WorldWideScience

Sample records for geological oceanography

  1. OCEANOGRAPHY & MARINE GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    <正>20140582 Fang Xisheng(Key Lab.of Marine Sedimentology and Environmental Geology,First Institute of Oceanography,State Oceanic Administration,Qingdao 266061,China);Shi Xuefa Mineralogy of Surface Sediment in the Eastern Area off the Ryukyu Islands and Its Geological Significance(Marine Geology & Quaternary Geology,ISSN0256-1492,CN37

  2. OCEANOGRAPHY & MARINE GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

    <正>20130639Cui Yingchun ( Key Laboratory of Marine Sedimentology and Environmental Geology , First Institute of Oceanography , State Oceanic Administration , Qingdao 266061 , China ); Shi Xuefa Records of Past 70 Ma Dust Activities in Ferromanganese Crusts from Pacific Ocean (Journal of Jilin University , ISSN1671-5888 , CN22-1343/P

  3. OCEANOGRAPHY & MARINE GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    20152177 Chen Hongjun(Key Laboratory of Marine Mineral Resources,Guangzhou Marine Geological Survey,Ministry of Land and Resources,Guangzhou 510075,China);Pen Xuechao A Brief Review of 1∶1 000 000 Marine Geological Survey and Mapping Results of the Hainan Sheet in the South China Sea(Marine Geology&Quaternary Geology,

  4. OCEANOGRAPHY & MARINE GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

    <正>20132178 Chen Hongjun(Guangzhou Marine Geological Survey,MLR,Guangzhou 510760,China);Cai Guanqiang Features of Canyon Morphology and Their Origin in the Shenhu Area,Northern Slope of the South China Sea(Marine Geology&Quaternary Geology,ISSN0256-1492,CN37-1117/P,32(5),2012,p.19-26

  5. OCEANOGRAPHY & MARINE GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    20150652 Jiang Yuxuan(Key Laboratory of Marine Chemistry Theory and Technology,Ministry of Education,Ocean University of China,Qingdao 266100,China);Xing Lei Study on the Degradation of Marine Sedimentary Organic Matter and Model Development(Marine Geology&Quaternary; Geology,ISSN0256-1492,CN37-1117/P,34(4),

  6. OCEANOGRAPHY & MARINE GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    <正>20112116 Gao Changlin (Wuxi Research Institute of Petroleum Geology,SINOPEC,- , Wuxi 214151,China);Huang Zeguang On Study of Paleo-Oceanology in Orogenic Belts (Petroleum Geology & Experiment, ISSN1001-6112,CN32-1151/TE,32(5), 2010,p.409-414,419,3illus.,1table,34 refs.)

  7. OCEANOGRAPHY & MARINE GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    <正>20141900Lan Xianhong(Key Laboratory of Marine Hydrocarbon Resources and Environmental Geology,Ministry of Land and Resources,Qingdao 266071,China);Zhang Zhixun Geochemical Characteristics of Trace Elements of Sediments from Drillhole SFK-1

  8. OCEANOGRAPHY & MARINE GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>20080006 Chen Xixiang(Hydrogeological and Engineering Geology Prospecting Corporation of Jiangsu Province,Huai’an 223001,China);Wang Xiang Erosion,Siltation and Protection along the Coastal Zone of Yellow Sea in Central Jiangsu Province(Journal of Geological Hazards and Environment Preservation,ISSN1006-4362,CN51-1467/P,17(3),2006,p.17-21,25,9 illus.,2 tables,5 refs.)

  9. OCEANOGRAPHY & MARINE GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    <正>20070002 Cao Guangjie (School of Geography, Nanjing Normal University, Nanjing 210097, China); Wang Jian Sedimentary Characteristics of the Yangtze River’s Paleovalley in Nanjing since the Last Glaciation Maximum (Marine Geology & Quaternary Geology, ISSN0256-1492, CN37-1117/P, 26(1), 2006, p.23-28, 1 illus., 1 table, 16 refs.,with English abstract) Key words: buried channels, Yangtze River, Jiangsu Province

  10. OCEANOGRAPHY & MARINE GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    <正>20040917 Dong Rongxin (School of Ocean and Earth Science , Tongji University, Shanghai); Gong Xianglin Types and Features of Modern Coast on Xiaoyang Island, China (Shanghai Geology, ISSN 1004 -230X, CN31-1475/P, 2003(1), p. 17-19, 50, 2 illus. , 1 table, 2 refs. )

  11. OCEANOGRAPHY & MARINE GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    <正>20040001 Chen Shiyue (Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, Jiangsu); Wang Sumin Chemical Weathering and Environmental Change Records of the Last 2. 8 Ma in the Central Tibetan Plateau, China (Geological Journal of China Universities, ISSN1006-7493, CN32-1440/P, 9(1), 2003, p. 19-29, 3 illus. , 2 tables, 26 refs. , with English abstract)

  12. Archive of Geosample Data and Information from the Scripps Institution of Oceanography (SIO) Geological Collections

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The University of California San Diego (UCSD) Scripps Institution of Oceanography (SIO) is a partner in the Index to Marine and Lacustrine Geological Samples (IMLGS)...

  13. Archive of Geosample Data and Information from the University of Rhode Island (URI) Graduate School of Oceanography (GSO), Marine Geological Samples Laboratory (MGSL)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Marine Geological Samples Laboratory (MGSL) of the Graduate School of Oceanography (GSO), University of Rhode Island is a partner in the Index to Marine and...

  14. Careers in Oceanography.

    Science.gov (United States)

    Hollister, Charles D., Ed.

    This booklet was prepared by practicing oceanographers to help college students in their search for professional direction. The booklet: (1) points out some frontiers of current research; (2) describes five major subfields of oceanography (marine geology and geophysics, oceanographic engineering, physical oceanography, chemical oceanography, and…

  15. High School Oceanography.

    Science.gov (United States)

    Falmouth Public Schools, MA.

    This book is a compilation of a series of papers designed to aid high school teachers in organizing a course in oceanography for high school students. It consists of twelve papers, with references, covering each of the following: (1) Introduction to Oceanography, (2) Geology of the Ocean, (3) The Continental Shelves, (4) Physical Properties of Sea…

  16. OCEANOGRAPHY &MARINE GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2016-01-01

    20160004 Chen Liangjin(Key Laboratory of Marine Chemistry Theory and Technology,Ministry of Education,College of Chemistry and Chemical Engineering,Ocean University of China,Qingdao 266100,China);Zhu Maoxu Speciation of Organic Sulfur in Inner

  17. OCEANOGRAPHY & MARINE GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    <正>Abstract:20090003 Cai Yuanfeng (State Key Laboratory of Mineral Deposits Research, Nanjing University, Nanjing, 210093, China); Li Xiang The Color-Causing Mechanism of Mn2+ and Fe3+:Evidence from the Italian Cretaceous Pelagic Red Limestones (Acta Geologica Sinica, ISSN0001-5717, CN11-1951, 82(1), 2008, p.133-138, 6 illus., 1 table, 11 refs.)

  18. Biological Oceanography

    Science.gov (United States)

    Dyhrman, Sonya

    2004-10-01

    The ocean is arguably the largest habitat on the planet, and it houses an astounding array of life, from microbes to whales. As a testament to this diversity and its importance, the discipline of biological oceanography spans studies of all levels of biological organization, from that of single genes, to organisms, to their population dynamics. Biological oceanography also includes studies on how organisms interact with, and contribute to, essential global processes. Students of biological oceanography are often as comfortable looking at satellite images as they are electron micrographs. This diversity of perspective begins the textbook Biological Oceanography, with cover graphics including a Coastal Zone Color Scanner image representing chlorophyll concentration, an electron micrograph of a dinoflagellate, and a photograph of a copepod. These images instantly capture the reader's attention and illustrate some of the different scales on which budding oceanographers are required to think. Having taught a core graduate course in biological oceanography for many years, Charlie Miller has used his lecture notes as the genesis for this book. The text covers the subject of biological oceanography in a manner that is targeted to introductory graduate students, but it would also be appropriate for advanced undergraduates.

  19. Biological Oceanography

    Science.gov (United States)

    Abbott, M. R.

    1984-01-01

    Within the framework of global biogeochemical cycles and ocean productivity, there are two areas that will be of particular interest to biological oceanography in the 1990s. The first is the mapping in space time of the biomass and productivity of phytoplankton in the world ocean. The second area is the coupling of biological and physical processes as it affects the distribution and growth rate of phytoplankton biomass. Certainly other areas will be of interest to biological oceanographers, but these two areas are amenable to observations from satellites. Temporal and spatial variability is a regular feature of marine ecosystems. The temporal and spatial variability of phytoplankton biomass and productivity which is ubiquitous at all time and space scales in the ocean must be characterized. Remote sensing from satellites addresses these problems with global observations of mesocale (2 to 20 days, 10 to 200 km) features over a long period of time.

  20. Phylogeography and historical demography of the anadromous fish Leucopsarion petersii in relation to geological history and oceanography around the Japanese Archipelago.

    Science.gov (United States)

    Kokita, Tomoyuki; Nohara, Kenji

    2011-01-01

    Phylogeographical patterns of marine and diadromous organisms are often influenced by dynamic ocean histories. For example, the marine realm around the Japanese Archipelago is an interesting area for phylogeographical research because of the wide variation in the environments driven by repeated shifts in sea level in the Quaternary. We analysed mitochondrial cyt b gene and nuclear myh6 gene sequences for individuals collected from throughout the range of the anadromous fish Leucopsarion petersii to assess the lineage divergence, phylogeographical pattern and historical demography in relation to geological history and oceanographic features around the archipelago. Leucopsarion petersii has two major lineages (the Japan Sea and Pacific Ocean lineages), which diverged during the late-early to middle Pleistocene. Geographical distributions of the two lineages were closely related to the pathways of the two warm currents, the Tsushima Current and the Kuroshio Current, that flow past the archipelago. Evidence of introgressive hybridization between these lineages was found at two secondary contact zones. Demographic tests suggested that the Japan Sea and Pacific Ocean lineages carried the genetic signal of different historical demographic processes, and these signals are probably associated with differences in habitat stability during recent glacial periods. The Japan Sea lineage has a larger body-size and more vertebrae, probably in relation to severe habitat conditions through Pleistocene climatic oscillations. Thus, the two lineages have long independent evolutionary histories, and the phylogeographical structure and demography of this species have been influenced both by historical events and the present-day oceanography around the Japanese Archipelago. © 2010 Blackwell Publishing Ltd.

  1. Chemical Oceanography and the Marine Carbon Cycle

    Science.gov (United States)

    Emerson, Steven; Hedges, John

    The principles of chemical oceanography provide insight into the processes regulating the marine carbon cycle. The text offers a background in chemical oceanography and a description of how chemical elements in seawater and ocean sediments are used as tracers of physical, biological, chemical and geological processes in the ocean. The first seven chapters present basic topics of thermodynamics, isotope systematics and carbonate chemistry, and explain the influence of life on ocean chemistry and how it has evolved in the recent (glacial-interglacial) past. This is followed by topics essential to understanding the carbon cycle, including organic geochemistry, air-sea gas exchange, diffusion and reaction kinetics, the marine and atmosphere carbon cycle and diagenesis in marine sediments. Figures are available to download from www.cambridge.org/9780521833134. Ideal as a textbook for upper-level undergraduates and graduates in oceanography, environmental chemistry, geochemistry and earth science and a valuable reference for researchers in oceanography.

  2. Oceanography in the next decade: Building new partnerships

    Science.gov (United States)

    1992-01-01

    The field of oceanography has existed as a major scientific discipline in the United States since World War 2, largely funded by the federal government. In this report, the Ocean Studies Board documents the state of the field of oceanography and assesses the health of the partnership between the federal government and the academic oceanography community. The objectives are to document and discuss important trends in the human, physical, and fiscal resources available to oceanographers, especially academic oceanographers, over the last decade; to present the Ocean Studies Board's best assessment of scientific opportunities in physical oceanography, marine geochemistry, marine geology and geophysics, biological oceanography, and coastal oceanography during the upcoming decade; and to provide a blueprint for more productive partnerships between academic oceanographers and federal agencies.

  3. Introduction to fisheries oceanography

    Digital Repository Service at National Institute of Oceanography (India)

    Sumitra-Vijayaraghavan

    Fisheries oceanography can be applied to fisheries ecology, fisheries management and practical fishing. Physico-chemical parameters of the environment (temperature, currents, waves, light, oxygen and salinity) have profound effect on fish...

  4. Oceanography Branch Hydrographic Database

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Oceanography group maintains and provides Conductivity/Temperature/Depth (CTD) instruments to all Center cruises for measuring water column profiles of...

  5. Oceanography: scientific outline

    National Research Council Canada - National Science Library

    Proposed subject for a film series; oceanography, ocean physics, ocean circulation, waves, tsunamis, tides, seawater, life in the sea, marine ecology, marine resources, limonology, pollution and conservation, mineral exploration...

  6. Physics in Oceanography.

    Science.gov (United States)

    Charnock, H.

    1980-01-01

    Described is physical oceanography as analyzed by seven dependent variables, (three components of velocity, the pressure, density, temperature and salinity) as a function of three space variables and time. Topics discussed include the heat balance of the earth, current patterns in the ocean, heat transport, the air-sea interaction, and prospects…

  7. Oceanography From Space

    Science.gov (United States)

    Legeckis, R.

    Oceanography From Space, edited by J.F.R. Gower, is a collection of papers based on the proceedings o f the COSPAR/SCOR/IUCRM symposium held in May 1980 in Venice, Italy. There are 109 papers and nearly 1000 pages of text. The objective of the meeting was a major review of oceanography from space. The papers illustrate the new interest in remote sensing of the oceans generated by recent measurements from the SEASAT, NIMBUS-7, GEOS-3, and TIROS-N satellites. Although the emphasis of the papers is on satellite instrument validation and algorithm development, there are a sufficient number of application papers that illustrate the advantages of the two-dimensional view of the ocean provided by satellites.

  8. QUATERNARY GEOLOGY & GEOMORPHOLOGY

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    20151144 Chen Jiaojie(Key Laboratory of Marine Sedimentology and Environmental Geology,No.1Institute of Oceanography,State Oceanic Administration,Qingdao 266061,China);Liu Yanguang Paleoenvironment Evolution of the Lake Khanka since the Last Gla-

  9. Oceanography Information System of Spanish Institute of Oceanography (IEO)

    Science.gov (United States)

    Tello, Olvido; Gómez, María; González, Sonsoles

    2016-04-01

    Since 1914, the Spanish Institute of Oceanography (IEO) performs multidisciplinary studies of the marine environment. In same case are systematic studies and in others are specific studies for special requirements (El Hierro submarine volcanic episode, spill Prestige, others.). Different methodologies and data acquisition techniques are used depending on studies aims. The acquired data are stored and presented in different formats. The information is organized into different databases according to the subject and the variables represented (geology, fisheries, aquaculture, pollution, habitats, etc.). Related to physical and chemical oceanography data, in 1964 was created the DATA CENTER of IEO (CEDO), in order to organize the data about physical and chemical variables, to standardize this information and to serve the international data network SeaDataNet. www.seadatanet.org. This database integrates data about temperature, salinity, nutrients, and tidal data. CEDO allows consult and download the data. http://indamar.ieo.es On the other hand, related to data about marine species in 1999 was developed SIRENO DATABASE. All data about species collected in oceanographic surveys carried out by researches of IEO, and data from observers on fishing vessels are incorporated in SIRENO database. In this database is stored catch data, biomass, abundance, etc. This system is based on architecture ORACLE. Due to the large amount of information collected over the 100 years of IEO history, there is a clear need to organize, standardize, integrate and relate the different databases and information, and to provide interoperability and access to the information. Consequently, in 2000 it emerged the first initiative to organize the IEO spatial information in an Oceanography Information System, based on a Geographical Information System (GIS). The GIS was consolidated as IEO institutional GIS and was created the Spatial Data Infrastructure of IEO (IDEO) following trend of INSPIRE. All

  10. Geology

    Data.gov (United States)

    Kansas Data Access and Support Center — This database is an Arc/Info implementation of the 1:500,000 scale Geology Map of Kansas, M­23, 1991. This work wasperformed by the Automated Cartography section of...

  11. CSIR - National Institute of Oceanography

    Digital Repository Service at National Institute of Oceanography (India)

    Naqvi, S.W.A.

    This is an institutional report of CSIR-National Institute of Oceanography, India showcasing its growth over last 50 years in Oceanographic research with special focus on Indian Ocean areas. The major research areas include the four traditional...

  12. A Source Book for Teaching Chemical Oceanography.

    Science.gov (United States)

    Loder, Theodore C.; Glibert, Patricia M.

    Chemical oceanography or marine chemistry are taught in many colleges and universities. This publication provides sources for instructors of such courses. The first section of this report is a detailed composite outline of a course in chemical oceanography. It includes fundamental topics taught in many chemical oceanography classes. The outline…

  13. Support for Oceanography Magazine Volume 19, Number 1: Advances in Computational Oceanography Volume 19, Number 3: The Japan/East Sea

    Science.gov (United States)

    2016-06-07

    Support for Oceanography Magazine Volume 19, Number 1: Advances in Computational Oceanography Volume 19, Number 3: The Japan/East Sea Jennifer...computational oceanography and disseminate this information internationally through distribution of Oceanography magazine in print and on The Oceanography...distribution of Oceanography magazine in print and on The Oceanography Society website. OBJECTIVES Activity A: To produce an issue of Oceanography

  14. Using Oceanography to Support Active Learning

    Science.gov (United States)

    Byfield, V.

    2012-04-01

    Teachers are always on the lookout for material to give their brightest students, in order to keep them occupied, stimulated and challenged, while the teacher gets on with helping the rest. They are also looking for material that can inspire and enthuse those who think that school is 'just boring!' Oceanography, well presented, has the capacity to do both. As a relatively young science, oceanography is not a core curriculum subject (possibly an advantage), but it draws on the traditional sciences of biology, chemistry, physic and geology, and can provide wonderful examples for teaching concepts in school sciences. It can also give good reasons for learning science, maths and technology. Exciting expeditions (research cruises) to far-flung places; opportunities to explore new worlds, a different angle on topical debates such as climate change, pollution, or conservation can bring a new life to old subjects. Access to 'real' data from satellites or Argo floats can be used to develop analytical and problem solving skills. The challenge is to make all this available in a form that can easily be used by teachers and students to enhance the learning experience. We learn by doing. Active teaching methods require students to develop their own concepts of what they are learning. This stimulates new neural connections in the brain - the physical manifestation of learning. There is a large body of evidence to show that active learning is much better remembered and understood. Active learning develops thinking skills through analysis, problem solving, and evaluation. It helps learners to use their knowledge in realistic and useful ways, and see its importance and relevance. Most importantly, properly used, active learning is fun. This paper presents experiences from a number of education outreach projects that have involved the National Oceanography Centre in Southampton, UK. All contain some element of active learning - from quizzes and puzzles to analysis of real data from

  15. Developing Online Oceanography at UCSB

    Science.gov (United States)

    Prothero, W. A.; Dodson, H.

    2001-12-01

    Oceanography at UCSB is an introductory general education science course taken by up to 200 students per quarter. The emphasis is on learning science process by engaging in authentic science activities that use real earth data. Recently, to increase student motivation, the course has been modified to include an Earth Summit framework. The online support being developed for this course is the first step in the creation of a completely online oceanography class. Foundation software was first tested in the class during Spring 2001. Online activities that are supported are writing and instructor feedback, online threaded discussion with live chat and graphics, automatically graded homeworks and games, auto graded quizzes with questions randomly selected from a database, and thought problems graded by the instructor(s). Future plans include integration with commercial course management software. To allow choice of assignments, all course activities totaled110%. Since grades were based on A=90-100, B=80-90, C= 70-80, etc, it was possible to get a better than A grade. Students see the effect (on their grade) of each assignment by calculating their current course grade. Course activities included (most of which are automatically graded): weekly lab homeworks, weekly mini-quizzes (10 multiple choice questions selected at random from a topic database), weekly thought questions (graded by the TA), 3 written assignments, and "Question of the Day" from lecture (credit given for handing it in), The online writing software allowed students to enter their writing, edit and link to graphic images, print the paper, and electronically hand it in. This has the enormous advantage of allowing the instructor and TA's convenient access to all student papers. At the end of the course, students were asked how effective each of the course activities were in learning the course material. On a five point scale, ranging from highest contribution to lowest, the percentage of students giving

  16. Report of the WDC-Oceanography, Tianjin

    OpenAIRE

    2009-01-01

    The document gives a summary working report of the WDC-Oceanography, Tianjin in 2007 and 2008. It makes a brief report on the center strengthned its marine data collection, management and services during the intersessional activities, specially take part in the major international activities of the WDC-Oceanography, Tianjin, including their progress and results in 2007 and 2008. The plan of the WDC-Oceanography, Tianjin in the transition of the WDCs to the WDS is stated in the document.

  17. The Geology of Haiti: An Annotated Bibliography of Haiti’s Geology, Geography and Earth Science

    Science.gov (United States)

    2010-07-01

    sciences, ecology, geomechanics , human geography, and oceanography. The database provides current coverage of almost 2,000 international journals...Geological Abstracts, Ecological Abstracts, International Development Abstracts and Oceanographic Literature Review, Geomechanics Abstracts. See

  18. Estuarine Oceanography. CEGS Programs Publication Number 18.

    Science.gov (United States)

    Wright, F. F.

    Estuarine Oceanography is one in a series of single-topic problem modules intended for use in undergraduate and earth science courses. Designed for those interested in coastal oceanography or limnology, the module is structured as a laboratory supplement for undergraduate college classes but should be useful at all levels. The module has two…

  19. Application of continuation methods in physical oceanography

    NARCIS (Netherlands)

    Katsman, C.A.; Dijkstra, H.A.; Schmeits, M.J.

    2001-01-01

    A specific example will be considered in which continuation methods are used to study fundamental problems in physical oceanography.The separation be- havior of the Gulf Stream in the North Atlantic is a long standing problem in dynamical oceanography,with state-of-the-art ocean models still having

  20. Fundamentals of estuarine physical oceanography

    CERN Document Server

    Bruner de Miranda, Luiz; Kjerfve, Björn; Castro Filho, Belmiro Mendes de

    2017-01-01

    This book provides an introduction to the complex system functions, variability and human interference in ecosystem between the continent and the ocean. It focuses on circulation, transport and mixing of estuarine and coastal water masses, which is ultimately related to an understanding of the hydrographic and hydrodynamic characteristics (salinity, temperature, density and circulation), mixing processes (advection and diffusion), transport timescales such as the residence time and the exposure time. In the area of physical oceanography, experiments using these water bodies as a natural laboratory and interpreting their circulation and mixing processes using theoretical and semi-theoretical knowledge are of fundamental importance. Small-scale physical models may also be used together with analytical and numerical models. The book highlights the fact that research and theory are interactive, and the results provide the fundamentals for the development of the estuarine research.

  1. CSIR-National Institute of Oceanography

    Digital Repository Service at National Institute of Oceanography (India)

    Tapaswi, M.P.

    CSIR-National Institute of Oceanography being one of its kind in the country The article describes the on-going researches and projects in contributing to the science in the field of Marine science....

  2. History of oceanography of the Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Sengupta, R.

    This paper highlights history of the oceanography of the Indian Ocean. Oceanographic activities during Ancient period, Medieval period, British period, Post-Independence period are briefly discussed. The role of the IIOE, IOC, UNESCO are also...

  3. Summary of Research 2000: Department of Oceanography

    Science.gov (United States)

    2001-12-01

    New South Wales , 1992 Master of Science in Physical Oceanography-September 2000 Advisors: Robert H. Bourke, Emeritus Professor of Oceanography James H...Bottlenose Dolphin and Beluga Whale) sonar signals and digitally store them to a PC hard drive. The device had the capability of capturing sonar signals by...different toothed whales, a normal Bottlenose Dolphin, a Bottlenose Dolphin with a hearing impairment and a Beluga Whale, was analyzed. It was observed

  4. Oceanography of the Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Desai, B.N.

    Indian Ocean, the monsoons, changes in the circulation patterns, chemical processes, its geological history and great biological diversity are some of the aspects reflected in the contents of the volume....

  5. The Oceanography Concept Inventory: A Semicustomizable Assessment for Measuring Student Understanding of Oceanography

    Science.gov (United States)

    Arthurs, Leilani; Hsia, Jennifer F.; Schweinle, William

    2015-01-01

    We developed and evaluated an Oceanography Concept Inventory (OCI), which used a mixed-methods approach to test student achievement of 11 learning goals for an introductory-level oceanography course. The OCI was designed with expert input, grounded in research on student (mis)conceptions, written with minimal jargon, tested on 464 students, and…

  6. Development of an Introductory Oceanography Concept Inventory Survey

    Science.gov (United States)

    Arthurs, L.; Marchitto, T.

    2008-12-01

    Concept inventories are one type of assessment that can be used to evaluate whether a student has an accurate and working knowledge of a specific set of concepts. Although such assessment tools have been developed in astronomy, biology, chemistry, engineering, fluid mechanics, geology, and physics, none has been available. Our development of an Introductory Oceanography Concept Inventory Survey (IO-CIS) serves to fill this gap. Much of the development of the IO-CIS utilized students enrolled in the Spring 2008 Introduction to Oceanography course taught at the University of Colorado at Boulder. The first step in the development of IO-CIS involved the identification and selection of the critical concepts to be addressed in the course and the survey. Next, learning goals were defined for each critical concept. These learning goals then provided the basis for framing open-ended questions that were administered to students in pre-module in-class Concept Inventory Exercises (CIEs). These open-ended questions each underwent validation and revision with expert and novice input prior to being administered in a CIE. Each CIE comprised 4-5 open-ended questions, which each contained 1-4 parts. During the semester, 4 different CIEs were administered, with the number of respondents for each CIE ranging from 57-134. Student responses were then binned according to misconceptions and alternate conceptions, tallied, and "distractors" were written based on the most popular bins using the same language employed by students in their responses. Student responses were also used as part of the validation process to ensure that the questions were interpreted by students in the manner intended. Student responses were also used as a basis to discard particular questions from inclusion in the overall IO-CIS. After the initial IO-CIS questions and distractors had been designed as described above, 23 one-on-one student interviews were conducted as part of the validation process. As a result of

  7. Deep-Sea Mining: Integrating Geology, Oceanography, and Engineering

    Science.gov (United States)

    Meyer, F. Michael; Halbach, Peter E.; Martens, Peer N.; Hein, James R.; Scott, Steve

    2008-09-01

    Shaping the Future: Deep-Sea Minerals and Mining Congress; Aachen, Germany, 9-13 March 2008; A strong increase in the global demand for metallic raw materials, coupled with rising market prices, has heightened interest in marine seabed mineral deposits and the feasibility of their extraction for many marine scientists, engineers, and mining companies. This interest focuses not only on base and precious metals but also on strategically important elements needed for high-technology applications, such as cobalt, nickel, molybdenum, titanium, gallium, selenium, telurium, indium, and the rare earth elements.

  8. Macroecology: A Primer for Biological Oceanography

    Science.gov (United States)

    Li, W. K. W.

    2016-02-01

    Macroecology is the study of ecological patterns discerned at a spatial, temporal, or organization scale higher than that at which the focal entities interact. Such patterns are statistical or emergent manifestations arising from the ensemble of component entities. Although macroecology is a neologism largely based in terrestrial and avian ecology, macroscopic patterns have long been recognised in biological oceanography. Familiar examples include Redfield elemental stoichiometry, Elton trophic pyramids, Sheldon biomass spectrum, and Margalef life-forms mandala. Macroecological regularities can often be found along various continua, such as along body size in power-law scaling or along habitat temperature in metabolic theory. Uniquely in oceanography, a partition of the world ocean continuum into Longhurst biogeochemical provinces provides a spatial organization well-suited for macroecological investigations. In this rational discrete approach, fundamental processes in physical and biological oceanography that differentiate a set of non-overlapping ocean regions also appear to shape the macroecological structure of phytoplankton communities.

  9. Crucial times for Spanish physical oceanography

    Directory of Open Access Journals (Sweden)

    Josep L. Pelegrí

    2012-08-01

    Full Text Available The field of physical oceanography has undergone exponential growth in Spain during the last few decades. From a handful of self-taught researchers in the late 1960s there are now several hundred physical oceanographers distributed in some 20 Spanish institutions, and many more working overseas. The First Spanish Physical Oceanography Meeting (EOF1, held in Barcelona in October 2010, was a good example of the high quality and large variety of this research. The facilities and human resources are excellent but the alarming decrease in public investment in science due to the economic crisis must lead the Spanish physical oceanography community to define its current priorities. In this introductory paper to EOF1 we revise our history and where we are now, and suggest that progress in the near future will rely on our intelligence to sustain and enhance human capital, partnership and society-oriented research.

  10. Flow cytometry in oceanography: Status and prospects

    Science.gov (United States)

    Chisholm, Sallie W.; Olson, Robert J.; Yentsch, Clarice M.

    The technology of flow cytometry and cell sorting has existed for ˜20 years, and its potential applications to oceanography have been obvious to many for nearly as long. Its introduction into oceanography did not occur, however, until the early 1980s [Yentsch et al. 1983; Olson et al. 1983]. The introduction was made possible largely t hrough the funding of instruments dedicated to oceanographic applications by the U.S. National Science Foundation, the Office of Naval Research, and private institutions. In the last 5 years, interest in this new tool has grown significantly, and the number of flow cytometry facilities dedicated to applications in oceanography and limnology in the United States, Canada, and Europe has expanded to a surprising degree (Table 1).

  11. Oceanography of the subarctic Pacific region, 1960-71

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This report is on the oceanography of the subarctic Pacific region 1969-1971. The background of the project is summarized. Next, a review of physical oceanography...

  12. New perspectives for noble gases in oceanography

    Science.gov (United States)

    Aeschbach, Werner

    2016-08-01

    Conditions prevailing in regions of deep water formation imprint their signature in the concentrations of dissolved noble gases, which are conserved in the deep ocean. Such "recharge conditions" including temperature, salinity, and interactions with sea ice are important in view of ocean-atmosphere CO2 partitioning. Noble gases, especially the temperature sensitive Kr and Xe, are well-established tracers to reconstruct groundwater recharge conditions. In contrast, tracer oceanography has traditionally focused on He isotopes and the light noble gases Ne and Ar, which could be analyzed at the required high precision. Recent developments of analytical and data interpretation methods now provide fresh perspectives for noble gases in oceanography.

  13. SWOT Oceanography and Hydrology Data Product Simulators

    Science.gov (United States)

    Peral, Eva; Rodriguez, Ernesto; Fernandez, Daniel Esteban; Johnson, Michael P.; Blumstein, Denis

    2013-01-01

    The proposed Surface Water and Ocean Topography (SWOT) mission would demonstrate a new measurement technique using radar interferometry to obtain wide-swath measurements of water elevation at high resolution over ocean and land, addressing the needs of both the hydrology and oceanography science communities. To accurately evaluate the performance of the proposed SWOT mission, we have developed several data product simulators at different levels of fidelity and complexity.

  14. Applying "-omics" Data in Marine Microbial Oceanography

    Science.gov (United States)

    Fuhrman, Jed; Follows, Mick; Forde, Samantha

    2013-07-01

    Due to biotechnological advances and the ever-decreasing cost of sequencing in recent years, there has been a major shift in microbial oceanography to include data on the sequences of genes, gene transcripts, and proteins from environmentally relevant organisms and naturally occurring mixed communities in studies of marine ecosystems. This research area is collectively called "-omics," referring to genomics, transcriptomics, and proteomics of individual organisms and metagenomics, metatranscriptomics, and metaproteomics of mixed communities. These data provide information about how organisms interact with their environment.

  15. Assessment of Differences in University Oceanography Students' Scientific Writing.

    Science.gov (United States)

    Takao, Allison Y.; Kelly, Gregory J.

    The purpose of this paper is to assess the differences in university oceanography students' scientific writing. Specifically, the authors examine the argumentation structures of a high scoring paper and a low scoring paper. This study was conducted in an introductory level oceanography course in a large public university. In this course students…

  16. Biological oceanography of the red oceanic system

    Science.gov (United States)

    Theil, Hjalmar; Weikert, Horst

    1. In 1977, 1979 and 1980-81, investigations were carried out which aimed at evaluating the potential risks from mining metalliferous muds precipating in the Atlantis II Deep of the central Red Sea. This environmental research was initiated by the Saudi Sudanese Red Sea Joint Commission in order to avoid any danger for the Red Sea ecosystem. The broad environmental research programme coherent studies in physical, chemical, biological, and geological oceanography as well as toxicological investigations in the oceanic and in reef zones. We summarise the results from our biological fiels studies in the open sea. 2. The biological investigations were concentrated on the area of the Atlantis II Deep. Benthos was sampled between 700-2000m. For comparison a few samples were also taken further north in the central Red Sea, and to east and west along the flanking deep terraces (500-1000m). Plankton studies covered the total water column above the Deep, and were extended along the axial through to north and south. 3. Benthos sampling was carried out using a heavy closing trawl, a large box grab (box size 50 × 50 cm), Van Veen grabs and traps; photographic surveys were made a phototrap and a photosled. Community respiration was measured with a ship-board method using grab subsamples. Nutrient concentrations, seston and phytoplankton standing stocks as well as in situ primary production were determined from hydrocast samples. Data on zooplankton and micronekton composition and standing stock were obtained from samples collected using different multiple opening-and-closing nets equipped with 100 μm, 300 μm, and 1000 μm mesh sizes. Daily and ontogenetical vertical migration patterns were studied by comparisons of data from midday and midnight tows. 4. Throughout the whole area the sediment is a pteropod ooze containing low contentrations of organic matter; measured organic carbon and nitrogen contents were 0.5 and 0.05% respectively, and chloroplastic pigment equivalents

  17. From satellite altimetry to Argo and operational oceanography: three revolutions in oceanography

    Science.gov (United States)

    Le Traon, P. Y.

    2013-10-01

    The launch of the French/US mission Topex/Poseidon (T/P) (CNES/NASA) in August 1992 was the start of a revolution in oceanography. For the first time, a very precise altimeter system optimized for large-scale sea level and ocean circulation observations was flying. T/P alone could not observe the mesoscale circulation. In the 1990s, the ESA satellites ERS-1/2 were flying simultaneously with T/P. Together with my CLS colleagues, we demonstrated that we could use T/P as a reference mission for ERS-1/2 and bring the ERS-1/2 data to an accuracy level comparable to T/P. Near-real-time high-resolution global sea level anomaly maps were then derived. These maps have been operationally produced as part of the SSALTO/DUACS system for the last 15 yr. They are now widely used by the oceanographic community and have contributed to a much better understanding and recognition of the role and importance of mesoscale dynamics. Altimetry needs to be complemented with global in situ observations. At the end of the 90s, a major international initiative was launched to develop Argo, the global array of profiling floats. This has been an outstanding success. Argo floats now provide the most important in situ observations to monitor and understand the role of the ocean on the earth climate and for operational oceanography. This is a second revolution in oceanography. The unique capability of satellite altimetry to observe the global ocean in near-real-time at high resolution and the development of Argo were essential for the development of global operational oceanography, the third revolution in oceanography. The Global Ocean Data Assimilation Experiment (GODAE) was instrumental in the development of the required capabilities. This paper provides an historical perspective on the development of these three revolutions in oceanography which are very much interlinked. This is not an exhaustive review and I will mainly focus on the contributions we made together with many colleagues and

  18. From satellite altimetry to Argo and operational oceanography: three revolutions in oceanography

    Directory of Open Access Journals (Sweden)

    P. Y. Le Traon

    2013-10-01

    Full Text Available The launch of the French/US mission Topex/Poseidon (T/P (CNES/NASA in August 1992 was the start of a revolution in oceanography. For the first time, a very precise altimeter system optimized for large-scale sea level and ocean circulation observations was flying. T/P alone could not observe the mesoscale circulation. In the 1990s, the ESA satellites ERS-1/2 were flying simultaneously with T/P. Together with my CLS colleagues, we demonstrated that we could use T/P as a reference mission for ERS-1/2 and bring the ERS-1/2 data to an accuracy level comparable to T/P. Near-real-time high-resolution global sea level anomaly maps were then derived. These maps have been operationally produced as part of the SSALTO/DUACS system for the last 15 yr. They are now widely used by the oceanographic community and have contributed to a much better understanding and recognition of the role and importance of mesoscale dynamics. Altimetry needs to be complemented with global in situ observations. At the end of the 90s, a major international initiative was launched to develop Argo, the global array of profiling floats. This has been an outstanding success. Argo floats now provide the most important in situ observations to monitor and understand the role of the ocean on the earth climate and for operational oceanography. This is a second revolution in oceanography. The unique capability of satellite altimetry to observe the global ocean in near-real-time at high resolution and the development of Argo were essential for the development of global operational oceanography, the third revolution in oceanography. The Global Ocean Data Assimilation Experiment (GODAE was instrumental in the development of the required capabilities. This paper provides an historical perspective on the development of these three revolutions in oceanography which are very much interlinked. This is not an exhaustive review and I will mainly focus on the contributions we made together with many

  19. Epistemic levels in argument: An analysis of university oceanography students' use of evidence in writing

    Science.gov (United States)

    Kelly, Gregory J.; Takao, Allison

    2002-05-01

    The purpose of this paper is to examine university oceanography students' use of evidence in writing. Drawing from rhetorical studies of science writing and studies of argumentation in science education, a model for assessing students' arguments is proposed that considers the relative epistemic status of propositions comprising students' written texts. The study was conducted in an introductory university oceanography course in a large public university that utilized an interactive CD-ROM that provided geological data sets for student exploration of scientific questions. Student arguments were analyzed through a process of sorting propositions by epistemic level and identifying the explicit links within and across levels. These epistemic levels were defined by discipline-specific geological constructs from descriptions of data, to identification of features, to relational aspects of features, to theoretically formulated assertions. This form of argumentation analysis allowed for assessment of each student's writing on normative grounds and for comparisons across students' papers. Results show promise for the argumentation model as a methodological tool. The examination of epistemic status of knowledge claims provided ways of distinguishing the extent to which students adhered to the genre conventions specified by the task, i.e., providing evidentiary support for their argument concerning the theory of plate tectonics with real earth data. We draw on the findings to discuss ways argumentation theory can contribute to reform in science education.

  20. Microbial oceanography: paradigms, processes and promise.

    Science.gov (United States)

    Karl, David M

    2007-10-01

    Life on Earth most likely originated as microorganisms in the sea. Over the past approximately 3.5 billion years, microorganisms have shaped and defined Earth's biosphere and have created conditions that have allowed the evolution of macroorganisms and complex biological communities, including human societies. Recent advances in technology have highlighted the vast and previously unknown genetic information that is contained in extant marine microorganisms, from new protein families to novel metabolic processes. Now there is a unique opportunity, using recent advances in molecular ecology, metagenomics, remote sensing of microorganisms and ecological modelling, to achieve a comprehensive understanding of marine microorganisms and their susceptibility to environmental variability and climate change. Contemporary microbial oceanography is truly a sea of opportunity and excitement.

  1. Oceanography of the Southeastern Continental Shelf

    Science.gov (United States)

    This volume, the second in the Coastal and Estuarine Sciences series, provides a synthesis of the physical, chemical, and biological oceanography of the South Atlantic Bight (SAB). The results presented derive from a decade-long multidisciplinary investigation of the SAB continental shelf regime.The SAB extends from West Palm Beach, Fla., where the narrow south Florida shelf begins to broaden, to Cape Hatteras, N.C., where the shelf again narrows. This broad and shallow area is distinguished by the proximity of the Gulf Stream to the shelf break. Large contrasts in the distribution of properties, the strength of oceanic and atmospheric forces, and the high frequency (4-12 days) at which these forces vary have created a unique natural laboratory in which a variety of oceanic processes may be studied.

  2. Ecosystem oceanography for global change in fisheries.

    Science.gov (United States)

    Cury, Philippe Maurice; Shin, Yunne-Jai; Planque, Benjamin; Durant, Joël Marcel; Fromentin, Jean-Marc; Kramer-Schadt, Stephanie; Stenseth, Nils Christian; Travers, Morgane; Grimm, Volker

    2008-06-01

    Overexploitation and climate change are increasingly causing unanticipated changes in marine ecosystems, such as higher variability in fish recruitment and shifts in species dominance. An ecosystem-based approach to fisheries attempts to address these effects by integrating populations, food webs and fish habitats at different scales. Ecosystem models represent indispensable tools to achieve this objective. However, a balanced research strategy is needed to avoid overly complex models. Ecosystem oceanography represents such a balanced strategy that relates ecosystem components and their interactions to climate change and exploitation. It aims at developing realistic and robust models at different levels of organisation and addressing specific questions in a global change context while systematically exploring the ever-increasing amount of biological and environmental data.

  3. Physical oceanography of the Baltic Sea

    Energy Technology Data Exchange (ETDEWEB)

    Leppaeranta, Matti [Helsinki Univ. (Finland). Dept. of Physics; Myrberg, Kai [Finnish Institute of Marine Research, Helsinki (Finland)

    2009-07-01

    The Baltic Sea oceanographic research community is wide and the research history is over 100 years old. Nevertheless, there is still no single, coherent book on the physical oceanography of the Baltic Sea as a whole. There is a strong need for such a book, coming from working oceanographers as well as the university teaching programmes in advanced undergraduate to graduate levels. In the regional conference series in physical oceanography (Baltic Sea Science Conference, Baltic Sea Oceanographers' conference, Baltex-conferences) about 500 scientists take part regularly. Even more scientists work in the fields of marine biology, chemistry and the environment, and they need information on the physics of the Baltic Sea as well. There are nine countries bordering on the Baltic Sea and five more in the runoff area. The Baltic Sea as a source of fish, means of transportation and leisure activities is highly important to the regional society. In the runoff area there are a total of 85 million people. Research and protection strategies need to be developed, as the Baltic Sea is probably the most polluted sea in the world. Since the Baltic Sea has become an inner sea of the EU (apart from small shore parts of Russia in Petersburg and Kaliningrad), it is anticipated that the importance of the region will consequently rise. The book will arouse interest among students, scientists and decision makers involved with the Baltic problems. It will also give important background information for those working with biogeochemical processes in the Baltic Sea, because the physical forcing for those processes is of vital importance. (orig.)

