure of URL, which is composed of three shafts down to

  14. 5 CFR 591.223 - When does OPM conduct COLA surveys?

    Science.gov (United States)

    2010-01-01

    ... 5 Administrative Personnel 1 2010-01-01 2010-01-01 false When does OPM conduct COLA surveys? 591.223 Section 591.223 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT CIVIL SERVICE REGULATIONS ALLOWANCES AND DIFFERENTIALS Cost-of-Living Allowance and Post Differential-Nonforeign Areas Cost-Of-Living...

  15. Geological-geotechnical studies for siting the Superconducting Super Collider in Illinois: results of the 1986 test drilling program. Environmental geology notes

    International Nuclear Information System (INIS)

    Curry, B.B.; Graese, A.M.; Hasek, M.J.; Vaiden, R.C.; Bauer, R.A.

    1988-01-01

    From 1984 through 1986, geologists from the Illinois State Geological Survey (ISGS) conducted a thorough field investigation in northeastern Illinois to determine whether the surface and subsurface geology would be suitable for constructing the U.S. Department of Energy's 20-TeV (trillion electron volt) particle accelerator - the Superconducting Super Collider (SSC). The third and final stage of test drilling in 1986 concentrated on a specific corridor proposed for the racetrack-shaped SSC that would circle deep below the surface of Kane, Kendall, and Du Page Counties. The main objective was to verify that bedrock lying under the region satisified the site criteria for construction of a 10-foot-diameter tunnel to hold the particle accelerator and the superconducting magnets, large chambers to house the laboratories and computers for conducting and recording experiments, and shafts to provide access to the subterranean facilities. Thirteen test holes, ISGS S-18 through S-30, were drilled to depths ranging from 398.2 to 646.6 feet. The field team recovered 5675 feet of bedrock core and 212 samples of glacial drift (sand, clay, gravel) for laboratory analyses and recorded on-site data that establish the thickness, distribution, lithology (composition), and other properties of the rocks lying under the study area

  16. EuroGeoSurveys

    Science.gov (United States)

    Demicheli, L.; Ludden, J. N.; Robida, F.

    2012-04-01

    In order to create safe, healthy and wealthy places to live in, it is vital that we understand our planet. At national level the collection of information on the state of the solid Earth and its processes is normally mandated to Geological Surveys. In fact, a Geological Survey is the national institution responsible for the geological inventory, monitoring, knowledge and research for the security, health and prosperity of the society. And EuroGeoSurveys (EGS) is the organisation representing the Geological Surveys from 33 countries around Europe. With one member for each country of the European Union and beyond, including the Russian Federation and Ukraine, the EGS network covers the whole continent. EGS'principal purpose is to provide geoscientific knowledge that underpins European policies and regulations for the benefit of society. Naturally, in our day-to-day activities, we contribute to the merging of economic, environmental and social agendas. Engaging a joint workforce of several thousands of geoscientists, also involving regional geological surveys in Germany, Italy and Spain, we strive to be the first body to be contacted when there is an international need for European geodata, or'geo-help'. For this reason we work on a daily basis with the EU institutions, and are considered the natural source of information on Earth science issues and relevant downstream applications in Europe. Our General Secretariat is based in the European Quarter of Brussels close to the European Commission, the EU Council, the European Parliament, and the political seat of NATO. Our operational strategy is based on the cooperation between national institutions, which enables to synergistically integrate both information and activities of our member organisations. This has allowed us to make significant progress over the years, permitting geology to become a topic deserving great attention on the European agenda. In order to enable a quick but high quality response to requests for

  17. Proceedings of the second symposium on the geology of Rocky Mountain coal, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Hodgson, H. E. [ed.

    1978-01-01

    The 1977 Symposium on the Geology of Rocky Mountain Coal was held May 9 and 10 on the campus of the Colorado School of Mines in Golden, Colorado. The 1977 Symposium was sponsored by the Colorado Geological Survey and the US Geological Survey. The 1977 Symposium consisted of four technical sessions: Depositional Models for Coal Exploration in the Rocky Mountain Cretaceous; Stratigraphy and Depositional Environments of Rocky Mountain Tertiary Coal Deposits; Depositional Models for Coal Exploration in non-Rocky Mountain Regions; and Application of Geology to Coal Mining and Coal Mine Planning. Several papers discuss geophysical survey and well logging techniques applied to the exploration of coal deposits and for mine planning. Fouteen papers have been entered individually into EDB and ERA. (LTN)

  18. Aerogeophysical survey in Olkiluoto 2009

    International Nuclear Information System (INIS)

    Kurimo, M.

    2009-08-01

    This report describes the survey operation, survey and processing methods and the deliverables of an aerogeophysical survey in Olkiluoto area in May 2009. The survey was conducted by Geological Survey of Finland (GTK). The survey aircraft was a twin-engine Twin Otter operated by Finnish Aviation Academy (SIO) and owned by Natural Environment Research Council / British Geological Survey (NERC / BGS), with whom GTK has established a joint venture called Joint Airborne-geoscience Capability (JAC). The survey was conducted in May 2009 between May 5th and May 18th. The survey consists of ten separate survey flights and two magnetic calibration flights. The survey was based in Pori airport. Survey line spacing was 50 meters and nominal survey altitude was 30 meters. Measurements were completed in May 2009, and data processing and reporting was done in June 2009. Two cesium magnetometers installed onboard the aircraft (at the left wingtip and in a nose cone) were measuring the magnetic total field intensity during the survey flights. An automatic compensation unit corrected the aircraft attitude errors in the magnetic data in real time. The four-frequency electromagnetic (EM) unit included four transmitter coils with amplifiers in right wingtip and four receiver coils in left wingtip. Frequencies were 900 Hz, 3 kHz, 14 kHz and 24.5 kHz. The gamma spectrometer with two crystal packages (total volume 42 litres) measured the 256 channel energy spectra. In addition, auxiliary parameters such as flight altitude and aircraft attitude were also recorded simultaneously. Reference ground base station was used for recording the temporal variations in the magnetic field and also reference data for post-positioning of coordinate information. In the post-processing phase, heading correction, base station correction and microlevelling procedures were applied to the magnetic data. The EM data and radiometric data were corrected with calibration coefficients and levelled. The data was

  19. Geological investigations for geological model of deep underground geoenvironment at the Mizunami Underground Research Laboratory (MIU)

    International Nuclear Information System (INIS)

    Tsuruta, Tadahiko; Tagami, Masahiko; Amano, Kenji; Matsuoka, Toshiyuki; Kurihara, Arata; Yamada, Yasuhiro; Koike, Katsuaki

    2013-01-01

    Japan Atomic Energy Agency (JAEA) is performing a geoscientific research project, the Mizunami Underground Research Laboratory (MIU) project, in order to establish scientific and technological basis for geological disposal of high-level radioactive wastes. The MIU is located in crystalline rock environment, in Mizunami City, central Japan. Field investigations include geological mapping, reflection seismic surveys, several borehole investigations and geological investigations in the research galleries to identify the distribution and heterogeneity of fractures and faults that are potential major flowpaths for groundwater. The results of these field investigations are synthesized and compiled for the purpose of geological modeling. The field investigations indicate that the Main Shaft at the MIU intersected low permeability NNW oriented faults. A high permeability fracture zone in the granite, a significant water inflow point, was observed in the Ventilation Shaft. Development of the geological model focusing 3D spatial relationships at different scales and evolution of the geoenvironment are underway. This paper describes geological investigations applied in the MIU project, focusing on the evaluation of their effectiveness to understand for deep underground geoenvironment. (author)

  20. Brazil Geological Basic Survey Program - Espera River - Sheet SF.23-X-B-IV - Minas Gerais State

    International Nuclear Information System (INIS)

    Raposo, F.O.

    1991-01-01

    The present report refers to the Rio Espera sheet (SF.23.X-B-IV) systematic geological mapping, on the 1:100.000 scale. The sheet, which covers Zona da Mata region, includes the Southeastern bord of Minas Gerais Metallurgic Zone, SE of Quadrilatero Ferrifero, in the Sao Francisco craton bord, and Mantiqueira province. Since only one doubtful 2,5 thousand million year - Rb/Sr isochron was obtained in the sheet, Archacan and Proterozoic ages have been attributed to the metamorphic rocks by comparison to other ones elsewhere. An analysis of the crustal evolution pattern based on gravimetric survey data, aeromagnetometry and available geochronological data is given in the 6. Chapter, Part II of the text. Major elements oxides and rare-earths were analysed to establish parameters for the rocks environment elucidation. The geochemical survey was carried out with base on pan concentrated and stream sediments distributed throughout the sheet. (author)

  1. Long-term characteristics of geological conditions in Japan. Pt. 1. Fundamental concept for future's prediction of geological conditions and the subjects

    International Nuclear Information System (INIS)

    Tanaka, Kazuhiro; Chigira, Masahiro.

    1997-01-01

    It is very important to evaluate the long-term stability of geological conditions such as volcanic activity, uplift-subsidence, earthquakes, faulting and sea level change when the long-term safety performance of HLW geological disposal is investigated. We proposed the extrapolation method using the geological date obtained in the geologic time of the last 500 ka to predict the future's tectonic movements in Japan. Furthermore, we extract geological conditions that would affect the long-term safety of HLW geological disposal with regard to direct and indirect radionuclide release scenarios. As a result, it was concluded that volcanic activity and tectonic movements including faulting and uplift-subsidence, should be considered and their surveying system and evaluating method should be developed. (author)

  2. Geochemical reanalysis of historical U.S. Geological Survey sediment samples from the Kougarok area, Bendeleben and Teller quadrangles, Seward Peninsula, Alaska

    Science.gov (United States)

    Werdon, Melanie B.; Granitto, Matthew; Azain, Jaime S.

    2015-01-01

    The State of Alaska’s Strategic and Critical Minerals (SCM) Assessment project, a State-funded Capital Improvement Project (CIP), is designed to evaluate Alaska’s statewide potential for SCM resources. The SCM Assessment is being implemented by the Alaska Division of Geological & Geophysical Surveys (DGGS), and involves obtaining new airborne-geophysical, geological, and geochemical data. As part of the SCM Assessment, thousands of historical geochemical samples from DGGS, U.S. Geological Survey (USGS), and U.S. Bureau of Mines archives are being reanalyzed by DGGS using modern, quantitative, geochemical-analytical methods. The objective is to update the statewide geochemical database to more clearly identify areas in Alaska with SCM potential. The USGS is also undertaking SCM-related geologic studies in Alaska through the federally funded Alaska Critical Minerals cooperative project. DGGS and USGS share the goal of evaluating Alaska’s strategic and critical minerals potential and together created a Letter of Agreement (signed December 2012) and a supplementary Technical Assistance Agreement (#14CMTAA143458) to facilitate the two agencies’ cooperative work. Under these agreements, DGGS contracted the USGS in Denver to reanalyze historical USGS sediment samples from Alaska. For this report, DGGS funded reanalysis of 302 historical USGS sediment samples from the statewide Alaska Geochemical Database Version 2.0 (AGDB2; Granitto and others, 2013). Samples were chosen from the Kougarok River drainage as well as smaller adjacent drainages in the Bendeleben and Teller quadrangles, Seward Peninsula, Alaska (fig. 1). The USGS was responsible for sample retrieval from the National Geochemical Sample Archive (NGSA) in Denver, Colorado through the final quality assurance/quality control (QA/QC) of the geochemical analyses obtained through the USGS contract lab. The new geochemical data are published in this report as a coauthored DGGS report, and will be incorporated

  3. Fiscal 1999 survey report on introducing technique for predicting impact on hot spring; 1999 nendo onsen eikyo yosoku shuho donyu chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-10-01

    For the application of fruits of the geothermal development promotion project to survey phase C and for the study of technical means for appropriate development to employ after phase C, some cases of impacts imposed on hot springs by geothermal development were taken up and the causes of the impacts were investigated. Activities were conducted in the three fields of (1) the survey of actualities of impacts imposed on hot springs, (2) the survey of the causes of such impacts, and (3) a comprehensive survey. Keyword searches were conducted into the data system and geothermal energy related magazines, and 13 cases were found in which hot springs were affected by geothermal development, which included the Palinpinon district (Philippines), the Koso district (America), and the Wairakei district (New Zealand). Concerning the 13 cases, data on geology, geological structures, and geothermal fluids were collected and studies were conducted about relations of geothermal development with geological structures and geothermal fluids, as in the case of hot springs, and the two were integrated for the clarification of the causes of impacts. In concluding the report, the difference in mechanism is deliberated between cases with impacts on hot springs and cases without impacts on hot springs. (NEDO)

  4. Strategic plan for science-U.S. Geological Survey, Ohio Water Science Center, 2010-15

    Science.gov (United States)

    ,

    2010-01-01

    This Science Plan identifies specific scientific and technical programmatic issues of current importance to Ohio and the Nation. An examination of those issues yielded a set of five major focus areas with associated science goals and strategies that the Ohio Water Science Center will emphasize in its program during 2010-15. A primary goal of the Science Plan is to establish a relevant multidisciplinary scientific and technical program that generates high-quality products that meet or exceed the expectations of our partners while supporting the goals and initiatives of the U.S. Geological Survey. The Science Plan will be used to set the direction of new and existing programs and will influence future training and hiring decisions by the Ohio Water Science Center.

  5. Comments on a letter by George D. DeBuchananne (US Geological Survey) regarding the use of salt domes for high-level waste disposal

    International Nuclear Information System (INIS)

    1984-08-01

    The US Geological Survey (USGS) concluded in a letter to the US Department of Energy, dated March 7, 1981, that subsurface geologic conditions in bedded salt are more predictable and less complex than those in domal salt. This predictability is equated with the relative suitability of bedded and domal salt as repository host media. This report comments on the USGS letter. The key points made are as follows: Complexities which may exist in the geologic setting of a salt dome (or other potential host medium) should not a priori preclude the dome from being an acceptable host medium for a high-level waste (HLW) repository. Predictability, as used by the USGS, focused on the spatial extrapolation of information on geologic conditions and should not be confused with predicting the performance of a repository. Notwithstanding the general characteristics of bedded and domal salt, there are salt domes whose individual characteristics should make them as acceptable as potential bedded salt areas for HLW repository sites. Complexities which may occur in the geologic setting of a salt dome can be explored and characterized with sufficient accuracy by available techniques

  6. Conducting a respondent-driven sampling survey with the use of existing resources in Sydney, Australia.

    Science.gov (United States)

    Paquette, Dana M; Bryant, Joanne; Crawford, Sione; de Wit, John B F

    2011-07-01

    Respondent-driven sampling (RDS) is a form of chain-referral sampling that is increasingly being used for HIV behavioural surveillance. When used for surveillance purposes, a sampling method should be relatively inexpensive and simple to operate. This study examined whether an RDS survey of people who inject drugs (PWID) in Sydney, Australia, could be successfully conducted through the use of minimal and existing resources. The RDS survey was conducted on the premises of a local needle and syringe program (NSP) with some adjustments to take into account the constraints of existing resources. The impact of the survey on clients and on staff was examined by summarizing NSP service data and by conducting post-survey discussions with NSP staff. From November 2009 till March 2010, 261 participants were recruited in 16 waves. A significant increase was found in the number of services provided by the NSP during and after data collection. Generally, staff felt that the survey had a positive impact by exposing a broader group of people to the NSP. However, conducting the survey may have led to privacy issues for NSP clients due to an increased number of people gathering around the NSP. This study shows that RDS can be conducted with the use of minimal and existing resources under certain conditions (e.g., use of a self-administered questionnaire and no biological samples taken). A more detailed cost-utility analysis is needed to determine whether RDS' advantages outweigh potential challenges when compared to simpler and less costly convenience methods. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  7. U.S. Geological Survey Water science strategy--observing, understanding, predicting, and delivering water science to the nation

    Science.gov (United States)

    Evenson, Eric J.; Orndorff, Randall C.; Blome, Charles D.; Böhlke, John Karl; Hershberger, Paul K.; Langenheim, V.E.; McCabe, Gregory J.; Morlock, Scott E.; Reeves, Howard W.; Verdin, James P.; Weyers, Holly S.; Wood, Tamara M.

    2013-01-01

    This report expands the Water Science Strategy that began with the USGS Science Strategy, “Facing Tomorrow’s Challenges—U.S. Geological Survey Science in the Decade 2007–2017” (U.S. Geological Survey, 2007). This report looks at the relevant issues facing society and develops a strategy built around observing, understanding, predicting, and delivering water science for the next 5 to 10 years by building new capabilities, tools, and delivery systems to meet the Nation’s water-resource needs. This report begins by presenting the vision of water science for the USGS and the societal issues that are influenced by, and in turn influence, the water resources of our Nation. The essence of the Water Science Strategy is built on the concept of “water availability,” defined as spatial and temporal distribution of water quantity and quality, as related to human and ecosystem needs, as affected by human and natural influences. The report also describes the core capabilities of the USGS in water science—the strengths, partnerships, and science integrity that the USGS has built over its 134-year history. Nine priority actions are presented in the report, which combine and elevate the numerous specific strategic actions listed throughout the report. Priority actions were developed as a means of providing the audience of this report with a list for focused attention, even if resources and time limit the ability of managers to address all of the strategic actions in the report.

  8. Digital geologic map and Landsat image map of parts of Loralai, Sibi, Quetta, and Khuzar Divisions, Balochistan Province, west-central Pakistan

    Science.gov (United States)

    Maldonado, Florian; Menga, Jan Mohammad; Khan, Shabid Hasan; Thomas, Jean-Claude

    2011-01-01

    This generalized digital geologic map of west-central Pakistan is a product of the Balochistan Coal-Basin Synthesis Study, which was part of a cooperative program of the Geological Survey of Pakistan and the United States Geological Survey. The original nondigital map was published by Maldonado and others (1998). Funding was provided by the Government of Pakistan and the United States Agency for International Development. The sources of geologic map data are primarily 1:253,440-scale geologic maps obtained from Hunting Survey Corporation (1961) and the geologic map of the Muslim Bagh Ophiolite Complex and Bagh Complex area. The geology was modified based on reconnaissance field work and photo interpretation of 1:250,000-scale Landsat Thematic Mapper photo image. The descriptions and thicknesses of map units were based on published and unpublished reports and converted to U.S. Geological Survey format. In the nomenclature of the Geological Survey of Pakistan, there is both an Urak Group and an Urak Formation.

  9. Study on the Geological Structure around KURT Using a Deep Borehole Investigation

    International Nuclear Information System (INIS)

    Park, Kyung Woo; Kim, Kyung Su; Koh, Yong Kwon; Choi, Jong Won

    2010-01-01

    To characterize geological features in study area for high-level radioactive waste disposal research, KAERI (Korea Atomic Energy Research Institute) has been performing the several geological investigations such as geophysical surveys and borehole drilling since 1997. Especially, the KURT (KAERI Underground Research Tunnel) constructed to understand the deep geological environments in 2006. Recently, the deep borehole of 500 m depths was drilled to confirm and validate the geological model at the left research module of the KURT. The objective of this research was to identify the geological structures around KURT using the data obtained from the deep borehole investigation. To achieve the purpose, several geological investigations such as geophysical and borehole fracture surveys were carried out simultaneously. As a result, 7 fracture zones were identified in deep borehole located in the KURT. As one of important parts of site characterization on KURT area, the results will be used to revise the geological model of the study area

  10. 75 FR 55598 - Proposed Information Collection; The State of Ecosystem Services Implementation Survey

    Science.gov (United States)

    2010-09-13

    ..., motivations for conducting projects, degree of project implementation, management actions resulting from... Services Implementation. Type of Request: This is a new collection. Affected Public: Individuals who are... DEPARTMENT OF THE INTERIOR U.S. Geological Survey [USGS-8327-CMG61] Proposed Information...

  11. Hydrogeochemical and stream sediment detailed geochemical survey for Trans-Pecos, Texas. Solitario survey area

    International Nuclear Information System (INIS)

    Butz, T.R.; Payne, A.G.; Grimes, J.G.; Helgerson, R.N.; Bard, C.S.

    1979-01-01

    Results of the Solitario survey area portion of the detailed geochemical survey for Trans-Pecos, Texas are reported. Field and laboratory data are presented for 119 groundwater and 520 stream sediment samples. Statistical and areal distributions of uranium and possible uranium-related variables are given. A generalized geologic map of the survey area is provided, and pertinent geologic factors which may be of significance in evaluating the potential for uranium mineralization are breifly discussed. Groundwaters having concentrations of uranium greater than or equal to 11.5 ppB are observed in the western half of the survey area. These wells generally produce from the Chisos Formation and Buck Hill Volcanic Series or alluvium derived from these units. Lithium, sodium, boron, uranium/specific conductance, uranium/boron, and uranium/sulfate are noted to be most highly associated within the area of anomalously high uranium. The highest potential for uranium mineralization, in view of these groundwater data, lies in the LaVuida and Bandera Mesa areas. Stream sediments containing greater than or equal to 2.57 ppM soluble uranium occur in numerous areas within the survey area. The highest concentrations of uranium occur in sediments derived from the Buck Hill Volcanic Series and Cretaceous limestones. Above background concentrations of arsenic, selenium, molybdenum, nickel, calcium, and strontium were noted to be associated with areas of anomalously high uranium. These elements are most prominently associated with uranium anomalies occurring in Cretaceous limestone

  12. Preliminary geological suitability assessment for LILW disposal

    International Nuclear Information System (INIS)

    Tomse, P.; Mele, I.

    2001-01-01

    Due to the growing need for a final disposal of LILW, the final solution for the short-lived LILW is the key issue of radioactive waste management in Slovenia at the moment. ARAO - the Slovenian Agency for Radwaste Management - is intensely involved in the re-initiated site selection process for a LILW repository. In this new process we are trying to combine as best as possible the technical, geologically-led and the advocacy-site selection processes. By a combination of technical and volunteer approach to the site selection we wish to guarantee high public involvement and sufficient flexibility of the process to adapt to specific conditions or new circumstances while the project is ongoing. In the technical phase, our tendency is to retain a larger number of potential areas/sites. We also keep open the possibility of choosing the type of repository. The decision between the surface and underground option will be made only once the site has been defined. In accordance with the IAEA recommendations the site selection process is divided into four stages: the conceptual and planning stage, area survey stage, site characterisation stage and site confirmation stage. Last year the area survey stage was started. In the preliminary geological suitability assessment the required natural predisposition of Slovene territory was assessed in order to locate geologically suitable formations. The assessment of natural conditions of the system was based on consideration of the main geological, hydro-geological and seismotectonic conditions. It was performed with ARC/INFO technology. The results are compiled in a map, showing potential areas for underground and surface disposal of LILW in Slovenia. It has been established that there is a potential suitability for both surface and underground disposal on about 10 000 km 2 of the Slovenian territory, which represents almost half of the entire Slovenian territory. These preliminary results are now being carefully re-examined. As an

  13. Neutron activation analysis in geological samples containing rare earths, uranium and thorium

    International Nuclear Information System (INIS)

    Vasconcellos, M.B.A.; Figueiredo, A.M.G.; Berretta, J.R.; Soares, J.C.A.C.R.; Fratin, L.; Goncales, O.L.; Botelho, S.

    1990-01-01

    The neutron activation analysis method was used for determination of rare earths, uranium, thorium and other tracks in geological samples, under the geological standard JB-1 (Geological Survey of Japan) and S-8 and S-13 (IAEA). (L.C.J.A.)

  14. Seismic stability of the survey areas of potential sites for the deep geological repository of the spent nuclear fuel

    Science.gov (United States)

    Kaláb, Zdeněk; Šílený, Jan; Lednická, Markéta

    2017-07-01

    This paper deals with the seismic stability of the survey areas of potential sites for the deep geological repository of the spent nuclear fuel in the Czech Republic. The basic source of data for historical earthquakes up to 1990 was the seismic website [1-]. The most intense earthquake described occurred on September 15, 1590 in the Niederroesterreich region (Austria) in the historical period; its reported intensity is Io = 8-9. The source of the contemporary seismic data for the period since 1991 to the end of 2014 was the website [11]. It may be stated based on the databases and literature review that in the period from 1900, no earthquake exceeding magnitude 5.1 originated in the territory of the Czech Republic. In order to evaluate seismicity and to assess the impact of seismic effects at depths of hypothetical deep geological repository for the next time period, the neo-deterministic method was selected as an extension of the probabilistic method. Each one out of the seven survey areas were assessed by the neo-deterministic evaluation of the seismic wave-field excited by selected individual events and determining the maximum loading. Results of seismological databases studies and neo-deterministic analysis of Čihadlo locality are presented.

  15. The Study of Aeromagnetic Surveys in Taiwan

    Science.gov (United States)

    Li, P. T.; Tong, L. T.; Lin, W.; Chang, S. F.

    2016-12-01

    The airborne magnetic survey is a cost-effective method for regional geological investigation. Most of developed countries use aeromagnetic data as important fundamental information for resources development. The first aeromagnetic survey was conducted in the offshore areas of west and southern Taiwan in 1968 by U.S. Naval Oceanographic Office to help Taiwan finding oil. Later, in 2007, a helicopter-borne magnetic survey was proceed in east Taiwan for underground granite bodies. In order to improve better understanding of deep geological structures associated with the Holocene volcanism in Taiwan, we applied helicopter-borne magnetic technique in northern Taiwan include Tatun Volcano Group (TVG) and Kueishan island in 2013 and 2014 to obtain the distribution information of potential magma chamber as well as hydrothermal pathways along regional geological structures. The most important findings of the high-resolution aeromagnetic dataset since 1960's to 2014 acquired include: (1) the distribution of subsurface igneous rocks and the Curie point depth in Tatun Volcano Group, Keelung Volcano Group, and Kueishantao Volcano; (2) the widely distributed NE high-magnetic belts in northern Taiwan may be associated with NE fractures created by long-term subsidence in this area; (3) the high-magnetic belts in south of Lanyang River which is very different from the magnetic characteristics of the Central Range may imply paleo oceanic plate; (4) the NE high-magnetic belts in Penghu area formed by magma intrusion along NE fractures and the dense and high-magnetic anomalies may be associated with the Miocene basaltic lava overlying on the pre-Tertiary igneous dykes and are widely spread in northern Penghu area. The new aeromagnetic survey techniques help us to investigate the areas with steep terrain or covered by dense vegetation which was difficult to obtain reasonable geological understanding, and also provide an opportunity for us to apply the geothermal energy prospecting.

  16. U.S. Geological Survey cooperative water-resources programs in Chester County, Pennsylvania

    Science.gov (United States)

    Wood, Charles R.

    1998-01-01

    Since 1969, the U.S. Geological Survey (USGS) has had a cooperative water-resources investigation program with Chester County to measure and describe the water resources of the County. Generally, the USGS provides one-half of the program funding, and local cooperators are required to provide matching funds. Cooperation has been primarily with the Chester County Water Resources Authority (CCWRA), with participation from the Chester County Health Department and funding from the Chester County Board of Commissioners. Municipalities and the Red Clay Valley Association also have provided part of the funding for several projects. This report describes how the long-term partnership between the USGS and Chester County, Pa., provides the County with the information that it needs for sound water-resources management.The CCWRA was created in 1961, primarily for land acquisition and planning for flood-control and water-supply projects. With the backing of the Brandywine Valley Association, the CCWRA started its first cooperative project with the USGS in 1969. It was a study of the water-quality condition of Chester County streams with an emphasis on benthic macroinvertebrates and stream chemistry.The kinds of projects and data collection conducted by the USGS have changed with the needs of Chester County and the mission of the CCWRA. Chester County is experiencing rapid population growth (it had the tenth-highest rate of growth in the nation from 1980 to 1990). This growth places considerable stress on water resources and has caused the CCWRA to broaden its focus from flood control to water-supply planning, water quality, and ground-water and surface-water management. The results of USGS studies are used by the CCWRA and other County agencies, including the Planning Commission, Health Department, and Parks and Recreation Department, for conducting day-to-day activities and planning for future growth. The results also are used by the CCWRA to provide guidance and technical

  17. Regional and site geological frameworks : proposed Deep Geologic Repository, Bruce County, Ontario

    Energy Technology Data Exchange (ETDEWEB)

    Raven, K.; Sterling, S.; Gaines, S.; Wigston, A. [Intera Engineering Ltd., Ottawa, ON (Canada); Frizzell, R. [Nuclear Waste Management Organization, Toronto, ON (Canada)

    2009-07-01

    The Nuclear Waste Management Organization is conducting geoscientific studies on behalf of Ontario Power Generation into the proposed development of a Deep Geologic Repository (DGR) for low and intermediate level radioactive waste (L and ILW) at the Bruce site, near Tiverton, Ontario. This paper presented a regional geological framework for the site that was based on a review of regional drilling; structural geology; paleozoic stratigraphy and sedimentology; a 3D geological framework model; a DGR geological site characterization model; bedrock stratigraphy and marker beds; natural fracture frequency data; and formation predictability. The studies have shown that the depth, thickness, orientation and rock quality of the 34 rock formations, members or units that comprise the 840 m thick Paleozoic bedrock sequence at the Bruce site are very uniform and predictable over distances of several kilometres. The proposed DGR will be constructed as an engineered facility comprising a series of underground emplacement rooms at a depth of 680 metres below ground within argillaceous limestones. The geoscientific studies are meant to provide a basis for the development of descriptive geological, hydrogeological and geomechanical models of the DGR site that will facilitate environmental and safety assessments. 11 refs., 3 tabs., 9 figs.

  18. Geographic Information System (GIS) representation of historical seagrass coverage in Perdido Bay from United States Geological Survey/National Wetlands Research Center (USGS/NWRC), 1979 (NODC Accession 0000605)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Historical seagrass coverage in Perdido Bay 1979 from United States Geological Survey/National Wetlands Research Center (USGS/NWRC).

  19. Water quality measurements in San Francisco Bay by the U.S. Geological Survey, 1969-2015.

    Science.gov (United States)

    Schraga, Tara S; Cloern, James E

    2017-08-08

    The U.S. Geological Survey (USGS) maintains a place-based research program in San Francisco Bay (USA) that began in 1969 and continues, providing one of the longest records of water-quality measurements in a North American estuary. Constituents include salinity, temperature, light extinction coefficient, and concentrations of chlorophyll-a, dissolved oxygen, suspended particulate matter, nitrate, nitrite, ammonium, silicate, and phosphate. We describe the sampling program, analytical methods, structure of the data record, and how to access all measurements made from 1969 through 2015. We provide a summary of how these data have been used by USGS and other researchers to deepen understanding of how estuaries are structured and function differently from the river and ocean ecosystems they bridge.

  20. Geochemical reanalysis of historical U.S. Geological Survey sediment samples from the Haines area, Juneau and Skagway quadrangles, southeast Alaska

    Science.gov (United States)

    Werdon, Melanie B.; Granitto, Matthew; Azain, Jaime S.