  4. The status of coastal oceanography in heavily impacted Yellow and East China Sea: Past trends, progress, and possible futures

    Science.gov (United States)

    Wang, Xiao Hua; Cho, Yang-Ki; Guo, Xinyu; Wu, Chau-Ron; Zhou, Junliang

    2015-09-01

    Coastal environments are a key location for transport, commercial, residential and defence infrastructure, and have provided conditions suitable for economic growth. They also fulfil important cultural, recreational and aesthetic needs; have intrinsic ecosystem service values; and provide essential biogeochemical functions such as primary productivity, nutrient cycling and water filtration. The rapid expansion in economic development and anticipated growth of the population in the coastal zones along the Yellow and East China Sea basin has placed this region under intense multiple stresses. Here we aim to: 1) synthesize the new knowledge/science in coastal oceanography since 2010 within the context of the scientific literature published in English; 2) report on a citation analysis that assesses whether new research topics have emerged and integrated over time, indicate the location of modelling and field-based studies; and 3) suggest where the new research should develop for heavily impacted estuaries and coastal seas of East Asia. The conclusions of the synthesis include: 1) China has emerged as a dominant force in the region in producing scientific literature in coastal oceanography, although the area of publications has shifted from its traditional fields such as physical oceanography; 2) there has been an increasing number of publications with cross-disciplinary themes between physical oceanography and other fields of the biological, chemical, and geological disciplines, but vigorous and systematic funding mechanisms are still lacking to ensure the viability of large scale multi-disciplinary teams and projects in order to support trans-disciplinary research and newly emerging fields; 3) coastal oceanography is responding to new challenges, with many papers studying the impacts of human activities on marine environment and ecology, but so far very few studying management and conservation strategies or offering policy solutions.

  5. From satellite altimetry to operational oceanography and Argo: three revolutions in oceanography (Fridtjof Nansen Medal Lecture)

    Science.gov (United States)

    Le Traon, P. Y.

    2012-04-01

    The launch of the US/French mission Topex/Poseidon (T/P) (CNES/NASA) in August 1992 was the start of a revolution in oceanography. For the first time, a very precise altimeter system optimized for large scale sea level and ocean circulation observations was flying. Topex/Poseidon revolutionized our vision and understanding of the ocean. It provided new views of the large scale seasonal and interannual sea level and ocean circulation variations. T/P alone could not observe the mesoscale circulation. In the 1990s, the ESA satellites ERS-1/2 were flying simultaneously with T/P. The ERS-1/2 orbit was well adapted for mesoscale circulation sampling but the orbit determination and altimeter performance were much less precise than for T/P. We demonstrated that we could use T/P as a reference mission for ERS-1/2 and bring the ERS-1/2 data to an accuracy level comparable to T/P. This was an essential first step for the merging of T/P and ERS-1/2. The second step required the development of a global optimal interpolation method. Near real time high resolution global sea level anomaly maps were then derived. These maps have been operationally produced as part of the SSALTO/DUACS system for the last 15 years. They are now widely used by the oceanographic community and have contributed to a much better understanding and recognition of the role and importance of mesoscale dynamics. The unique capability of satellite altimetry to observe the global ocean in near real time at high resolution was essential to the development of global ocean forecasting, a second revolution in oceanography. The Global Ocean Data Assimilation Experiment (GODAE) (1998-2008) was phased with the T/P and ERS-1/2 successors (Jason-1 and ENVISAT) and was instrumental in the development of global operational oceanography capabilities. Europe played a leading role in GODAE. In 1998, the global in-situ observing system was inadequate for the global scope of GODAE. This led to the development of Argo, an

  6. Understanding our seas: National Institute of Oceanography, Goa

    Digital Repository Service at National Institute of Oceanography (India)

    Naqvi, S.W.A.; Afzulpurkar, S.; Anil, A.C.; Chakraborty, P.; Dewangan, P.; Desai, D.V; DeSouza, L; Kessarkar, P.M.; Khandeparker, L; Krishna, K.S.; Kurian, S.; Madhan, R.; Mascarenhas, A.A.M.Q.; Mazumdar, A.; Maurya, P.; Murty, V; Nath, B.N.; Naik, H.; Navelkar, G.S.; PrasannaKumar, S.; Rao, V; RameshKumar, M.R.; Ravichandran, C.; SanilKumar, V.; Saraswat, R.; Sarma, V.V.S.S.; Shankar, D.; Sharma, R.; Shenoy, D.M.; Suneel, V.; Thakur, N.L.; Unnikrishnan, A.S.; Vethamony, P.; Yatheesh, V.

    The present article summarizes the research done at the CSIR–National Institute of Oceanography in 2014 in ocean science, resources and technology. Significant research has been conducted on air–sea interactions and coastal circulation...

  7. Oceanography, the new Frontier for the Twenty-First Century

    Science.gov (United States)

    Marshall, Nelson

    1973-01-01

    Discusses the discipline of oceanography and some of its specific areas of concern. Describes the major resources of the oceans and reflects on how these may be utilized and shared by nations in the future. (JR)

  8. Scripps Institution of Oceanography Ferromanganese Nodule Analysis File - IDOE Portion

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Scripps Institution of Oceanography (SIO) compiled data on the geochemistry of marine ferromanganese nodules, funded by the U.S. National Science Foundation...

  9. Coastal Operational Oceanography: understanding user needs

    Science.gov (United States)

    Fernandez, J.; Lopez, J.; Jerez, F.; Hermosilla, F.; Espino, M.

    2012-04-01

    Within the framework of the 7th Framework European project FIELD_AC, SIMO and the LIM/UPC have undertaken a study about the operational oceanography requirements of a selected group of specific end-users in four different European coastal regions, namely Hamburg, Liverpool, Barcelona and Venice. The activities of all the target organisations are related to coastal issues, varying from aquaculture to marinas and port management, Water Framework Directive implementation, renewable energies and flooding alerts. Information has been compiled using a specific questionnaire that has been distributed to all potential users, in addition to workshops held in the four mentioned regions. A total number of 25 questionnaires have been collected in all the locations from a variety of users. Results have been analysed depending on the location but also considering the type of organisation. Information about the spatial and temporal resolution requirements, variables needed, locations to be considered, frequency of data delivery and formats requirements have been gathered. This input from the end-users is being used both in the FIELD_AC modelling set up and also in the development of an application to visualise the results. Regarding the latter, all the modelling results and observational data will be handled using a THREDDS catalogue linked to a web-based GIS application.

  10. Reflections on international cooperation in oceanography

    Science.gov (United States)

    Hempel, Gotthilf

    1999-01-01

    These reflections on past and present trends in international cooperation in marine sciences are dedicated to Gerold Siedler, the former President of the Scientific Committee on Oceanic Research (SCOR). Over the years Gerold Siedler promoted international cooperation on various scales. Inter alia he was in charge of the bilateral Brazilian-German Programme in Marine Science in the 1970s, and he was deeply involved in the planning of the World Ocean Circulation Experiment WOCE and in its execution, particularly in the South-western Atlantic (Siedler et al., 1996) as well as in the formation of the marine science sector of the Framework Programmes of the European Union. Apart from his leading role in international committees he has countless personal links over the oceans and across political borders. There are always foreign students around him in Kiel, and more than once he has made good-will tours to coastal states bordering the South Atlantic in order to pave the way for Meteor cruises in their EEZs and to encourage their local scientists to join those cruises. Gerold Siedler is one of the leading oceanographers devoted to the idea of the global community of oceanographers. He puts much effort in establishing new and maintaining old contacts between scientists in various parts of the World and he pushes for joining forces in cooperative programmes wherever individual research vessels and institutes cannot solve problems of the understanding, prediction and sustainable exploitation of the oceans and their coastal seas. My contribution to this Festschrift is heavily biassed towards biological oceanography in the Atlantic and to the European and German part in international cooperation. The biological inclination originates from my personal background, the geographical bias pays tribute to the fact that Gerold Siedler is a global minded German European who has mainly worked in the Atlantic. I will concentrate on some historical reflections, on the growing

  11. The R/V EL PUMA and JUSTO SIERRA impact on the development of oceanography in Mexico

    Science.gov (United States)

    Gracia, A.

    2007-05-01

    The acquisition of the two research vessels (R/V EL PUMA AND R/V JUSTO SIERRA) of the Universidad Nacional Autónoma de México represented a milestone for the development of oceanography and capacity building in Mexico. These boats were designed to conduct multi and interdisciplinary research in the Economic Exclusive Zone of Mexico in the main areas of oceanography (Physics, Geology, Chemistry and Biology). Its use, by different institutions, resulted in a substantial advancement of the knowledge of Marine ecosystems of Mexico. About 460 oceanographic campaigns, with more than 8700 participants, have been conducted since the boats arrived. These covered a wide array of topics of the marine ecosystem from the inner shelf to deep sea. Extensive research was done on current patterns, primary productivity and pollution monitoring of the Mexican Pacific, Sea of Cortez, Gulf of Mexico and Caribbean sea. Marine biodiversity studies were also carried which discovered more than 180 new species in Mexican seas. Ecological characterization and paleo-oceanographic research from continental shelf to deep sea also registered a substantial advance. The vessels are now renewed with hi-tech equipment for sea bottom, water column and navigation that increased their research capacity, representing again a new milestone in the history of oceanography in Mexico. This improved capacity is very promising and opens new and sound opportunities for carrying modern oceanographic in order to improve knowledge of the Mexican Economic Exclusive Zone.

  12. Dissertations Initiative for the Advancement of Limnology and Oceanography (DIALOG)

    Science.gov (United States)

    1994-01-01

    The DIALOG Program was founded by the American Society of Limnology and Oceanography (ASLO), in order to reduce the historical, institutional and philosophical barriers that limit the exchange of information between limnologists and oceanographers, and to foster interdisciplinary and inter-institutional research. This was achieved by targeting a recent cohort of Ph.D. recipients whose work included a biological component of limnology or oceanography. The program included: (1) publication of the submitted Ph.D. dissertation abstracts; (2) a symposium to facilitate exchange across institutions and disciplines; and (3) establishment of a centralized data base for applicant characterization and tracking.

  13. ECONOMIC GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    <正>20041200 Peng Yujing (Regional Geology and Mineral Resources Survey of Jilin Province, Changchun, Jilin); Chen Erzhen A Preliminary Study on the Ore -Forming Geologic Events (Jilin Geology, ISSN 1001-2427, CN22-1099/P, 22(3), 2003, p. 1 -11, 23, 1 illus. , 38 refs. ) Key words: geological eventAn ore - forming geologic event, as a

  14. ECONOMIC GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    20152392 Geng Shufang(Institute of Geology,Chinese Academy of Geological Sciences,Beijing 100037,China);Liu Ping Deep Geological Structure Constraints on Shallow Geology and Mineralization:A Study in the Land and Sea Areas of East China(Marine Geology&Quaternary Geology,ISSN0256-1492,CN37-1117/P,34(6),2014,p.49-61,8illus.,13refs.,with English abstract)

  15. A Bibliography of the Physical Oceanography of Straits.

    Science.gov (United States)

    1986-11-01

    Kelley (eds.), Univer- description of currents in the Glebinka Strait in Puck sity of Alaska, Fairbanks, pp. 3-37. Bay (Poland). Oceanografia , Gdansk 5...3742. Archivio di Oceanografia E Limnologia 19:65-82. Whitworth, T. and R. G. Peterson (1985). Volume Waldichuk, M. (1957). Physical oceanography of

  16. GEOTHERMICS GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    <正>20140958 Mei Huicheng(No.915GeologicalBrigade,Jiangxi Bureau of Geology and Mineral Resources,Nanchang 330002,China);Li Zhongshe Geological Features and Causes of the Huihuang Geotherm in Xiushui,Jiangxi Province(Journal of Geological Hazards and

  17. MATHEMATICAL GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    <正>20090700 Chen Anshu(Tianjin Institute of Geology and Mineral Resources,China Geological Survey,Tianjin 300170,China);Li Xiaoguang 1:250 000-Scale Regional Geological Map Spatial Database(Geological Survey and Research,ISSN1672-4135,CN12-1353/P,31(1),2008,p.64-69,2 illus.,2 tables,5 refs.)

  18. ECONOMIC GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    <正>20140805Fan Baocheng(Xi’an Center of Geological Survey,China Geology Survey,Xi’an710054,China);Meng Guanglu The Geological Evolution and Metallization of TalasKalatawu Block in Northern Tianshan,Kyrgyzstan(Northwestern Geology,ISSN1009-6248,CN61-1149/P,46(2),2013,p.54-

  19. ENVIRONMENTAL GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    <正>20071510 Chen Ge(No.282 Geological Par- ty,Geological Bureau of Sichuan Nuclear In- dustry,Deyang,Sichuan 618000)Assess- ment of Geological Hazards in the Sichuan Sector of the Nanchong-Wanzhou 500 KV Transmisson Line Engineering(Acta Geolog- ica Sichuan,ISSN 1006-0995,CN 51- 1273/P,26(2),2006,p.88-93,2 tables) Key words:geologic hazards,construction field,Sichuan Province Possibility of inducing and intensifying geological hazards by the Nanhong- Wanzhou 500 KV transmission line engineer- ing,geological hazards which probably occur

  20. MATHEMATICAL GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    <正>20141243Chen Ge(Hangzhou Research Institute of Petroleum Geology,PetroChina,Hangzhou 310023,China);Si Chunsong Study on Sedimentary Numerical Simulation Method of Fan Delta Sand Body(Journal of Geology,

  1. Engineering Geology.

    Science.gov (United States)

    Ivey, John B.

    1983-01-01

    Engineering geology activities in government and the private sector are highlighted. Also highlighted are conferences in this field, awards presented at conferences (including an award to an undergraduate geology student), and a new publication "Geotechnology in Massachusetts." (JN)

  2. ENVIRONMENTAL GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2016-01-01

    20160639Cai Wutian(Center for Hydrogeology a nd Environmental Geology Survey,China Geological Survey,Baoding071051,China)Several Issues on Contaminated Sites(Hydrogeology and Engineering Geology,ISSN1000-3665,CN11-2202/P,42(1),2015,p.123

  3. MATHEMATICAL GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    <正>20142560Hu Hongxia(Regional Geological and Mineral Resources Survey of Jilin Province,Changchun 130022,China);Dai Lixia Application of GIS Map Projection Transformation in Geological Work(Jilin Geology,ISSN1001-2427,CN22-1099/P,32(4),2013,p.160-163,4illus.,2refs.)

  4. MATHEMATICAL GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>20081307 Cao Xiping(Geological Museum of China,Beijing 100034)Discussion on the Digitization of Geological Specimen Information and Digital Geological Museum Construction(Acta Geoscientica Sinica,ISSN1006-3021,CN11-3474/P,28(2),2007,p.205-208,1 illus.,1 table,4 refs.)

  5. MATHEMATICAL GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    20152086 Liu Lei(Shandong Zhengyuan Geo-logical Exploration Institute,China Metallurgical Geology Bureau,Jinan 250101,China)Comparison of Gridding Effect of MapGIS Software(Contributions to Geology and Mineral Resources Research,ISSN1001-1412,CN12

  6. MATHEMATICAL GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    <正>20091383 Cui Yiwen(First Geology and Mineral Resources Prospecting Team of Qinghai Province,Ping’an 810600,China);Zhang Liling Quaternary Three-Dimensional Model of Geological Structures of Changchun City(Jilin Geology,ISSN1001-2427,CN22 -1099/P,27(2),2008,p.125-130,10 illus.,4 tables,14 refs.,with English abstract)

  7. ECONOMIC GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

    <正>20132393 Lü Guxian(Institute of Geomechanics,Chinese Academy of Geological Sciences,Beijing 100081,China);Li Xiuzhang Research and Development of Orefield Geology(Geology and Prospecting,ISSN0495-5331,CN11-2043/P,48(6),2012,p.1143-1150,3illus.,1table,46refs.)Key words:study of mineral deposit

  8. ECONOMIC GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    20150901Dai Chuangu(Guizhou Academy of Geologic Survey,Guiyang550005,China);Zheng Qiqian Geological Background Study of Metallogenic in Haixi-Yanshan Tectonic Cycle in Guizhou Province(Guizhou Geology,ISSN1000-5943,CN52-1059/P,31(2),2014,p.82-88,3illus.,2tables,13refs.)Key words:metallogenesis,metallogenic area,

  9. ECONOMIC GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2016-01-01

    20160938Gao Xiaowei(Wuhan Center of Geo-logical Survey,China Geological Survey,Wuhan 430223,China);Wu Xiurong Two Types of Terrain and Regional Mineralization in Sumatra,Indonesia(Geological Bulletin of China,ISSN1671-2552,CN11-4648/P,34

  10. ECONOMIC GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2016-01-01

    20160276Jiang Hanbing(Xi’an Institute of Geology and Mineral Resources,Xi’an710054,China);Yang Hequn The Metallogenic Series Family of Geological Formation in Dunhuang Metallogenetic Belt(Northwestern Geology,ISSN1009-6248,CN61-1149/P,48(1),2015,p.63-71,2illus.,2tables,28refs.)

  11. ECONOMIC GEOLOGY (5)GEOTHERMICS GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    <正>20071202 Bai Fu(Second Prospecting Insti- tute of Geology and Mineral Resources of the Gansu Bureau of Geology and Mineral Re- sources,Lanzhou 730020,China);Ma Genxi Analysis of the Occurrence of the Geother- mal Resources in Lanzhou,Gansu Province (Hydrogeology & Engineering Geology,

  12. The Geology of Burma (Myanmar): An Annotated Bibliography of Burma’s Geology, Geography and Earth Science

    Science.gov (United States)

    2008-09-01

    ecology, geomechanics , human geography, and oceanography. The database provides current coverage of almost 2,000 international journals, including...Oceanographic Literature Review, Geomechanics Abstracts. See: www.elsevier.com GeoRef: see: American Geological Institute, Alexandria, VA, listed above...International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts. 2. Volume 23, Issue 1, Pages A27-A27. ISSN: 0020-7624. OCLC

  13. Private Collection of Geochemistry and Oceanography Articles Available

    Science.gov (United States)

    Manheim, Frank T.

    2014-05-01

    It's time! I'm disposing of a 37-year career's worth of books and other scientific materials in geochemistry and oceanography. Ordinarily, reprints of articles have little value. However, in the course of my research, I assembled what may be the world's most comprehensive private collection of articles on marine ferromanganese deposits up to the late 1980s. It includes foreign language materials, especially Russian language articles. Soviet researchers played an active role in this field (I cooperated with them and was a guest of the Soviet Academy).

  14. STRUCTURAL GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    <正>20141912Cao Hui(State Key Laboratory for Continental Tectonics and Dynamics,Institute of Geology,Chinese Academy of Geological Sciences,Beijing 100037,China)Gravitational Collapse and Folding during Orogenesis:A Comparative Study of FIA Trends and Fold Axial Plane Traces(Geology in China,ISSN1000-3657,CN11-1167/P,40(6),2013,p.1818-1828,9illus.,35refs.,with

  15. GENERAL GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    <正>20071601 Yin Yanhong (Qingdao Institute of Marine Geology, Qingdao 266071, China); Sun Jiashi Discovery of Qingdao Iron Meteorite and Its Chemical Composition and Mineralogy (Marine Geology & Quaternary Geology, ISSN0256-1492, CN37-1117/P, 26(3), 2006, p.121-124, 3 illus., 2 tables, 9 refs.)Key words: iron meteorites, Shandong Province The Qingdao iron meteorite was found in May, 2004.

  16. MATHEMATICAL GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    <正>20070721 Dong Yaosong (National Key La-boratory of Geological Process and Mineral resources, Institute of Mathematical Geology and Remote Sensing, China University of Geosciences, Wuhan 430074, China); Yang Yanchen Mutual Compensation of Nerval Net and Characteristic Analysis in Mineral Resources Exploration (Mineral Resources and Geology, ISSN1001-5663, CN45-1174/TD, 20(1), 2006, p.1-6, 3 illus., 6 tables, 5 refs.) Key words: prospecting and exploration of mineral, neural network systems

  17. ENVIRONMENTAL GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    <正>20072222 Cao Xiuding(Chengdu University of Technology,Chengdu 610059,China);Qin Guoqing General Packet Radio Service(GPRS)Technology and Its Application in Geological Hazard Monitoring(The Chinese Journal of Geological Hazard and Control,ISSN1003-8035,CN11-2852/P,17(1),2006,p.69-72,76,2 illus.,3 refs.)Key words:geologic hazards

  18. STRUCTURAL GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    <正>20122174 Bai Daoyuan ( Institute of Geological Survey of Hunan Province,Changsha 410011,China );Jia Baohua Neoproterozoic TectonicEvolution of the Xuefeng Orogenic Zone in Hunan Province ( Sedimentary Geology and Tethyan Geology,ISSN1009-3850,CN51-1593 / P,31 ( 3 ), 2011,p.78-87,2illus.,1 table,96refs. ) Key words:structural evolution,Neoproterozoic Era,Hunan Province This paper deals,on the basis of abundant lithogeochemical and geochronologic

  19. ENVIRONMENTAL GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    <正>20041748 Chen Liang (China University of Geosciences, Nanjing , Jiangsu); Meng Gao-tou Application of Information Model on Geological Hazards Investigating and Zoning of Counties and Cities: Taking Xianju County, Zhejiang Province as an Example (Hydroge-ology & Engineering Geology, ISSN 1000-3665, CN11-2202/P, 30(5), 2003, p. 49 - 52, 4 illus. , 2 tables, 6 refs. ) Key words: geologic hazards, information systems

  20. Diploma of Higher Studies in Oceanography. Red Sea & Gulf of Aden Programme (PERSGA).

    Science.gov (United States)

    Arab Organization for Education and Science, Cairo (Egypt).

    This document presents four courses for the diploma of higher studies in oceanography conducted by the Department of Oceanography, Faculty of Science, University of Alexandria, Egypt. These courses are organized by the Arab League Educational, Cultural and Scientific Organization (ALECSO). Each course is designed to be taught in one academic year…

  1. Effective, Active Learning Strategies for the Oceanography Classroom

    Science.gov (United States)

    Dmochowski, J. E.; Marinov, I.

    2014-12-01

    A decline in enrollment in STEM fields at the university level has prompted extensive research on alternative ways of teaching and learning science. Inquiry-based learning as well as the related "flipped" or "active" lectures, and similar teaching methods and philosophies have been proposed as more effective ways to disseminate knowledge in science classes than the traditional lecture. We will provide a synopsis of our experiences in implementing some of these practices into our Introductory Oceanography, Global Climate Change, and Ocean Atmosphere Dynamics undergraduate courses at the University of Pennsylvania, with both smaller and larger enrollments. By implementing tools such as at-home modules; computer labs; incorporation of current research; pre- and post-lecture quizzes; reflective, qualitative writing assignments; peer review; and a variety of in-class learning strategies, we aim to increase the science literacy of the student population and help students gain a more comprehensive knowledge of the topic, enhance their critical thinking skills, and correct misconceptions. While implementing these teaching techniques with college students is not without complications, we argue that a blended class that flexibly and creatively accounts for class size and science level improves the learning experience and the acquired knowledge. We will present examples of student assignments and activities as well as describe the lessons we have learned, and propose ideas for moving forward to best utilize innovative teaching tools in order to increase science literacy in oceanography and other climate-related courses.

  2. GEOTHERMICS GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

    <正>20131683 Lin Wenjing(Institute of Hydrogeology and Environmental Geology,Chinese Academy of Geological Sciences,Shijiazhuang050061,China);Liu Zhiming An Estimation of HDR Resources in China’s Mainland(Acta Geoscientica Sinica,ISSN1006-3021,CN11-3474/P,33(5),2012,p.807-811,2illus.,2tables,14refs.)

  3. GEOTHERMICS GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

    <正>20131088 Fan Difu (Geological Survey of Jiangsu Province , Nanjing 210018 , China ); Xu Xueqiu Origin Study of Geothermal Field in Xiaoyangkou of Rudong County in Jiangsu (Journal of Geology , ISSN1674-3636 , CN32-1796/P , 36 (2), 2012 , p.192-197 , 3illus. , 9refs.) Key words : geothermal fields , Jiangsu Province

  4. GEOTHERMICS GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>20081086 Feng Wujun(Geological Research Institute,Jiangsu Oil Field Branch Company,Yangzhou 225012,Jiangsu);Cao Bing Geoheat Resources Evaluation and Target Optimization in Gaoyou Region of Jiangsu Province(Jiangsu Geology,ISSN1003-6474,CN32-1258/P,31(2),2007,p.130-13

  5. ECONOMIC GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    <正>20050726 Cheng Jiabai (Survey Team of Huabei Geological Exploration Bureau, Sanhe 065201, China); Zhao Yuanyi Prospecting Hypothesis and Verification (Contributions to Geology and Mineral Resources Research, ISSN 1001-1412, CN12-1131/P, 19(2), 2004, p. 122-129, 2 refs. , with English abstract) Key words: prospecting model

  6. ENVIRONMENTAL GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

    <正>20131925 Chen Ning(State Key Laboratory of Geological Hazards Prevention,Chengdu University of Technology,Chengdu 610059,China);Wang Yunsheng Features and Chains Genesis Analysis of Earthquake Geo-Hazards in Yuzi Stream of Wenchuan County(Journal of Engineering Geology,ISSN1004-9665,CN11-3249/P,20(3),2012,p.340-349,4

  7. STRUCTURAL GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

    <正>20131382 Chen Tao(Key Laboratory of Active Tectonics and Volcano,Institute of Geology,China Earthquake Administration,Beijing 100029,China);Liu Yugang The Activity Age of Tarwan Fault and Genesis of the Topographic Scarp(Seismology and Geology,ISSN0253-4967,CN11-2192/P,34(3),

  8. ENVIRONMENTAL GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    <正>20090651 Chen Boyang(Fujian Institute of Geological Survey and Research,Fuzhou 350011,China) Bio-Geochemical Characteristics of High and Low-Incidence Area of Stomach Cancer in the Coastal Area of Fujian Province(Geology of Fujian,ISSN1001-3970,CN35-1080/P,27(1),2008,p.29-36,3 tables,6 refs.)

  9. MATHEMATICAL GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    <正>20040862 Chen Zhihua (Faculty of Engineering, China University of Geosciences, Wuhan, Hubei); Guan Xuefeng Development of DBMS for Environmental Geologic Hazards on WebGIS (Hydrogeology & Engineering Geology, ISSN1000-3665, CN11-2202/P, 30(2), 2003, p. 20-24, 3 illus. , 9 refs. )

  10. STRUCTURAL GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    <正>20050576 Li Sanzhong (College of Marine Geosciences, Ocean University of China, Qingdao 266003,China) ; Zhou Lihong Cenozoic Faulting and Basin Formation in the Eastern North China Plate (Marine Geology & Quaternary Geology, ISSN 0256 - 1492, CN37 -1117/P, 24(3), 2004, p. 57-66, 5 illus. , 33 refs. ) Key words: tectonic framework, North China

  11. ENVIRONMENTAL GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    <正>20040834 Chen Yijiu (Geological Exploration Bureau of Guangdong Province, Guangzhou, Guangdong) Discussion on Natural Chornic Irradiation Environment and Pertinent Problems in Guangdong Province, China (Guangdong Geology, ISSN 1001 - 8670, CN44-1201/P, 18(1), 2003, p. 30-41, 7 tables, 1 ref. , with English abstract) Keywords: radioactivity radiation environmental pollution Guangdong Province

  12. MATHEMATICAL GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

    <正>20131358 Li Jianzhong (State Key Laboratory of Geological Processes and Mineral Resources , School of Earth Sciences and Resources , China University of Geosciences , Beijing 100083 , China); Cui Jing Geological Application of Mult-Idimensional Data Visualization Based on Geometric Coordinate Method (Earth Science Frontiers

  13. ECONOMIC GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    <正>20142114Lin Quansheng(China University of Geosciences,Bejing 100083,China)On the Geologic Characteristics and Economic Significance of the Cambrian Lintian Group in Fujian Province(Geology of Fujian,ISSN1001-3970,CN35-1080/P,32(4),2013,p.264-273,2illus.,2tables,6refs.)

  14. ECONOMIC GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    <正>20140227Li Wenyuan(Xi’an Center of Geological Survey,CGS,Xi’an 710054,ChinaThe Continental Growth and Ore-Forming Processes(Northwestern Geology,ISSN1009-6248,CN61-1149/P,46(1),2013,p.1-10,5illus.,18refs.)

  15. ECONOMIC GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    <正>20041944 Chen Yuchuan (Chinese Academy of Geological Sciences, Beijing) ; Xue Chunli Discussion on the Regional Mineralizing Pedigree of the Ore Deposits in the Northern Margin of the North China Landmass (Geological Journal of China Universities, ISSN 1006-7493, CN32-1440/P, 9(4), 2003, p. 520-535, 2 illus. , 3 tables, 43 refs. ,

  16. MATHEMATICAL GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    <正>20111337 Chen Guoxu(Faculty of Earth Resources,China University of Geosciences,Wuhan 430074,China);Wu Chonglong Study on Integration of 3D Geological Modeling and Mineral Resource Exploration Mapping(Geology and Prospecting,ISSN0495-5331,CN11-2043/P,46(3),2010,p.542-546,5 illus.,19 refs.)Key words:geological modeling,digital cartography According to the workflow of traditional methods of mineral reserve estimation,the authors took mine 3D geological modeling and mineral reserve estimation mapping as a starting point to explore a new method for the integration of 3D geological modeling and mineral resource exploration mapping.In order to verify this method,the authors have applied this method to some real mines.The results show that this method can effectively solve those problems of

  17. ECONOMIC GEOLOGY (5)GEOTHERMICS GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>20082442 Han Zaisheng(China Geological Servey,Beijing 100011,China);Ran Weiyan Exploration and Evaluation of Shal- low Geothermal Energy(Geology in China, ISSN1000—3657,CN11—1167/P,34(6), 2007,p.1115—1121,6 refs.,with English abstract) Key words:geothermal exploration, geothermal resources

  18. GEOTHERMICS GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    <正>20111836 Gao Jian(Sichuan Institute of Geological Survey for Nuclear Industry,Chengdu 610061,China);Shi Yuzhen Feasibility Study of Exploitation of Geothermal Resource in the Lugu Lake Region,Yanyuan,Sichuan Province(Acta Geologica Sichuan,ISSN1006-0995,CN51-1273/P,30(3),2010,p.291-294,1 illus.,1 table,1 ref.,with English abstract)Key words:geothermal water,Sichuan Province20111837 He Jianhua(Geological Brigade 102,Bureau of Geolog

  19. STRUCTURAL GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    <正>20072338 Bai Long(Guizhou Academy of Geology Survey,Guiyang,Guizhou 550005,China);Zhang Zhen Treatment of Discovery on Ductile Shear Belts in Yiwu,Xingjiang Province and Its Ore-Forming Geology Process(Guizhou Geology,ISSN1000-5943,CN52-1059/P,23(4),2006,p.286-291,295,3 illus.,9 refs.)Key words:ductile shear zones,metallogenesis,XinjiangOf ductile shear belts,deformation fabric considerably developed in Yiwu,

  20. Developments in Airborne Oceanography and Air-Sea Interaction

    Science.gov (United States)

    Melville, W. K.

    2014-12-01

    One of the earliest ocean-related flights was that of Amundsen to be first across the North Pole and Arctic from Svalbard to Alaska in the airship Norge in 1926. Twenty five years later Cox & Munk flew a B-17G "Flying Fortress" bomber over Hawaiian waters measuring sea surface slope statistics from photographs of sun glitter and wind speed from a yacht. The value of Cox & Munk's "airborne oceanography" became apparent another twenty five years later with the short-lived Seasat microwave remote-sensing mission, since interpretation of the Seasat data in geophysical variables required scattering theories that relied on their data. The universal acceptance of remote sensing in oceanography began in 1992 with the launch of, and successful analysis of sea surface height data from, the Topex/Poseidon radar altimeter. With that and the development of more realistic coupled atmosphere-ocean models it became apparent that our understanding of weather and climate variability in both the atmosphere and the ocean depends crucially on our ability to measure processes in boundary layers spanning the interface. Ten years ago UNOLS formed the Scientific Committee for Oceanographic Aircraft Research (SCOAR) "...to improve access to research aircraft facilities for ocean sciences"; an attempt to make access to aircraft as easy as access to research vessels. SCOAR emphasized then that "Aircraft are ideal for both fast-response investigations and routine, long-term measurements, and they naturally combine atmospheric measurements with oceanographic measurements on similar temporal and spatial scales." Since then developments in GPS positioning and miniaturization have made scientific measurements possible from smaller and smaller platforms, including the transition from manned to unmanned aerial vehicles (UAVs). Furthermore, ship-launched and recovered UAVs have demonstrated how they can enhance the capabilities and reach of the research vessels, "projecting" research and science

  1. GEOTHERMICS GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    <正>20101802 Fang Bin (China University of Geosciences,Beijing 100083,China);Yang Yunjun Characteristics and Resource Evaluation of the Jiwa Geothermal Field in Central Qiangtang,Northern Tibet,China (Geological Bulletin of China,ISSN1671-

  2. GEOTHERMICS GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    <正>20112453 Li Qing (First Design and Research Institute,Ministry of Mechanical Industry, Bengbu 233000, China); Li Yixiang Application of Shallow Geothermal Energy Resources in the Hefei Area(Geology

  3. Marine geology

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, V.P.; Shankar, R.

    Significant scientific contributions in Marine Geology in India during the Nineties have been highlighted in this paper. Sediment trap data collected in the Arabian Sea and Bay of Bengal have provided much understanding about annual sediment fluxes...

  4. MATHEMATICAL GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    <正>20112745Cheng Shurang(Geological survey of Shanxi Province,Xi’an 710065,China); Zhang Lin Grade Evaluation Based on Fuzzy Clustering and Pattern Recognition of Comprehensive Anomalies of Geophysics and

  5. ECONOMIC GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    <正>20101648 Peng Yujing (Survey of Regional Geology and Mineral Resources of Jilin Province, Changchun 130022, China); Zhai Yuchun Age Determination and Characteristics of the Late Indosinian-Yanshanian Metallogenetic Events of Jilin Province

  6. ECONOMIC GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    <正>20112330 Liu Xifang (Key Laboratory of Saline Lake Resources and Environment, Ministry of Land and Resources,Institute of Mineral Resources, Beijing 100037, China);Zheng Mianping Geological Features

  7. GEOTHERMICS GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    <正>20102475 Chen Shiliang(No.4 Geological Party of Fujian Province,Ningde 352100,China)A Brief Analysis on Geothermy in the Nantai Isle of Fuzhou Municipality,Fujian Province(Geology of Fujian,ISSN1001-3970,CN35-1080/P,28(4),2009,p.310-314,1 illus.,1 table,3 refs.)Key words:geothermal exploration,Fujian ProvinceBased on the geochemistry and geophysical

  8. GEOTHERMICS GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    <正>20122531 Hu Lingzhi ( Institute of Geological Engineering Design & Research of Beijing,Miyun 101500,China );Wang Jiankang Discussion on the Feasibility of Geothermal Resources Development and Utilization in Miyun District,Beijing ( City Geology,ISSN1007-1903,CN11-5519 / P,6 ( 3 ), 2011,p.34-35,59 ,) Key words:geothermal resources,Beijing Geothermal,as a new type of clean energy with the integrated trinity of " heat energy-mineral resource-water resource ",

  9. GEOTHERMICS GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

    <正>20132568 Du Guilin(Seismological Bureau of Weihai City,Weihai 264200,China);Cao Wenhai Genesis of Baoquantang Hot Spring in Weihai and Its Influence on Faulting and Seismic Activities(Marine Geology&Quaternary Geology,ISSN0256-1492,CN37-1117/P,32(5),2012,p.67-72,3illus.,2tables,18refs.)Key words:hot springs,seismicity,Shandong Province

  10. ENVIRONMENTAL GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    <正>20072933 Bie Jun(Institute of Oceanology,Chinese Academy of Sciences,Qingdao 266071,China);Huang Haijun Ground Subsidence of the Modern Yellow River Delta and Its Causes(Marine Geology & Quaternary Geology,ISSN0256-1492,CN37-1117/P,28(4),2006,p.29-35,5 illus.,13 refs.,with English abstract)Key words:land subsidence,Yellow River Delta

  11. GENERAL GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    <正>20141269 Dai Deqiu(Institute of Geology,Hunan University of Science and Technology,Xiangtan 411201,China);Chen Xinyue Contrastive of Petrography and Mineral Chemistry Characteristics among Olivine and Ca,Al-rich Assemblages(Chinese Journal of Geology,ISSN0563-5020,CN11-1937/P,48(3),2013,p.762-772,3 illus.,2 tables,25 refs.)

  12. ENVIRONMENTAL GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    <正>20141810 Bian Yumei(Geological Environmental Monitoring Center of Liaoning Province,Shenyang 110032,China);Zhang Jing Zoning Haicheng,Liaoning Province,by GeoHazard Risk and Geo-Hazard Assessment(Journal of Geological Hazards and Environment Preservation,ISSN1006-4362,CN51-1467/P,24(3),2013,p.5-9,2 illus.,tables,refs.)

  13. GENERAL GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    <正>20140001Dong Shuwen(Chinese Academy of Geological Sciences,Beijing 100037,China);Li Tingdong Progress of SinoProbe-Deep Exploration in China 2008~2012(Acta Geoscientica Sinica,ISSN1006-3021,CN11-3474/P,34(1),2013,p.7-23,8illus.,69refs.)Key words:deep geology,deep seismic sounding,Continental Scientific Drilling,China SinoProbe 2008~2012,the initial phase

  14. Geology, summary

    Science.gov (United States)

    Sabins, F. F., Jr.

    1975-01-01

    Trends in geologic application of remote sensing are identified. These trends are as follows: (1) increased applications of orbital imagery in fields such as engineering and environmental geology - some specific applications include recognition of active earthquake faults, site location for nuclear powerplants, and recognition of landslide hazards; (2) utilization of remote sensing by industry, especially oil and gas companies, and (3) application of digital image processing to mineral exploration.

  15. PETROLEUM GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    <正>20122476 Bao Yunjie ( Wuxi Research Institute of Petroleum Geology,SINOPEC,Wuxi 214151,China );Wang Shuyi Reservoir Diagenesis of 3rd Member of Feixianguan Formation,Jiannan Gas Field ( Petroleum Geology & Experiment,ISSN1001-6112,CN32-1151 / TE,33 ( 6 ), 2011,p.564-568,2 il-lus.,1plate,2tables,10refs. ) Key words:carbonate reservoirs,diagenesis,Chongqing,Hubei Province

  16. MATHEMATICAL GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    <正>20072288 Hong Quan(Ningbo Institute for Engineering Investigation,Ningbo 315012,China)Design of Information Management System for Engineering Investigation Maps Based on C/S Model(The Chinese Journal of Geological Hazard and Control,ISSN1003-8035,CN11-2852/P,17(1),2006,p.86-90,2 illus.,6 refs.)Key words:information systems,engineering geological map

  17. STRUCTURAL GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    <正>20141283 Bai Daoyuan(Hunan Institute of Geological Survey,Changsha 410016,China);Zhong Xiang Nature,Origin and Tectonic Setting of Jinzhou Basin in the South Segment of Xuefeng Orogen(Geology in China,ISSN1000-3657,CN11-1167/P,40(4),2013,p.1079-1091,10 illus.,47 refs.)Key words:foreland basins,strike-slip faults,Hunan Province

  18. COAL GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    <正>20091159 Gao Yan(No.3 Prospecting Team of Anhui Bureau of Coal Geology,Suzhou 234000,China) Effect of Depositional Environment of Coal-Bearing Stratum on Major Coal Seams in Suntan Coalmine,Anhui Province(Geology of Anhui,ISSN 1005- 6157,CN34-1111/P,18(2),2008,p.114 -117,5 illus.,1 ref.,with English abstract)

  19. ECONOMIC GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    <正>20110164 Dong Lianhui(Xinjiang Bureau of Geology and Mineral Resources and Development,Urumqi 830000,China);Feng Jing Research for Classification of Metallogenic Unit of Xinjiang(Xinjiang Geology,ISSN1000-8845,CN65-1092/P,28(1),2010,p.1-15,1 illus.,1 table,17 refs.,with English abstract)Key words:metallogenic provinces,metallogenic belts,metallogenic area,Xinjiang

  20. ECONOMIC GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    <正>20072528 Chen Yuchuan(Chinese Academy of Geological Sciences,Beijing,100037);Pei Rongfu On Minerogenetic(Metallogenetic)Series:Third Discussion(Acta Geologica Sinica,ISSN0001-5717,CN11-1951/P,80(10),2006,p.1501-1508,3illus.,1 table,57 refs.,with English abstract)Key words:metallogenic series20072529 Pei Rongfu(Institute of Mineral Resources,CAGS,Beijing 100037);Mei Yanxiong Event Geology Stimulati

  1. [Oceanography and King Dom Carlos I's collection of iconography].

    Science.gov (United States)

    Jardim, Maria Estela; Peres, Isabel Marília; Ré, Pedro Barcia; Costa, Fernanda Madalena

    2014-01-01

    After the Challenger expedition (1872-1878), other nations started to show interest in oceanographic research and organizing their own expeditions. As of 1885, Prince Albert I of Monaco conducted oceanographic campaigns with the collaboration of some of the best marine biologists and physical oceanographers of the day, inventing new techniques and instruments for the oceanographic work. Prince Albert's scientific activity certainly helped kindle the interest of his friend, Dom Carlos I, king of Portugal, in the study of the oceans and marine life. Both shared the need to use photography to document their studies. This article analyzes the role of scientific photography in oceanography, especially in the expeditions organized by the Portuguese monarch.

  2. IEOOS: the Spanish Institute of Oceanography Observing System

    Directory of Open Access Journals (Sweden)

    E. Tel

    2015-10-01

    Full Text Available Since its foundation, 100 years ago, the Spanish Institute of Oceanography (IEO has been observing and measuring the ocean characteristics. Here is a summary of the initiatives of the IEO in the field of the operational oceanography (OO. Some systems like the tide gauges network has been working for more than 70 years. The IEO standard sections began at different moments depending on the local projects, and nowadays there are more than 180 coastal stations and deep-sea ones that are systematically sampled, obtaining physical and biochemical measurements. At this moment, the IEO Observing System (IEOOS includes 6 permanent moorings equipped with currentmeters, an open-sea ocean-meteorological buoy offshore Santander and an SST satellital image reception station. It also supports the Spanish contribution to the ARGO international program with 47 deployed profilers, and continuous monitoring thermosalinometers, meteorological stations and ADCP onboard the IEO research vessels. The system is completed with the IEO contribution to the RAIA and Gibraltar observatories, and the development of regional prediction models. All these systematic measurements allow the IEO to give responses to ocean research activities, official agencies requirements and industrial and main society demands as navigation, resource management, risks management, recreation, etc, as well as for management development pollution-related economic activities or marine ecosystems. All these networks are linked to international initiatives, framed largely in supranational programs Earth observation sponsored by the United Nations or the European Union. The synchronic observation system permits following spatio-temporal description of some events, as new deep water formation in the Mediterranean Sea and the injection of heat to intermediate waters in the Bay of Biscay after some colder northern storms in winter 2005.

  3. ECONOMIC GEOLOGY (3)PETROLEUM GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>20082333 Bai Guoping(Key Laboratory for Hydrocarbon Accumulation of Education Ministry,China University of Petroleum, Beijing 102249,China);Yin Jinyin Petroleum Geological Features and Explo- ration Potential Analyses of North Carnavon Basin,Australia(Petroleum Geology & Ex- periment,ISSN1001—6112,CN32—1151/ TE,29(3),2007,p.253—258,4 illus.,1 table,12 refs.)

  4. Destination: Geology?

    Science.gov (United States)

    Price, Louise

    2016-04-01

    "While we teach, we learn" (Roman philosopher Seneca) One of the most beneficial ways to remember a theory or concept is to explain it to someone else. The offer of fieldwork and visits to exciting destinations is arguably the easiest way to spark a students' interest in any subject. Geology at A-Level (age 16-18) in the United Kingdom incorporates significant elements of field studies into the curriculum with many students choosing the subject on this basis and it being a key factor in consolidating student knowledge and understanding. Geology maintains a healthy annual enrollment with interest in the subject increasing in recent years. However, it is important for educators not to loose sight of the importance of recruitment and retention of students. Recent flexibility in the subject content of the UK curriculum in secondary schools has provided an opportunity to teach the basic principles of the subject to our younger students and fieldwork provides a valuable opportunity to engage with these students in the promotion of the subject. Promotion of the subject is typically devolved to senior students at Hessle High School and Sixth Form College, drawing on their personal experiences to engage younger students. Prospective students are excited to learn from a guest speaker, so why not use our most senior students to engage and promote the subject rather than their normal subject teacher? A-Level geology students embarking on fieldwork abroad, understand their additional responsibility to promote the subject and share their understanding of the field visit. They will typically produce a series of lessons and activities for younger students using their newly acquired knowledge. Senior students also present to whole year groups in seminars, sharing knowledge of the location's geology and raising awareness of the exciting destinations offered by geology. Geology fieldwork is always planned, organised and led by the member of staff to keep costs low, with recent visits

  5. COAL GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    <正>20091749 Cai Hou’an(College of Energy Geology,China University of Geosciences,Beijing 100083,China);Xu Debin SHRIMP U-Pb Isotope Age of Volcanic Rocks Distributed in the Badaohao Area,Liaoning Province and Its Significance(Coal Geology & Exploration,ISSN1001-1986,CN61-1155/P,36(4),2008,p.17-20,2 illus.,1 table,16 refs.)Key words:coal measures,volcanic rocks,U-Pb dating,LiaoningA set of andesite volcanic rocks distributes in the Badaohao area in Heishan County,Liaoning Province.It’s geological age and stratigraphy sequence relationship between the Lower Cretaceous Badaohao Formation and the volcanic rocks can not make sure till now and is influencing the further prospect for coals.Zircon

  6. MATHEMATICAL GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    20150599Chen Gang(Nanjing Center,China Geological Survey,Nanjing 210016,China);Yao Zhongyou Mineral Database Construction and Analysis of Oceania Region(Geological Bulletin of China,ISSN1671-2552,CN11-4648/P,33(2),2014,p.164-171,13illus.,6refs.)Key words:mineral localities,data bases Based on the database of the standards,construction process,data quality control measures and methods and processes,the authors constructed the databases of Fe,Mn,Cu,Al,Au,Ni,U and REE mineral resources for Oceanian region.Through a comprehensive analysis of the multi-source data information of geology and mineral resources,

  7. ECONOMIC GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    <正>20110907 Luo Xue(Faculty of Earth Resource,China Unversity of Geosciences,Wuhan 430074,China);Cao Xinzhi Review on the Change and Development of the Research Thoughts about Mineral Deposit Geology(Contributions to Geology and Mineral Resources Research,ISSN1001-1412,CN12-1131/P,25(2),2010,p.147-152,40 refs.)Key words:study of mineral deposit The development and breakthrough of mineral deposit geology depends to a great extent on the progress and change of its research thoughts.From the traditional study of single mineral,single deposit and single metallogenic model to the comprehensive discussion and whole understanding of metallogenic

  8. A deductive approach to select or rank journals in multifaceted subject, Oceanography

    Digital Repository Service at National Institute of Oceanography (India)

    Sahu, S.R.; Panda, K.C.

    This study discusses Singleton approach and differential approach for analyzing citations of published literature in oceanography from 30 countries. The ranking correlation of journals showed better positive correlation (lowest rho = 0.662 for 2005...

  9. JPL Physical Oceanography Distributed Active Archive Center (PODAAC) Dataset Search API

    Data.gov (United States)

    National Aeronautics and Space Administration — PO.DAAC provides several ways to discover and access physical oceanography data, from the PO.DAAC Web Portal to FTP access to front-end user interfaces (see...

  10. Ranking serials in oceanography: An analysis based on the Indian contributions and their citations

    Digital Repository Service at National Institute of Oceanography (India)

    Tapaswi, M.P.; Maheswarappa, B.S.

    An analysis of serials preferred and cited in various communications by the Indian oceanographers during 1963 to 1992 is presented. A shift in preference of serials from general sciences to oceanography (interdisciplinary) and to core subject...

  11. Transfer of ocean modelling capability to two scientists of the National Institute of Oceanography of India

    NARCIS (Netherlands)

    Holthuijsen, L.H.; Booij, N.

    1985-01-01

    Two scientists from the National Institute of Oceanography of India have been trained to use the storm surge model DUCHESS and the wave model DOLPHIN. The results are published separately in two reports. This is the first of them.

  12. Physical oceanography - Developing end-to-end models of the California Current Large Marine Ecosystem

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The purpose of this project is to develop spatially discrete end-to-end models of the California Current LME, linking oceanography, biogeochemistry, food web...

  13. JPL Physical Oceanography Distributed Active Archive Center (PODAAC) Web Services API

    Data.gov (United States)

    National Aeronautics and Space Administration — PO.DAAC provides several ways to discover and access physical oceanography data, from the PO.DAAC Web Portal to FTP access to front-end user interfaces (see...

  14. Transfer of ocean modelling capability to two scientists of the National Institute of Oceanography of India

    NARCIS (Netherlands)

    Holthuijsen, L.H.; Booij, N.

    1985-01-01

    Two scientists from the National Institute of Oceanography of India have been trained to use the storm surge model DUCHESS and the wave model DOLPHIN. The results are published separately in two reports. This is the first of them.

  15. STRUCTURAL GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    <正>20102152 Bai Daoyuan(Hunan Institute of Geology Survey,Changsha 410011,China);Zhou Kejun Study on Quaternary Tectonic-Sedimentary Evolution of Lujiao Area,East Edge of Yuanjiang Sag,Dongting Basin(Journal of Geomechanics,ISSN1006-6616,CN11-3672/P,15(4),2009,p.409-420,7 illus.,1 table,23 refs.)Key words:basins,Dongtinghu BasinQuaternary Yuanjiang sag is an eastern one of the secondary tectonic units of the Dongting Basin.Detailed geologic mapping and bore data were taken to reveal the Quaternary tectonic,sedimentary and

  16. GEOTHERMICS GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    20150342Guan Yu(Geo-Environment Monitoring Station of Anhui Province,Hefei230001,China);Chen Xun On Shallow Geothermal Energy Investigation in Urban Planning Zone of Bengbu in Anhui Province(Journal of Geology,ISSN1674-3636,CN32-1796/P,38(1),2014,p.88-93,2illus.,4tables,6refs.)Key words:geothermal energy,Anhui Province The authors conducted studies on shallow geothermal energy in urban planning zone in Bengbu of Anhui Province,depicted the geological settings of shallow geothermal energy,analyzed the natural features,heat exchange

  17. ENGINEERING GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    <正>20140498An Shize(Sichuan Institute of Geological Engineering Investigation,Chengdu610072,China);Liu Zongxiang On the Failure Mechanism of a Bedding Landslide in Northeast Sichuan(Journal of Geological Hazards and Environment Preservation,ISSN1006-4362,CN51-1467/P,24(1),2013,p.14-19,2illus.,9refs.)Key words:bedding faults,landslides The landslide was caused by excavation engineering.The failure mechanism is explored for slopes with soft interlayer in the red

  18. GEOTHERMICS GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    <正>20140332 Jiang Lin(School of Earth and Space Sciences,Peking University,Beijing100871,China);Ji Jianqing Geologic Analysis on the Prospects of the Enhanced Geothermal System(EGS)in the Bohaiwan Basin(Geology and Prospecting,ISSN0495-5331,CN11-2043/P,49(1),2013,p.167-178,5illus.,4tables,41refs.)Key words:geothermal systems,Bohaiwan Basin Great amounts of thermal energy is stored ubiquitously in rocks with high tempera-

  19. GENERAL GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    <正>20102127 S.L.Shvartsev(Tomsk Department,Trofimuk Institute of Petroleum Geology and Geophysics of Siberian Branch of the RAS)Self-Organizing Abiogenic Dissipative Structures in the Geologic History of the Earth(Earth Science Frontiers,ISSN1005-2321,CN11-3370/P,16(6),2009,p.257-275,3 illus.,4 tables,53 refs.)Key words:abiogenic,water-rock interaction,dissipative structureIt is shown that since the appearance of water on the Earth,a stationary disequilibrium-equilibrium

  20. ENVIRONMENTAL GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    <正>20110635 Bai Jinbin(Tianjin Institute of Geological Survey,Yingshui Road 20,Nankai 300191,China),Niu Xiujun Cenozoic Consolidation Characteristics and Land Subsidence in Tianjin(The Chinese Journal of Geological Hazard and Control,ISSN1003-8035,CN11-2825/P,21(1),2010,p.42-46,4 illus.,4 tables,7 refs.)Key words:consolidation,land subsidence,TianjinAccording to the survey data of oil wells in Dagang oilfield and a lot of laboratory data,the paper discussed the relationship between the consolidation characteristics

  1. MATHEMATICAL GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    <正>20110686 Bai Wancheng(Gold Headquarters of the Chinese Armed Police Force,Beijing 100055,China);Dong Jianle Statistic Prediction for Gold Ore Prospecting in China(Contributions to Geology and Mineral Resources Research,ISSN1001-1412,CN12-1131/P,25(1),2010,p.1-4,11,1 illus,1 table,7 refs.,with English abstract)Key words:metallogenic prediction,gold ores,China 20110687 Dong Min(Institute of Geology and Exploration Engineering,Xinjiang University,Urumqi 830046,China);Sun Baosheng Drawing and S

  2. Theoretical geology

    Science.gov (United States)

    Mikeš, Daniel

    2010-05-01

    Theoretical geology Present day geology is mostly empirical of nature. I claim that geology is by nature complex and that the empirical approach is bound to fail. Let's consider the input to be the set of ambient conditions and the output to be the sedimentary rock record. I claim that the output can only be deduced from the input if the relation from input to output be known. The fundamental question is therefore the following: Can one predict the output from the input or can one predict the behaviour of a sedimentary system? If one can, than the empirical/deductive method has changes, if one can't than that method is bound to fail. The fundamental problem to solve is therefore the following: How to predict the behaviour of a sedimentary system? It is interesting to observe that this question is never asked and many a study is conducted by the empirical/deductive method; it seems that the empirical method has been accepted as being appropriate without question. It is, however, easy to argument that a sedimentary system is by nature complex and that several input parameters vary at the same time and that they can create similar output in the rock record. It follows trivially from these first principles that in such a case the deductive solution cannot be unique. At the same time several geological methods depart precisely from the assumption, that one particular variable is the dictator/driver and that the others are constant, even though the data do not support such an assumption. The method of "sequence stratigraphy" is a typical example of such a dogma. It can be easily argued that all the interpretation resulting from a method that is built on uncertain or wrong assumptions is erroneous. Still, this method has survived for many years, nonwithstanding all the critics it has received. This is just one example of the present day geological world and is not unique. Even the alternative methods criticising sequence stratigraphy actually depart from the same

  3. GEOTHERMICS GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    <正>20091163 Jiang Huichao(Tongji University College of Ocean and Earth Science,Shanghai 200092,China);Xiao Yongjun Analysis of Cenozoic Subsurface Temperatures of the Jiyang Depression,Shandong Province(Geology in China,ISSN1000-3657,CN11- 1167/P,35(2),2008,p.273-278,3 illus.,2 tables,15 refs.)

  4. GEOTHERMICS GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    20151090 Bian Huiying(School of Environmental Sciences and Engineering,Chang’an University,Xi’an 10054,China);Wang Shuangming Hydrodynamic Conditions of Geothermal Water in Gushi Depression of Guanzhong Basin(Coal Geology&Exploration;,ISSN1001-1986,CN61-1155/P,42(3),2014,p.50-54,60,9illus.,11refs.,

  5. ENVIRONMENTAL GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    <正>20042333 Chen Cuibai (School of Water Resources and Environment, China University of Geosciences, Beijing); Yang Qi The Laboratory Study of Biodegradation and Adsorption and Desorption of Trichloroethylene to Mixed Bacteria (Hydrogeology & Engineering Geology, ISSN1000 - 3665, CN11-2202/P, 31(1), 2004, p. 47-51, 6 illus. , 4 tables, 14 refs. )

  6. GENERAL GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    <正>20090720 Wang Haiqiao(Institute of Earth Resources and Information,China University of Petroleum(East China),Dongying 257061,China);Zhong Jianhua Theory of Geological Holography(Earth Science Frontiers, ISSN1005-2321,CN11-3370/P,15 (3),2008,p.370-379,8 illus.,24 refs.)

  7. GEOTHERMICS GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    <正>20070403 Deng Xiaoying (Zhengzhou Geo-Engineering Exploration Institute, Zhengzhou 450053, China); Yang Guoping Features and Origin of Geothermal Fluid in the New District of Hebi, Henan Provionce (Hydrogeology & Engineering Geology, ISSN1000-3665, CN11-2202/P, 32(2), 2005, p.111-114, 4 illus., 1 table, 7 refs.) Key words: thermal waters, Henan Province

  8. GENERAL GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

    <正>20131375 Dai Deqiu(Institute of GeologyHunan University of Science and TechnologyXiangtan 411201,China);Wang Shijie Comparison of Petrography and Mineral Chemistry Characters between Plagioclase Olivine Inclusions and Typical Ca,Al-Rich Inclusions(Acta Mineralogica Sinica,ISSN1000-4734CN52-1045/P,32(3),2012,p.341-348,3

  9. ENGINEERING GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    20152724 Chen Dan(State Key Laboratory of Geohazard Prevention and Geoenvironment Protection,Chengdu University of Technology,Chengdu 610059,China);Fu Ronghua Study on the Responses of Landslide to Earthquake:Taking Kudiguazi Landslide as an Example(Geological Journal of China Universities,

  10. SEISMIC GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2016-01-01

    20160094Cao Lei(Institute of Geology and Geophysics,Chinese Academy of Sciences,Beijing100029,China);Hao Jinlai Rupture Process Of March 10,2014,M W6.9 Earthquake in the Northwestern Coast of California(Chinese Journal of Geophysics,ISSN0001-

  11. STRUCTURAL GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

    <正>20130642 Bai Daoyuan (Hunan Institute of Geology Survey , Mineral Exploration and Development of Hunan Province , Changsha 410011 , China); Jia Baohua Potential Genesis of the Trending Changes of Jinning Period and Caledonian Structural Lineamens in Middle-Southern Hunan Province (Journal of Geomechanics , ISSN1006-6616 ,

  12. ENVIRONMENTAL GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

    <正>20132755 Chang Ming(State Key Laboratory for Geo-Hazard Prevention and Geo-Environment Protection,Chengdu University of Technology,Chengdu 610059,China);Tang Chuan Prediction Model for Debris Flow Hazard Zone on Alluvial Fan in Milin Section of Yarlungzangbo River,Tibet(Journal of Engineering Geology,ISSN1004-9665

  13. GENERAL GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    <正>20101425 Dai Deqiu (Institute of Geology, Hunan University of Science and Technology, Xiangtan 411201, China); Lin Yangting Petrography, Mineral Chemistry of 6 New Unequilibrated Ordinary Chondrites Collected from the Grove Mountains, Antarctica(Acta Mineralogica Sinica, ISSN1000-4734, CN52-1045/P, 29(3), 2009, p.405-412, 3 illus., 3 tables, 20 refs.)

  14. SEISMIC GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    <正>20101490 Chen Yuwei (Earthquake Administration of Anhui Province, Hefei 230031, China); Huang Xianliang Analysis of Impact of Source Region Structure on Seismology Parameter Scan Results (Seismology and Geology, ISSN0253-4967, CN11-2192/P, 31(3), 2009, p.433-440, 2 illus., 4 tables, 12 refs.)

  15. MATHEMATICAL GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

    <正>20131958 An Lili(China University of Geosciences,Beijing 100083,China);Chen JianpingIntegration and Exploitation of 3DDigital Mine Information System(Journal of Geology,ISSN1674-3636,CN32-1796/P,36(3),2012,p.280-284,2illus.,14refs.)Key words:geographic information system,Sichuan Province

  16. MATHEMATICAL GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    <正>20071578 Chen Song(College of Civil Engi- neering,Hohai University,Nanjing 210098, China);Han Xuewei Monitoring Program System for the Foundation of Large Bridge (Hydrogeology & Engineering Geology, ISSN 1000-3665,CN 11-2202/P,32(5), 2005,p.44-47,5 illus.,3 refs.) Key words:bridges,footing

  17. MATHEMATICAL GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>20080675 Chen Shucun(College of Civil Engineering,Hohai University,Nanjing 210098);Gao Zhengxia Application of a Refined BP Algorithm Based Elman Network to Settlement Prediction of Soft Soil Ground(Journal of Engineering Geology,ISSN1004-9665,CN11-3249/P,14(3),2006,p.394-397,4 illus.,2 tables,6 refs.)

  18. MATHEMATICAL GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    <正>20042360 Feng Zhihan (Geological Survey of Gansu Province, Lanzhou, Gansu) Adjustment of Gravitational Base Point Net Using MATLAB (Computing Techniques for Geophysical and Geochemical Exploration, ISSN 1001-1749, CN51-1242/P, 25(4), 2003, p. 336-339, 1 illus. , 3 refs. )

  19. ECONOMIC GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    <正>20071835 Chen Xifeng(China University of Geosciences,Beijing 100083,China);Peng Runmin Analysis on the Necessity and Significance of Concealed Deposits Exploration(Gansu Geology,ISSN1004-4116,CN62-1191/P,15(2),2006,p.1-4,1 table,7 refs.)Key words:blind deposits,China

  20. ECONOMIC GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    <正>20070285 Fu Xiaofang (Institute of Geology and Mineral Resources, SBGMR, Chengdu, Sichuan 610081); Hou Liwei Potential of Mineral Resources of Rare and Dispersed Elements in Sichuan Province and Countermeasures of Exploitation (Acta Geologica Sichuan, ISSN1006-0995, CN51-1273/P, 26(1), 2006, p.10-18, 6 illus., 15 refs.) Key words: mineral resources, Sichuan Province

  1. ECONOMIC GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>20080948 Deng Jinfu(State Key Laboratory of Geological Processes and Mineral Resources,China University of Geosciences,Beijing 100083,China);Su Shangguo Yanshanian(Jura-Cretaceous)Orogenic Processes and Metallogenesis of the Taihangshan-Yanshan-West Liaoning Orogenic Belt,North China(Geoscience,ISSN1000-8527,CN11-2035/P,21(2)

  2. ECONOMIC GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>20080252 Zhai Yusheng(State Key Laboratory of Geological Processes and Mineral Resources,China University of Geosciences,Beijing 100083,China) Earth System,Me-tallogenic System to Exploration System(Earth Science Frontiers,ISSN1005-2321,CN11-3370/P,14(1),2007,p.172-181,6 illus.,18 refs.,with English abstract)

  3. ECONOMIC GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

    <正>20130838 Li Wenyuan (Xi ’ an Center , China Geological Survey , Xi ’ an 710054 , China); Niu Yaoling Geodynamic Setting and FurtherExploration of Magmatism-Related Mineralization Concentrated in the Late Paleozoic in the Northern Xinjiang Autonomous Region (Earth Science Frontiers , ISSN1005-2321 , CN11-3370/P , 19 (4)

  4. ECONOMIC GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

    <正>20131562 Chen Jianping(School of Earth Sciences and Resources,China University of Geosciences,Beijing 100083,China);Shi Rui 3D Metallogenic Prediction for Western Section of Q8 Gold Deposit in Tongguan County of Shaanxi Province Based on Digital Mineral Deposit Model(Journal of Geology,ISSN1674,

  5. Geologic map of Indonesia - Peta geologi Indonesia

    Science.gov (United States)

    Sigit, Soetarjo

    1965-01-01

    The geology, compiled by Th. H. F. Klompe in 1954 from published and unpublished maps of the Direktorat Geologi, has been brought up to date on the basis of investigations carried out to 1962 (Ref. Sigit, Soetarjo, "I. A brief outline of the geology of the Indonesian Archipelago, and II. Geological map of Indonesia;" Direktorat Geologi publication, 1962.)

  6. IIth AMS Conference on Satellite Meteorology and Oceanography.

    Science.gov (United States)

    Velden, Christopher; Digirolamo, Larry; Glackin, Mary; Hawkins, Jeffrey; Jedlovec, Gary; Lee, Thomas; Petty, Grant; Plante, Robert; Reale, Anthony; Zapotocny, John

    2002-11-01

    The American Meteorological Society (AMS) held its 11th Conference on Satellite Meteorology and Oceanography at the Monona Terrace Convention Center in Madison, Wisconsin, during 15-18 October 2001. The purpose of the conference, typically held every 18 months, is to promote a forum for AMS membership, international scientists, and student members to present and discuss the latest advances in satellite remote sensing for meteorological and oceanographical applications. This year, surrounded by inspirational designs by famed architect Frank Lloyd Wright, the meeting focused on several broad topics related to remote sensing from space, including environmental applications of land and oceanic remote sensing, climatology and long-term satellite data studies, operational applications, radiances and retrievals, and new technology and methods. A vision of an increasing convergence of satellite systems emerged that included operational and research satellite programs and interdisciplinary user groups.The conference also hosted NASA's Electronic Theater, which was presented to groups of middle and high school students totaling over 5500. It was truly a successful public outreach event. The conference banquet was held on the final evening, where a short tribute to satellite pioneer Verner Suomi was given by Joanne Simpson. Suomi was responsible for establishing the Space Science and Engineering Center at the University of Wisconsin in Madison.

  7. Oceanography promotes self-recruitment in a planktonic larval disperser

    Science.gov (United States)

    Teske, Peter R.; Sandoval-Castillo, Jonathan; van Sebille, Erik; Waters, Jonathan; Beheregaray, Luciano B.

    2016-01-01

    The application of high-resolution genetic data has revealed that oceanographic connectivity in marine species with planktonic larvae can be surprisingly limited, even in the absence of major barriers to dispersal. Australia’s southern coast represents a particularly interesting system for studying planktonic larval dispersal, as the hydrodynamic regime of the wide continental shelf has potential to facilitate onshore retention of larvae. We used a seascape genetics approach (the joint analysis of genetic data and oceanographic connectivity simulations) to assess population genetic structure and self-recruitment in a broadcast-spawning marine gastropod that exists as a single meta-population throughout its temperate Australian range. Levels of self-recruitment were surprisingly high, and oceanographic connectivity simulations indicated that this was a result of low-velocity nearshore currents promoting the retention of planktonic larvae in the vicinity of natal sites. Even though the model applied here is comparatively simple and assumes that the dispersal of planktonic larvae is passive, we find that oceanography alone is sufficient to explain the high levels of genetic structure and self-recruitment. Our study contributes to growing evidence that sophisticated larval behaviour is not a prerequisite for larval retention in the nearshore region in planktonic-developing species. PMID:27687507

  8. Oceanography promotes self-recruitment in a planktonic larval disperser.

    Science.gov (United States)

    Teske, Peter R; Sandoval-Castillo, Jonathan; van Sebille, Erik; Waters, Jonathan; Beheregaray, Luciano B

    2016-09-30

    The application of high-resolution genetic data has revealed that oceanographic connectivity in marine species with planktonic larvae can be surprisingly limited, even in the absence of major barriers to dispersal. Australia's southern coast represents a particularly interesting system for studying planktonic larval dispersal, as the hydrodynamic regime of the wide continental shelf has potential to facilitate onshore retention of larvae. We used a seascape genetics approach (the joint analysis of genetic data and oceanographic connectivity simulations) to assess population genetic structure and self-recruitment in a broadcast-spawning marine gastropod that exists as a single meta-population throughout its temperate Australian range. Levels of self-recruitment were surprisingly high, and oceanographic connectivity simulations indicated that this was a result of low-velocity nearshore currents promoting the retention of planktonic larvae in the vicinity of natal sites. Even though the model applied here is comparatively simple and assumes that the dispersal of planktonic larvae is passive, we find that oceanography alone is sufficient to explain the high levels of genetic structure and self-recruitment. Our study contributes to growing evidence that sophisticated larval behaviour is not a prerequisite for larval retention in the nearshore region in planktonic-developing species.

  9. Paleophysical oceanography with an emphasis on transport rates.

    Science.gov (United States)

    Huybers, Peter; Wunsch, Carl

    2010-01-01

    Paleophysical oceanography is the study of the behavior of the fluid ocean of the past, with a specific emphasis on its climate implications, leading to a focus on the general circulation. Even if the circulation is not of primary concern, heavy reliance on deep-sea cores for past climate information means that knowledge of the oceanic state when the sediments were laid down is a necessity. Like the modern problem, paleoceanography depends heavily on observations, and central difficulties lie with the very limited data types and coverage that are, and perhaps ever will be, available. An approximate separation can be made into static descriptors of the circulation (e.g., its water-mass properties and volumes) and the more difficult problem of determining transport rates of mass and other properties. Determination of the circulation of the Last Glacial Maximum is used to outline some of the main challenges to progress. Apart from sampling issues, major difficulties lie with physical interpretation of the proxies, transferring core depths to an accurate timescale (the "age-model problem"), and understanding the accuracy of time-stepping oceanic or coupled-climate models when run unconstrained by observations. Despite the existence of many plausible explanatory scenarios, few features of the paleocirculation in any period are yet known with certainty.

  10. ECONOMIC GEOLOGY (3)PETROLEUM GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    <正>20071077 An Zuoxiang(Petroleum Industry Press,Beijing 100011,China);Ma Ji On Bo- real-Style Petroliferous Domain(Xinjiang Petroleum Geology,ISSN1001-3873,CN65 -1107/TE,26(4),2005,p.432-436,4 illus.,9 refs.,with English abstract) Key words:oil and gas fields

  11. GENERAL GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    <正>20110727 Dai Deqiu (Institute of Geology, Hunan University of Science and Technology, Xiangtan 411201, China); Wang Daode The Evolvement Models and Progress of Research on Formation of Ca-,Al-Rich inclusions in Chondrites (Geological Review, ISSN0371-5736, CN11-1952/P, 56(3), 2010, p.374-383, 2 illus., 1 table, 72 refs.)Key words: chondrites Ca-, Al-rich inclusions (CAIs) are the earliest assemblages formed in the solar nebula. The formation models of CAIs include gas-soild condensation, crystallization from melting or partial melting and high-temperature evaporating residues. The latest study shows similar distribution patterns of the petrographic types and sizes of CAIs in various chondrites. The petrographic characters argue that CAIs in various chemical groups of chondrites formed under similar processes and conditions probably in a same region in the solar nebula.

  12. PETROLEUM GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    <正>20111769 Bai Yubin(School of Oil and Gas Resources,Xi’an University of Petroleum,Xi’an 710065,China);Zhang Hai Physical Properties and Main Controlling Factors for the Low-Permeability Reservoirs from a Oil Field in the Ordos Basin(Sedimentary Geology and Tethyan Geology,ISSN1009-3850,CN51-1593/P,30(3),2010,p.104-108,4 illus.,2 tables,5 refs.)Key words:low permeability reservoirs,reservoir properties,Ordos BasinThe Chang-2 reservoirs in A oil field in the Ordos Basin dominantly consist of fine-grainded feldspar sandstones which have low porosity and low-permeability,

  13. MATHEMATICAL GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    <正>20092028 Bai Wancheng(Gold Headquarters,Chinese Armed Police Forces,Beijing 100055,China);Dong Jianle Borrowed Model Method and Application in Metallogenic Prognosis(Geology and Prospecting,ISSN0495-5331,CN11-2043/P,44(4),2008,p.60-63,1 illus.,2 tables,8 refs.,with English abstract)Key words:prediction of deposits,geological model20092029 Cao Zubao(Xi’an Branch of China Coal Research Institute,Xi’an 710054,China)Application Study on Artificial Neural Network Method in Deformation Prediction for Foundation Pit(Exploration Engineering,ISSN1672-7428,CN11-5063/TD,35(5),2008,p.38-40,43,1 illus.,6 tables,8 refs.,

  14. STRUCTURAL GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    <正>20110016 Cheng Shoude(Xinjiang Institute of Geology and Mineral Recources,Urumqi 830000,China);Liu Tong The Brief Description of the Division of Tectonic Units in the Five-Countries in Central Asia(Xinjiang Geology,ISSN1000-8845,CN65-1092/P,28(1),2010,p.16-21,1 illus.,21 refs.)Key words:tectonics,tectonic units,Central Asia The Five-Countries in Central-Asia border on Xinjiang in the West China,research have been performed in this area,the gists of the division of tectonic units are different from each other and the results are different in a thousand and one ways.According as the investigations of sedimentary formation,conformation,

  15. GEOTHERMICS GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>20080401 Ding Kuan(Coal Mine Managing Branch Company of Datong Mining Industry Group Company,Datong 037003,China) Surveying the Thickness of the Coal Bed by the Method of Reflecting Wave from Synchronistical Shifting of Stimulating and Receiving(Gansu Geology,ISSN1004-4116,CN62-1191/P,16(1-2),2007,p.93-96,70,3 illus.,4 tables,5 refs.)

  16. GEOTHERMICS GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    20151782 Ding Zhaoqin(Institute of Geophysical Exploration of Jilin Province,Changchun130012,China);Xu Zhihe The Possibility of Structure and Occurrence Geothermal Resources in Dunhua-Mishan Fault Zone(Huinan Section)(Jilin Geology,ISSN1001-2427,CN22-1099/P,33(2),2014,p.98-102,5illus.,1table,4refs.)Key words:geothermal resources,fracture

  17. MATHEMATICAL GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    <正>20041769 Fang Rui (Department of Earth Sciences, Nanjing University, Nanjing, Jiangsu); Wu Jichun Design and Implementation of New Spatial Database of Groundwa-ter (Hydrogeology & Engineering Geology, ISSN 1000-3665, CN11-2202/P, 30(5), 2003, p. 33 -36, 4 illus. , 1 table, 8 refs. ) Key words: groundwater, data basesBased on system of relational database, a data model of groundwater spatial information

  18. STRUCTURAL GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>20080022 Bai Daoyuan(Hunan Institute of Geology Survey,Xiangtan 411100,China);Xong Yanwang Forming Ages and Uplift Size of the Middle Kunlun Mountain--Based on Study of Plantation Surface and Apatite Fission-Track Ages(Resources Survey & Environment,ISSN1671-4814,CN32-1640/N,28(1),2007,p.5-11,4 illus.,23 refs.)

  19. GEOTHERMICS GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    <正>20141588 Guo Shiyan(Green Energy Geothermai Development Co.,SINOPEC,Xianyang 712000,China);Li Xiaojun Reservoir Stratum Characteristics and Geothermal Resources Potential of Rongcheng Uplift Geothermal Field in Baoding,Hebei Province(Chinese Journal of Geology,ISSN0563-5020,CN11-1937/P,48(3),2013,p.922-931,2 illus.,4 tables,10 refs.)Key words:geothermal fields,Hebei Province

  20. STRUCTURAL GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>20082072 Chen Bailin(Institute of Geome- chanics,Chinese Academy of Geological Sci- ences,Beijing 100081,China);Wu Ganguo Baldunzl-Xiaoxigong Ductile Shear Zone and Its Ore-Controlling Effect in the Southern Beishan Area,Gansu Province (Journal of Geomeehanics,ISSN 1006—6616,CN11—3672/P,13(2),2007,p.99—109,3 illus.,4 tables,26 refs.)

  1. ECONOMIC GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>20082275 He Longqing(Yichang Institute of Geology and Mineral Resources,Yichang 443003,China);Ji Wei Ore-Controlling Effect of Nappe Structure in the East Ore Zone of the Baiyangping Area,Lanping Basin,Yunnan Province(Journal of Geome- ehanics,ISSN1006—6616,CN11—3672/P, 13(2),2007,p.110—118,6 illus.,2 tables,28 refs.) Key words:nappes,structural controls, Yunnan Province

  2. ENGINEERING GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    <正>20122683 Cao Guangpeng ( State Key Laboratory of Geohazard Prevention and Geoenvironment Protection,Chengdu University of Technology,Chengdu 610059,China );Li Yusheng A Rock-Mechanical Study on the Stability of the Xigu Power Transmission Sta-tion Site in Jiulong County,Sichuan Province ( Journal of Geological Hazards and Environment Preservation,ISSN1006-4362,CN51-1467 / P,22 ( 4 ), 2011,p.46-49,2illus.,3 tables,5refs. )

  3. ENVIRONMENTAL GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    <正>20140527Chen Hailong(State Key Laboratory of Geo-Hazard Prevention and Geo-Environment Protection,Chengdu University of Technology,Chengdu 610059,China);Chen Dingcai Features of the Typical Mine Debris Flows in Guizhou Province(Journal of Geological Hazards and Environment Preservation,ISSN1006-4362,CN51-1467/P,24(1),2013,p.9-13,2illus.,1table,6refs.)Key words:debris flows,mine,Guizhou Province

  4. STRUCTURAL GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    20151407 Bai Daoyuan(Hunan Institute of Geology Survey,Changsha 410016,China);Zhong Xiang Study on the Deformation in the Southern Xuefeng Orogenic Belt(Geotectonica et Metallogenia,ISSN1001-1552,CN44-1595/P,38(3),2014,p.512-529,14illus.,71refs.,with English abstract)Key words:orogenic belts,tectonic deformation,Hunan Province

  5. COAL GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    <正>20141574 Chen Hao(Exploration and Development Research Institute,Daqing Oilfield Company,Daqing 163712,China)High-Resolution Sequences and Coal Accumulating Laws in Nantun Formation of Huhe Lake Sag(Petroleum Geology&Oilfield Development in Daqing,ISSN1000-3754,CN23-1286/TQ,32(4),2013,p.15-19,5 illus.,15 refs.)Key words:coal accumulation regularity,coal

  6. EXTRATERRESTRIAL GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    <正>20070001 Liang Ying (State Key Laboratory for Mineral Deposits Research, Department of Earth Sciences, Nanjing University, Nanjing 210093, China); Wang Henian Petrology-Mineralogy and Classification of Eleven Ordinary Chondrites from the Grove Mountains in Antarctica (Geological Journal of China Universities, ISSN1006-7493, CN32-1440/P,12(1), 2006, p.53-61, 6 illus., 4 tables, 21 refs.) Key words: meteorites, Antarctica

  7. MATHEMATICAL GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    <正>20072979 Hang Bangming(Jiangning Branch,Nanjing Bureau of Land and Resources,Nanjing 211100,China);Hua Jianwei Application of 3-D GIS Technology in Environmental Supervision of Open Pit Mines(Jiangsu Geology,ISSN1003-6474,CN32-1258/P,30(4),2006,p.275-279,7 illus.,6 refs.)Key words:geographic information systems,mine environmentBased on a

  8. MATHEMATICAL GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    <正>20140556Tang Hongxu(State Key Laboratory of Geo-Hazard Prevention and Geo-Environment Protection,Chengdu University of Technology,Chengdu 610059,China);Zhu Jing Three-Dimensional Terrain Model Based on GAMBIT(Journal of Geological Hazards and Environment Preservation,ISSN1006-4362,CN51-1467/P,24(1),2013,p.61-65,2illus.,7refs.)Key words:debris flows,three-dimensional models,ARCGIS,GAMBIT,C language

  9. MATHEMATICAL GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    20151343Chen Jianping(China University of Geosciences,Beijing100083,China);Yu Miao Method and Practice of 3DGeological Modeling at Key Metallogenic Belt with Large and Medium Scale(Acta Geologica Sinica,ISSN0001-5717,CN11-1951/P,88(6),2014,p.1187-1195,9illus.,22refs.)Key words:geological modeling,metallogenic

  10. MATHEMATICAL GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    <正>20141850 Chen Dongyue(School of Earth Sciences and Resources,China University of Geosciences,Beijing 100083,China);Chen Jianping On 3D Ore Prospecting Modeling of Comprehensive Information for Huangshaping Polymetallic Deposit(Journal of Geology,ISSN1674-3636,CN32-1796/P,37(3),2013,p.489-495,12 illus.,12 refs.) Key words:polymetallic ores,data bases,Hunan Province

  11. ECONOMIC GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    <正>20111702 He Ying(Depart ment of Geology,Northwest University,Xi’an710069,China);Yue KefenInhomogeneity of Relationship Between Lithospheric Thinning and Mineralization(Journal of Earth Sciences and Environment,ISSN1672-6561,CN61-1423/P,32(3),2010,p.221-224,233,63refs.)Key words:metallogenesis,lithosphere,crustal thinning

  12. MATHEMATICAL GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    <正>20102798 Gao Shengxiang(School of Resource and Earth Science,China University of Mining and Technology,Xuzhou 221008,China);Ye Rongzhang Establishment of Complex Geological Body FLAC3D Model by Using MATLAB Interface Program(Coal Geology & Exploration,ISSN1001-1986,CN61-1155/P,37(5),2009,p.51-53,5 illus.,4 refs.,with English abstract)Key words:FLAC3D,computer programs20102799 Li Xiuzhen(Key Laboratory of Mountain Hazards and Surface Processes,Chinese Academy of Sciences,Chengdu 610041,China);Wang Chenghua Potential Landslide Identification Model Based on Fisher Discrimination Analysis Method and Its Application(The Chinese Journal of Geological Hazard and Control,ISSN1003-8035,CN11-2825/P,20(4),2009,p.23-26,40,2 tables,11 refs.)Key words:mathematical models,landslidesAiming at ancient(old)landslides,four kinds of discrimination indexes which included nine secondary indexes for potential landslides,such as landform character,slip surface character,landslide body structure and recent activities characters,were presented.Then according to Fisher Discrimination theory,Fisher Discrimination model for the potential landslides was built.The re

  13. Marine geology of the Gulf of California : Tj. H. van Andel and G. G. Shor Jr. (editors). American Association of Petroleum Geologists, Tulsa, Okla., memoir 3, 1964, 408 pp., 228 illus., 52 tables, 1 separate cover with 6 charts, $ 12.50

    NARCIS (Netherlands)

    Bouma, Arnold H.

    1965-01-01

    That an investigation of a certain area made by one or a few scientists can never result in a complete paper is clearly demonstrated by this magnificent book. The combined program for study of the Gulf of California by all available methods, such as geology, oceanography, marine geology, geophysics

  14. POTENTIAL APPLICATION FOREGROUND OF OCEAN MODE IN NAVY OCEANOGRAPHY

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Ocean mode (or quasigeostrophic wave) analysis is one of the key data processing technique in Oceanic Acoustic Tomography Experiment. In this paper, a primary study on its application foreground in Navy Oceanography is put forward with CTD data and Carton oceanic assimilation data. It shows that the sound speed mode is not well orthogonal to each other, so that it is practically no use. However, the current mode calculated from the CTD data collected in summer at the position with weak stochastic processes and strong geostrophic balance is well orthogonal to each other, it can be used everywhere in the ocean of the similar water mass at any time as long as the basic condition serves. It can be used for decomposition and reconstruction of dynamic or quasi-dynamic factors such as seawater temperature, from which and average of salinity the sound speed profile can be composed. It also shows that the monthly James Carton assimilation data is well consistent with observation in subsurface layer in the region with weak current speed but not well below subsurface layer or near the Kuroshio in the western Pacific. By running a nested ocean general circulation model with adjusted vertical eddy diffusivity to do data assimilation again and applying current mode analysis to reconstruct or compose related factors, it is hopefully possible to improve the precision and space resolution of the oceanic assimilation data. So that, it is definitely possible to obtain the three dimensional high resolution distribution of ocean sound speed in real time with the satellite SST and surface wind fields only.

  15. Enhancing Oceanography Classrooms with "Captive and Cultured" Ocean Experiences

    Science.gov (United States)

    Macko, S. A.; Tuite, M.; O'Connell, M.

    2012-04-01

    Students in oceanography classes often request more direct exposure to actual ocean situations or field trips. During regular session (13 week) or shorter term (4 week) summer classes such long trips are logistically difficult owing to large numbers of students involved or timing. This new approach to such a course supplement addresses the requests by utilizing local resources and short field trips for a limited number of students (20) to locations in which Ocean experiences are available, and are often supported through education and outreach components. The vision of the class was a mixture of classroom time, readings, along with paper and actual laboratories. In addition short day-long trips to locations where the ocean was "captured" were also used to supplement the experience as well as speakers involved with aquaculture ("cultivated") . Central Virginia is a fortunate location for such a class, with close access for "day travel" to the Chesapeake Bay and numerous field stations, museums with ocean-based exhibits (the Smithsonian and National Zoo) that address both extant and extinct Earth history, as well as national/state aquaria in Baltimore, Washington and Virginia Beach. Furthermore, visits to local seafood markets at local grocery stores, or larger city markets) enhance the exposure to productivity in the ocean, and viability of the fisheries sustainability. The course could then address not only the particulars of the marine science, but also aspects of ethics, including keeping animals in captivity or overfishing of particular species and the special difficulties that arise from captive or culturing ocean populations. In addition, the class was encouraged to post web-based journals of experiences in order to share opinions of observations in each of the settings.