    2015-01-01

    The State of Alaska’s Strategic and Critical Minerals (SCM) Assessment project, a State-funded Capital Improvement Project (CIP), is designed to evaluate Alaska’s statewide potential for SCM resources. The SCM Assessment is being implemented by the Alaska Division of Geological & Geophysical Surveys (DGGS), and involves obtaining new airborne-geophysical, geological, and geochemical data. As part of the SCM Assessment, thousands of historical geochemical samples from DGGS, U.S. Geological Survey (USGS), and U.S. Bureau of Mines archives are being reanalyzed by DGGS using modern, quantitative, geochemical-analytical methods. The objective is to update the statewide geochemical database to more clearly identify areas in Alaska with SCM potential. The USGS is also undertaking SCM-related geologic studies in Alaska through the federally funded Alaska Critical Minerals cooperative project. DGGS and USGS share the goal of evaluating Alaska’s strategic and critical minerals potential and together created a Letter of Agreement (signed December 2012) and a supplementary Technical Assistance Agreement (#14CMTAA143458) to facilitate the two agencies’ cooperative work. Under these agreements, DGGS contracted the USGS in Denver to reanalyze historical USGS sediment samples from Alaska. For this report, DGGS funded reanalysis of 212 historical USGS sediment samples from the statewide Alaska Geochemical Database Version 2.0 (AGDB2; Granitto and others, 2013). Samples were chosen from the Chilkat, Klehini, Tsirku, and Takhin river drainages, as well as smaller drainages flowing into Chilkat and Chilkoot Inlets near Haines, Skagway Quadrangle, Southeast Alaska. Additionally some samples were also chosen from the Juneau gold belt, Juneau Quadrangle, Southeast Alaska (fig. 1). The USGS was responsible for sample retrieval from the National Geochemical Sample Archive (NGSA) in Denver, Colorado through the final quality assurance/quality control (QA/QC) of the geochemical

  1. Released geophysical and geological reports : Newfoundland offshore area September 2003

    International Nuclear Information System (INIS)

    2003-09-01

    This two-part publication contains a list of geophysical and geological data acquired by the Canada-Newfoundland Offshore Petroleum Board (C-NOPB). It is made available to the public in accordance with a subsection of the Canada-Newfoundland Atlantic Accord Implementation Act which states that such data can be released five years after the date of completion of a program. The programs for which the data has been released are listed in chronological order by completion date. A list of wells drilled within the C-NOPB's jurisdictional area is also included along with a map showing the area of jurisdiction. The well data includes category 1 information from exploratory wells, delineation wells, and development wells. It includes factual data obtained directly from well drilling which must be made available for public examination 2 years after well completion. Category 1 data refers to drill cuttings, well fluid samples, open-hole logs, formation stimulation data, petroleum analyses, drill mud reports, and well site survey information. The interpretive geological and geophysical reports are based on industry data from exploratory programs conducted in the Newfoundland offshore area. They include information from synthetic seismograms, velocity surveys, vertical seismic profiles, petrological reports, geochemical reports, and cyberlook logs. The jurisdictional areas include Western Newfoundland, South Grand Banks, North Grand Banks, the Northeast Newfoundland Shelf, and the Labrador Shelf. Program numbers are coded to contain the geographic region to which the program relates, the type of proposed geophysical or geological work, the company operating the program, and the sequential number of that type of program operated by each company. 8 tabs

  2. 25 CFR 211.56 - Geological and geophysical permits.

    Science.gov (United States)

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Geological and geophysical permits. 211.56 Section 211.56... FOR MINERAL DEVELOPMENT Rents, Royalties, Cancellations and Appeals § 211.56 Geological and geophysical permits. Permits to conduct geological and geophysical operations on Indian lands which do not...

  3. Application of frequency- and time-domain electromagnetic surveys to characterize hydrostratigraphy and landfill construction at the Amargosa Desert Research Site, Beatty, Nevada

    Science.gov (United States)

    White, Eric A.; Day-Lewis, Frederick D.; Johnson, Carole D.; Lane, John W.

    2016-01-01

    In 2014 and 2015, the U.S. Geological Survey (USGS), conducted frequency-domain electromagnetic (FDEM) surveys at the USGS Amargosa Desert Research Site (ADRS), approximately 17 kilometers (km) south of Beatty, Nevada. The FDEM surveys were conducted within and adjacent to a closed low-level radioactive waste disposal site located at the ADRS. FDEM surveys were conducted on a grid of north-south and east-west profiles to assess the locations and boundaries of historically recorded waste-disposal trenches. In 2015, the USGS conducted time-domain (TDEM) soundings along a profile adjacent to the disposal site (landfill) in cooperation with the U.S. Environmental Protection Agency (USEPA), to assess the thickness and characteristics of the underlying deep unsaturated zone, and the hydrostratigraphy of the underlying saturated zone.FDEM survey results indicate the general location and extent of the waste-disposal trenches and reveal potential differences in material properties and the type and concentration of waste in several areas of the landfill. The TDEM surveys provide information on the underlying hydrostratigraphy and characteristics of the unsaturated zone that inform the site conceptual model and support an improved understanding of the hydrostratigraphic framework. Additional work is needed to interpret the TDEM results in the context of the local and regional structural geology.

  4. Preliminary geologic map of the Lathrop Wells volcanic center

    International Nuclear Information System (INIS)

    Crowe, B.; Harrington, C.; McFadden, L.; Perry, F.; Wells, S.; Turrin, B.; Champion, D.

    1988-12-01

    A preliminary geologic map has been compiled for the bedrock geology of the Lathrop Wells volcanic center. The map was completed through use of a combination of stereo photographic interpretation and field mapping on color aerial photographs. These photographs (scale 1:4000) were obtained from American Aerial Surveys, Inc. They were flown on August 18, 1987, at the request of the Yucca Mountain Project (then Nevada Nuclear Waste Storage Investigations). The photographs are the Lathrop Wells VC-Area 25 series, numbers 1--32. The original negatives for these photographs are on file with American Aerial Surveys, Inc. Copies of the negatives have been archived at the Los Alamos National Laboratory, Group N-5. The preliminary geologic map is a bedrock geologic map. It does not show alluvial deposits, eolian sands, or scoria fall deposits from the youngest eruptive events. The units will be compiled on separate maps when the geomorphic and soils studies are more advanced

  5. Geologic quadrangle maps of the United States: geology of the Casa Diablo Mountain quadrangle, California

    Science.gov (United States)

    Rinehart, C. Dean; Ross, Donald Clarence

    1957-01-01

    The Casa Diablo Mountain quadrangle was mapped in the summers of 1952 and 1953 by the U.S. Geological Survey in cooperation with the California State Division of Mines as part of a study of potential tungsten-bearing areas.

  6. The geology and hydrogeology of Sellafield: an overview

    International Nuclear Information System (INIS)

    Chaplow, Robert

    1996-01-01

    Nirex is responsible for providing and managing a national facility for solid intermediate-level and low-level radioactive waste. Geological and hydrogeological investigations have been in progress at Sellafield in west Cumbria since 1989 aimed at determining whether or not the site is suitable for such a deep repository. Geological investigations have included the drilling of 20 deep boreholes with over 20 000 metres of drilling, together with almost 2000 line kilometres of seismic surveys and over 8000 line kilometres of airborne geophysical surveys. Hydrogeological testing and groundwater sampling and testing have provided additional information on the ground conditions at the site. (author)

  7. Predictive modeling of terrestrial radiation exposure from geologic materials

    Science.gov (United States)

    Haber, Daniel A.

    Aerial gamma ray surveys are an important tool for national security, scientific, and industrial interests in determining locations of both anthropogenic and natural sources of radioactivity. There is a relationship between radioactivity and geology and in the past this relationship has been used to predict geology from an aerial survey. The purpose of this project is to develop a method to predict the radiologic exposure rate of the geologic materials in an area by creating a model using geologic data, images from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), geochemical data, and pre-existing low spatial resolution aerial surveys from the National Uranium Resource Evaluation (NURE) Survey. Using these data, geospatial areas, referred to as background radiation units, homogenous in terms of K, U, and Th are defined and the gamma ray exposure rate is predicted. The prediction is compared to data collected via detailed aerial survey by our partner National Security Technologies, LLC (NSTec), allowing for the refinement of the technique. High resolution radiation exposure rate models have been developed for two study areas in Southern Nevada that include the alluvium on the western shore of Lake Mohave, and Government Wash north of Lake Mead; both of these areas are arid with little soil moisture and vegetation. We determined that by using geologic units to define radiation background units of exposed bedrock and ASTER visualizations to subdivide radiation background units of alluvium, regions of homogeneous geochemistry can be defined allowing for the exposure rate to be predicted. Soil and rock samples have been collected at Government Wash and Lake Mohave as well as a third site near Cameron, Arizona. K, U, and Th concentrations of these samples have been determined using inductively coupled mass spectrometry (ICP-MS) and laboratory counting using radiation detection equipment. In addition, many sample locations also have

  8. Surficial geology of the Cabot 7 1/2 minute quadrangle, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital data from VG2016-3 Springston, G., 2016, Surficial geology of the Cabot 7 1/2 minute quadrangle, Vermont:�Vermont Geological Survey Open File Report...

  9. Recent U.S. Geological Survey Studies in the Tintina Gold Province, Alaska, United States, and Yukon, Canada-Results of a 5-Year Project

    Science.gov (United States)

    Gough, Larry P.; Day, Warren C.

    2010-01-01

    This report presents summary papers of work conducted between 2002 and 2007 under a 5-year project effort funded by the U.S. Geological Survey Mineral Resources Program, formerly entitled 'Tintina Metallogenic Province: Integrated Studies on Geologic Framework, Mineral Resources, and Environmental Signatures.' As the project progressed, the informal title changed from 'Tintina Metallogenic Province' project to 'Tintina Gold Province' project, the latter being more closely aligned with the terminology used by the mineral industry. As Goldfarb and others explain in the first chapter of this report, the Tintina Gold Province is a convenient term used by the mineral exploration community for a 'region of very varied geology, gold deposit types, and resource potential'. The Tintina Gold Province encompasses roughly 150,000 square kilometers, bounded by the Kaltag-Tintina fault system on the north and the Farewell-Denali fault system on the south. It extends westward in a broad arc, some 200 km wide, from northernmost British Columbia, through the Yukon, through southeastern and central Alaska, to southwestern Alaska. The climate is subarctic and, in Alaska, includes major physiographic delineations and ecoregions such as the Yukon-Tanana Upland, Tanana-Kuskokwim Lowlands, Yukon River Lowlands, and the Kuskokwim Mountains. Although the Tintina Gold Province is historically important for some of the very first placer and lode gold discoveries in northern North America, it has recently seen resurgence in mineral exploration, development, and mining activity. This resurgence is due to both new discoveries (for example, Pogo and Donlin Creek) and to the application of modern extraction methods to previously known, but economically restrictive, low-grade, bulk-tonnage gold resources (for example, Fort Knox, Clear Creek, and Scheelite Dome). In addition, the Tintina Gold Province hosts numerous other mineral deposit types, possessing both high and low sulfide content, which

  10. Radiochemical analyses of surface water from U.S. Geological Survey hydrologic bench-mark stations

    Science.gov (United States)

    Janzer, V.J.; Saindon, L.G.

    1972-01-01

    The U.S. Geological Survey's program for collecting and analyzing surface-water samples for radiochemical constituents at hydrologic bench-mark stations is described. Analytical methods used during the study are described briefly and data obtained from 55 of the network stations in the United States during the period from 1967 to 1971 are given in tabular form.Concentration values are reported for dissolved uranium, radium, gross alpha and gross beta radioactivity. Values are also given for suspended gross alpha radioactivity in terms of natural uranium. Suspended gross beta radioactivity is expressed both as the equilibrium mixture of strontium-90/yttrium-90 and as cesium-137.Other physical parameters reported which describe the samples include the concentrations of dissolved and suspended solids, the water temperature and stream discharge at the time of the sample collection.

  11. 25 CFR 212.56 - Geological and geophysical permits.

    Science.gov (United States)

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Geological and geophysical permits. 212.56 Section 212.56... FOR MINERAL DEVELOPMENT Rents, Royalties, Cancellations, and Appeals § 212.56 Geological and geophysical permits. (a) Permits to conduct geological and geophysical operations on Indian lands which do not...

  12. U.S. Geological Survey Science for the Wyoming Landscape Conservation Initiative - 2013 Annual Report

    Science.gov (United States)

    Bowen, Zachary H.; Aldridge, Cameron L.; Anderson, Patrick J.; Assal, Timothy J.; Bern, Carleton R.; Biewick, Laura R; Boughton, Gregory K.; Chalfoun, Anna D.; Chong, Geneva W.; Dematatis, Marie K.; Fedy, Bradley C.; Garman, Steven L.; Germaine, Stephen S.; Hethcoat, Matthew G.; Homer, Collin G.; Huber, Christopher; Kauffman, Matthew J.; Latysh, Natalie; Manier, Daniel; Melcher, Cynthia P.; Miller, Kirk A.; Potter, Christopher J.; Schell, Spencer; Sweat, Michael J.; Walters, Annika W.; Wilson, Anna B.

    2014-01-01

    This is the sixth report produced by the U.S. Geological Survey (USGS) for the Wyoming Landscape Conservation Initiative (WLCI) to detail annual activities conducted by USGS for addressing specific management needs identified by WLCI partners. In FY2013, there were 25 ongoing and new projects conducted by the USGS. These projects fall into 8 major categories: (1) synthesizing and analyzing existing data to describe (model and map) current conditions on the landscape; (2) developing models for projecting past and future landscape conditions; (3) monitoring indicators of ecosystem conditions and the effectiveness of on-the-ground habitat projects; (4) conducting research to elucidate the mechanisms underlying wildlife and habitat responses to changing land uses; (5) managing and making accessible the large number of databases, maps, and other products being developed; (6) helping to integrate WLCI outcomes with future habitat enhancement and research projects; (7) coordinating efforts among WLCI partners; and (8) providing support to WLCI decision-makers and assisting with overall evaluation of the WLCI program. The two new projects initiated in FY2013 address (1) important agricultural lands in southwestern Wyoming, and (2) the influence of energy development on native fish communities. The remaining activities entailed our ongoing efforts to compile data, model landscape conditions, monitor trends in habitat conditions, conduct studies of wildlife responses to energy development, and upgrade Web-based products in support of both individual and overall WLCI efforts. Milestone FY2013 accomplishments included completing the development of a WLCI inventory and monitoring framework and the associated monitoring strategies, protocols, and analytics; and initial development of an Interagency Inventory and Monitoring Database, which will be accessible through the Monitoring page of the WLCI Web site at http://www.wlci.gov/monitoring. We also completed the initial phase of

  13. An Overview of Geologic Carbon Sequestration Potential in California

    Energy Technology Data Exchange (ETDEWEB)

    Cameron Downey; John Clinkenbeard

    2005-10-01

    As part of the West Coast Regional Carbon Sequestration Partnership (WESTCARB), the California Geological Survey (CGS) conducted an assessment of geologic carbon sequestration potential in California. An inventory of sedimentary basins was screened for preliminary suitability for carbon sequestration. Criteria included porous and permeable strata, seals, and depth sufficient for critical state carbon dioxide (CO{sub 2}) injection. Of 104 basins inventoried, 27 met the criteria for further assessment. Petrophysical and fluid data from oil and gas reservoirs was used to characterize both saline aquifers and hydrocarbon reservoirs. Where available, well log or geophysical information was used to prepare basin-wide maps showing depth-to-basement and gross sand distribution. California's Cenozoic marine basins were determined to possess the most potential for geologic sequestration. These basins contain thick sedimentary sections, multiple saline aquifers and oil and gas reservoirs, widespread shale seals, and significant petrophysical data from oil and gas operations. Potential sequestration areas include the San Joaquin, Sacramento, Ventura, Los Angeles, and Eel River basins, followed by the smaller Salinas, La Honda, Cuyama, Livermore, Orinda, and Sonoma marine basins. California's terrestrial basins are generally too shallow for carbon sequestration. However, the Salton Trough and several smaller basins may offer opportunities for localized carbon sequestration.

  14. Remote sensing, airborne radiometric survey and aeromagnetic survey data processing and analysis

    International Nuclear Information System (INIS)

    Dong Xiuzhen; Liu Dechang; Ye Fawang; Xuan Yanxiu

    2009-01-01

    Taking remote sensing data, airborne radiometric data and aero magnetic survey data as an example, the authors elaborate about basic thinking of remote sensing data processing methods, spectral feature analysis and adopted processing methods, also explore the remote sensing data combining with the processing of airborne radiometric survey and aero magnetic survey data, and analyze geological significance of processed image. It is not only useful for geological environment research and uranium prospecting in the study area, but also reference to applications in another area. (authors)

  15. Land-cover change research at the U.S. Geological Survey-assessing our nation's dynamic land surface

    Science.gov (United States)

    Wilson, Tamara S.

    2011-01-01

    The U.S. Geological Survey (USGS) recently completed an unprecedented, 27-year assessment of land-use and land-cover change for the conterminous United States. For the period 1973 to 2000, scientists generated estimates of change in major types of land use and land cover, such as development, mining, agriculture, forest, grasslands, and wetlands. To help provide the insight that our Nation will need to make land-use decisions in coming decades, the historical trends data is now being used by the USGS to help model potential future land use/land cover under different scenarios, including climate, environmental, economic, population, public policy, and technological change.

  16. Thermal Maturity Data Used by the U.S. Geological Survey for the U.S. Gulf Coast Region Oil and Gas Assessment

    Science.gov (United States)

    Dennen, Kristin O.; Warwick, Peter D.; McDade, Elizabeth Chinn

    2010-01-01

    The U.S. Geological Survey is currently assessing the oil and natural gas resources of the U.S. Gulf of Mexico region using a total petroleum system approach. An essential part of this geologically based method is evaluating the effectiveness of potential source rocks in the petroleum system. The purpose of this report is to make available to the public RockEval and vitrinite reflectance data from more than 1,900 samples of Mesozoic and Tertiary rock core and coal samples in the Gulf of Mexico area in a format that facilitates inclusion into a geographic information system. These data provide parameters by which the thermal maturity, type, and richness of potential sources of oil and gas in this region can be evaluated.

  17. U.S. Geological Survey assessment of global potash production and resources—A significant advancement for global development and a sustainable future.

    Science.gov (United States)

    Cocker, Mark D.; Orris, Greta J.; Wynn, Jeff

    2016-01-01

    During the past 15 yr, the global requirement for fertilizers has grown considerably, mainly due to demand by a larger and wealthier world population for more and higher-quality food. The demand and price for potash as a primary fertilizer ingredient have increased in tandem, because of the necessity to increase the quantity and quality of food production on the decreasing amount of available arable land. The primary sources of potash are evaporates, which occur mainly in marine salt basins and a few brine-bearing continental basins. World potash resources are large, but distribution is inequitable and not presently developed in countries where population and food requirements are large and increasing. There is no known substitute for potash in fertilizer, so knowledge of the world’s potash resources is critical for a sustainable future. The U.S. Geological Survey recently completed a global assessment of evaporite-hosted potash resources, which included a geographic information system–based inventory of known potash resources. This assessment included permissive areas or tracts for undiscovered resources at a scale of 1:1,000,000. Assessments of undiscovered potash resources were conducted for a number of the world’s evaporite-hosted potash basins. The data collected provide a major advance in our knowledge of global potash resources that did not exist prior to this study. The two databases include: (1) potash deposits and occurrences, and (2) potash tracts (basins that contain these deposits and occurrences and potentially undiscovered potash deposits). Data available include geology, mineralogy, grade, tonnage, depth, thickness, areal extent, and structure, as well as numerous pertinent references.

  18. Predictive Modeling of Terrestrial Radiation Exposure from Geologic Materials

    Energy Technology Data Exchange (ETDEWEB)

    Malchow, Russell L. [National Security Technologies, LLC; Haber, Daniel University of Nevada, Las Vegas; Burnley, Pamela [University of Nevada, Las Vegas; Marsac, Kara [University of Nevada, Las Vegas; Hausrath, Elisabeth [University of Nevada, Las Vegas; Adcock, Christopher [University of Nevada, Las Vegas

    2015-01-01

    Aerial gamma ray surveys are important for those working in nuclear security and industry for determining locations of both anthropogenic radiological sources and natural occurrences of radionuclides. During an aerial gamma ray survey, a low flying aircraft, such as a helicopter, flies in a linear pattern across the survey area while measuring the gamma emissions with a sodium iodide (NaI) detector. Currently, if a gamma ray survey is being flown in an area, the only way to correct for geologic sources of gamma rays is to have flown the area previously. This is prohibitively expensive and would require complete national coverage. This project’s goal is to model the geologic contribution to radiological backgrounds using published geochemical data, GIS software, remote sensing, calculations, and modeling software. K, U and Th are the three major gamma emitters in geologic material. U and Th are assumed to be in secular equilibrium with their daughter isotopes. If K, U, and Th abundance values are known for a given geologic unit the expected gamma ray exposure rate can be calculated using the Grasty equation or by modeling software. Monte Carlo N-Particle Transport software (MCNP), developed by Los Alamos National Laboratory, is modeling software designed to simulate particles and their interactions with matter. Using this software, models have been created that represent various lithologies. These simulations randomly generate gamma ray photons at energy levels expected from natural radiologic sources. The photons take a random path through the simulated geologic media and deposit their energy at the end of their track. A series of nested spheres have been created and filled with simulated atmosphere to record energy deposition. Energies deposited are binned in the same manner as the NaI detectors used during an aerial survey. These models are used in place of the simplistic Grasty equation as they take into account absorption properties of the lithology which the

  19. Reconnaissance Geology and Structure of the Coso Range, California.

    Science.gov (United States)

    1982-05-01

    annual rainfall is slightly more than 2 inches in the valleys and 5 to 6 inches in the uplands; precipitation falls mostly from October through March...and Western Nevada. 1970. P. 42. (U.S. Geological Survey Professional Paper 623, UNCLASSIFIED.) 6 H. E. von Heiene. "Structural Geology and Gravimetry

  20. Geographic Information System (GIS) characterization of historical seagrass coverage in Perdido Bay from United States Geological Survey/National Wetlands Research Center (USGS/NWRC), 1987 (NODC Accession 0000606)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Graphical representation of historical seagrass coverage in Perdido Bay in 1987 from United States Geological Survey/National Wetlands Research Center (USGS/NWRC).

  1. Digital bedrock mapping at the Geological Survey of Norway: BGS SIGMA tool and in-house database structure

    Science.gov (United States)

    Gasser, Deta; Viola, Giulio; Bingen, Bernard

    2016-04-01

    Since 2010, the Geological Survey of Norway has been implementing and continuously developing a digital workflow for geological bedrock mapping in Norway, from fieldwork to final product. Our workflow is based on the ESRI ArcGIS platform, and we use rugged Windows computers in the field. Three different hardware solutions have been tested over the past 5 years (2010-2015). (1) Panasonic Toughbook CE-19 (2.3 kg), (2) Panasonic Toughbook CF H2 Field (1.6 kg) and (3) Motion MC F5t tablet (1.5 kg). For collection of point observations in the field we mainly use the SIGMA Mobile application in ESRI ArcGIS developed by the British Geological Survey, which allows the mappers to store georeferenced comments, structural measurements, sample information, photographs, sketches, log information etc. in a Microsoft Access database. The application is freely downloadable from the BGS websites. For line- and polygon work we use our in-house database, which is currently under revision. Our line database consists of three feature classes: (1) bedrock boundaries, (2) bedrock lineaments, and (3) bedrock lines, with each feature class having up to 24 different attribute fields. Our polygon database consists of one feature class with 38 attribute fields enabling to store various information concerning lithology, stratigraphic order, age, metamorphic grade and tectonic subdivision. The polygon and line databases are coupled via topology in ESRI ArcGIS, which allows us to edit them simultaneously. This approach has been applied in two large-scale 1:50 000 bedrock mapping projects, one in the Kongsberg domain of the Sveconorwegian orogen, and the other in the greater Trondheim area (Orkanger) in the Caledonian belt. The mapping projects combined collection of high-resolution geophysical data, digital acquisition of field data, and collection of geochronological, geochemical and petrological data. During the Kongsberg project, some 25000 field observation points were collected by eight

  2. Investigation of background radiation levels and geologic unit profiles in Durango, Colorado

    International Nuclear Information System (INIS)

    Triplett, G.H.; Foutz, W.L.; Lesperance, L.R.

    1989-11-01

    As part of the Uranium Mill Tailings Remedial Action (UMTRA) Project, Oak Ridge National Laboratory (ORNL) has performed radiological surveys on 435 vicinity properties (VPs) in the Durango area. This study was undertaken to establish the background radiation levels and geologic unit profiles in the Durango VP area. During the months of May through June, 1986, extensive radiometric measurements and surface soil samples were collected in the Durango VP area by personnel from ORNL's Grand Junction Office. A majority of the Durango VP surveys were conducted at sites underlain by Quaternary alluvium, older Quaternary gravels, and Cretaceous Lewis and Mancos shales. These four geologic units were selected to be evaluated. The data indicated no formation anomalies and established regional background radiation levels. Durango background radionuclide concentrations in surface soil were determined to be 20.3 ± 3.4 pCi/g for 40 K, 1.6 ± 0.5 pCi/g for 226 Ra, and 1.2 ± 0.3 pCi/g for 232 Th. The Durango background gamma exposure rate was found to be 16.5 ± 1.3 μR/h. Average gamma spectral count rate measurements for 40 K, 226 Ra and 232 Th were determined to be 553, 150, and 98 counts per minute (cpm), respectively. Geologic unit profiles and Durango background radiation measurements are presented and compared with other areas. 19 refs., 15 figs., 5 tabs

  3. Spatial Digital Database for the Geologic Map of Oregon

    Science.gov (United States)

    Walker, George W.; MacLeod, Norman S.; Miller, Robert J.; Raines, Gary L.; Connors, Katherine A.

    2003-01-01

    Introduction This report describes and makes available a geologic digital spatial database (orgeo) representing the geologic map of Oregon (Walker and MacLeod, 1991). The original paper publication was printed as a single map sheet at a scale of 1:500,000, accompanied by a second sheet containing map unit descriptions and ancillary data. A digital version of the Walker and MacLeod (1991) map was included in Raines and others (1996). The dataset provided by this open-file report supersedes the earlier published digital version (Raines and others, 1996). This digital spatial database is one of many being created by the U.S. Geological Survey as an ongoing effort to provide geologic information for use in spatial analysis in a geographic information system (GIS). This database can be queried in many ways to produce a variety of geologic maps. This database is not meant to be used or displayed at any scale larger than 1:500,000 (for example, 1:100,000). This report describes the methods used to convert the geologic map data into a digital format, describes the ArcInfo GIS file structures and relationships, and explains how to download the digital files from the U.S. Geological Survey public access World Wide Web site on the Internet. Scanned images of the printed map (Walker and MacLeod, 1991), their correlation of map units, and their explanation of map symbols are also available for download.

  4. Geologically based model of heterogeneous hydraulic conductivity in an alluvial setting

    Science.gov (United States)

    Fogg, Graham E.; Noyes, Charles D.; Carle, Steven F.

    Information on sediment texture and spatial continuity are inherent to sedimentary depositional facies descriptions, which are therefore potentially good predictors of spatially varying hydraulic conductivity (K). Analysis of complex alluvial heterogeneity in Livermore Valley, California, USA, using relatively abundant core descriptions and field pumping-test data, demonstrates a depositional-facies approach to characterization of subsurface heterogeneity. Conventional textural classifications of the core show a poor correlation with K; however, further refinement of the textural classifications into channel, levee, debris-flow, and flood-plain depositional facies reveals a systematic framework for spatial modeling of K. This geologic framework shows that most of the system is composed of very low-K flood-plain materials, and that the K measurements predominantly represent the other, higher-K facies. Joint interpretation of both the K and geologic data shows that spatial distribution of K in this system could not be adequately modeled without geologic data and analysis. Furthermore, it appears that K should not be assumed to be log-normally distributed, except perhaps within each facies. Markov chain modeling of transition probability, representing spatial correlation within and among the facies, captures the relevant geologic features while highlighting a new approach for statistical characterization of hydrofacies spatial variability. The presence of fining-upward facies sequences, cross correlation between facies, as well as other geologic attributes captured by the Markov chains provoke questions about the suitability of conventional geostatistical approaches based on variograms or covariances for modeling geologic heterogeneity. Résumé Les informations sur la texture des sédiments et leur continuité spatiale font partie des descriptions de faciès sédimentaires de dépôt. Par conséquent, ces descriptions sont d'excellents prédicteurs potentiels des

  5. Implementing gravity method on geological contacts in Bukit Bunuh, Lenggong, Perak (Malaysia)

    International Nuclear Information System (INIS)

    Hidayah, I N E; Saad, Rosli; Nordiana, M M; Azwin, I N; Bery, Andy Anderson; Saidin, Mokhtar

    2015-01-01

    Using gravity method, a study of responses of different geological settings towards gravity was conducted in Bukit Bunuh, Lenggong, Perak (Malaysia). Gravity method provides different responses towards different rock types depending on the rock density. The survey area cover an area of 12 km 2 , with a total 404 survey stations with stations interval of approximately 50 m and 500 m. The Bouguer anomaly map identifies the shallow granite rock with a value of -6 to -10.5 mGal while shallow limestone is -11 to -15 mGal. The sediment/overburden was identified with value of < -15.5 mGal. Few fractures are also identified and the boundary between limestone and granite rocks identified at the north part of the study area

  6. U.S. Geological Survey water-resources programs in New Mexico, FY 2015

    Science.gov (United States)

    Mau, David P.

    2015-01-01

    The U.S. Geological Survey (USGS) has collected hydrologic information in New Mexico since 1889, beginning with the first USGS streamflow-gaging station in the Nation, located on the Rio Grande near Embudo, New Mexico. Water-resources information provided by the USGS is used by many government agencies for issuing flood warnings to protect lives and reduce property damage,managing water rights and interstate water use, protecting water quality and regulating pollution discharges, designing highways and bridges, planning, designing, and operating reservoirs and watersupply facilities, monitoring the availability of groundwater resources and forecasting aquifer response to human and environmental stressors, and prioritizing areas where emergency erosion mitigation or other protective measures may be necessary after a wildfire. For more than 100 years, the Cooperative Water Program has been a highly successful cost-sharing partnership between the USGS and water-resources agencies at the State, local, and tribal levels. It would be difficult to effectively accomplish the mission of the USGS without the contributions of the Cooperative Water Program.

  7. SRS Geology/Hydrogeology Environmental Information Document

    International Nuclear Information System (INIS)

    Denham, M.E.

    1999-01-01

    The purpose of the Savannah River Site Geology and Hydrogeology Environmental Information Document (EID) is to provide geologic and hydrogeologic information to serve as a baseline to evaluate potential environmental impacts. This EID is based on a summary of knowledge accumulated from research conducted at the Savannah River Site (SRS) and surrounding areas

  8. SRS Geology/Hydrogeology Environmental Information Document

    Energy Technology Data Exchange (ETDEWEB)

    Denham, M.E.

    1999-08-31

    The purpose of the Savannah River Site Geology and Hydrogeology Environmental Information Document (EID) is to provide geologic and hydrogeologic information to serve as a baseline to evaluate potential environmental impacts. This EID is based on a summary of knowledge accumulated from research conducted at the Savannah River Site (SRS) and surrounding areas.

  9. Airborne electromagnetic data and processing within Leach Lake Basin, Fort Irwin, California: Chapter G in Geology and geophysics applied to groundwater hydrology at Fort Irwin, California

    Science.gov (United States)

    Bedrosian, Paul A.; Ball, Lyndsay B.; Bloss, Benjamin R.; Buesch, David C.

    2014-01-01

    From December 2010 to January 2011, the U.S. Geological Survey conducted airborne electromagnetic and magnetic surveys of Leach Lake Basin within the National Training Center, Fort Irwin, California. These data were collected to characterize the subsurface and provide information needed to understand and manage groundwater resources within Fort Irwin. A resistivity stratigraphy was developed using ground-based time-domain electromagnetic soundings together with laboratory resistivity measurements on hand samples and borehole geophysical logs from nearby basins. This report releases data associated with the airborne surveys, as well as resistivity cross-sections and depth slices derived from inversion of the airborne electromagnetic data. The resulting resistivity models confirm and add to the geologic framework, constrain the hydrostratigraphy and the depth to basement, and reveal the distribution of faults and folds within the basin.

  10. Information to prevent human exposure to disease agents associated with wildlife—U.S. Geological Survey circulars on zoonotic disease

    Science.gov (United States)

    Meteyer, Carol U.; Moede Rogall, Gail

    2018-03-05

    The U.S. Geological Survey in collaboration with the U.S. Fish and Wildlife Service and others have published reports with information about geographic distribution, specific pathogens, disease ecology, and strategies to avoid exposure and infection for a selection of zoonotic diseases. Zoonotic diseases are diseases that can be passed from animals to humans, such as rabies and plague. This summary factsheet highlights the reports on plague, bat rabies, and raccoon roundworm with links to all seven zoonotic diseases covered in this series.

  11. A geological reconnaissance study of the Lac du Bonnet batholith

    International Nuclear Information System (INIS)

    Tammemagi, H.Y.; Kerford, P.S.; Requeima, J.C.; Temple, C.A.

    1980-02-01

    A geological reconnaissance survey was carried out of the Lac du Bonnet batholith, southeastern Manitoba, as part of the concept verification phase of the nuclear fuel waste disposal program for Canada. This report summarizes available geological information, presents the results of field mapping and discusses the geochemical analyses of rock samples. The geological and structural aspects of the batholith are described as well as its regional setting and possible genesis. (auth)

  12. Geodatabase of sites, basin boundaries, and topology rules used to store drainage basin boundaries for the U.S. Geological Survey, Colorado Water Science Center

    Science.gov (United States)

    Dupree, Jean A.; Crowfoot, Richard M.

    2012-01-01

    This geodatabase and its component datasets are part of U.S. Geological Survey Digital Data Series 650 and were generated to store basin boundaries for U.S. Geological Survey streamgages and other sites in Colorado. The geodatabase and its components were created by the U.S. Geological Survey, Colorado Water Science Center, and are used to derive the numeric drainage areas for Colorado that are input into the U.S. Geological Survey's National Water Information System (NWIS) database and also published in the Annual Water Data Report and on NWISWeb. The foundational dataset used to create the basin boundaries in this geodatabase was the National Watershed Boundary Dataset. This geodatabase accompanies a U.S. Geological Survey Techniques and Methods report (Book 11, Section C, Chapter 6) entitled "Digital Database Architecture and Delineation Methodology for Deriving Drainage Basins, and Comparison of Digitally and Non-Digitally Derived Numeric Drainage Areas." The Techniques and Methods report details the geodatabase architecture, describes the delineation methodology and workflows used to develop these basin boundaries, and compares digitally derived numeric drainage areas in this geodatabase to non-digitally derived areas. 1. COBasins.gdb: This geodatabase contains site locations and basin boundaries for Colorado. It includes a single feature dataset, called BasinsFD, which groups the component feature classes and topology rules. 2. BasinsFD: This feature dataset in the "COBasins.gdb" geodatabase is a digital container that holds the feature classes used to archive site locations and basin boundaries as well as the topology rules that govern spatial relations within and among component feature classes. This feature dataset includes three feature classes: the sites for which basins have been delineated (the "Sites" feature class), basin bounding lines (the "BasinLines" feature class), and polygonal basin areas (the "BasinPolys" feature class). The feature dataset

  13. Assessment of Factors that Influence the Recruitment of Majors from Introductory Geology Classes

    Science.gov (United States)

    Hoisch, T. D.; Bowie, J. I.

    2009-12-01

    In order to guide the formulation of strategies for recruiting undergraduates taking introductory geology courses into the geology program at Northern Arizona University, we surveyed 783 students in introductory geology classes and 23 geology majors in their junior and senior years. Our introductory courses (GLG100, Introduction to Geology; GLG101, Physical Geology; and GLG112, Geologic Disasters) typically enroll ~600 students each semester. The majority of students in these classes are non-majors who take them in order to satisfy a university general education requirement (called “Liberal Studies requirements” at NAU). A large proportion of these students are freshmen (51%) and sophomores (30%), and many have not yet decided on a major or are uncertain about the major they have chosen. Our analysis shows that ~7% of students in the introductory classes are possible candidates for recruitment. Although a small percentage, it represents a large number of individuals, in fact more than could be accommodated were they all to decide to major in geology. Influential factors that weigh in favor of majoring in geology include good employability, good salary potential, and opportunities for working outdoors, field work, observing nature, travel, and environmentally friendly employment. In addition, students view a career as a geologist as potentially the most fulfilling of the different science occupations (biologist, chemist, geologist, environmental scientist, physicist) and among the more environmentally friendly. However, students perceive geology to be the least difficult of the sciences, and geology occupations to be low-paying and low in prestige relative to the other sciences. These negative perceptions could be countered by providing data to introductory students showing the starting salaries of geologists in comparison to other science occupations, and by communicating the rigorous nature of the more advanced classes in the geology degree program. A

  14. Geological aspects of a deep underground disposal facility in the Czech Republic

    International Nuclear Information System (INIS)

    Skopovy, J.; Woller, F.

    1997-01-01

    The basic requirements for the geological situation at a deep underground radioactive waste disposal site are highlighted, a survey of candidate host sites worldwide is presented, and the situation in the Czech Republic is analyzed. A 'General Project of Geological Activities Related to the Development of a Deep Underground Disposal Site for Radioactive Wastes and Spent Fuel in the Czech Republic' has been developed by the Nuclear Research Institute and approved and financed by the authorities. The Project encompasses the following stages: (i) preliminary study and research; (ii) examination of the seismicity, neotectonics, and geodynamics; (iii) search and critical assessment of archived geological information; (iv) non-destructive survey; and (v) destructive survey. The Project should take about 30 years and its scope will be updated from time to time. (P.A.)

  15. The geological controls of geothermal groundwater sources in Lebanon

    Energy Technology Data Exchange (ETDEWEB)

    Shaban, Amin [National Council for Scientific Research, Remote Sensing Center, Beirut (Lebanon); Khalaf-Keyrouz, Layla [Notre Dame University-Louaize, Zouk Mosbeh (Lebanon)

    2013-07-01

    Lebanon is a country that is relatively rich in water resources, as compared to its neighboring states in the Middle East. Several water sources are issuing on the surface or subsurface, including nonconventional water sources as the geothermal groundwater. This aspect of water sources exists in Lebanon in several localities, as springs or in deep boreholes. To the present little attention has been given to these resources and their geological setting is still unidentified. The preliminary geological field surveys revealed that they mainly occur in the vicinity of the basalt outcrops. Therefore, understanding their geological controls will help in exploring their origin, and thus giving insights into their economical exploitation. This can be investigated by applying advanced detection techniques, field surveys along with detailed geochemical analysis. This study aims at assessing the geographic distribution of the geothermal water in Lebanon with respect to the different geological settings and controls that govern their hydrogeologic regimes. It will introduce an approach for an integrated water resources management which became of utmost significance for the country.

  16. Relations between Vegetation and Geologic Framework in Barrier Island

    Science.gov (United States)

    Smart, N. H.; Ferguson, J. B.; Lehner, J. D.; Taylor, D.; Tuttle, L. F., II; Wernette, P. A.

    2017-12-01

    Barrier islands provide valuable ecosystems and protective services to coastal communities. The longevity of barrier islands is threatened by sea-level rise, human impacts, and extreme storms. The purpose of this research is to evaluate how vegetation dynamics interact with the subsurface and offshore framework geology to influence the beach and dune morphology. Beach and dune morphology can be viewed as free and/or forced behavior, where free systems are stochastic and the morphology is dependent on variations in the storm surge run-up, aeolian sediment supply and transport potential, and vegetation dynamics and persistence. Forced systems are those where patterns in the coastal morphology are determined by some other structural control, such as the underlying and offshore framework geology. Previous studies have documented the effects of geologic framework or vegetation dynamics on the beach and dunes, although none have examined possible control by vegetation dynamics in context of the geologic framework (i.e. combined free and forced behavior). Padre Island National Seashore (PAIS) was used to examine the interaction of free and forced morphology because the subsurface framework geology and surface beach and dune morphology are variable along the island. Vegetation dynamics were assessed by classifying geographically referenced historical aerial imagery into areas with vegetation and areas without vegetation, as well as LiDAR data to verify this imagery. The subsurface geologic structure was assessed using a combination of geophysical surveys (i.e. electromagnetic induction, ground-penetrating radar, and offshore seismic surveys). Comparison of the observed vegetation patterns and geologic framework leads to a series of questions surrounding how mechanistically these two drivers of coastal morphology are related. Upcoming coring and geophysical surveys will enable us to validate new and existing geophysical data. Results of this paper will help us better

  17. A multispectral scanner survey of the Tonopah Test Range, Nevada. Date of survey: August 1993

    International Nuclear Information System (INIS)

    Brewster, S.B. Jr.; Howard, M.E.; Shines, J.E.

    1994-08-01

    The Multispectral Remote Sensing Department of the Remote Sensing Laboratory conducted an airborne multispectral scanner survey of a portion of the Tonopah Test Range, Nevada. The survey was conducted on August 21 and 22, 1993, using a Daedalus AADS1268 scanner and coincident aerial color photography. Flight altitudes were 5,000 feet (1,524 meters) above ground level for systematic coverage and 1,000 feet (304 meters) for selected areas of special interest. The multispectral scanner survey was initiated as part of an interim and limited investigation conducted to gather preliminary information regarding historical hazardous material release sites which could have environmental impacts. The overall investigation also includes an inventory of environmental restoration sites, a ground-based geophysical survey, and an aerial radiological survey. The multispectral scanner imagery and coincident aerial photography were analyzed for the detection, identification, and mapping of man-made soil disturbances. Several standard image enhancement techniques were applied to the data to assist image interpretation. A geologic ratio enhancement and a color composite consisting of AADS1268 channels 10, 7, and 9 (mid-infrared, red, and near-infrared spectral bands) proved most useful for detecting soil disturbances. A total of 358 disturbance sites were identified on the imagery and mapped using a geographic information system. Of these sites, 326 were located within the Tonopah Test Range while the remaining sites were present on the imagery but outside the site boundary. The mapped site locations are being used to support ongoing field investigations

  18. Progress on water data integration and distribution: a summary of select U.S. Geological Survey data systems

    Science.gov (United States)

    Blodgett, David L.; Lucido, Jessica M.; Kreft, James M.

    2016-01-01

    Critical water-resources issues ranging from flood response to water scarcity make access to integrated water information, services, tools, and models essential. Since 1995 when the first water data web pages went online, the U.S. Geological Survey has been at the forefront of water data distribution and integration. Today, real-time and historical streamflow observations are available via web pages and a variety of web service interfaces. The Survey has built partnerships with Federal and State agencies to integrate hydrologic data providing continuous observations of surface and groundwater, temporally discrete water quality data, groundwater well logs, aquatic biology data, water availability and use information, and tools to help characterize the landscape for modeling. In this paper, we summarize the status and design patterns implemented for selected data systems. We describe how these systems contribute to a U.S. Federal Open Water Data Initiative and present some gaps and lessons learned that apply to global hydroinformatics data infrastructure.

  19. Geochemical reanalysis of historical U.S. Geological Survey sediment samples from the northeastern Alaska Range, Healy, Mount Hayes, Nabesna, and Tanacross quadrangles, Alaska

    Science.gov (United States)

    Werdon, Melanie B.; Granitto, Matthew; Azain, Jaime S.

    2015-01-01

    The State of Alaska’s Strategic and Critical Minerals (SCM) Assessment project, a State-funded Capital Improvement Project (CIP), is designed to evaluate Alaska’s statewide potential for SCM resources. The SCM Assessment is being implemented by the Alaska Division of Geological & Geophysical Surveys (DGGS), and involves obtaining new airborne-geophysical, geological, and geochemical data. As part of the SCM Assessment, thousands of historical geochemical samples from DGGS, U.S. Geological Survey (USGS), and U.S. Bureau of Mines archives are being reanalyzed by DGGS using modern, quantitative, geochemical-analytical methods. The objective is to update the statewide geochemical database to more clearly identify areas in Alaska with SCM potential. The USGS is also undertaking SCM-related geologic studies in Alaska through the federally funded Alaska Critical Minerals cooperative project. DGGS and USGS share the goal of evaluating Alaska’s strategic and critical minerals potential and together created a Letter of Agreement (signed December 2012) and a supplementary Technical Assistance Agreement (#14CMTAA143458) to facilitate the two agencies’ cooperative work. Under these agreements, DGGS contracted the USGS in Denver to reanalyze historical USGS sediment samples from Alaska. For this report, DGGS funded reanalysis of 670 historical USGS sediment samples from the statewide Alaska Geochemical Database Version 2.0 (AGDB2; Granitto and others, 2013). Samples were chosen from the northeastern Alaska Range, in the Healy, Mount Hayes, Nabesna, and Tanacross quadrangles, Alaska (fig. 1). The USGS was responsible for sample retrieval from the National Geochemical Sample Archive (NGSA) in Denver, Colorado through the final quality assurance/quality control (QA/QC) of the geochemical analyses obtained through the USGS contract lab. The new geochemical data are published in this report as a coauthored DGGS report, and will be incorporated into the statewide geochemical

  20. Comparing Lay Community and Academic Survey Center Interviewers in Conducting Household Interviews in Latino Communities.

    Science.gov (United States)

    Chan-Golston, Alec M; Friedlander, Scott; Glik, Deborah C; Prelip, Michael L; Belin, Thomas R; Brookmeyer, Ron; Santos, Robert; Chen, Jie; Ortega, Alexander N

    2016-01-01

    The employment of professional interviewers from academic survey centers to conduct surveys has been standard practice. Because one goal of community-engaged research is to provide professional skills to community residents, this paper considers whether employing locally trained lay interviewers from within the community may be as effective as employing interviewers from an academic survey center with regard to unit and item nonresponse rates and cost. To study a nutrition-focused intervention, 1035 in-person household interviews were conducted in East Los Angeles and Boyle Heights, 503 of which were completed by lay community interviewers. A chi-square test was used to assess differences in unit nonresponse rates between professional and community interviewers and Welch's t tests were used to assess differences in item nonresponse rates. A cost comparison analysis between the two interviewer groups was also conducted. Interviewers from the academic survey center had lower unit nonresponse rates than the lay community interviewers (16.2% vs. 23.3%; p < 0.01). However, the item nonresponse rates were lower for the community interviewers than the professional interviewers (1.4% vs. 3.3%; p < 0.01). Community interviewers cost approximately $415.38 per survey whereas professional interviewers cost approximately $537.29 per survey. With a lower cost per completed survey and lower item nonresponse rates, lay community interviewers are a viable alternative to professional interviewers for fieldwork in community-based research. Additional research is needed to assess other important aspects of data quality interviewer such as interviewer effects and response error.

  1. Brazil Geological Basic Survey Program - Ponte Nova - Sheet SF.23-X-B-II - Minas Gerais State

    International Nuclear Information System (INIS)

    Brandalise, L.A.

    1991-01-01

    The present report refers to the Ponte Nova Sheet (SF.23-X-B-II) systematic geological mapping, on the 1:100.000 scale. The Sheet covers the Zona da Mata region, Minas Gerais State, in the Mantiqueira Geotectonic Province, to the eastern part of Sao Francisco Geotectonic Province, as defined in the project. The high grade metamorphic rocks to low amphibolite, occurring in the area were affected by a marked low angle shearing transposition, and show diphtheritic effects. Archaean to Proterozoic ages are attributed to the metamorphites mostly by comparison to similar types of the region. Three deformed events were registered in the region. Analysis of the crustal evolution pattern based on geological mapping, laboratorial analyses, gravimetric and air magnetometry data, and available geochronologic data is given in the 6. Chapter, Part II, in the text. Major element oxides, trace-elements, and rare-earths elements were analysed to establish parameters for the rocks environment elucidation. Geochemical survey was carried out with base on pan concentrated and stream sediments distributed throughout the Sheet. Gneisses quarries (industrial rocks) in full exploration activity have been registered, as well as sand and clay deposits employed in construction industry. Metallogenetic/Provisional analysis points out the area as a favorable one for gold prospection. (author)

  2. Staff - Kenneth R. Papp | Alaska Division of Geological & Geophysical

    Science.gov (United States)

    Surveys Home About Us Director's Office Alaska Statutes Annual Reports Employment Staff Directory and Facilities Staff Seismic and Well Data Data Reports Contact Us Frequently Asked Questions Ask a Facebook DGGS News Natural Resources Geological & Geophysical Surveys Staff - Kenneth R. Papp main

  3. Geological techniques used in the siting of South Africa's nuclear facilities

    International Nuclear Information System (INIS)

    Andersen, N.J.B.

    1990-01-01

    Nuclear site selection studies begin with an initial screening phase in order to pick regions which could be potentially suitable. When assessing a potential nuclear site from a structural geological point of view, the most important factors are the presence of 'capable faults', the seismicity of the area, and the existence of good foundation rock. A geological evaluation of a potential site involves a literature survey for all existing geological data on the site, geophysical investigations, structural domain analysis and geological mapping

  4. Geological Structures Mapping of Bukit Bunuh using 2-D Resistivity Imaging Method

    Science.gov (United States)

    Nur Amalina, M. K. A.; Nordiana, M. M.; Rahman, Nazrin; Saidin, Mokhtar; Masnan, S. S. K.

    2018-04-01

    The geological area of Bukit Bunuh is very complex due to the meteorite impact that has occurred millions years ago at Lenggong, Perak. The lithology of the study area consists of alluvium, tephra dust, and granitic rock. The geological contact, fault and fracture zone were found at the study area may indicate the geological process that undergoes at a place locally or regionally. These important features have led to the further research on 2-D resistivity imaging method (2-D RIM) to study the geological features. This method can provide the subsurface image that will delineate the geological structures. The surveys include three separate lines of different length which depend on the accessibility. The surveys were done by using Pole-Dipole array and 10 m of electrodes spacing. The objectives of this research are to determine the subsurface geological contact and to determine the existence of fault/fracture zones at the contact zone. The results from 2-D inversion profiles have successfully signified the types of geological structural such as fault, contact, and fractures. Hence, the results from 2-D RIM were used to draw the geological lineaments of Bukit Bunuh. The discontinuity of the lineaments may indicate the structures present.

  5. Geologic and radiometric study in the Picacho, Arizpe's Municipality, Sorora (Mexico) area

    International Nuclear Information System (INIS)

    Garcia y Barragan, J.C.

    1975-01-01

    This research work was aimed chiefly at studying the geology and radiometry of the El Picacho area in order to establish its uranium mineralization potential. Another purpose was to ascertain the factors favouring deposition of radioactive material in areas bordering on the Sierra del Manzanal, where the work was carried out. Detailed geological-radiometric surveys were made, both inside the El Picacho mine and at the surface. The geological surveys were carried out by means of compass bearings and stadia, while scintillometers and spectrometers were used for the radiometric studies. The work was supported by a general geological exploration of the central part of the Serra del Manzanal. To ascertain the radiometric anomalies, the distribution of the population of values was determined by statistical methods, the frequency, cumulative frequency and frequency percentage being evaluated for that purpose. The geological survey at the El Picacho mine revealed a group of fractures enclosing the following minerals: torbernite, iriginite and autunite. These fractures are no thicker than 5 cm and tend to wedge out after 3 meters. Primary uraniferous ore is likely to be found in this zone, so surveys based on (a) radon gas emanometry and (b) sediment geochemistry in the Siera del Manzanal are recommended. The basic data relating to this area could be supplemented by mineragraphic and X-ray studies, which would provide a fuller picture of the class of mineralogical species and of the paragenesis of radioactive material presnent in the zone. (author)

  6. Geologic map of the eastern quarter of the Flagstaff 30’ x 60’ quadrangle, Coconino County, northern Arizona

    Science.gov (United States)

    Billingsley, George H.; Block, Debra L.; Hiza-Redsteer, Margaret

    2014-01-01

    The eastern quarter of the Flagstaff 30′ x 60′ quadrangle includes eight USGS 1:24,000-scale quadrangles in Coconino County, northern Arizona (fig. 1, map sheet): Anderson Canyon, Babbitt Wash, Canyon Diablo, Grand Falls, Grand Falls SE, Grand Falls SW, Grand Falls NE, and Meteor Crater. The map is bounded by lat 35° to 35°30′ N. and long 111° to 111°15′ W. and is on the southern part of the Colorado Plateaus geologic province (herein Colorado Plateau). Elevations range from 4,320 ft (1,317 m) at the Little Colorado River in the northwest corner of the map area to about 6,832 ft (2,082 m) at the southwest corner of the map. This geologic map provides an updated geologic framework for the eastern quarter of the Flagstaff 30′ x 60′ quadrangle and is adjacent to two other recent geologic maps, the Cameron and Winslow 30′ x 60′ quadrangles (Billingsley and others, 2007, 2013). This geologic map is the product of a cooperative effort between the U.S. Geological Survey (USGS) and the Navajo Nation. It provides geologic information for resource management officials of the U.S. Forest Service, the Arizona Game and Fish Department, and the Navajo Nation Reservation (herein the Navajo Nation). Funding for the map was provided by the USGS geologic mapping program, Reston, Virginia. Field work on the Navajo Nation was conducted under a permit from the Navajo Nation Minerals Department. Any persons wishing to conduct geologic investigations on the Navajo Nation must first apply for, and receive, a permit from the Navajo Nation Minerals Department, P.O. Box 1910, Window Rock, Arizona 86515, telephone (928) 871-6587.

  7. Reconnaissance geochemical survey for uranium and related industrial minerals in Cebu Island

    International Nuclear Information System (INIS)

    Reyes, R.Y.; Ramos, A.F.; Magsambol, W.N.; Hernandez, E.

    1989-03-01

    Consistent with the program of evaluating the nuclear mineral resource potential and related industrial minerals of the Philippines, a reconnaissance geochemical survey was conducted in Cebu with considerable success. The total area covered by the survey was about 5,088 sq. kms. The survey consisted of systematic collection of 857 geochemical stream and water and heavy mineral samples, and measurement of radioactivity in over 352 stations. The average sampling density was about one set of samples per 15 to 30 sq. kms. All solid samples were analyzed for U, Cu, Pb, Zn, Mn, Ag, Co and Ni. Uranium, radon and conductivity were measured on most water samples collected. A total of 4,518 elemental determinations were involved. All field and analytical data were treated by statistics, and the computed parameters data were correlated with the geology of the area to establish anomalous zones. Four areas were delineated for possible uranium mineralization. Of the areas, the Mandaue river area is the most interesting for uranium. The contact zone between the diorite and the sedimentary rocks in this area appears to be a favorable geological environment for uranium mineralization. The other anomalous uranium values were found to be related with the guano and phosphate deposits. Uranium was also shown to be independent of the other seven elements in the geologic environment of Cebu. No definite elemental association could be established at present. This study also marks the thorough utilization of Q'GAS, Cadplot and Autocad, all microcomputer-based programs/systems, in the evaluation and interpretation of exploration-oriented geochemical and geological data, and with more significance in the sense that computer generated quality geochemical maps were produced, a first in the country. (Author). Appendices (23); 23 figs; 13 refs.; 4 tabs

  8. Reconnaissance geologic map of the northern Kawich and southern Reveille ranges, Nye County, Nevada

    International Nuclear Information System (INIS)

    Gardner, J.N.; Eddy, A.C.; Goff, F.E.; Grafft, K.S.

    1980-06-01

    A geological survey was performed in Nye County, Nevada. Results of that survey are summarized in the maps included. The general geology of the area is discussed. Major structures are described. The economics resulting from the mineral exploitation in the area are discussed. The hydrogeology and water chemistry of the area are also discussed

  9. Reconnaissance geologic map of the northern Kawich and southern Reveille ranges, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, J.N.; Eddy, A.C.; Goff, F.E.; Grafft, K.S.

    1980-06-01

    A geological survey was performed in Nye County, Nevada. Results of that survey are summarized in the maps included. The general geology of the area is discussed. Major structures are described. The economics resulting from the mineral exploitation in the area are discussed. The hydrogeology and water chemistry of the area are also discussed.

  10. Evaluation of electrical resistivity anisotropy in geological mapping ...

    African Journals Online (AJOL)

    user

    Key words: Electrical resistivity anisotropy, radial vertical electrical sounding, anisotropy polygons. INTRODUCTION ... electrical resistivity survey in the geological interpretation ... resistivity and other electrical or electromagnetic based.

  11. Selected data for hydrothermal-convection systems in the United States with estimated temperatures greater than or equal to 90/sup 0/C: back-up data for US Geological Survey Circular 790

    Energy Technology Data Exchange (ETDEWEB)

    Mariner, R.H.; Brook, C.A.; Swanson, J.R.; Mabey, D.R.

    1978-12-01

    A compilation of data used in determining the accessible resource base for identified hydrothermal convection systems greater than or equal to 90/sup 0/C in the United States are presented. Geographic, geologic, chemical, isotopic, volumetric, and bibliographic data and calculated thermal energy contents are listed for all vapor-dominated and hot-water systems with estimated reservoir temperatures greater than or equal to 90/sup 0/C and reservoir depths less than 3 km known to the authors in mid 1978. Data presented here is stored in the US Geological Survey's geothermal computer file GEOTHERM. Data for individual hydrothermal convection systems in each state are arranged geographically from north to south and west to east without regard to the type or temperature of the system. Locations of the systems and corresponding reference numbers are shown on map 1 accompanying US Geological Survey Circular 790.

  12. Estimation of geological formation thermal conductivity by using stochastic approximation method based on well-log temperature data

    International Nuclear Information System (INIS)

    Cheng, Wen-Long; Huang, Yong-Hua; Liu, Na; Ma, Ran

    2012-01-01

    Thermal conductivity is a key parameter for evaluating wellbore heat losses which plays an important role in determining the efficiency of steam injection processes. In this study, an unsteady formation heat-transfer model was established and a cost-effective in situ method by using stochastic approximation method based on well-log temperature data was presented. The proposed method was able to estimate the thermal conductivity and the volumetric heat capacity of geological formation simultaneously under the in situ conditions. The feasibility of the present method was assessed by a sample test, the results of which shown that the thermal conductivity and the volumetric heat capacity could be obtained with the relative errors of −0.21% and −0.32%, respectively. In addition, three field tests were conducted based on the easily obtainable well-log temperature data from the steam injection wells. It was found that the relative errors of thermal conductivity for the three field tests were within ±0.6%, demonstrating the excellent performance of the proposed method for calculating thermal conductivity. The relative errors of volumetric heat capacity ranged from −6.1% to −14.2% for the three field tests. Sensitivity analysis indicated that this was due to the low correlation between the volumetric heat capacity and the wellbore temperature, which was used to generate the judgment criterion. -- Highlights: ► A cost-effective in situ method for estimating thermal properties of formation was presented. ► Thermal conductivity and volumetric heat capacity can be estimated simultaneously by the proposed method. ► The relative error of thermal conductivity estimated was within ±0.6%. ► Sensitivity analysis was conducted to study the estimated results of thermal properties.

  13. MAJOR SOURCE OF SIDE-LOOKING AIRBORNE RADAR IMAGERY FOR RESEARCH AND EXPLORATION: THE U. S. GEOLOGICAL SURVEY.

    Science.gov (United States)

    Kover, Allan N.; Jones, John Edwin; ,

    1985-01-01

    The US Geological Survey (USGS) instituted a program in 1980 to acquire side-looking airbore radar (SLAR) data and make these data readily available to the public in a mosaic format comparable to the USGS 1:250,000-scale topographic map series. The SLAR data are also available as strip images at an acquisition scale of 1:250,000 or 1:400,000 (depending on the acquisition system), as a variety of print products and indexes, and in a limited amount in digital form on computer compatible tapes. Three different commercial X-band (3-cm) systems were used to acquire the imagery for producing the mosaics.

  14. OneGeology- A Global Geoscience Data Platform

    Science.gov (United States)

    Harrison, M.; Komac, M.; Duffy, T.; Robida, F.; Allison, M. L.

    2014-12-01

    OneGeology (1G) is an initiative of Geological Survey Organisations (GSOs) around the globe that dates back to 2007. Since then, OneGeology has been a leader in developing geological online map data using GeoSciML- an international interoperability standard for the exchange of geological data. Increased use of this new standard allows geological data to be shared and integrated across the planet among organisations. One of the goals of OneGeology is an exchange of know-how with the developing world, shortening the digital learning curve. In autumn 2013 OneGeology was transformed into a Consortium with a clearly defined governance structure, making it more transparent, its operation more sustainable and its membership more open where in addition to GSOs, other types of organisations that create and use geoscience data can join and contribute. The next stage of the OneGeology initiative is focused on increasing the openness and richness of that data from individual countries to create a multi-thematic global geological data resource about the rocks beneath our feet. Authoritative geoscience information will help to mitigate natural disasters, explore for resources (water, minerals and energy) and identify risks to human health on a planetary scale with the aim of 1G to increase awareness of the geosciences and their relevance among professionals and general public- to be part of the solution. We live in a digital world that enables prompt access to vast amounts of open access data. Understanding our world, the geology beneath our feet and environmental challenges related to geology calls for accessibility of geoscience data and the OneGeology Portal (portal.onegeology.org) is the place to find them.

  15. Evaluation of radar imagery for geological and cartographic applications

    Science.gov (United States)

    Moore, Gerald K.; Sheehan, Cynthia A.

    1981-01-01

    The House/Senate conference report on H.R. 4930 (96th Congress), the Department of the Interior and Related Agencies Appropriations bill, 1980, stated that the U.S. Geological Survey should "begin the use of side-looking airborne radar imagery for topographic and geological mapping, and geological resource surveys in promising areas, particularly Alaska." In response to this mandate, the Survey acquired radar data and began scientific studies to analyze and interpret these data. About 70 percent of the project funding was used to acquire radar imagery and to evaluate Alaskan applications. Results of these studies indicate that radar images have a unique incremental value for certain geologic and cartographic applications but that the images are best suited for use as supplemental information sources or as primary data sources in areas of persistent cloud cover.The value of radar data is greatest for geologic mapping and resource surveys, particularly for mineral and petroleum exploration, where the objective is to locate any single feature or group of features that may control the occurrences of these resources. Radar images are considered by oil and gas companies to be worth the cost of data acquisition within a limited area of active exploration.Radar images also have incremental value for geologic site studies and hazard mapping. The need in these cases is TO inventory all geologic hazards to human life, property, resources, and the environment. For other geologic applications, radar images have a relatively small incremental value over a combination of Landsat images and aerial photographs.The value of radar images for cartographic applications is minimal, except when they are used as a substitute for aerial photographs and topographic maps in persistently cloud-covered areas. If conventional data sources are not available, radar images provide useful information on terrain relief, landforms, drainage patterns, and land cover. Screen less lithography is a low

  16. Rockfall risk evaluation using geotechnical survey, remote sensing data, and GIS: a case study from western Greece

    Science.gov (United States)

    Nikolakopoulos, Konstantinos; Depountis, Nikolaos; Vagenas, Nikolaos; Kavoura, Katerina; Vlaxaki, Eleni; Kelasidis, George; Sabatakakis, Nikolaos

    2015-06-01

    In this paper a specific example of the synergistic use of geotechnical survey, remote sensing data and GIS for rockfall risk evaluation is presented. The study area is located in Western Greece. Extensive rockfalls have been recorded along Patras - Ioannina highway just after the cable-stayed bridge of Rio-Antirrio, at Klokova site. The rockfalls include medium- sized limestone boulders with volume up to 1.5m3. A detailed engineering geological survey was conducted including rockmass characterization, laboratory testing and geological - geotechnical mapping. Many Rockfall trajectory simulations were done. Rockfall risk along the road was estimated using spatial analysis in a GIS environment.

  17. Geologic studies

    International Nuclear Information System (INIS)

    Wayland, T.E.; Rood, A.

    1983-01-01

    The modern Great Divide Basin is the end product of natural forces influenced by the Green River lake system, Laramide tectonism, and intermittent volcanic events. It ranks as one of the most complex structural and stratigtaphic features within the Tertiary basins of Wyoming. Portions of the Great Divide Basin and adjoining areas in Wyoming have been investigated by applying detailed and region exploration methods to known uranium deposits located within the Red Desert portions of the basin. Geologic field investigations conducted by Bendix Field Engineering Corporaton (Bendix) were restricted to reconnaissance observations made during infrequent visits to the project area by various Bendix personnel. Locations of the most comprehensive field activities are shown in Figure II-1. The principal source fo data for geologic studies of the Red Desert project area has been information and materials furnished by industry. Several hundred holes have been drilled by various groups to delineate the uranium deposits. Results from Bendix-drilled holes at selected locations within the project area are summarized in Table II-1. Additional details and gross subsurface characteristics are illustrated in cross sections; pertinent geologic features are illustrated in plan maps. Related details of continental sedimentation that pertain to the Wyoming Basins generally, and the project area specificially, are discussed in subsections of this Geologic Studies section

  18. Geological events in submerged areas: attributes and standards in the EMODnet Geology Project

    Science.gov (United States)

    Fiorentino, A.; Battaglini, L.; D'Angelo, S.