  16. GENERAL GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    <正>20110001 Chi Han (State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Beijing 100083, China); Li Chusi Shock-Metamorphosed Zircons in the Fragments of the Sudbury Breccias, Ontario, Canada (Earth Science Frontiers, ISSN1005-2321, CN11-3370/P, 17(1), 2010, p.86-92, 5 illus., 42 refs.)Key words: meteorite impacts, suevite, Canada It is widely accepted that the Sudbury structure formed by large bolide impact. To find more supporting evidences, the authors used elec

  17. PETROLEUM GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    <正>20110263 Chen Anqing(State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation,Chengdu University of Technology,Chengdu 610059,China);Chen Hongde Difference of the Upper Paleozoic Lithostratigraphic Gas Reservoirs in Ordos Basin,China(Journal of Chengdu University of Technology,ISSN1671-9727,CN51-1634/N,37(2),2010,p.120-126,4 illus.,1 table,24 refs.)Key words:lithologic reservoir,stratigraphic reservoir,Ordos BasinThe Upper Paleozoic of Ordos Basin is characterized by "gas-generating in the whole basin,gas-bearing widely and gas controlled by lithology".The comparati

  18. PETROLEUM GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    <正>20102418 Chen Hongde(Institute of Sedimentary Geology,Chengdu University of Technology,Chengdu 610059,China);Huang Fuxi Distribution Rule and Main Controlling Factors of the Marine Facies Hydrocarbon Substances in the Middle and Upper Parts of Yangtze Region,China(Journal of Chengdu University of Technology,ISSN1671-9727,CN51-1634/N,36(6),2009,p.569-577,7 illus.,15 refs.)Key words:marine oil generation,oil and gas accumulation,Yangtze RegionUnder the guidance of the tectonic-sequence stratigraphy,sedimentology and lithofacies palaeogeography and dynamic evolutionary view,the au

  19. GEOTHERMICS GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    <正>20091762 Guo Wancheng(Xining Jiulong Engineering Investigation Ltd.,Xining 810700,China);Shi Xingmei Development and Utilization of Guide Basin’s Geothermal Resources of Qinghai Province(Hydrogeology and Engineering Geology,ISSN1000-3665,CN11-2202/P,35(3),2008,p.79-80,92,2 illus.,2 tables,2 refs.)Key words:geothermal resources,QinghaiThis paper introduced the background of geothermal conditions and the many years of geothermal exploration data in Guide Basin.Then,the authors discussed the geothermal resources feature of Guide basin and raised some opinions on the reasonable development and utilization of geothermal resources.

  20. ENVIRONMENTAL GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    <正>20102721 Bian Jianmin(College of Environment and Resources,Jilin University,Changchun 130026,China);Tang Jie Hydrogeochemical Characteristics in the Arsenic Poisoning Area in Western Jilin Province(Hydrogeology and Engineering Geology,ISSN1000-3665,CN11-2202/P,36(5),2009,p.80-83,4 illus.,2 tables,9 refs.)Key words:groundwater,arsenic,Jilin ProvinceSupported by field survey and sample test data,the SPSS is applied to analyze the relationship between arsenic concentration and chemical components.The results show that th

  1. MATHEMATICAL GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    <正>20112074 Guo Si(Institute of Sedimentary Geology,Chengdu University of Technology,Chengdu 610059,China);Guo Ke Solid Mineral Reserves Estimation System Development and Practice Based on Arcgis(Computing Techniques for Geophysical and Geochemical Exploration,ISSN1001-1749,CN51-1242/P,32(5),2010,p.560-564,458,10 illus.,4 tables,18 refs.)Key words:computer programs,prospective reservesGeostatistics is now the foundation of mineral reserves estimation,and it has become the industry standard for estimating reserves.The software development of solid mineral reserves estimates

  2. Utilizing social media for informal ocean conservation and education: The BioOceanography Project

    Science.gov (United States)

    Payette, J.

    2016-02-01

    Science communication through the use of social media is a rapidly evolving and growing pursuit in academic and scientific circles. Online tools and social media are being used in not only scientific communication but also scientific publication, education, and outreach. Standards and usage of social media as well as other online tools for communication, networking, outreach, and publication are always in development. Caution and a conservative attitude towards these novel "Science 2.0" tools is understandable because of their rapidly changing nature and the lack of professional standards for using them. However there are some key benefits and unique ways social media, online systems, and other Open or Open Source technologies, software, and "Science 2.0" tools can be utilized for academic purposes such as education and outreach. Diverse efforts for ocean conservation and education will continue to utilize social media for a variety of purposes. The BioOceanography project is an informal communication, education, outreach, and conservation initiative created for enhancing knowledge related to Oceanography and Marine Science with an unbiased yet conservation-minded approach and in an Open Source format. The BioOceanography project is ongoing and still evolving, but has already contributed to ocean education and conservation communication in key ways through a concerted web presence since 2013, including a curated Twitter account @_Oceanography and BioOceanography blog style website. Social media tools like those used in this project, if used properly can be highly effective and valuable for encouraging students, networking with researchers, and educating the general public in Oceanography.

  3. Using Earth Data in an Introductory Oceanography Course

    Science.gov (United States)

    Prothero, W. A.

    2002-12-01

    Activities that engage students in the use and interpretation of real earth data provide an effective way of promoting an understanding of the science process. In UCSB's introductory Oceanography course, major goals are to improve student understanding of how science works and how to interpret science claims in the popular media. Activities are modeled after those of practicing scientists. These include: a) posing a solvable problem, b) choosing and acquiring relevant data, c) describing the data, d) interpreting the data, e) giving talks to peers, and f) publishing and reviewing findings. Each of these activities poses pedagogical challenges that must be addressed in carefully sequenced course assignments that build upon each other, and respond to a variety of learning styles. The use of earth data in education also presents significant challenges in creating effective data acquisition and display tools. However, only item b, above, is pertinent to these tools. The other items present similar challenges. During the course, learners must acquire enough subject knowledge to successfully interpret the data. They must understand the theory or model they are testing, how the relevant data can be used to test the model, and how to illustrate and present their findings orally and in writing. Some of the assignments that support this are: online homework, online subject area mini-quizzes (randomly created from a database of questions), "questions of the day" in lecture, online short answer thought questions, lab section guided mini-investigations, lab section group presentations, short writing exercises, and 2 longer writing assignments. Students rate the writing assignments as the most effective course component that contributes to their learning. The writing assignments focus student effort and also produce a product that we can study in an attempt to measure student learning. Prof. Gregory Kelly and Prof. Charles Bazerman (UCSB Graduate School of Education) are

  4. A perspective on the future of physical oceanography.

    Science.gov (United States)

    Garabato, Alberto C Naveira

    2012-12-13

    oceanography towards a more operational enterprise by contextual factors. The basic elements that a strategy for the future must have to foster progress in these two areas are discussed, with an overarching emphasis on the promotion of curiosity-driven fundamental research against opposing external pressures and on the importance of upholding fundamental research as the apex of education in the field.

  5. STRUCTURAL GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    <正>20110743 Bai Bin(State Key Laboratory of Enhanced Oil Recovery,PetroChina Research Institute of Petroleum Exploration & Development,Beijing 100083,China);Zhou Lifa Definition of Some Unconformities in the South Margin of Junggar Basin,NW China(Petroleum Exploration and Development,ISSN1000-0747,CN11-2360/TE,37(3),2010,p.270-280,9 illus.,31 refs.)Key words:unconformities,Junggar Basin The analysis of the south margin of the Junggar Basin and the rock lithologies and attitudes of 18 field geologic sections in its adjacent area reveals that 9 regional unconformities,dominantly angular unconformities exist.The occurrence of these unconformities is justified by geophysical evidences of logging curve and seismic profile and by geochemical evidences of trace elements and rare elements in mudstone samples,sandstone

  6. ENGINEERING GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    <正>20091943 Cao Zubao(Xi’an Branch of China Coal Research Institute,Xi’an 710054,China);Zhu Mingcheng Application of Pipe-Roof Curtain Grouting in Construction of Coal Mine Tunnel Crossing the Fractured Zone(Exploration Engineering,ISSN1672-7428,CN11-5063/TD,35(8),2008,p.79-81,3 illus.,4 refs.,with English abstract)Key words:curtain grouting20091944 Chen Changfu(Civil Engineering College,Hunan University,Changsha 410082,China);Xiao Shujun Application of Weighted Residual Method in Whole Internal Force Calculation of Anti-Slide Pile(Hydrogeology and Engineering Geology,ISSN1000-3665,CN11-2202/P,35(4),2008,p.75-79,3 illus.,9 refs.)Key words:slide-resistant

  7. ENVIRONMENTAL GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    <正>20091993 Cao Wei(Cold and Arid Regions Environmental and Engineering Research Institute,CAS,Lanzhou 730000,China);Sheng Yu Grey Relation Projection Model for the Assessment of Permafrost Environment in Coal Mining Areas(Hydrogeology and Engineering Geology,ISSN1000-3665,CN11-2202/P,35(4),2008,p.111-115,2 tables,15 refs.)Key words:miming,frozen ground,environment impact statementsDue to the intense effect of coal mining activity on permafrost,the permafrost environment in coal mining areas is very frail.It is very important to assess the permafrost environment in coal mining areas.The permafrost environment is

  8. Shedding light on the sea: André Morel's legacy to optical oceanography.

    Science.gov (United States)

    Antoine, David; Babin, Marcel; Berthon, Jean-François; Bricaud, Annick; Gentili, Bernard; Loisel, Hubert; Maritorena, Stéphane; Stramski, Dariusz

    2014-01-01

    André Morel (1933-2012) was a prominent pioneer of modern optical oceanography, enabling significant advances in this field. Through his forward thinking and research over more than 40 years, he made key contributions that this field needed to grow and to reach its current status. This article first summarizes his career and then successively covers different aspects of optical oceanography where he made significant contributions, from fundamental work on optical properties of water and particles to global oceanographic applications using satellite ocean color observations. At the end, we share our views on André's legacy to our research field and scientific community.

  9. Old Geology and New Geology

    Science.gov (United States)

    2003-01-01

    [figure removed for brevity, see original site] Released 28 May 2003Mangala Vallis one of the large outflow channels that channeled large quantities of water into the northern lowlands, long ago on geological timescales. This valley is one of the few in the southern hemisphere, as well as one of the few west of the Tharsis bulge. A closer look at the channel shows more recent weathering of the old water channel: the walls of the channel show small, dark slope streaks that form in dusty areas; and much of the surrounding terrain has subtle linear markings trending from the upper left to the lower right, which are probably features sculpted and streamlined by the wind. Geology still shapes the surface of Mars today, but its methods over the eons have changed.Image information: VIS instrument. Latitude -6, Longitude 209.6 East (150.4 West). 19 meter/pixel resolution.Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  10. Old Geology and New Geology

    Science.gov (United States)

    2003-01-01

    [figure removed for brevity, see original site] Released 28 May 2003Mangala Vallis one of the large outflow channels that channeled large quantities of water into the northern lowlands, long ago on geological timescales. This valley is one of the few in the southern hemisphere, as well as one of the few west of the Tharsis bulge. A closer look at the channel shows more recent weathering of the old water channel: the walls of the channel show small, dark slope streaks that form in dusty areas; and much of the surrounding terrain has subtle linear markings trending from the upper left to the lower right, which are probably features sculpted and streamlined by the wind. Geology still shapes the surface of Mars today, but its methods over the eons have changed.Image information: VIS instrument. Latitude -6, Longitude 209.6 East (150.4 West). 19 meter/pixel resolution.Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  11. Geology and bedrock engineering

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1985-11-15

    This book deals with geology of Korea which includes summary, geology in central part and southern part in Korea and characteristic of geology structure, limestone like geology property of limestone, engineered property of limestone, and design and construction case in limestone area. It also introduces engineered property of the cenozoic, clay rock and shale, geologic and engineered property of phyllite and stratum.

  12. SEISMIC GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    <正>20091465 Cai Xuelin(College of Earth Sciences,Chengdu University of Technology,Chengdu 610059,China);Cao Jiamin Preliminary Study on the 3-D Crust Structure for the Longmen Lithosphere and the Genesis of the Huge Wenchuan Earthquake,Sichuan Province,China(Journal of Chengdu University of Technology,ISSN1671-9727,CN51-1634/N,35(4),2008,p.357-365,8 illus.,39 refs.)Key words:deep-seated structures,large earthquakes,Longmenshan Fracture ZoneBased on a structural analysis of many seismic sounding profiles,there are two fault systems in Longmen collisional orogenic belt,Sichuan Province,China.They are both different obviously and correlative closely.One is shallow fault system composed mainly of brittle shear zones in surface crust,and the other is deep fault system composed mainly of crust-mantle ductile shear zones cutting Moho discontinuity.Based on the result of researching geological structure and seismic sounding profiles,

  13. COAL GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    <正>20111053 Chen Jian(School of Earth and Environment,Anhui University of Science and Technology,Huainan 232001,China);Liu Wenzhong Organic Affinity of Trace Elements in Coal from No.10 Coal-Bed at Western Huagou,Guoyang(Coal Geology & Exploration,ISSN1001-1986,CN61-1155/P,38(4),2010,p.16-20,24,3 illus.,3 tables,19 refs.)Key words:coal,minor elements,Anhui Province In order to study the organic affinity of trace elements in coal from No.10 coal-bed at western Huagou,Guoyang,10 borehole samples were collected at exploration area of Huaibei mining area.The contents of 12 kinds of trace elements were determined by the inductively coupled plasma mass spectrometry(ICP-MS),the total organic carbon(TOC)of coal was determined by LECO carbon and sulfur analyzer,and the organic affinity of trace elements were deduced from the correlations between contents and TOCs.The results showed that the contents of V,Cr,Co,Ni,Mo,Cd,Sb,Pb and Zn were lower than

  14. PETROLEUM GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    <正>20110957 Bai Jingru(Engineering Research Centre of Ministry of Education for Comprehensive Utilization of Oil Shale,Northeast Dianli University,Jilin 132012,China);Wang Qing Basic Physicochemical Characteristics of the Huadian Oil Shale Semi-Cokes(Journal of Jilin University,ISSN1671-5888,CN22-1343/P,40(4),2010,p.905-911,5 illus.,8 tables,10 refs.,with English abstract)Key words:oil shale,Jilin Province20110958 Chen Jingyi(Faculty of Resources and Information Technology,China University of Petroleum,Beijing 102249,China);Wang Feiyu Maturity and Genetic Type of Crude Oils in Qikou Sag,Bohai Bay Basin(Xinjiang Petroleum Geology,ISSN1001-3873,CN65-1107/TE,31(3),2010,p.242-244,7 illus.,4 refs.)Key words:crude oil,Bohaiwan Basin Qikou sag is one of the rich-oil areas in Bohai Bay Basin,in which three sets of lacustrine source rocks developed in Tertiary and Paleozoic reservoirs.The geochemical analyses of 59 crude oil and 102 source rock samples from Qikou sag show that the crude oils in Qikou sag belong to mature oil,combined with the biomarkers of n-alkanes,steroid and terpenoid as well as light hydrocarbons index,

  15. California Geological Survey Geologic Map Index

    Data.gov (United States)

    California Department of Resources — All the individual maps from the Geologic Atlas of California and the Regional Geologic map series have been georeferenced for display in a GIS (and viewable online...

  16. Geologic Map of Alaska: geologic units

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This dataset consists of a polygon coverage and associated attribute data derived from the 1980 Geologic Map of Alaska compiled by H.M. Beikman and published by the...

  17. Let's Talk About You and Sharks, American Oceanography Special Educational Newsletter.

    Science.gov (United States)

    Kraft, Thomas L.; Miloy, Leatha

    1971-01-01

    This special educational newsletter of the American Society for Oceanography presents information on marine oriented subjects, primarily for reading by junior high and secondary school students. Major articles consider the habits and stinging effects of sharks, jelly fish, and sting rays, and what one should do if stung by these fish while…

  18. Applying Argumentation Analysis To Assess the Quality of University Oceanography Students' Scientific Writing.

    Science.gov (United States)

    Takao, Allison Y.; Prothero, William A.; Kelly, Gregory J.

    2002-01-01

    Presents the methods and results of an assessment of students' scientific writing. Studies an introductory oceanography course in a large public university that used an interactive CD-ROM, "Our Dynamic Planet". Analyzes the quality of students' written arguments by using a grading rubric and an argumentation analysis model. Includes 18…

  19. Research and Teaching: Implementation of Interactive Engagement Teaching Methods in a Physical Oceanography Course

    Science.gov (United States)

    Keiner, Louis E.; Gilman, Craig

    2015-01-01

    This study measures the effects of increased faculty-student engagement on student learning, success rates, and perceptions in a Physical Oceanography course. The study separately implemented two teaching methods that had been shown to be successful in a different discipline, introductory physics. These methods were the use of interactive…

  20. Does operational oceanography address the needs of fisheries and applied environmental scientists?

    DEFF Research Database (Denmark)

    Berx, B.; Dickey-Collas, M.; Skogen, M.D.

    2011-01-01

    products with monthly or annual resolution and updating on similar time scales. A significant percentage requested access to numerical data rather than graphical output. While the outcomes of this survey challenge our views of operational oceanography, several initiatives are already attempting to close...

  1. Arctic Geology (geoarcst)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The digitally compiled map includes geology, oil and gas field centerpoints, and geologic provinces of the Arctic (North Pole area encircled by 640 N Latitude). The...

  2. Visible Geology - Interactive online geologic block modelling

    Science.gov (United States)

    Cockett, R.

    2012-12-01

    Geology is a highly visual science, and many disciplines require spatial awareness and manipulation. For example, interpreting cross-sections, geologic maps, or plotting data on a stereonet all require various levels of spatial abilities. These skills are often not focused on in undergraduate geoscience curricula and many students struggle with spatial relations, manipulations, and penetrative abilities (e.g. Titus & Horsman, 2009). A newly developed program, Visible Geology, allows for students to be introduced to many geologic concepts and spatial skills in a virtual environment. Visible Geology is a web-based, three-dimensional environment where students can create and interrogate their own geologic block models. The program begins with a blank model, users then add geologic beds (with custom thickness and color) and can add geologic deformation events like tilting, folding, and faulting. Additionally, simple intrusive dikes can be modelled, as well as unconformities. Students can also explore the interaction of geology with topography by drawing elevation contours to produce their own topographic models. Students can not only spatially manipulate their model, but can create cross-sections and boreholes to practice their visual penetrative abilities. Visible Geology is easy to access and use, with no downloads required, so it can be incorporated into current, paper-based, lab activities. Sample learning activities are being developed that target introductory and structural geology curricula with learning objectives such as relative geologic history, fault characterization, apparent dip and thickness, interference folding, and stereonet interpretation. Visible Geology provides a richly interactive, and immersive environment for students to explore geologic concepts and practice their spatial skills.; Screenshot of Visible Geology showing folding and faulting interactions on a ridge topography.

  3. Fleet Numerical Meteorology and Oceanography Center support for GODAE

    Science.gov (United States)

    Dimitriou, D.; Sharfstein, P.; Ignaszewski, M.; Clancy, M.

    2003-04-01

    The U.S. Navy's Fleet Numerical Meteorology and Oceanography Center (FNMOC; see http://www.fnmoc.navy.mil/), located in Monterey, CA, is the lead activity within the U.S. Department of Defense (DoD) for numerical weather prediction and coupled air-sea modeling. FNMOC fulfills this role through means of a suite of sophisticated global and regional meteorological and oceanographic (METOC) models, extending from the top of the atmosphere to the bottom of the ocean, which is supported by one of the world's most complete real-time METOC databases. Fleet Numerical operates around-the-clock, 365 days per year and distributes METOC products to military and civilian users around the world, both ashore and afloat, through a variety of means, including a rapidly growing and innovative use of Web technology. FNMOC's customers include all branches of the Department of Defense (DoD), other government organizations such as the National Weather Service, private companies such as the Weather Channel, a number of colleges and universities, and the general public. FNMOC acquires and processes over 6 million METOC observations per day—creating one of the world's most comprehensive real-time databases of meteorological and oceanographic observations for assimilation into its models. FNMOC employs three primary models, the Navy Operational Global Atmospheric Prediction System (NOGAPS), the Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS), and the WaveWatch III model (WW3), along with a number of specialized models and related applications. NOGAPS is a global weather model, driving nearly all other FNMOC models and applications in some fashion. COAMPS is a high-resolution regional model that has proved to be particularly valuable for forecasting weather and ocean conditions in highly complex coastal areas. WW3 is a state-of-the-art ocean wave model that is employed both globally and regionally in support of a wide variety of naval operations. Specialized models support and

  4. QUATERNARY GEOLOGY& GEOMORPHOLOGY

    Institute of Scientific and Technical Information of China (English)

    2016-01-01

    20160466Cao Fugen(No.1Geological Survey Team,Xinjiang Bureau of Geology and Mineral Resources and Development,Urumqi830013,China);Zhao Shuming Geological Characteristics and Significance of the Nanhua Period Tillite from Northern Yamansu Area in Eastern Tianshan,Xinjiang(Xinjiang Geology,ISSN1000-8845,CN65-1092/P,33

  5. Developing European operational oceanography for Blue Growth, climate change adaptation and mitigation, and ecosystem-based management

    Science.gov (United States)

    She, Jun; Allen, Icarus; Buch, Erik; Crise, Alessandro; Johannessen, Johnny A.; Le Traon, Pierre-Yves; Lips, Urmas; Nolan, Glenn; Pinardi, Nadia; Reißmann, Jan H.; Siddorn, John; Stanev, Emil; Wehde, Henning

    2016-07-01

    Operational approaches have been more and more widely developed and used for providing marine data and information services for different socio-economic sectors of the Blue Growth and to advance knowledge about the marine environment. The objective of operational oceanographic research is to develop and improve the efficiency, timeliness, robustness and product quality of this approach. This white paper aims to address key scientific challenges and research priorities for the development of operational oceanography in Europe for the next 5-10 years. Knowledge gaps and deficiencies are identified in relation to common scientific challenges in four EuroGOOS knowledge areas: European Ocean Observations, Modelling and Forecasting Technology, Coastal Operational Oceanography and Operational Ecology. The areas "European Ocean Observations" and "Modelling and Forecasting Technology" focus on the further advancement of the basic instruments and capacities for European operational oceanography, while "Coastal Operational Oceanography" and "Operational Ecology" aim at developing new operational approaches for the corresponding knowledge areas.

  6. 1960-69 Cumulative Index of Articles Related to Oceanography and Limnology Education in The Science Teacher.

    Science.gov (United States)

    Cohen, Maxwell

    Indexed are articles relating to oceanography and limnology published in "The Science Teacher" between 1960 and 1969. Articles are indexed under title, author, and topic. Topics include background information, course descriptions, and laboratory equipment and techniques. (EB)

  7. Shallow Water Body Data Processing Based on the Seismic Oceanography

    Institute of Scientific and Technical Information of China (English)

    LIU Huaishan; HU Yi; YIN Yanxin; WANG Linfei; TONG Siyou; MA Hai

    2013-01-01

    Physical properties of sea water,such as salinity,temperature,density and acoustic velocity,could be demarcated through degradation of energy caused by water absorption,attenuation and other factors.To overcome the challenging difficulties in the quick monitoring of these physical properties,we have explored the high resolution marine seismic survey to instantly characterize them.Based on the unique wavefield propagating in the sea water,we have developed a new approach to suppress the noise caused by the shallow sea water disturbance and obtain useful information for estimating the sea water structure.This approach improves seismic data with high signal-to-noise ratio and resolution.The seismic reflection imaging can map the sea water structure acoustically.Combined with the knowledge of local water body structure profile over years,the instant model for predicting the sea water properties could be built using the seismic data acquired from the specially designed high precision marine seismic acquisition.This model can also be updated with instant observation and the complete data processing system.The present study has the potential value to many applications,such as 3D sea water monitoring,engineering evaluation,geological disaster assessment and environmental assessment.

  8. International Congress on the History of Oceanography (5th) Held in La Jolla, California on July 7-14, 1993

    Science.gov (United States)

    1994-05-26

    45 - 5:30pm CONCURRENT 2B: OCEANOGRAPHY IN SOUTH ASIA Chair: Andrew Dickson, USA Marine Biology Conference Room "THE INDO-PACIFIC IMPRINTS UPON...Biology Conference Room "ITALIAN CONTRIBUTIONS TO THE KNOWLEDGE OF THE SOUTHEAST PACIFIC OCEAN" Noberto Della Croce, Italy "GERMANIA IN PACIFICO : EARLY...SeaGrant program, which injected, for the first time, a general educational outreach to oceanographic institutions. Concurrent 2B Oceanography In South Asia

  9. Advances in the Study of Geochemistry and Paleo-oceanography of the Co-rich Crust

    Institute of Scientific and Technical Information of China (English)

    Cai Yihua; Huang Yipu

    2002-01-01

    The current advances in the study of geochemistry and paleo-oceanography of the Co-rich crust are reviewed in this paper. We summarize the study of geochemistry of the Co-rich crust, discuss the diffusion of elements in the Co-rich crust and the exchange with ambient seawater. Besides, we discuss the effect of phosphatization and substrate rocks on the composition of the Co-rich crust. We also introduce the application of stable isotopes (including the stable isotopes of Pb, Nd, and Hf), radioactive isotopes (including the radioactive isotopes of Be, U and Th), and elements (including the major elements, minor elements and rare earth elements) to the study of paleo-oceanography of the Co-rich crust.

  10. Data analysis methods in physical oceanography. By Emery, W.J. and Thomson, R.E.

    Digital Repository Service at National Institute of Oceanography (India)

    Nayak, M.R.

    in physical oceanography. This book brings together in one volume information on the measurement systems, data editing, data reduction/processing and analysis and interpretation that presently is scattered in var- ious texts, reference books, primary... (and sub tidal) sediments is greatly influenced by biotic factors”; this finding resulted in the formulation of a scientific and logistical framework within which estuarine sedimentary research pro- grams should operate. The bulk of the preface...

  11. Review: Rusticle Formation on the RMS Titanic and the Potential Influence ofOceanography

    Science.gov (United States)

    2017-01-12

    Brenda Little 1 23 Your article is protected by copyright and all rights are held exclusively by Springer Science+Business Media New York (outside...Oceanography Maxsimo Salazar1 • Brenda Little1 Published online: 12 January 2017 Springer Science+Business Media New York (outside the USA) 2017...Abstract Meter length iron- rich rusticles on the RMS Titanic contain bacteria that reportedly mobilize iron from the ship structure at a rate that will

  12. The Walter Munk Award for Distinguished Research in Oceanography Related to Sound and the Sea

    Science.gov (United States)

    2016-06-07

    scientific publications, websites and e-mail lists. Nominations are solicited from the international oceanographic community. WORK COMPLETED...NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) The Oceanography Society,PO Box 1931,Rockville,MD,20849-1931 8...naval operations. OBJECTIVES To recognize a deserving scientist working in the field of ocean acoustics and to demonstrate the Navy’s strong

  13. Bringing together an ocean of information: An extensible data integration framework for biological oceanography

    Science.gov (United States)

    Stocks, Karen I.; Condit, Chris; Qian, Xufei; Brewin, Paul E.; Gupta, Amarnath

    2009-09-01

    As increasing volumes and varieties of data are becoming available online, the challenges of accessing and using heterogeneous data resources are growing. We have developed a mediator-based data integration system called Cartel for biological oceanography data. A mediation approach is appropriate in cases where a single central warehouse is not desirable, such as when the needed data sources change frequently through time, or when there are advantages for holding heterogeneous data in their native formats. Through Cartel, data sources of a variety of types can be registered to the system, and users can query against simplified virtual schemas, without needing to know the underlying schema and computational capabilities of each data source. The system can operate on a variety of relational and geospatial data formats, and can perform joins between formats. We tested the performance of the Cartel mediator in two biological oceanography application areas, and found that the system was able to support the variety of data types needed in a typical ecology study, but that the response times were unacceptably slow when very large databases (i.e. Ocean Biogeographic Information System and the World Ocean Atlas) were used. Indexing and caching are currently being added to the system to improve response times. The mediator is an open-source product, and was developed to be a generic, extensible component available to projects developing oceanography data systems.

  14. GEOCHRONOMETRY & ISOTOPE GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    <正>20101892 Guo Hongjun (Tianjin Geological Exploration General Survey,Tianjin 300181,China);Lin Xiaohui The Precambrian Geological Characteristics of Kigoma-Mpanda Region,Tanzania and the New Data of U-Pb Age Determination on Zircon

  15. Geologic spatial analysis

    Energy Technology Data Exchange (ETDEWEB)

    Thiessen, R.L.; Eliason, J.R.

    1989-01-01

    This report describes the development of geologic spatial analysis research which focuses on conducting comprehensive three-dimensional analysis of regions using geologic data sets that can be referenced by latitude, longitude, and elevation/depth. (CBS)

  16. Geological Services Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Researchers use computed tomography (CT) scanners at NETL’s Geological Services Laboratory in Morgantown, WV, to peer into geologic core samples to determine how...

  17. Geophysics & Geology Inspected.

    Science.gov (United States)

    Neale, E. R. W.

    1981-01-01

    Summarizes findings of a recently published report of the Canadian Geoscience Council, which includes the following topics regarding college geology: facilities; teaching; undergraduate enrollments; postgraduate enrollments; geologic research; and integration of Canadian geoscience with other countries. (CS)

  18. GEOCHRONOMETRY & ISOTOPE GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>20081140 Cheng Peng(State Key Laboratory of Loess and Quaternary Geology,Institute of Earth Environment,CAS,Xi’an 710075,China);Zhou Weijian Advances in Radiocarbon Dating Researches in the Loess-Paleosol Sequences(Marine Geology & Quaternary Geology,ISSN0256-1492,CN37-

  19. The geology of Libya

    Energy Technology Data Exchange (ETDEWEB)

    Salem, M.J.; Busrewil, M.T. (eds.)

    1981-01-01

    This book includes 75 of the papers presented at the Second Symposium of Geology of Libya, held in Tripoli in September 1978. The papers are grouped into seven parts: stratigraphy; biostratigraphy and paleontology; sedimentation and petroleum geology; hydrogeology; geomorphology and Quaternary geology; tectonics and geophysics; geochemistry, mineralogy, and ore deposits. Petroleum exploration prompted many of the papers in this volume. (JMT)

  20. HISTORICAL GEOLOGY & STRATIGRAPHY

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    20151119Cui Zhengke(No.1 Marine Geological Investigation Party,Shanghai Offshore Petroleum Bureau,SINOPEC,Shanghai201208,China);Yang Wenda Late Quaternary Sequence Stratigraphy and Sedimentary Environment of East China Sea Continental Shelf(Marine Geology&Quaternary; Geology,ISSN0256-1492,CN37-1117/P,34(4),

  1. Map Service Showing Geology and Geologic Provinces of South Asia

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The geology data set for this map includes arcs, polygons, and labels that outline and describe the general geologic age and rock type for South Asia. The geologic...

  2. Historical developments in marine geology and some aspects of fine-grained sediments along the continental margins of India and Bengal fan

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, V.P.

    Content-Type text/plain; charset=UTF-8 29 Historical developments in Marine Geology and some aspects of fine- grained sediments along the continental margins of India and Bengal Fan V. Purnachandra Rao National Institute of Oceanography.... The Andhra University, Waltair made pioneering investigations on the eastern continental margin of India in the early 1950s. However, the International Indian Ocean Expedition (IIOE: 1961-1965) is an important landmark in the history of development...

  3. HISTORICAL GEOLOGY & STRATIGRAPHY

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    <正>20072053 Bao Qingzhon(Shenyang Institute of Geology and Mineral Resources,China Geological Survey,Shenyang,Liaoning 110032,China);Zhang Changjie Carboniferous-Permian Marine Lithostratigraphy and Sequence Stratigraphy in Xi Ujimqin Qi,Southeastern Inner Mongolia,China(Geological Bulletin of China,ISSN1671-2552,CN11-4648/P,25(5),2006,p.572-579,4 illus.,2 tables,26 refs.,with English abstract)

  4. HISTORICAL GEOLOGY & STRATIGRAPHY

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>20082513 Chen Guocheng(State Key Labo- ratory of Marine Geology,Tongji University, Shanghai 200092,China);Zheng Hongbo Sedimentary Records of Volcanic Activities in the South China Sea over the Past 480 ka (Marine Geology & Quaternary Geology, ISSN0256—1492,CN37—1117/P,27(4), 2007,p.69—76,4 illus.,1 table,25 refs., with English abstract) Key words:sedimentary sequence,South China Sea

  5. Hong Kong Geological Survey

    Institute of Scientific and Technical Information of China (English)

    R J Sewell

    2007-01-01

    @@ History and objectives The Hong Kong Geological Survey(HKGS) was created on 5 May,1982,wimin the then Engineering Development Department of the Hong Kong Govemment.The initial objective was to carry out a new geological survey of the Territory at 1∶20,000 scale.This followed recognition of an urgent need to produce high quality geological maps at a large scale with sufficient detail to facilitate physical planning and land use management of Hong Kong.

  6. HISTORICAL GEOLOGY & STRATIGRAPHY

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>20081118 Bai Long(Guizhou Academy of Geology Surveying,Guiyang 550005,Guizhou,China);Shi Yuanhua Discovery of Permian Strata and Its Significance in the Mayidang Area,Yiwu County,Xinjiang(Guizhou Geology,ISSN1000-5943,CN52-1059/P,24(2),2007,p.134-137,141,3 illus.,9 refs.)Key words:Upper Permian,XinjiangIn the survey of regional geology and minera

  7. GEOLOGI KAMPUS TEMBALANG

    Directory of Open Access Journals (Sweden)

    Wahju Krisna H

    2012-02-01

    Full Text Available Geological conditions at Tembalang areas and surround, Semarang, as a Undulating – Hillockymorphological. That’s can be representation lithological and structural conditions. This surveysused the Geoelectrical sounding and combined with geological surface mapping. There are 15points sounding of Geoelectrical, after interpreted with geological surface mapping, can beconclusion the Breccias lithologic overlay on the upper of Limestones lithologic and finding thereverse fault in the part north of areas survey.

  8. HYDROGEOLOGY & ENGINEERING GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    <正>20091306 Dong Hengbi(Geological Survey of Shaanxi Province,Xi’an 710054,China);Hu Xuesheng Geological Setting of Geotechnical Erosion in the Helong Portion at the Middle Reaches of Yellow River(Geology of Shaanxi,ISSN1001-6996,CN61-1150/ P,26(1),2008,p.69-75,4 refs.,with English abstract) Key words:soil erosion,Yellow River

  9. Alaska geology revealed

    Science.gov (United States)

    Wilson, Frederic H.; Labay, Keith A.

    2016-11-09

    This map shows the generalized geology of Alaska, which helps us to understand where potential mineral deposits and energy resources might be found, define ecosystems, and ultimately, teach us about the earth history of the State. Rock units are grouped in very broad categories on the basis of age and general rock type. A much more detailed and fully referenced presentation of the geology of Alaska is available in the Geologic Map of Alaska (http://dx.doi.org/10.3133/sim3340). This product represents the simplification of thousands of individual rock units into just 39 broad groups. Even with this generalization, the sheer complexity of Alaskan geology remains evident.

  10. The Indigo V Indian Ocean Expedition: a prototype for citizen microbial oceanography

    Science.gov (United States)

    Lauro, Federico; Senstius, Jacob; Cullen, Jay; Lauro, Rachelle; Neches, Russell; Grzymski, Joseph

    2014-05-01

    Microbial Oceanography has long been an extremely expensive discipline, requiring ship time for sample collection and thereby economically constraining the number of samples collected. This is especially true for under-sampled water bodies such as the Indian Ocean. Specialised scientific equipment only adds to the costs. Moreover, long term monitoring of microbial communities and large scale modelling of global biogeochemical cycles requires the collection of high-density data both temporally and spatially in a cost-effective way. Thousands of private ocean-going vessels are cruising around the world's oceans every day. We believe that a combination of new technologies, appropriate laboratory protocols and strategic operational partnerships will allow researchers to broaden the scope of participation in basic oceanographic research. This will be achieved by equipping sailing vessels with small, satcom-equipped sampling devices, user-friendly collection techniques and a 'pre-addressed-stamped-envelope' to send in the samples for analysis. We aim to prove that 'bigger' is not necessarily 'better' and the key to greater understanding of the world's oceans is to forge the way to easier and cheaper sample acquisition. The ultimate goal of the Indigo V Expedition is to create a working blue-print for 'citizen microbial oceanography'. We will present the preliminary outcomes of the first Indigo V expedition, from Capetown to Singapore, highlighting the challenges and opportunities of such endeavours.

  11. Increasing Climate Literacy in Introductory Oceanography Classes Using Ocean Observation Data from Project Dynamo

    Science.gov (United States)

    Hams, J. E.

    2015-12-01

    This session will present educational activities developed for an introductory Oceanography lecture and laboratory class by NOAA Teacher-at-Sea Jacquelyn Hams following participation in Leg 3 of Project DYNAMO (Dynamics of the Madden-Julian Oscillation) in November-December 2011. The Madden-Julian Oscillation (MJO) is an important tropical weather phenomenon with origins in the Indian Ocean that impacts many other global climate patterns such as the El Nino Southern Oscillation (ENSO), Northern Hemisphere monsoons, tropical storm development, and pineapple express events. The educational activities presented include a series of lessons based on the observational data collected during Project DYNAMO which include atmospheric conditions, wind speeds and direction, surface energy flux, and upper ocean turbulence and mixing. The lessons can be incorporated into any introductory Oceanography class discussion on ocean properties such as conductivity, temperature, and density, ocean circulation, and layers of the atmosphere. A variety of hands-on lessons will be presented ranging from short activities used to complement a lecture to complete laboratory exercises.

  12. Comments on R.W. Stewart's "Physical oceanography to the end of the twentieth century"

    Science.gov (United States)

    Wunsch, C.

    My comments on this note are mostly general. The major one is that in the context of a Hilbert-like discussion of the "key problems" the paper doesn't really do that at all. Rather, Stewart is mainly speculating on what the state of the subject is likely to be about the year 2000, along with some description of the trials people will have in doing it. As such, it is reminiscent of more elaborate efforts along the same line (I believe that SCOR produced an entire document, under K. Hasselmann's editorship, only four or five years ago, that talked about oceanography to the end of the century.) Furthermore, all our experience in oceanography is that a decade is a very short time for major changes. It is exceedingly optimistic to use 10 years as the time for an instrument to go from conception to widespread use; I believe that the true timescale is closer to twice that (there's a long list of examples, including current meters, CTD's, etc.)

  13. Geology's Impact on Culture

    Science.gov (United States)

    Pizzorusso, Ann

    2017-04-01

    Most people consider geology boring, static and difficult. The fields of astronomy and physics have "rebranded" themselves with exciting programs formatted so as to be readily understandable to the general public. The same thing can be done for geology. My research on geology's influence on other disciplines has resulted in a book, Tweeting da Vinci, in which I was able to show how geology affected Italy's art, architecture, medicine, religion, literature, engineering and just about everything else. The reaction to the book and my lectures by both students and the general public has been very positive, including four gold medals, with reviews and comments indicating that they never knew geology could be so exciting. The book is very user friendly, packed with facts, full-color photos, paintings, sketches and illustrations. Complex aspects of geology are presented in an easily understandable style. Widely diverse topics—such as gemology, folk remedies, grottoes, painting, literature, physics and religion—are stitched together using geology as a thread. Quoting everyone from Pliny the Elder to NASA physicist Friedemann Freund, the work is solidly backed scholarship that reads as easily as a summer novel. The book can be used in classes such as physics, chemistry, literature, art history, medicine, Classical Studies, Latin, Greek and Italian. By incorporating a "geologic perspective" in these courses, it can be perceived as a more "all encompassing" discipline and encourage more students to study it. The lectures I have given on college campuses have resulted in students seeing their own majors from a different perspective and some have even signed up for introductory geology courses. One college organized summer course to the Bay of Naples based on the book. We followed the geology as well as the culture of the area and the students were profoundly moved. To encourage dialog, the book is linked to Facebook, Twitter and Instagram. This has enabled followers from

  14. Physical oceanography

    Digital Repository Service at National Institute of Oceanography (India)

    Murty, C.S.; Murty, V.S.N.

    variations of temperature and salinity at selected locations and watermass structure in the Indian Ocean are discussed and interpreted The large-scale circulation of the Indian Ocean, including the boundary currents, is discussed with a special emphasis...

  15. Chemical oceanography

    Digital Repository Service at National Institute of Oceanography (India)

    Naqvi, S.W.A.

    of the northern Indian Ocean from the southern waters having opposite characteristics. In the northwestern sector (the Arabian Sea), which experiences intense upwelling along both its eastern and western boundaries during the southwest monsoon, and open...

  16. Geophysics, Oceanography

    Science.gov (United States)

    Halpern, D.; Wentz, F.

    1993-01-01

    Development of decade-long time series of global surface wind measurements for studies ofseasonal-to-interannual climate variability presents unique challenges for space- borne instrumentationbecause of the necessity to combine data sets of 3- to 5-year lifetimes. Before the first Special SensorMicrowave Imager (SSMI), which was launched on the Defence Meteorological Satellite Program(DMSP) F8 spacecraft in July 1987, stopped recording wind speed in December 1991, another SSMIwas launched on DMSP F10 in December 1991. Interpretation of the 1987 - 1993 composite timeseries is dependent upon the space and time characteristics of the differences between concurrent F8and F10 SSMI measurements. This paper emphasizes large geographical regions and 1-month timescale. The F8-F10 area-weighted difference between 60 degrees S and 60 degrees S during 305 daysof 1991 (-0.12 m s^(-1)) was comparable to the year-to-year wind speed variations during 1988-1991. The 10 degree-zonal averaged monthly mean F8-F10 difference was negative (positive) forwind speeds less (greater) than 7.9 m s^(-1), reaching - 0.43(0.32) m s^(-1) at 5(10) m s^(-1). The10 degree-zonal averaged monthly mean F8-F10 bias had considerable variations throughout the yearand between 60 degrees S - 60 degrees N, with the largest temporal variation (1.4 m s^(-1)) in the 50degrees - 60 degrees N region from February to April. The 1991 average value of the monthly meanroot-mean-square (rms) difference between F8 and F10 daily wind speeds in 10 degree-longitudinalbands was 2.0 m s^(-1) over 60 degrees S - 60 degrees N, the amplitude of the annual cycle of therms difference was largest in the northern hemisphere middle latitudes, and the rms difference wasrelated to the wind speed (e.g., at 6 and 10 m s^(-1), the rms difference was 1.7 and 2.7 m s^(-1),respectively). The relationship between monthly mean 1/3 degrees x 1/3 degrees F8-F10 SSMI windspeed differences and integrated water vapor and liquid water content in the atmosphere is discussed.

  17. Geophysics, Oceanography

    Science.gov (United States)

    Halpern, D.; Wentz, F.