    2017-12-01

    EMODnet Geology is a European Project which promotes the collection and harmonization of marine geological data mapped by various national and regional mapping projects and recovered in the literature, in order to make them freely available through a web portal. Among the several features considered within the Project, "Geological events and probabilities" include submarine landslides, earthquakes, volcanic centers, tsunamis, fluid emissions and Quaternary faults in European Seas. Due to the different geological settings of European sea areas it was necessary to elaborate a comprehensive and detailed pattern of Attributes for the different features in order to represent the diverse characteristics of each occurrence. Datasets consist of shapefiles representing each event at 1:250,000 scale. The elaboration of guidelines to compile the shapefiles and attribute tables was aimed at identifying parameters that should be used to characterize events and any additional relevant information. Particular attention has been devoted to the definition of the Attribute table in order to achieve the best degree of harmonization and standardization according to the European INSPIRE Directive. One of the main objectives is the interoperability of data, in order to offer more complete, error-free and reliable information and to facilitate exchange and re-use of data even between non-homogeneous systems. Metadata and available information collected during the Project is displayed on the Portal (http://www.emodnet-geology.eu/) as polygons, lines and points layers according to their geometry. By combining all these data it might be possible to elaborate additional thematic maps which could support further research as well as land planning and management. A possible application is being experimented by the Geological Survey of Italy - ISPRA which, in cooperation with other Italian institutions contributing to EMODnet Geology, is working at the production of an update for submerged areas

  19. Aniakchak National Monument and Preserve: Geologic resources inventory report

    Science.gov (United States)

    Hults, Chad P.; Neal, Christina

    2015-01-01

    This GRI report is a companion document to previously completed GRI digital geologic map data. It was written for resource managers to support science-informed decision making. It may also be useful for interpretation. The report was prepared using available geologic information, and the NPS Geologic Resources Division conducted no new fieldwork in association with its preparation. Sections of the report discuss distinctive geologic features and processes within the park, highlight geologic issues facing resource managers, describe the geologic history leading to the present-day landscape, and provide information about the GRI geologic map data. A poster illustrates these data. The Map Unit Properties Table summarizes report content for each geologic map unit.

  20. The Geologic Story of the Uinta Mountains

    Science.gov (United States)

    Hansen, Wallace R.

    1969-01-01

    The opening of the West after the Civil War greatly stimulated early geologic exploration west of the 100th Meridian. One of the areas first studied, the Uinta Mountains region, gained wide attention as a result of the explorations of three Territorial Surveys, one headed by John Wesley Powell, one by Clarence King, and one by Ferdinand V. Hayden. Completion of the Union Pacific Railroad across southern Wyoming 100 years ago, in 1869, materially assisted geologic exploration, and the railheads at Green River and Rock Springs greatly simplified the outfitting of expeditions into the mountains. The overlap of the Powell, King, and Hayden surveys in the Uinta Mountains led to efforts that were less concerted than competitive and not without acrimony. Many parts of the area were seen by all three parties at almost the same time. Duplication was inevitable, of course, but all three surveys contributed vast quantities of new knowledge to the storehouse of geology, and many now-basic concepts arose from their observations. Powell's area of interest extended mainly southward from the Uinta Mountains to the Grand Canyon, including the boundless plateaus and canyons of southern Utah and northern Arizona. King's survey extended eastward from the High Sierra in California to Cheyenne, Wyoming, and encompassed a swath of country more than 100 miles wide. Hayden's explorations covered an immense region of mountains and basins from Yellowstone Park in Wyoming southeast throughout most of Colorado. Powell first entered the Uinta Mountains in the fall of 1868, having traveled north around the east end of the range from the White River country to Green River, Wyoming, then south over a circuitous route to Flaming Gorge and Browns Park, and finally back to the White River, where he spent the winter. In 1869, after reexamining much of the area visited the previous season, Powell embarked on his famous 'first boat trip' down the Green and Colorado Rivers. This trip was more exploratory

  1. Redesigning Curricula in Geology and Geophysics

    Science.gov (United States)

    Sparks, D. W.; Ewing, R. C.; Fowler, D.; Macik, M.; Marcantonio, F.; Miller, B.; Newman, J.; Olszewski, T.; Reece, R.; Rosser, S.

    2015-12-01

    In the summer of 2014, the Texas A&M Department of Geology and Geophysics partnered with the Texas A&M Center for Teaching Excellence to implement TAMU's curriculum revision process: a data-informed, faculty-driven, educational-developer-supported rebuilding of our degree programs and course offerings. The current curricula (B.S. and B.A. in Geology, B.S. in Geophysics) were put into place in 1997, following the merger of two separate departments. The needs and capabilities of the Department and the student body have changed significantly since that time: more than 50% turnover of the faculty, a rapidly-changing job climate for geologists and geophysicists, and a nearly five-fold increase in the undergraduate population to over 500 majors in Fall 2015. Surveys of former students, employers and faculty at other universities revealed more reasons to address the curriculum. Some of the most desired skills are also those at which our graduates feel and are perceived to be least prepared: oral communication and the ability to learn software packages (skills that are most challenging to teach with growing class sizes). The challenge facing the Department is to accommodate growing student numbers while maintaining strength in traditional instructor-intensive activities such as microscopy and field mapping, and also improving our graduates' non-geological skills (e.g., communication, software use, teamwork, problem-solving) to insulate them from volatility in the current job market. We formed the Curriculum Study Group, consisting of faculty, graduate students, advisors and curriculum experts, to gather and analyze data and define the knowledge and skill base a graduate of our department must have. In addition to conducting external surveys, this group interviewed current students and faculty to determine the strengths and weaknesses of our program. We developed program learning goals that were further specified into over fifty criteria. For each criteria we defined

  2. USGS science in Menlo Park -- a science strategy for the U.S. Geological Survey Menlo Park Science Center, 2005-2015

    Science.gov (United States)

    Brocher, Thomas M.; Carr, Michael D.; Halsing, David L.; John, David A.; Langenheim, V.E.; Mangan, Margaret T.; Marvin-DiPasquale, Mark C.; Takekawa, John Y.; Tiedeman, Claire

    2006-01-01

    In the spring of 2004, the U.S. Geological Survey (USGS) Menlo Park Center Council commissioned an interdisciplinary working group to develop a forward-looking science strategy for the USGS Menlo Park Science Center in California (hereafter also referred to as "the Center"). The Center has been the flagship research center for the USGS in the western United States for more than 50 years, and the Council recognizes that science priorities must be the primary consideration guiding critical decisions made about the future evolution of the Center. In developing this strategy, the working group consulted widely within the USGS and with external clients and collaborators, so that most stakeholders had an opportunity to influence the science goals and operational objectives.The Science Goals are to: Natural Hazards: Conduct natural-hazard research and assessments critical to effective mitigation planning, short-term forecasting, and event response. Ecosystem Change: Develop a predictive understanding of ecosystem change that advances ecosystem restoration and adaptive management. Natural Resources: Advance the understanding of natural resources in a geologic, hydrologic, economic, environmental, and global context. Modeling Earth System Processes: Increase and improve capabilities for quantitative simulation, prediction, and assessment of Earth system processes.The strategy presents seven key Operational Objectives with specific actions to achieve the scientific goals. These Operational Objectives are to:Provide a hub for technology, laboratories, and library services to support science in the Western Region. Increase advanced computing capabilities and promote sharing of these resources. Enhance the intellectual diversity, vibrancy, and capacity of the work force through improved recruitment and retention. Strengthen client and collaborative relationships in the community at an institutional level.Expand monitoring capability by increasing density, sensitivity, and

  3. Geomorphology in North American Geology Departments, 1971

    Science.gov (United States)

    White, Sidney E.; Malcolm, Marshall D.

    1972-01-01

    Presents results of a 1970-71 survey of 350 geomorphologists and geology departments to determine what sort of geomorphology is being taught in the colleges and universities of the United States and Canada. (PR)

  4. Niagara Falls Storage Site, Lewiston, New York: geologic report

    International Nuclear Information System (INIS)

    1984-06-01

    This report is one of a series of engineering and environmental reports planned for the US Department of Energy's properties at Niagara Falls, New York. It describes the essential geologic features of the Niagara Falls Storage Site. It is not intended to be a definitive statement of the engineering methods and designs required to obtain desired performance features for any permanent waste disposal at the site. Results are presented of a geological investigation that consisted of two phases. Phase 1 occurred during July 1982 and included geologic mapping, geophysical surveys, and a limited drilling program in the vicinity of the R-10 Dike, planned for interim storage of radioactive materials. Phase 2, initiated in December 1982, included excavation of test pits, geophysical surveys, drilling, observation well installation, and field permeability testing in the South Dike Area, the Northern Disposal Area, and the K-65 Tower Area

  5. Niagara Falls Storage Site, Lewiston, New York: geologic report

    Energy Technology Data Exchange (ETDEWEB)

    1984-06-01

    This report is one of a series of engineering and environmental reports planned for the US Department of Energy's properties at Niagara Falls, New York. It describes the essential geologic features of the Niagara Falls Storage Site. It is not intended to be a definitive statement of the engineering methods and designs required to obtain desired performance features for any permanent waste disposal at the site. Results are presented of a geological investigation that consisted of two phases. Phase 1 occurred during July 1982 and included geologic mapping, geophysical surveys, and a limited drilling program in the vicinity of the R-10 Dike, planned for interim storage of radioactive materials. Phase 2, initiated in December 1982, included excavation of test pits, geophysical surveys, drilling, observation well installation, and field permeability testing in the South Dike Area, the Northern Disposal Area, and the K-65 Tower Area.

  6. Interpretation of aeromagnetic survey in Eurajoensalmi, Olkiluoto (2008)

    International Nuclear Information System (INIS)

    Oehman, I.; Ahokas, T.; Lahti, M.

    2009-06-01

    In 2001, Olkiluoto was selected as the site for the final disposal of spent nuclear waste in Finland. Current construction of the underground research facility, ONKALO, is occurring at the Olkiluoto site. During the past three decades, detailed geological and geophysical investigations have been carried out on Olkiluoto Island and in the Olkiluoto vicinity in order to define its bedrock properties and structures that affect the final nuclear waste disposal. In April 2008, a high resolution aeromagnetic survey was carried out in the Eurajoensalmi inlet in order to investigate the sea and coastal areas north and west of Eurajoensalmi. Measured parameter was total magnetic field. The main goal of the survey was to improve the magnetic image of Eurajoensalmi area, to locate the area's most significant magnetic features, and by magnetic modelling find the best geological explanations for them. Some preliminary lineament interpretations were also performed to compare the accuracy of location data between lineaments interpreted in earlier surveys versus the new 2008 data. Data acquired during earlier magnetic surveys was used as reference data. Interpretation was conducted using measured total magnetic field, derivatives computed from the total field and various visualisation techniques. Comparison of data from the 1988 aeromagnetic survey conducted by GTK and the 2008 survey proves that a more detailed survey configuration sharpens anomalies and increases reliability in the interpretation of subtle features. Positioning techniques have improved significantly since the 1980's, which improves positioning accuracy and increases consistency. It can be concluded that the 2008 data is significantly more detailed and brings interpretation to a new level. Four areas, including well known bedrock structures HZ21, which corresponds to brittle deformation zone OL-BFZ002, and Liikla and Selkaenummi shear zones, were modelled. Modelling was intentionally kept relatively simple using

  7. Conducting a large, multi-site survey about patients’ views on broad consent: challenges and solutions

    Directory of Open Access Journals (Sweden)

    Maureen E. Smith

    2016-11-01

    Full Text Available Abstract Background As biobanks play an increasing role in the genomic research that will lead to precision medicine, input from diverse and large populations of patients in a variety of health care settings will be important in order to successfully carry out such studies. One important topic is participants’ views towards consent and data sharing, especially since the 2011 Advanced Notice of Proposed Rulemaking (ANPRM, and subsequently the 2015 Notice of Proposed Rulemaking (NPRM were issued by the Department of Health and Human Services (HHS and Office of Science and Technology Policy (OSTP. These notices required that participants consent to research uses of their de-identified tissue samples and most clinical data, and allowing such consent be obtained in a one-time, open-ended or “broad” fashion. Conducting a survey across multiple sites provides clear advantages to either a single site survey or using a large online database, and is a potentially powerful way of understanding the views of diverse populations on this topic. Methods A workgroup of the Electronic Medical Records and Genomics (eMERGE Network, a national consortium of 9 sites (13 separate institutions, 11 clinical centers supported by the National Human Genome Research Institute (NHGRI that combines DNA biorepositories with electronic medical record (EMR systems for large-scale genetic research, conducted a survey to understand patients’ views on consent, sample and data sharing for future research, biobank governance, data protection, and return of research results. Results Working across 9 sites to design and conduct a national survey presented challenges in organization, meeting human subjects guidelines at each institution, and survey development and implementation. The challenges were met through a committee structure to address each aspect of the project with representatives from all sites. Each committee’s output was integrated into the overall survey plan. A

  8. Description of geological data in SKBs database GEOTAB

    International Nuclear Information System (INIS)

    Stark, T.

    1988-01-01

    Measurements for the characterization of geological, geophysical, hydrogeological and hydrochemical condition have been performed since 1977 in specific site investigation as well as for geoscientific projects. The database comprises four main groups of data volumes. These are: geological data, geophysical data, hydrogeological data, and hydrochemical data. In the database, background information from the investigations and results are stored on-line on the VAX 750, while raw data are either stored on-line or on magnetic tapes. This report deals with geological data and describes the dataflow from the measurements at the sites to the result tables in the database. All of the geological investigations were carried out by the Swedish Geological Survey, and since July 1982 by Swedish Geological Co, SGAB. The geological investigations have been divided into three categories, and each category is stored separately in the database. The are: surface factures, core mapping, and chemical analyses. At SGU/SGAB the geological data were stored on-line on-line on a PRIME 750 mini computer, on microcomputer floppy disks or in filed paper protocols. During 1987 the data files were transferred from SGAB to datafiles on the VAX computer. In the report the data flow of each of the three geological information categories are described separately. (L.E.)

  9. FY 1999 report on the survey of the overseas geological structure, etc. Japan-Indonesia joint Tanjung Enim coal exploration project; 1999 nendo kaigai chishitsu kozo nado chosa hokokusho. Nippon Indonesia sekitan kyodo tansa Tanjung Enim project

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    The paper summed up the FY 1999 results of the survey conducted based on the agreement on the Tanjung Enim IV coal exploration project which was concluded between NEDO and Indonesia's Ministry of Mining Energy. The survey was made for an area of approximately 40km{sup 2} which is a north block of the south Arahan region, Tanjung Enim, South Sumatra, Indonesia. To grasp the succession of strata/rock facies/geological structure and the state of existence of the coal seams to be drilled, surveys were conducted on ground surface and boreholes. A total of 10 holes was test-drilled, and all the boreholes were physically logged. As a result of the survey, each of A1, A2, B, C and E coal seams was confirmed as main seams. A1, A2 and B seams are low in ash and sulfur contents with heating values of approximately 4,800 kcal/kg, C seam is high in sulfur content, and E seam is high in heating value, 6,000 kcal/kg. As coal seams for open pit mining, existence of A, B and C seams is expected which lay in the shallow part from ground surface to sea level of 0m and in the range of depth of approximately 100m. The proved coal reserves of these coals were estimated at 189 million tons. (NEDO)

  10. Proposals of geological sites for L/ILW and HLW repositories. Geological background. Text volume

    International Nuclear Information System (INIS)

    2008-01-01

    On April 2008, the Swiss Federal Council approved the conceptual part of the Sectoral Plan for Deep Geological Repositories. The Plan sets out the details of the site selection procedure for geological repositories for low- and intermediate-level waste (L/ILW) and high-level waste (HLW). It specifies that selection of geological siting regions and sites for repositories in Switzerland will be conducted in three stages, the first one (the subject of this report) being the definition of geological siting regions within which the repository projects will be elaborated in more detail in the later stages of the Sectoral Plan. The geoscientific background is based on the one hand on an evaluation of the geological investigations previously carried out by Nagra on deep geological disposal of HLW and L/ILW in Switzerland (investigation programmes in the crystalline basement and Opalinus Clay in Northern Switzerland, investigations of L/ILW sites in the Alps, research in rock laboratories in crystalline rock and clay); on the other hand, new geoscientific studies have also been carried out in connection with the site selection process. Formulation of the siting proposals is conducted in five steps: A) In a first step, the waste inventory is allocated to the L/ILW and HLW repositories; B) The second step involves defining the barrier and safety concepts for the two repositories. With a view to evaluating the geological siting possibilities, quantitative and qualitative guidelines and requirements on the geology are derived on the basis of these concepts. These relate to the time period to be considered, the space requirements for the repository, the properties of the host rock (depth, thickness, lateral extent, hydraulic conductivity), long-term stability, reliability of geological findings and engineering suitability; C) In the third step, the large-scale geological-tectonic situation is assessed and large-scale areas that remain under consideration are defined. For the L

  11. U.S. Geological Survey Mentoring Program - Paired for a Powerful Science Future

    Science.gov (United States)

    Miller, K.F.; Clarke, S.D.

    2007-01-01

    The U.S. Geological Survey (USGS) prides itself in its excellence in science. The resource bank of skills and knowledge that is contained within the current employees of the USGS is what makes our science excellent. With an aging workforce, we must ensure that the knowledge and skills represented by those years of experience are passed to new employees. To ensure that this bank of knowledge and experience is not lost and thereby sustain the excellence of our science, the Mentoring Program focuses on intentional mentoring, the deliberate transfer of skills and knowledge. Skills transfer from more experienced employees to those who are less experienced is critical. By placing an emphasis on intentional mentoring, we help to meet the scientific and technical needs of the employees by offering a cost-effective way to gain knowledge and skills necessary to maintain excellence in science. By encouraging and fostering a mentoring atmosphere within the USGS, we are investing in the future of our organization. With improved technical skills, increased job effectiveness, and resulting satisfaction, USGS employees will not only be more invested and engaged, they will also be able to work smarter, thus benefiting from the experience of their mentor.

  12. Heat conduction through geological mattresses from cells storing mean activity and long life nuclear wastes

    International Nuclear Information System (INIS)

    Lajoie, D.; Raffourt, C.; Wendling, J.

    2010-01-01

    radiation to the external walls of the cell. The main part of the heat retrieved by the injected air is transported up to the end of the cell where it is evacuated through the global ventilation system. The other part is lost by forced convection to concrete walls that are initially colder. The heat transfer towards external walls is a long term phenomenon. Surrounding concrete walls and geological medium store heat that is progressively transferred outside by conduction. Consequently, temperature at the concrete wall of the cells progressively increases while heat losses toward surrounding geological environment decrease. But, in the mean time, the heat release from storage packages slowly decreases. As a result, temperature the cell begins to raise in the first months of storage reaches a peak value and then decreases progressively as long as the heat release decreases. It is shown that the maximum of temperature is reached after one year of full storage in the cell. Heat fluxes through the geological medium are not spatially homogeneous, due to stratification effects in the cell. This drives to thermal gradients in concrete walls and surrounding geological medium. But, magnitudes of gradients are much lower than those simulated with adiabatic hypothesis. The external environment, that is thermally very inert, acts as a regulator that smoothes vertical thermal stratifications. Such results show interactions between stratified fluid flows and heat conduction through surrounding media. (authors)

  13. Study on the development of geological environmental model

    International Nuclear Information System (INIS)

    Tsujimoto, Keiichi; Shinohara, Yoshinori; Ueta, Shinzo; Saito, Shigeyuki; Kawamura, Yuji; Tomiyama, Shingo; Ohashi, Toyo

    2002-03-01

    The safety performance assessment was carried out in potential geological environment in the conventional research and development of geological disposal, but the importance of safety assessment based on the repository design and scenario considering the concrete geological environment will increase in the future. The research considering the link of the major three fields of geological disposal, investigation of geological environment, repository design, and safety performance assessment, is the contemporary worldwide research theme. Hence it is important to organize information flow that contains the series of information process form the data production to analysis in the three fields, and to systemize the knowledge base that unifies the information flow hierarchically. The purpose of the research is to support the development of the unified analysis system for geological disposal. The development technology for geological environmental model studied for the second progress report by JNC are organized and examined for the purpose of developing database system with considering the suitability for the deep underground research facility. The geological environmental investigation technology and building methodology for geological structure and hydro geological structure models are organized and systemized. Furthermore, the quality assurance methods in building geological environment models are examined. Information which is used and stored in the unified analysis system are examined to design database structure of the system based on the organized methodology for building geological environmental model. The graphic processing function for data stored in the unified database are examined. furthermore, future research subjects for the development of detail models for geological disposal are surveyed to organize safety performance system. (author)

  14. Geochemical Analyses of Geologic Materials from Areas of Critical Environmental Concern, Clark and Nye Counties, Nevada

    Science.gov (United States)

    Ludington, Steve; Castor, Stephen B.; Budahn, James R.; Flynn, Kathryn S.

    2005-01-01

    INTRODUCTION An assessment of known and undiscovered mineral resources of selected areas administered by the Bureau of Land Management (BLM) in Clark and Nye Counties, Nevada was conducted by the U.S. Geological Survey (USGS), Nevada Bureau of Mines and Geology (NBMG), and University of Nevada, Las Vegas (UNLV). The purpose of this work was to provide the BLM with information for use in their long-term planning process in southern Nevada so that they can make better-informed decisions. The results of the assessment are in Ludington (2006). Existing information about the areas, including geology, geophysics, geochemistry, and mineral-deposit information was compiled, and field examinations of selected areas and mineral occurrences was conducted. This information was used to determine the geologic setting, metallogenic characteristics, and mineral potential of the areas. Twenty-five Areas of Critical Environmental Concern (ACECs) were identified by BLM as the object of this study. They range from tiny (less than one km2) to large (more than 1,000 km2). The location of the study areas is shown on Figure 1. This report includes geochemical data for rock samples collected by staff of the USGS and NBMG in these ACECs and nearby areas. Samples have been analyzed from the Big Dune, Ash Meadows, Arden, Desert Tortoise Conservation Center, Coyote Springs Valley, Mormon Mesa, Virgin Mountains, Gold Butte A and B, Whitney Pockets, Rainbow Gardens, River Mountains, and Piute-Eldorado Valley ACECs.

  15. Assessment of undiscovered conventional oil and gas resources of six geologic provinces of China

    Science.gov (United States)

    Charpentier, Ronald R.; Schenk, Christopher J.; Brownfield, Michael E.; Cook, Troy A.; Klett, Timothy R.; Pitman, Janet K.; Pollastro, Richard M.

    2012-01-01

    Using a geology-based assessment methodology, the U.S. Geological Survey estimated mean volumes of undiscovered conventional petroleum resources in six geologic provinces of China at 14.9 billion barrels of oil, 87.6 trillion cubic feet of natural gas, and 1.4 billion barrels of natural-gas liquids.

  16. Geologic Interpretation of Data Sets Collected by Planetary Analog Geology Traverses and by Standard Geologic Field Mapping. Part 1; A Comparison Study

    Science.gov (United States)

    Eppler, Dean B.; Bleacher, Jacob F.; Evans, Cynthia A.; Feng, Wanda; Gruener, John; Hurwitz, Debra M.; Skinner, J. A., Jr.; Whitson, Peggy; Janoiko, Barbara

    2013-01-01

    Geologic maps integrate the distributions, contacts, and compositions of rock and sediment bodies as a means to interpret local to regional formative histories. Applying terrestrial mapping techniques to other planets is challenging because data is collected primarily by orbiting instruments, with infrequent, spatiallylimited in situ human and robotic exploration. Although geologic maps developed using remote data sets and limited "Apollo-style" field access likely contain inaccuracies, the magnitude, type, and occurrence of these are only marginally understood. This project evaluates the interpretative and cartographic accuracy of both field- and remote-based mapping approaches by comparing two 1:24,000 scale geologic maps of the San Francisco Volcanic Field (SFVF), north-central Arizona. The first map is based on traditional field mapping techniques, while the second is based on remote data sets, augmented with limited field observations collected during NASA Desert Research & Technology Studies (RATS) 2010 exercises. The RATS mission used Apollo-style methods not only for pre-mission traverse planning but also to conduct geologic sampling as part of science operation tests. Cross-comparison demonstrates that the Apollo-style map identifies many of the same rock units and determines a similar broad history as the field-based map. However, field mapping techniques allow markedly improved discrimination of map units, particularly unconsolidated surficial deposits, and recognize a more complex eruptive history than was possible using Apollo-style data. Further, the distribution of unconsolidated surface units was more obvious in the remote sensing data to the field team after conducting the fieldwork. The study raises questions about the most effective approach to balancing mission costs with the rate of knowledge capture, suggesting that there is an inflection point in the "knowledge capture curve" beyond which additional resource investment yields progressively

  17. Hypogeal geological survey in the "Grotta del Re Tiberio" natural cave (Apennines, Italy): a valid tool for reconstructing the structural setting

    Science.gov (United States)

    Ghiselli, Alice; Merazzi, Marzio; Strini, Andrea; Margutti, Roberto; Mercuriali, Michele

    2011-06-01

    As karst systems are natural windows to the underground, speleology, combined with geological surveys, can be useful tools for helping understand the geological evolution of karst areas. In order to enhance the reconstruction of the structural setting in a gypsum karst area (Vena del Gesso, Romagna Apennines), a detailed analysis has been carried out on hypogeal data. Structural features (faults, fractures, tectonic foliations, bedding) have been mapped in the "Grotta del Re Tiberio" cave, in the nearby gypsum quarry tunnels and open pit benches. Five fracture systems and six fault systems have been identified. The fault systems have been further analyzed through stereographic projections and geometric-kinematic evaluations in order to reconstruct the relative chronology of these structures. This analysis led to the detection of two deformation phases. The results permitted linking of the hypogeal data with the surface data both at a local and regional scale. At the local scale, fracture data collected in the underground have been compared with previous authors' surface data coming from the quarry area. The two data sets show a very good correspondence, as every underground fracture system matches with one of the surface fracture system. Moreover, in the cave, a larger number of fractures belonging to each system could be mapped. At the regional scale, the two deformation phases detected can be integrated in the structural setting of the study area, thereby enhancing the tectonic interpretation of the area ( e.g., structures belonging to a new deformation phase, not reported before, have been identified underground). The structural detailed hypogeal survey has, thus, provided very useful data, both by integrating the existing information and revealing new data not detected at the surface. In particular, some small structures ( e.g., displacement markers and short fractures) are better preserved in the hypogeal environment than on the surface where the outcropping

  18. Geology along topographic profile for near-surface test facility

    International Nuclear Information System (INIS)

    Fecht, K.R.

    1978-01-01

    The U.S. Department of Energy, through the Basalt Waste Isolation Program within Rockwell Hanford Operations, is investigating the feasibility of terminal storage of radioactive waste in deep caverns constructed in the Columbia River Basalt. A portion of the geological work conducted in support of the Engineering Design Unit to evaluate the west end of Gable Mountain as a site for in situ testing of the thermomechanical behavior of basalt is reported. The surficial geology of the west end of Gable Mountain was mapped in a reconnaissance fashion at a scale of 1:62,500 to identify geologic features which could affect siting of the proposed facilities. A detailed study of the geological conditions was conducted along a traverse across the most probable site for the proposed project

  19. U.S. Geological Survey geohydrologic studies and monitoring at the Idaho National Laboratory, southeastern Idaho

    Science.gov (United States)

    Bartholomay, Roy C.

    2017-09-14

    BackgroundThe U.S. Geological Survey (USGS) geohydrologic studies and monitoring at the Idaho National Laboratory (INL) is an ongoing, long-term program. This program, which began in 1949, includes hydrologic monitoring networks and investigative studies that describe the effects of waste disposal on water contained in the eastern Snake River Plain (ESRP) aquifer and the availability of water for long-term consumptive and industrial use. Interpretive reports documenting study findings are available to the U.S. Department of Energy (DOE) and its contractors; other Federal, State, and local agencies; private firms; and the public at https://id.water.usgs.gov/INL/Pubs/index.html. Information contained within these reports is crucial to the management and use of the aquifer by the INL and the State of Idaho. USGS geohydrologic studies and monitoring are done in cooperation with the DOE Idaho Operations Office.

  20. U.S. Geological Survey Energy and Minerals science strategy: a resource lifecycle approach

    Science.gov (United States)

    Ferrero, Richard C.; Kolak, Jonathan J.; Bills, Donald J.; Bowen, Zachary H.; Cordier, Daniel J.; Gallegos, Tanya J.; Hein, James R.; Kelley, Karen D.; Nelson, Philip H.; Nuccio, Vito F.; Schmidt, Jeanine M.; Seal, Robert R.

    2013-01-01

    The economy, national security, and standard of living of the United States depend heavily on adequate and reliable supplies of energy and mineral resources. Based on population and consumption trends, the Nation’s use of energy and minerals can be expected to grow, driving the demand for ever broader scientific understanding of resource formation, location, and availability. In addition, the increasing importance of environmental stewardship, human health, and sustainable growth places further emphasis on energy and mineral resources research and understanding. Collectively, these trends in resource demand and the interconnectedness among resources will lead to new challenges and, in turn, require cutting- edge science for the next generation of societal decisions. The long and continuing history of U.S. Geological Survey contributions to energy and mineral resources science provide a solid foundation of core capabilities upon which new research directions can grow. This science strategy provides a framework for the coming decade that capitalizes on the growth of core capabilities and leverages their application toward new or emerging challenges in energy and mineral resources research, as reflected in five interrelated goals.

  1. Geology of the Birmingham, Gadsden, and Montgomery 10 x 20 NTMS Quadrangles, Alabama

    International Nuclear Information System (INIS)

    Copeland, C.W.; Beg, M.A.

    1979-04-01

    This document is a facsimile edition (with accompanying maps) of geologic reports on the Birmingham, Gadsden, and Montgomery 1 0 x 2 0 NTMS quadrangles prepared for SRL by the Geological Survey of Alabama. The purpose of these reports is to provide background geologic information to aid in the interpretation of NURE geochemical reconnaissance data. Each report includes descriptions of economic mineral localities as well as a mineral locality map and a geologic map

  2. Geology of the Birmingham, Gadsden, and Montgomery 10 x 20 NTMS quadrangles, Alabama

    International Nuclear Information System (INIS)

    Copeland, C.W.; Beg, M.A.

    1979-04-01

    This document is a facsimile edition (with accompanying maps) of geologic reports on the Birmingham, Gadsden, and Montgomery 1 0 x 2 0 NTMS quadrangles prepared for SRL by the Geological Survey of Alabama. Purpose of these reports is to provide background geologic information to aid in the interpretation of NURE geochemical reconnaissance data. Each report includes descriptions of economic mineral localities as well as a mineral locality map and a geologic map

  3. A geological and geophysical data collection system

    Digital Repository Service at National Institute of Oceanography (India)

    Sudhakar, T.; Afzulpurkar, S.

    A geological and geophysical data collection system using a Personal Computer is described below. The system stores data obtained from various survey systems typically installed in a charter vessel and can be used for similar applications on any...

  4. Environmental conditions in the Namskaket Marsh Area, Orleans, Massachusetts: A summary of studies by the U.S. Geological Survey, 1989–2011

    Science.gov (United States)

    Weiskel, Peter K.; Barbaro, Jeffrey R.; DeSimone, Leslie A.

    2016-09-23

    Namskaket Marsh and its tidal creek system are potential receptors for a treated wastewater plume originating from a septage treatment facility in the northwest part of Orleans, Massachusetts, on Cape Cod. From 1989 to 2011, the U.S. Geological Survey, in cooperation with State and local partners, conducted a series of studies in the Namskaket Marsh area to characterize the potential effects of the plume on the marsh and its tidal creek system. Studies included characterizing the baseline vegetation and salinity distribution in the marsh, monitoring the movement of the wastewater plume downgradient of the septage treatment facility, and sampling nutrient concentrations in the tidal creek system during a baseline period prior to the arrival of the plume at the marsh boundary. The Inner Namskaket Marsh baseline vegetation survey in 1995 found it to be dominated by Phragmites australis (common reed, 44 percent of vegetative cover), Spartina patens (salt marsh hay, 17 percent), and Spartina alterniflora (cordgrass, 9 percent). Phragmites occurrence was correlated with shallow pore-water salinity in the marsh peat and was largely confined to areas with salinities less than 4 parts per thousand. Baseline, ebb-tide nutrient concentrations at the tidal creek sampling stations during 1994–96 showed strong seasonal variations for ammonium, likely associated with the seasonal cycle of growth and senescence for the dominant salt marsh grasses (S. alterniflora and S. patens). The seasonal cycle for nitrate was generally less pronounced.

  5. Book review: 'Four Decades of Marine Geosciences in India - A Retrospect, National Seminar organised in connection with 150 th year celebration of Geological Survey of India. Mangalore 14-16, March 2001'

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, V.P

    , Geological Survey of India, 27 Jawaharlal Nehru Road, Kolkata - 700 016. 325p, Price INR: 575/-, US$: 32/-, UK?: 20/- Marine Geology is a relatively young branch of Geology. It was initiated in India at the Andhra University, Waltair in the late 40's... group at NIO, Goa. Further, it is not out of place to mention the names of Professors C. Mahadevan, M. Poornachandra Rao and M. Subba Rao from Andhra University, and Shri R.R. Nair and Dr. M.G.A.P. Setty from NIO, Dr. V.V. Sastry from Oil and Natural Gas...

  6. Improvement of analytical capabilities of neutron activation analysis laboratory at the Colombian Geological Survey

    Science.gov (United States)

    Parrado, G.; Cañón, Y.; Peña, M.; Sierra, O.; Porras, A.; Alonso, D.; Herrera, D. C.; Orozco, J.

    2016-07-01

    The Neutron Activation Analysis (NAA) laboratory at the Colombian Geological Survey has developed a technique for multi-elemental analysis of soil and plant matrices, based on Instrumental Neutron Activation Analysis (INAA) using the comparator method. In order to evaluate the analytical capabilities of the technique, the laboratory has been participating in inter-comparison tests organized by Wepal (Wageningen Evaluating Programs for Analytical Laboratories). In this work, the experimental procedure and results for the multi-elemental analysis of four soil and four plant samples during participation in the first round on 2015 of Wepal proficiency test are presented. Only elements with radioactive isotopes with medium and long half-lives have been evaluated, 15 elements for soils (As, Ce, Co, Cr, Cs, Fe, K, La, Na, Rb, Sb, Sc, Th, U and Zn) and 7 elements for plants (Br, Co, Cr, Fe, K, Na and Zn). The performance assessment by Wepal based on Z-score distributions showed that most results obtained |Z-scores| ≤ 3.

  7. Improvement of analytical capabilities of neutron activation analysis laboratory at the Colombian Geological Survey

    Energy Technology Data Exchange (ETDEWEB)

    Parrado, G., E-mail: gparrado@sgc.gov.co; Cañón, Y.; Peña, M., E-mail: mlpena@sgc.gov.co; Sierra, O., E-mail: osierra@sgc.gov.co; Porras, A.; Alonso, D.; Herrera, D. C., E-mail: dherrera@sgc.gov.co; Orozco, J. [Colombian Geological Survey, Nuclear Affairs Technical Division, Neutron Activation Analysis Laboratory, Bogota D. C. (Colombia)

    2016-07-07

    The Neutron Activation Analysis (NAA) laboratory at the Colombian Geological Survey has developed a technique for multi-elemental analysis of soil and plant matrices, based on Instrumental Neutron Activation Analysis (INAA) using the comparator method. In order to evaluate the analytical capabilities of the technique, the laboratory has been participating in inter-comparison tests organized by Wepal (Wageningen Evaluating Programs for Analytical Laboratories). In this work, the experimental procedure and results for the multi-elemental analysis of four soil and four plant samples during participation in the first round on 2015 of Wepal proficiency test are presented. Only elements with radioactive isotopes with medium and long half-lives have been evaluated, 15 elements for soils (As, Ce, Co, Cr, Cs, Fe, K, La, Na, Rb, Sb, Sc, Th, U and Zn) and 7 elements for plants (Br, Co, Cr, Fe, K, Na and Zn). The performance assessment by Wepal based on Z-score distributions showed that most results obtained |Z-scores| ≤ 3.

  8. Geologic mapping procedure: Final draft

    International Nuclear Information System (INIS)

    1987-09-01

    Geologic mapping will provide a baseline record of the subsurface geology in the shafts and drifts of the Exploratory Shaft Facility (ESF). This information will be essential in confirming the specific repository horizon, selecting representative locations for the in situ tests, providing information for construction and decommissioning seal designs, documenting the excavation effects, and in providing information for performance assessment, which relates to the ultimate suitability of the site as a nuclear waste repository. Geologic mapping will be undertaken on the walls and roof, and locally on the floor within the completed At-Depth Facility (ADF) and on the walls of the two access shafts. Periodic mapping of the exposed face may be conducted during construction of the ADF. The mapping will be oriented toward the collection and presentation of geologic information in an engineering format and the portrayal of detailed stratigraphic information which may be useful in confirmation of drillhole data collected as part of the surface-based testing program. Geologic mapping can be considered as a predictive tool as well as a means of checking design assumptions. This document provides a description of the required procedures for geologic mapping for the ESF. Included in this procedure is information that qualified technical personnel can use to collect the required types of geologic descriptions, at the appropriate level of detail. 5 refs., 3 figs., 1 tab

  9. GIS surface effects archive of underground nuclear detonations conducted at Yucca Flat and Pahute Mesa, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    Grasso, D.N.

    2001-01-01

    This report presents a new comprehensive, digital archive of more than 40 years of geologic surface effects maps produced at individual detonation sites throughout the Yucca Flat and Pahute Mesa nuclear testing areas of the Nevada Test Site, Nye County, Nevada. The Geographic Information System (GIS) surface effects map archive on CD-ROM (this report) comprehensively documents the surface effects of underground nuclear detonations conducted at two of the most extensively used testing areas of the Nevada Test Site. Between 1951 and 1992, numerous investigators of the U.S. Geological Survey, the Los Alamos National Laboratory, the Lawrence Livermore National Laboratory, and the Defense Threat Reduction Agency meticulously mapped the surface effects caused by underground nuclear testing. Their work documented the effects of more than seventy percent of the underground nuclear detonations conducted at Yucca Flat and all of the underground nuclear detonations conducted at Pahute Mesa

  10. Conducting a Withdrawal Survey.

    Science.gov (United States)

    Aldridge, Sue; Rowley, Jennifer

    2001-01-01

    A survey at Edge Hill College of Higher Education in Canada, designed to be part of the mechanism for monitoring and evaluating the quality of the student experience, revealed that key factors influencing withdrawal were: course not as expected, traveling difficulties, institution not as expected, domestic difficulties, and financial difficulties.…

  11. Statistical modeling of the long-range-dependent structure of barrier island framework geology and surface geomorphology

    Directory of Open Access Journals (Sweden)

    B. A. Weymer

    2018-06-01

    Full Text Available Shorelines exhibit long-range dependence (LRD and have been shown in some environments to be described in the wave number domain by a power-law characteristic of scale independence. Recent evidence suggests that the geomorphology of barrier islands can, however, exhibit scale dependence as a result of systematic variations in the underlying framework geology. The LRD of framework geology, which influences island geomorphology and its response to storms and sea level rise, has not been previously examined. Electromagnetic induction (EMI surveys conducted along Padre Island National Seashore (PAIS, Texas, United States, reveal that the EMI apparent conductivity (σa signal and, by inference, the framework geology exhibits LRD at scales of up to 101 to 102 km. Our study demonstrates the utility of describing EMI σa and lidar spatial series by a fractional autoregressive integrated moving average (ARIMA process that specifically models LRD. This method offers a robust and compact way of quantifying the geological variations along a barrier island shoreline using three statistical parameters (p, d, q. We discuss how ARIMA models that use a single parameter d provide a quantitative measure for determining free and forced barrier island evolutionary behavior across different scales. Statistical analyses at regional, intermediate, and local scales suggest that the geologic framework within an area of paleo-channels exhibits a first-order control on dune height. The exchange of sediment amongst nearshore, beach, and dune in areas outside this region are scale independent, implying that barrier islands like PAIS exhibit a combination of free and forced behaviors that affect the response of the island to sea level rise.

  12. Statistical modeling of the long-range-dependent structure of barrier island framework geology and surface geomorphology

    Science.gov (United States)

    Weymer, Bradley A.; Wernette, Phillipe; Everett, Mark E.; Houser, Chris

    2018-06-01

    Shorelines exhibit long-range dependence (LRD) and have been shown in some environments to be described in the wave number domain by a power-law characteristic of scale independence. Recent evidence suggests that the geomorphology of barrier islands can, however, exhibit scale dependence as a result of systematic variations in the underlying framework geology. The LRD of framework geology, which influences island geomorphology and its response to storms and sea level rise, has not been previously examined. Electromagnetic induction (EMI) surveys conducted along Padre Island National Seashore (PAIS), Texas, United States, reveal that the EMI apparent conductivity (σa) signal and, by inference, the framework geology exhibits LRD at scales of up to 101 to 102 km. Our study demonstrates the utility of describing EMI σa and lidar spatial series by a fractional autoregressive integrated moving average (ARIMA) process that specifically models LRD. This method offers a robust and compact way of quantifying the geological variations along a barrier island shoreline using three statistical parameters (p, d, q). We discuss how ARIMA models that use a single parameter d provide a quantitative measure for determining free and forced barrier island evolutionary behavior across different scales. Statistical analyses at regional, intermediate, and local scales suggest that the geologic framework within an area of paleo-channels exhibits a first-order control on dune height. The exchange of sediment amongst nearshore, beach, and dune in areas outside this region are scale independent, implying that barrier islands like PAIS exhibit a combination of free and forced behaviors that affect the response of the island to sea level rise.

  13. U.S. Geological Survey Ecosystems science strategy: advancing discovery and application through collaboration

    Science.gov (United States)

    Williams, Byron K.; Wingard, G. Lynn; Brewer, Gary; Cloern, James E.; Gelfenbaum, Guy; Jacobson, Robert B.; Kershner, Jeffrey L.; McGuire, Anthony David; Nichols, James D.; Shapiro, Carl D.; van Riper, Charles; White, Robin P.

    2013-01-01

    Ecosystem science is critical to making informed decisions about natural resources that can sustain our Nation’s economic and environmental well-being. Resource managers and policymakers are faced with countless decisions each year at local, regional, and national levels on issues as diverse as renewable and nonrenewable energy development, agriculture, forestry, water supply, and resource allocations at the urbanrural interface. The urgency for sound decisionmaking is increasing dramatically as the world is being transformed at an unprecedented pace and in uncertain directions. Environmental changes are associated with natural hazards, greenhouse gas emissions, and increasing demands for water, land, food, energy, mineral, and living resources. At risk is the Nation’s environmental capital, the goods and services provided by resilient ecosystems that are vital to the health and wellbeing of human societies. Ecosystem science—the study of systems of organisms interacting with their environment and the consequences of natural and human-induced change on these systems—is necessary to inform decisionmakers as they develop policies to adapt to these changes. This Ecosystems Science Strategy is built on a framework that includes basic and applied science. It highlights the critical roles that U.S. Geological Survey (USGS) scientists and partners can play in building scientific understanding and providing timely information to decisionmakers. The strategy underscores the connection between scientific discoveries and the application of new knowledge, and it integrates ecosystem science and decisionmaking, producing new scientific outcomes to assist resource managers and providing public benefits. We envision the USGS as a leader in integrating scientific information into decisionmaking processes that affect the Nation’s natural resources and human well-being. The USGS is uniquely positioned to play a pivotal role in ecosystem science. With its wide range of

  14. The Osservatorio Geofisico Sperimentale marine magnetic surveys in the Antarctic Seas

    Directory of Open Access Journals (Sweden)

    C. Zanolla

    1999-06-01

    Full Text Available About 40 000 km of marine magnetic and gradiometric data have been collected during eight geophysical surveys conducted since the Austral summer 1987/1988 in the circum-antarctic seas, by the research vessel OGS-Explora. For the most surveyed areas (Ross Sea, Southwestern Pacific Ocean, and Southern Scotia Sea, the analysis of the acquired data have contributed to clarify important aspects of their geological structure and tectonic evolution. The main scientific results, obtained combining other available geophysical data (multichannel seismic profiles and satellite-derived data, will be briefly illustrated.

  15. Magnetic surveys for locating abandoned wells

    Science.gov (United States)

    ,

    1995-01-01

    Abandoned and unrecorded wells may act as conduits for the contamination of groundwater supplies by oil field brines and other pollutants. The casings of abandoned wells eventually develop leaks, which, if not properly plugged, can allow pollutants to reach freshwater aquifers that supply drinking water. Sources of pollutants include brine ponds, landfill sites, agricultural activities, industrial activities, illegal disposal sites, or accidental spills. The problem is particularly acute in regions where there are old petroleum fields or where water wells have been extensively used for agricultural irrigation. Even urban areas can contain wells that were abandoned and concealed during development. Carefully designed ground magnetic or aeromagnetic surveys can be used to locate abandoned wells by mapping the magnetic disturbances or "anomalies" produced by their steel well casings. The U.S. Geological Survey (USGS) can, at the request of other Federal, State, or local agencies, conduct, process, and interpret such surveys, or it can aid in the design and monitoring of contracts for such surveys.

  16. Characterization of HPGe gamma spectrometric detectors systems for Instrumental Neutron Activation Analysis (INAA) at the Colombian Geological Survey

    Energy Technology Data Exchange (ETDEWEB)

    Sierra, O., E-mail: osierra@sgc.gov.co; Parrado, G., E-mail: gparrado@sgc.gov.co; Cañón, Y.; Porras, A.; Alonso, D.; Herrera, D. C.; Peña, M., E-mail: mlpena@sgc.gov.co; Orozco, J. [Colombian Geological Survey, Nuclear Affairs Technical Division, Neutron Activation Analysis Laboratory, Bogota D. C. (Colombia)

    2016-07-07

    This paper presents the progress made by the Neutron Activation Analysis (NAA) laboratory at the Colombian Geological Survey (SGC in its Spanish acronym), towards the characterization of its gamma spectrometric systems for Instrumental Neutron Activation Analysis (INAA), with the aim of introducing corrections to the measurements by variations in sample geometry. Characterization includes the empirical determination of the interaction point of gamma radiation inside the Germanium crystal, through the application of a linear model and the use of a fast Monte Carlo N-Particle (MCNP) software to estimate correction factors for differences in counting efficiency that arise from variations in sample density between samples and standards.

  17. Collections management plan for the U.S. Geological Survey Woods Hole Coastal and Marine Science Center Data Library

    Science.gov (United States)

    List, Kelleen M.; Buczkowski, Brian J.; McCarthy, Linda P.; Orton, Alice M.

    2015-08-17

    The U.S. Geological Survey Woods Hole Coastal and Marine Science Center has created a Data Library to organize, preserve, and make available the field, laboratory, and modeling data collected and processed by Woods Hole Coastal and Marine Science Center staff. This Data Library supports current research efforts by providing unique, historic datasets with accompanying metadata. The Woods Hole Coastal and Marine Science Center’s Data Library has custody of historic data and records that are still useful for research, and assists with preservation and distribution of marine science records and data in the course of scientific investigation and experimentation by researchers and staff at the science center.

  18. Functional requirements of computer systems for the U.S. Geological Survey, Water Resources Division, 1988-97

    Science.gov (United States)

    Hathaway, R.M.; McNellis, J.M.

    1989-01-01

    Investigating the occurrence, quantity, quality, distribution, and movement of the Nation 's water resources is the principal mission of the U.S. Geological Survey 's Water Resources Division. Reports of these investigations are published and available to the public. To accomplish this mission, the Division requires substantial computer technology to process, store, and analyze data from more than 57,000 hydrologic sites. The Division 's computer resources are organized through the Distributed Information System Program Office that manages the nationwide network of computers. The contract that provides the major computer components for the Water Resources Division 's Distributed information System expires in 1991. Five work groups were organized to collect the information needed to procure a new generation of computer systems for the U. S. Geological Survey, Water Resources Division. Each group was assigned a major Division activity and asked to describe its functional requirements of computer systems for the next decade. The work groups and major activities are: (1) hydrologic information; (2) hydrologic applications; (3) geographic information systems; (4) reports and electronic publishing; and (5) administrative. The work groups identified 42 functions and described their functional requirements for 1988, 1992, and 1997. A few new functions such as Decision Support Systems and Executive Information Systems, were identified, but most are the same as performed today. Although the number of functions will remain about the same, steady growth in the size, complexity, and frequency of many functions is predicted for the next decade. No compensating increase in the Division 's staff is anticipated during this period. To handle the increased workload and perform these functions, new approaches will be developed that use advanced computer technology. The advanced technology is required in a unified, tightly coupled system that will support all functions simultaneously

  19. Post-precipitation bias in band-tailed pigeon surveys conducted at mineral sites

    Science.gov (United States)

    Overton, C.T.; Schmitz, R.A.; Casazza, Michael L.

    2005-01-01

    Many animal surveys to estimate populations or index trends include protocol prohibiting counts during rain but fail to address effects of rainfall preceding the count. Prior research on Pacific Coast band-tailed pigeons (Patagioenas fasciata monilis) documented declines in use of mineral sites during rainfall. We hypothesized that prior precipitation was associated with a short-term increase in use of mineral sites following rain. We conducted weekly counts of band-tailed pigeons at 19 Pacific Northwest mineral sites in 2001 and 20 sites in 2002. Results from regression analysis indicated higher counts ???2 days after rain (11.31??5.00% [x????SE]) compared to ???3 days. Individual index counts conducted ???2 days after rain were biased high, resulting in reduced ability to accurately estimate population trends. Models of band-tailed pigeon visitation rates throughout the summer showed increased mineral-site counts during both June and August migration periods, relative to the July breeding period. Our research supported previous studies recommending that mineral-site counts used to index the band-tailed pigeon population be conducted during July. We further recommend conducting counts >3 days after rain to avoid weather-related bias in index estimation. The design of other population sampling strategies that rely on annual counts should consider the influence of aberrant weather not only coincident with but also preceding surveys if weather patterns are thought to influence behavior or detection probability of target species.

  20. The U.S. Geological Survey Monthly Water Balance Model Futures Portal

    Science.gov (United States)

    Bock, Andrew R.; Hay, Lauren E.; Markstrom, Steven L.; Emmerich, Christopher; Talbert, Marian

    2017-05-03

    The U.S. Geological Survey Monthly Water Balance Model Futures Portal (https://my.usgs.gov/mows/) is a user-friendly interface that summarizes monthly historical and simulated future conditions for seven hydrologic and meteorological variables (actual evapotranspiration, potential evapotranspiration, precipitation, runoff, snow water equivalent, atmospheric temperature, and streamflow) at locations across the conterminous United States (CONUS).The estimates of these hydrologic and meteorological variables were derived using a Monthly Water Balance Model (MWBM), a modular system that simulates monthly estimates of components of the hydrologic cycle using monthly precipitation and atmospheric temperature inputs. Precipitation and atmospheric temperature from 222 climate datasets spanning historical conditions (1952 through 2005) and simulated future conditions (2020 through 2099) were summarized for hydrographic features and used to drive the MWBM for the CONUS. The MWBM input and output variables were organized into an open-access database. An Open Geospatial Consortium, Inc., Web Feature Service allows the querying and identification of hydrographic features across the CONUS. To connect the Web Feature Service to the open-access database, a user interface—the Monthly Water Balance Model Futures Portal—was developed to allow the dynamic generation of summary files and plots  based on plot type, geographic location, specific climate datasets, period of record, MWBM variable, and other options. Both the plots and the data files are made available to the user for download 

  1. Study of hydrogeological and engineering-geological conditions of deposits

    International Nuclear Information System (INIS)

    1985-01-01

    Methods for hydrogeological and engineering-geological studies are considered as a part of the complex works dUring eXploration of hydrogenic uranium deposits to develop them by Underground ieaching (UL). Problems are enumerated and peculiarities Of hydrogeologic and engipeering-geological works at different stages are outlined (prospeccing - evaluating works, preliminary and detailed survey). Attention is paid to boring and equipment for hydrogeological and engineering - geological boreholes. Testing-filtering works are described, the latter includes: evacuations, fulnesses ( forcings), and tests of fulness-evacuation. The problem on steady-state observations in boreholes and laboratory studies of rocks and underground waters is discussed. Geological and geophysical methods for evaluation of rock and ore filtering properties are presented. Necessity of hydrogeological zonation of deposits as applied to UL is marked

  2. Geological Effects on Lightning Strike Distributions

    KAUST Repository

    Berdahl, J. Scott

    2016-05-16

    Recent advances in lightning detection networks allow for detailed mapping of lightning flash locations. Longstanding rumors of geological influence on cloud-to-ground (CG) lightning distribution and recent commercial claims based on such influence can now be tested empirically. If present, such influence could represent a new, cheap and efficient geophysical tool with applications in mineral, hydrothermal and oil exploration, regional geological mapping, and infrastructure planning. This project applies statistical analysis to lightning data collected by the United States National Lightning Detection Network from 2006 through 2015 in order to assess whether the huge range in electrical conductivities of geological materials plays a role in the spatial distribution of CG lightning. CG flash densities are mapped for twelve areas in the contiguous United States and compared to elevation and geology, as well as to the locations of faults, railroads and tall towers including wind turbines. Overall spatial randomness is assessed, along with spatial correlation of attributes. Negative and positive polarity lightning are considered separately and together. Topography and tower locations show a strong influence on CG distribution patterns. Geology, faults and railroads do not. This suggests that ground conductivity is not an important factor in determining lightning strike location on scales larger than current flash location accuracies, which are generally several hundred meters. Once a lightning channel is established, however, ground properties at the contact point may play a role in determining properties of the subsequent stroke.

  3. Anomalies from aerial spectrometric and total count radiometric surveys in the southeastern United States

    International Nuclear Information System (INIS)

    Lee, C.H.; Lawton, D.E.

    1978-01-01

    Aerial radiometric reconnaissance surveys are conducted because of their cost, time, and manpower savings compared to surface studies. Two types of aerial surveys are being flown in the southeastern United States: total count gamma-ray surveys for the Coastal Plains Regional Commission and the US Geological Survey, and differential gamma-ray spectrometric surveys for the US Department of Energy. Anomalous radioactivity detected during aerial surveys is related to higher concentrations of naturally occurring uranium, or to cultural activities, natural causes, or mapping errors which simulate real uranium anomalies. Each anomaly should be ground checked; however, several types of anomalies may be eliminated by evaluation of the aerial data in the office if field time is limited

  4. Economic geology of the Bingham mining district, Utah, with a section on areal geology, and an introduction on general geology

    Science.gov (United States)

    Boutwell, J.M.; Keith, Arthur; Emmons, S.F.

    1905-01-01

    The field work of which this report represents the final results was first undertaken in the summer of the year 1900. This district had long been selected by the writer as worthy of special economic investigation, as well on account of the importance of its products as because of its geological structure and the peculiar relations of its ore deposits. It was not, however, until the summer mentioned above that the means at the disposal of the Survey, both pecuniary and scientific, justified its undertaking. As originally planned, the areal or surface geology was to have been worked out by Mr. Keith, who had already spent many years in unraveling the complicated geological structure of the Appalachian province, while Mr. Boutwell, who had more recently become attached to the Survey, was to have charge of the underground geology, or a study of the ore deposits, under the immediate supervision of the writer. When the time came for actually taking the field, it was found that the pressure of other work would not permit Mr. Keith to carry out fully the part allotted to him, and in consequence a part of his field work has fallen to Mr. Boutwell. Field work was commenced by the writer and Mr. Boutwell early in July, 1900. Mr. Keith joined the party on August 10, but was obliged to leave for other duties early in September. Mr. Boutwell carried on his field work continuously from July until December, taking up underground work after the snowfall had rendered work on the surface geology impracticable. The geological structure had proved to be unexpectedly intricate and complicated, so that, on the opening of the field season of 1901, it was found necessary to make further study in the light of results already worked out, and Mr. Boutwell spent some weeks in the district in the early summer of 1901. His field work that year, partly in California and partly in Arizona, as assistant to Mr. Waldemar Lindgren, lasted through the summer and winter and well into the spring of 1902

  5. OneGeology - Access to geoscience for all

    Science.gov (United States)

    Komac, Marko; Lee, Kathryn; Robida, Francois

    2014-05-01

    OneGeology is an initiative of Geological Survey Organisations (GSO) around the globe that dates back to Brighton, UK in 2007. Since then OneGeology has been a leader in developing geological online map data using a new international standard - a geological exchange language known as 'GeoSciML'. Increased use of this new language allows geological data to be shared and integrated across the planet with other organisations. One of very important goals of OneGeology was a transfer of valuable know-how to the developing world, hence shortening the digital learning curve. In autumn 2013 OneGeology was transformed into a Consortium with a clearly defined governance structure, making its structure more official, its operability more flexible and its membership more open where in addition to GSO also to other type of organisations that manage geoscientific data can join and contribute. The next stage of the OneGeology initiative will hence be focused into increasing the openness and richness of that data from individual countries to create a multi-thematic global geological data resource on the rocks beneath our feet. Authoritative information on hazards and minerals will help to prevent natural disasters, explore for resources (water, minerals and energy) and identify risks to human health on a planetary scale. With this new stage also renewed OneGeology objectives were defined and these are 1) to be the provider of geoscience data globally, 2) to ensure exchange of know-how and skills so all can participate, and 3) to use the global profile of 1G to increase awareness of the geosciences and their relevance among professional and general public. We live in a digital world that enables prompt access to vast amounts of open access data. Understanding our world, the geology beneath our feet and environmental challenges related to geology calls for accessibility of geoscientific data and OneGeology Portal (portal.onegeology.org) is the place to find them.

  6. Application of PALSAR-2 remote sensing data for structural geology and topographic mapping in Kelantan river basin, Malaysia

    Science.gov (United States)

    Beiranvand Pour, Amin; Hashim, Mazlan

    2016-06-01

    Natural hazards of geological origin are one of major problem during heavy monsoons rainfall in Kelantan state, peninsular Malaysia. Several landslides occur in this region are obviously connected to geological and topographical features, every year. Satellite synthetic aperture radar (SAR) data are particularly applicable for detection of geological structural and topographical features in tropical conditions. In this study, Phased Array type L-band Synthetic Aperture Radar (PALSAR-2), remote sensing data were used to identify high potential risk and susceptible zones for landslide in the Kelantan river basin. Adaptive Local Sigma filter was selected and applied to accomplish speckle reduction and preserving both edges and features in PALSAR-2 fine mode observation images. Different polarization images were integrated to enhance geological structures. Additionally, directional filters were applied to the PALSAR-2 Local Sigma resultant image for edge enhancement and detailed identification of linear features. Several faults, drainage patterns and lithological contact layers were identified at regional scale. In order to assess the results, fieldwork and GPS survey were conducted in the landslide affected zones in the Kelantan river basin. Results demonstrate the most of the landslides were associated with N-S, NNW-SSE and NE-SW trending faults, angulate drainage pattern and metamorphic and Quaternary units. Consequently, geologic structural map were produced for Kelantan river basin using recent PALSAR-2 data, which could be broadly applicable for landslide hazard assessment and delineation of high potential risk and susceptible areas. Landslide mitigation programmes could be conducted in the landslide recurrence regions for reducing catastrophes leading to economic losses and death.

  7. The Trauma Center Organizational Culture Survey: development and conduction.

    Science.gov (United States)

    Davis, Matthew L; Wehbe-Janek, Hania; Subacius, Haris; Pinto, Ruxandra; Nathens, Avery B

    2015-01-01

    The Trauma Center Organizational Culture Survey (TRACCS) instrument was developed to assess organizational culture of trauma centers enrolled in the American College of Surgeons Trauma Quality Program (ACS TQIP). The objective is to provide evidence on the psychometric properties of the factors of TRACCS and describe the current organizational culture of TQIP-enrolled trauma centers. A cross-sectional study was conducted by surveying a sampling of employees at 174 TQIP-enrolled trauma centers. Data collection was preceded by multistep survey development. Psychometric properties were assessed by an exploratory factor analysis (construct validity) and the item-total correlations and Cronbach alpha were calculated (internal reliability). Statistical outcomes of the survey responses were measured by descriptive statistics and mixed effect models. The response rate for trauma center participation in the study was 78.7% (n = 137). The factor analysis resulted in 16 items clustered into three factors as described: opportunity, pride, and diversity, trauma center leadership, and employee respect and recognition. TRACCS was found to be highly reliable with a Cronbach alpha of 0.90 in addition to the three factors (0.91, 0.90, and 0.85). Considerable variability of TRACCS overall and factor score among hospitals was measured, with the largest interhospital deviations among trauma center leadership. More than 80% of the variability in the responses occurred within rather than between hospitals. TRACCS was developed as a reliable tool for measuring trauma center organizational culture. Relationships between TQIP outcomes and measured organizational culture are under investigation. Trauma centers could apply TRACCS to better understand current organizational culture and how change tools can impact culture and subsequent patient and process outcomes. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Nurture of human resources for geological repository program

    International Nuclear Information System (INIS)

    Fujiwara, A.

    2004-01-01

    The Japanese geological repository program entered the implementing stage in 2002. At the implementing stage of the program, different sectors need various human resources to conduct their functions. This paper discusses a suitable framework of nurture of the human resources to progress the geological repository program. The discussion is based on considering of specific characters involved in the program and of the multidisciplinary knowledge related to geological disposal. Considering the specific characters of the project, two types of the human resources need to be nurtured. First type is the core persons with the highest knowledge on geological disposal. They are expected to communicate with the various stakeholders and pass down the whole knowledge of the project to the next generation. Another is to conduct the project as the managers, the engineers and the workers. The former human resources can be developed through the broad practice and experience in each sector. The latter human resources can be effectively developed by training of the fundamental knowledge on geological disposal at training centers as well as by conventional on-the-job training. The sectors involved in the program need to take their own roles in the nurture of these human resources. (author)

  9. ENGINEERING-GEOLOGICAL CHARACTERISTICS OF THE LANDSLIDE MLIJA AND THEIR IMPACT ON ENGINEERING STRUCTURES (OMIŠ, SOUTHERN CROATIA

    Directory of Open Access Journals (Sweden)

    Slobodan Šestanović

    1998-12-01

    Full Text Available In order to design the by-pass road of the city of Omiš which will partially he founded on the landslide Mlija and for the safety of foundations of houses, detail subsurface exploration especially engineering-geological surveys, geophysical surveys, boring and laboratory tests of the sliding material were conducted. Obtained results are presented in this paper. Due to numerous damages of roads, walls and houses built in the area of Mlija and Borak, the possibility of construction in the area was discussed and the foundation method proposed. In order to obtain an overview of circumstances, constant monitoring of variations of the water table level and velocity of the moving material has been proposed.

  10. Synthetic Study on the Geological and Hydrogeological Model around KURT

    International Nuclear Information System (INIS)

    Park, Kyung Woo; Kim, Kyung Su; Koh, Yong Kwon; Choi, Jong Won

    2011-01-01

    To characterize the site specific properties of a study area for high-level radioactive waste disposal research in KAERI, the several geological investigations such as surface geological surveys and borehole drillings were carried out since 1997. Especially, KURT (KAERI Underground Research Tunnel) was constructed to understand the further study of geological environments in 2006. As a result, the first geological model of a study area was constructed by using the results of geological investigation. The objective of this research is to construct a hydrogeological model around KURT area on the basis of the geological model. Hydrogeological data which were obtained from in-situ hydraulic tests in the 9 boreholes were estimated to accomplish the objective. And, the hydrogeological properties of the 4 geological elements in the geological model, which were the subsurface weathering zone, the log angle fracture zone, the fracture zones and the bedrock were suggested. The hydrogeological model suggested in this study will be used as input parameters to carry out the groundwater flow modeling as a next step of the site characterization around KURT area

  11. The role of house surveys in geological radon potential mapping

    International Nuclear Information System (INIS)

    Ball, K.