    1993-01-01

    Development of decade-long time series of global surface wind measurements for studies ofseasonal-to-interannual climate variability presents unique challenges for space- borne instrumentationbecause of the necessity to combine data sets of 3- to 5-year lifetimes. Before the first Special SensorMicrowave Imager (SSMI), which was launched on the Defence Meteorological Satellite Program(DMSP) F8 spacecraft in July 1987, stopped recording wind speed in December 1991, another SSMIwas launched on DMSP F10 in December 1991. Interpretation of the 1987 - 1993 composite timeseries is dependent upon the space and time characteristics of the differences between concurrent F8and F10 SSMI measurements. This paper emphasizes large geographical regions and 1-month timescale. The F8-F10 area-weighted difference between 60 degrees S and 60 degrees S during 305 daysof 1991 (-0.12 m s^(-1)) was comparable to the year-to-year wind speed variations during 1988-1991. The 10 degree-zonal averaged monthly mean F8-F10 difference was negative (positive) forwind speeds less (greater) than 7.9 m s^(-1), reaching - 0.43(0.32) m s^(-1) at 5(10) m s^(-1). The10 degree-zonal averaged monthly mean F8-F10 bias had considerable variations throughout the yearand between 60 degrees S - 60 degrees N, with the largest temporal variation (1.4 m s^(-1)) in the 50degrees - 60 degrees N region from February to April. The 1991 average value of the monthly meanroot-mean-square (rms) difference between F8 and F10 daily wind speeds in 10 degree-longitudinalbands was 2.0 m s^(-1) over 60 degrees S - 60 degrees N, the amplitude of the annual cycle of therms difference was largest in the northern hemisphere middle latitudes, and the rms difference wasrelated to the wind speed (e.g., at 6 and 10 m s^(-1), the rms difference was 1.7 and 2.7 m s^(-1),respectively). The relationship between monthly mean 1/3 degrees x 1/3 degrees F8-F10 SSMI windspeed differences and integrated water vapor and liquid water content in the atmosphere is discussed.

  18. Geology and geological engineering at Syncrude

    Energy Technology Data Exchange (ETDEWEB)

    O' Donnell, N.

    1988-01-01

    This paper outlines the geology of the Athabasca oil sand deposit and describes the activities of the Mine Geology Section of Syncrude Canada, which operates an oil sand mine in that deposit. The Section serves the mine by providing information in support of a variety of operating functions. It is composed of five specialized teams, each one concerned with accurate, detailed data of practical value. Recognition of the unique geological and geotechnical characteristics of each portion of the base mine is reflected in the approach to the work. The Highwall Mapping and Geological Interpretation Team supports three mine planning groups, geotechnical engineering and dragline operations. Ore grading supplies reserve quality and quantity data to planners and to extraction technical staff covering terms ranging from daily to 25 years. The Overburden and Granular Resources Team provides overburden engineering with the information needed for planning of stripping operations, and ensure valuable sand and gravel reserves are identified for mine haul roads and other construction needs. The Hydrogeology and Groundwater Team supports the depressurization operation and environmental monitoring of tailings operations in conjunction with Environmental Affairs. The Drill Programs Team collects data which the other four teams utilize in the course of carrying out their responsibilities. 30 refs., 14 figs.

  19. GEOCHRONOMETRY & ISOTOPE GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    <正>20141014Wang Hairan(State Key Laboratory of Continental Dynamics,Department of Geology,Northwest University,Xi’an710069,China);Zhao Hongge Theory and Application of Zircon U-Pb Isotope Dating Technique(Geology and Resources,ISSN1671-1947,CN21-1458/P,22(3),2013,p.229

  20. Interpreting Urban Geology.

    Science.gov (United States)

    Hannibal, Joseph Timothy; Schmidt, Mark Thomas

    1991-01-01

    Describes field trips to urban locations for geological instruction. The program was developed by the Cleveland Museum of Natural History. Authors claim these field trips have been an effective and enjoyable way of conveying a wide variety of geological information to participants at all levels and backgrounds and have created favorable publicity.…

  1. HISTORICAL GEOLOGY & STRATIGRAPHY

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    20152571 Bai Ping(Guizhou Academy of Geologic Survey,Guiyang 550005,China);Xiao Jiafei Sequence Stratigraphy and Sedimentary Environment of Early Cambrian in ZunyiDafang Area of Northwest Guizhou Province(Guizhou Geology,ISSN1000-5943,CN52-1059/P,31(4),2014,p.291-296,272,3

  2. HISTORICAL GEOLOGY & STRATIGRAPHY

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    <正>20040593 A Chengye (Qinghao Institute of Geological Survey, Xinjing, Qinghai); Wang Yizhi Disintegration of the Wanbaogou Group and Discovery of Early Cambrian Strata in the Eastern Kunlun Area, Xinjiang, China (Geology in China, ISSN 1000 -3657, CN11-1167/P, 30(2), 2003, p. 199 - 206, 6 illus. , 2 tables, 15 refs. , with English abstract)

  3. HISTORICAL GEOLOGY & STRATIGRAPHY

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    <正>20091185 Duan Jianxiang(Institute of Geologic Survey of Jilin Province,Changchun 130061,China);Liu Jingbo Characteristics of Yaojia Formation Petrostratigraphy and Sedimentary Environment in the Songnen Basin in the Fuyu,Yushu Areas(Jilin Geology, ISSN1001-2427,CN22-1099/P,27

  4. Radiometric Dating in Geology.

    Science.gov (United States)

    Pankhurst, R. J.

    1980-01-01

    Described are several aspects and methods of quantitatively measuring geologic time using a constant-rate natural process of radioactive decay. Topics include half lives and decay constants, radiogenic growth, potassium-argon dating, rubidium-strontium dating, and the role of geochronology in support of geological exploration. (DS)

  5. GEOCHRONOMETRY & ISOTOPE GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    <正>20042213 Chen Qinghua (Department of Geology,Northwest University, Xi’an, Shaanxi); Liu Chiyang The Mathematical Representations and Their Significance of Geological Age with Milankovitch Theory (Journal of Northwest University (Natural Science Edition), ISSN1000 - 274X, CN61 -1072/N, 33(5), 2003, p. 599-602, 27 refs. )

  6. The International System of Units (SI) in Oceanography. Report of IAPSO Working Group on Symbols, Units and Nomenclature in Physical Oceanography (SUN). Unesco Technical Papers in Marine Science 45. IAPSO Publication Scientifique No. 32.

    Science.gov (United States)

    United Nations Educational, Scientific, and Cultural Organization, Paris (France). Div. of Marine Sciences.

    This report introduces oceanographers to the International System of Units (SI) in physical oceanography. The SI constitutes a universal language, designed to be understood by all scientists. It facilitates their mutual comprehension and exchange of views and results of their work. The first part of the report is devoted to physical quantities,…

  7. Field Geology/Processes

    Science.gov (United States)

    Allen, Carlton; Jakes, Petr; Jaumann, Ralf; Marshall, John; Moses, Stewart; Ryder, Graham; Saunders, Stephen; Singer, Robert

    1996-01-01

    The field geology/process group examined the basic operations of a terrestrial field geologist and the manner in which these operations could be transferred to a planetary lander. Four basic requirements for robotic field geology were determined: geologic content; surface vision; mobility; and manipulation. Geologic content requires a combination of orbital and descent imaging. Surface vision requirements include range, resolution, stereo, and multispectral imaging. The minimum mobility for useful field geology depends on the scale of orbital imagery. Manipulation requirements include exposing unweathered surfaces, screening samples, and bringing samples in contact with analytical instruments. To support these requirements, several advanced capabilities for future development are recommended. Capabilities include near-infrared reflectance spectroscopy, hyper-spectral imaging, multispectral microscopy, artificial intelligence in support of imaging, x ray diffraction, x ray fluorescence, and rock chipping.

  8. Sailing for Science: on board experiences for transferring knowledge on Historical Oceanography for Future Innovation

    Science.gov (United States)

    Garvani, Sara; Carmisciano, Cosmo; Locritani, Marina; Grossi, Luigi; Mori, Anna; Stroobant, Mascha; Schierano, Erika; De Strobel, Federico; Manzella, Giuseppe; Muzi, Enrico; Leccese, Dario; Sinapi, Luigi; Morellato, Claudio; La Tassa, Hebert; Talamoni, Roberta; Coelho, Emanuel; Nacini, Francesca

    2017-04-01

    Smart, sustainable and inclusive Blue Growth means also knowing past technology and the paths followed by ancients in order to understand and monitor marine environments. In general, history of Science is a matter that is not enough explored and explained or promoted in high schools or university official programmes, and, usually, scientist do not consider it as an important part of their curricula. However, bad or good ideas, abandoned or forgotten beliefs, concepts, opinions, do still have a great potential for inspiring present and future scientists, no matter in which historical period they may have been formulated: they should be always be taken into consideration, critically examined and observed by a very close point of view, not just as part of the intellectual framework of some obsolete 'Cabinet of Curiosities' with limited access except for the chosen few. Moreover, history of Science should be transmitted in a more practical way, with hands-on labs showing the limits and challenges that prior generations of ocean explorers, investigators and seafarers had to face in order to answer to crucial questions as self-orientation in open sea, understanding main currents and waves, predicting meteorological conditions for a safe navigation. Oceanography is a relatively young branch of science, and still needs further approvals and knowledge (National Science Foundation, 2000). The Scientific Dissemination Group (SDG) "La Spezia Gulf of Science" - made up by Research Centres, Schools and Cultural associations located in La Spezia (Liguria, Italy) - has a decadal experience in initiatives aimed at people and groups of people of all ages, who are keen on science or who can be guided in any case to take an interest in scientific matters (Locritani et al., 2015). Amongst the SDG activities, the tight relationship with the Historical Oceanography Society, the Italian Navy and the Naval Technical Museum (that collects a rich heritage of civilization, technology and

  9. Science requirements for free-flying imaging radar (FIREX) experiment for sea ice, renewable resources, nonrenewable resources and oceanography

    Science.gov (United States)

    Carsey, F.

    1982-01-01

    A future bilateral SAR program was studied. The requirements supporting a SAR mission posed by science and operations in sea-ice-covered waters, oceanography, renewable resources, and nonrenewable resources are addressed. The instrument, mission, and program parameters were discussed. Research investigations supporting a SAR flight and the subsequent overall mission requirements and tradeoffs are summarized.

  10. Autonomous profiling buoy system: a new powerful tool for research and operational oceanography

    Science.gov (United States)

    Aracri, Simona; Borghini, Mireno; Canesso, Devis; Chiggiato, Jacopo; Durante, Sara; Griffa, Annalisa; Schroeder, Katrin; Sparnocchia, Stefania; Vetrano, Anna; Kitawaza, Yuji; Kawahara, Hisayoshi; Nakamura, Tetsuya

    2015-04-01

    Oceanography is nowadays a fast-changing field. The scientific community is orienting towards the implementation of a growing array of satellite-borne or mobile and moored high-tech devices and sensors, while sending fewer scientists at sea to collect measurements, minimizing the expensive ship-time costs. In other words, oceanography is now moving from a platform-centric sensing system to a net-centric distributed sensing system. Integration with operational ocean models, providing the best estimate of the ocean state by means of data assimilation, is the step forward, with nowadays mature initiatives at global scale and at regional scale in the Mediterranean Sea. While the ocean still remains a complex system, largely undersampled, multiplatform-integration, improvements in tools capabilities and assimilation in models represents one way to reduce uncertainties in marine areas. In this context, and differently from mobile platforms (e.g, gliders, argos), fixed-point moorings nicely provide long term point wise time-series, but limited by a low vertical resolution. Technology is fast evolving towards the implementation of automatic profilers, which partially overcome this limitation. In June 2013 the Institute of Marine Sciences of the Italian National Research Council (CNR-ISMAR) started the test phase of one of the very few Mediterranean autonomous profiling systems installed in a open-sea mooring, transmitting, daily, hydrological vertical profiles in real time through satellite communication. The selected site was the Corsica Channel, a narrow passage between Corsica and Capraia islands, connecting the two main regions of the western Mediterranean: the Tyrrhenian and the Liguro-Provençal basins. The Corsica Channel represents a 'choke point' for the study of the dynamics and evolution of the western Mediterranean Sea. Previous studies in this passage indicate an annual and seasonal cycle with northward winter fluxes representing about the 60% of the total

  11. Virtual Field Geologic Trip System

    Institute of Scientific and Technical Information of China (English)

    Jian Wang; Linfu Xue; Xiaojun Zhou

    2003-01-01

    Virtual Field Geologic Trip System (VFGTS) constructed by the technique of visualization can efficiently present geologic field information and widely used in the field of geologic education. This paper introduces the developing thinking of VFGTS and discusses the main implement processes. Building VFGTS mainly includes systemically gathering of field geological data, the building of virtual geological world, and displaying of virtual geologic world and human-computer interaction.

  12. The Indigo V Indian Ocean Expedition: a prototype for citizen microbial oceanography

    DEFF Research Database (Denmark)

    Lauro, Frederico; Senstius, Svend Jacob; Cullen, Jay

    2014-01-01

    Microbial Oceanography has long been an extremely expensive discipline, requiring ship time for sample collection and thereby economically constraining the number of samples collected. This is especially true for under-sampled water bodies such as the Indian Ocean. Specialised scientific equipment...... only adds to the costs.Moreover, long term monitoring of microbial communities and large scale modelling of global biogeochemical cycles requires the collection of high-density data both temporally and spatially in a cost-effective way. Thousands of private ocean-going vessels are cruising around...... the world’s oceans every day. We believe that a combination of new technologies, appropriate laboratory protocols and strategic operational partnerships will allow researchers to broaden the scope of participation in basic oceanographic research. This will be achieved by equipping sailing vessels with small...

  13. Virophages to viromes: a report from the frontier of viral oceanography.

    Science.gov (United States)

    Culley, Alexander I

    2011-07-01

    The investigation of marine viruses has advanced our understanding of ecology, evolution, microbiology, oceanography and virology. Significant findings discussed in this review include the discovery of giant viruses that have genome sizes and metabolic capabilities that distort the line between virus and cell, viruses that participate in photosynthesis and apoptosis, the detection of communities of viruses of all genomic compositions and the preeminence of viruses in the evolution of marine microbes. Although we have made great progress, we have yet to synthesize the rich archive of viral genomic data with oceanographic processes. The development of cutting edge methods such as single virus genomics now provide a toolset to better integrate viruses into the ecology of the ocean. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Teaching Introductory Oceanography through Case Studies: Project based approach for general education students

    Science.gov (United States)

    Farnsworth, K. L.; House, M.; Hovan, S. A.

    2013-12-01

    A recent workshop sponsored by SERC-On the Cutting Edge brought together science educators from a range of schools across the country to discuss new approaches in teaching oceanography. In discussing student interest in our classes, we were struck by the fact that students are drawn to emotional or controversial topics such as whale hunting and tsunami hazard and that these kinds of topics are a great vehicle for introducing more complex concepts such as wave propagation, ocean upwelling and marine chemistry. Thus, we have developed an approach to introductory oceanography that presents students with real-world issues in the ocean sciences and requires them to explore the science behind them in order to improve overall ocean science literacy among non-majors and majors at 2 and 4 year colleges. We have designed a project-based curriculum built around topics that include, but are not limited to: tsunami hazard, whale migration, ocean fertilization, ocean territorial claims, rapid climate change, the pacific trash patch, overfishing, and ocean acidification. Each case study or project consists of three weeks of class time and is structured around three elements: 1) a media analysis; 2) the role of ocean science in addressing the issue; 3) human impact/response. Content resources range from textbook readings, popular or current print news, documentary film and television, and data available on the world wide web from a range of sources. We employ a variety of formative assessments for each case study in order to monitor student access and understanding of content and include a significant component of in-class student discussion and brainstorming guided by faculty input to develop the case study. Each study culminates in summative assessments ranging from exams to student posters to presentations, depending on the class size and environment. We envision this approach for a range of classroom environments including large group face-to-face instruction as well as hybrid

  15. Dynamic oceanography determines fine scale foraging behavior of Masked Boobies in the Gulf of Mexico.

    Science.gov (United States)

    Poli, Caroline L; Harrison, Autumn-Lynn; Vallarino, Adriana; Gerard, Patrick D; Jodice, Patrick G R

    2017-01-01

    During breeding, foraging marine birds are under biological, geographic, and temporal constraints. These contraints require foraging birds to efficiently process environmental cues derived from physical habitat features that occur at nested spatial scales. Mesoscale oceanography in particular may change rapidly within and between breeding seasons, and findings from well-studied systems that relate oceanography to seabird foraging may transfer poorly to regions with substantially different oceanographic conditions. Our objective was to examine foraging behavior of a pan-tropical seabird, the Masked Booby (Sula dactylatra), in the understudied Caribbean province, a moderately productive region driven by highly dynamic currents and fronts. We tracked 135 individuals with GPS units during May 2013, November 2013, and December 2014 at a regionally important breeding colony in the southern Gulf of Mexico. We measured foraging behavior using characteristics of foraging trips and used area restricted search as a proxy for foraging events. Among individual attributes, nest stage contributed to differences in foraging behavior whereas sex did not. Birds searched for prey at nested hierarchical scales ranging from 200 m-35 km. Large-scale coastal and shelf-slope fronts shifted position between sampling periods and overlapped geographically with overall foraging locations. At small scales (at the prey patch level), the specific relationship between environmental variables and foraging behavior was highly variable among individuals but general patterns emerged. Sea surface height anomaly and velocity of water were the strongest predictors of area restricted search behavior in random forest models, a finding that is consistent with the characterization of the Gulf of Mexico as an energetic system strongly influenced by currents and eddies. Our data may be combined with tracking efforts in the Caribbean province and across tropical regions to advance understanding of seabird

  16. GEOCHRONOMETRY & ISOTOPE GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    <正>20091213 Deng Xiaodong(State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan 430074,China);Li Jianwei 40Ar/ 39Ar Geochronology of Weathering Crust: Significance,Problems,and Prospect(Geo-

  17. Iowa Bedrock Geology

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — The bedrock geologic map portrays the current interpretation of the distribution of various bedrock stratigraphic units present at the bedrock surface. The bedrock...

  18. HISTORICAL GEOLOGY&STRATIGRAPHY

    Institute of Scientific and Technical Information of China (English)

    2016-01-01

    20160442Bai Jianke(Xi’an Center of China Geological Survey,Xi’an 710054,China);Chen Junlu The Timing of Opening and Closure of the Mayile Oceanic Basin:Evidence from the Angular Unconformity between the Middle De-

  19. HISTORICAL GEOLOGY & STRATIGRAPHY

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    <正>20112482 Bai Ping (Guizhou Academy of Geologic Survey,Guiyang 550005,China); Xiao Jiafei Sediment and Stratum Succession Characteristic of the Last Stage of Late Triassic and Middle Jurassic in Northwest Gui

  20. QUATERNARY GEOLOGY & GEOMORPHOLOGY

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    <正>20112526Bai Daoyuan (Hunan Institute of Geology Survey,Changsha 410011,China); Liu Bo Quaternary Tectonic-Sedimentary Characteristics and Environmental Evolution of Linli Sag,Dongting Basin (Journal of

  1. GeologicSoils_SOAG

    Data.gov (United States)

    Vermont Center for Geographic Information — GeologicSoils_SOAG includes a pre-selected subset of SSURGO soil data depicting prime agricultural soils in Vermont. The SSURGO county coverages were joined to the...

  2. Iowa Geologic Sampling Points

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — Point locations of geologic samples/files in the IGS repository. Types of samples include well cuttings, outcrop samples, cores, drillers logs, measured sections,...

  3. Economic Geology and Education

    Science.gov (United States)

    Geotimes, 1971

    1971-01-01

    Presents tabulated data of questionnaire responses from 207 colleges. More than 30 groups of data are included relating to various aspects of geology programs including enrollment, student and faculty data and courses. (PR)

  4. Economic Geology (Oil & Gas)

    Science.gov (United States)

    Geotimes, 1972

    1972-01-01

    Briefly reviews the worldwide developments in petroleum geology in 1971, including exploration, new fields, and oil production. This report is condensed from the October Bulletin of the American Association of Petroleum Geologists. (PR)

  5. Economic Geology (Oil & Gas)

    Science.gov (United States)

    Geotimes, 1972

    1972-01-01

    Briefly reviews the worldwide developments in petroleum geology in 1971, including exploration, new fields, and oil production. This report is condensed from the October Bulletin of the American Association of Petroleum Geologists. (PR)

  6. Economic Geology and Education

    Science.gov (United States)

    Geotimes, 1971

    1971-01-01

    Presents tabulated data of questionnaire responses from 207 colleges. More than 30 groups of data are included relating to various aspects of geology programs including enrollment, student and faculty data and courses. (PR)

  7. QUATERNARY GEOLOGY & GEOMORPHOLOGY

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    <正>20050939 An Chengbang (Key Lab. of Western Chinese Environment System, Ministry of Education, Lanzhou University, Lanzhou, Gansu 730000, China); Feng Zhaodong Humid Climate During 9-3. 8 KaBP in the Western Part of Chinese Loess Plateau (Marine Geology & Quaternary Geology, ISSN0256-1492, CN37-1117/P, 24 (3), 2004, p. 111-116, 3 illus. , 1 table, 40 refs. , with English abstract)

  8. GEOCHRONOMETRY & ISOTOPE GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    <正>20141655 Gao Linzhi(Institute of Geology,CAGS,Beijing 100037,China);Ding Xiaozhong The Revision of the Chentangwu Formation in Neoproterozoic Stratigraphic Column:Constraints on Zircon U-Pb Dating of Tuff from the Mengshan Section in Pujiang County,Zhejiang Province(Geological Bulletin of China,ISSN1671-2552,CN11-4648/P,32(7),2013,p.988-995,5 illus.,1 plate,2 tables,24 refs.)

  9. GEOCHRONOMETRY & ISOTOPE GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    <正>20050934 Chen Zhihong (Chinese Academy of Geological Sciences, Beijing 100037, China); Lu Songnian Age of the Fushui Intermediate-Mafic Intrusive Complex in the Qinling Orogen, New Zircon U - Pb and Whole -Rock Sm and Nd Isotope Chronological Evidence (Geological Bulletin of China, ISSN 1671-2552, CN11-4648/P, 23(4), 2004, p. 322-328, 3 illus. , 3 tables, 10 refs. )

  10. GEOCHRONOMETRY & ISOTOPE GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    <正>20041584 Cheng Hai (Department of Geology & Geophysics, University of Minnesota, Minneapolis, United States); Lawrence, R. U/Th and U/Pa Dating of Nanjing Man, Jiangsu Province (Geological Journal of China Universities, ISSN 1006 - 7493, CN 32 -1440/P, 9(4), 2003, p. 667-677, 2 illus. , 2 tables, 28 refs. , with English abstract) Key words: Homo erectus, Nanjing, Jiangsu Province

  11. GEOCHRONOMETRY & ISOTOPE GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    <正>20072068 Duo Ji(Bureau of Geology and Mineral Resources of Tibet Autonomous Region,Lhasa,Tibet 850000);Wen Chunqi Detrital Zircon of 4 100 Ma in Quartzite in Burang,Tibet(Acta Geologica Sinica(English Edition)--Journal of the Geological Society of China,ISSN1000-9515,CN11-2001/P,80(6),2006,p.954-956,2 illus.,1 table,19 refs.)

  12. GEOCHRONOMETRY&ISOTOPE GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    <正>20071262 Gong Gelian(Guangzhou Institute of Geochemistry,CAS,Guangzhou 510064, China)Luminescence Dating for Environ- mental Evolution Study in Terrestrial Land, Deep Sea and Coastal Belts:A Review(Ma- rine Geology & Quaternary Geology,ISSN 0256-1492,CN37-1117/P,26(2),2006, p.133-138,2 illus.,34 refs.,with English abstract) Key words:thermoluminescent dating

  13. GEOCHRONOMETRY & ISOTOPE GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

    <正>20132601 Cui Yurong(Tianjin Institute of Geology and Mineral Resources,China Geological Survey,Tianjin 300170,China);Zhou Hongying In Situ LA-MC-ICP-MS U-Pb Isotopic Dating of Monazite(Acta Geoscientica Sinica,ISSN0375-5444,CN11-1856/P,33(6),2012,p.865-876,6illus.,4tables,41refs.)Key words:monazite,U-Pb dating

  14. HYDROGEOLOGY & ENGINEERING GEOLOGY (2)ENGINEERING GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>20082639 Bai Jianguang(National Laboratory of Geo—Hazard Prevention and Geo—Envi- ronment Protection,Chengdu University of Technology,Chengdu 610059,China);Xu Qiang Study on Influence Factors of Bank Collapse in the Three Gorges Reservoir with Physical Modeling(The Chinese Journal of Geological Hazard and Control,ISSN1003—8035,CN11—2852/P,18(1),2007,p.90—94,8 illus.,3 tables,5 refs.) Key words:reservoir bank slump,Yangtze River Valley

  15. HYDROGEOLOGY & ENGINEERING GEOLOGY (2)ENGINEERING GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    <正>20071446 Kazue Tazaki(Graduate School of Natural Science and Technology,Kanazawa University,Kakuma,Kanazawa,Ishikawa 920-1192,Japan);Hiroaki Watanabe Hy- drocarbon-Degrading Bacteria and Paraffin from Polluted Seashores 9 Years after the Nakhodka Oil Spill in the Sea of Japan(Acta Geologica Sinica(English Edition)——Jour- nal of the Geological Society of China,ISSN 1000-9515,CN11-2001/P,80(3),2006, p.432-440,6 illus.,54 refs.,with English abstract)

  16. NODC Standard Product: Climatic atlas of the Arctic Seas 2004 - Database of the Barents, Kara, Laptev, and White Seas - Oceanography and marine biology (NODC Accession 0098061)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This Atlas presents primary data on meteorology, oceanography, and hydrobiology from the Barents, Kara, Laptev, and White Seas, which were collected during the...

  17. Geological fakes and frauds

    Science.gov (United States)

    Ruffell, Alastair; Majury, Niall; Brooks, William E.

    2012-02-01

    Some geological fakes and frauds are carried out solely for financial gain (mining fraud), whereas others maybe have increasing aesthetic appeal (faked fossils) or academic advancement (fabricated data) as their motive. All types of geological fake or fraud can be ingenious and sophisticated, as demonstrated in this article. Fake gems, faked fossils and mining fraud are common examples where monetary profit is to blame: nonetheless these may impact both scientific theory and the reputation of geologists and Earth scientists. The substitution or fabrication of both physical and intellectual data also occurs for no direct financial gain, such as career advancement or establishment of belief (e.g. evolution vs. creationism). Knowledge of such fakes and frauds may assist in spotting undetected geological crimes: application of geoforensic techniques helps the scientific community to detect such activity, which ultimately undermines scientific integrity.

  18. Geology at Yucca Mountain

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-05-01

    Both advocates and critics disagree on the significance and interpretation of critical geological features which bear on the safety and suitability of Yucca Mountain as a site for the construction of a high-level radioactive waste repository. Critics believe that there is sufficient geological evidence to rule the site unsuitable for further investigation. Some advocates claim that there is insufficient data and that investigations are incomplete, while others claim that the site is free of major obstacles. We have expanded our efforts to include both the critical evaluations of existing geological and geochemical data and the collection of field data and samples for the purpose of preparing scientific papers for submittal to journals. Summaries of the critical reviews are presented in this paper.

  19. The geology of Ganymede

    Science.gov (United States)

    Shoemaker, E. M.; Lucchitta, B. K.; Wilhelms, D. E.; Plescia, J. B.; Squyres, S. W.

    A broad outline of the geologic history of Ganymede is presented, obtained from a first attempt to map the geology on a global scale and to interpret the characteristics of the observed geologic units. Features of the ancient cratered terrain such as craters and palimpsests, furrows and troughs, are discussed. The grooved terrain is described, including its sulci and cells, and the age relation of these units is considered along with the structure and origin of this terrain. The Gilgamesh Basin and Western Equatorial Basin in the post grooved terrain are treated, as are the bright and dark ray craters and the regolith. The development of all these regions and features is discussed in context. For the regolith, this includes the effect of water migration, sputtering, and thermal annealing. The histories of the ancient cratered terrain, the grooved terrain, and the post grooved terrain are presented.

  20. Geologic map of Mars

    Science.gov (United States)

    Tanaka, Kenneth L.; Skinner, James A.; Dohm, James M.; Irwin, Rossman P.; Kolb, Eric J.; Fortezzo, Corey M.; Platz, Thomas; Michael, Gregory G.; Hare, Trent M.

    2014-01-01

    This global geologic map of Mars, which records the distribution of geologic units and landforms on the planet's surface through time, is based on unprecedented variety, quality, and quantity of remotely sensed data acquired since the Viking Orbiters. These data have provided morphologic, topographic, spectral, thermophysical, radar sounding, and other observations for integration, analysis, and interpretation in support of geologic mapping. In particular, the precise topographic mapping now available has enabled consistent morphologic portrayal of the surface for global mapping (whereas previously used visual-range image bases were less effective, because they combined morphologic and albedo information and, locally, atmospheric haze). Also, thermal infrared image bases used for this map tended to be less affected by atmospheric haze and thus are reliable for analysis of surface morphology and texture at even higher resolution than the topographic products.

  1. Current and future prospects for the application of systematic theoretical methods to the study of problems in physical oceanography

    Science.gov (United States)

    Constantin, A.; Johnson, R. S.

    2016-09-01

    This essay is a commentary on the pivotal role of systematic theoretical methods in physical oceanography. At some level, there will always be a conflict between theory and experiment/data collection: Which is pre-eminent? Which should come first? This issue appears to be particularly marked in physical oceanography, to the extreme detriment of the development of the subject. It is our contention that the classical theory of fluids, coupled with methods from the theory of differential equations, can play a significant role in carrying the subject, and our understanding, forward. We outline the philosophy behind a systematic theoretical approach, highlighting some aspects of equatorial ocean dynamics where these methods have already been successful, paving the way for much more in the future and leading, we expect, to the better understanding of this and many other types of ocean flow. We believe that the ideas described here promise to reveal a rich and beautiful dynamical structure.

  2. HISTORICAL GEOLOGY & STRATIGRAPHY

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    <正>20111878 Cao Jie(Institute of Mineral Resources,Chinese Academy of Geological Sciences,Beijing 100037,China);Zhang Yongsheng Mineralogical Evidences and Significance of Transgression Event in the Cretaceous Basins of Eastern Heilongjiang Province,China(Geological Bulletin of China,ISSN1671-2552,CN11-4648/P,29(7),2010,p.1024-1030,8 illus.,2 tables,18 refs.)Key words:Lower Cretaceous,transgression,Heilongjiang ProvinceThe evidences of marine fossils show that multiple different scales of transgression events have occurred in the Cretaceous basins of eastern Heilongjiang Pro

  3. Principles of engineering geology

    Energy Technology Data Exchange (ETDEWEB)

    Attewell, P.B.; Farmer, I.W.

    1976-01-01

    This book discusses basic principles as well as the practical applications of geological survey and analysis. Topics covered include the mechanical and physical response of rocks, rock masses and soils to changes in environmental conditions, and the principles of groundwater flow. The core of the book deals with the collection of geological and technical data, its subsequent analysis, and application to design. The combination of rigorous and detailed discussion of theory and well-illustrated examples made the book an indispensable reference source and ideal course book for both geologists and civil engineers.

  4. GEOCHRONOMETRY & ISOTOPE GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    <正>20111126Ji Honglei(Institute of Hydrogeol-ogy and Environmental Geology,CAGS,Shi-jiazhuang050061,China);Zhao Hua Pre-liminary Study of Re-OSL on Water-De-posited Sediments(Seismology and Geology,ISSN0253-4967,CN11-2192/P,32(2),2010,p.320-326,4illus.,1table,10refs.)Key words:stream sediments,opticalstimulated luminescence dating,HebeiProvinceAccording to measuring the natural TT-OSL signals of the fine-grained quartzfrom both fluvial and lacustrine sediments,the dose recovery experiment and the comparison of the multiple aliquots

  5. North American Paleozoic Oceanography: Overview of Progress Toward a Modern Synthesis

    Science.gov (United States)

    Johnson, Markes E.

    1987-04-01

    Three fundamental questions have confronted paleoceanographers from the beginning of their North American explorations. What was the size and timing of ancient epicontinental seas: large and long-lasting or small and brief? What characterized the distribution of biotas and sediments at any one point in time: a multitude of complex facies patterns or a more spacially homogeneous cover? What promoted continental foundering: eustatic changes in sea level or relative changes in sea level brought about by regional tectonics? These questions have been debated by North Americans since the middle 1800s in response to various new insights, usually coming from abroad but often elaborated into substantial contributions of equal standing. Contemporary facies zones in Mediterranean biota found by the Englishman E. Forbes attracted the notice of geologists as early as 1844. C. Whittlesey was among the first to apply the bathymetric scheme of Forbes to the interpretation of American Paleozoic strata in 1851. The outstanding "native" innovation of the period was J. Hall's geosyncline concept, which is reflected in the earliest map of Paleozoic North America made by T. C. Chamberlin in 1881. Another wave of influence spread from the late 19th century work on stratigraphic facies patterns by the German J. Walther. A. W. Grabau is best remembered as Walther's foremost American champion against the formidable layer-caker E. O. Ulrich in the first decades of the 20th century, but he also made pioneering contributions of his own on Paleozoic sea level studies and global paleogeographic reconstructions. Charles Schuchert was the consummate paleogeographer of this period. Meanwhile, the term "cyclothem" was coined by J. Marvin Weller in 1930 for recurrent Carboniferous strata in Illinois. Controversy fast erupted over a glacial as opposed to tectonic mode of origin for these cycles. In 1964, A. B. Shaw restimulated interest in Paleozoic oceanography through his reformulation of Walther

  6. NASA's Student Airborne Research Program as a model for effective professional development experience in Oceanography

    Science.gov (United States)

    Palacios, S. L.; Kudela, R. M.; Clinton, N. E.; Atkins, N.; Austerberry, D.; Johnson, M.; McGonigle, J.; McIntosh, K.; O'Shea, J. J.; Shirshikova, Z.; Singer, N.; Snow, A.; Woods, R.; Schaller, E.; Shetter, R. E.

    2011-12-01

    With over half of the current earth and space science workforce expected to retire within the next 15 years, NASA has responded by cultivating young minds through programs such as the Student Airborne Research Program (SARP). SARP is a competitive internship that introduces upper-level undergraduates and early graduate students to Earth System Science research and NASA's Airborne Science Program. The program serves as a model for recruitment of very high caliber students into the scientific workforce. Its uniqueness derives from total vertical integration of hands-on experience at every stage of airborne science: aircraft instrumentation, flight planning, mission participation, field-work, analysis, and reporting of results in a competitive environment. At the conclusion of the program, students presented their work to NASA administrators, faculty, mentors, and the other participants with the incentive of being selected as best talk and earning a trip to the fall AGU meeting to present their work at the NASA booth. We hope lessons learned can inform the decisions of scientists at the highest levels seeking to broaden the appeal of research. In 2011, SARP was divided into three disciplinary themes: Oceanography, Land Use, and Atmospheric Chemistry. Each research group was mentored by an upper-level graduate student who was supervised by an expert faculty member. A coordinator managed the program and was supervised by a senior research scientist/administrator. The program is a model of knowledge transfer among the several levels of research: agency administration to the program coordinator, established scientific experts to the research mentors, and the research mentors to the pre-career student participants. The outcomes from this program include mission planning and institutional knowledge transfer from administrators and expert scientists to the coordinator and research mentors; personnel and project management from the coordinator and expert scientists to the

  7. GEOCHRONOMETRY&ISOTOPE; GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    20151852 Chen Longyao(Institute of Geomechanics,Chinese Academy of Geological Sciences,Beijing100081,China);Luo Yuling LA-ICP-MS U-Pb Geochronology of Detrital Zircons from the Liuling Group in the South Qinling Tectonic Belt and Its Tectonic

  8. GEOCHRONOMETRY ISOTOPE GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    <正>20040631 Chen Jiangfeng (School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui) ; Xie Zhi Relationships Between Rb-Sr, Ar - Ar Geochronometers and Oxygen Isotopic Equilibrium of Intrusions from Eastern Anhui Province, China (Geological Journal of China Universities, ISSN 1006 - 7493, CN 32 -

  9. GEOCHRONOMETRY & ISOTOPE GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    <正>20090432 Zhou Shuqing (School of Energy Resources, China University of Geosciences Beijing 100083, China); Huang Haiping Stable Isotopic Records vs. Important Events in Life Evolution and the Concurrent Environment (Geological Review, ISSN0371-5736, CN11-1952, 54(2), 2008, p.225-231, 3 illus., 1 table, 77 refs.)

  10. GEOCHRONOMETRY & ISOTOPE GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    <正>20072750 Huang Sijing(State Key Laboratory of Oil/Gas Reservoir Geology and Exploitation,Chengdu University of Technology,Chengdu 610059,China);Pei Changrong Age Calibration for the Boundary between Lower and Middle Triassic by Strontium Isotope Stratigraphy in Eastern Sichuan Province

  11. Geology en Espanol

    Science.gov (United States)

    McGehee, Richard V.

    1973-01-01

    Describes a program in which an introductory geology class was conducted in Spanish at Western Michigan University. Although difficulties were encountered, the author evaluated the program as a great success, and a valuable experience for the person who wants to be effectively bilingual in his profession. (JR)

  12. HYDROGEOLOGY & ENGINEERING GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    <正>(1) HYDROGEOLOGY 20051014 Duan Yonghou (China Institute of Geo - Environment Monitoring, Beijing ) ; Wang Jiabin Groundwater Resources and Its Sustainable Development in Tianjin, China ( Hydrogeology & Engineering Geology, ISSN 1000-3665, CN11-2202/P, 31(3), 2004, p. 29 -39, 8 illus. , 7 tables, 8 refs. , with English abstract) Key words: water supply, groundwater resources, Tianjin

  13. HYDROGEOLOGY & ENGINEERING GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    <正>(1) HYDROGEOLOGY20041696 Bian Jinyu (Department of Earth Sciences, Nanjing University, Nanjing, Jiangsu); Fang Rui Analysis of Controlling Factors of Ground water Quality in Yancheng Area, Jiangsu Province, China (Hydrogeolo gy & Engineering Geology, ISSN 1000 -3665, CN11-2202/P, 30(5), 2003, p. 56 - 60, 1 illus. , 4 tables, 5 refs. ) Key words: groundwater quality evaluation, Jiangsu Province

  14. QUATERNARY GEOLOGY & GEOMORPHOLOGY

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    <正>20072079 Cui Zhongxie(Yanbian Seismology Bureau of Jilin Province,Yanji,Jilin 133001);Liu Jiaqi Historical Records about the Extensive Eruptions of the Tianchi Volcano in Changbai Mountains during A.D.1014~1019(Geological Review,ISSN0371-5736,CN11-1952,52(5),2006,p.624-627,13 refs.)Key words:eruptions,Changbai Mountains

  15. HISTORICAL GEOLOGY&STRATIGRAPHY;

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    20151823 Cai Xiyao(Petroleum Exploration and Production Research Institute,SINOPEC,Beijing100083,China);Dou Liwei Classification and Correlation of Cambrian in Eastern Tarim Basin(Petroleum Geology&Experiment;,ISSN1001-6112,CN32-1151/TE,36(5),2014,p.539-545,3illus.,1table,

  16. HISTORICAL GEOLOGY & STRATIGRAPHY

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

    <正>20131708 Cai Xiyao(Research Institute of Exploration&Production,SINOPEC,Beijing100083,China);Jin Xianmei The Stratigraphic Classification and Correlation of Jurassic in Caohu Depression,Tarim Basin(Xinjiang Geology,ISSN1000-8845,CN65-1092/P,30(3),2012,p.287-291,2illus.,1table,10refs.)

  17. HISTORICAL GEOLOGY & STRATIGRAPHY

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    <正>20142287Cao Changqun(State Key Laboratory of Paleobiology and Stratigraphy,Nanjing Institute of Geology and Palaeontology,CAS,Nanjing 210008,China);Zhang Mingyuan The Permian Capitanian Stratigraphy at the Rencunping Section,Sangzhi County of Hunan Province and Its Environmental Implications

  18. HISTORICAL GEOLOGY & STRATIGRAPHY

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    <正>20042202 Chen Gang (Department of Geology, Northwest University, Xi’an, Shaanxi); Zhao Zhongyuan Natural of Pre-Mesozoic Tectono-Lithostratigraphic Units of North -Huaiyang Belt and Implication for Tectonic Evolution (Journal of Northwest University (Natural Science Edition), ISSN 1000-274X, CN61-1072/N, 33(5), 2003, p. 595 -598, 1 table, 14 refs. )

  19. HISTORICAL GEOLOGY&STRATIGRAPHY

    Institute of Scientific and Technical Information of China (English)

    2016-01-01

    20161152Bai Jianke(Xi’an Center of China Geological Survey,Xi’an 710054,China);Li Zhipei Tectonic Environment of Western Tianshan during the Early Carboniferous:Sedimentary and Stratigraphical Evidence from the Bottom of the Dahalajunshan Formation(Acta Sedimentologica Sinica,ISSN1000-0550,

  20. HISTORICAL GEOLOGY & STRATIGRAPHY

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    <正>20101833 Cao Ke (State Key Laboratory of Geological Processes and Mineral Resources,China University of Geosciences,Beijing 100083,China);Wang Meng Constraints of Sedimentary Records on Cretaceous Paleoclimate Simulation in China Mainland (Earth Science Frontiers,ISSN1005-2321,CN11-3370/P,16(5),2009,p.29-36,3 illus.,1 table,41 refs.)

  1. HISTORICAL GEOLOGY & STRATIGRAPHY

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    <正> 20070428 Liu Wenye (Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029) Application of Wavelet Analysis in High-Resolution Sequence Stratigraphic Division (Journal of Geomechanics, ISSN1006-6616, CN11-3672/P, 12(1), 2006, p.64-70, 4 illus., 12 refs.) Key words: sequence stratigraphy, wavelet transform

  2. Geological and Inorganic Materials.

    Science.gov (United States)

    Jackson, L. L.; And Others

    1989-01-01

    Presents a review focusing on techniques and their application to the analysis of geological and inorganic materials that offer significant changes to research and routine work. Covers geostandards, spectroscopy, plasmas, microbeam techniques, synchrotron X-ray methods, nuclear activation methods, chromatography, and electroanalytical methods.…

  3. Geological impacts on nutrition

    Science.gov (United States)

    This chapter reviews the nutritional roles of mineral elements, as part of a volume on health implications of geology. The chapter addresses the absorption and post-absorptive utilization of the nutritionally essential minerals, including their physiological functions and quantitative requirements....