    1997-01-01

    Because radon levels vary widely between apparently identical buildings on the same geological unit, no map can predict the radon level in an individual building. Maps can, however, give the probability that a building in a particular locality is above a threshold of radon concentration such as a reference or action level. The probability may be calculated for a particular building type or for a mixture of building types. In the latter case the probability is in effect an estimate of the proportion of buildings above the threshold level. Alternatively maps can provide estimates of the mean radon levels in buildings by area. Maps showing the geographical variation in probability that new or existing building will exceed a radon reference level are used to prevent excessive exposures to radon. The information may be used in various ways, such as to target information campaigns encouraging measurement of radon levels in homes or to modify regulations for new buildings. The data which are used to provide the estimates of the proportion of buildings above a threshold may be radon measurements results from a sample of buildings, or may be indirect indicators such as ground radium concentrations, emanation coefficients and permeability measurements. Consistency in radon measurement protocols and detailed positional information are prerequisites for mapping radon prone areas based upon house data. Grouping building radon measurements by geological formation and superficial cover can produce radon potential maps which are more spatially accurate than grid square maps and more accurate in estimating numbers of homes affected than mapping based only on measuring geological and pedagogical properties

  12. A positioning and data logging system for surface geophysical surveys

    International Nuclear Information System (INIS)

    Nyquist, J.E.; Blair, M.S.

    1988-01-01

    The Ultrasonic Ranging and Data System (USRADS) developed at ORNL is being adapted to work with two commercially available geophysical instruments: a magnetometer and an EM31 terrain conductivity meter. Geophysical surveys have proven an important preliminary step in investigating hazardous waste sites. Magnetometers and terrain conductivity meters are used to locate buried drums, trenches, conductive contaminant plumes and map regional changes in geology. About half the field time of a typical geophysical investigation is spent surveying the position of the grid points at which the measurements will be made. Additional time is lost and errors may be made recording instrument values in field notebooks and transcribing the data to a computer. Developed for gamma radiation surveys, the USRAD system keeps track of the surveyor's position automatically by triangulating on an ultrasonic transmitter carried in a backpack. The backpack also contains a radio transmitter that sends the instrument's reading coincident with the ultrasonic pulse. The surveyor's position and the instrument's reading are recorded by a portable computer which can plot the data to check the survey's progress. Electronic files are stored in a form compatible with AutoCAD to speed report writing. 7 refs., 3 figs

  13. Information collection and analysis of geological characterization and evaluation technology and application to geological characterization study

    International Nuclear Information System (INIS)

    Kawamura, Hideki; Noda, Masaru; Nishikawa, Naohito; Sato, Shoko; Tanaka, Tatsuya

    2003-03-01

    Tono Geoscience Center (TGC) of Japan Nuclear Cycle Development Institute has been conducting the Regional Groundwater Investigation and Mizunami Underground Laboratory (MIU) Project in order to develop investigation technologies and evaluation methods of geological environment. At present, towards the next progress reporting on research and development for geological disposal of HLW in Japan, based on the existing research and development results, the projects which are conducted by TGC are required for promoting smoothly and efficiently with regard to the current Japanese HLW program. According to such situation, for planning of the geological environment investigation and research at TGC and the next progress reporting, this study has investigated and summarizes overseas environmental impact assessments for final disposal, overseas site characterization and site selection, and overseas research plan of underground research laboratories. Based on the results of investigation, some technologies which have possibility to be applied to the MIU Project have been studied. Also overseas quality assurance programs have been investigated, and examples of the application of their concepts to MIU project have been considered. (author)

  14. Preliminary report on the environmnetal geology of the Islamabad-Rawalpindi area, Pakistan

    International Nuclear Information System (INIS)

    Williams, V.S.; Sheikh, I.; Pasha, M.K.; Khan, K.S.A.; Reza, Q.

    1994-01-01

    Islamabad, the capital of Pakistan, is a planned city constructed since about 1960 at the foot of the Margala hills just north of the old city of Rawalpindi. Since then, rapid growth of both Islamabad and Rawalpindi to a combined population of about 1.3 million has caused ever increasing demands for natural resources and adverse effects on the environment. To maintain the quality of the capital, municipal authorities need information on the physical environment to guide future development. Environment concerns include (1) availability of building materials, (2) environmental degradation from extraction and processing of building materials, (3) availability of surface and ground water (4) pollution of water by waste disposal, (5) geological hazards, and (6) engineering characteristics of soil ad rock. This preliminary report summarizes information on the environmental geology of the Islamabad-Rawalpindi area. The information has been collected by a cooperative project of the geological Survey of Pakistan and the U.S. Geological Survey, supported by the United States Agency for International Development. (author)

  15. The geology of the southeastern Baltic Sea: a review

    Science.gov (United States)

    Ūsaitytė, Daiva

    2000-06-01

    The Baltic Sea, particularly its southeastern part, is discussed in the paper. Investigations of regional character as well as specialized studies in the area are reviewed. General historical works are mentioned briefly. Previous surveys since the 1950s are presented by the subject studied. The compilation of geological structure of the SE Baltic Sea bottom and adjacent land of Balticum (Baltic States: Estonia, Latvia, Lithuania) is based on considerable amounts of summarized materials. The crystalline basement, sedimentary cover and Quaternary deposits are characterized in the comprehensive survey of geological structure. From a stratigraphical point of view, geological sequence of the platformal cover is comparatively complete: deposits of all geological systems (from the Archean to Cenozoic) are present in the Baltic Syneclise. Considering geotectonical cycles, the sedimentary cover of the syneclise is subdivided into four structural complexes. The thickness and distribution of Quaternary deposits are closely related to the recent bottom relief of the Baltic Sea that in turn is inherited from the Pre-Quaternary surface. Buried palaeo-valleys are characteristic of the Pre-Quaternary surface in the Baltic region and the Baltic Sea bottom. The Quaternary is characterized by layers of various geneses and by sharp changes of their thicknesses.

  16. Geological research for public outreach and education in Lithuania

    Science.gov (United States)

    Skridlaite, Grazina; Guobyte, Rimante

    2013-04-01

    Successful IYPE activities and implementation of Geoheritage day in Lithuania increased public awareness in geology. A series of projects introducing geology to the general public and youth, supported by EU funds and local communities, were initiated. Researchers from the scientific and applied geology institutions of Lithuania participated in these projects and provided with the geological data. In one case, the Lithuanian Survey of Protected Areas supported the installation of a series of geological exhibitions in several regional and national parks. An animation demonstrating glacial processes was chosen for most of these because the Lithuanian surface is largely covered with sedimentary deposits of the Nemunas (Weichselian) glaciation. Researchers from the Lithuanian Geological Survey used the mapping results to demonstrate real glacial processes for every chosen area. In another case, 3D models showing underground structures of different localities were based on detailed geological maps and profiles obtained for that area. In case of the Sartai regional park, the results of previous geological research projects provided the possibility to create a movie depicting the ca. 2 Ga geological evolution of the region. The movie starts with the accretion of volcanic island arcs on the earlier continental margin at ca. 2 Ga and deciphers later Precambrian tectonic and magmatic events. The reconstruction is based on numerous scientific articles and interpretation of geophysical data. Later Paleozoic activities and following erosion sculptured the surface which was covered with several ice sheets in Quaternary. For educational purpose, a collection of minerals and rocks at the Forestry Institute was used to create an exhibition called "Cycle of geological processes". Forestry scientists and their students are able to study the interactions of geodiversity and biodiversity and to understand ancient and modern geological processes leading to a soil formation. An aging

  17. US Geological Survey uranium and thorium resource assessment and exploration research program, fiscal year 1981

    International Nuclear Information System (INIS)

    Offield, T.W.

    1980-01-01

    The US Geological Survey (USGS) uranium-thorium program is continuing to emphasize multidisciplinary studies to define the settings and habitats of uranium deposits and to elucidate the processes by which the ore deposits formed. As with the uranium scene generally, some uncertainty characterizes the program's transition from FY 1980 to FY 1981. As of the beginning of the new fiscal year, a cut of 15% in base funding of the USGS uranium program has been effected by Congress. Such a cut parallels the major curtailment of the NURE program. The USGS in FY 1980 completed almost all of its commitment to the NURE program quadrangle-evaluation work, and only a relatively modest continuing involvement in the NURE world-class and intermediate-grade studies remains for FY 1981. Objectives and program scope, noteworthy results of FY 1980 research, and program activities for FY 1981 are presented in this report

  18. Water-resources investigations of the U.S. Geological Survey in New Mexico; fiscal year 1981

    Science.gov (United States)

    White, Robert R.; Wells, J.G.

    1983-01-01

    The Water Resources Division of the U.S. Geological Survey investigates the occurrence, quantity, quality, distribution, and movement of the Nation 's surface and underground waters, and coordinates Federal water data acquisition activities. During fiscal year 1981, the New Mexico District had 40 active projects, released 19 reports, and answered hundreds of requests of water-related information. Investigations included the following: (1) chemical quality of surface water in New Mexico; (2) chemical quality of groundwater in New Mexico; (3) sediment transport in New Mexico streams; (4) surface water supply; (5) surface water diversions for irrigation; (6) streamflow characteristics; (7) effect of urban development on storm runoff; (8) inundation from floods; (9) effects of groundwater pumping; (10) long-term monitoring of groundwater levels; (11) groundwater and surface water relationships; (12) consumptive use by phreatophytes; (13) hydrologic impacts of energy development; and (14) groundwater supplies. (Lantz-PTT)

  19. Geomorphological and geological property of short active fault in fore-arc region of Japan

    International Nuclear Information System (INIS)

    Sasaki, Toshinori; Inoue, Daiei; Ueta, Keiichi; Miyakoshi, Katsuyoshi

    2009-01-01

    The important issue in the earthquake magnitude evaluation method is the classification of short active faults or lineaments. It is necessary to determine the type of active fault to be included in the earthquake magnitude evaluation. The particular group of fault is the surface earthquake faults that are presumed to be branched faults of large interplate earthquakes in subduction zones. We have classified short lineaments in two fore-arc regions of Japan through geological and geomorphological methods based on field survey and aerial photograph interpretation. The first survey is conducted at Enmeiji Fault in Boso Peninsula. The fault is known to have been displaced by 1923 Taisho Kanto earthquake. The altitude distributions of marine terrace surfaces are different on both sides of the fault. In other words, this fault has been displaced repeatedly by the large interplate earthquakes in the past. However, the recurrent interval of this fault is far longer than the large interplate earthquake calculated by the slip rate and the displacement per event. The second survey is conducted in the western side of Muroto Peninsula, where several short lineaments are distributed. We have found several fault outcrops along the few, particular lineaments. The faults in the region have similar properties to Enmeiji Fault. On the other hand, short lineaments are found to be structural landforms. The comparison of the two groups enables us to classify the short lineaments based on the geomorphological property and geological cause of these faults. Displacement per event is far larger than displacement deduced from length of the active fault. Recurrence interval of the short active fault is far longer than that of large interplate earthquake. Displacement of the short active fault has cumulative. The earthquake magnitude of the faults have these characters need to be evaluated by the plate boundary fault or the long branched seismogenic fault. (author)

  20. Application of Laser Scanning for Creating Geological Documentation

    Directory of Open Access Journals (Sweden)

    Buczek Michał

    2018-01-01

    Full Text Available A geological documentation is based on the analyses obtained from boreholes, geological exposures, and geophysical methods. It consists of text and graphic documents, containing drilling sections, vertical crosssections through the deposit and various types of maps. The surveying methods (such as LIDAR can be applied in measurements of exposed rock layers, presented in appendices to the geological documentation. The laser scanning allows obtaining a complete profile of exposed surfaces in a short time and with a millimeter accuracy. The possibility of verifying the existing geological cross-section with laser scanning was tested on the example of the AGH experimental mine. The test field is built of different lithological rocks. Scans were taken from a single station, under favorable measuring conditions. The analysis of the signal intensity allowed to divide point cloud into separate geological layers. The results were compared with the geological profiles of the measured object. The same approach was applied to the data from the Vietnamese hard coal open pit mine Coc Sau. The thickness of exposed coal bed deposits and gangue layers were determined from the obtained data (point cloud in combination with the photographs. The results were compared with the geological cross-section.

  1. Geologic map of the St. Joe quadrangle, Searcy and Marion Counties, Arkansas

    Science.gov (United States)

    Hudson, Mark R.; Turner, Kenzie J.

    2009-01-01

    This map summarizes the geology of the St. Joe 7.5-minute quadrangle in the Ozark Plateaus region of northern Arkansas. Geologically, the area lies on the southern flank of the Ozark dome, an uplift that exposes oldest rocks at its center in Missouri. Physiographically, the St. Joe quadrangle lies within the Springfield Plateau, a topographic surface generally held up by Mississippian cherty limestone. The quadrangle also contains isolated mountains (for example, Pilot Mountain) capped by Pennsylvanian rocks that are erosional outliers of the higher Boston Mountains plateau to the south. Tomahawk Creek, a tributary of the Buffalo River, flows through the eastern part of the map area, enhancing bedrock erosion. Exposed bedrock of this region comprises an approximately 1,300-ft-thick sequence of Ordovician, Mississippian, and Pennsylvanian carbonate and clastic sedimentary rocks that have been mildly deformed by a series of faults and folds. The geology of the St. Joe quadrangle was mapped by McKnight (1935) as part of a larger area at 1:125,000 scale. The current map confirms many features of this previous study, but it also identifies new structures and uses a revised stratigraphy. Mapping for this study was conducted by field inspection of numerous sites and was compiled as a 1:24,000-scale geographic information system (GIS) database. Locations and elevations of sites were determined with the aid of a global positioning satellite receiver and a hand-held barometric altimeter that was frequently recalibrated at points of known elevation. Hill-shade-relief and slope maps derived from a U.S. Geological Survey 10-m digital elevation model as well as U.S. Geological Survey orthophotographs from 2000 were used to help trace ledge-forming units between field traverses within the Upper Mississippian and Pennsylvanian part of the stratigraphic sequence. Strikes and dips of beds were typically measured along stream drainages or at well-exposed ledges. Beds dipping less

  2. Fiscal 2000 survey report on overseas geological structure, etc. Project for exchanging experts - Exploration technology (Indonesia); 2000 nendo kaigai chishitsu kozo to chosa hokokusho. Gijutsusha koryu jigyo - Tansa gijutsu bunya (Indonesia)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    For the stabilization of coal supply/demand in the APEC (Asia-Pacific Economic Cooperation Conference) region and for the stable supply of coal to Japan, Japanese engineers and experts were dispatched to Indonesia, where coal production was remarkably increasing and efforts were being actively exerted to develop new coal mining fields, for training Indonesian specialists there, and Indonesian specialists were invited to Japan for training here. Japanese instructors on dispatch delivered lectures on coal geology, exploration, and exploitation at the human resource development center of Bandung City during the period July 20 through August 4, 2000, which was followed by a coal outcrop survey training session in the field. The trainees were from Kalimantan, Sumatra, Java, etc., and numbered 30. The trainees invited to Japan received lectures and training related to coal geology, exploration, and mining programs during the period October 19 through November 18, 2000, at the Geological Survey of Japan, Agency of Industrial Science and Technology, Ministry of International Trade and Industry; Matsushima Coal Mining Co., Ltd.; Enzan Plant, Tone Corporation; DIA Consultants Co., Ltd.; and Mitsubishi Materials Corporation. (NEDO)

  3. Helicopter electromagnetic and magnetic geophysical survey data, Hunton anticline, south-central Oklahoma

    Science.gov (United States)

    Smith, Bruce D.; Smith, David V.; Deszcz-Pan, Maryla; Blome, Charles D.; Hill, Patricia

    2011-01-01

    This report is a digital data release for multiple geophysical surveys conducted in the Hunton anticline area of south-central Oklahoma. The helicopter electromagnetic and magnetic surveys were flown on March 16–17, 2007, in four areas of the Hunton anticline in south-central Oklahoma. The objective of this project is to improve the understanding of the geohydrologic framework of the Arbuckle-Simpson aquifer. The electromagnetic sensor for the helicopter electromagnetic survey consisted of six different transmitter-receiver orientations that measured the earth's electrical response at six distinct frequencies from approximately 500 Hertz to approximately 115,000 Hertz. The electromagnetic measurements were converted to electrical resistivity values, which were gridded and plotted on georeferenced maps. The map from each frequency represents a different depth of investigation for each area. The range of subsurface investigation is comparable to the depth of shallow groundwater. The four areas selected for the helicopter electromagnetic study, blocks A–D, have different geologic and hydrologic settings. Geophysical and hydrologic information from U.S. Geological Survey studies are being used by modelers and resource managers to develop groundwater resource plans for the Arbuckle-Simpson aquifer.

  4. Results of the 2008/2009 Knowledge and Opinions Surveys Conducted for the U.S. Department of Energy Hydrogen Program

    Energy Technology Data Exchange (ETDEWEB)

    Schmoyer, R. L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Truett, Tykey [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Cooper, Christy [Dept. of Energy (DOE), Washington DC (United States); Chew, Andrea [Dept. of Energy (DOE), Washington DC (United States)

    2010-04-01

    This report presents results of a 2008/2009 survey of hydrogen and fuel cell awareness conducted for the U.S. Department of Energy (DOE). The 2008/2009 survey follows up on a similar DOE survey conducted in 2004, measuring levels of awareness and understanding of hydrogen and fuel cell technologies in four populations: (1) the general public, (2) students, (3) personnel in state and local governments, and (4) potential end users of hydrogen and fuel cell technologies in business and industry. The 2008/2009 survey includes these four groups and adds a fifth group, safety and code officials. The same survey methods were used for both surveys; the 2008/2009 survey report includes a comparison of 2004 and 2008/2009 findings. Information from these surveys will be used to enhance hydrogen and fuel cell education strategies.

  5. Geological modeling for methane hydrate reservoir characterization in the eastern Nankai Trough, offshore Japan

    Science.gov (United States)

    Tamaki, M.; Komatsu, Y.; Suzuki, K.; Takayama, T.; Fujii, T.

    2012-12-01

    The eastern Nankai trough, which is located offshore of central Japan, is considered as an attractive potential resource field of methane hydrates. Japan Oil, Gas and Metals National Corporation is planning to conduct a production test in early 2013 at the AT1 site in the north slope of Daini-Atsumi Knoll in the eastern Nankai Trough. The depositional environment of methane hydrate-bearing sediments around the production test site is a deep submarine-fan turbidite system, and it is considered that the reservoir properties should show lateral as well as vertical heterogeneity. Since the variations in the reservoir heterogeneity have an impact on the methane hydrate dissociation and gas production performance, precise geological models describing reservoir heterogeneity would be required for the evaluation of reservoir potentials. In preparation for the production test, 3 wells; two monitoring boreholes (AT1-MC and AT1-MT1) and a coring well (AT1-C), were newly acquired in 2012. In addition to a geotechnical hole drilling survey in 2011 (AT1-GT), totally log data from 2 wells and core data from 2 wells were obtained around the production test site. In this study, we conducted well correlations between AT1 and A1 wells drilled in 2003 and then, 3D geological models were updated including AT1 well data in order to refine hydrate reservoir characterization around the production test site. The results of the well correlations show that turbidite sand layers are characterized by good lateral continuity, and give significant information for the distribution morphology of sand-rich channel fills. We also reviewed previously conducted 3D geological models which consist of facies distributions and petrophysical properties distributions constructed from integration of 3D seismic data and a well data (A1 site) adopting a geostatistical approach. In order to test the practical validity of the previously generated models, cross-validation was conducted using AT1 well data. The

  6. Bibliography of publications related to the Yucca Mountain Site Characterization Project prepared by U.S. Geological Survey personnel through April 1991

    International Nuclear Information System (INIS)

    Glanzman, V.M.

    1991-01-01

    Personnel of the US Geological Survey have participated in nuclear-waste management studies in the State of Nevada since the mid-1970's. A bibliography of publications prepared principally for the US Department of Energy Yucca Mountain Site Characterization Project (formerly Nevada Nuclear Waste Storage Investigations) through April 1991 contains 475 entries in alphabetical order. The listing includes publications prepared prior to the inception of the Nevada Nuclear Waste Storage Investigations Project in April 1977 and selected publications of interest to the Yucca Mountain region. 480 refs

  7. Quality-assurance and data management plan for groundwater activities by the U.S. Geological Survey in Kansas, 2014

    Science.gov (United States)

    Putnam, James E.; Hansen, Cristi V.

    2014-01-01

    As the Nation’s principle earth-science information agency, the U.S. Geological Survey (USGS) is depended on to collect data of the highest quality. This document is a quality-assurance plan for groundwater activities (GWQAP) of the Kansas Water Science Center. The purpose of this GWQAP is to establish a minimum set of guidelines and practices to be used by the Kansas Water Science Center to ensure quality in groundwater activities. Included within these practices are the assignment of responsibilities for implementing quality-assurance activities in the Kansas Water Science Center and establishment of review procedures needed to ensure the technical quality and reliability of the groundwater products. In addition, this GWQAP is intended to complement quality-assurance plans for surface-water and water-quality activities and similar plans for the Kansas Water Science Center and general project activities throughout the USGS. This document provides the framework for collecting, analyzing, and reporting groundwater data that are quality assured and quality controlled. This GWQAP presents policies directing the collection, processing, analysis, storage, review, and publication of groundwater data. In addition, policies related to organizational responsibilities, training, project planning, and safety are presented. These policies and practices pertain to all groundwater activities conducted by the Kansas Water Science Center, including data-collection programs, interpretive and research projects. This report also includes the data management plan that describes the progression of data management from data collection to archiving and publication.

  8. Geological disaster survey based on Curvelet transform with borehole Ground Penetrating Radar in Tonglushan old mine site.

    Science.gov (United States)

    Tang, Xinjian; Sun, Tao; Tang, Zhijie; Zhou, Zenghui; Wei, Baoming

    2011-06-01

    Tonglushan old mine site located in Huangshi City, China, is very famous in the world. However, some of the ruins had suffered from geological disasters such as local deformation, surface cracking, in recent years. Structural abnormalities of rock-mass in deep underground were surveyed with borehole ground penetrating radar (GPR) to find out whether there were any mined galleries or mined-out areas below the ruins. With both the multiresolution analysis and sub-band directional of Curvelet transform, the feature information of targets' GPR signals were studied on Curvelet transform domain. Heterogeneity of geotechnical media and clutter jamming of complicated background of GPR signals could be conquered well, and the singularity characteristic information of typical rock mass signals could be extracted. Random noise had be removed by thresholding combined with Curvelet and the statistical characteristics of wanted signals and the noise, then direct wave suppression and the spatial distribution feature extraction could obtain a better result by making use of Curvelet transform directional. GprMax numerical modeling and analyzing of the sample data have verified the feasibility and effectiveness of our method. It is important and applicable for the analyzing of the geological structure and the disaster development about the Tonglushan old mine site. Copyright © 2011 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  9. Electrical imaging and self-potential surveys to study the geological setting of the quaternary slope deposits in the Agri high valley (Southern Italy)

    Energy Technology Data Exchange (ETDEWEB)

    Giano, S I; Schiattarella, M [Basilicata Univ., Potenza (Italy). Centro di Geodinamica; Lapenna, V; Piscitelli, S [Consiglio Nazionale delle Ricerche, Tito, PZ (Italy). Ist. di Metodologie Avanzate di Analisi Ambientale

    2000-04-01

    The paper presents the results of a geophysical survey carried out to outline the structural modelling of quarternary slope deposits in the northern part of Agri high valley (Basilicata region, Italy). Quaternary folding and brittle deformations of the subaerial slope deposits have been studied combining electrical imaging and self-potential surveys with geological structural analysis. This integrated approach indicates that the area underwent both transpressional and transtensional tectonics during Pleistocene times as testified by the existence of a push up structure in the basement buried by deformed Quaternary breccias. On this basis, the valley appears to be a more complex structure than a simple extensional graben, as traditionally assumed in the literature.

  10. A Centennial Tribute, 1906-2006: History of U.S. Geological Survey Streamgaging Activities for the Suwannee River at White Springs, Florida

    Science.gov (United States)

    Verdi, Richard Jay; Tomlinson, Stewart A.

    2009-01-01

    For centuries, the banks of the Suwannee River at White Springs were considered a sacred ground where people sought refuge in its 'healing waters'. Many believed that the mineral-enriched waters cured illnesses. The U.S. Geological Survey began continuous streamgaging activities at White Springs, Florida, in 1906 after an increase in congressional appropriations and rapid town development due to growing tourism and residential population. In 1906, streamgage data was a once-per-day gage reading that were handwritten in a water-level booklet by a local observer with discharge measurements taken every 6 to 8 weeks by a hydrographer. In 2006, real-time data were recorded at 1-hour increments and transmitted to U.S. Geological Survey computer networks using the Geostationary Operational Environmental Satellite, thus enabling the general public to access readings within minutes of the actual measurement. Additional data and measurements are taken and made available for high or low flows that occur during significant floods and droughts. The gage at White Springs has recorded several historic hydrologic events that affected the Suwannee River and surrounding areas. Major droughts include those during 1931-35, 1949-57, and 1998-2002. Severe floods occurred in 1948, 1973, and 2004. On April 10, 1973, the discharge was 38,100 cubic feet per second, which is the highest recorded discharge for the period of record. A flood of this magnitude is expected at a recurrence interval of about once every 200 to 500 years.

  11. Mapping watershed potential to contribute phosphorus from geologic materials to receiving streams, southeastern United States

    Science.gov (United States)

    Terziotti, Silvia; Hoos, Anne B.; Harned, Douglas; Garcia, Ana Maria

    2010-01-01

    As part of the southeastern United States SPARROW (SPAtially Referenced Regressions On Watershed attributes) water-quality model implementation, the U.S. Geological Survey created a dataset to characterize the contribution of phosphorus to streams from weathering and erosion of surficial geologic materials. SPARROW provides estimates of total nitrogen and phosphorus loads in surface waters from point and nonpoint sources. The characterization of the contribution of phosphorus from geologic materials is important to help separate the effects of natural or background sources of phosphorus from anthropogenic sources of phosphorus, such as municipal wastewater or agricultural practices. The potential of a watershed to contribute phosphorus from naturally occurring geologic materials to streams was characterized by using geochemical data from bed-sediment samples collected from first-order streams in relatively undisturbed watersheds as part of the multiyear U.S. Geological Survey National Geochemical Survey. The spatial pattern of bed-sediment phosphorus concentration is offered as a tool to represent the best available information at the regional scale. One issue may weaken the use of bed-sediment phosphorus concentration as a surrogate for the potential for geologic materials in the watershed to contribute to instream levels of phosphorus-an unknown part of the variability in bed-sediment phosphorus concentration may be due to the rates of net deposition and processing of phosphorus in the streambed rather than to variability in the potential of the watershed's geologic materials to contribute phosphorus to the stream. Two additional datasets were created to represent the potential of a watershed to contribute phosphorus from geologic materials disturbed by mining activities from active mines and inactive mines.

  12. U.S. Geological Survey community for data integration: data upload, registry, and access tool

    Science.gov (United States)

    ,

    2012-01-01

    As a leading science and information agency and in fulfillment of its mission to provide reliable scientific information to describe and understand the Earth, the U.S. Geological Survey (USGS) ensures that all scientific data are effectively hosted, adequately described, and appropriately accessible to scientists, collaborators, and the general public. To succeed in this task, the USGS established the Community for Data Integration (CDI) to address data and information management issues affecting the proficiency of earth science research. Through the CDI, the USGS is providing data and metadata management tools, cyber infrastructure, collaboration tools, and training in support of scientists and technology specialists throughout the project life cycle. One of the significant tools recently created to contribute to this mission is the Uploader tool. This tool allows scientists with limited data management resources to address many of the key aspects of the data life cycle: the ability to protect, preserve, publish and share data. By implementing this application inside ScienceBase, scientists also can take advantage of other collaboration capabilities provided by the ScienceBase platform.

  13. GPR survey, as one of the best geophysical methods for social and industrial needs

    Science.gov (United States)

    Chernov, Anatolii

    2016-04-01

    This paper is about ways and methods of applying non-invasive geophysical method - Ground penetrating radar (GPR) survey in different spheres of science, industry, social life and culture. Author would like to show that geological methods could be widely used for solving great variety of industrial, human safety and other problems. In that article, we take GPR survey as an example of such useful geophysical methods. It is a fact that investigation of near surface underground medium is important process, which influence on development of different spheres of science and social life: investigation of near surface geology (layering, spreading of rock types, identification of voids, etc.), hydrogeology (depth to water horizons, their thickness), preparation step for construction of roads and buildings (civil geology, engineering geology), investigation of cultural heritage (burial places, building remains,...), ecological investigations (land slides, variation in underground water level, etc.), glaciology. These tasks can be solved by geological methods, but as usual, geophysical survey takes a lot of time and energy (especially electric current and resistivity methods, seismic survey). Author claims that GPR survey can be performed faster than other geophysical surveys and results of GPR survey are informative enough to make proper conclusions. Some problems even cannot be solved without GPR. For example, identification of burial place (one of author's research objects): results of magnetic and electric resistivity tomography survey do not contain enough information to identify burial place, but according to anomalies on GPR survey radarograms, presence of burial place can be proven. Identification of voids and non-magnetic objects also hardly can be done by another non-invasive geophysics surveys and GPR is applicable for that purpose. GPR can be applied for monitoring of dangerous processes in geological medium under roads, buildings, parks and other places of human

  14. Conductivity, salinity, and other data from GEOLOG FERSMAN and PROFESSOR LOGACHEV using CTD casts in the North Atlantic Ocean from 08 April 1993 to 03 November 1999 (NODC Accession 0000261)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Conductivity, salinity, transmissivity, pressure, and temperature data were collected from the GEOLOG FERSMAN and PROFESSOR LOGACHEV from April 8,1993 to November 3,...

  15. Mitigating the consequences of future earthquakes in historical centres: what perspectives from the joined use of past information and geological-geophysical surveys?

    Science.gov (United States)

    Terenzio Gizzi, Fabrizio; Moscatelli, Massimiliano; Potenza, Maria Rosaria; Zotta, Cinzia; Simionato, Maurizio; Pileggi, Domenico; Castenetto, Sergio

    2015-04-01

    To mitigate the damage effects of earthquakes in urban areas and particularly in historical centres prone to high seismic hazard is an important task to be pursued. As a matter of fact, seismic history throughout the world informs us that earthquakes have caused deep changes in the ancient urban conglomerations due to their high building vulnerability. Furthermore, some quarters can be exposed to an increase of seismic actions if compared with adjacent areas due to the geological and/or topographical features of the site on which the historical centres lie. Usually, the strategies aimed to estimate the local seismic hazard make only use of the geological-geophysical surveys. Thorough this approach we do not draw any lesson from what happened as a consequences of past earthquakes. With this in mind, we present the results of a joined use of historical data and traditional geological-geophysical approach to analyse the effects of possible future earthquakes in historical centres. The research activity discussed here is arranged into a joint collaboration between the Department of Civil Protection of the Presidency of Council of Ministers, the Institute of Environmental Geology and Geoengineering and the Institute of Archaeological and Monumental Heritage of the National (Italian) Research Council. In order to show the results, we discuss the preliminary achievements of the integrated study carried out on two historical towns located in Southern Apennines, a portion of the Italian peninsula exposed to high seismic hazard. Taking advantage from these two test sites, we also discuss some methodological implications that could be taken as a reference in the seismic microzonation studies.

  16. Environmental resources of selected areas of Hawaii: Geological hazards

    Energy Technology Data Exchange (ETDEWEB)

    Staub, W.P.; Reed, R.M.

    1995-03-01

    This report has been prepared to make available and archive the background scientific data and related information collected on geologic hazards during the preparation of the environmental impact statement (EIS) for Phases 3 and 4 of the Hawaii Geothermal Project (HGP) as defined by the state of Hawaii in its April 1989 proposal to Congress. The US Department of Energy (DOE) published a notice withdrawing its Notice of Intent to prepare the HGP-EIS. Since the state of Hawaii is no longer pursuing or planning to pursue the HGP, DOE considers the project to be terminated. This report presents a review of current information on geologic hazards in the Hawaiian Islands. Interrelationships among these hazards are discussed. Probabilities of occurrence of given geologic hazards are provided in various regions where sufficient geologic or historical data are available. Most of the information contained herein is compiled from recent US Geological Survey (USGS) publications and USGS open-file reports related to this project. This report describes the natural geologic hazards present in the area and does not represent an assessment of environmental impacts. Geologic hazards originate both onshore and offshore. Onshore geologic hazards such as volcanic eruptions, earthquakes, surface rupture, landslides, uplift and subsidence occur mainly on the southern third of the island of Hawaii (hereinafter referred to as Hawaii). Offshore geologic hazards are more widely distributed throughout the Hawaiian Islands. Examples of offshore geologic hazards are submarine landslides, turbidity currents, and seismic sea waves (tsunamis).

  17. Preliminary digital geologic maps of the Mariposa, Kingman, Trona, and Death Valley Sheets, California

    International Nuclear Information System (INIS)

    D'Agnese, F.A.; Faunt, C.C.; Turner, A.K.

    1995-01-01

    Parts of four 1:250,000-scale geologic maps by the California Department of Natural Resources, Division of Mines and Geology have been digitized for use in hydrogeologic characterization. These maps include the area of California between lat. 35 degree N; Long. 115 degree W and lat. 38 degree N, long. 118 degree W of the Kingman Sheet (Jennings, 1961), Trona Sheet (Jennings and others, 1962), Mariposa Sheet (Strand, 1967), and Death Valley Sheet (Streitz and Stinson, 1974). These digital maps are being released by the US Geological Survey in the ARC/INFO Version 6.1 Export format. The digitized data include geologic unit boundaries, fault traces, and identity of geologic units. The procedure outlined in US Geological Survey Circular 1054 (Soller and others, 1990) was sued during the map construction. The procedure involves transferring hard-copy data into digital format by scanning manuscript maps, manipulating the digital map data, and outputting the data. Most of the work was done using Environmental Systems Research Institute's ARC/INFO software. The digital maps are available in ARC/INFO Rev. 6.1 Export format, from the USGS, Yucca Mountain Project, in Denver, Colorado

  18. Geology Before Pluto: Pre-encounter Considerations

    Science.gov (United States)

    Moore, J. M.

    2014-12-01

    Pluto, its large satellite Charon, and its four small known satellites represent the first trans-Neptunian Kuiper Belt objects populating the outer-most solar system beyond the gas giant planets to be studied in detail from a spacecraft (New Horizons). A complete picture of the solar nebula and solar system formation cannot be confidently formulated until representatives of this group of bodies at the edge of solar space have been examined. The Pluto system is composed of unique, lunar- and intermediate-sized objects that can tell us much about how objects with volatile icy compositions evolve. Modeling of the interior suggests that geologic activity may have been significant to some degree, and observations of frost on the surface could imply the need for a geologic reservoir for the replenishment of these phases. However, these putative indicators of Pluto's geologic history are inconclusive and unspecific. Detailed examination of Pluto's geologic record is the only plausible means of bridging the gap between theory and observation. In this talk I will examine the potential importance of these tentative indications of geologic activity and how specific spacecraft observations have been designed and used to constrain the Pluto system's geologic history. The cameras of New Horizons will provide robust data sets that should be immanently amenable to geological analysis of the Pluto system's landscapes. In this talk, we begin with a brief discussion of the planned observations by the New Horizons cameras that will bear most directly on geological interpretability. Then I will broadly review major geological processes that could potentially operate on the surfaces of Pluto and its moons. I will first survey exogenic processes (i.e., those for which energy for surface modification is supplied externally to the planetary surface): impact cratering, sedimentary processes (including volatile migration), and the work of wind. I will conclude with an assessment of the

  19. Geology Before Pluto: Pre-Encounter Considerations

    Science.gov (United States)

    Moore, Jeffrey M.

    2014-01-01

    Pluto, its large satellite Charon, and its four known satellites represent the first trans-Neptunian Kuiper Belt objects populating the outer-most solar system beyond the gas giant planets to be studied in detail from a spacecraft (New Horizons). A complete picture of the solar nebula, and solar system formation cannot be confidently formulated until representatives of this group of bodies at the edge of solar space have been examined. The Pluto system is composed of unique lunar- and intermediate-sized objects that can tell us much about how objects with volatile icy compositions evolve. Modeling of the interior suggests that geologic activity may have been to some degree, and observations of frost on the surface could imply the need for a geologic reservoir for the replenishment of these phases. However, the putative indicators of Pluto's geologic history are inconclusive and unspecific. Detailed examination of Pluto's geologic record is the only plausible means of bridging the gap between theory and observations. In this talk I will examine the potential importance of these tentative indications of geologic activity and how specific spacecraft observations have been designed and used to constrain the Pluto system's geologic history. The cameras of New Horizons will provide robust data sets that should be immanently amenable to geological analysis of the Pluto System's landscapes. In this talk, we begin with a brief discussion of the planned observations by New Horizons' cameras that will bear most directly on geological interpretability. Then I will broadly review major geological processes that could potentially operate of the surfaces of Pluto and its moons. I will first survey exogenic processes (i.e., those for which energy for surface modification is supplied externally to the planetary surface): impact cratering, sedimentary processes (including volatile migration) and the work of wind. I will conclude with an assessment of prospects for endogenic activity

  20. Experiences in the ICP-MS analysis of geological and environmental samples

    International Nuclear Information System (INIS)

    Kallio, E.

    1994-01-01

    Inductively coupled plasma mass spectrometry (ICP-MS) has been used at the Geological Survey of Finland since 1991. Applied to determination of trace and ultra trace elements in water, sediments, biological samples and rocks. The strength of the technique lies in the ability to determine isotope ratios, and elements that are difficult or expensive to determine by other techniques, e.g. platinum group elements (PGEs), rare earths elements (REEs) and toxic metals (As, Be, Cd, Hg, Pb, Tl, U). An important part of the analysis is the pretreatment of the samples before the measurement. This paper gives an overview of the methods used at the Geological Survey. (orig.). (5 refs.)

  1. U.S. Geological Survey spatial data access

    Science.gov (United States)

    Faundeen, John L.; Kanengieter, Ronald L.; Buswell, Michael D.

    2002-01-01

    The U.S. Geological Survey (USGS) has done a progress review on improving access to its spatial data holdings over the Web. The USGS EROS Data Center has created three major Web-based interfaces to deliver spatial data to the general public; they are Earth Explorer, the Seamless Data Distribution System (SDDS), and the USGS Web Mapping Portal. Lessons were learned in developing these systems, and various resources were needed for their implementation. The USGS serves as a fact-finding agency in the U.S. Government that collects, monitors, analyzes, and provides scientific information about natural resource conditions and issues. To carry out its mission, the USGS has created and managed spatial data since its inception. Originally relying on paper maps, the USGS now uses advanced technology to produce digital representations of the Earth’s features. The spatial products of the USGS include both source and derivative data. Derivative datasets include Digital Orthophoto Quadrangles (DOQ), Digital Elevation Models, Digital Line Graphs, land-cover Digital Raster Graphics, and the seamless National Elevation Dataset. These products, created with automated processes, use aerial photographs, satellite images, or other cartographic information such as scanned paper maps as source data. With Earth Explorer, users can search multiple inventories through metadata queries and can browse satellite and DOQ imagery. They can place orders and make payment through secure credit card transactions. Some USGS spatial data can be accessed with SDDS. The SDDS uses an ArcIMS map service interface to identify the user’s areas of interest and determine the output format; it allows the user to either download the actual spatial data directly for small areas or place orders for larger areas to be delivered on media. The USGS Web Mapping Portal provides views of national and international datasets through an ArcIMS map service interface. In addition, the map portal posts news about new

  2. Description and preliminary map, airborne electromagnetic survey of parts of Iron, Baraga, and Dickson counties, Michigan

    Science.gov (United States)

    Heran, William D.; Smith, Bruce D.

    1980-01-01

    The data presented herein is from an airborne electromagnetic INPUT* survey conducted by Geoterrex Limited of Canada for the U.S. Geological Survey. The survey area is located in the central part of the Upper Peninsula of Michigan, within parts of Iron, Baraga, and Dickinson Counties. The general area covered is between 46°00' and 46°30' latitude and 88°00' and 88°30' longitude (fig. 1).The INPUT survey was flown as part of a U.S. Geological Survey CUSMAP (Conterminous United States Mineral Appraisal Program) project focusing on the Iron River 2° quadrangle. The survey was flown in order to provide geophysical information which will aid in an integrated geological assessment of mineral potentials of this part of the Iron River 2 quadrangle. The flight-line spacing was chosen to maximize the aerial coverage without a loss of resolution of major lithologic and structural features. East-west flight lines were flown 400 feet above ground at 1/2-mile intervals. Aerial photos were used for navigation and the flight path was recorded on continuous-strip film. A continuously recording total field ground magnetic station was used to monitor variations in the Earth's magnetic field. One north-south line was flown to provide a tie for the magnetic data which was recorded simultaneously with the electromagnetic data by a sensor mounted in the tail of the aircraft. This report is one of two open-file reports. The map in the present report contains locations of the fiducial points, the flight lines, and preliminary locations of anomalies and conductive zones, all plotted on an air photomosaic. The latitude and longitude ticks marked on this map are only approximate due to distortion in air photos used to recover the flight line position. This map is preliminary and is not to be considered a final interpretation. The other report (Reran and Smith, 1980) contains a description of the instrument specifications, a copy of the ground station magnetic data, and a microfilm

  3. Selective Guide to Literature on Engineering Geology. Engineering Literature Guides, Number 7.

    Science.gov (United States)

    Mullen, Cecilia P., Comp.

    This guide has been prepared for use by the undergraduate or graduate student in engineering geology. Because of the broad scope of the field, the major disciplines of soil mechanics, rock mechanics, and foundations are primarily emphasized. This document is a survey of information sources in engineering geology and is intended to identify those…

  4. Bathymetric Contour Maps of Lakes Surveyed in Iowa in 2005

    Science.gov (United States)

    Linhart, S.M.; Lund, K.D.

    2008-01-01

    The U.S. Geological Survey, in cooperation with the Iowa Department of Natural Resources, conducted bathymetric surveys on seven lakes in Iowa during 2005 (Arrowhead Pond, Central Park Lake, Lake Keomah, Manteno Park Pond, Lake Miami, Springbrook Lake, and Yellow Smoke Lake). The surveys were conducted to provide the Iowa Department of Natural Resources with information for the development of total maximum daily load limits, particularly for estimating sediment load and deposition rates. The bathymetric surveys provide a baseline for future work on sediment loads and deposition rates for these lakes. All of the lakes surveyed in 2005 are man-made lakes with fixed spillways. Bathymetric data were collected using boat-mounted, differential global positioning system, echo depth-sounding equipment, and computer software. Data were processed with commercial hydrographic software and exported into a geographic information system for mapping and calculating area and volume. Lake volume estimates ranged from 47,784,000 cubic feet (1,100 acre-feet) at Lake Miami to 2,595,000 cubic feet (60 acre-feet) at Manteno Park Pond. Surface area estimates ranged from 5,454,000 square feet (125 acres) at Lake Miami to 558,000 square feet (13 acres) at Springbrook Lake.

  5. Map showing geology, oil and gas fields, and geologic provinces of the Gulf of Mexico region

    Science.gov (United States)

    French, Christopher D.; Schenk, Christopher J.

    2006-01-01

    This map was created as part of a worldwide series of geologic maps for the U.S. Geological Survey's World Energy Project. These products are available on CD-ROM and the Internet. The goal of the project is to assess the undiscovered, technically recoverable oil and gas resources of the world. Two previously published digital geologic data sets (U.S. and Caribbean) were clipped to the map extent, while the dataset for Mexico was digitized for this project. Original attributes for all data layers were maintained, and in some cases, graphically merged with common symbology for presentation purposes. The world has been divided into geologic provinces that are used for allocation and prioritization of oil and gas assessments. For the World Energy Project, a subset of those provinces is shown on this map. Each province has a set of geologic characteristics that distinguish it from surrounding provinces. These characteristics may include dominant lithologies, the age of the strata, and/or structural type. The World Geographic Coordinate System of 1984 is used for data storage, and the data are presented in a Lambert Conformal Conic Projection on the OFR 97-470-L map product. Other details about the map compilation and data sources are provided in metadata documents in the data section on this CD-ROM. Several software packages were used to create this map including: Environmental Systems Research Institute, Inc. (ESRI) ArcGIS 8.3, ArcInfo software, Adobe Photoshop CS, Illustrator CS, and Acrobat 6.0.

  6. Geological and geophysical characterization of the Rio das Velhas greenstone belt

    International Nuclear Information System (INIS)

    Araujo Vieira, Marcelo de; Silva, Sergio Lima da

    1995-01-01

    In order to obtain larger information about the high potentiality of the Greenstone belt Rio das Velhas, it has been, nowadays, the object of various geological research works, among then, the Detailed Geophysical Airborne Survey of the Rio das Velhas Project (DNPM/Mining Companies Partnership) and the Geological Mapping in the scale of 1:25.000 (DNPM/CPRM). Such initiatives have brought, by themselves, valuable contributions for better knowledge of the region. In this context, this study shows a proposal of integration of geological and geophysical data, as much quantitative as qualitative, with the aim at the maximum advantage of the obtained data for the next prospecting and geological mapping works. (author). 6 refs., 2 figs., 1 tab

  7. Borehole radar survey at the granite quarry mine, Pocheon, Kyounggi province

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jung Ho; Cho, Seong Jun; Yi, Myeong Jong; Chung, Seung Hwan; Lee, Hee Il; Shin, In Chul [Korea Institute of Geology Mining and Materials, Taejon (Korea, Republic of)

    1997-12-01

    Borehole radar survey in combination with the reflection and tomography methods was conducted at the Donga granite quarry mine of Pocheon area in Kyounggi province. The purpose of radar survey in quarry mine is to delineate the inhomogeneities including fractures and to estimate the freshness of rock. 20 MHz was adopted as the central frequency for the radar reflection and tomography surveys for the longer distance of penetration. The reflection survey using the direction finding antenna was also conducted to get the information on the spatial orientation of reflectors. Besides the various kinds of radar borehole survey, two surface geophysical methods, dipole-dipole resistivity survey and ground penetrating radar, were also applied to delineate the hidden parts of geological structures which was confirmed by geological mapping. The reflection data processing package, RADPRO ver. 2.2, developed continuously through in this study, was used to process the borehole reflection radar data. The new programs to process radar reflection data using directional antenna were devised and used to calculate and image the orientation of reflectors. The major dip angle of fractured zones were determined from the radar reflection images. With the aid of direction finding antenna and the newly developed algorithm to image the orientation of reflectors, it was possible to get the three dimensional attitudes of reflectors. Detailed interpretation results of the surveyed area are included in this report. Through the interpretation of borehole reflection data using dipole and direction finding antenna, we could determine the orientation of the major fractured zone, the boundary of two mining areas. Many of hidden inhomogeneities were found by borehole radar methods. By the image of direction finding antenna, it was confirmed that nearly all of them were located at the outside of the planned mining area or were situated very deeply. Therefore, the surveyed area consists of very fresh and

  8. Predictive geology in nuclear-waste management

    International Nuclear Information System (INIS)

    Brotzen, O.

    1982-01-01

    The present situation at a specific site on the Baltic Shield is viewed in the light of its geologic history. Prediction, at a given level of confidence and from a limited number of drillholes of the minimum average spacing of conductive zones in subsurface rocks of low-hydraulic conductivity, is based on a combination of the binomial and Poisson distributions, regarding the holes as a profile sampling and assuming a cubic pattern of fractures. The data provide an empirical basis for linking the nature and frequency of past geologic events to their local effects. Special attention is given to the preservation of tectonic blocks of large rock volumes with low-hydraulic conductivity throughout the present cratonic stage, whereas intermittent movement can be traced in marked fault zones bordering the Shield and three different orogenies affected the surrounding regions. Rock mechanical, stochastic, and deterministic approaches are utilized to predict future effects from this basis. (author)

  9. Predictive geology in nuclear waste management

    International Nuclear Information System (INIS)

    Brotzen, O.

    1980-07-01

    The present situation at a specific site in the Baltic Shield is viewed in the light of its geologic history. Prediction, at a given level of confidence and from a limited number of drillholes, of the minimum average spacing of conductive zones in subsurface rocks of low hydraulic conductivity is based on a combination of the binomial and Poisson distribution, regarding the holes as a profile sampling and assuming a cubic pattern of fractures. The data provide an empirical basis for linking the nature and frequency of past geologic events to their local effects. Special attenetion is given to the preservation of tectonic blocks of large rock-volumes with very low hydraulic conductivity throughout the present cratonic stage, during which intermittent movement took place in marked fault-zones bordering the Shield, and three different orogenies affected the surrounding regions. Rock-mechanical, stochastic and deterministic approaches are utilized to predict future effects from this basis. (Author)

  10. Unveiling the secrets of geology, from the Earth to your daily life

    Science.gov (United States)

    Delfini, Claudia

    2015-04-01

    How should we share geological information? How can we start involving the public at large in topics that apparently are so far away from them? What kind of information would be interesting to disseminate to attract the attention of the people? "Geology at the table - cooking without borders" and "Minerals in your life", edited by EuroGeoSurveys, the Geological Surveys of Europe, are two publications that have showed how it is possible to reach thousands of people around Europe only following a few simple rules. A good scientific communicator must first understand its audience, their knowledge and beliefs, in order to adopt an attractive approach to their communication strategy. A good communicator has to adopt a simplified blend of the crucial information without depleting the content of the main message. One must avoid the danger of losing the audience's interest by keeping with simple language and information that is easy to understand and accessible to all. When it comes to the field of geology, communication efforts would ideally engage the audience and develop their interest, showing how their daily life is linked and conditioned to the geological phenomena. "Geology at the table - cooking without borders" and "Minerals in your life" are two examples of how geology, a topic unknown to many people, is part of our life. Leafing through the pages of these books it is possible to understand how important geology is for the existence of our society and its crucial role in the complex world we live in. In "Geology at the table - cooking without borders" twenty-eight European Geological Surveys have shown how their own national dishes contain references to our past, to the present, and to the future, which can easily be analysed and explained through geology. This cookbook offers a little taste of geology through wonderful recipes from all around Europe. While "Minerals in your life" is an educational book that combines a hilarious comic strip storyline with an

  11. Planetary Geologic Mapping Handbook - 2009

    Science.gov (United States)

    Tanaka, K. L.; Skinner, J. A.; Hare, T. M.

    2009-01-01

    Geologic maps present, in an historical context, fundamental syntheses of interpretations of the materials, landforms, structures, and processes that characterize planetary surfaces and shallow subsurfaces (e.g., Varnes, 1974). Such maps also provide a contextual framework for summarizing and evaluating thematic research for a given region or body. In planetary exploration, for example, geologic maps are used for specialized investigations such as targeting regions of interest for data collection and for characterizing sites for landed missions. Whereas most modern terrestrial geologic maps are constructed from regional views provided by remote sensing data and supplemented in detail by field-based observations and measurements, planetary maps have been largely based on analyses of orbital photography. For planetary bodies in particular, geologic maps commonly represent a snapshot of a surface, because they are based on available information at a time when new data are still being acquired. Thus the field of planetary geologic mapping has been evolving rapidly to embrace the use of new data and modern technology and to accommodate the growing needs of planetary exploration. Planetary geologic maps have been published by the U.S. Geological Survey (USGS) since 1962 (Hackman, 1962). Over this time, numerous maps of several planetary bodies have been prepared at a variety of scales and projections using the best available image and topographic bases. Early geologic map bases commonly consisted of hand-mosaicked photographs or airbrushed shaded-relief views and geologic linework was manually drafted using mylar bases and ink drafting pens. Map publishing required a tedious process of scribing, color peel-coat preparation, typesetting, and photo-laboratory work. Beginning in the 1990s, inexpensive computing, display capability and user-friendly illustration software allowed maps to be drawn using digital tools rather than pen and ink, and mylar bases became obsolete

  12. Comparison of electrical conductivity calculation methods for natural waters

    Science.gov (United States)

    McCleskey, R. Blaine; Nordstrom, D. Kirk; Ryan, Joseph N.

    2012-01-01

    The capability of eleven methods to calculate the electrical conductivity of a wide range of natural waters from their chemical composition was investigated. A brief summary of each method is presented including equations to calculate the conductivities of individual ions, the ions incorporated, and the method's limitations. The ability of each method to reliably predict the conductivity depends on the ions included, effective accounting of ion pairing, and the accuracy of the equation used to estimate the ionic conductivities. The performances of the methods were evaluated by calculating the conductivity of 33 environmentally important electrolyte solutions, 41 U.S. Geological Survey standard reference water samples, and 1593 natural water samples. The natural waters tested include acid mine waters, geothermal waters, seawater, dilute mountain waters, and river water impacted by municipal waste water. The three most recent conductivity methods predict the conductivity of natural waters better than other methods. Two of the recent methods can be used to reliably calculate the conductivity for samples with pH values greater than about 3 and temperatures between 0 and 40°C. One method is applicable to a variety of natural water types with a range of pH from 1 to 10, temperature from 0 to 95°C, and ionic strength up to 1 m.

  13. Assessing Factors That Influence the Recruitment of Majors from Introductory Geology Classes at Northern Arizona University

    Science.gov (United States)

    Hoisch, Thomas D.; Bowie, James I.

    2010-01-01

    In order to guide the formulation of strategies for recruiting undergraduates into the geology program at Northern Arizona University, we surveyed 783 students in introductory geology classes and 23 geology majors in their junior and senior years. Our analysis shows that ~7% of students in the introductory classes are possible candidates for…

  14. Geology and Nonfuel Mineral Deposits of Africa and the Middle East

    Science.gov (United States)

    Taylor, Cliff D.; Schulz, Klaus J.; Doebrich, Jeff L.; Orris, Greta; Denning, Paul; Kirschbaum, Michael J.

    2009-01-01

    A nation's endowment of nonfuel mineral resources, relative to the world's endowment, is a fundamental consideration in decisions related to a nation's economic and environmental well being and security. Knowledge of the worldwide abundance, distribution, and general geologic setting of mineral commodities provides a framework within which a nation can make decisions about economic development of its own resources, and the economic and environmental consequences of those decisions, in a global perspective. The information in this report is part of a U.S. Geological Survey (USGS) endeavor to evaluate the global endowment of both identified and undiscovered nonfuel mineral resources. The results will delineate areas of the world that are geologically permissive for the occurrence of undiscovered selected nonfuel mineral resources together with estimates of the quantity and quality of the resources. The results will be published as a series of regional reports; this one provides basic data on the identified resources and geologic setting, together with a brief appraisal of the potential for undiscovered mineral resources in Africa and the Middle East. Additional information, such as production statistics, economic factors that affect the mineral industries of the region, and historical information, is available in U.S. Geological Survey publications such as the Minerals Yearbook and the annual Mineral Commodity Summaries (available at http://minerals.usgs.gov/minerals).

  15. Geologic control on the evolution of the inner shelf morphology offshore of the Mississippi barrier islands, northern Gulf of Mexico, USA

    Science.gov (United States)

    Flocks, James G.; Kindinger, Jack G.; Kelso, Kyle W.

    2015-01-01

    Between 2008 and 2013, high-resolution geophysical surveys were conducted around the Mississippi barrier islands and offshore. The sonar surveys included swath and single-beam bathymetry, sidescan, and chirp subbottom data collection. The geophysical data were groundtruthed using vibracore sediment collection. The results provide insight into the evolution of the inner shelf and the relationship between the near surface geologic framework and the morphology of the coastal zone. This study focuses on the buried Pleistocene fluvial deposits and late Holocene shore-oblique sand ridges offshore of Petit Bois Island and Petit Bois Pass. Prior to this study, the physical characteristics, evolution, and interrelationship of the ridges between both the shelf geology and the adjacent barrier island platform had not been evaluated. Numerous studies elsewhere along the coastal margin attribute shoal origin and sand-ridge evolution to hydrodynamic processes in shallow water (<20 m). Here we characterize the correlation between the geologic framework and surface morphology and demonstrate that the underlying stratigraphy must also be considered when developing an evolutionary conceptual model. It is important to understand this near surface, nearshore dynamic in order to understand how the stratigraphy influences the long-term response of the coastal zone to sea-level rise. The study also contributes to a growing body of work characterizing shore-oblique sand ridges which, along with the related geology, are recognized as increasingly important components to a nearshore framework whose origins and evolution must be understood and inventoried to effectively manage the coastal zone.

  16. Application of underwater radon measurements in geology

    Energy Technology Data Exchange (ETDEWEB)

    Varhegyi, A.; Baranyi, I.; Gerzson, I. (Mecsek Ore Mining Enterprise, Pecs (Hungary)); Somogyi, G.; Hakl, J.; Hunyadi, I. (Magyar Tudomanyos Akademia, Debrecen (Hungary). Atommag Kutato Intezete)

    1988-01-01

    Based on the observed phenomenon of geogas migration in microbubble form from deeper regions, the authors have developed a new model for the vertical transport of radon released from deeper sources. The physical properties of the rock relating to the upflow of microbubbles below the groundwater level are considered and the radon transport parameter of rocks is introduced. The vertical distribution of radon concentration in the case of a multi-layered geological model is given and the penetration depth of underwater radon measurements is examined. Aspects of underwater radon detection by the nuclear track detector technique are analyzed. The radon transport model gives a new theoretical basis for several applications of radon measurements in geology. The advantages of underwater radon detection have already been proved in uranium exploration. Further geological applications are proposed in earthquake prediction, in volcanology, in the survey of active faults and thermal waters. (author).

  17. Design and Implementation Aspects of the Geological Data Infrastructure for European Society

    Science.gov (United States)

    van der Krogt, Rob; Pedersen, Mikael; Tulstrup, Jørgen; Robida, François; Serrrano, Jean-Jacques; Grellet, Sylvain; Lee, Kathryn; Harrison, Matthew; Demicheli, Luca; Delfini, Claudia; Hugelier, Sara; van Daalen, Tirza

    2014-05-01

    Digital geological data play a vital role in responding to the key social and economic challenges facing the European and global communities in the 21st century. These challenges include sustainable supply of energy, water and mineral resources, mitigating the impacts of natural hazards, and responding to climate change by exploiting renewable energy sources and capturing and storing greenhouse gases. As a response to these challenges the European geological surveys have enhanced their collaboration to prepare the implementation of a European Geological Data Infrastructure (EGDI), in order to provide easily accessible, interoperable and harmonized geological information on a European and international level. The high-level objective is to create a proper information base that supports the provision of geological services for European and international organisations, international industry and any other stakeholder working at cross-border or international level. It is additionally expected that the easy access to geological data at European level will enhance the development of new applications. The datasets to be served by the EGDI will primarily originate from the National Geological Survey Organisations (NGSO's) in Europe and the infrastructure will build further on the results of past, present and future European research projects and international programs in which these surveys are involved, for example the OneGeology-Europe project that serves regularly updated geological maps at 1:1M scale for the European area via a web portal. To prepare the implementation of the EGDI the NGSO's collaborate under the framework of the EU-FP7 EGDI-Scope study. This paper will present the main results and conclusions of this program, covering the following main issues that are taken into account to achieve the objectives of the EGDI: Stakeholder involvement: The study has exchanged with representative stakeholders from organisations and institutions to cover perspectives from

  18. Description of the U.S. Geological Survey's water-quality sampling and water-level monitoring program at the Hallam Nuclear Facility, August through September 1997

    International Nuclear Information System (INIS)

    1997-01-01

    A water-quality and water-level program between the US Department of Energy (USDOE) and the US Geological Survey (USGS) was re-established in August 1997 to (1) collect one set of water-quality samples from 17 of the 19 USDOE monitor wells, and (2) make five water-level measurements during a 2-month period from the 19 USDOE monitor wells at the Hallam Nuclear Facility, Hallam, Nebraska. Data from these wells are presented

  19. Studying the TEM response of a 3-D conductor at a geological contact using the FDTD method

    Energy Technology Data Exchange (ETDEWEB)

    Wang, T.; Tripp, A.C.; Hohmann, G.W. [Univ. of Utah, Salt Lake City, UT (United States). Dept. of Geology and Geophysics

    1995-07-01

    Many mineral targets are located near contact zones. Since the change of resistivity across the contact can distort or obscure the transient electromagnetic (TEM) response of the target, it is important to understand the possible effects. Previous investigators have examined similar problems using scale models. For example, Spies and Parker (1984) studied the TEM responses of fixed-loop and moving-loop configurations to geological contacts with lateral resistivity variations. More recently, Wilt (1991) systematically studied TEM soundings near a geological contact and observed that different survey systems respond to the contact in different ways. This paper will illustrate the use of the finite-difference, time-domain (FDTD) algorithm of Wang and Hohmann (1993) for calculating the TEM response of a 3-D conductive body at a geological contact. The algorithm is based on the Yee staggered grid FDTD method for solving the transient electrical nonmagnetic field responses of a 3-D model. On a suitable computer, a wide range of model responses can be readily calculated, a versatility that scale modeling does not share. This study uses a fixed transmitter loop, roving-receiver configuration. Many other configurations can be regarded as special cases of this survey. It is commonly employed, for instance, by the Newmont EMP (Body and Wiles, 1984), UTEM (West et al., 1984), and Geonics EM37 systems. The configuration also facilitates finite-difference, time-domain modeling because it does not require frequent movement of the source.

  20. Chapter 8: US geological survey Circum-Arctic Resource Appraisal (CARA): Introduction and summary of organization and methods

    Science.gov (United States)

    Charpentier, R.R.; Gautier, D.L.

    2011-01-01

    The USGS has assessed undiscovered petroleum resources in the Arctic through geological mapping, basin analysis and quantitative assessment. The new map compilation provided the base from which geologists subdivided the Arctic for burial history modelling and quantitative assessment. The CARA was a probabilistic, geologically based study that used existing USGS methodology, modified somewhat for the circumstances of the Arctic. The assessment relied heavily on analogue modelling, with numerical input as lognormal distributions of sizes and numbers of undiscovered accumulations. Probabilistic results for individual assessment units were statistically aggregated taking geological dependencies into account. Fourteen papers in this Geological Society volume present summaries of various aspects of the CARA. ?? 2011 The Geological Society of London.

  1. Survey contents and their significance to the preliminary investigation areas for the HLW geological disposal. In the case of identification and assessment of active faults in the survey area

    International Nuclear Information System (INIS)

    Yamazaki, Haruo

    2004-01-01

    Geological environment has cumulatively received diverse crustal movements having various time and spatial scales in the long earth history. For the HLW disposal, the geological stability around the investigation site should be examined and assessed in each individual time and spatial scale. Along the northern margin of Izu Peninsula where the highest rate of crustal movement is observed in Japan, the change of extensive stress field affected to local tectonics had taken for several hundred thousand years at the collision of Izu block in early Pleistocene. Therefore, there is little potential of sudden occurrence of new disturbance in the evaluation period of a hundred thousand years. The active fault survey in the preliminary investigation areas should indispensably reexamine the existence of the faults because of the low reliability of previously published active fault maps. Engineering answer should be requested for the accommodation to small fault and fractures in the host rocks. Although there is little potential for the occurrence of a new active fault in the non-faulted region, it is necessary to check the potential of new fracture occurrence in the stress concentrated region using the distribution of coulomb failure stress change. (author)

  2. The State Geologic Map Compilation (SGMC) geodatabase of the conterminous United States

    Science.gov (United States)

    Horton, John D.; San Juan, Carma A.; Stoeser, Douglas B.

    2017-06-30

    The State Geologic Map Compilation (SGMC) geodatabase of the conterminous United States (https://doi. org/10.5066/F7WH2N65) represents a seamless, spatial database of 48 State geologic maps that range from 1:50,000 to 1:1,000,000 scale. A national digital geologic map database is essential in interpreting other datasets that support numerous types of national-scale studies and assessments, such as those that provide geochemistry, remote sensing, or geophysical data. The SGMC is a compilation of the individual U.S. Geological Survey releases of the Preliminary Integrated Geologic Map Databases for the United States. The SGMC geodatabase also contains updated data for seven States and seven entirely new State geologic maps that have been added since the preliminary databases were published. Numerous errors have been corrected and enhancements added to the preliminary datasets using thorough quality assurance/quality control procedures. The SGMC is not a truly integrated geologic map database because geologic units have not been reconciled across State boundaries. However, the geologic data contained in each State geologic map have been standardized to allow spatial analyses of lithology, age, and stratigraphy at a national scale.

  3. U.S. Geological Survey continuous monitoring workshop—Workshop summary report

    Science.gov (United States)

    Sullivan, Daniel J.; Joiner, John K.; Caslow, Kerry A.; Landers, Mark N.; Pellerin, Brian A.; Rasmussen, Patrick P.; Sheets, Rodney A.