  4. Economic geology, Mexico

    National Research Council Canada - National Science Library

    Salas, Guillermo P

    1991-01-01

    .... The various elements of Mexico's economic geology are discussed in the chapters of this volume by outstanding Mexican geologists, whose expertise vouches for the high quality of this presentation. Their efforts are a valuable contribution to the knowledge of Mexico's nonrenewable resources.

  5. Public perceptions of geology

    Science.gov (United States)

    Gibson, Hazel; Stewart, Iain; Anderson, Mark; Pahl, Sabine; Stokes, Alison

    2014-05-01

    Geological issues are increasingly intruding on the everyday lives of ordinary people. Whether it be onshore exploration and extraction of oil and gas, deep injection of water for geothermal power or underground storage of carbon dioxide and radioactive waste, many communities across Europe are being faced with potentially contested geological activity under their backyard. As well as being able to communicate the technical aspects of such work, geoscience professionals also need to appreciate that for most people the subsurface is an unfamiliar realm. In order to engage communities and individuals in effective dialogue about geological activities, an appreciation of what 'the public' already know and what they want to know is needed, but this is a subject that is in its infancy. In an attempt to provide insight into these key issues, this study examines the concerns the public have, relating to geology, by constructing 'Mental Models' of people's perceptions of the subsurface. General recommendations for public engagement strategies will be presented based on the results of selected case studies; specifically expert and non-expert mental models for communities in the south-west of England.

  6. GEOCHRONOMETRY & ISOTOPE GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    <正>20142333Liao Jin(State Key Laboratory of Biogeology and Environmental Geology,China University of Geosciences,Wuhan 430074,China);Hu Chaoyong Thermoluminescence Based Thermometer from Stalagmites(Quaternary Sciences,ISSN1001-7410,CN11-2708/P,33(6),2013,p.1122-1129,6illus.,1table,48refs.)

  7. Continental shelf processes affecting the oceanography of the South Atlantic Bight. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Pietrafesa, L.J.

    1978-03-01

    The objectives of the project were to determine the physical/dynamical processes controlling/affecting the distribution of phytoplankton nutrients on the continental shelf in the South Atlantic Bight. The initial objectives were to determine the short term, i.e., 2 to 10 day and longer term flux of nutrients onto the continental shelf. This is clearly related to the more general problem of combined physical and biogenic control of phytoplankton nutrients. During the period from June, 1975 to March, 1978 the study of the continental shelf processes affecting the oceanography of the South Atlantic Bight has been principally involved with a substantial, coordinated field effort. The success of the data acquisition phase of the program has now required an intensive data analysis phase which has been slowly increasing in effort. Emphasis is placed on the main phase of the field program, located in Onslow Bay, which has beel completed and the data are being analyzed. During the three-year period 20 cruises were made into the Carolina Capes area and samples were collected. A list is included of some 100 publications during the period.

  8. An ECOOP web portal for visualising and comparing distributed coastal oceanography model and in situ data

    Science.gov (United States)

    Gemmell, A. L.; Barciela, R. M.; Blower, J. D.; Haines, K.; Harpham, Q.; Millard, K.; Price, M. R.; Saulter, A.

    2011-07-01

    As part of a large European coastal operational oceanography project (ECOOP), we have developed a web portal for the display and comparison of model and in situ marine data. The distributed model and in situ datasets are accessed via an Open Geospatial Consortium Web Map Service (WMS) and Web Feature Service (WFS) respectively. These services were developed independently and readily integrated for the purposes of the ECOOP project, illustrating the ease of interoperability resulting from adherence to international standards. The key feature of the portal is the ability to display co-plotted timeseries of the in situ and model data and the quantification of misfits between the two. By using standards-based web technology we allow the user to quickly and easily explore over twenty model data feeds and compare these with dozens of in situ data feeds without being concerned with the low level details of differing file formats or the physical location of the data. Scientific and operational benefits to this work include model validation, quality control of observations, data assimilation and decision support in near real time. In these areas it is essential to be able to bring different data streams together from often disparate locations.

  9. An ECOOP web portal for visualising and comparing distributed coastal oceanography model and in situ data

    Directory of Open Access Journals (Sweden)

    A. L. Gemmell

    2011-07-01

    Full Text Available As part of a large European coastal operational oceanography project (ECOOP, we have developed a web portal for the display and comparison of model and in situ marine data. The distributed model and in situ datasets are accessed via an Open Geospatial Consortium Web Map Service (WMS and Web Feature Service (WFS respectively. These services were developed independently and readily integrated for the purposes of the ECOOP project, illustrating the ease of interoperability resulting from adherence to international standards.

    The key feature of the portal is the ability to display co-plotted timeseries of the in situ and model data and the quantification of misfits between the two. By using standards-based web technology we allow the user to quickly and easily explore over twenty model data feeds and compare these with dozens of in situ data feeds without being concerned with the low level details of differing file formats or the physical location of the data.

    Scientific and operational benefits to this work include model validation, quality control of observations, data assimilation and decision support in near real time. In these areas it is essential to be able to bring different data streams together from often disparate locations.

  10. The application of standard definitions of sound to the fields of underwater acoustics and acoustical oceanography

    Science.gov (United States)

    Carey, William M.

    2001-05-01

    Recent societal concerns have focused attention on the use of sound as a probe to investigate the oceans and its use in naval sonar applications. The concern is the impact the use of sound may have on marine mammals and fishes. The focus has changed the fields of acoustical oceanography (AO) and underwater acoustics (UW) because of the requirement to communicate between disciplines. Multiple National Research Council publications, Dept. of Navy reports, and several monographs have been written on this subject, and each reveals the importance as well as the misapplication of ASA standards. The ANSI-ASA standards are comprehensive, however not widely applied. The clear definition of standards and recommendations of their use is needed for both scientists and government agencies. Traditionally the U.S. Navy has been responsible for UW standards and calibration; the ANSI-ASA standards have been essential. However, recent changes in the Navy and its laboratory structure may necessitate a more formal recognition of ANSI-ASA standards and perhaps incorporation of UW-AO in the Bureau of Standards. A separate standard for acoustical terminology, reference levels, and notation used in the UW-AO is required. Since the problem is global, a standard should be compatible and cross referenced with the International Standard (CEI/IEC 27-3).

  11. The Prestige crisis: operational oceanography applied to oil recovery, by the Basque fishing fleet.

    Science.gov (United States)

    González, Manuel; Uriarte, Adolfo; Pozo, Rogelio; Collins, Michael

    2006-01-01

    On 19th November 2002, the oil tanker Prestige (containing 77,000 tonnes of heavy fuel no. 2 (M100)) sank in 3500 m of water, off the coast of northwestern Spain. Intermittent discharge of oil from the stricken tanker, combined with large-scale sea surface dispersion, created a tracking and recovery problem. Initially, conventional oil recovery approaches were adopted, close to the wreck. With time and distance from the source, the oil dispersed dramatically and became less viscous. Consequently, a unique monitoring, prediction and data dissemination system was established, based upon the principles of 'operational oceanography'; this utilised in situ tracked buoys and numerical (spill trajectory) modelling outputs, in combination with remote sensing (satellite sensors and visual observation). Overall, wind effects on the surface waters were found to be the most important mechanism controlling the smaller oil slick movements. The recovery operation involved up to 180 fishing boats, 9-30 m in length. Such labour-intensive recovery of the oil (21,000 tonnes, representing an unprecedented ratio of 6.6 tonnes at sea, per tonne recovered on land) continued over a 10 month period. The overall recovery at sea, by the fishing vessels, represented 63% of the total oil recovered at sea; this compares to only 37% recovered by specialised 'counter- pollution' vessels.

  12. 15 Years of Oceanography in the Azores: From Oceanographic Cruises to an Integrated Approach

    Science.gov (United States)

    Juliano, M. F.; Alves, M.; Simões, A.; Rodeia, J.

    2006-07-01

    Oceanographic research in the Azores has only started 15 years ago. Nevertheless, it has been possible to evolve from the typical "research cruise approach" to a more versatile and integrated approach, that has proofed to be further rewarding and adequate for the size and resources of the group. The Azorean Oceanographers have participated and conducted several research cruises since 1990, and anticipating the importance of correlating in situ data with satellite data has lead us to plan the last of these, so that there was a coincidence of transects, moorings and satellite ground tracks. On the other hand, the group has invested in data processing and merging hydrological historical data with the results from the above mentioned oceanographic cruises, creating a hydrological database for the whole Atlantic Ocean. Also, through the application of a novel methodology and approach, the group has contributed to a new vision of the currents systems in the South Atlantic Ocean, namely with the newly found St. Helena Current, the congener of the Azores Current. As a result of this continued shift in methodology, the group is now using an integrated approach where field data, model output and processed altimeter data are merged to produce operational oceanography products, such as sea state charts and daily oceanic current charts.

  13. Experiences of ocean literacy with different users of operational oceanography services and with high school students

    Science.gov (United States)

    Agostini, Paola; Coppini, Giovanni; Martinelli, Sara; Bonarelli, Roberto; Lecci, Rita; Pinardi, Nadia; Cretì, Sergio; Turrisi, Giuseppe; Ciliberti, Stefania Angela; Federico, Ivan; Mannarini, Gianandrea; Verri, Giorgia; Jansen, Eric; Lusito, Letizia; Macchia, Francesca; Montagna, Fabio; Buonocore, Mauro; Marra, Palmalisa; Tedesco, Luca; Cavallo, Arturo

    2017-04-01

    According to a common definition, ocean literacy is an understanding of the ocean's influence on people and people influence on the ocean. An ocean-literate person is able to make informed and responsible decisions regarding the ocean and its resources. To this aim, this paper presents operational oceanographic tools developed to meet the needs of different users, and activities performed in collaboration with high school students to support new developments of the same tools. Operational oceanography allows to deal with societal challenges such as maritime safety, coastal and marine environment management, climate change assessment and marine resources management. Oceanographic products from the European Copernicus Marine Monitoring Service - CMEMS are transformed and communicated to public and stakeholders through adding-value chains (downstreaming), which consider advanced visualization, usage of multi-channels technological platforms and specific models and algorithms. Sea Situational Awareness is strategically important for management and safety purposes of any marine domain and, in particular, the Mediterranean Sea and its coastal areas. Examples of applications for sea situational awareness and maritime safety are here presented, through user-friendly products available both by web and mobile channels (that already reach more than 100.000 users in the Mediterranean area). Further examples of ocean literacy are web bulletins used to communicate the technical contents and information related to oceanographic forecasts to a wide public. They are the result of a collaboration with high school students, with whom also other activities on improving products visualization and online communication have been performed.

  14. Experiential Learning: High School Student Response to Learning Oceanography at Sea

    Science.gov (United States)

    Fiedler, J. W.; Tamsitt, V. M.; Crosby, S. C.; Ludka, B. C.

    2016-12-01

    The GOTO-SEE (Graduate students Onboard Teaching Oceanography - Scripps Educational Experience) cruises were conducted with two days of ship time off of Point Loma, CA, on the R/V Robert Gordon Sproul in July 2016. The cruises, funded through UC Ship Funds program, provided a unique training opportunity for graduate students to design, coordinate and conduct ship-based field experiments as well as teaching and mentoring students. The cruises allowed for instruction at sea for high school students in the UCSD Academic Connections program in two small classes: a two-week long Global Environmental Leadership and Sustainability Program and a 3-week long class entitled Wind, Waves and Currents: Physics of the Ocean World. Students in both classes assisted with the collection of data, including two repeat cross-shore vertical CTD sections with nutrient sampling, and the deployment and recovery of a 10-day moored vertical thermistor array. Additional activities included plankton net tows, sediment sampling, depth soundings, and simple experiments regarding light absorption in the ocean. The students later plotted the data collected as a class assignment and presented a scientific poster to their peers. Here, we present the lessons learned from the cruises as well as student responses to the unique in-the-field experience, and how those responses differed by curriculum.

  15. Galveston Symposium: Physical Oceanography of the Louisiana/Texas Continental Shelf

    Science.gov (United States)

    Mitchell, Thomas M.; Brown, Murray

    The Minerals Management Service (MMS), Gulf of Mexico Outer Continental Shelf (OCS) Region sponsored a symposium on the Physical Oceanography of the Louisiana/Texas (LA/TX) Shelf in Galveston, Texas, on May 24-26, 1988. The symposium brought together a number of physical oceanographers, meteorologists, and ecologists to discuss the state of knowledge and to begin the planning process for a long-term study of shelf circulation covering the region from the mouth of the Mississippi River to approximately 24° latitude along the Mexican coast and from the shore out to a depth of approximately 500 m. The proposed study, to be a component of the ongoing MMS Environmental Studies Program, is expected to take place during the period 1989-1991. It is anticipated that the work will be done principally through contracts after a competitive procurement process. Specific charges to the participants were as follows:to assess the current state of knowledge concerning the circulation on the LA/TX shelfto identify significant gaps in that knowledgeto recommend a field measurement program to address these gapsto recommend a circulation modeling program for the LA/TX shelf that will improve MMS' oil spill risk assessmentsto identify and initiate coordination mechanisms and data-sharing arrangements with other proposed research efforts

  16. The Thermodynamic Equation Of Seawater - 2010 (TEOS-10): implications for observational oceanography and ocean modeling

    Science.gov (United States)

    McDougall, Trevor

    2010-05-01

    The Intergovernmental Oceanographic Commission (IOC) has endorsed a new equation of state of seawater to replace the International Equation of State of 1980. The new Thermodynamic Equation of Seawater 2010 (TEOS-10 for short) has been prepared by SCOR/IAPSO Working Group 127, and from 1st January 2010, is the new worldwide standard description of seawater. This thermodynamic description of seawater provides accurate algorithms for Absolute Salinity, density, entropy, enthalpy and many other properties. The software of the new seawater standard is available on line from www.TEOS-10.org. The talk will concentrate on three main topics, namely (i) the definition and use of a new form of salinity called Absolute Salinity which takes into account the spatial variation in the composition of seawater, (ii) a thermodynamic variable that can be used to accurately represent the transport and mixing of "heat" in the ocean, and (iii) the differences between the specific volume of TEOS-10 and that of EOS-80 (the International Equation of State of seawater that has been in use since 1980). The talk will discuss the relative improvements in the accuracy of observational oceanography and ocean models that can be expected from adopting TEOS-10.

  17. The ecology of plankton in biological oceanography: a tribute to Marta Estrada’s task

    Directory of Open Access Journals (Sweden)

    Jordi Solé

    2016-09-01

    Full Text Available Plankton ecology has been the object of intense research and progress in the last few decades. This has been partly due to technological advances that have facilitated the multidisciplinary and high-resolution sampling of ecosystems and improved experimentation and analytical methodologies, and to sophisticated modelling. In addition, exceptional researchers have had the vision to integrate all these innovative tools to form a solid theoretical background in ecology. Here we provide an overview of the outstanding research work conducted by Professor Marta Estrada and her pioneering contribution to different areas of research in the last four decades. Her research in biological oceanography has mainly focussed on phytoplankton ecology, taxonomy and physiology, the functional structure of plankton communities, and physical and biological interactions in marine ecosystems. She has combined a variety of field and laboratory approaches and methodologies, from microscopy to satellite observations, including in-depth statistical data analysis and modelling. She has been a reference for scientists all over the world. Here, her contributions to plankton ecology are summarized by some of her students and closest collaborators, who had the privilege to share their science and everyday experiences with her.

  18. Geoethics and Forensic Geology

    Science.gov (United States)

    Donnelly, Laurance

    2017-04-01

    The International Union of Geological Sciences (IUGS), Initiative on Forensic Geology (IFG) was set up in 2011 to promote and develop the applications of geology to policing and law enforcement throughout the world. This includes the provision of crime scene examinations, searches to locate graves or items of interest that have been buried beneath the ground surface as part of a criminal act and geological trace analysis and evidence. Forensic geologists may assist the police and law enforcement in a range of ways including for example; homicide, sexual assaults, counter terrorism, kidnapping, humanitarian incidents, environmental crimes, precious minerals theft, fakes and fraudulent crimes. The objective of this paper is to consider the geoethical aspects of forensic geology. This includes both delivery to research and teaching, and contribution to the practical applications of forensic geology in case work. The case examples cited are based on the personal experiences of the authors. Often, the technical and scientific aspect of forensic geology investigation may be the most straightforward, after all, this is what the forensic geologist has been trained to do. The associated geoethical issues can be the most challenging and complex to manage. Generally, forensic geologists are driven to carry-out their research or case work with integrity, honesty and in a manner that is law abiding, professional, socially acceptable and highly responsible. This is necessary in advising law enforcement organisations, society and the scientific community that they represent. As the science of forensic geology begins to advance around the world it is desirable to establish a standard set of principles, values and to provide an agreed ethical a framework. But what are these core values? Who is responsible for producing these? How may these become enforced? What happens when geoethical standards are breached? This paper does not attempt to provide all of the answers, as further work

  19. Hangzhou Institute of Petroleum Geology

    Institute of Scientific and Technical Information of China (English)

    Qian Yizhong

    1996-01-01

    @@ Hangzhou Institute of Petroleum Geology (HIPG) is not only the center of petroleum geological research & information, but also the technical supporter of the Exploration Department for frontier areas in South China, subordinate to CNPC.

  20. GEOCHRONOMETRY & ISOTOPE GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    <正>20111901 Chen Yingtao(State Key Laboratory of Continental Dynamics,Department of Geology,Northwest University,Xi’an 710069,China);Zhang Guowei 40Ar/39Ar Geochronology of the Guozhacuo Fault in the Northwestern Margin of Qinghai-Tibet Plateau--New Evidence for the Western Extension of Altyn Tagh Fault(Geological Bulletin of China,ISSN1671-2552,CN11-4648/P,29(8),2010,p.1129-1137,2 illus.,1 table,44 refs.)Key words:Ar-Ar dating,Qinghai-Tibetan Plateau,Altun Fracture ZoneThe samples of mylonite were collected from the Guozhacuo fault,situated in the southwestern e

  1. Geologic Field Database

    Directory of Open Access Journals (Sweden)

    Katarina Hribernik

    2002-12-01

    Full Text Available The purpose of the paper is to present the field data relational database, which was compiled from data, gathered during thirty years of fieldwork on the Basic Geologic Map of Slovenia in scale1:100.000. The database was created using MS Access software. The MS Access environment ensures its stability and effective operation despite changing, searching, and updating the data. It also enables faster and easier user-friendly access to the field data. Last but not least, in the long-term, with the data transferred into the GISenvironment, it will provide the basis for the sound geologic information system that will satisfy a broad spectrum of geologists’ needs.

  2. Engineering geology and environmental protection

    Energy Technology Data Exchange (ETDEWEB)

    Sergeev, E.M.

    1979-01-01

    A classification is made of the anthropogenic processes in the environment into global, local, universally distributed, zonal, regional, and essentially local processes. Engineering geology is defined as the principal science concerned with the study of the geological medium which in turn involves the study of fossil fuel geology. 22 references.

  3. 77 FR 19032 - Geological Survey

    Science.gov (United States)

    2012-03-29

    ... No: 2012-7479] DEPARTMENT OF THE INTERIOR Geological Survey Announcement of National Geospatial Advisory Committee Meeting AGENCY: U.S. Geological Survey, Interior. ACTION: Notice of meeting. SUMMARY... Arista Maher at the U.S. Geological Survey (703-648-6283, amaher@usgs.gov ). Registrations are due...

  4. GEOCHRONOMETRY & ISOTOPE GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>20080453 Gu Zhaoyan(Institute of Geology and Geophysics,Chinese Academy of Sciences,Beijing 100029);Guo Zhengtang 10 Be Concentration Relation to Chemical Compositions of Chinese Loess and Red Clay as a Potential Dating Method(Quaternary Sciences,ISSN1001-7410,CN11-2708/P,26(2),2006,p.244-249,3 illus.,1 table,21 refs.)

  5. GEOCHRONOMETRY & ISOTOPE GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    <正>20122601Cao Kai ( State Key Laboratory ofGeological Processes and Mineral Resources,China University of Geosciences,Wuhan 430074,China );Wang Guocan Restriction on the Application of Thermochronologic Age-Temperature and Age-Elevation Relationships:Some Insights into Sampling Strategies and Age Interpretation ( Earth Science Frontiers,ISSN1005-2321,CN11-3370 / P,18 ( 6 ), 2011,p.347-357,3illus.,85refs. ) Key words:thermochronology

  6. HISTORICAL GEOLOGY & STRATIGRAPHY

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    <正>20141624 Cai Xiongfei(Key Laboratory of Geobiology and Environmental Geology,Ministry of Education,China University of Geosciences,Wuhan 430074,China);Yang Jie A Restudy of the Upper Sinian Zhengmuguan and Tuerkeng Formations in the Helan Mountains(Journal of Stratigraphy,ISSN0253-4959CN32-1187/P,37(3),2013,p.377-386,5 illus.,2 tables,10 refs.)

  7. HISTORICAL GEOLOGY & STRATIGRAPHY

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

    <正>20132580 Cai Xiyao(Research Institute of Petroleum Exploration and Development,SINOPEC,Beijing 100083,China);Wei Ling Stratigraphic Classification and Correlation of Triassic in Shuntuoguole Area,Tarim Basin(Xinjiang Petroleum Geology,ISSN1001-3873,CN65-1107/TE,33(3),2012,p.327-330,1illus.,1table,7refs.)Key words:Triassic,stratigraphic

  8. HISTORICAL GEOLOGY & STRATIGRAPHY

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    <正>20140358Cao Jie(Oil&Gas Survey,China Geological Survey,Beijing 100029,China);Zhang Yongsheng Further Study of Transgression in Eastern Heilongjiang Basins in the Early Cretaceous:A Case Study of JD7 Well in Jixi Basin(Acta Geoscientica Sinica,ISSN1006-3021,CN11-3474/P,34(1),2013,p.103-110,3illus.,20refs.)Key words:Lower Cretaceous,transgression,Heilongjiang Province

  9. HISTORICAL GEOLOGY & STRATIGRAPHY

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    <正>20072731 Dong Yecai(School of Earth Sciences and Mapping Engineering,East China Institute of Technology,Fuzhou 344000,Jiangxi);Wu Jianhua New Understanding and Signification on Lithostratigraphic Classification in Sanbaishan Basin,South Jiangxi Province(Jiangsu Geology,ISSN1003-6474,CN32-1258/P,30(4),2006,p.254-260,5 illus.,2 tables,10 refs.)Key words:lithostratigraphy,stratigraphic classification,Jiangxi Province

  10. Petroleum Geology of Libya

    Energy Technology Data Exchange (ETDEWEB)

    Hallett, D. [13 York House, Courtlands, Sheen Road, Richmond, Surrey TW10 5BD (United Kingdom)

    2002-07-01

    Libya has the largest petroleum reserves of any country in Africa and since production began in 1961 over 20 billion barrels of oil have been produced. Libya is scheduled to reach the mid-point of depletion of reserves in 2001 and this provides a timely point at which to review the state of petroleum exploration in Libya. A large amount of data has been published on the geology of Libya, but it is scattered through the literature; much of the older data has been superceded, and several of the key publications, especially those published in Libya, are difficult to find. This book represents the first attempt to produce a comprehensive synthesis of the petroleum geology of Libya. It is based exclusively on published data, supplemented by the author's experience gained during ten years work in Libya. The aim of the book is to systematically review the plate tectonics, structural evolution, stratigraphy, geochemistry, and petroleum systems of Libya, and provides valuable new data on fields, production, and reserves. This volume will provide a ready source of reference to individuals and companies who wish to obtain an overview of the petroleum geology of Libya, and will save them the laborious task of sifting through hundreds of publications to find the data they require. The book includes 148 newly drawn figures.

  11. QUATERNARY GEOLOGY & GEOMORPHOLOGY

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    <正>20111129 Bai Daoyuan(Hunan Institute of Geological Survey,Changsha 410011,China);Li Chang’an Quaternary Tectonic-Sedimentary Characteristics and Environmental Evolution of Anxiang Sag in Dongting Basin and Its West Periphery(Journal of Earth Sciences and Environment,ISSN1672-6561,CN61-1423/P,32(2),2010,p.120-129,6 illus.,1 table,48 refs.)Key words:Quaternary,sedimentary environment,structural evolution,Dongtinghu Basin Detailed geologic mapping and bore data was conducted to study on the Quaternary tectonic and sedimentary characteristics and environmental evolution of Anxiang Sag and its west periphery of Dongting Basin,which provided new materials for Quaternary geology of Jianghan-Dongting Basin.The sag trends north-south direction and is surrounded by normal faults.The thickness of Quaternary deposits in the sag is commonly 100~220 m with maximun thickness of 300 m,and from lower to upper,the Quaternary strata is composed of Early Pleistocene Huatian Formation and Miluo Formation,Middle Pleistocene Dongtinghu Formation

  12. The Geology of Callisto

    Science.gov (United States)

    Schenk, Paul M.

    1995-01-01

    The geology of Callisto is not boring. Although cratered terrain dominates Callisto (a key end-member of the Jovian satellite system), a number of more interesting features are apparent. Cratered terrain is broken into irregular map-able bright and dark subunits that vary in albedo by a factor of 2, and several relatively smooth units are depleted of small craters. Some of these areas may have been volcanically resurfaced. Lineaments, including parallel and radial sets, may be evidence for early global tectonism. Frost deposition occurs in cold traps, and impact scars have formed from tidally disrupted comets. Geologic evidence suggests that Callisto does have a chemically differentiated crust. Central pit and central dome craters and palimpsests are common. The preferred interpretation is that a relatively ice-rich material, at depths of 5 km or more, has been mobilized during impact and exposed as domes or palimpsests. The close similarity in crater morphologies and dimensions indicates that the outermost 10 km or so of Callisto may be as differentiated as on Ganymede. The geology of cratered terrain on Callisto is simpler than that of cratered terrain on Ganymede, however. Orbital evolution and tidal heating may provide the answer to the riddle of why Callisto and Ganymede are so different (Malhotra, 1991). We should expect a few surprises and begins to answer some fundamental questions when Callisto is observed by Galileo in late 1996.

  13. Tsunami geology in paleoseismology

    Science.gov (United States)

    Yuichi Nishimura,; Jaffe, Bruce E.

    2015-01-01

    The 2004 Indian Ocean and 2011 Tohoku-oki disasters dramatically demonstrated the destructiveness and deadliness of tsunamis. For the assessment of future risk posed by tsunamis it is necessary to understand past tsunami events. Recent work on tsunami deposits has provided new information on paleotsunami events, including their recurrence interval and the size of the tsunamis (e.g. [187–189]). Tsunamis are observed not only on the margin of oceans but also in lakes. The majority of tsunamis are generated by earthquakes, but other events that displace water such as landslides and volcanic eruptions can also generate tsunamis. These non-earthquake tsunamis occur less frequently than earthquake tsunamis; it is, therefore, very important to find and study geologic evidence for past eruption and submarine landslide triggered tsunami events, as their rare occurrence may lead to risks being underestimated. Geologic investigations of tsunamis have historically relied on earthquake geology. Geophysicists estimate the parameters of vertical coseismic displacement that tsunami modelers use as a tsunami's initial condition. The modelers then let the simulated tsunami run ashore. This approach suffers from the relationship between the earthquake and seafloor displacement, the pertinent parameter in tsunami generation, being equivocal. In recent years, geologic investigations of tsunamis have added sedimentology and micropaleontology, which focus on identifying and interpreting depositional and erosional features of tsunamis. For example, coastal sediment may contain deposits that provide important information on past tsunami events [190, 191]. In some cases, a tsunami is recorded by a single sand layer. Elsewhere, tsunami deposits can consist of complex layers of mud, sand, and boulders, containing abundant stratigraphic evidence for sediment reworking and redeposition. These onshore sediments are geologic evidence for tsunamis and are called ‘tsunami deposits’ (Figs. 26

  14. Development of 3D interactive visual objects using the Scripps Institution of Oceanography's Visualization Center

    Science.gov (United States)

    Kilb, D.; Reif, C.; Peach, C.; Keen, C. S.; Smith, B.; Mellors, R. J.

    2003-12-01

    Within the last year scientists and educators at the Scripps Institution of Oceanography (SIO), the Birch Aquarium at Scripps and San Diego State University have collaborated with education specialists to develop 3D interactive graphic teaching modules for use in the classroom and in teacher workshops at the SIO Visualization center (http://siovizcenter.ucsd.edu). The unique aspect of the SIO Visualization center is that the center is designed around a 120 degree curved Panoram floor-to-ceiling screen (8'6" by 28'4") that immerses viewers in a virtual environment. The center is powered by an SGI 3400 Onyx computer that is more powerful, by an order of magnitude in both speed and memory, than typical base systems currently used for education and outreach presentations. This technology allows us to display multiple 3D data layers (e.g., seismicity, high resolution topography, seismic reflectivity, draped interferometric synthetic aperture radar (InSAR) images, etc.) simultaneously, render them in 3D stereo, and take a virtual flight through the data as dictated on the spot by the user. This system can also render snapshots, images and movies that are too big for other systems, and then export smaller size end-products to more commonly used computer systems. Since early 2002, we have explored various ways to provide informal education and outreach focusing on current research presented directly by the researchers doing the work. The Center currently provides a centerpiece for instruction on southern California seismology for K-12 students and teachers for various Scripps education endeavors. Future plans are in place to use the Visualization Center at Scripps for extended K-12 and college educational programs. In particular, we will be identifying K-12 curriculum needs, assisting with teacher education, developing assessments of our programs and products, producing web-accessible teaching modules and facilitating the development of appropriate teaching tools to be

  15. The challenges of coastal oceanography. Prediction limits and new applications based on Sentinel data

    Science.gov (United States)

    Sánchez-Arcilla, Agustín; Carniel, Sandro; Badger, Merete; Bidlot, Jean; Boye Hansen, Lars; Bolaños-Sanchez, Rodolfo; Cipollini, Paolo; Espino, Manuel; Marcello Miglietta, Mario; Saulter, Andy; Staneva, Joanna

    2017-04-01

    The increasing quality and quantity (resolution in space, coverage in time, combinations of sensors in the Sentinel family) of information provided by Copernicus offer the possibility to analyse and predict coastal meteo-oceanography at an unprecedented level. This is a unique opportunity to develop the Copernicus coastal dimension to tackle the pressures of increasing population and activities. The combination of ocean/atmosphere/land observations from the Sentinel (S) 1/2/3, aligned with the availability of an increasing number of high-resolution numerical simulations (e.g. wave and current fields) in the Copernicus Marine Environment Monitoring Service (CMEMS) catalogue, should allow users to access proven representations of the coastal environment at a new level of understanding (e.g. wave diffraction at coastal "obstacles"), coupling (e.g. incorporating the land discharge into the coastal sea) and reliability for applications (e.g. hazards for coastal navigation). By adding periodic bathymetric up-dating and incorporating new assimilation routines it will be possible to achieve a new level of analysis for coastal seas. In the paper we shall present the CEASELESS project that addresses the multiple scales coexisting in littoral areas by developing new shallow water parameterizations, introducing them into coupled model suites (wind-wave-surge-current-land discharge) and producing new standards for coastal simulations and analyses. This will demonstrate the technical feasibility of an operational coastal service. The set of derived products will be ingested into the users' work routines, proving the economic feasibility of such a coastal extension. The level of conflicts in squeezed coastal zones, expected to grow in the face of climate change, will, thus, benefit directly from CEASELESS, establishing tangible contributions for a wide range of economic sectors. The mutual validation of satellite data, numerical results and in-situ observations will generate

  16. Near resonant bubble acoustic cross-section corrections, including examples from oceanography, volcanology, and biomedical ultrasound.

    Science.gov (United States)

    Ainslie, Michael A; Leighton, Timothy G

    2009-11-01

    The scattering cross-section sigma(s) of a gas bubble of equilibrium radius R(0) in liquid can be written in the form sigma(s)=4piR(0) (2)[(omega(1) (2)omega(2)-1)(2)+delta(2)], where omega is the excitation frequency, omega(1) is the resonance frequency, and delta is a frequency-dependent dimensionless damping coefficient. A persistent discrepancy in the frequency dependence of the contribution to delta from radiation damping, denoted delta(rad), is identified and resolved, as follows. Wildt's [Physics of Sound in the Sea (Washington, DC, 1946), Chap. 28] pioneering derivation predicts a linear dependence of delta(rad) on frequency, a result which Medwin [Ultrasonics 15, 7-13 (1977)] reproduces using a different method. Weston [Underwater Acoustics, NATO Advanced Study Institute Series Vol. II, 55-88 (1967)], using ostensibly the same method as Wildt, predicts the opposite relationship, i.e., that delta(rad) is inversely proportional to frequency. Weston's version of the derivation of the scattering cross-section is shown here to be the correct one, thus resolving the discrepancy. Further, a correction to Weston's model is derived that amounts to a shift in the resonance frequency. A new, corrected, expression for the extinction cross-section is also derived. The magnitudes of the corrections are illustrated using examples from oceanography, volcanology, planetary acoustics, neutron spallation, and biomedical ultrasound. The corrections become significant when the bulk modulus of the gas is not negligible relative to that of the surrounding liquid.

  17. Mineral resources and engineering geology

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, A.

    1985-01-01

    This volume of ''applied geology'' presents an overview of the fields of economic (ore) geology and engineering geology. The first half of the book offers a geologic and geochemical summary of ore forming processes, covering both metallic and fossil fuel resources with an emphasis on their ties to the evolution of the earth's crust. Case studies are given for both continental North America and the circum-Pacific arc-trench system. The second section provides coverage of the basic principles of contemporary engineering geology, specifically in a mobile belt such as the islands of Japan. Case histories are also included.

  18. Surficial geology of Iran (geo2cg)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The geology data set for this map includes arcs, polygons, and labels that outline and describe the general geologic age and type of bedrock of Iran. The geologic...

  19. GEOCHRONOMETRY & ISOTOPE GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    20150416Cao Dadi(State Key Laboratory of Marine Geology,Tongji University,Shanghai200092,China);Cheng Hao Recent Advances in Garnet Lu-Hf Geochronology(Geochimica,ISSN0379-1726,CN44-1398/P,43(2),2014,p.180-195,9illus.,92refs.)Key words:Lu-Hf dating,garnet group Garnets with high Lu/Hf ratios can be used to construct high precise isochrones.The garnet Lu-Hf geochronology has been extensively applied in various types of rocks,especially in metamorphic rocks from the orogens.

  20. GEOCHRONOMETRY & ISOTOPE GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    <正>20140393Liu Chunru(State Key Laboratory of Earthquake Dynamics,Institute of Geology,China Earthquake Administration,Beijing100029,China);Yin Gongming Research Progress of the Resetting Features of Quartz ESR Signal(Advances in Earth Science,ISSN1001-8166,CN62-1091/P,28(1),2013,p.24-30,3illus.,59refs.)Key words:ESR dating Electron Spin Resonance(ESR)has been becoming one of the key methods of Quaternary Geochronology with wide range of dating,

  1. HISTORICAL GEOLOGY & STRATIGRAPHY

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    <正>20091797 Cao Shenghua(Faculty of Earth Science,China University of Geosciences,Wuhan 430074,China);Xiao Xiaolin Renew-Establishment of the Jurassic Mugagangri Groups and Its Geological Significance on the Western Side of the Bangong Co-Nujiang Junction Zone(Acta Sedimentologica Sinica,ISSN1000-0550,CN62-1038/P,26(4),2008,p.559-564,4 illus.,1 table,7 refs.)Key words:Jurassic,Qinghai-Tibetan PlateauMugagangri Groups is a suite of flysch-flyschoid elastic deposits,and is Early-Middle Jurassic abyssal sedimentary,which is widespread in the western side of the Bangong

  2. HISTORICAL GEOLOGY & STRATIGRAPHY

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    <正>20102510 Cai Xiongfei(Faculty of Earth Sciences,China University of Geosciences,Wuhan 430074,China);Wei Qirong New Progress in Research on Stratigraphy of the Middle Eastern Kunlun Orogenic Belt(Resources Survey & Environment,ISSN1671-4814,CN32-1640/N,30(4),2009,p.243-254,5 illus.,3 tables,24 refs.)Key words:stratigraphy,Kunlun MountainsThe middle Eastern Kunlun is a popular area with a great attraction in basic geologic researches of the Kunlun orogenic

  3. HISTORICAL GEOLOGY & STRATIGRAPHY

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    20150369Cai Xiongfei(State Key Laboratory of Biological and Environmental Geology,Faculty of Earth Sciences,China University of Geosciences,Wuhan 430074,China);He Wenjian New Advances in the Study of the Cambrian in Helan Mountains(Resources Survey&Environment;,ISSN1671-4814,CN32-1640/N,35(1),2014,p.12-18,2illus.,4tables,25refs.)Key words:Cambrian,Helan Mountains The Early Cambrian Suyukou Formation of the Helan Mountain is formed of the alluvial fan deposit including mixed sands and gravels with unequigranular texture,the Wudao-

  4. Geologic Mapping of Vesta

    Science.gov (United States)

    Yingst, R. A.; Mest, S. C.; Berman, D. C.; Garry, W. B.; Williams, D. A.; Buczkowski, D.; Jaumann, R.; Pieters, C. M.; De Sanctis, M. C.; Frigeri, A.; Le Corre, L.; Preusker, F.; Raymond, C. A.; Reddy, V.; Russell, C. T.; Roatsch, T.; Schenk, P. M.

    2014-01-01

    We report on a preliminary global geologic map of Vesta, based on data from the Dawn spacecraft's High- Altitude Mapping Orbit (HAMO) and informed by Low-Altitude Mapping Orbit (LAMO) data. This map is part of an iterative mapping effort; the geologic map has been refined with each improvement in resolution. Vesta has a heavily-cratered surface, with large craters evident in numerous locations. The south pole is dominated by an impact structure identified before Dawn's arrival. Two large impact structures have been resolved: the younger, larger Rheasilvia structure, and the older, more degraded Veneneia structure. The surface is also characterized by a system of deep, globe-girdling equatorial troughs and ridges, as well as an older system of troughs and ridges to the north. Troughs and ridges are also evident cutting across, and spiraling arcuately from, the Rheasilvia central mound. However, no volcanic features have been unequivocally identified. Vesta can be divided very broadly into three terrains: heavily-cratered terrain; ridge-and-trough terrain (equatorial and northern); and terrain associated with the Rheasilvia crater. Localized features include bright and dark material and ejecta (some defined specifically by color); lobate deposits; and mass-wasting materials. No obvious volcanic features are evident. Stratigraphy of Vesta's geologic units suggests a history in which formation of a primary crust was followed by the formation of impact craters, including Veneneia and the associated Saturnalia Fossae unit. Formation of Rheasilvia followed, along with associated structural deformation that shaped the Divalia Fossae ridge-and-trough unit at the equator. Subsequent impacts and mass wasting events subdued impact craters, rims and portions of ridge-and-trough sets, and formed slumps and landslides, especially within crater floors and along crater rims and scarps. Subsequent to the formation of Rheasilvia, discontinuous low-albedo deposits formed or were

  5. HISTORICAL GEOLOGY & STRATIGRAPHY

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    <正>20111095 Chen Rong(Institute of Sedimentary Geology,Chengdu University of Technology,Chengdu 610059,China);Li Yong Sequence Stratigraphy of Neogene in the Northern Slope of the Chengning Uplift(Journal of Stratigraphy,ISSN0253-4959,CN32-1187/P,34(2),2010,p.179-186,7 illus.,1 table,9 refs.)Key words:Neogene Period,stratigraphic framework,Huanghua Depression According to the tectonic evolutionary history and stratigraphic and depositional characteristics,and based on drill cores,cutting logs,well logs and high-resolution 3-D seismic data,sequences

  6. Geologic mapping of Vesta

    Science.gov (United States)

    Yingst, R. A.; Mest, S. C.; Berman, D. C.; Garry, W. B.; Williams, D. A.; Buczkowski, D.; Jaumann, R.; Pieters, C. M.; De Sanctis, M. C.; Frigeri, A.; Le Corre, L.; Preusker, F.; Raymond, C. A.; Reddy, V.; Russell, C. T.; Roatsch, T.; Schenk, P. M.

    2014-11-01

    We report on a preliminary global geologic map of Vesta, based on data from the Dawn spacecraft's High-Altitude Mapping Orbit (HAMO) and informed by Low-Altitude Mapping Orbit (LAMO) data. This map is part of an iterative mapping effort; the geologic map has been refined with each improvement in resolution. Vesta has a heavily-cratered surface, with large craters evident in numerous locations. The south pole is dominated by an impact structure identified before Dawn's arrival. Two large impact structures have been resolved: the younger, larger Rheasilvia structure, and the older, more degraded Veneneia structure. The surface is also characterized by a system of deep, globe-girdling equatorial troughs and ridges, as well as an older system of troughs and ridges to the north. Troughs and ridges are also evident cutting across, and spiraling arcuately from, the Rheasilvia central mound. However, no volcanic features have been unequivocally identified. Vesta can be divided very broadly into three terrains: heavily-cratered terrain; ridge-and-trough terrain (equatorial and northern); and terrain associated with the Rheasilvia crater. Localized features include bright and dark material and ejecta (some defined specifically by color); lobate deposits; and mass-wasting materials. No obvious volcanic features are evident. Stratigraphy of Vesta's geologic units suggests a history in which formation of a primary crust was followed by the formation of impact craters, including Veneneia and the associated Saturnalia Fossae unit. Formation of Rheasilvia followed, along with associated structural deformation that shaped the Divalia Fossae ridge-and-trough unit at the equator. Subsequent impacts and mass wasting events subdued impact craters, rims and portions of ridge-and-trough sets, and formed slumps and landslides, especially within crater floors and along crater rims and scarps. Subsequent to the formation of Rheasilvia, discontinuous low-albedo deposits formed or were

  7. GEOCHRONOMETRY & ISOTOPE GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    <正>20110429 Chang Yuan(State Key Laboratory of Marine Geology,Tongji University,Shanghai 200092,China);Xu Changhai(U-Th)/He Dating Method:α-Ejection Influence and Correction(Advances in Earth Science,ISSN1001-8166,CN62-1091/P,25(4),2010,p.418-427,6 illus.,2 tables,53 refs.)Key words:He-He dating,Th-U datingAccording to the development of this technique,the factors which influence the helium dating results a

  8. Geologic environmental study

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chun Soo; Bae, Dae Seok; Kim, Kyung Su; Park, Byung Yoon; Koh, Young Kown; Chun, Kwan Sik; Kim, Jhin Wung

    2000-05-01

    The geoscience research works are focused on the production of geologic basic data accompanying with the technical development of geology and hydrogeologic characterization. The lithology of the Korean peninsula consists of a complex structure of 29 rock types from Archean to Quaternary. The wide distribution of Mesozoic plutonic rock is an important consideration as a potential host rock allowing flexibility of siting. The recent tectonic activities are limited to localized particular area, which can be avoided by excluding in the early stage of siting. Three rock types such as plutonic rocks, crystalline gneisses and massive volcanic rocks were suggested as the preferred host rocks for the further study on HLW disposal system. This report contains grouping of regional faults, and on the distributional characteristics of faults and fractures(zones) in terms of lithological domain and tectonical provinces. The regional groundwater regime can be grouped into 3 regimes by tectonic setting and four groundwater regions based on an altitute. Groundwaters can be grouped by their chemistry and host rocks. The origin of groundwater was proposed by isotope ({sup 1}8O, {sup 2}H, {sup 1}3C, {sup 3}4S, {sup 8}7Sr, {sup 1}5N) studies and the residence time of groundwater was inferred from their tritium contents. Based on the geochemical and isotope characteristics, the geochemical evolutions of each types of groundwater were simulated using SOLVEQ/CHILLER and PHREEQC programs.

  9. Petroleum geology of Tunisia

    Energy Technology Data Exchange (ETDEWEB)

    Burollet, P.F. (CIFEG, Paris (France)); Ferjami, A.B.; Mejri, F. (ETAP, Tunis (Tunisia))

    1990-05-01

    Recent discoveries and important oil shows have proven the existence of hydrocarbons in newly identified depocenters and reservoirs. In general, except for some areas around the producing fields, Tunisia is largely underdrilled. The national company ETAP has decided to release data and to publish a synthesis on the petroleum geology of Tunisia. The geology of Tunisia provides a fine example of the contrast between Alpine folding, which typifies northern Tunisia and the African craton area of the Saharan part. Eastern Tunisia corresponds to an unstable platform forming plains or low hills and extending eastwards to the shallow Pelagian Sea. There are a wide variety of basins: central and northern Tunisia represents a front basin the Saharan Ghadames basin or the Chott trough are sag basins; the Gulf of Gabes was formed as a distension margin the Gulf of Hammamet is a composite basin and several transversal grabens cut across the country, including offshore, and are rift-type basins. All these features are known to be oil prolific throughout the world. Two large fields and many modest-size pools are known in Tunisia. Oil and gas fields in the surrounding countries, namely the Saharan fields of Algeria and Libya the large Bouri field offshore Tripolitania and discoveries in the Italian part of the Straits of Sicily, suggest a corresponding potential in Tunisia. Exposed paleogeographic and structural maps, balanced sections, and examples of fields and traps will support an optimistic evaluation of the future oil exploration in Tunisia.

  10. Terrestrial analogs, planetary geology, and the nature of geological reasoning

    Science.gov (United States)

    Baker, Victor R.

    2014-05-01

    Analogical reasoning is critical to planetary geology, but its role can be misconstrued by those unfamiliar with the practice of that science. The methodological importance of analogy to geology lies in the formulation of genetic hypotheses, an absolutely essential component of geological reasoning that was either ignored or denigrated by most 20th century philosophers of science, who took the theoretical/ experimental methodology of physics to be the sole model for all of scientific inquiry. Following the seminal 19th century work of Grove Karl Gilbert, an early pioneer of planetary geology, it has long been recognized that broad experience with and understanding of terrestrial geological phenomena provide geologists with their most effective resource for the invention of potentially fruitful, working hypotheses. The actions of (1) forming such hypotheses, (2) following their consequences, and (3) testing those consequences comprise integral parts of effective geological practice in regard to the understanding of planetary surfaces. Nevertheless, the logical terminology and philosophical bases for such practice will be unfamiliar to most planetary scientists, both geologists and nongeologists. The invention of geological hypotheses involves both inductive inferences of the type Gilbert termed “empiric classification” and abductive inferences of a logical form made famous by the 19th century American logician Charles Sanders Peirce. The testing and corroboration of geological hypotheses relies less on the correspondence logic of theoretical/ experimental sciences, like physics, and more on the logic of consistency, coherence, and consilience that characterizes the investigative and historical sciences of interpretation exemplified by geology.

  11. Geological history and oceanography of the Indo-Malay Archipelago shape the genetic population structure in the false clown anemonefish (Amphiprion ocellaris).

    Science.gov (United States)

    Timm, Janne; Kochzius, Marc

    2008-09-01

    Like many fishes on coral reefs, the false clown anemonefish, Amphiprion ocellaris, has a life history with two different phases: adults are strongly site attached, whereas larvae are planktonic. Therefore, the larvae have the potential to disperse, but the degree of dispersal potential depends primarily on the period of the larval stage, which is only 8-12 days in A. ocellaris. In this study, we investigated the genetic population structure and gene flow in A. ocellaris across the Indo-Malay Archipelago by analysing a fragment of the mitochondrial control region. Population genetic analysis, using AMOVA, revealed a significant and high overall phi(ST)-value of 0.241 (P < 0.001), clearly showing limited gene flow. Haplotype network analysis detected eight distinct clades corresponding mainly to different geographical areas, which were most probably separated during sea level low stands in the Pleistocene. The distribution of the clades among the different populations indicated slow partial re-mixing mainly in the central region of the archipelago. Major surface currents seem to facilitate larval dispersal, indicated by higher connectivity along major surface currents in the region (e.g. Indonesian Throughflow). Four main groups were found by the hierarchical AMOVA within the archipelago. These different genetic lineages should be managed and protected as separate ornamental fishery stocks and resource contributing to the genetic diversity of the area. Regarding the high diversity and the differentiation among areas within the Indo-Malay Archipelago of A. ocellaris populations, the centre-of-origin theory is supported to be the main mechanism by which the high biodiversity evolved in this area.

  12. Oceanography in Second Life: Use of a Virtual Reality to Enhance Undergraduate Education in Marine Science

    Science.gov (United States)

    Villareal, T. A.; Jarmon, L.; Triggs, R.

    2009-12-01

    Shipboard research is a fundamental part of oceanography, but has numerous legal and practical constraints virtually eliminate it as a regular part of large-enrollment programs in marine science. The cost of a properly equipped research vessel alone can prevent student access. While much can be learned by active exploration of archived data by students, the limitations placed on real oceanographic programs by distance, vessel speed, and time are difficult to reproduce in exercises. Pre-cruise planning and collaboration between investigators are likewise a challenge to incorporate. We have used design students in the College of Liberal Arts to construct a oceanographic expedition in Second Life for use in a marine science course (Fall 2009). Second Life is a highly collaborative environment with a variety of tools that allow users to create their own environment and interact with it. Second LIfe is free, highly portable, and inherently amenable to distance or remote teaching. In our application, the research vessel exists as an moving platform with sampling abilities. Software code queries an external MySQL database that contains information from the World Ocean Atlas for the entire ocean, and returns strings of data from standard depths. Students must plan the cruise track to test hypothesis about the ocean, collaborate with other teams to develop the big picture and use standard oceanographic software (Ocean Data Viewer; ODV) to analyze the data. Access to the entire database in ODV then allows comparison to the actual properties and distributions. The effectiveness of this approach is being evaluated by a pre- and post-class surveys and post semester focus group interviews. Similar surveys of the design students that created the environment noted that use of Second Life created a learning experience that was both more immersive and process oriented than traditional college courses. Initial impressions in the marine science class indicate that the strong social

  13. Transition of R&D into Operations at Fleet Numerical Meteorology and Oceanography Center

    Science.gov (United States)

    Clancy, R. M.

    2006-12-01

    The U.S. Navy's Fleet Numerical Meteorology and Oceanography Center (FNMOC) plays a significant role in the National capability for operational weather and ocean prediction through its operation of sophisticated global and regional meteorological and oceanographic models, extending from the top of the atmosphere to the bottom of the ocean. FNMOC uniquely satisfies the military's requirement for a global operational weather prediction capability based on software certified to DoD Information Assurance standards and operated in a secure classified computer environment protected from outside intrusion by DoD certified firewalls. FNMOC operates around-the-clock, 365 days per year and distributes products to military and civilian users around the world, both ashore and afloat, through a variety of means. FNMOC's customers include all branches of the Department of Defense, other government organizations such as the National Weather Service, private companies, a number of colleges and universities, and the general public. FNMOC employs three primary models, the Navy Operational Global Atmospheric Prediction System (NOGAPS), the Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS), and the WaveWatch III model (WW3), along with a number of specialized models and related applications. NOGAPS is a global weather model, driving nearly all other FNMOC models and applications in some fashion. COAMPS is a high- resolution regional model that has proved to be particularly valuable for forecasting weather and ocean conditions in highly complex coastal areas. WW3 is a state-of-the-art ocean wave model that is employed both globally and regionally in support of a wide variety of naval operations. Other models support and supplement the main models with predictions of ocean thermal structure, ocean currents, sea-ice characteristics, and other data. Fleet Numerical operates at the leading edge of science and technology, and benefits greatly from collocation with its supporting

  14. Designing and Implementing Service Learning Projects in an Introductory Oceanography Course Using the ``8-Block Model''

    Science.gov (United States)

    Laine, E. P.; Field, C.

    2010-12-01

    The Campus Compact for New Hampshire (Gordon, 2003) introduced a practical model for designing service-learning exercises or components for new or existing courses. They divided the design and implementation process into eight concrete areas, the “8-Block Model”. Their goal was to demystify the design process of service learning courses by breaking it down into interconnected components. These components include: project design, community partner relations, the problem statement, building community in the classroom, building student capacity, project management, assessment of learning, and reflection and connections. The project design component of the “8-Block Model” asks that the service performed be consistent with the learning goals of the course. For science courses students carry out their work as a way of learning science and the process of science, not solely for the sake of service. Their work supports the goals of a community partner and the community partner poses research problems for the class in a letter on their letterhead. Linking student work to important problems in the community effectively engages students and encourages them to work at more sophisticated levels than usually seen in introductory science classes. Using team-building techniques, the classroom becomes a safe, secure learning environment that encourages sharing and experimentation. Targeted lectures, labs, and demonstrations build the capacity of students to do their research. Behind the scenes project management ensures student success. Learning is assessed using a variety of tools, including graded classroom presentations, poster sessions, and presentations and reports to community partners. Finally, students reflect upon their work and make connections between their research and its importance to the well being of the community. Over the past 10 years, we have used this approach to design and continually modify an introductory oceanography course for majors and non

  15. Fisheries Oceanography in the Virgin Islands: Preliminary Results from a Collaborative Research Endeavor

    Science.gov (United States)

    Smith, R. H.; Gerard, T. L.; Johns, E. M.; Lamkin, J. T.

    2008-05-01

    economically important species were recovered at the near-shore sites, south of St. Thomas, St. John, and British Virgin Islands and not on the reef /shelf-break sites as expected. Concurrent Lagrangian drifter trajectories and shipboard ADCP measurements showed a high degree of variability in regional surface water flow. Possible transport pathways as related to the spatial distribution of the larvae collected and the physical oceanography observed will be discussed.

  16. From Scientist to Educator: Oceanography in the Formal and Informal Classroom

    Science.gov (United States)

    Richardson, A. H.; Jasnow, M.; Srinivasan, M. S.; Rosmorduc, V.; Blanc, F.

    2002-12-01

    the role of the ocean in sustaining life on Earth. Activities on the back of the poster can be used as supplemental material in a middle school Earth science curriculum, and are suitable for individual instruction and for classroom or group exercises. This poster will be published in both English and French. Educational research indicates that an inquiry-based method of student engagement is an appropriate and effective teaching tool. These posters offer a fun and instructive environment to promote student interest in Earth Science in general and particularly in oceanography.

  17. The ESA SMOS+SOS Project: Oceanography using SMOS for innovative air-sea exchange studies

    Science.gov (United States)

    Banks, Chris; Gommenginger, Christine; Boutin, Jacqueline; Reul, Nicolas; Martin, Matthew; Ash, Ellis; Reverdin, Gilles; Donlon, Craig

    2013-04-01

    We report on the work plan of the SMOS+Surface Ocean Salinity and Synergy (SMOS+SOS) project. SMOS+SOS is funded through the Support to Science Element (STSE) component of the European Space Agency's (ESA) Earth Observation Envelope Programme. The SMOS+SOS consortium consists of four organisations namely the National Oceanography Centre (UK), the LOCEAN/IFREMER/CATDS research team (France), the Met Office (UK) and Satellite Oceanographic Consultants Ltd (UK). The end of the SMOS+SOS project will be marked by a final open workshop most likely hosted by the UK Met Office in September/October 2014. The project is concerned with demonstrating the performance and scientific value of SMOS Sea Surface Salinity (SSS) products through a number of well-defined case studies. The case studies include: Amazon/Orinoco plumes (freshwater outflow); Agulhas and Gulf Stream (strong water mass boundary); Tropical Pacific/Atlantic (strong precipitation regime); sub-tropical North Atlantic (ie SPURS; strong evaporative regime); and Equatorial Pacific (equatorial upwelling). With SMOS measuring the SSS in the top cm of the ocean, validating SMOS against in situ salinity data taken typically at a few meters depth introduces assumptions about the vertical structure of salinity in the upper ocean. To address these issues, the project will examine and quantify discrepancies between SMOS and in situ surface salinity data at various depths in different regions characterised by strong precipitation or evaporation regimes. Equally, data editing and spatio-temporal averaging play a central role in determining the quality, errors and correlations in SMOS SSS data. The project will explore various processing and spatio-temporal averaging choices to define the SMOS SSS products that best address the needs of the oceanographic and data assimilation user community. One key aspect of this project is to determine how one can achieve useful accuracy/uncertainty in SSS without jeopardising SMOS's ability

  18. Coastal ocean research in sub-Saharan Africa: towards operational oceanography using satellites, in situ measurements and numerical models

    Science.gov (United States)

    Shillington, Frank

    Sub-Saharan Africa is greatly influenced by major western boundary currents of the Indian Ocean, Agulhas Current and the Somali Current (for six months of the year), and the major eastern boundary upwelling current systems of the Atlantic Ocean, with their concomitant nu-trient rich upwelling ecosystems which support large fisheries: the Benguela Upwelling System and the Canary Upwelling System. The location of the tip of placecountry-regionSouth Africa is unique in the world oceans, since it is such the only place where a warm western boundary current can interact with a cold upwelling ecosystem. In addition, the Agulhas Current is unique in that it retroflects 80% of its large volume flux back into the placeIndian Ocean. The interocean transport of warm thermocline water from the Indian to the placeAtlantic ocean is of global importance. Satellite observations of temperature, chlorophyll, sea surface height, and wind and waves have elucidated many of these first order processes. Numerical ocean models forced and constrained by satellite measurements are being increasingly used to place operational oceanography on a sound footing. Partnerships with African and northern hemisphere collaborators (e.g. the new Norwegian Nansen-Tutu Centre for Marine Research, PlaceNamePrinceton PlaceTypeUniversity) will enhance operational oceanography around placeAfrica to the benefit of all its inhabitants. All of the above aspects will be discussed, with specific examples of local innovative space borne techniques.

  19. Current and future prospects for the application of systematic theoretical methods to the study of problems in physical oceanography

    Energy Technology Data Exchange (ETDEWEB)

    Constantin, A., E-mail: adrian.constantin@kcl.ac.uk [Department of Mathematics, King' s College London, Strand, London WC2R 2LS (United Kingdom); Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, 1090 Vienna (Austria); Johnson, R.S., E-mail: r.s.johnson@ncl.ac.uk [School of Mathematics & Statistics, Newcastle University, Newcastle upon Tyne NE1 7RU (United Kingdom)

    2016-09-07

    Highlights: • Systematic theoretical methods in studies of equatorial ocean dynamics. • Linear wave-current interactions in stratified flows. • Exact solutions – Kelvin waves, azimuthal non-uniform currents. • Three-dimensional nonlinear currents. • Hamiltonian formulation for the governing equations and for structure-preserving/enhancing approximations. - Abstract: This essay is a commentary on the pivotal role of systematic theoretical methods in physical oceanography. At some level, there will always be a conflict between theory and experiment/data collection: Which is pre-eminent? Which should come first? This issue appears to be particularly marked in physical oceanography, to the extreme detriment of the development of the subject. It is our contention that the classical theory of fluids, coupled with methods from the theory of differential equations, can play a significant role in carrying the subject, and our understanding, forward. We outline the philosophy behind a systematic theoretical approach, highlighting some aspects of equatorial ocean dynamics where these methods have already been successful, paving the way for much more in the future and leading, we expect, to the better understanding of this and many other types of ocean flow. We believe that the ideas described here promise to reveal a rich and beautiful dynamical structure.

  20. Geologic map of Io

    Science.gov (United States)

    Williams, David A.; Keszthelyi, Laszlo P.; Crown, David A.; Yff, Jessica A.; Jaeger, Windy L.; Schenk, Paul M.; Geissler, Paul E.; Becker, Tammy L.

    2011-01-01

    Io, discovered by Galileo Galilei on January 7–13, 1610, is the innermost of the four Galilean satellites of the planet Jupiter (Galilei, 1610). It is the most volcanically active object in the Solar System, as recognized by observations from six National Aeronautics and Space Administration (NASA) spacecraft: Voyager 1 (March 1979), Voyager 2 (July 1979), Hubble Space Telescope (1990–present), Galileo (1996–2001), Cassini (December 2000), and New Horizons (February 2007). The lack of impact craters on Io in any spacecraft images at any resolution attests to the high resurfacing rate (1 cm/yr) and the dominant role of active volcanism in shaping its surface. High-temperature hot spots detected by the Galileo Solid-State Imager (SSI), Near-Infrared Mapping Spectrometer (NIMS), and Photopolarimeter-Radiometer (PPR) usually correlate with darkest materials on the surface, suggesting active volcanism. The Voyager flybys obtained complete coverage of Io's subjovian hemisphere at 500 m/pixel to 2 km/pixel, and most of the rest of the satellite at 5–20 km/pixel. Repeated Galileo flybys obtained complementary coverage of Io's antijovian hemisphere at 5 m/pixel to 1.4 km/pixel. Thus, the Voyager and Galileo data sets were merged to enable the characterization of the whole surface of the satellite at a consistent resolution. The United States Geological Survey (USGS) produced a set of four global mosaics of Io in visible wavelengths at a spatial resolution of 1 km/pixel, released in February 2006, which we have used as base maps for this new global geologic map. Much has been learned about Io's volcanism, tectonics, degradation, and interior since the Voyager flybys, primarily during and following the Galileo Mission at Jupiter (December 1995–September 2003), and the results have been summarized in books published after the end of the Galileo Mission. Our mapping incorporates this new understanding to assist in map unit definition and to provide a global synthesis

  1. The social oceanography of top oceanic predators and the decline of sharks: A call for a new field

    Science.gov (United States)

    Jacques, Peter J.

    2010-07-01

    The decline of top oceanic predators (TOPs), such as great sharks, and worldwide erosion of the marine food web is among the most important functional changes in marine systems. Yet, even though human pressures on sharks are one of the most important factors in the collapse of TOPs, the social science of shark fishing has not kept pace with the biophysical science. Such a gap highlights the need for a marine social science, and this paper uses the case of sharks to illustrate some advances that a coherent marine social science community could bring to science and sustainability, and calls for the development of this new field. Social oceanography is proposed as a “discursive space” that will allow multiple social science and humanities disciplines to holistically study and bring insight to a diverse but essential community. Such a community will not provide answers for the physical sciences, but it will add a new understanding of the contingencies that riddle social behavior that ultimately interact with marine systems. Such a field should reflect the broad and diverse approaches, epistemologies, philosophies of science and foci that are in the human disciplines themselves. Social oceanography would complete the triumvirate of biological and physical oceanography where human systems profoundly impact these other areas. This paper tests the theory that institutional rules are contingent on social priorities and paradigms. I used content analysis of all available (1995-2006) State of the World Fisheries and Aquaculture (SOFIA) reports from the United Nations Food and Agricultural Organization (FAO) to measure the symbolic behavior-i.e., what they say-as an indication of the value of sharks in world fisheries. Similar tests were also performed for marine journals and the Convention on Migratory Species of Wild Animals to corroborate these findings. Then, I present an institutional analysis of all international capacity building and regulatory institutions as they

  2. Geology of Europa

    Science.gov (United States)

    Greeley, R.; Chyba, C.; Head, J. W.; McCord, T.; McKinnon, W. B.; Pappalardo, R. T.

    2004-01-01

    Europa is a rocky object of radius 1565 km (slightly smaller than Earth s moon) and has an outer shell of water composition estimated to be of order 100 km thick, the surface of which is frozen. The total volume of water is about 3 x 10(exp 9) cubic kilometers, or twice the amount of water on Earth. Moreover, like its neighbor Io, Europa experiences internal heating generated from tidal flexing during its eccentric orbit around Jupiter. This raises the possibility that some of the water beneath the icy crust is liquid. The proportion of rock to ice, the generation of internal heat, and the possibility of liquid water make Europa unique in the Solar System. In this chapter, we outline the sources of data available for Europa (with a focus on the Galileo mission), review previous and on-going research on its surface geology, discuss the astrobiological potential of Europa, and consider plans for future exploration.

  3. Geologic mapping of Europa

    Science.gov (United States)

    Greeley, R.; Figueredo, P.H.; Williams, D.A.; Chuang, F.C.; Klemaszewski, J.E.; Kadel, S.D.; Prockter, L.M.; Pappalardo, R.T.; Head, J. W.; Collins, G.C.; Spaun, N.A.; Sullivan, R.J.; Moore, Johnnie N.; Senske, D.A.; Tufts, B.R.; Johnson, T.V.; Belton, M.J.S.; Tanaka, K.L.

    2000-01-01

    Galileo data enable the major geological units, structures, and surface features to be identified on Europa. These include five primary units (plains, chaos, band, ridge, and crater materials) and their subunits, along with various tectonic structures such as faults. Plains units are the most widespread. Ridged plains material spans a wide range of geological ages, including the oldest recognizable features on Europa, and appears to represent a style of tectonic resurfacing, rather than cryovolcanism. Smooth plains material typically embays other terrains and units, possibly as a type of fluid emplacement, and is among the youngest material units observed. At global scales, plains are typically mapped as undifferentiated plains material, although in some areas differences can be discerned in the near infrared which might be related to differences in ice grain size. Chaos material is composed of plains and other preexisting materials that have been severely disrupted by inferred internal activity; chaos is characterized by blocks of icy material set in a hummocky matrix. Band material is arrayed in linear, curvilinear, wedge-shaped, or cuspate zones with contrasting albedo and surface textures with respect to the surrounding terrain. Bilateral symmetry observed in some bands and the relationships with the surrounding units suggest that band material forms by the lithosphere fracturing, spreading apart, and infilling with material derived from the subsurface. Ridge material is mapped as a unit on local and some regional maps but shown with symbols at global scales. Ridge material includes single ridges, doublet ridges, and ridge complexes. Ridge materials are considered to represent tectonic processes, possibly accompanied by the extrusion or intrusion of subsurface materials, such as diapirs. The tectonic processes might be related to tidal flexing of the icy lithosphere on diurnal or longer timescales. Crater materials include various interior (smooth central

  4. Geology Exchange Program

    Science.gov (United States)

    Because geology professors cannot bring ore deposits from around the globe into their classrooms, the next best thing is to take their students to the deposits, according to David Norman, an associate professor of geochemistry at New Mexico Tech and Angus Moore of the Royal School of Mines. They organized a new exchange program between the New Mexico Institute of Mining and Technology in Socorro, N.M., and the Royal School of Mines in London, England. In May, 14 students from England toured deposits in New Mexico, Arizona, Utah, and Colorado; in the photograph, Norman (on the right) describes a rock from a New Mexico ore deposit to some of the visitors from England. In early June a contingency from New Mexico Tech began studying deposits in England, Spain, and Portugal. Norman and Moore say that the exchange program may be expanded next year.

  5. Geology of National Parks

    Science.gov (United States)

    Stoffer, Philip W.

    2008-01-01

    This is a set of two sheets of 3D images showing geologic features of many National Parks. Red-and-cyan viewing glasses are need to see the three-dimensional effect. A search on the World Wide Web will yield many sites about anaglyphs and where to get 3D glasses. Red-blue glasses will do but red-cyan glasses are a little better. This publication features a photo quiz game: Name that park! where you can explore, interpret, and identify selected park landscapes. Can you identify landscape features in the images? Can you explain processes that may have helped form the landscape features? You can get the answers online.

  6. Geology orbiter comparison study

    Science.gov (United States)

    Cutts, J. A. J.; Blasius, K. R.; Davis, D. R.; Pang, K. D.; Shreve, D. C.

    1977-01-01

    Instrument requirements of planetary geology orbiters were examined with the objective of determining the feasibility of applying standard instrument designs to a host of terrestrial targets. Within the basic discipline area of geochemistry, gamma-ray, X-ray fluorescence, and atomic spectroscopy remote sensing techniques were considered. Within the discipline area of geophysics, the complementary techniques of gravimetry and radar were studied. Experiments using these techniques were analyzed for comparison at the Moon, Mercury, Mars and the Galilean satellites. On the basis of these comparative assessments, the adaptability of each sensing technique was judged as a basic technique for many targets, as a single instrument applied to many targets, as a single instrument used in different mission modes, and as an instrument capability for nongeoscience objectives.

  7. Geology of Europa

    Science.gov (United States)

    Greeley, R.; Chyba, C.; Head, J. W.; McCord, T.; McKinnon, W. B.; Pappalardo, R. T.

    2004-01-01

    Europa is a rocky object of radius 1565 km (slightly smaller than Earth s moon) and has an outer shell of water composition estimated to be of order 100 km thick, the surface of which is frozen. The total volume of water is about 3 x 10(exp 9) cubic kilometers, or twice the amount of water on Earth. Moreover, like its neighbor Io, Europa experiences internal heating generated from tidal flexing during its eccentric orbit around Jupiter. This raises the possibility that some of the water beneath the icy crust is liquid. The proportion of rock to ice, the generation of internal heat, and the possibility of liquid water make Europa unique in the Solar System. In this chapter, we outline the sources of data available for Europa (with a focus on the Galileo mission), review previous and on-going research on its surface geology, discuss the astrobiological potential of Europa, and consider plans for future exploration.

  8. Radon as geological tracer

    Energy Technology Data Exchange (ETDEWEB)

    Lacerda, T.; Anjos, R.M. [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil). Inst. de Fisica; Valladares, D.L.; Rizzotto, M.; Velasco, H.; Ayub, J. Juri [Universidad Nacional de San Luis (Argentina). Inst. de Matematica Aplicada San Luis (IMASL); Silva, A.A.R. da; Yoshimura, E.M. [Universidade de Sao Paulo (IF/USP), SP (Brazil). Inst. de Fisica

    2012-07-01

    Full text: This work presents measurements of {sup 222}Rn levels performed in La Carolina gold mine and Los Condores tungsten mine at the province of San Luis, Argentina, today used for tourist visitation, and can evaluate the potential use of such radioactive noble gas as tracer or marker for geological processes in underground environments. By concentrations of {sup 40}K, {sup 232}Th and {sup 23}'8U were also measured in the walls of tunnels were determined the rocks mineral composition, what indicated that the mines have the same composition. In this sense, we used nuclear trace plastic detectors CR-39, gamma spectrometry of rock samples and Geiger-Muller (GM) monitors The patterns of radon gas transportation processes revealed that La Carolina could be interpreted through a model based on a radioactive gas confined into a single entrance tube, with constant cross section and air velocity. Los Condores, which has a second main entrance, could be interpreted through a model based on a radioactive gas confined into a two entrance tube, allowing a chimney effect for air circulation. The results showed the high potential of using {sup 222}Rn as a geological tracer. In what concerns the occupational hazard, in summer (time of more intense tourist activity in the mine) La Carolina presented a mean concentration of the radioactive noble gas that exceeds in four times the action level of 1,5 kBq m{sup -3} recommended by the International Commission of Radiological Protection (ICRP). The chimney effect shows the low mean concentration of radon in Los Condores. (author)

  9. Geology of Kilauea volcano

    Energy Technology Data Exchange (ETDEWEB)

    Moore, R.B. (Geological Survey, Denver, CO (United States). Federal Center); Trusdell, F.A. (Geological Survey, Hawaii National Park, HI (United States). Hawaiian Volcano Observatory)

    1993-08-01

    This paper summarizes studies of the structure, stratigraphy, petrology, drill holes, eruption frequency, and volcanic and seismic hazards of Kilauea volcano. All the volcano is discussed, but the focus is on its lower east rift zone (LERZ) because active exploration for geothermal energy is concentrated in that area. Kilauea probably has several separate hydrothermal-convection systems that develop in response to the dynamic behavior of the volcano and the influx of abundant meteoric water. Important features of some of these hydrothermal-convection systems are known through studies of surface geology and drill holes. Observations of eruptions during the past two centuries, detailed geologic mapping, radiocarbon dating, and paleomagnetic secular-variation studies indicate that Kilauea has erupted frequently from its summit and two radial rift zones during Quaternary time. Petrologic studies have established that Kilauea erupts only tholeiitic basalt. Extensive ash deposits at Kilauea's summit and on its LERZ record locally violent, but temporary, disruptions of local hydrothermal-convection systems during the interaction of water or steam with magma. Recent drill holes on the LERZ provide data on the temperatures of the hydrothermal-convection systems, intensity of dike intrusion, porosity and permeability, and an increasing amount of hydrothermal alteration with depth. The prehistoric and historic record of volcanic and seismic activity indicates that magma will continue to be supplied to deep and shallow reservoirs beneath Kilauea's summit and rift zones and that the volcano will be affected by eruptions and earthquakes for many thousands of years. 71 refs., 2 figs.

  10. Geologic Framework Model (GFM2000)

    Energy Technology Data Exchange (ETDEWEB)

    T. Vogt

    2004-08-26

    The purpose of this report is to document the geologic framework model, version GFM2000 with regard to input data, modeling methods, assumptions, uncertainties, limitations, and validation of the model results, and the differences between GFM2000 and previous versions. The version number of this model reflects the year during which the model was constructed. This model supersedes the previous model version, documented in Geologic Framework Model (GFM 3.1) (CRWMS M&O 2000 [DIRS 138860]). The geologic framework model represents a three-dimensional interpretation of the geology surrounding the location of the monitored geologic repository for spent nuclear fuel and high-level radioactive waste at Yucca Mountain. The geologic framework model encompasses and is limited to an area of 65 square miles (168 square kilometers) and a volume of 185 cubic miles (771 cubic kilometers). The boundaries of the geologic framework model (shown in Figure 1-1) were chosen to encompass the exploratory boreholes and to provide a geologic framework over the area of interest for hydrologic flow and radionuclide transport modeling through the unsaturated zone (UZ). The upper surface of the model is made up of the surface topography and the depth of the model is constrained by the inferred depth of the Tertiary-Paleozoic unconformity. The geologic framework model was constructed from geologic map and borehole data. Additional information from measured stratigraphic sections, gravity profiles, and seismic profiles was also considered. The intended use of the geologic framework model is to provide a geologic framework over the area of interest consistent with the level of detailed needed for hydrologic flow and radionuclide transport modeling through the UZ and for repository design. The model is limited by the availability of data and relative amount of geologic complexity found in an area. The geologic framework model is inherently limited by scale and content. The grid spacing used in the

  11. Synthetic geology - Exploring the "what if?" in geology

    Science.gov (United States)

    Klump, J. F.; Robertson, J.

    2015-12-01

    The spatial and temporal extent of geological phenomena makes experiments in geology difficult to conduct, if not entirely impossible and collection of data is laborious and expensive - so expensive that most of the time we cannot test a hypothesis. The aim, in many cases, is to gather enough data to build a predictive geological model. Even in a mine, where data are abundant, a model remains incomplete because the information at the level of a blasting block is two orders of magnitude larger than the sample from a drill core, and we have to take measurement errors into account. So, what confidence can we have in a model based on sparse data, uncertainties and measurement error? Synthetic geology does not attempt to model the real world in terms of geological processes with all their uncertainties, rather it offers an artificial geological data source with fully known properties. On the basis of this artificial geology, we can simulate geological sampling by established or future technologies to study the resulting dataset. Conducting these experiments in silico removes the constraints of testing in the field or in production, and provides us with a known ground-truth against which the steps in a data analysis and integration workflow can be validated.Real-time simulation of data sources can be used to investigate crucial questions such as the potential information gain from future sensing capabilities, or from new sampling strategies, or the combination of both, and it enables us to test many "what if?" questions, both in geology and in data engineering. What would we be able to see if we could obtain data at higher resolution? How would real-time data analysis change sampling strategies? Does our data infrastructure handle many new real-time data streams? What feature engineering can be deducted for machine learning approaches? By providing a 'data sandbox' able to scale to realistic geological scenarios we hope to start answering some of these questions.

  12. Geology, Bedrock - BEDROCK_GEOLOGY_RGM_250K_IN: Bedrock geology of Indiana, from the Regional Geologic Map Series of the Indiana Geological Survey (Indiana Geological Survey, 1:250,000, Polygon Shapefile)

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — BEDROCK_GEOL_RGM_IN is a polygon shapefile that shows the bedrock geology of the state of Indiana, produced from the Indiana Geological Survey Regional Geologic Map...

  13. Creationism, Uniformitarianism, Geology and Science.

    Science.gov (United States)

    Shea, James H.

    1983-01-01

    Points out that the most basic of creationist attacks of geology, their claim that uniformitarianism is an unreliable basis for interpreting the past, fail because the uniformitarianism they describe is no longer a part of geology. Indicates that modern uniformitarianism is merely the philosophical principle of simplicity. (Author/JN)

  14. The Geophysical Revolution in Geology.

    Science.gov (United States)

    Smith, Peter J.

    1980-01-01

    Discussed is the physicists' impact on the revolution in the earth sciences particularly involving the overthrow of the fixist notions in geology. Topics discussed include the mobile earth, the route to plate tectonics, radiometric dating, the earth's magnetic field, ocean floor spreading plate boundaries, infiltration of physics into geology and…

  15. On the Geologic Time Scale

    NARCIS (Netherlands)

    Gradstein, F.M.; Ogg, J.G.; Hilgen, F.J.

    2012-01-01

    This report summarizes the international divisions and ages in the Geologic Time Scale, published in 2012 (GTS2012). Since 2004, when GTS2004 was detailed, major developments have taken place that directly bear and have considerable impact on the intricate science of geologic time scaling. Precam br

  16. CMEMS (Copernicus Marine Environment Monitoring Service) In Situ Thematic Assembly Centre: A service for operational Oceanography

    Science.gov (United States)

    Manzano Muñoz, Fernando; Pouliquen, Sylvie; Petit de la Villeon, Loic; Carval, Thierry; Loubrieu, Thomas; Wedhe, Henning; Sjur Ringheim, Lid; Hammarklint, Thomas; Tamm, Susanne; De Alfonso, Marta; Perivoliotis, Leonidas; Chalkiopoulos, Antonis; Marinova, Veselka; Tintore, Joaquin; Troupin, Charles

    2016-04-01

    Copernicus, previously known as GMES (Global Monitoring for Environment and Security), is the European Programme for the establishment of a European capacity for Earth Observation and Monitoring. Copernicus aims to provide a sustainable service for Ocean Monitoring and Forecasting validated and commissioned by users. From May 2015, the Copernicus Marine Environment Monitoring Service (CMEMS) is working on an operational mode through a contract with services engagement (result is regular data provision). Within CMEMS, the In Situ Thematic Assembly Centre (INSTAC) distributed service integrates in situ data from different sources for operational oceanography needs. CMEMS INSTAC is collecting and carrying out quality control in a homogeneous manner on data from providers outside Copernicus (national and international networks), to fit the needs of internal and external users. CMEMS INSTAC has been organized in 7 regional Dissemination Units (DUs) to rely on the EuroGOOS ROOSes. Each DU aggregates data and metadata provided by a series of Production Units (PUs) acting as an interface for providers. Homogeneity and standardization are key features to ensure coherent and efficient service. All DUs provide data in the OceanSITES NetCDF format 1.2 (based on NetCDF 3.6), which is CF compliant, relies on SeaDataNet vocabularies and is able to handle profile and time-series measurements. All the products, both near real-time (NRT) and multi-year (REP), are available online for every CMEMS registered user through an FTP service. On top of the FTP service, INSTAC products are available through Oceanotron, an open-source data server dedicated to marine observations dissemination. It provides services such as aggregation on spatio-temporal coordinates and observed parameters, and subsetting on observed parameters and metadata. The accuracy of the data is checked on various levels. Quality control procedures are applied for the validity of the data and correctness tests for the

  17. The Geologic Nitrogen Cycle

    Science.gov (United States)

    Johnson, B. W.; Goldblatt, C.

    2013-12-01

    N2 is the dominant gas in Earth's atmosphere, and has been so through the majority of the planet's history. Originally thought to only be cycled in significant amounts through the biosphere, it is becoming increasingly clear that a large degree of geologic cycling can occur as well. N is present in crustal rocks at 10s to 100s of ppm and in the mantle at 1s to perhaps 10s of ppm. In light of new data, we present an Earth-system perspective of the modern N cycle, an updated N budget for the silicate Earth, and venture to explain the evolution of the N cycle over time. In an fashion similar to C, N has a fast, biologically mediated cycle and a slower cycle driven by plate tectonics. Bacteria fix N2 from the atmosphere into bioavailable forms. N is then cycled through the food chain, either by direct consumption of N-fixing bacteria, as NH4+ (the primary waste form), or NO3- (the most common inorganic species in the modern ocean). Some organic material settles as sediment on the ocean floor. In anoxic sediments, NH4+ dominates; due to similar ionic radii, it can readily substitute for K+ in mineral lattices, both in sedimentary rocks and in oceanic lithosphere. Once it enters a subduction zone, N may either be volatilized and returned to the atmosphere at arc volcanoes as N2 or N2O, sequestered into intrusive igneous rocks (as NH4+?), or subducted deep into the mantle, likely as NH4+. Mounting evidence indicates that a significant amount of N may be sequestered into the solid Earth, where it may remain for long periods (100s m.y.) before being returned to the atmosphere/biosphere by volcanism or weathering. The magnitude fluxes into the solid Earth and size of geologic N reservoirs are poorly constrained. The size of the N reservoirs contained in the solid Earth directly affects the evolution of Earth's atmosphere. It is possible that N now sequestered in the solid Earth was once in the atmosphere, which would have resulted in a higher atmospheric pressure, and

  18. Geology of the Dolomites

    Institute of Scientific and Technical Information of China (English)

    AlfonsoBosellini; PieroGianolla; MarcoStefani

    2003-01-01

    The Dolomites region is a spectacularly exposed portion of the Southern Alps, a northern Italian chain derived from the comparatively gentle deformation of the Tethyan passive continental margin of Adria. The regionhad an active Permo-Jurassic tectono-magmatic evolu-tion, leading from Permian magmatism, through a Mid-die Triassic episode offast subsidence and volcanism, to the Jurassic oceanic break-up. Although the sedimentary succession ranges in age from Middle Permian to Creta-ceous, the geological landscape is largely dominated by the majestic Triassic carbonates, making the area a clas-sical one for the early Mesozoic stratigraphy. Particu-larly noteworthy are the Anisian to Carnian carbonate platforms, recording an evolution from regional muddy banks to isolated high-relief builduos. The hlline of the various basins and the development of a last generation of regional peritidal platform followed. The carbonate platforms of the Dolomites bear witness to a remarkable set of changes in the carbonate production and to signif-icant palaeoclimatic fluctuations,from arid to moist con-difions and vice versa; a great range of margin and slope depositional styles is therefore recorded. Alpine tectonic shortening strongly affected the area, with a first Eocenede formation, followed by later Neogene overthrusting and strike-slip movements.

  19. Geological disposal system development

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Chul Hyung; Kuh, J. E.; Kim, S. K. and others

    2000-04-01

    Spent fuel inventories to be disposed of finally and design base spent fuel were determined. Technical and safety criteria for a geological repository system in Korea were established. Based on the properties of spent PWR and CANDU fuels, seven repository alternatives were developed and the most promising repository option was selected by the pair-wise comparison method from the technology point of view. With this option preliminary conceptual design studies were carried out. Several module, e.g., gap module, congruent release module were developed for the overall assessment code MASCOT-K. The prominent overseas databases such as OECD/NEA FEP list were are fully reviewed and then screened to identify the feasible ones to reflect the Korean geo-hydrological conditions. In addition to this the well known scenario development methods such as PID, RES were reviewed. To confirm the radiological safety of the proposed KAERI repository concept the preliminary PA was pursued. Thermo-hydro-mechanical analysis for the near field of repository were performed to verify thermal and mechanical stability for KAERI repository system. The requirements of buffer material were analyzed, and based on the results, the quantitative functional criteria for buffer material were established. The hydraulic and swelling property, mechanical properties, and thermal conductivity, the organic carbon content, and the evolution of pore water chemistry were investigated. Based on the results, the candidate buffer material was selected.

  20. Map Service Showing Geology, Oil and Gas Fields, and Geological Provinces of Iran

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The geology data set for this map includes arcs, polygons, and labels that outline and describe the general geologic age and type of bedrock of Iran. The geologic...

  1. Structural Geology of the Mosier Creek Basin

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — A surficial and structural geologic map (SIR-2012-5002, fig. 2) was compiled to aid in the building of the three-dimensional geologic model. The map covers 327...

  2. Geologic Provinces of the Arctic, 2000 (prvarcst)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This coverage includes arcs, polygons and polygon labels that describe Arctic portion of the U.S. Geological Survey defined geologic provinces of the World in 2000.

  3. Surficial Geology of the Mosier Creek Basin

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — A surficial and structural geologic map (SIR-2012-5002, fig. 2) was compiled to aid in the building of the three-dimensional geologic model. The map covers 327...

  4. Geologic Hazards Science Center GIS Server

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The USGS Geologic Hazards Science Center (GHSC) in Golden, CO maintains a GIS server with services pertaining to various geologic hazard disciplines involving...