    2018-04-20

    Executive SummaryThe collection of high-frequency (in other words, “continuous”) water data has been made easier over the years because of advances in technologies to measure, transmit, store, and query large, temporally dense datasets. Commercially available, in-situ sensors and data-collection platforms—together with new techniques for data analysis—provide an opportunity to monitor water quantity and quality at time scales during which meaningful changes occur. The U.S. Geological Survey (USGS) Continuous Monitoring Workshop was held to build stronger collaboration within the Water Mission Area on the collection, interpretation, and application of continuous monitoring data; share technical approaches for the collection and management of continuous data that improves consistency and efficiency across the USGS; and explore techniques and tools for the interpretation of continuous monitoring data, which increases the value to cooperators and the public. The workshop was organized into three major themes: Collecting Continuous Data, Understanding and Using Continuous Data, and Observing and Delivering Continuous Data in the Future. Presentations each day covered a variety of related topics, with a special session at the end of each day designed to bring discussion and problem solving to the forefront.The workshop brought together more than 70 USGS scientists and managers from across the Water Mission Area and Water Science Centers. Tools to manage, assure, control quality, and explore large streams of continuous water data are being developed by the USGS and other organizations and will be critical to making full use of these high-frequency data for research and monitoring. Disseminating continuous monitoring data and findings relevant to critical cooperator and societal issues is central to advancing the USGS networks and mission. Several important outcomes emerged from the presentations and breakout sessions.

  4. Survey on Ethical Conduct Thresholds in Cardiologal Medical Practice in Argentina.

    Science.gov (United States)

    Doval, Hernán C; Tajer, Carlos D; Borracci, Raúl A; Nuñez, Carmen; Samarelli, Marisa; Tamini, Susana

    2015-08-01

    The purpose of this study was to analyze the attitude of a group of cardiologists on the ethical conducts they would accept or adopt when encountered with different hypothetical situations of medical practice. Between August and September of 2011, 700 Argentine cardiologists were surveyed in situations which posed ethical dilemmas in the patient-physician relationship, among colleagues or involving financial agreements with employers or the pharmaceutical industry. Ethical conflicts were evidenced in a series of inappropriate conducts such as differential fees, trips and meals sponsored by laboratories, splitting fees, overbilling, self-referral, charging for patient referral, financial compensation for ordering medical procedures, and various situations derived from the relationship with employers. In general, financial compensation from the pharmaceutical industry was more accepted than the conflictive situations which directly involved patients, colleagues or employers. The rejection of these conducts, the physicians' deontological education and the improvement of financial and organizational conditions in medical practice will help to encourage better medical professionalism and avoid unseemly behaviors. © 2013 John Wiley & Sons Ltd.

  5. Shahejie-Shahejie/Guantao/Wumishan and Carboniferous/Permian Coal-Paleozoic Total Petroleum Systems in the Bohaiwan Basin, China (based on geologic studies for the 2000 World Energy Assessment Project of the U.S. Geological Survey)

    Science.gov (United States)

    Ryder, Robert T.; Qiang, Jin; McCabe, Peter J.; Nuccio, Vito F.; Persits, Felix

    2012-01-01

    This report discusses the geologic framework and petroleum geology used to assess undiscovered petroleum resources in the Bohaiwan basin province for the 2000 World Energy Assessment Project of the U.S. Geological Survey. The Bohaiwan basin in northeastern China is the largest petroleum-producing region in China. Two total petroleum systems have been identified in the basin. The first, the Shahejie&ndashShahejie/Guantao/Wumishan Total Petroleum System, involves oil and gas generated from mature pods of lacustrine source rock that are associated with six major rift-controlled subbasins. Two assessment units are defined in this total petroleum system: (1) a Tertiary lacustrine assessment unit consisting of sandstone reservoirs interbedded with lacustrine shale source rocks, and (2) a pre-Tertiary buried hills assessment unit consisting of carbonate reservoirs that are overlain unconformably by Tertiary lacustrine shale source rocks. The second total petroleum system identified in the Bohaiwan basin is the Carboniferous/Permian Coal–Paleozoic Total Petroleum System, a hypothetical total petroleum system involving natural gas generated from multiple pods of thermally mature coal beds. Low-permeability Permian sandstones and possibly Carboniferous coal beds are the reservoir rocks. Most of the natural gas is inferred to be trapped in continuous accumulations near the center of the subbasins. This total petroleum system is largely unexplored and has good potential for undiscovered gas accumulations. One assessment unit, coal-sourced gas, is defined in this total petroleum system.

  6. Physiography, geology, and land cover of four watersheds in Eastern Puerto Rico

    Science.gov (United States)

    S.F. Murphy; R.F. Stallard; M.C. Larsen; W.A. Gould

    2012-01-01

    Four watersheds with differing geology and land cover in eastern Puerto Rico have been studied on a long-term basis by the U.S. Geological Survey to evaluate water, energy, and biogeochemical budgets. These watersheds are typical of tropical, island-arc settings found in many parts of the world. Two watersheds are located on coarse-grained granitic rocks that weather...

  7. IAEA safeguards for geological repositories

    International Nuclear Information System (INIS)

    Moran, B.W.

    2005-01-01

    In September. 1988, the IAEA held its first formal meeting on the safeguards requirements for the final disposal of spent fuel and nuclear material-bearing waste. The consensus recommendation of the 43 participants from 18 countries at this Advisory Group Meeting was that safeguards should not terminate of spent fuel even after emplacement in, and closure of, a geologic repository.' As a result of this recommendation, the IAEA initiated a series of consultants' meetings and the SAGOR Programme (Programme for the Development of Safeguards for the Final Disposal of Spent Fuel in Geologic Repositories) to develop an approach that would permit IAEA safeguards to verify the non-diversion of spent fuel from a geologic repository. At the end of this process, in December 1997, a second Advisory Group Meeting, endorsed the generic safeguards approach developed by the SAGOR Programme. Using the SAGOR Programme results and consultants' meeting recommendations, the IAEA Department of Safeguards issued a safeguards policy paper stating the requirements for IAEA safeguards at geologic repositories. Following approval of the safeguards policy and the generic safeguards approach, the Geologic Repository Safeguards Experts Group was established to make recommendations on implementing the safeguards approach. This experts' group is currently making recommendations to the IAEA regarding the safeguards activities to be conducted with respect to Finland's repository programme. (author)

  8. U.S. Geological Survey shrub/grass products provide new approach to shrubland monitoring

    Science.gov (United States)

    Young, Steven M.

    2017-12-11

    In the Western United States, shrubland ecosystems provide vital ecological, hydrological, biological, agricultural, and recreational services. However, disturbances such as livestock grazing, exotic species invasion, conversion to agriculture, climate change, urban expansion, and energy development are altering these ecosystems.Improving our understanding of how shrublands are distributed, where they are changing, the extent of the historical change, and likely future change directions is critical for successful management of these ecosystems. Remote-sensing technologies provide the most likely data source for large-area monitoring of ecosystem disturbance—both near-real time and historically. A monitoring framework supported by remote-sensing data can offer efficient and accurate analysis of change across a range of spatial and temporal scales.The U.S. Geological Survey has been working to develop new remote-sensing data, tools, and products to characterize and monitor these changing shrubland landscapes. Nine individual map products (components) have been developed that quantify the percent of shrub, sagebrush, big sagebrush, herbaceous, annual herbaceous, litter, bare ground, shrub height, and sagebrush height at 1-percent intervals in each 30-meter grid cell. These component products are designed to be combined and customized to widely support different applications in rangeland monitoring, analysis of wildlife habitat, resource inventory, adaptive management, and environmental review.

  9. Simplified conversions between specific conductance and salinity units for use with data from monitoring stations

    Science.gov (United States)

    Schemel, Laurence E.

    2001-01-01

    The U.S. Geological Survey, Bureau of Reclamation, and the California Department of Water Resources maintain a large number of monitoring stations that record specific conductance, often referred to as “electrical conductivity,” in San Francisco Bay Estuary and the Sacramento-San Joaquin Delta. Specific conductance units that have been normalized to a standard temperature are useful in fresh waters, but conversion to salinity units has some considerable advantages in brackish waters of the estuary and Delta. For example, salinity is linearly related to the mixing ratio of freshwater and seawater, which is not the case for specific conductance, even when values are normalized to a standard temperature. The Practical Salinity Scale 1978 is based on specific conductance, temperature, and pressure measurements of seawater and freshwater mixtures (Lewis 1980 and references therein). Equations and data that define the scale make possible conversions between specific conductance and salinity values.

  10. U.S. Geological Survey climate and land use change science strategy: a framework for understanding and responding to global change

    Science.gov (United States)

    Burkett, Virginia R.; Kirtland, David A.; Taylor, Ione L.; Belnap, Jayne; Cronin, Thomas M.; Dettinger, Michael D.; Frazier, Eldrich L.; Haines, John W.; Loveland, Thomas R.; Milly, Paul C.D.; ,; ,; ,; Robert, S.; Maule, Alec G.; McMahon, Gerard; Striegl, Robert G.

    2013-01-01

    The U.S. Geological Survey (USGS), a nonregulatory Federal science agency with national scope and responsibilities, is uniquely positioned to serve the Nation’s needs in understanding and responding to global change, including changes in climate, water availability, sea level, land use and land cover, ecosystems, and global biogeochemical cycles. Global change is among the most challenging and formidable issues confronting our Nation and society. Scientists agree that global environmental changes during this century will have far-reaching societal implications (Intergovernmental Panel on Climate Change, 2007; U.S. Global Change Research Program, 2009). In the face of these challenges, the Nation can benefit greatly by using natural science information in decisionmaking.

  11. Geology and geothermics of the Island of Milos (Greece)

    Energy Technology Data Exchange (ETDEWEB)

    Fytikas, M.; Marinelli, G.

    1976-01-01

    Geothermal research which has been conducted on the island of Milos is reviewed and the island's geology is discussed in terms of the geodynamics of the eastern Mediterranean. The rock formations which outcrop at Milos are described in detail, including the crystalline basement, Neogene transgressive conglomerates and limestones, and the Quaternary volcanics and volcano-sedimentary series. The recent disjunctive tectonics and volcano-tectonics affecting Milos and the neighboring islands are reviewed. Thermal manifestations and their attendant mineralizations and hydrothermal alterations are described. The geophysical methods utilized in exploration and for the siting of production wells are described. Exploration work involved the drilling of 55 wells for thermometric determinations and a full scale electrical survey. Preliminary data from two production wells with bottom-hole temperatures in excess of 300/sup 0/C are reported. Fifty-four references are provided.

  12. Planetary Geologic Mapping Handbook - 2010. Appendix

    Science.gov (United States)

    Tanaka, K. L.; Skinner, J. A., Jr.; Hare, T. M.

    2010-01-01

    Geologic maps present, in an historical context, fundamental syntheses of interpretations of the materials, landforms, structures, and processes that characterize planetary surfaces and shallow subsurfaces. Such maps also provide a contextual framework for summarizing and evaluating thematic research for a given region or body. In planetary exploration, for example, geologic maps are used for specialized investigations such as targeting regions of interest for data collection and for characterizing sites for landed missions. Whereas most modern terrestrial geologic maps are constructed from regional views provided by remote sensing data and supplemented in detail by field-based observations and measurements, planetary maps have been largely based on analyses of orbital photography. For planetary bodies in particular, geologic maps commonly represent a snapshot of a surface, because they are based on available information at a time when new data are still being acquired. Thus the field of planetary geologic mapping has been evolving rapidly to embrace the use of new data and modern technology and to accommodate the growing needs of planetary exploration. Planetary geologic maps have been published by the U.S. Geological Survey (USGS) since 1962. Over this time, numerous maps of several planetary bodies have been prepared at a variety of scales and projections using the best available image and topographic bases. Early geologic map bases commonly consisted of hand-mosaicked photographs or airbrushed shaded-relief views and geologic linework was manually drafted using mylar bases and ink drafting pens. Map publishing required a tedious process of scribing, color peel-coat preparation, typesetting, and photo-laboratory work. Beginning in the 1990s, inexpensive computing, display capability and user-friendly illustration software allowed maps to be drawn using digital tools rather than pen and ink, and mylar bases became obsolete. Terrestrial geologic maps published by

  13. Instrument specifications and geophysical records for airborne electromagnetic survey of parts of Iron, Baraga, and Dickson Counties, Michigan

    Science.gov (United States)

    Heran, William D.; Smith, Bruce D.

    1980-01-01

    The data presented herein is from an airborne electromagnetic INPUT* survey conducted by Geoterrex Limited of Canada for the U.S. Geological Survey. The survey area is located in the central part of the Upper Peninsula of Michigan, within parts of Iron, Baraga, and Dickinson Counties. The general area covered is between 46°00' and 46°30' latitude and 88°00' and 88°30' longitude (fig. 1).The INPUT survey was flown as part of a U.S. Geological Survey CUSMAP (Conterminous United States Mineral Appraisal Program) project focusing on the Iron River 2° quadrangle. The survey was flown in order to provide geophysical information which will aid in an integrated geological assessment of mineral potentials of this part of the Iron River 2° quadrangle. The flight line spacing was chosen to maximize the areal coverage without a loss of resolution of major lithologic and structural features.East-west flight lines were flown 400 feet above ground at 1/2 mile intervals. Aerial photos were used for navigation, and the flight path was recorded on continuous-strip film. A continuously recording total field ground magnetic station was used to monitor variations in the Earth's magnetic field. One north-south line was flown to provide a tie for the magnetic data, which was recorded simultaneously with the electromagnetic data by a sensor mounted in the tail of the aircraft. This report is one of two open-file reports. The map in the other report Heran and Smith (1980) shows locations of the fiducial points, the flight lines, preliminary locations of anomalies and conductive zones; all plotted on an air photomosaic. The latitude and longitude ticks marked on this map are only approximate due to distortion in air photos used to recover the flight line position. This map is preliminary and is not to be considered a final interpretation. The present report contains a description of the instrument specifications, a copy of the ground station magnetic data, and a record of the

  14. Evolution of the Atmosphere and Oceans: Evidence from Geological ...

    Indian Academy of Sciences (India)

    Geological Survey of India since 1974. ... sulphate bacteria, for instance, use H2S instead o[water, and CO2 to produce carbohydrates in the presence of light energy. ... weathering and in the oxidation of reduced gases of volcanic origin.

  15. Computer Programs for Obtaining and Analyzing Daily Mean Steamflow Data from the U.S. Geological Survey National Water Information System Web Site

    Science.gov (United States)

    Granato, Gregory E.

    2009-01-01

    Streamflow information is important for many planning and design activities including water-supply analysis, habitat protection, bridge and culvert design, calibration of surface and ground-water models, and water-quality assessments. Streamflow information is especially critical for water-quality assessments (Warn and Brew, 1980; Di Toro, 1984; Driscoll and others, 1989; Driscoll and others, 1990, a,b). Calculation of streamflow statistics for receiving waters is necessary to estimate the potential effects of point sources such as wastewater-treatment plants and nonpoint sources such as highway and urban-runoff discharges on receiving water. Streamflow statistics indicate the amount of flow that may be available for dilution and transport of contaminants (U.S. Environmental Protection Agency, 1986; Driscoll and others, 1990, a,b). Streamflow statistics also may be used to indicate receiving-water quality because concentrations of water-quality constituents commonly vary naturally with streamflow. For example, concentrations of suspended sediment and sediment-associated constituents (such as nutrients, trace elements, and many organic compounds) commonly increase with increasing flows, and concentrations of many dissolved constituents commonly decrease with increasing flows in streams and rivers (O'Connor, 1976; Glysson, 1987; Vogel and others, 2003, 2005). Reliable, efficient and repeatable methods are needed to access and process streamflow information and data. For example, the Nation's highway infrastructure includes an innumerable number of stream crossings and stormwater-outfall points for which estimates of stream-discharge statistics may be needed. The U.S. Geological Survey (USGS) streamflow data-collection program is designed to provide streamflow data at gaged sites and to provide information that can be used to estimate streamflows at almost any point along any stream in the United States (Benson and Carter, 1973; Wahl and others, 1995; National

  16. Near-surface 3D reflections seismic survey; Sanjigen senso hanshaho jishin tansa

    Energy Technology Data Exchange (ETDEWEB)

    Nakahigashi, H; Mitsui, H; Nakano, O; Kobayashi, T [DIA Consultants Co. Ltd., Tokyo (Japan)

    1997-05-27

    Faults are being actively investigated across Japan since the Great Hanshin-Awaji Earthquake. Discussed in this report is the application of the 3D near-surface reflection seismic survey in big cities. Data from trenching and drilling is used for the geological interpretation of the surroundings of a fault, and the reflection seismic survey is used to identify the position, etc., of the fault. In this article, when the results obtained from the experimental field are examined, it is found that the conventional 2D imaging reflection survey betrays the limit of its capability when the geological structure is complicated, that the 3D reflection seismic survey, on the contrary, is capable of high-precision imaging and, when augmented by drilling, etc., becomes capable of a more detailed interpretation, and that it also contributes effectively to the improvement of local disaster prevention in big cities. Using as the model the Tachikawa fault that runs near JR Tachikawa Station, embodiment of the 3D reflection seismic survey is reviewed. For the acquisition of data excellent in quality in a 3D reflection seismic survey conducted utilizing the roads in the sector chosen for experiment in the urban area, the shock generating points and receiving points should be positioned by taking into account the parameters in the bin arranging process so that the mid-points will be regularly distributed on the surface. 3 refs., 11 figs., 1 tab.

  17. Methods of practice and guidelines for using survey-grade global navigation satellite systems (GNSS) to establish vertical datum in the United States Geological Survey

    Science.gov (United States)

    Rydlund, Jr., Paul H.; Densmore, Brenda K.

    2012-01-01

    Geodetic surveys have evolved through the years to the use of survey-grade (centimeter level) global positioning to perpetuate and post-process vertical datum. The U.S. Geological Survey (USGS) uses Global Navigation Satellite Systems (GNSS) technology to monitor natural hazards, ensure geospatial control for climate and land use change, and gather data necessary for investigative studies related to water, the environment, energy, and ecosystems. Vertical datum is fundamental to a variety of these integrated earth sciences. Essentially GNSS surveys provide a three-dimensional position x, y, and z as a function of the North American Datum of 1983 ellipsoid and the most current hybrid geoid model. A GNSS survey may be approached with post-processed positioning for static observations related to a single point or network, or involve real-time corrections to provide positioning "on-the-fly." Field equipment required to facilitate GNSS surveys range from a single receiver, with a power source for static positioning, to an additional receiver or network communicated by radio or cellular for real-time positioning. A real-time approach in its most common form may be described as a roving receiver augmented by a single-base station receiver, known as a single-base real-time (RT) survey. More efficient real-time methods involving a Real-Time Network (RTN) permit the use of only one roving receiver that is augmented to a network of fixed receivers commonly known as Continually Operating Reference Stations (CORS). A post-processed approach in its most common form involves static data collection at a single point. Data are most commonly post-processed through a universally accepted utility maintained by the National Geodetic Survey (NGS), known as the Online Position User Service (OPUS). More complex post-processed methods involve static observations among a network of additional receivers collecting static data at known benchmarks. Both classifications provide users

  18. Salish Kootenai College and U.S. Geological Survey partnership—Enhancing student opportunities and professional development

    Science.gov (United States)

    Sando, Roy; Fordham, Monique

    2017-08-29

    Salish Kootenai College (SKC), in the Flathead Reservation in the northwestern corner of Montana, is the largest of the seven Tribal colleges in the State. In 2011, U.S. Geological Survey (USGS) National Tribal Liaison Monique Fordham from the Office of Tribal Relations/Office of Science Quality and Integrity began discussions with SKC faculty to examine ways the USGS could assist with classes taught as part of the new hydrology program at the college. With funding provided by the USGS Office of Tribal Relations, Roy Sando from the Wyoming-Montana Water Science Center began collaborating with SKC. From 2012 to 2017, Sando and others have developed and taught eight educational workshops at SKC. Topics of the workshops have included classifying land cover using remote sensing, characterizing stream channel migration, estimating actual evapotranspiration, modeling groundwater contamination plumes, and building custom geographic information system tools. By contributing to the educational training of SKC students and establishing this high level of collaboration with a Tribal college, the USGS is demonstrating its commitment to helping build the next generation of Tribal scientists.

  19. Collection and arrangement of the geological data in the northern part of Hokkaido

    International Nuclear Information System (INIS)

    Kanekiyo, Toyohiko

    1999-12-01

    The present article is to collect, to arrange, and to make new figures of the data owned by the private company in and around the site proposed for the Underground Research Laboratory (tentative name). The categories of the data are, 1) surface geological survey, 2) gravity survey, 3) seismic survey, and 4) result of the drilling well. The 1:50,000 scaled geographic maps of Toyotomi and Onobunai published by Geographical Survey Institute (GSI) of the Ministry of Construction cover the area of compiled geological survey. Formations of Masuporo, Wakkanai, Koetoi, and Yuchi are distributed in the studied area. There are some folding axes trending NNW-SSE in this area. Two notable thrust faults named Toyotomi Fault and Omagari Fault are developed and running parallel to the Toyotomi and Omagari - Yuko Anticlines. In the eastern area of these faults, the Koetoi and the lower formations are distributed with small faulted blocks. In the western area, on the other hand, the Koetoi and the upper formations are distributed with relatively gentle dip. The 1:50,000 scaled maps of Toyotomi, Wakkasakinai, Onobunai, and Teshio, published by GSI, cover the area of compiled data of gravity survey. The locations of anticline recognized from geological survey and seismic survey correspond to the area of low gravity anomaly in the west of the above mentioned faults. It may call 'abnormal gravity area'. The area of compiled seismic survey is almost the same as that of gravity survey. The underground geological contour map was made for the base of the Masuporo Formation, because this horizon is the only one that could be traced in almost of the seismic record sections over the study area. Only a little seismic reflection can be seen in the eastern area of the faults mentioned above. The well was drilled on the Kawaguchi Anticline, and the total depth (T.D) is 4,505 m. Therefore, various kind of data are arranged to the T.D continuously, and displayed in the enclosed figures. The result

  20. Best Manufacturing Practices. Report of Survey Conducted at Stafford County Public Schools, Stafford County, VA

    National Research Council Canada - National Science Library

    1994-01-01

    During the week of August 8, 1994, a Best Manufacturing Practices (BMP) survey was conducted at the Stafford County Public Schools located in Stafford County, Virginia, considered one of the fastest growing counties in the state...

  1. FY 1999 basic survey of coal resource development. Coal GIS survey; 1999 nendo sekitan shigen kaihatsu kiso chosa. Sekitan GIS chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    The purpose of this survey is to construct a comprehensive coal field assessment technology system which can promptly cope with any natural conditions/geological situations of coal field. As to the GIS (geographical information system) which can unifiedly manage/analyze various data being used in other fields, survey was conducted of present situations/technology trends of the resource related GIS, and at the same time the survey is aimed at applying it to the coal resource field. In the survey in this fiscal year, based on the survey made in FY 1998, applicability of GIS function was verified for Australia where the coal GIS is prepared. And the fundamental design was made to construct a coal GIS considered of concrete application in the stage of coal resource exploration and resource assessment. In the fundamental design, prototypes of individual functions of the system were made. Making the analysis using the actual data, expansion and complication of the system size were advanced step by step toward the completion of the system. Such prototypical development method was adopted. (NEDO)

  2. Geologic-radiometric techniques applied for uranium prospection at the Hierro-Cayo Largo area

    International Nuclear Information System (INIS)

    Gongora, L.E.; Olivera, J.

    1995-01-01

    Using geologic-radiometric techniques uraniferous anomalies were evaluated at the Hierro-Cayo Largo area located in Pinar del Rio province. During the uranium prospection works at most promising areas, geologic itineraries and gamma ray, radon emanation spectrometric survey were done. Trenches were made and some boreholes were drilled (up to 20-30 m depth). In addition a lot of samples were taken in order to determine the amount of U, Ra, Th, y K by spectrometric techniques. As result of this investigation, a geological placing, a mineralogical and geochemical characteristic of uraniferous mineralization was possible to find out. The appropriate prospection indications for uranium exploration at Esperanza geologic zone were defined

  3. Determination of noble metals in geological materials by radiochemical neutron-activation analysis

    International Nuclear Information System (INIS)

    Ahmad, I.; Ahmad, S.; Morris, D.F.C.

    1977-01-01

    A method for the determination of platinum, palladium, gold and iridium in geological materials following activation with thermal neutrons is described. Radionuclides formed from the elements are separated by a scheme based largely on liquid-liquid extractions. The procedure has been applied to the analysis of US Geological Survey standard rocks and to studies of the distribution of the noble metals in lateritic nickel ores. (author)

  4. The U.S. Geological Survey Flagstaff Science Campus—Providing expertise on planetary science, ecology, water resources, geologic processes, and human interactions with the Earth

    Science.gov (United States)

    Hart, Robert J.; Vaughan, R. Greg; McDougall, Kristin; Wojtowicz, Todd; Thenkenbail, Prasad

    2017-06-29

    The U.S. Geological Survey’s Flagstaff Science Campus is focused on interdisciplinary study of the Earth and solar system, and has the scientific expertise to detect early environmental changes and provide strategies to minimize possible adverse effects on humanity. The Flagstaff Science Campus (FSC) is located in Flagstaff, Arizona, which is situated in the northern part of the State, home to a wide variety of landscapes and natural resources, including (1) young volcanoes in the San Francisco Volcanic Field, (2) the seven ecological life zones of the San Francisco Peaks, (3) the extensive geologic record of the Colorado Plateau and Grand Canyon, (4) the Colorado River and its perennial, ephemeral, and intermittent tributaries, and (5) a multitude of canyons, mountains, arroyos, and plains. More than 200 scientists, technicians, and support staff provide research, monitoring, and technical advancements in planetary geology and mapping, biology and ecology, Earth-based geology, hydrology, and changing climate and landscapes. Scientists at the FSC work in collaboration with multiple State, Federal, Tribal, municipal, and academic partners to address regional, national, and global environmental issues, and provide scientific outreach to the general public.

  5. Characterizing the subsurface geology in and around the U.S. Army Camp Stanley Storage Activity, south-central Texas

    Science.gov (United States)

    Blome, Charles D.; Clark, Allan K.

    2018-02-15

    Several U.S. Geological Survey projects, supported by the National Cooperative Geologic Mapping Program, have used multi-disciplinary approaches over a 14-year period to reveal the surface and subsurface geologic frameworks of the Edwards and Trinity aquifers of central Texas and the Arbuckle-Simpson aquifer of south-central Oklahoma. Some of the project achievements include advancements in hydrostratigraphic mapping, three-dimensional subsurface framework modeling, and airborne geophysical surveys as well as new methodologies that link geologic and groundwater flow models. One area where some of these milestones were achieved was in and around the U.S. Army Camp Stanley Storage Activity, located in north­western Bexar County, Texas, about 19 miles north­west of downtown San Antonio.

  6. Colorado Canyons National Conservation Area 2003 visitor use survey: Completion report

    Science.gov (United States)

    Ponds, Phadrea; Gillette, Shana C.; Koontz, Lynne

    2004-01-01

    This report represents the analysis of research conducted by the U.S. Geological Survey (USGS) for the Bureau of Land Management (BLM). The purpose is to provide socio-economic and recreational use information that can be used in the development of a Resource Management Plan (RMP) for the Colorado Canyons National Conservation Area (CCNCA). The results reported here deal primarily with recreation-based activities in four areas: Kokopelli Loops, Rabbit Valley, Loma Boat Launch, and Devil’s Canyon.

  7. U.S. Geological Survey distribution of European Space Agency's Sentinel-2 data

    Science.gov (United States)

    Pieschke, Renee L.

    2017-03-31

    A partnership established between the European Space Agency (ESA) and the U.S. Geological Survey (USGS) allows for USGS storage and redistribution of images acquired by the MultiSpectral Instrument (MSI) on the European Union's Sentinel-2 satellite mission. The MSI data are acquired from a pair of satellites, Sentinel-2A and Sentinel-2B, which are part of a larger set of ESA missions focusing on different aspects of Earth observation. The primary purpose of the Sentinel-2 series is to collect multispectral imagery over the Earth’s land surfaces, large islands, and inland and coastal waters. Sentinel-2A was launched in 2015 and Sentinel-2B launched in 2017.The collaborative effort between ESA and USGS provides for public access and redistribution of global acquisitions of Sentinel-2 data at no cost, which allows users to download the MSI imagery from USGS access systems such as Earth- Explorer, in addition to the ESA Sentinels Scientific Data Hub. The MSI sensor acquires 13 spectral bands that are highly complementary to data acquired by the USGS Landsat 8 Operational Land Imager (OLI) and Landsat 7 Enhanced Thematic Mapper Plus (ETM+). The product options from USGS include a Full-Resolution Browse (FRB) image product generated by USGS, along with a 100-kilometer (km) by 100-km tile-based Level-1C top-of-atmosphere (TOA) reflectance product that is very similar (but not identical) to the currently (2017) distributed ESA Level 1C product.

  8. Medication errors in chemotherapy preparation and administration: a survey conducted among oncology nurses in Turkey.

    Science.gov (United States)

    Ulas, Arife; Silay, Kamile; Akinci, Sema; Dede, Didem Sener; Akinci, Muhammed Bulent; Sendur, Mehmet Ali Nahit; Cubukcu, Erdem; Coskun, Hasan Senol; Degirmenci, Mustafa; Utkan, Gungor; Ozdemir, Nuriye; Isikdogan, Abdurrahman; Buyukcelik, Abdullah; Inanc, Mevlude; Bilici, Ahmet; Odabasi, Hatice; Cihan, Sener; Avci, Nilufer; Yalcin, Bulent

    2015-01-01

    Medication errors in oncology may cause severe clinical problems due to low therapeutic indices and high toxicity of chemotherapeutic agents. We aimed to investigate unintentional medication errors and underlying factors during chemotherapy preparation and administration based on a systematic survey conducted to reflect oncology nurses experience. This study was conducted in 18 adult chemotherapy units with volunteer participation of 206 nurses. A survey developed by primary investigators and medication errors (MAEs) defined preventable errors during prescription of medication, ordering, preparation or administration. The survey consisted of 4 parts: demographic features of nurses; workload of chemotherapy units; errors and their estimated monthly number during chemotherapy preparation and administration; and evaluation of the possible factors responsible from ME. The survey was conducted by face to face interview and data analyses were performed with descriptive statistics. Chi-square or Fisher exact tests were used for a comparative analysis of categorical data. Some 83.4% of the 210 nurses reported one or more than one error during chemotherapy preparation and administration. Prescribing or ordering wrong doses by physicians (65.7%) and noncompliance with administration sequences during chemotherapy administration (50.5%) were the most common errors. The most common estimated average monthly error was not following the administration sequence of the chemotherapeutic agents (4.1 times/month, range 1-20). The most important underlying reasons for medication errors were heavy workload (49.7%) and insufficient number of staff (36.5%). Our findings suggest that the probability of medication error is very high during chemotherapy preparation and administration, the most common involving prescribing and ordering errors. Further studies must address the strategies to minimize medication error in chemotherapy receiving patients, determine sufficient protective measures

  9. Evaluation of geologic and geophysical techniques for surface-to-subsurface projections of geologic characteristics in crystalline rock

    International Nuclear Information System (INIS)

    1985-07-01

    Granitic and gneissic rock complexes are being considered for their potential to contain and permanently isolate high-level nuclear waste in a deep geologic repository. The use of surface geologic and geophysical techniques has several advantages over drilling and testing methods for geologic site characterization in that the techniques are typically less costly, provide data over a wider area, and do not jeopardize the physical integrity of a potential repository. For this reason, an extensive literature review was conducted to identify appropriate surface geologic and geophysical techniques that can be used to characterize geologic conditions in crystalline rock at proposed repository depths of 460 to 1,220 m. Characterization parameters such as rock quality; fracture orientation, spacing; and aperture; depths to anomalies; degree of saturation; rock body dimensions; and petrology are considered to be of primary importance. Techniques reviewed include remote sensing, geologic mapping, petrographic analysis, structural analysis, gravity and magnetic methods, electrical methods, and seismic methods. Each technique was reviewed with regard to its theoretical basis and field application; geologic parameters that can be evaluated; advantages and limitation