  5. A geological survey in transition

    Institute of Scientific and Technical Information of China (English)

    PeterM.Allen; BernardELeake

    2004-01-01

    This is an account of the changes in funding, administration, and management of the British Geological Survey (BGS), the oldest government-funded geological survey in the world, from the early 1980s to 2000. It will interest students of public administration, historians of science and geological surveys, and those who have followed the convoluted recent history of BGS. Peter Allen has rendered a most valuable service in documenting and describing as an insider (he only recently retired from a position as Assistant Director) the struggles to maintain the Survey and its prime role of discovering,

  6. ECONOMIC GEOLOGY (1)METALS DEPOSITS

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>20082280 An Fang(School of Earth and Space Sciences,Peking University,Beijing 100871,China);Zhu Yongfeng Studies on Geology and Geochemistry of Alteration- Type Ore in Hatu Gold Deposit(Western Junggar),Xinjiang,NW China(Mineral Deposits,ISSN0258—7106,CN11—1965/ P,26(6),2007,p.621—633,7 illus.,2 tables,48 refs.,with English abstract) Key words:gold deposits,Junggar Basin 20082281 An Guobao(No.212 Geological Party,Gansu Bureau of Nuclear Geology,

  7. Paleoceanographic insights on recent oxygen minimum zone expansion: lessons for modern oceanography.

    Directory of Open Access Journals (Sweden)

    Sarah E Moffitt

    Full Text Available Climate-driven Oxygen Minimum Zone (OMZ expansions in the geologic record provide an opportunity to characterize the spatial and temporal scales of OMZ change. Here we investigate OMZ expansion through the global-scale warming event of the most recent deglaciation (18-11 ka, an event with clear relevance to understanding modern anthropogenic climate change. Deglacial marine sediment records were compiled to quantify the vertical extent, intensity, surface area and volume impingements of hypoxic waters upon continental margins. By integrating sediment records (183-2,309 meters below sea level; mbsl containing one or more geochemical, sedimentary or microfossil oxygenation proxies integrated with analyses of eustatic sea level rise, we reconstruct the timing, depth and intensity of seafloor hypoxia. The maximum vertical OMZ extent during the deglaciation was variable by region: Subarctic Pacific (~600-2,900 mbsl, California Current (~330-1,500 mbsl, Mexico Margin (~330-830 mbsl, and the Humboldt Current and Equatorial Pacific (~110-3,100 mbsl. The timing of OMZ expansion is regionally coherent but not globally synchronous. Subarctic Pacific and California Current continental margins exhibit tight correlation to the oscillations of Northern Hemisphere deglacial events (Termination IA, Bølling-Allerød, Younger Dryas and Termination IB. Southern regions (Mexico Margin and the Equatorial Pacific and Humboldt Current exhibit hypoxia expansion prior to Termination IA (~14.7 ka, and no regional oxygenation oscillations. Our analyses provide new evidence for the geographically and vertically extensive expansion of OMZs, and the extreme compression of upper-ocean oxygenated ecosystems during the geologically recent deglaciation.

  8. Paleoceanographic insights on recent oxygen minimum zone expansion: lessons for modern oceanography.

    Science.gov (United States)

    Moffitt, Sarah E; Moffitt, Russell A; Sauthoff, Wilson; Davis, Catherine V; Hewett, Kathryn; Hill, Tessa M

    2015-01-01

    Climate-driven Oxygen Minimum Zone (OMZ) expansions in the geologic record provide an opportunity to characterize the spatial and temporal scales of OMZ change. Here we investigate OMZ expansion through the global-scale warming event of the most recent deglaciation (18-11 ka), an event with clear relevance to understanding modern anthropogenic climate change. Deglacial marine sediment records were compiled to quantify the vertical extent, intensity, surface area and volume impingements of hypoxic waters upon continental margins. By integrating sediment records (183-2,309 meters below sea level; mbsl) containing one or more geochemical, sedimentary or microfossil oxygenation proxies integrated with analyses of eustatic sea level rise, we reconstruct the timing, depth and intensity of seafloor hypoxia. The maximum vertical OMZ extent during the deglaciation was variable by region: Subarctic Pacific (~600-2,900 mbsl), California Current (~330-1,500 mbsl), Mexico Margin (~330-830 mbsl), and the Humboldt Current and Equatorial Pacific (~110-3,100 mbsl). The timing of OMZ expansion is regionally coherent but not globally synchronous. Subarctic Pacific and California Current continental margins exhibit tight correlation to the oscillations of Northern Hemisphere deglacial events (Termination IA, Bølling-Allerød, Younger Dryas and Termination IB). Southern regions (Mexico Margin and the Equatorial Pacific and Humboldt Current) exhibit hypoxia expansion prior to Termination IA (~14.7 ka), and no regional oxygenation oscillations. Our analyses provide new evidence for the geographically and vertically extensive expansion of OMZs, and the extreme compression of upper-ocean oxygenated ecosystems during the geologically recent deglaciation.

  9. Planetary Geologic Mapping Handbook - 2009

    Science.gov (United States)

    Tanaka, K. L.; Skinner, J. A.; Hare, T. M.

    2009-01-01

    Geologic maps present, in an historical context, fundamental syntheses of interpretations of the materials, landforms, structures, and processes that characterize planetary surfaces and shallow subsurfaces (e.g., Varnes, 1974). Such maps also provide a contextual framework for summarizing and evaluating thematic research for a given region or body. In planetary exploration, for example, geologic maps are used for specialized investigations such as targeting regions of interest for data collection and for characterizing sites for landed missions. Whereas most modern terrestrial geologic maps are constructed from regional views provided by remote sensing data and supplemented in detail by field-based observations and measurements, planetary maps have been largely based on analyses of orbital photography. For planetary bodies in particular, geologic maps commonly represent a snapshot of a surface, because they are based on available information at a time when new data are still being acquired. Thus the field of planetary geologic mapping has been evolving rapidly to embrace the use of new data and modern technology and to accommodate the growing needs of planetary exploration. Planetary geologic maps have been published by the U.S. Geological Survey (USGS) since 1962 (Hackman, 1962). Over this time, numerous maps of several planetary bodies have been prepared at a variety of scales and projections using the best available image and topographic bases. Early geologic map bases commonly consisted of hand-mosaicked photographs or airbrushed shaded-relief views and geologic linework was manually drafted using mylar bases and ink drafting pens. Map publishing required a tedious process of scribing, color peel-coat preparation, typesetting, and photo-laboratory work. Beginning in the 1990s, inexpensive computing, display capability and user-friendly illustration software allowed maps to be drawn using digital tools rather than pen and ink, and mylar bases became obsolete

  10. U.S. Geological Survey

    Science.gov (United States)

    ... Officials Congressional Budget Opportunities Doing Business Emergency Management U.S. Geological Survey Magnitude 7.8 Earthquake in New ... notifications, and learn about hazards and history of U.S. volcanoes. View Alerts Landslides Landslides Learn about landslides ...

  11. Terrestrial and Lunar Geological Terminology

    Science.gov (United States)

    Schrader, Christian

    2009-01-01

    This section is largely a compilation of defining geological terms concepts. Broader topics, such as the ramifications for simulant design and in situ resource utilization, are included as necessary for context.

  12. NCEI Marine Geology Data Archive

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Marine Geologic data compilations and reports in the NCEI archive are from academic and government sources around the world. Over ten terabytes of analyses,...

  13. Umpqua River Oregon Geologic Floodplain

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Umpqua River drains 12,103 square kilometers (4,673 square miles) in southwest Oregon before flowing into the Pacific Ocean at Winchester Bay near the city of...

  14. Gulf Coast Geology (GCG) Online

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — A large percentage of the present and future energy resources of the United States reside in the Gulf of Mexico Basin, one of the major hydrocarbon producing areas...

  15. Bedrock geologic map of Vermont

    Science.gov (United States)

    Ratcliffe, Nicholas M.; Stanley, Rolfe S.; Gale, Marjorie H.; Thompson, Peter J.; Walsh, Gregory J.; With contributions by Hatch, Norman L.; Rankin, Douglas W.; Doolan, Barry L.; Kim, Jonathan; Mehrtens, Charlotte J.; Aleinikoff, John N.; McHone, J. Gregory; Cartography by Masonic, Linda M.

    2011-01-01

    The Bedrock Geologic Map of Vermont is the result of a cooperative agreement between the U.S. Geological Survey (USGS) and the State of Vermont. The State's complex geology spans 1.4 billion years of Earth's history. The new map comes 50 years after the most recent map of the State by Charles G. Doll and others in 1961 and a full 150 years since the publication of the first geologic map of Vermont by Edward Hitchcock and others in 1861. At a scale of 1:100,000, the map shows an uncommon level of detail for State geologic maps. Mapped rock units are primarily based on lithology, or rock type, to facilitate derivative studies in multiple disciplines. The 1961 map was compiled from 1:62,500-scale or smaller maps. The current map was created to integrate more detailed (1:12,000- to 1:24,000-scale) modern and older (1:62,500-scale) mapping with the theory of plate tectonics to provide a framework for geologic, tectonic, economic, hydrogeologic, and environmental characterization of the bedrock of Vermont. The printed map consists of three oversize sheets (52 x 76 inches). Sheets 1 and 2 show the southern and northern halves of Vermont, respectively, and can be trimmed and joined so that the entire State can be displayed as a single entity. These sheets also include 10 cross sections and a geologic structure map. Sheet 3 on the front consists of descriptions of 486 map units, a correlation of map units, and references cited. Sheet 3 on the back features a list of the 195 sources of geologic map data keyed to an index map of 7.5-minute quadrangles in Vermont, as well as a table identifying ages of rocks dated by uranium-lead zircon geochronology.

  16. ECONOMIC GEOLOGY (1)METALS DEPOSITS

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    <正>20070994 Bi Fake(Geological Survey of Heber Province,Shijiazhuang 050081, China);Xiao Wenxian Ore-Forming and Prospective Zones in Hebei Province(Geolog- ical Survey and Research,ISSN1672-4135, CN12-1353/P,29(2),2006,p.107-114, 1 illus.,12 refs.,with English abstract) Key words:metallogenic belts,metallo- genic regularity,Hebei Province

  17. Titan's global geologic processes

    Science.gov (United States)

    Malaska, Michael; Lopes, Rosaly M. C.; Schoenfeld, Ashley; Birch, Samuel; Hayes, Alexander; Williams, David A.; Solomonidou, Anezina; Janssen, Michael A.; Le Gall, Alice; Soderblom, Jason M.; Neish, Catherine; Turtle, Elizabeth P.; Cassini RADAR Team

    2016-10-01

    We have mapped the Cassini SAR imaged areas of Saturn's moon Titan in order to determine the geological properties that modify the surface [1]. We used the SAR dataset for mapping, but incorporated data from radiometry, VIMS, ISS, and SARTopo for terrain unit determination. This work extends our analyses of the mid-latitude/equatorial Afekan Crater region [2] and in the southern and northern polar regions [3]. We placed Titan terrains into six broad terrain classes: craters, mountain/hummocky, labyrinth, plains, dunes, and lakes. We also extended the fluvial mapping done by Burr et al. [4], and defined areas as potential cryovolcanic features [5]. We found that hummocky/mountainous and labyrinth areas are the oldest units on Titan, and that lakes and dunes are among the youngest. Plains units are the largest unit in terms of surface area, followed by the dunes unit. Radiometry data suggest that most of Titan's surface is covered in high-emissivity materials, consistent with organic materials, with only minor exposures of low-emissivity materials that are consistent with water ice, primarily in the mountain and hummocky areas and crater rims and ejecta [6, 7]. From examination of terrain orientation, we find that landscape evolution in the mid-latitude and equatorial regions is driven by aeolian processes, while polar landscapes are shaped by fluvial, lacrustine, and possibly dissolution or volatilization processes involving cycling organic materials [3, 8]. Although important in deciphering Titan's terrain evolution, impact processes play a very minor role in the modification of Titan's landscape [9]. We find no evidence for large-scale aqueous cryovolcanic deposits.References: [1] Lopes, R.M.C. et al. (2010) Icarus, 205, 540–558. [2] Malaska, M.J. et al. (2016) Icarus, 270, 130–161. [3] Birch et al., in revision. [4] Burr et al. (2013) GSA Bulletin 125, 299–321. [5] Lopes et al. JGR: Planets, 118, 1–20. [6] Janssen et al., (2009) Icarus, 200, 222–239. [7

  18. Geologic effects of hurricanes

    Science.gov (United States)

    Coch, Nicholas K.

    1994-08-01

    Hurricanes are intense low pressure systems of tropical origin. Hurricane damage results from storm surge, wind, and inland flooding from heavy rainfall. Field observations and remote sensing of recent major hurricanes such as Hugo (1989), Andrew (1992) and Iniki (1992) are providing new insights into the mechanisms producing damage in these major storms. Velocities associated with hurricanes include the counterclockwise vortex winds flowing around the eye and the much slower regional winds that steer hurricane and move it forward. Vectorial addition of theseof these two winds on the higher effective wind speed than on the left side. Coast-parallel hurricane tracks keep the weaker left side of the storm against the coast, whereas coast-normal tracks produce a wide swath of destruction as the more powerful right side of the storm cuts a swath of destruction hundreds of kilometers inland. Storm surge is a function of the wind speed, central pressure, shelf slope, shoreline configuration, and anthropogenic alterations to the shoreline. Maximum surge heights are not under the eye of the hurricane, where the pressure is lowest, but on the right side of the eye at the radius of maximum winds, where the winds are strongest. Flood surge occurs as the hurricane approaches land and drives coastal waters, and superimposed waves, across the shore. Ebb surge occurs when impounded surface water flows seaward as the storm moves inland. Flood and ebb surge damage have been greatly increased in recent hurricanes as a result of anthropogenic changes along the shoreline. Hurricane wind damage occurs on three scales — megascale, mesoscale and microscale. Local wind damage is a function of wind speed, exposure and structural resistance to velocity pressure, wind drag and flying debris. Localized extreme damage is caused by gusts that can locally exceed sustained winds by a factor of two in areas where there is strong convective activity. Geologic changes occuring in hurricanes

  19. Global Geologic Map of Europa

    Science.gov (United States)

    Doggett, T.; Figueredo, P.; Greeley, R.; Hare, T.; Kolb, E.; Mullins, K.; Senske, D.; Tanaka, K.; Weiser, S.

    2008-01-01

    Europa, with its indications of a sub-ice ocean, is of keen interest to astrobiology and planetary geology. Knowledge of the global distribution and timing of Europan geologic units is a key step for the synthesis of data from the Galileo mission, and for the planning of future missions to the satellite. The first geologic map of Europa was produced at a hemisphere scale with low resolution Voyager data. Following the acquisition of higher resolution data by the Galileo mission, researchers have identified surface units and determined sequences of events in relatively small areas of Europa through geologic mapping using images at various resolutions acquired by Galileo's Solid State Imaging camera. These works provided a local to subregional perspective and employed different criteria for the determination and naming of units. Unified guidelines for the identification, mapping and naming of Europan geologic units were put forth by and employed in regional-to-hemispheric scale mapping which is now being expanded into a global geologic map. A global photomosaic of Galileo and Voyager data was used as a basemap for mapping in ArcGIS, following suggested methodology of all-stratigraphy for planetary mapping. The following units have been defined in global mapping and are listed in stratigraphic order from oldest to youngest: ridged plains material, Argadnel Regio unit, dark plains material, lineaments, disrupted plains material, lenticulated plains material and Chaos material.

  20. Health benefits of geologic materials and geologic processes

    Science.gov (United States)

    Finkelman, R.B.

    2006-01-01

    The reemerging field of Medical Geology is concerned with the impacts of geologic materials and geologic processes on animal and human health. Most medical geology research has been focused on health problems caused by excess or deficiency of trace elements, exposure to ambient dust, and on other geologically related health problems or health problems for which geoscience tools, techniques, or databases could be applied. Little, if any, attention has been focused on the beneficial health effects of rocks, minerals, and geologic processes. These beneficial effects may have been recognized as long as two million years ago and include emotional, mental, and physical health benefits. Some of the earliest known medicines were derived from rocks and minerals. For thousands of years various clays have been used as an antidote for poisons. "Terra sigillata," still in use today, may have been the first patented medicine. Many trace elements, rocks, and minerals are used today in a wide variety of pharmaceuticals and health care products. There is also a segment of society that believes in the curative and preventative properties of crystals (talismans and amulets). Metals and trace elements are being used in some of today's most sophisticated medical applications. Other recent examples of beneficial effects of geologic materials and processes include epidemiological studies in Japan that have identified a wide range of health problems (such as muscle and joint pain, hemorrhoids, burns, gout, etc.) that may be treated by one or more of nine chemically distinct types of hot springs, and a study in China indicating that residential coal combustion may be mobilizing sufficient iodine to prevent iodine deficiency disease. ?? 2006 MDPI. All rights reserved.

  1. Health Benefits of Geologic Materials and Geologic Processes

    Directory of Open Access Journals (Sweden)

    Robert B. Finkelman

    2006-12-01

    Full Text Available The reemerging field of Medical Geology is concerned with the impacts of geologic materials and geologic processes on animal and human health. Most medical geology research has been focused on health problems caused by excess or deficiency of trace elements, exposure to ambient dust, and on other geologically related health problems or health problems for which geoscience tools, techniques, or databases could be applied. Little, if any, attention has been focused on the beneficial health effects of rocks, minerals, and geologic processes. These beneficial effects may have been recognized as long as two million years ago and include emotional, mental, and physical health benefits. Some of the earliest known medicines were derived from rocks and minerals. For thousands of years various clays have been used as an antidote for poisons. “Terra sigillata,” still in use today, may have been the first patented medicine. Many trace elements, rocks, and minerals are used today in a wide variety of pharmaceuticals and health care products. There is also a segment of society that believes in the curative and preventative properties of crystals (talismans and amulets. Metals and trace elements are being used in some of today’s most sophisticated medical applications. Other recent examples of beneficial effects of geologic materials and processes include epidemiological studies in Japan that have identified a wide range of health problems (such as muscle and joint pain, hemorrhoids, burns, gout, etc. that may be treated by one or more of nine chemically distinct types of hot springs, and a study in China indicating that residential coal combustion may be mobilizing sufficient iodine to prevent iodine deficiency disease.

  2. Development of Geological Data Warehouse

    Institute of Scientific and Technical Information of China (English)

    Li Zhenhua; Hu Guangdao; Zhang Zhenfei

    2003-01-01

    Data warehouse (DW), a new technology invented in 1990s, is more useful for integrating and analyzing massive data than traditional database. Its application in geology field can be divided into 3 phrases: 1992-1996, commercial data warehouse (CDW) appeared; 1996-1999, geological data warehouse (GDW) appeared and the geologists or geographers realized the importance of DW and began the studies on it, but the practical DW still followed the framework of DB; 2000 to present, geological data warehouse grows, and the theory of geo-spatial data warehouse (GSDW) has been developed but the research in geological area is still deficient except that in geography. Although some developments of GDW have been made, its core still follows the CDW-organizing data by time and brings about 3 problems: difficult to integrate the geological data, for the data feature more space than time; hard to store the massive data in different levels due to the same reason; hardly support the spatial analysis if the data are organized by time as CDW does. So the GDW should be redesigned by organizing data by scale in order to store mass data in different levels and synthesize the data in different granularities, and choosing space control points to replace the former time control points so as to integrate different types of data by the method of storing one type data as one layer and then to superpose the layers. In addition, data cube, a wide used technology in CDW, will be no use in GDW, for the causality among the geological data is not so obvious as commercial data, as the data are the mixed result of many complex rules, and their analysis always needs the special geological methods and software; on the other hand, data cube for mass and complex geo-data will devour too much store space to be practical. On this point, the main purpose of GDW may be fit for data integration unlike CDW for data analysis.

  3. Physical trajectory profile data from glider sp011 deployed by University of California - San Diego; Scripps Institution of Oceanography in the Coastal Waters of California from 2015-11-05 to 2016-02-18 (NCEI Accession 0145664)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Spray glider profile data from Scripps Institution of Oceanography Instrument Development Group (supported by NOAA). The National Centers for Environmental...

  4. Physical trajectory profile data from glider sp063 deployed by University of California - San Diego; Scripps Institution of Oceanography in the Coastal Waters of California from 2016-08-23 to 2016-08-28 (NCEI Accession 0156530)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Spray glider profile data from Scripps Institution of Oceanography Instrument Development Group (supported by NOAA). The National Centers for Environmental...

  5. Physical trajectory profile data from glider sp018 deployed by University of California - San Diego; Scripps Institution of Oceanography in the Solomon Sea from 2016-02-18 to 2016-05-28 (NCEI Accession 0153549)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Spray glider profile data from Scripps Institution of Oceanography Instrument Development Group (supported by NOAA). The National Centers for Environmental...

  6. Physical trajectory profile data from glider sp025 deployed by University of California - San Diego; Scripps Institution of Oceanography in the Coastal Waters of California from 2014-11-25 to 2014-11-27 (NCEI Accession 0137979)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Spray glider profile data from Scripps Institution of Oceanography Instrument Development Group (supported by NOAA). The National Centers for Environmental...

  7. Physical trajectory profile data from glider sp050 deployed by University of California - San Diego; Scripps Institution of Oceanography in the Equatorial Pacific Ocean from 2015-02-06 to 2015-05-14 (NCEI Accession 0137988)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Spray glider profile data from Scripps Institution of Oceanography Instrument Development Group (supported by NOAA). The National Centers for Environmental...

  8. Physical trajectory profile data from glider sp064 deployed by University of California - San Diego; Scripps Institution of Oceanography in the Coastal Waters of California from 2016-05-17 to 2016-08-23 (NCEI Accession 0156410)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Spray glider profile data from Scripps Institution of Oceanography Instrument Development Group (supported by NOAA). The National Centers for Environmental...

  9. Physical trajectory profile data from glider sp030 deployed by University of California - San Diego; Scripps Institution of Oceanography in the Coastal Waters of California from 2015-01-09 to 2015-04-27 (NCEI Accession 0137984)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Spray glider profile data from Scripps Institution of Oceanography Instrument Development Group (supported by NOAA). The National Centers for Environmental...

  10. Physical trajectory profile data from glider sp043 deployed by University of California - San Diego; Scripps Institution of Oceanography in the Solomon Sea from 2014-09-27 to 2015-01-04 (NCEI Accession 0137986)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Spray glider profile data from Scripps Institution of Oceanography Instrument Development Group (supported by NOAA). The National Centers for Environmental...

  11. Physical trajectory profile data from glider sp063 deployed by University of California - San Diego; Scripps Institution of Oceanography in the Coastal Waters of California from 2014-09-15 to 2014-11-04 (NCEI Accession 0137991)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Spray glider profile data from Scripps Institution of Oceanography Instrument Development Group (supported by NOAA). The National Centers for Environmental...

  12. Physical trajectory profile data from glider sp031 deployed by University of California - San Diego; Scripps Institution of Oceanography in the Equatorial Pacific Ocean from 2015-09-10 to 2015-12-16 (NCEI Accession 0145667)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Spray glider profile data from Scripps Institution of Oceanography Instrument Development Group (supported by NOAA). The National Centers for Environmental...

  13. Physical trajectory profile data from glider sp011 deployed by University of California - San Diego; Scripps Institution of Oceanography in the Coastal Waters of California from 2014-05-01 to 2014-08-13 (NCEI Accession 0137974)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Spray glider profile data from Scripps Institution of Oceanography Instrument Development Group (supported by NOAA). The National Centers for Environmental...

  14. Temperature, salinity, chlorophyll pigments, nutrients and other parameters as part of the ECOHAB-GOM: The Ecology and Oceanography of Toxic Alexandrium Blooms in the Gulf of Maine project (NODC Accession 0064309)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The subproject described here is one of several components of ECOHAB-GOM: The Ecology and Oceanography of Toxic Alexandrium Blooms in the Gulf of Maine, a multi-PI,...

  15. Physical trajectory profile data from glider sp027 deployed by University of California - San Diego; Scripps Institution of Oceanography in the Solomon Sea from 2015-06-16 to 2015-09-23 (NCEI Accession 0145712)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Spray glider profile data from Scripps Institution of Oceanography Instrument Development Group (supported by NOAA). The National Centers for Environmental...

  16. Physical trajectory profile data from glider sp050 deployed by University of California - San Diego; Scripps Institution of Oceanography in the Equatorial Pacific Ocean from 2016-03-30 to 2016-07-20 (NCEI Accession 0155979)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Spray glider profile data from Scripps Institution of Oceanography Instrument Development Group (supported by NOAA). The National Centers for Environmental...

  17. Physical trajectory profile data from glider sp064 deployed by University of California - San Diego; Scripps Institution of Oceanography in the Coastal Waters of California from 2015-10-30 to 2016-02-03 (NCEI Accession 0145715)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Spray glider profile data from Scripps Institution of Oceanography Instrument Development Group (supported by NOAA). The National Centers for Environmental...

  18. Physical trajectory profile data from glider sp025 deployed by University of California - San Diego; Scripps Institution of Oceanography in the Coastal Waters of California from 2015-01-08 to 2015-04-09 (NCEI Accession 0137980)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Spray glider profile data from Scripps Institution of Oceanography Instrument Development Group (supported by NOAA). The National Centers for Environmental...

  19. Physical trajectory profile data from glider sp001 deployed by University of California - San Diego; Scripps Institution of Oceanography in the Solomon Sea from 2015-01-12 to 2015-04-08 (NCEI Accession 0137973)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Spray glider profile data from Scripps Institution of Oceanography Instrument Development Group (supported by NOAA). The National Centers for Environmental...

  20. Physical trajectory profile data from glider sp011 deployed by University of California - San Diego; Scripps Institution of Oceanography in the Coastal Waters of California from 2015-04-27 to 2015-08-13 (NCEI Accession 0137976)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Spray glider profile data from Scripps Institution of Oceanography Instrument Development Group (supported by NOAA). The National Centers for Environmental...

  1. Physical trajectory profile data from glider sp020 deployed by University of California - San Diego; Scripps Institution of Oceanography in the Equatorial Pacific Ocean from 2014-08-03 to 2014-12-12 (NCEI Accession 0137977)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Spray glider profile data from Scripps Institution of Oceanography Instrument Development Group (supported by NOAA). The National Centers for Environmental...

  2. Physical trajectory profile data from glider sp025 deployed by University of California - San Diego; Scripps Institution of Oceanography in the Coastal Waters of California from 2014-06-11 to 2014-09-15 (NCEI Accession 0137978)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Spray glider profile data from Scripps Institution of Oceanography Instrument Development Group (supported by NOAA). The National Centers for Environmental...

  3. Physical trajectory profile data from glider sp035 deployed by University of California - San Diego; Scripps Institution of Oceanography in the Coastal Waters of California from 2015-03-31 to 2015-07-16 (NCEI Accession 0138032)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Spray glider profile data from Scripps Institution of Oceanography Instrument Development Group (supported by NOAA). The National Centers for Environmental...

  4. Physical trajectory profile data from glider sp025 deployed by University of California - San Diego; Scripps Institution of Oceanography in the Coastal Waters of California from 2016-03-10 to 2016-06-28 (NCEI Accession 0155280)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Spray glider profile data from Scripps Institution of Oceanography Instrument Development Group (supported by NOAA). The National Centers for Environmental...

  5. Physical trajectory profile data from glider sp047 deployed by University of California - San Diego; Scripps Institution of Oceanography in the Coastal Waters of California from 2014-06-23 to 2015-01-22 (NCEI Accession 0137987)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Spray glider profile data from Scripps Institution of Oceanography Instrument Development Group (supported by NOAA). The National Centers for Environmental...

  6. Physical trajectory profile data from glider sp028 deployed by University of California - San Diego; Scripps Institution of Oceanography in the Coastal Waters of California from 2014-06-05 to 2014-09-05 (NCEI Accession 0137981)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Spray glider profile data from Scripps Institution of Oceanography Instrument Development Group (supported by NOAA). The National Centers for Environmental...

  7. Physical trajectory profile data from glider sp040 deployed by University of California - San Diego; Scripps Institution of Oceanography in the Coastal Waters of California from 2015-04-09 to 2015-07-14 (NCEI Accession 0138034)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Spray glider profile data from Scripps Institution of Oceanography Instrument Development Group (supported by NOAA). The National Centers for Environmental...

  8. Physical trajectory profile data from glider sp049 deployed by University of California - San Diego; Scripps Institution of Oceanography in the Coastal Waters of California from 2016-04-05 to 2016-06-02 (NCEI Accession 0153788)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Spray glider profile data from Scripps Institution of Oceanography Instrument Development Group (supported by NOAA). The National Centers for Environmental...

  9. Physical trajectory profile data from glider sp048 deployed by University of California - San Diego; Scripps Institution of Oceanography in the Coastal Waters of California from 2014-01-16 to 2014-07-29 (NCEI Accession 0138035)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Spray glider profile data from Scripps Institution of Oceanography Instrument Development Group (supported by NOAA). The National Centers for Environmental...

  10. Physical trajectory profile data from glider sp025 deployed by University of California - San Diego; Scripps Institution of Oceanography in the Coastal Waters of California from 2015-08-13 to 2015-11-18 (NCEI Accession 0145665)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Spray glider profile data from Scripps Institution of Oceanography Instrument Development Group (supported by NOAA). The National Centers for Environmental...

  11. Physical trajectory profile data from glider sp063 deployed by University of California - San Diego; Scripps Institution of Oceanography in the Coastal Waters of California from 2016-02-03 to 2016-05-17 (NCEI Accession 0153552)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Spray glider profile data from Scripps Institution of Oceanography Instrument Development Group (supported by NOAA). The National Centers for Environmental...

  12. Physical trajectory profile data from glider sp020 deployed by University of California - San Diego; Scripps Institution of Oceanography in the Equatorial Pacific Ocean from 2015-12-16 to 2016-03-30 (NCEI Accession 0153550)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Spray glider profile data from Scripps Institution of Oceanography Instrument Development Group (supported by NOAA). The National Centers for Environmental...

  13. Physical trajectory profile data from glider sp031 deployed by University of California - San Diego; Scripps Institution of Oceanography in the Equatorial Pacific Ocean from 2014-04-12 to 2014-08-02 (NCEI Accession 0138031)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Spray glider profile data from Scripps Institution of Oceanography Instrument Development Group (supported by NOAA). The National Centers for Environmental...

  14. Physical trajectory profile data from glider sp048 deployed by University of California - San Diego; Scripps Institution of Oceanography in the Coastal Waters of California from 2015-01-27 to 2015-08-27 (NCEI Accession 0145669)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Spray glider profile data from Scripps Institution of Oceanography Instrument Development Group (supported by NOAA). The National Centers for Environmental...

  15. Physical trajectory profile data from glider sp011 deployed by University of California - San Diego; Scripps Institution of Oceanography in the Coastal Waters of California from 2016-06-02 to 2016-09-06 (NCEI Accession 0156569)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Spray glider profile data from Scripps Institution of Oceanography Instrument Development Group (supported by NOAA). The National Centers for Environmental...

  16. Physical trajectory profile data from glider sp053 deployed by University of California - San Diego; Scripps Institution of Oceanography in the Solomon Sea from 2015-08-29 to 2015-12-13 (NCEI Accession 0145713)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Spray glider profile data from Scripps Institution of Oceanography Instrument Development Group (supported by NOAA). The National Centers for Environmental...

  17. Physical trajectory profile data from glider sp028 deployed by University of California - San Diego; Scripps Institution of Oceanography in the Coastal Waters of California from 2015-11-24 to 2016-03-10 (NCEI Accession 0145666)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Spray glider profile data from Scripps Institution of Oceanography Instrument Development Group (supported by NOAA). The National Centers for Environmental...

  18. Physical trajectory profile data from glider sp011 deployed by University of California - San Diego; Scripps Institution of Oceanography in the Coastal Waters of California from 2014-09-23 to 2015-01-09 (NCEI Accession 0137975)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Spray glider profile data from Scripps Institution of Oceanography Instrument Development Group (supported by NOAA). The National Centers for Environmental...

  19. Physical trajectory profile data from glider sp030 deployed by University of California - San Diego; Scripps Institution of Oceanography in the Coastal Waters of California from 2014-08-13 to 2014-11-25 (NCEI Accession 0137983)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Spray glider profile data from Scripps Institution of Oceanography Instrument Development Group (supported by NOAA). The National Centers for Environmental...

  20. Physical trajectory profile data from glider sp039 deployed by University of California - San Diego; Scripps Institution of Oceanography in the Coastal Waters of California from 2015-01-22 to 2015-07-16 (NCEI Accession 0138033)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Spray glider profile data from Scripps Institution of Oceanography Instrument Development Group (supported by NOAA). The National Centers for Environmental...

  1. Physical trajectory profile data from glider sp028 deployed by University of California - San Diego; Scripps Institution of Oceanography in the Coastal Waters of California from 2016-08-17 to 2016-09-16 (NCEI Accession 0156601)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Spray glider profile data from Scripps Institution of Oceanography Instrument Development Group (supported by NOAA). The National Centers for Environmental...

  2. Physical trajectory profile data from glider sp028 deployed by University of California - San Diego; Scripps Institution of Oceanography in the Coastal Waters of California from 2014-12-10 to 2015-03-31 (NCEI Accession 0137982)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Spray glider profile data from Scripps Institution of Oceanography Instrument Development Group (supported by NOAA). The National Centers for Environmental...

  3. Physical trajectory profile data from glider sp006 deployed by University of California - San Diego; Scripps Institution of Oceanography in the Solomon Sea from 2015-12-14 to 2016-03-30 (NCEI Accession 0153787)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Spray glider profile data from Scripps Institution of Oceanography Instrument Development Group (supported by NOAA). The National Centers for Environmental...

  4. Physical trajectory profile data from glider sp043 deployed by University of California - San Diego; Scripps Institution of Oceanography in the Solomon Sea from 2016-05-20 to 2016-08-24 (NCEI Accession 0156529)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Spray glider profile data from Scripps Institution of Oceanography Instrument Development Group (supported by NOAA). The National Centers for Environmental...

  5. Physical trajectory profile data from glider sp051 deployed by University of California - San Diego; Scripps Institution of Oceanography in the Coastal Waters of California from 2014-11-12 to 2015-01-08 (NCEI Accession 0137989)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Spray glider profile data from Scripps Institution of Oceanography Instrument Development Group (supported by NOAA). The National Centers for Environmental...

  6. Physical trajectory profile data from glider sp047 deployed by University of California - San Diego; Scripps Institution of Oceanography in the Coastal Waters of California from 2015-08-27 to 2016-03-17 (NCEI Accession 0145668)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Spray glider profile data from Scripps Institution of Oceanography Instrument Development Group (supported by NOAA). The National Centers for Environmental...

  7. Physical trajectory profile data from glider sp042 deployed by University of California - San Diego; Scripps Institution of Oceanography in the Solomon Sea from 2015-03-18 to 2015-05-27 (NCEI Accession 0137985)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Spray glider profile data from Scripps Institution of Oceanography Instrument Development Group (supported by NOAA). The National Centers for Environmental...

  8. Physical trajectory profile data from glider sp018 deployed by University of California - San Diego; Scripps Institution of Oceanography in the Solomon Sea from 2014-06-10 to 2014-09-21 (NCEI Accession 0138030)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Spray glider profile data from Scripps Institution of Oceanography Instrument Development Group (supported by NOAA). The National Centers for Environmental...

  9. Physical trajectory profile data from glider sp039 deployed by University of California - San Diego; Scripps Institution of Oceanography in the Coastal Waters of California from 2016-02-18 to 2016-09-06 (NCEI Accession 0156570)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Spray glider profile data from Scripps Institution of Oceanography Instrument Development Group (supported by NOAA). The National Centers for Environmental...

  10. Theory of Geological Anomaly in Remote Sensing

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Geological anomaly is geological body or complex body with obviously different compositions, structures or orders of genesis as compared with those in the surrounding areas. Geological anomaly, restrained by the geological factors closely associated with ore-forming process, is an important clue to ore deposits. The geological anomaly serves as a geological sign to locate ore deposits. Therefore, it is very important to study how to define the characteristics of geological anomaly and further to locate the changes in these characteristics. In this paper, the authors propose the geological anomaly based on the remote-sensing images and data, and expound systematically such image features as scale, size, boundary, morphology and genesis of geological anomalies. Then the authors introduce the categorization of the geological anomalies according to their geneses. The image characteristics of some types of geological anomalies, such as the underground geological anomaly, are also explained in detail. Based on the remote-sensing interpretation of these geological anomalies, the authors conclude that the forecasting and exploration of ore deposits should be focused on the following three aspects: (1) the analysis of geological setting and geological anomaly; (2) the analysis of circular geological anomaly, and (3) the comprehensive forecasting of ore deposits and the research into multi-source information.

  11. Geology Field Trips as Performance Evaluations

    Science.gov (United States)

    Bentley, Callan

    2009-01-01

    One of the most important goals the author has for students in his introductory-level physical geology course is to give them the conceptual skills for solving geologic problems on their own. He wants students to leave his course as individuals who can use their knowledge of geologic processes and logic to figure out the extended geologic history…

  12. Engineering geology as applied to highway construction

    Science.gov (United States)

    Gard, Leonard M.

    1955-01-01

    A geologic study of the site for a relocated segment of State Highway 93 northwest of Denver Colo., was made by by the Engineering Geology Branch of the U.S. Geological Survey as a demonstration of the applicability of geologic mapping to problems of highway construction. The relocated segment provides access to the Rocky Flats plant of the Atomic Energy Commission.  

  13. The U. S. Geological Survey Geologic Hazards Program

    Science.gov (United States)

    Peck, D.L.

    1982-01-01

    In 1879, Congress established the U.S Geological Survey for "the classification of the public lands and the examination of the geological structure, mineral resources, and products of the national domain." Throughout the past 103 years, the Survey has successfully fulfilled these responsibilities, but it has also been responsive to changing national needs. This responsiveness is well exemplified by the development of the agency's natural hazard programs. Our orignial mision has been expanded to include formal investigations of earthquakes, volcanic eruptions, ground failures, and flood hazards. 

  14. Centre of Excellence in Observational Oceanography: Nippon Foundation and POGO Supported Programme at the Bermuda Institute of Ocean Sciences

    Science.gov (United States)

    Plumley, F. G.; Sathyendranath, S.; Frouin, R.; Knap, T.

    2008-05-01

    Building on previous experience in capacity building for ocean observations, the Nippon Foundation (NF) and the Partnership for Observations of the Global Oceans (POGO) have announced a new Centre of Excellence (C of E) at the Bermuda Institute of Ocean Sciences (BIOS). The goals of the C of E are to expand the world-wide capacity and expertise to observe the oceans and to expand capacity-building projects and promote international collaboration and networking in ocean sciences. Over the past 104 years, BIOS has built a global reputation in blue-water oceanography, coral reef ecology, and the relationships between ocean health and human health coupled with high quality education programmes that provide direct, hands-on experience with BIOS-based research. The C of E at BIOS will build upon this model to establish a new, graduate-level education and training programme in operational oceanography. The 10 month Programme will offer course modules in ocean disciplines with a focus on observatory sciences complemented by hands-on training in observational methods and techniques based on the multi-disciplinary expertise of BIOS and BIOS-affiliated scientists who direct ongoing, ocean observational programmes such as: - Hydrostation S, since 1954; - Bermuda Atlantic Time-series Study, since 1988; - Oceanic Flux Program sediment trap time-series, since 1978; - Bermuda Test-Bed and Science Mooring, since 1994; - Bermuda Microbial Observatory, since 1997; - Bermuda Bio-Optics Program, since 1992; - Atmospheric chemistry and air-sea fluxes, since 1990 Additional areas of BIOS research expertise will be incorporated in the C of E to broaden the scope of education and training. These include the nearshore observational network of the BIOS Marine Environmental Program and the environmental air-water chemistry network of the Bermuda Environmental Quality Program. A key resource of the C of E is the newly acquired 168 ft. research vessel, the RV Atlantic Explorer, which was

  15. West Hackberry Strategic Petroleum Reserve site brine-disposal monitoring, Year I report. Volume IV. Bibliography and supporting data for physical oceanography. Final report. [421 references

    Energy Technology Data Exchange (ETDEWEB)

    DeRouen, L.R.; Hann, R.W.; Casserly, D.M.; Giammona, C.; Lascara, V.J. (eds.)

    1983-02-01

    This project centers around the Strategic Petroleum Site (SPR) known as the West Hackberry salt dome which is located in southwestern Louisiana and which is designed to store 241 million barrels of crude oil. Oil storage caverns are formed by injecting water into salt deposits, and pumping out the resulting brine. Studies described in this report were designed as follow-on studies to three months of pre-discharge characterization work, and include data collected during the first year of brine leaching operations. The objectives were to: (1) characterize the environment in terms of physical, chemical and biological attributes; (2) determine if significant adverse changes in ecosystem productivity and stability of the biological community are occurring as a result of brine discharge; and (3) determine the magnitude of any change observed. Volume IV contains the following: bibliography; appendices for supporting data for physical oceanography, and summary of the physical oceanography along the western Louisiana coast.

  16. Cumulative and Synergistic Effects of Physical, Biological, and Acoustic Signals on Marine Mammal Habitat Use Physical Oceanography Component: Soundscapes Under Sea Ice: Can We Listen for Open Water?

    Science.gov (United States)

    2013-09-30

    disappear as these mammals begin their annual migration to the Arctic Ocean. The soundscape shows loud floe-banging conditions mixed with periods of...Physical, Biological, and Acoustic Signals on Marine Mammal Habitat Use Physical Oceanography Component: Soundscapes Under Sea Ice: Can we listen for...research effort is to enhance the understanding of how variability in physical, biological, and acoustic signals impact marine mammal habitat use. This is

  17. Petroleum geology of North Africa

    Energy Technology Data Exchange (ETDEWEB)

    MacGregor, D.S. [ed.] [BP Exploration Operating Co. Ltd., Jakarta (Indonesia); Moody, R.T.J. [ed.] [Moody-Sandman Associates, Kingston (United Kingdom); Clark-Lowes, D.D. [ed.] [University of London (United Kingdom). Imperial College of Science, Technology and Medicine

    1998-12-31

    North Africa contains some 4% of the world`s remaining oil and gas reserves, and is now one of the most active exploration areas. This volume represents the first attempt at a compilation of the petroleum geology of North Africa, documenting a series of papers collected on the petroleum geology of Morocco, Algeria, Tunisia, Libya and the western part of Egypt. The main objectives of this book are to increase the level of documentation towards that appropriate for such major petroleum provinces and to facilitate the application of analogues between North African countries and beyond. (author)

  18. Map Service Showing Geology and Geologic Provinces of the Arabian Peninsula

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The geology data set for this map includes arcs, polygons, and labels that outline and describe the general geologic age and type of bedrock of the Arabian Peninsula...

  19. A SKOS-based multilingual thesaurus of geological time scale for interopability of online geological maps

    NARCIS (Netherlands)

    Ma, X.; Carranza, E.J.M.; Wu, C.; Meer, F.D. van der; Liu, G.

    2011-01-01

    The usefulness of online geological maps is hindered by linguistic barriers. Multilingual geoscience thesauri alleviate linguistic barriers of geological maps. However, the benefits of multilingual geoscience thesauri for online geological maps are less studied. In this regard, we developed a

  20. Map Service Showing Geology, Oil and Gas Fields and Geological Provinces of the Former Soviet Union

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This map service includes geology, center points of oil and gas fields, geologic provinces, and political boundaries in the Former Soviet Union. This compilation is...